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Abstract

We report experimental data from standard market entry games and winner-take-
all games. At odds with traditional decision making models with risk aversion, the
winner-take-all condition results in substantially more entry than the expected-payoff-
equivalent market entry game. We explore three candidate explanations for excess
entry: blind spot, illusion of control, and joy of winning, none of which receive em-
pirical support. We provide a novel theoretical explanation for excess entry based
on Cumulative Prospect Theory and test it empirically. Our results suggest that
excess entry into highly competitive environments is not caused by a genuine prefer-
ence for competing, but driven by probability weighting. Market entrants overweight
the small probabilities associated with the high payoff outcomes in winner-take-all
markets, while they underweight probable failures.
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1 Introduction

Empirical research finds that most start-ups fail within a few years. Using data on the U.S.
manufacturing sector, Dunne, Roberts, and Samuelson (1988) report that 61.5% of newly
established plants exit the market after five years and 79.6% after ten years. Mata and
Portugal (1994) confirm the high failure rates based on data of the Portuguese manufactur-
ing industry. Hamilton (2000) finds the majority of people who enter self-employment to
face lower expected earnings but higher variance than in a paid job. More recent evidence
is barely more encouraging. According to the Small Business Administration Office of
Advocacy’s 2020 Frequently Asked Questions, the ten-year survival rate of new businesses
is 33.6%, and the fifteen-year survival rate is 25.7%.1

This excess entry is at odds with early findings in the experimental literature. Standard
experimental market entry games fail to find excess entry (see Sundali, Rapoport, & Seale,
1995; Rapoport, Seale, Erev, & Sundali, 1998). Instead, they find the number of market
entrants to be in line with Nash equilibrium predictions. As Kahneman (1988) puts it,
this tacit coordination towards the Nash equilibrium “looks like magic”.

How come there is such a disconnect between empirical evidence from the laboratory
and from the field? Entrepreneurship in the real world deviates in two main respects from
the laboratory market entry game setting. First, in the real world successful market entry
depends on entrepreneurial skills. Second, many markets in the real world feature winner-
take-all characteristics, i.e., few competitors capture a very large share of the rewards and
the remaining competitors are left with very little. Examples for the latter abound: net-
work externalities create winner-take-all markets, namely in the IT industry, for example
for social networks (e.g. Facebook, Twitter) or software (e.g. operating systems). Also
industries with one or only few slots display winner-take-all characteristics. Examples
are highly competitive environments like markets for CEOs or politicians. Finally, we see
a particularly high concentration of rewards for a few competitors in the entertainment
business such as performing arts (music, dance, etc.) or sports (tennis, football, boxing,
etc.).

More recent research on market entry in competitive environments has focused on the
role of beliefs about relative skill. Camerer and Lovallo (1999) report results from labo-
ratory experiments showing that overconfidence can drive excess entry in a setting where
market returns depend on skill. Moore and Cain (2007) build on Camerer and Lovallo
(1999) and manipulate the difficulty of the task to determine skill levels. They find that
skill-dependent market returns lead to excess entry only in the easy-task condition, but
not in the difficult-task condition. Moore, Oesch, and Zietsma (2007), Dorfman, Bereby-
Meyer, and Moran (2013), and Cain, Moore, and Haran (2015) confirm the finding that
competitions over easy tasks are most likely to produce excess entry. Wu and Knott (2006)
study aggregated market data on entry decisions of entrepreneurs and find excess entry
in markets where there is a high degree of uncertainty about ability and low demand un-

1https://cdn.advocacy.sba.gov/wp-content/uploads/2020/11/05122043/Small-Business-FAQ-2020.pdf
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certainty. Comparing the evolution of overconfidence between strategic and non-strategic
environments, Brilon, Grassi, Grieder, and Schulz (2019) find that overconfidence persists
when subjects can strategically send signals about their skill and opt out of competition
(strategic). Overconfidence vanishes, however, when subjects are forced to compete with
each other and cannot strategically send signals (non-strategic). Morgan, Orzen, Sefton,
and Sisak (2016) allow subjects to make post-entry investment decisions to investigate the
role of natural and strategic risk. They show that adding natural risk to market entry
leads to a slight increase in the frequency of market entry and to a much higher post-entry
investment.2

In Danz (2020) subjects have to choose between a piece-rate compensation and a
competitive tournament after observing their competitors’ past performances. By ma-
nipulating ex post information about their competitors’ previous tasks, he shows that
hindsight bias generates overplacement and increases subjects’ valuations of tournament
participation.

So far, the significant body of literature drawing on insight from behavioral economics
to explore the roots of entrepreneurship is inconclusive. There is no clear “smoking gun”
to account for the excess entry in the real world documented in the empirical literature
(see Åstebro, Herz, Nanda, and Weber, 2014, for a review).

Closest to our work is Fischbacher and Thöni (2008) who modify the payout scheme
to incorporate the winner-take-all characteristics of many real world markets. Deviating
from standard market entry games, they do not distribute the market evenly among the
entrants. Instead, they randomly determine a single winner who takes the entire market.
In this winner-take-all setting they find excess entry well beyond Nash equilibrium pre-
dictions, absent any role for skill. However, since they do not contrast their results with
an expected-payoff-equivalent standard market entry game, their setting cannot single out
the winner-take-all feature as the cause of excess entry.

In this paper we fill this gap by running both a winner-take-all game (WTA) and an
expected-payoff-equivalent standard market entry game (MEG). This allows us to isolate
the effect of the winner-take-all feature. We find a large and statistically significant treat-
ment effect: the WTA condition creates more market entry than the MEG condition. This
treatment effect is puzzling. As market entry in the WTA condition offers the same ex-
pected payoff (henceforth, “expected payoff” always refers to “expected monetary payoff”)
but more variance than in the MEG condition we would expect just the contrary based
on standard expected utility models with risk aversion.

We investigate a number of explanations for excess entry found in the literature. First,
we rule out utility curvature as an explanation. To account for excess entry into WTA
markets, convexity of utility functions would be required, which is incompatible with find-

2Experimental research has also found overbidding in rent-seeking contests (see Dechenaux, Kovenock,
and Sheremeta, 2015, for a review). Cason, Masters, and Sheremeta (2020) show that efforts are consis-
tently higher in winner-take-all contests compared to contests with proportional prizes. Sheremeta (2018)
explores multiple behavioral explanations and finds impulsivity to be the primary driver of overbidding.
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ings in the empirical literature. Then we find that neither wrong beliefs about other
players’ entry probability (henceforth, “blind spot”, following Camerer and Lovallo, 1999),
nor erroneous beliefs that one can influence random processes (“illusion of control”, see
Langer, 1975) can explain the treatment effect. Furthermore, we address the possibility
that the competition-against-others structure of the WTA game provides an extra utility
associated with successful market entry (“joy of winning”). Running two additional condi-
tions that preserve the payoff consequences but eliminate the competitive element, we find
that the treatment effect does not disappear when the competitive element is removed.

We finally investigate a new approach to understand excess entry through the lens
of Cumulative Prospect Theory (CPT; Kahneman and Tversky, 1979, and Tversky and
Kahneman, 1992). We show that—depending on the parameter specifications—CPT can
be a powerful explanation for excess entry in winner-take-all markets. To explore the
predictive power of CPT we ran an additional experiment where we estimate subjects’
CPT parameters and relate them to their entry behavior. Our parameter estimates are
in line with previous findings from the literature. We show that our pooled parameter
estimates are consistent with the treatment effect. The driver of the effect is the inverse S-
shaped weighting of cumulative probabilities. This translates into overweighting of small
probabilities of winning large payoffs in the winner-take-all game. Further, we classify
subjects as expected utility theory (EUT) types or CPT types using a finite mixture
model approach. Relating this classification to market entry behavior, we are able to
show that excess entry in the winner-take-all condition is primarily driven by CPT types.

Explaining excess entry by the biased perception of probabilities as described by the
weighting of cumulative probabilities (henceforth “probability weighting”) is promising for
mainly two reasons. First, the inverse S-shaped weighting function is a well established
finding of the behavioral economics literature (see G. Wu & Gonzalez, 1996; Fennema
& Wakker, 1997; Abdellaoui, 2000; Harrison & Rutström, 2009; Bruhin, Fehr-Duda, &
Epper, 2010a; Wakker, 2010; Fehr-Duda, Epper, Bruhin, & Schubert, 2011; Fehr-Duda &
Epper, 2012; Bruhin, Santos-Pinto, & Staubli, 2018). Second, probability weighting offers
a complementary explanation to overconfidence as a driving force behind excess entry.
This is important because there are environments in which overconfidence is unlikely to
arise (e.g. in competitions on difficult tasks).3 We further show that the predictive success
of probability weighting in a CPT framework extends to strategic situations. While there
is a large number of experimental studies on CPT applied to individual choice problems,
empirical research on CPT preferences in strategic contexts is surprisingly sparse.4

The remainder of the paper is organized as follows. The next section presents the
3Overconfidence about skill is far from being a ubiquitous phenomenon. It depends on subjects’

characteristics (Schulz & Thöni, 2016), and whether the task is familiar or non-familiar to the subjects
(Hoelzl & Rustichini, 2005).

4Ernst and Thöni (2013) show that behavior in all-pay auctions is consistent with reference-dependent
utilities as proposed by CPT; Brünner, Reiner, Natter, and Skiera (2019) find evidence for CPT preferences
in bidding behavior in online auctions; Nguyen, Villeval, and Xu (2016) relate prospect theory preferences
to trust.
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experimental design. Section 3 presents the main results. In Section 4 we investigate
explanations for the treatment effect: blind spot, illusion of control, and joy of winning.
In Section 5 we derive predictions for CPT and put the explanation to an empirical test.
Section 6 concludes.

2 Experimental design

2.1 The game

In our game, n players decide simultaneously whether to enter a market (Entryi = 1) or
to stay out (Entryi = 0). If a player decides to stay out, she gets a fixed payoff I. Staying
out can be interpreted as earning a fixed payment for regular employment. In our setting,
n is equal to 14 and I is equal to 45 experimental currency units (ECU). If a subject enters
the market, her payoff depends on the number of market entrants (E =

∑n
j=1Entryj).

The payoffs for entering the market follow the function described in Table 1, where E is
the number market entrants, Π(E) is the market payoff, and π(E) is the market payoff
divided by the number of entrants (= Π(E)/E).

Table 1: Payoff function for entrants, dependent on the number of entrants E

E 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Π(E) 100 130 155 175 190 200 205 209 212 214 215 215 215 215
π(E) 100 65 51.7 43.8 38 33.3 29.3 26.1 23.6 21.4 19.5 17.9 16.5 15.4

In the market entry game (MEG) condition, each entrant earns a payoff π(E). To
illustrate, if five players enter the market, then the market payoff is 190 and each entrant
earns 38. In the winner-take-all (WTA) condition the market payoff is randomly assigned
to one entrant only. That is, one entrant earns Π(E), while all other entrants earn zero.
Each entrant receives the payoff of Π(E) with probability 1/E and zero otherwise. To
illustrate, if five players enter the market, then one randomly selected entrant gets the
total market payoff of 190 and the four other players get a payoff of 0. Each entrant has a
probability of 0.2 to be assigned the market payoff of 190. Consequently, given the number
of entrants, the expected payoff for market entry is the same in both conditions.

Similarly to the payoff function in Fischbacher and Thöni (2008), Π(E) is increasing
and concave in E. In our case, however, Π(E) flattens out at E = 11. In reality, total
market returns may or may not be increasing in the number of competitors. As argued
by Frank and Cook (1995), more competitors may increase the market value for several
reasons: First, the winner in a competition with a large number of competitors will likely
perform better than the winner in a competition with a small number of competitors.
Thus, if not only relative but also absolute performance is rewarded, the winner’s prize
increases in E. This is plausible, for instance, in the music business or in sports with
absolute performance measures (e.g. world records in athletics). Second, particularly
in sports or the performing arts, more contestants increase public attention and media
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coverage, which in turn increases the rewards for the top performers. The marginal effect
of an additional entry on market volume, however, is assumed to be decreasing. This
gives rise to strictly decreasing expected payoffs per entrant, Π(E)/E, as the number of
entrants increases. Due to limited potential market demand, an entrant therefore imposes
an externality on other entrants by lowering their expected payoffs.

2.2 Nash equilibria

In this section we derive Nash equilibria in pure and in mixed strategies. We start with
the simplest case assuming that players maximize their expected payoff. As the MEG
and WTA conditions are equivalent under this assumption, the following analysis holds
for both games. The pure-strategy Nash equilibria are straightforward. As long as there
are less than three entrants, it is a best response to enter. When three other players
enter the market, entry is no longer profitable, as a fourth entrant would forgo 45 and
earn π(4) = 43.8. Any permutation of three players entering the market and the other 11
players staying out constitutes a Nash equilibrium in pure strategies. For the symmetric
mixed-strategy Nash equilibrium, a player’s entry probability, p∗, must satisfy:

n∑
E=1

(
n− 1

E − 1

)
p∗
E−1

(1− p∗)n−Ev(E) = u(I), (1)

where v(E) = u(π(E)) in the MEG condition and v(E) = 1
Eu(Π(E)) + E−1

E u(0) in the
WTA condition. The condition equates the value of staying out (right-hand side) to
the value of entering the market if all other players enter the market with probability
p∗ (left-hand side). Assuming expected payoff maximization (linear u(), risk neutrality)
and inserting the parameters of our experimental setting for n, I, Π(E), and π(E) yields
p∗ = 0.25. If all players enter with probability p∗ and stay out with probability 1 − p∗,
the expected number of market entrants is 3.52. Besides the symmetric equilibrium there
are numerous asymmetric equilibria in mixed strategies. They feature some players who
always enter, some who always stay out, and some who randomize. In any Nash equilib-
rium the average number of entrants is between 3 and 3.80. The former corresponds to the
equilibrium in pure strategies, the latter corresponds to an asymmetric Nash equilibrium
in mixed strategies where four players enter with probability 0.95 and the other ten player
stay out. Any mixed-strategy Nash equilibrium implies more market entrants than the
pure-strategy equilibrium. This is because in our parameterization the third entrant in
the pure-strategy equilibrium is clearly better off entering than staying out and the fourth
entrant is almost indifferent between entering and staying out. For a detailed analysis of
the Nash equilibria we refer the reader to Fischbacher and Thöni (2008).

The effect of risk preferences as explained by expected utility theory is straightforward.
If we assume risk aversion (concave u()), then entry becomes less attractive in both the
MEG andWTA conditions and the equilibrium is characterized by fewer expected entrants.
The effect is, however, stronger for the WTA condition and the theory predicts more
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entrants in the MEG condition than in the WTA condition. The opposite is the case for
convex utility. We will analyze the equilibria under richer preference assumptions in more
detail in Section 5.

The asymmetric equilibria mentioned above are indicative for what happens if we
assume heterogeneous agents. We restrict our attention to a model with two types of
players and perfect information about the types. Consider a group with z risk neutral
players (linear u()) and 14 − z risk averse players (concave u()). Because Equation (1)
cannot be satisfied for both types of players at the same time, only one of the two types
is willing to play a mixed strategy in equilibrium. If z > 3, then there is an equilibrium
in which the z risk neutral players play a mixed strategy while the risk averse players do
not enter. The expected number of entrants would then be equivalent to the game with
only z players, and we can use Equation (1) to derive the entry probabilities. It turns
out that the expected number of entrants is fairly insensitive to changes in group size (as
long as z > 3), gradually decreasing from 3.80 for z = 4 to 3.52 for z = 14. If z = 3 then
there is no mixed-strategy equilibrium, while for z < 3 there are mixed-strategy equilibria
in which the risk neutral players always enter and (some of) the risk averse players use a
mixed strategy. The same logic applies if the group contains z players with risk appetite
(convex u()) and 14− z risk neutral/averse players.

2.3 Experimental procedures

We repeat the game for 20 periods in groups of size 14. We use a partner matching, i.e.,
subjects are allocated to groups of 14 at the beginning of the session and interact only
within this group during the session.5 For all groups there are two phases, a phase of
20 periods in the WTA condition, and a phase of 20 periods in the MEG condition. To
control for order effects, about half of the groups played the WTA condition first and
the MEG condition second; for the remaining groups we reversed the order. In total we
observe 6160 entry decisions from 154 subjects.

At the beginning of every period we elicit subjects’ beliefs about how many other sub-
jects would enter the market (hereafter we will refer to the entrants apart from the subject
considered as “other entrants”). We incentivize truthful revelation of beliefs by rewarding a
correct guess with five ECUs. Experimental research shows that belief accuracy increases
when correct beliefs are rewarded (see Wright & Aboul-Ezz, 1988; Gächter & Renner,
2010). However, in order to keep subjects’ focus on the main game, the reward for a
correct belief is rather small compared to the payoffs of the game.6 In the WTA condition
we use the computer to generate a uniformly distributed random number between 0 and

5In the first session with 28 subjects we ran a stranger matching with two groups. The results are
almost identical for the two matching protocols.

6The design of our belief elicitation stage is deliberately kept simple. Eliciting full probability distri-
butions would require that subjects allocate probability mass across 14 outcomes (0–13 other entrants)
in each round. This would distract subjects from the main task. The downside of our method is that we
elicit only the mode of the distribution, which is consistent with a wide range of probability distributions.
For a discussion of elicitation methods and their biases see Armantier and Treich (2013).
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100 for each subject. Among the subjects who chose to enter the market, the one with
the highest random number wins the winner-take-all competition and the corresponding
payoff. All competitors learn their random number and the random number of the winner
in their group at the end of each period. In both conditions subjects are also informed
about the number of other entrants at the end of each period. The strategies “market
entry” and “staying out” are neutrally denoted as “Alternative A” and “Alternative B”.

Subjects were paid out the sum of the payoffs of the 40 market entry decisions as well
as the rewards for the correct guesses on the number of other entrants. The accumulated
earnings in ECU were converted to real money at the end of the experiment at an exchange
rate of CHF 1.5 (≈ USD 1.5) per 100 ECUs.

The sessions were run in the laboratory of the University of St. Gallen with undergrad-
uate students recruited with ORSEE (Greiner, 2015). The experiment was programmed
in z-Tree (Fischbacher, 2007). Subjects were randomly allocated to the sessions so that
they could not infer with whom they would interact. Sessions lasted between 70 and 80
minutes with an average pay per subject of CHF 37 (≈ USD 37).

3 Results

Figure 1 shows that the WTA condition results in more market entry compared to the
MEG condition. In phase 1 (phase 2) the average number of entrants across the 20 periods
is 6.42 (5.67) in the WTA condition and 4.41 (4.38) in the MEG condition. The treatment
effect is highly significant in both phases (p = 0.008, exact Wilcoxon-Mann-Whitney test
using group averages as observations). Additionally, we can analyze the treatment effect
within group. Pooling all groups across the two phases, the average number of entrants is
4.39 in the MEG condition and 6.08 in the WTA condition. An exact Wilcoxon signed-
rank test on the within-group treatment effect yields a p-value of 0.002. Compared to
the symmetric Nash equilibrium in mixed strategies (depicted by the horizontal lines in
Figure 1) we observe excess entry in both conditions and in both phases.

Figure 2 shows market entry over time. It displays the average entry frequency across
the 20 periods and both phases. The entry frequencies in both conditions become some-
what lower over time. While there is some indication that the MEG converges towards
the predicted entry frequency, excess entry remains substantial in the WTA condition. In
Table 2 we report linear probability models to test for time and order effects. Model (1)
shows that both within phase and between phases we observe a significantly negative ef-
fect on entry. In Model (2) we interact period and the dummy for the second phase with
the treatment dummy. The results suggest that the negative trend across the 20 periods
within a phase is mainly driven by the MEG condition, whereas the reduction in entry
frequency across phases is mainly driven by the WTA condition.

There is considerable heterogeneity in the entry behavior across subjects. The standard
deviation of the individual number of entries over the 20 periods in the WTA condition
is 6.41 (average individual number of entries is 8.68, data from both phases). About a
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Figure 1: Number of entrants by treatment and phase
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Notes. Average number of entrants in the two conditions per phase. The horizontal
lines show the number of entrants predicted by the symmetric mixed-strategy Nash
equilibrium with risk neutral players. Spikes show 95% confidence intervals, clustered
on group.

quarter of the subjects enter two or fewer times during the 20 periods, while ten percent
of the subjects enter in every period. In the MEG condition the standard deviation is
somewhat lower (5.48), and 30 percent of the subjects enter two or fewer times, while
only 2.6 percent enter in every period. For histograms of individual entry frequency see
Figure B1 in the appendix.

Taken together, we observe excess entry relative to the Nash equilibrium in both
conditions. In the MEG condition we observe a negative trend over time such that in
the last periods the average number of entrants is no longer significantly different from
the prediction (p = 0.453 in the final two periods, both phases). In the WTA condition,
however, the corresponding difference remains highly significant (p = 0.004).

Our results on the WTA condition replicate and confirm the findings of Fischbacher
and Thöni (2008), and our comparison with the expected-payoff-equivalent MEG condition
allows us to identify the winner-take-all characteristics as the causal source of excess entry.
This is puzzling because—for any number of other entrants—market entry in the MEG and
WTA conditions offer the same expected payoff, but the latter comes with more variance.
Thus, the results are at odds with legions of studies showing that subjects generally display
risk averse behavior. Fischbacher and Thöni (2008) speculated that subjects either have
“illusion of control” or that they gain extra utility from the thrill of competition in the
WTA condition relative to the MEG condition. In the following we present additional
data analyses and new experimental measures to investigate candidate explanations for
the excessive entry behavior in the WTA condition relative to the MEG condition.
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Figure 2: Entry over time
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Notes. Frequencies of market entry in the two conditions per period across phase 1
and phase 2 (average over all periods in parentheses). The horizontal lines show the
entry probability predicted by the symmetric mixed-strategy Nash equilibrium with
risk neutral players.

Table 2: Linear probability models for entry

Dependent variable: Entry

(1) (2)

MEG −0.118∗∗ −0.116∗

(0.011) (0.042)
Period −0.003∗∗ −0.002

(0.001) (0.002)
Phase 2 −0.028∗ −0.053∗

(0.011) (0.023)
MEG × Period −0.003

(0.003)
MEG × Phase 2 0.051

(0.031)
Constant 0.482∗∗ 0.480∗∗

(0.021) (0.036)

F -test 38.0 44.3
Prob > F 0.000 0.000
R2 0.018 0.019
N 6,160 6,160

Notes: OLS estimates. Dependent variable is an indi-
vidual entry decision; independent variables are dum-
mies for the treatment (MEG) and phase 2, period,
and interactions. Robust standard errors, clustered on
matching group, in parentheses. + p < 0.1, ∗ p < 0.05,
∗∗ p < 0.01.
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4 Candidate explanations for excess entry

In this section we test the three hypotheses: blind spot, illusion of control, and joy of
winning. For the first we make use of the beliefs elicited in the main experiment, for the
second and third we present additional experimental measures.

4.1 Blind spot

In this section we address the blind spot explanation, that is, excess entry due to miscali-
brated beliefs about other players’ entry probability in the two conditions. Both conditions
are strategic games: The fewer other players a particular player expects to enter, the more
attractive market entry becomes. The treatment effect could be caused by biased beliefs.
If players mistakenly belief that other players are less likely to enter in the WTA relative
to the MEG condition, then the optimal response may be to enter more frequently in
the WTA than in the MEG condition. This could arise from wrong beliefs about other
players’ risk preferences. As the WTA condition is subject to risk, overestimation of other
players’ risk aversion leads to underestimation of their entry probability.

To address the blind spot explanation we elicited subjects’ beliefs about the number of
other entrants. We define the variable Belief error as the actual number of other entrants
minus a subject’s belief about the number of other entrants. It is thus a measure for the
underestimation of the number of other entrants. Over the course of the 20 periods beliefs
become more accurate and there is no systematic difference across conditions in terms
of belief accuracy.7 The blind spot explanation requires systematic underestimation in
the WTA condition. Figure 3 shows the mean belief error across the 20 periods for the
MEG and the WTA conditions. The mean belief error fluctuates around zero. That is,
on average subjects’ beliefs do not seem to be systematically biased.

Table 3 shows OLS regressions with the Belief error as the dependent variable. The
estimate of the constant in Model (1) reflects the average Belief error across all subjects
and all periods. The estimate indicates that subjects underestimate the number of other
entrants by 0.095 which is not significantly different from zero. On average beliefs are
therefore very accurate. The result in Model (2) indicates that subjects underestimate
the number of other entrants somewhat less—by 0.102—in the WTA condition compared
to the MEG condition (statistically insignificant). To provide evidence for the blind spot
explanation, we would need subjects to underestimate the number of other entrants more
strongly in the WTA condition. The negative sign of the coefficient estimate goes therefore
against the blind spot explanation.

This does not suffice to rule out the blind spot explanation. The result in Model (2)
is consistent with the following beliefs in the WTA condition: Those who enter frequently

7In the first five periods the absolute difference between the realized number of entrants and the belief
is 2.08 on average, while in the last five periods the corresponding value is 1.64. If we regress the absolute
belief error on period, a dummy for the WTA condition, and a dummy for the second phase, we observe a
negative coefficient for period (β = −0.028; p = 0.007), while the other two coefficients are not significantly
different from zero.
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Figure 3: Belief errors over time
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Notes. The figure shows the mean belief error in the MEG and the WTA conditions
across the 20 periods (both phases). Positive (negative) values indicate that subjects
underestimate (overestimate) the number of other entrants.

underestimate the number of other entrants and those who stay out overestimate the
number of other entrants (thereby keeping average beliefs unbiased). We investigate this
possibility by adding an interaction of the treatment dummy with the individual entry
decision in Model (3).

Model (3) allows us to differentiate the effect of the beliefs by entry decision and
condition. Table 4 provides the respective coefficient estimates. We find that subjects
who enter in a given period display a positive belief error and subjects who do not enter
in a given period display a negative belief error. To tackle the blind spot explanation
we look at the difference in belief errors between the MEG and WTA conditions only for
observations with Entry = 1. That is, we compare the lower-left cell and the lower-right
cell of Table 4. The difference is equal to β̂1 + β̂3 = −1.025. This indicates that entrants
underestimate the number of other entrants more strongly by 1.025 in the MEG condition
compared to the WTA condition.

Again, the negative sign of the estimate, β̂1 + β̂3, goes against the blind spot expla-
nation. To substantiate blind spot as an explanation for the treatment effect, we would
need subjects to underestimate more strongly (or overestimate less strongly) the number
of other entrants in the WTA condition compared to the MEG condition. Thus, the treat-
ment effect cannot be explained by subjects erroneously underestimating the number of
entrants in the WTA condition. On the contrary, if anything, subjects’ beliefs strengthen
the puzzle.
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Table 3: Explaining belief errors

Dependent variable: Belief error

(1) (2) (3)

WTA (β1) −0.102 0.265∗

(0.060) (0.084)
Entry (β2) 1.606∗∗

(0.177)
Entry × WTA (β3) −1.290∗∗

(0.263)
Constant (β0) 0.095 0.145∗ −0.358∗∗

(0.055) (0.060) (0.054)

F -test − 2.9 66.6
Prob > F − 0.124 0.000
R2 − 0.001 0.060
N 6,160 6,160 6,160

Notes: OLS estimates. Dependent variable is the belief error (number of
other entrants – belief). Robust standard errors, clustered on matching
group, in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.

Table 4: Mean belief error as a function of the WTA dummy and the Entry dummy

WTA = 0 WTA = 1
Entry = 0 β̂0 = −0.358∗∗ β̂0 + β̂1 = −0.093

Entry = 1 β̂0 + β̂2 = 1.247∗∗ β̂0 + β̂1 + β̂2 + β̂3 = 0.222+

Notes: β̂j is the estimate of coefficient βj from Model (3) of Table 3. + p < 0.1, ∗ p < 0.05,
∗∗ p < 0.01.

4.2 Illusion of control

Subjects might believe they have some influence over the random process of the market
payoff in the WTA condition. Such an “illusion of control” (IOC; Langer, 1975) might
increase perceived profitability of market entry in the WTA condition. To investigate
whether IOC drives the treatment effect, we introduce a measure for IOC and relate
individual differences to market entry behavior.

We measure IOC with all participants after they completed the MEG andWTA phases.
We identify IOC by the willingness to pay for a particular lottery ticket over other lottery
tickets with the same objective winning probabilities. The 28 subjects in a session were
presented with 28 symbols such as “%”, “$”, or “@”. In the session we had an urn containing
the complete set of symbols (28 cards), and subjects were told that two of the 28 symbols
would be drawn at random. The two subjects with the respective symbols won additional
CHF 50 (which is significantly more than the average earnings per subject in the main
experiment).

After all subjects picked a symbol from the 28 symbols, they were informed that in
order to have a one-to-one matching between symbols and subjects we would have to
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allocate the unchosen symbols to some of the subjects who chose the same symbols as
others. Before subjects knew whether their preferred symbol was chosen more than once,
all subjects had to indicate their willingness to pay to keep their symbol. Subjects were
endowed with 800 ECUs. We explained to the subjects that there would be a sealed-bid
second price auction for their symbol and they were asked to submit a bid. We explained to
the subjects that in this auction format it would be optimal to bid exactly their willingness
to pay.

Objectively, every symbol has the same probability to be chosen at random and sub-
jects are aware of that. Consequently, there is no objective reason to pay to keep a
particular symbol instead of being allocated another as yet unchosen symbol. If subjects
nevertheless indicate a willingness to pay for their symbol, we interpret this as IOC.

On average subjects bid 114 ECUs with a standard deviation of 218. This implies that
there is substantial variance: 43% of the subjects display no willingness to pay at all, 56%
bid at most 5 ECUs, and 4% are willing to bid their full endowment of 800. Relative to the
extra pay for winning the lottery (CHF 50 = 3333 ECUs), the vast majority of subjects
have a rather low willingness to pay (see Figure B2 in the appendix for a histogram of the
bids).

What matters for our purpose, however, is whether our measure for IOC has predictive
power for excess entry. In Table 5 we use OLS regressions to investigate the effect on
(1) the individual entry frequency in the WTA condition, and (2) the treatment effect
(individual entry frequency in the WTA condition minus individual entry frequency in the
MEG condition), both measured in percent. The results show that estimated coefficients
in both models are close to zero and far from significant. These results suggest that illusion
of control does not offer an explanation for excess entry.

Table 5: Excess entry and illusion of control

Dependent variable: Entry frequency (in %)

WTA WTA–MEG

Illusion of control 0.010 0.008
(0.016) (0.011)

Constant 42.290∗∗ 11.192∗∗

(1.899) (1.568)

F -test 0.4 0.4
Prob > F 0.555 0.524
R2 0.004 0.003
N 154 154
Notes: OLS estimates. Dependent variable is the individual entry frequency
in WTA, or the treatment effect (frequency of entry in WTA minus frequency
of entry in MEG). Both measures in percent. The independent variable is
the bid in the auction for the symbol. Robust standard errors, clustered on
matching group, in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.
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4.3 Joy of winning

A main conjecture that Fischbacher and Thöni (2008) outline in their conclusion to explain
excess entry is the thrill of winning a competition against others provided by the WTA
condition. In the literature this phenomenon is often referred to as “joy of winning”. The
concept posits that winning a prize in a competitive environment generates more utility
than winning the same prize in a simple lottery. Researchers have argued for the existence
of joy of winning in contests and auctions. Studies include Goeree, Holt, and Palfrey
(2002), Herrmann and Orzen (2008), Amaldoss and Rapoport (2009), Sheremeta (2010),
Dohmen, Falk, Fliessbach, Sunde, and Weber (2011), Brookins and Ryvkin (2014), Herbst
(2016).

In our setting the idea can be formalized by adding an extra payoff for the winner.
This payoff represents the non-pecuniary joy of winning against the other market entrants.
The mixed-strategy Nash equilibrium condition then writes:

n∑
E=1

(
n− 1

E − 1

)
p∗
E−1

(1− p∗)n−E 1

E
[Π(E) + jow] = I. (2)

The main difference to Equation (1) is the term jow which is added to the winning payoff
in the WTA condition. For simplicity, Equation (2) assumes linear utility functions.
Predicting WTA entry probabilities in the range of 0.405 to 0.458 (see Figure 2) would
require a jow term of about 80.

To address this potential explanation for excess entry, we run additional experimental
sessions with two alternative conditions. The conditions are designed to preserve the
monetary incentives of the WTA condition while eliminating the competitive element.
We replace the strategic WTA game by a non-strategic individual choice problem, i.e., in
both conditions a subject’s payoff is independent of the decisions of the other subjects in
the room. Instead, they depend on the frequency distribution of the number of market
entrants as observed in the WTA condition in our main experiment (hereafter, “WTA
condition” always refers to the WTA condition of the main experiment as described in
Section 2.1).

The first treatment presents subjects with a situation where they have to form beliefs
about the market entry behavior of the participants in the WTA condition in the past. We
denote this treatment as AMB, for ambiguous winning probabilities. The second treatment
goes one step further and presents the subjects with objective winning probabilities (OBJ)
taken from the WTA condition.

In the AMB condition subjects decide in each of the 20 periods between Alternative A
and Alternative B. The payoff function is identical to the WTA condition: Alternative B
pays 45 ECUs for sure, while Alternative A pays either zero or a payoff which depends
on the number of entrants according to Table 1. The number of entrants, however, is
not decided in the game, but taken from the data of the WTA condition from the main
experiment. More precisely, we allocate each subject to a particular group of 14 subjects
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from a session with the WTA condition. In each period in which the subject chooses
Alternative A we replace one of the entrants in the original data by the subject in question
to calculate the payoff in case of winning.8 The feedback about the random numbers and
the entry decisions is identical to the WTA condition, i.e., the AMB condition offers the
same learning stimuli as the WTA condition. In addition, we also elicited beliefs. Because
the subject in question is not an entrant, we elicit beliefs about the behavior of the group
of 14 subjects from the WTA condition.

In the OBJ condition we go one step further towards individual choice and remove the
belief element. Subjects again have to decide between Alternative A and Alternative B in
20 rounds, and the payoff for Alternative B remains 45 ECUs. The payoffs for Alterna-
tive A are still determined by entry behavior in the WTA condition, but we communicate
the probability distribution of the entry behavior to the subjects. More precisely, in the
OBJ condition we inform subjects about the absolute and relative entry frequencies in
the WTA condition. The information shown in Table 6 is presented to subjects in the
experimental instructions. It shows the absolute and relative frequencies of every possible
number of market entrants observed in the WTA condition. The first row of the table
shows the number of market entrants; the second row replicates the market payoff for
each number of market entrants from Table 1. The interpretation is unchanged: If, for
instance, five players enter the market, the market payoff is 190. The third row shows
the number of times the respective number of market entrants was observed in the WTA
condition. For instance, in 35 rounds the number of market entrants was five.9

Table 6: Information about the entry frequencies in the OBJ condition.
Number of participants
who chose A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Prize to win in ECU 100 100 130 155 175 190 200 205 209 212 214 215 215 215 215

Absolute number of
rounds

1 0 1 8 20 35 51 30 15 13 2 4 0 0 0

Relative frequency in % 0.6 0 0.6 4.4 11.1 19.4 28.3 16.7 8.3 7.2 1.1 2.2 0 0 0

Notes. Information about the winning probabilities offered to the subjects in the OBJ condition. The table
shows absolute and relative frequency of the number of entrants based on the entry decisions in the WTA
condition in the main experiment. Alternative “A” stands for market entry.

The forth row shows the relative frequency with which the respective number of mar-
ket entrants was observed in the WTA condition. For instance, in 19.4% of the rounds
(=35/180) the number of market entrants was five. In the instructions the table was
accompanied by a histogram showing the relative frequencies as a visual aid.

Thus, not only are payoffs for Alternative A independent of the decisions of the other
8In one group from the WTA condition data there was one period with no entry at all. We treated

this case similar to the case with one entrant, i.e., the subjects who were allocated to this situation and
chose Alternative A received 100 ECUs. This holds also for the OBJ condition.

9The sum across all cells of the third row is 180 group/period outcomes. These stem from all sessions
of the main WTA experiment except the one session where we used a stranger matching. We dropped
the session with stranger matching because the instructions in the AMB and OBJ conditions explain that
the data stems from experiments using a partner matching. See pages 14 to 20 of the appendix for the
experimental instructions.
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subjects in the session, in the OBJ condition subjects know the probability of each possible
number of entrants and the probability of winning the market payoff given any number
of entrants. This transforms the decision problem into a risky choice with complete infor-
mation about all contingencies.

We conducted two sessions with a total of 53 subjects, none of which participated
in the main experiment. All subjects had to read the original instructions of the WTA
condition in order to have the same information about the game as the subjects from the
main experiment. In addition, subjects received instructions detailing that they would
not be in a strategic situation with the other subjects currently present in the laboratory.
All subjects played 20 periods of the AMB condition followed by 20 periods of the OBJ
condition. The average payoff per subject in the additional experimental sessions was
CHF 31 (≈ USD 31).

The left panel of Figure 4 shows the frequency of Alternative A decisions in the AMB
condition compared to the entry frequency observed in Phase 1 of the WTA condition.
The frequencies are very similar, with 0.458 in the WTA condition and 0.475 in the AMB
condition (p = 0.741). The right panel of Figure 4 shows the frequency of Alternative A
decisions in the OBJ condition compared to the number of entrants in Phase 2 of the WTA
condition. The entry frequency in the objective probability condition is 0.425, which is
even somewhat higher than the 0.405 of the WTA condition (p = 0.741).

Figure 4: Ambiguous and objective winning probabilities
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Notes. Left panel: Average entry frequency in phase 1 of the WTA condition and
frequency of Alternative A decisions in the ambiguous probabilities condition (AMB).
Right panel: Entry frequency in phase 2 of the WTA condition and frequency of
Alternative A decisions in the objective probabilities condition (OBJ). Spikes show
the 95% confidence intervals. In the WTA condition standard errors are clustered on
group.

To sum up, we find no evidence that the risky alternative becomes less attractive if
we eliminate the competitive element, and we conclude that “joy of winning” is unlikely
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to be a driver of excess entry.

5 Explaining excess entry with Cumulative Prospect Theory

After our unsuccessful empirical quest for the causes of excess entry we redirected our
efforts to look for theoretical arguments that might help us understand why—contrary to
our intuition—the winner-take-all feature renders market entry more attractive compared
to the market entry game. This time we were successful: it turns out that Cumulative
Prospect Theory (CPT; Kahneman & Tversky, 1979; Tversky & Kahneman, 1992) cap-
tures the differences between the MEG and WTA conditions surprisingly well. As a first
step, we derive the Nash equilibria for CPT players. Next, we run new experimental ses-
sions in which we elicit subjects’ certainty equivalents for 40 two-outcome lotteries after
they completed the MEG and WTA phases. This additional task allows us to estimate
pooled CPT parameters. Finally, we compare actual entry decisions in both the MEG
and the WTA conditions to theoretical predictions using our CPT parameter estimates.
We show that our parameter estimates for the curvature of the utility function and the
function to transform objective cumulative probabilities into subjective cumulative prob-
abilities (henceforth “weighting function”) can predict excess entry in the WTA condition.
The decisive component is probability weighting.

The adequacy of linear probability weights has already been questioned by Allais
(1953). Since then, a variety of non-linear functional forms for probability weights have
been suggested in the literature (Quiggin, 1982; Goldstein & Einhorn, 1987; Lattimore,
Baker, & Witte, 1992; Tversky & Kahneman, 1992; Prelec, 1998). We use probability
weighting in the framework of CPT to make Nash equilibrium predictions in the MEG
and WTA conditions.10 To compute Nash equilibrium predictions under CPT we rewrite
Equation (1) as:

m∑
k=1

ωku(xk) = u(I). (3)

The left-hand side describes the subjective value of market entry, where ωk is the decision
weight on outcome xk, u(xk) is the utility associated with outcome xk, and m is the
number of possible outcomes for an entrant. In a mixed-strategy Nash equilibrium the
expression on the left-hand side must be equal to the utility provided by staying out, u(I).
We use a two-parameter weighting function proposed by Goldstein and Einhorn (1987)
and Lattimore et al. (1992):11

h(Q, δ, γ) =
δQγ

δQγ + (1−Q)γ
, (4)

10For analysis of Nash equilibrium properties with (Cumulative) Prospect Theory decision making, see
Goeree, Holt, and Palfrey (2003), Keskin (2016), or Metzger and Rieger (2019).

11The literature offers a wide range of specifications for the weighting function. We follow Gonzalez
and Wu (1999), who argue that the evidence in the domain of gains favors a weighting function with two
parameters.
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where Q is the objective cumulative probability and the parameter γ governs likelihood
sensitivity. If γ ∈ (0, 1), the function displays an inverse S-shaped pattern where small cu-
mulative probabilities are upweighted and large cumulative probabilities are downweighted
(likelihood insensitivity). If γ > 1, the function displays an S-shaped pattern where low cu-
mulative probabilities are downweighted and high cumulative probabilities are upweighted
(likelihood oversensitivity). Upweighting (downweighting) of small cumulative probabili-
ties leads to overweighting (underweighting) of small probability extreme outcomes. The
parameter δ governs the elevation of the weighting function (optimism/pessimism). If
δ ∈ (0, 1), the individual is pessimistic as she downweights the probability of high payoff
outcomes and upweights the probability of low payoff outcomes. Conversely, if δ > 1, the
individual is optimistic as she upweights the probability of high payoff outcomes and down-
weights the probability of low payoff outcomes. When γ = δ = 1 the weighting function
is linear and the model boils down to expected utility maximization with h(Q, 1, 1) = Q.

The decision weights in Equation (3) are weighted cumulative probabilities on outcomes
that are ordered by their payoff. If x1 > x2 > . . . > xm holds for the set of possible
realizations of X, then the subjective decision weights are:

ω1 = h(q1)− h(0)

ω2 = h(q1 + q2)− h(q1)
...

ωk = h(Qk)− h(Qk−1)
...

ωm = h(1)− h(Qm−1),

where qk denotes the probability that X is equal to xk and Qk =
∑k

j=1 qj denotes the
cumulative probability, that is the probability that X is greater than or equal to xk; h(Qk)

is the weighting function as defined in Equation (4) applied to the cumulative probability
Qk. By setting h(1) equal to one and h(0) equal to zero we have the subjective decision
weights sum up to one. To model utility curvature we use a constant relative risk aversion
(CRRA) utility function:

u(x, η) =

x(1−η)−1
1−η , for η 6= 1

ln(x), for η = 1
(5)

where x > 0 is the payoff and η measures CRRA. The parameter η determines the cur-
vature of the utility function: η > 0 corresponds to concave utility functions, η = 0 to
linear utility functions, and η < 0 to convex utility functions.12 Because negative payoffs

12In standard expected utility models risk preferences are directly related to the curvature of the utility
function. In a CPT framework risk averse behavior can be attributed to the utility function and/or the
probability weighting function. In what follows we will avoid the term risk aversion. Instead, we directly
refer to the curvature of the utility function or to probability weighting. For a discussion on risk aversion
in a CPT framework see e.g. Schmidt and Zank (2008).
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are not possible in our games we only formulate the utility in the domain of gains.13

What does this imply for Nash equilibrium predictions in the MEG and WTA condi-
tions? As market entry in the two conditions is subject to different levels of risk, the two
conditions cease to be equivalent in terms of Nash equilibrium predictions. In the follow-
ing we derive the symmetric mixed-strategy equilibria for the MEG and WTA conditions
separately.

5.1 MEG condition

In the MEG condition the payoffs for market entry are determined by π(E) according to
Table 1. To compute the value of market entry we order all possible payoffs associated
with market entry from the highest to the lowest:

X = {x1, x2, . . . , x14} = {π(1), π(2), . . . , π(14)}
= {100, 65, 51.7, 43.8, 38, 33.3, 29.3, 26.1, 23.6, 21.4, 19.5, 17.9, 16.5, 15.4}.

xk is the payoff from entering the market if k − 1 other players enter the market and
13− (k− 1) other players stay out. Accordingly, qk denotes the probability of winning the
payoff associated with k − 1 other players entering and 13− (k − 1) other players staying
out. Given the number of entrants, the payoff is non-random in the MEG condition, i.e.,
there is only strategic risk.

The probabilities {q1, q2, ..., q14} depend on the entry probability p of the other players.
The probability that k − 1 other players enter the market is:

qk =

(
13

k − 1

)
pk−1(1− p)13−(k−1), k = 1, . . . , 14. (6)

To obtain the Nash equilibrium predictions we compute the decision weights ωk associated
with the probabilities qk. The symmetric Nash equilibrium in mixed strategies is then the
entry probability p∗ that solves Equation (3). The predicted number of market entrants
is obtained by multiplying the probability p∗ with the number of players.

The first part of Table 7 shows the expected number of entrants for selected values
of the three preference parameters. At the top left we start with the benchmark case of
linear utility and linear probability weights, which results in 3.52 expected entrants (see
Section 2.2). Increasing concavity of the utility function (η) has hardly any effect on entry,
while increasing likelihood insensitivity (lowering γ) increases entry towards four entrants.
Finally, lowering optimism (δ) reduces entry somewhat.

13In the instructions we frame the decision situation clearly as choice between a secure and a risky gain.
Nevertheless, one could argue that the payoff from staying out (45) serves as a reference point, which
would introduce the possibility for losses in both games. In Appendix A.1 we discuss the equilibria for
a reference point of 45 and loss aversion. It turns out that loss aversion reduces the expected number of
entrants very similarly to increasing concavity of the utility function. In the following we will restrict our
attention to the gains only version in the main text.
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Table 7: Predicted number of entrants in MEG and WTA

MEG WTA

η = 0 η = 0.1 η = 0.2 η = 0 η = 0.1 η = 0.2

γ = 1
δ = 1 3.52 3.49 3.47 3.52 2.79 2.22
δ = 0.8 3.31 3.29 3.26 2.59 2.09 1.69

γ = 0.75
δ = 1 3.74 3.70 3.66 6.14 4.38 3.05
δ = 0.8 3.47 3.43 3.39 4.08 2.84 1.99

γ = 0.5
δ = 1 4.18 4.10 4.03 14.00 10.44 6.64
δ = 0.8 3.78 3.71 3.64 10.01 6.39 3.55

Notes. Expected number of entrants in the symmetric mixed strategy equilibrium with
CPT preferences, for selected values of the three preference parameters η, γ, and δ.

5.2 WTA condition

In the WTA condition the payoff of market entry is subject to two kinds of risk: (i) strategic
risk, originating from the behavior of other players, and (ii) natural risk, originating from
the random draw of the winner among the entrants. In our main model we will assume that
players do not distinguish between natural and strategic risk, but treat the two sources
similarly and apply probability weighting to the compound objective probabilities.14 Some
support for combining the two sources of risk comes from our results from Section 4.3,
where we report similar entry behavior in the OBJ condition compared to the WTA
condition. We start by ordering the possible payoffs from the highest to the lowest to
compute the value of market entry. The set of possible payoffs is:

X = {x1, x2, . . . , x15} = {Π(14),Π(13), . . . ,Π(1), 0}
= {215, 215, 215, 215, 214, 212, 209, 205, 200, 190, 175, 155, 130, 100, 0}.

Thereby, 215 is the winner’s payoff for entering the market if 10, 11, 12, or 13 other
players enter; 214 is the winner’s payoff for entering the market if 9 other players enter.
Zero is the payoff for entering the market with any number of other players if the player
does not win the market payoff. The probabilities {q1, q2, ..., q15} associated with the set
of payoffs are:

qk =


(

13
13−(k−1)

)
p13−(k−1)(1− p)k−1 1

14−(k−1) , for k = 1, . . . , 14

1−
14∑
j=1

qj , for k = 15.
(7)

Again, the symmetric Nash equilibrium in mixed strategies is the entry probability
p∗ that solves Equation (3). The right part of Table 7 shows the expected number of

14Alternatively one could assume that probability weighting applies to natural risk only. Our theo-
retical results would not differ much, because most of the predicted treatment effect originates from the
natural risk part. Finally, probability weighting could only affect strategic risk. In this case (assuming
linear utility) the model would not predict any difference between the WTA and the MEG conditions.
Appendix A.2 provides a formal discussion on different variants of probability weighting.
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entrants in the WTA condition. Starting with the 3.52 entrants in the benchmark case
(η = 0, γ = 1, δ = 1), we observe that the qualitative effects of the parameters are the
same as in the MEG condition. However, the magnitude of the changes is much larger.
For example, concavity of the utility function (η > 0) and pessimism (δ < 1) reduce
the number of entrants substantially. At the same time, likelihood insensitivity (γ < 1)
results in substantial excess entry. Table 7 gives us a feel of the parameters we need to
explain higher number of entrants in the WTA condition relative to the MEG condition.
Without probability weighting (γ = 1, δ = 1) the model reduces to standard expected
utility and does not permit to explain the treatment effect (unless, of course, we were
to assume convex utility, η < 0). Comparing the expected number of entrants across
conditions shows that the model can explain the treatment effect if γ is sufficiently low,
η is moderate, and δ is not too low. If we rule out (as most of the literature does) convex
utility, then our theoretical results show that the explanation for excess entry within CPT
must stem from probability weighting. Of the two parameters of the weighting function
the main driver is γ. If γ < 1, then small probability events with very high and very low
payoffs gain weight. In the WTA condition these are the high payoffs if one wins against
many competitors. The worst outcome in the WTA condition (losing against any number
of competitors) is underweighted, because it occurs with high probability. In the MEG
condition, overweighting occurs for both the best and the worst outcomes of market entry,
as both are small probability events.15

Thus, CPT can be a powerful explanation for excess entry into winner-take-all markets.
Its predictive power, however, depends on the preference parameters. In order to explore
the predictive power of CPT we ran new experiments. The experiments replicate the
design of WTA and MEG conditions, followed by an elicitation of a series of certainty
equivalents, which permits us to estimate CPT parameters. We compare our estimated
parameters to previous estimates from the literature and use our estimates to evaluate the
predictive power of CPT.

5.3 Experimental design

In a new experiment we elicit subjects’ certainty equivalents for two-outcome lotteries
(CPT task) after they completed the MEG and WTA phases. We will label these new
observations as MEGCPT and WTACPT, respectively. Both the MEGCPT and WTACPT

conditions are identical to the main experiment. Again, we run the MEG condition first
in half of the sessions, reversing the order for the other half. We elicit subjects’ certainty
equivalents for 40 lotteries. Each lottery offers an amount x1 with probability p and an
amount x2 < x1 with probability 1−p. Half of the lotteries were in the gain domain (x1 >

15Alternatively, it would be possible to predict the treatment effect without inverse S-shaped probability
weighting. In a model with γ = 1 combined with optimism (δ > 1) players upweight the outcomes with
high payoffs and downweight the outcomes with low payoffs. In the main text we emphasize the model
with γ < 1 and δ < 1, because there is substantial empirical support for these parameter ranges (see
discussion in Section 5.4.1).
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x2 ≥ 0) and the other half were corresponding lotteries in the loss domain (0 ≥ x1 > x2).
For each lottery in the loss domain, we endowed subjects with |x1| + |x2|. This ensures
that subjects do not end up with a negative payoff and it equalizes the expected payoff of
a lottery in the loss domain to its counterpart in the gain domain. At each screen subjects
are presented with a lottery on the left and with 20 rows of equally spaced guaranteed
outcomes ranging from x1 to x2 on the right. For each row we ask the subject if she
prefers the lottery or the corresponding guaranteed outcome. We enforce monotonicity,
i.e., subjects only choose the minimum certainty equivalent they prefer to a lottery and the
computer fills in the remaining rows accordingly. A subject’s elicited certainty equivalent
for a lottery is the arithmetic mean of the lowest guaranteed amount preferred to the
lottery and the highest guaranteed amount not preferred to the lottery.16 Once a subject
took the decisions on the 40 lotteries (they are allowed to go back and forth), a lottery
and a row were randomly chosen by the computer and the subject’s payoff is determined
based on her decision for the randomly chosen lottery and row.

In addition to the show-up fee of CHF 5, subjects were paid for both phases as in the
main experiment. Furthermore, subjects received the payment for the CPT task. Subjects
received information about their payoff only after the CPT task. The exchange rate for
this task was CHF 1 per 3 ECUs.

The sessions were run online with undergraduate students from the University of Lau-
sanne and the EPFL (recruitment: ORSEE, Greiner, 2015; programming: oTree, Chen,
Schonger, and Wickens, 2016). We ran ten sessions with a total of 134 subjects.17 This
gives us 5360 entry decisions and 5360 certainty equivalent elicitations. Sessions lasted
between 47 and 100 minutes18 with an average payoff per subject of CHF 43.

5.4 Results

Our new sessions replicate the findings on market entry behavior of the main experiment:
In the first (second) phase we observe on average 6.49 (4.94) entrants in the WTACPT

condition and 4.86 (4.18) entrants in the MEGCPT condition. The treatment effect is
significant (p = 0.022, exact Wilcoxon signed-rank test).

We use the CPT task to estimate the preference parameters. Following the estima-
tion procedure for the single group case by Bruhin et al. (2010a), we estimate the CPT
parameters based on the lottery decisions in the gain domain. This procedure uses max-
imum likelihood to estimate the parameters based on the elicited certainty equivalents.
We account for two sources of heteroskedasticity in the error variances. First, the error

16See appendix Table B1 for the set of lotteries and pages 21–25 for screenshots.
17Due to no-shows and connection problems we did not always manage to get the desired group size.

We had one session each with 11, 12, and 13, while the remaining seven sessions had 14 subjects. Such
variations in group size are not a problem for our analysis because the equilibrium predictions of the
expected number of entrants barely changes for group sizes between 11 and 14.

18The sessions’ durations varied substantively because subjects could go at their own pace in the CPT
task. Once a subject was done with this task, she would directly move to the final payment page. The
payment was done by bank transfer within a week.
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is proportional to the lottery’s range |x1 − x2|, since subjects faced 20 equally spaced
guaranteed outcomes for each lottery. Second, we account for heteroskedasticity between
individuals, as subjects may differ with respect to previous knowledge, attention span, or
ability.

We use the data elicited from the CPT task to perform parameter estimations. In
a first step, we perform pooled estimations of CPT parameters. Assuming homogeneity
across subjects, we confront market entry predictions using the parameters from the pooled
estimations with the data on entry behavior in the MEGCPT and the WTACPT conditions.
In the second step, we relax the homogeneity assumption. We perform finite mixture model
estimations to group subjects into types and test whether entry behavior is related to the
type.

5.4.1 Pooled CPT estimations

Using the full sample, we find the following point estimates (standard errors) for the CPT
parameters: η̂ = 0.131 (0.031); γ̂ = 0.517 (0.023); δ̂ = 0.929 (0.049). Our results are in
line with previous estimates from the literature that use the same two-parameter specifica-
tion for the weighting function (Fehr-Duda, De Gennaro, & Schubert, 2006; Bruhin et al.,
2010a; Fehr-Duda et al., 2011; Bruhin et al., 2018). Overall the estimates in these studies
point to a significantly inverse S-shaped weighting function and moderate pessimism. In
terms of the utility function, most estimates indicate a curvature close to linearity, with
moderate deviations in both directions.

Given our parameter estimates, CPT predicts 3.92 entrants in the MEG condition and
7.28 in the WTA condition in the symmetric mixed-strategy Nash equilibrium. We can use
our estimates to illustrate why probability weighting produces such strong excess entry in
the WTA condition, even with a concave utility function. In the equilibrium of the WTA
game an entrant’s probability of getting the highest prize (215, winning among eleven
or more entrants) is 0.0055. The weight of these outcomes in the decision process is ten
times higher (0.059). Conversely, the probability of getting zero is 0.863, while the decision
weight attached to this outcome is downweighted to 0.736. In the MEG condition it is
also the case that the best outcome (100, being the sole entrant) is strongly overweighted.
However, in contrast to the WTA condition there is also substantial overweighting of the
unprofitable outcomes of market entry (entry with six or more competitors). See Figure A1
in the appendix for an illustration.

To gain an idea on the error margin of the predicted number of entries we use a
bootstrap approach. Based on 1000 bootstrap samples we estimate a distribution of CPT
parameters, which we use to predict the corresponding entry probabilities. Using these
probabilities allows us to derive a distribution of the expected number of entrants in the
MEG and WTA conditions. The left panel of Figure 5 shows the results. The horizontal
lines indicate the mean number of predicted entrants in the MEGCPT and the WTACPT

conditions, with the gray bands indicating the 95% confidence intervals. In the WTACPT
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condition we observe a number of entrants below the point prediction, but still within the
confidence interval. The low number of entrants in the WTACPT condition relative to the
Nash equilibrium prediction is mainly due to the low entry frequency when played in the
second phase. If we restrict the sample to the first phase, then the observed number of
entrants in the WTACPT condition is substantially higher (see Figure B3 in the appendix).
In the MEGCPT, on the other hand, the observed number of entrants is above the Nash
equilibrium prediction.

Figure 5: CPT preferences and entry
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indicating 95% confidence intervals); predicted number of entrants (horizontal bar)
and corresponding 95% confidence interval (gray band). Right panel: Histogram of
the number of entries during the 20 periods for subjects classified as expected utility
maximizer (EUT) and Cumulative Prospect Theory (CPT) types.

5.4.2 Finite mixture model CPT estimations

The empirical literature on CPT preferences often finds evidence for substantial hetero-
geneity between subjects. However, CPT elicitation procedures like the one we use are
too imprecise to provide reliable estimates on an individual level (Monroe, 2020).19 To
account for heterogeneity, we therefore identify types using a finite mixture model (FMM).
Again, we follow Bruhin et al. (2010a) estimation procedure for the two-group case. As
the authors explain, the idea is to assign an individual’s risk taking choices to either the
EUT group or the CPT group, each of the two groups being characterized by a distinct
vector of parameters. The assignment of each subject to one of the two groups is based

19Table B2 in the appendix provides summary statistics of the individual CPT parameter estimates
and Table B3 shows OLS estimates of entry frequency in WTA on the individual preference parameter
estimates. All coefficient estimates have the expected sign: increasing utility curvature (η) or likelihood
sensitivity (γ) leads to less entry in WTA and increasing optimism (δ) leads to more entry in WTA.
However, none of the coefficients reach statistical significance.
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on the posterior probability of type-membership.20

According to our FMM estimates, 117 out of the 134 subjects are classified as CPT
types and the remaining 17 as EUT types. With 13 percent of the subjects being classified
as EUT types, the estimated share of EUT subjects in our subject pool is somewhat lower
than in Bruhin et al. (2010a) where the estimated share in the Zurich 2006 experiment is
22 percent.

The right panel of Figure 5 shows histograms of the number of times subjects of the
EUT type (upper part) and the CPT type (lower part) enter in the WTACPT condition.
The CPT types are less likely to enter very rarely (two or fewer times out of 20) and
more likely to enter very often (15 times or more). In order to test whether the CPT
types differ significantly from the EUT types, we regress the entry frequency (in percent)
across the 20 periods of the WTACPT on the type dummy. Table 8 shows the two main
results. First, even for EUT types we observe entry frequencies above Nash equilibrium
predictions under the expected payoff maximizer assumption. Recall, while the predicted
entry frequency under the expected payoff maximizer assumption is 25 percent, players
of the EUT type who anticipate that the players of the CPT type enter more frequently
should respond by refraining from entering in the winner-take-all game. Our results do
not confirm this: The estimated entry frequency for EUT types (31.4 percent in Model 1)
is even above the 25 percent. Second, the frequency at which CPT types enter is about
15 percentage points higher than for EUT types in the WTACPT condition. The effect
is highly significant. In Model (2) we control for order effects, confirming the result that
entry is less frequent when the WTACPT condition is played after the MEGCPT condition.
The dummy for CPT types remains highly significant. These results suggest that, in line
with theory, excess entry is mainly driven by CPT types.

20We refer to Bruhin et al. (2010a, 2010b) for a detailed explanation of the estimation procedure.
Figure B4 in the appendix shows an histogram of individuals’ posterior probability of assignment and
Table B4 shows the FMM estimates. We elicited certainty equivalents in both the gain and loss domains
to keep the experimental design as close as possible to Bruhin et al. (2010a). For the parameter estimations,
we only use the lotteries in the gain domain since we are interested in decision situations between a secure
and a risky gain (see Footnote 13).
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Table 8: Entry frequency and type.

Dependent variable: Entry frequency (in %)

(1) (2)

CPT type 14.170∗∗ 15.087∗∗

(4.314) (4.591)
WTA in phase 2 −13.913∗

(4.558)
Constant 31.471∗∗ 36.381∗∗

(4.926) (3.590)

F -test 10.8 6.4
Prob > F 0.009 0.019
R2 0.027 0.083
N 134 134
Notes: OLS estimates. Dependent variable is the individual entry frequency
in the WTA condition (in %). Independent variables are a dummy for the
subject’s type according to the finite mixture model, and a dummy for the
WTA played after the MEG condition. Baseline case is the EUT type.
Robust standard errors, clustered on group, in parentheses. + p < 0.1,
∗ p < 0.05, ∗∗ p < 0.01.

6 Conclusion

In this study we systematically explore potential causes of excess entry into markets. Early
experimental research showed that this phenomenon does not occur in standard market
entry games. More recently, researchers have shown that overconfidence can create excess
entry in games where the returns on market entry depend on skills. We provide experimen-
tal evidence that a market modeled as a winner-take-all game with a purely random deter-
mination of the winner creates strong excess entry relative to an expected-payoff-equivalent
market entry game. This means that excess entry can occur even in environments where
overconfidence in skills is irrelevant. We provide evidence that the explanation for excess
entry is probability weighting. In environments where overconfidence about skill plays
a role, the two biases—overconfidence and probability weighting—presumably reinforce
each other.

It is clear that utility curvature, which underlies standard decision making models, is
unlikely to explain excess entry. If subjects display concave utility functions, we would
expect less rather than more entry in the winner-take-all condition compared to the mar-
ket entry game. With additional data we explore and discard a number of explanations
discussed in the previous literature. First, we show that wrong beliefs about the number
of other players entering the market (blind spot) cannot account for the treatment effect.
Second, we find no evidence that the treatment effect is driven by subjects who fall vic-
tim to the erroneous belief that they can influence random processes (illusion of control).
Third, we find no evidence for explanations positing extra utility of winning in a com-
petitive environment (joy of winning). To address this explanation, we ran an additional
non-strategic condition which preserves expected payoffs and risk of the winner-take-all
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condition, but does not contain the competitive element. We find that the number of
market entrants remains virtually unchanged. In an additional treatment we even provide
objective probabilities associated to market entry and still find similar levels of excess
entry. This latter result further strengthens the argument that it is not the additional
complexity that comes with a strategic interaction that drives excess entry.

We identify probability weighting in accordance with Cumulative Prospect Theory as a
powerful explanation for the treatment effect. We compute Nash equilibria of the standard
market entry game and the winner-take-all condition. Under a broad range of realistic
parameters, the model predicts more entry in the winner-take-all condition than in the
market entry game. The effect is driven by the fact that the winner-take-all competition
offers high stakes with low probabilities, while losing the competition is very likely. Typical
parameters for the probability weighting function lead to overweighting of the profitable
outcomes and underweighting of the bad outcome.

We ran an additional experiment, which allows us to estimate CPT parameters and
relate these estimates to entry behavior. The calibrated predictions are consistent with
observed entry behavior. In addition, the results of our finite mixture estimates suggests
that excess entry is mainly caused by subjects that can be classified as CPT type. Taken
together these results suggest that CPT is a useful descriptive theory not only for individ-
ual choice problems, but also in situations involving strategic risk. In addition, the fact
that we observe very similar entry frequencies in our non-strategic conditions provides in-
dicative evidence that CPT probability weighting may be similarly applied to both natural
risk and strategic risk. In other words, moving from subjective belief based risk to objec-
tive probabilities (as in our OBJ condition) seems not to matter much for entry behavior
and may be explained with the same underlying probability distortion.

Should regulators or nudgers care about excess entry in winner-take-all games? Our
results provide a suggestive answer to that question. If excess entry was caused by non-
standard preferences, such as high risk tolerance or strong non-monetary benefits from
winning the competition against others (joy of winning), then there would be little ground
for paternalistic interventions. Our results suggest that excess entry is not caused by such
preferences, but by probability weighting. It is conceivable that subjects in our lab would
not consciously choose to have decision weights that differ from objective probabilities and,
if made somehow aware of the discrepancy, would prefer to use objective probabilities in
their decision process. Thus, upcoming entrepreneurs or hopeful young athletes might
enter winner-take-all markets not only because of overconfidence about their abilities, but
also due to a systematic overestimation of the small winning probabilities. Consequently, a
nudge to “objectify” probabilities might benefit would-be competitors. We leave for future
research to investigate the design and effectiveness of such nudges. A much simpler policy
conclusion is drawn by Frank and Cook (1995) who argue that progressive consumption
taxation might be an effective measure to reduce the attractiveness of entry into winner-
take-all markets.

For business executives who take investment decisions our findings can provide guid-
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ance. To gauge return prospects of an investment, anticipating the behavior of potential
competitors is crucial. Biased probability perception can account for skew-seeking be-
havior and thus attraction to winner-take-all markets through optimism and likelihood-
insensitivity. Åstebro, Mata, and Santos-Pinto (2015) have documented optimism and
likelihood insensitivity both among college students and business executives. Based on
our findings, markets with winner-take-all characteristics are likely to attract more com-
petitors than the market volume warrants. As formalized in the Porter’s Five Forces
Framework (Porter, 1989), the threat of entry is an important determinant of the attrac-
tiveness of an industry in terms of its profitability. Our results suggest that an investment
in a market where few competitors capture a large share of the rewards is less attractive
compared to markets with a more equal share of rewards but the same expected return.

Finally, our results provide us with a testable conjecture for further research on mar-
ket entry decisions: We compare two extreme payoff distributions—winner-take-all versus
equal payoffs for all entrants—and show that, counter-intuitively, the riskier market at-
tracts more entry. Consequently, in real market entry data one should find more excess
entry in markets where the profits are skewed towards the top performers. In particu-
lar, excessive entry of new firms and high failure rates should be less prevalent in sectors
where payoffs are relatively equal, arguably for example in hospitality, and more prevalent
in sectors like information technology.
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Appendix

A Cumulative Prospect Theory: Extensions

A.1 Loss aversion

Our main treatment of the WTA and MEG conditions with Cumulative Prospect Theory
(CPT) assumes that players’ reference points are zero and all payoffs in the game are
perceived as gains. Alternatively we could assume that players have some reference point
r, relative to which they evaluate the monetary payoff x using the utility function:

u(x, η) =

 1
1−η

(
(x− r)(1−η) − 1

)
, for x > r

1
1−η

(
−λ(r − x)(1−η) − 1

)
. else

(8)

For 0 < η < 1 this function is concave in the domain of gains and convex in the
domain of losses. We assume the CRRA parameter (η) is the same in both domains and
we introduce a parameter for loss aversion (λ). Allowing for a different CRRA parameter
in the domain of losses has very similar effects as variations in λ. In contrast to the
solutions discussed in the main text, we now assume that the reference point is r = 45.
Table A1 shows the predicted number of entrants for selected combinations of η, γ, and
λ (with δ=1). The results for linear utility and λ = 1 are identical to the ones shown
in Table 7. Increasing the CRRA parameter (η) while keeping λ = 1 reduces predicted
entry in the WTA condition, but not as much as in Table 7. This is due to the fact that
the utility function is convex in the domain of losses. Similarly to increasing the CRRA
parameter, loss aversion substantially reduces the attractiveness of the WTA market,
providing further support for the argument that probability weighting is the driver for the
treatment effect.

Table A1: Predicted number of entrants, reference point at 45.

MEG WTA

η = 0 η = 0.1 η = 0.2 η = 0 η = 0.1 η = 0.2

γ = 1
λ = 1 3.52 3.47 3.42 3.52 3.12 2.81
λ = 1.2 3.40 3.35 3.30 2.78 2.50 2.28
λ = 1.4 3.30 3.25 3.19 2.29 2.09 1.93

γ = 0.75
λ = 1 3.74 3.67 3.60 6.14 5.02 4.14
λ = 1.2 3.58 3.51 3.44 4.46 3.65 3.06
λ = 1.4 3.45 3.37 3.30 3.32 2.77 2.36

γ = 0.5
λ = 1 4.18 4.08 3.97 14.00 11.93 9.22
λ = 1.2 3.94 3.83 3.72 10.85 8.30 6.22
λ = 1.4 3.74 3.63 3.52 7.88 5.80 4.22

Notes. Expected number of entrants in the symmetric mixed strategy equilibrium with
CPT preferences with a reference point at 45, and for three levels of loss aversion (λ).
We plot the entries for δ = 1 and selected levels of η and γ.
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A.2 Natural vs. strategic risk

In the main text we derive the CPT equilibria under the assumption that probability
weighting applies to the combination of natural and strategic risk. Applying probability
weighting only to one of the two sources of risk would change the prediction. As the
empirical literature on CPT almost exclusively deals with natural risk it seems natural to
apply probability weighting only to this source of uncertainty. In the following we discuss
two methods:

WTA, N1: Weighting natural risk conditional on number of entrants. Here
we simply assume that the player separates the strategic risk (ending up with E − 1 com-
petitors) from the natural risk conditional on the number of competitors (qE = 1

E ). For
E = {2, 3, . . . , 14} we use Equation (4) to transform the objective winning probabilities qE
into weights. The low probability high payoffs in the WTA markets have higher weights
than the objective probabilities, which produces higher number of expected entrants rel-
ative to the case with linear probabilities. The left part of Table A2 shows the results.
For comparison we also show the results of the MEG condition, which are not affected
by probability weighting, because there is only strategic risk. Comparing the results to
our model in the main text (Table 7) shows that the predicted number of entrants is very
similar, suggesting that the inclusion of strategic risk is not a decisive factor when we
explain the treatment effect.

WTA, N2: Decomposing natural and strategic risk. From Equation (7), we
can write the cumulative probabilities of achieving an outcome at least equal to xk:

Qk =
k∑
j=1

(
13

13− (j − 1)

)
p13−(j−1)(1− p)j−1 1

14− (j − 1)
, for k = 1, . . . , 14

and Q15 = 1 where x15 = 0 is the outcome when a player enters and loses.
If we multiply and divide Qk by the objective probabilities of achieving an outcome at

least equal to xk, we can decompose natural and strategic in the following way:

Qk =

 k∑
j=1

(
13

13− (j − 1)

)
p13−(j−1)(1− p)j−1




k∑
j=1

(
13

13−(j−1)
)p13−(j−1)(1−p)j−1

14−(j−1)

k∑
j=1

(
13

13−(j−1)
)
p13−(j−1)(1− p)j−1

 .

The first parenthesis on the RHS is the objective cumulative probability of facing at least
k− 1 competitors when entering. The second parenthesis is a weighted average of the risk
component of each outcome larger or equal than xk. If we apply equation Equation (4)
only on the second parenthesis, then we can derive the decision weights only applying
probability weighting on the risk components. The right part of Table A2 shows the
results. Using this method, we find again very similar number of entrants compared to
our model in the main text.
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Table A2: Predicted number of entrants in WTA, weighting natural risk only.

WTA, N1 WTA, N2

η = 0 η = 0.1 η = 0.2 η = 0 η = 0.1 η = 0.2

γ = 1
δ = 1 3.52 2.79 2.22 3.52 2.79 2.22
δ = 0.8 2.71 2.21 1.80 2.61 2.10 1.70

γ = 0.75
δ = 1 5.83 4.03 2.83 5.97 4.14 2.82
δ = 0.8 3.81 2.76 2.09 3.82 2.61 1.83

γ = 0.5
δ = 1 14.00 10.26 5.83 14.00 10.36 6.11
δ = 0.8 9.78 5.51 2.84 9.89 5.77 2.45

MEG 3.52 3.49 3.47 3.52 3.49 3.47

Notes. Expected number of entrants in the symmetric mixed strategy equilibrium with
CPT preferences and probability weighting applied to natural risk only, for selected
values of the three preference parameters η, γ, and δ. WTA, N1 and WTA, N2 refer to
the two variants of separating natural from strategic risk. If we weigh only strategic risk,
the MEG predictions do not vary in γ and δ.

Figure A1: Probability weighting function and outcomes in the MEG and WTA conditions.
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Notes. The solid line shows the CPT probability weighting function (see Equation 4), calibrated
with our estimated parameters γ̂ = 0.517 and δ̂ = 0.929. Dots indicate all possible outcomes for
an entrant in the MEG condition (left panel) and the WTA condition (right panel). Due to space
constraints not all dots are labelled with the respective payoff.
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B Additional figures and tables

Figure B1: Histograms of individual entry frequency
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Notes. Number of times a subject entered the respective market during
the 20 periods, left panel for the MEG condition, right panel for the WTA
condition. Data of both phases combined.

Figure B2: Histogram of bids
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Notes. Histogram of individual bids in the second price auction of the
illusion of control experiment. Bids are rounded up to multiples of 20.
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Table B1: Lotteries in the gain domain (x1, p;x2)

p x1 x2 p x1 x2 p x1 x2

0.10 20 10 0.95 40 10 0.50 10 0
0.50 20 10 0.05 50 20 0.50 20 0
0.90 20 10 0.25 50 20 0.05 40 0
0.05 40 10 0.50 50 20 0.25 40 0
0.25 40 10 0.75 50 20 0.95 50 0
0.50 40 10 0.95 50 20 0.10 150 0
0.75 40 10 0.05 150 50
Notes. The outcomes are denominated in CHF. Each lottery has
its counterpart in the loss domain. For example, the counterpart
to the first lottery (20, 0.10; 10) is (−10, 0.10;−20; e = 30) where
e is the endowment, which covers any losses and equalizes the
expected payoffs in both domains. These lotteries are the same
as used in Bruhin, Fehr-Duda, and Epper (2010a) for the Zurich
2006 sessions.

Table B2: Summary statistics of the individual CPT parameter estimates.

Mean Median Std Dev Min Max

CRRA (η̂i) -0.106 0.071 1.483 -8.998 4.947
Likelihood sensitivity (γ̂i) 0.685 0.588 0.565 0.000 5.251
Optimism/pessimism (δ̂i) 1.115 0.915 1.109 0.000 9.984
Number of observations = 134

Table B3: Entry frequency and individual CPT parameters.

Dependent variable: Entry frequency (in %)

WTA in phase 2 −14.020∗∗ −13.946∗∗

(4.076) (4.034)
η̂i −1.682∗ −2.274

(0.557) (2.211)
γ̂i −1.393

(5.949)

δ̂i 0.913
(3.216)

Constant 49.419∗∗ 49.263∗∗

(3.833) (4.888)

F -test 6.5 4.9
Prob > F 0.018 0.022
R2 0.060 0.061
N 134 134
Notes: OLS estimates. Dependent variable is the individual entry frequency
in the WTA condition (in %). Independent variables are a dummy for the
WTA played after the MEG condition and the individual estimates for the
three cumulative prospect theory parameters. Robust standard errors, clus-
tered on group, in parentheses. + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01.
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Figure B3: Number of entrants by condition and phase in the CPT sessions
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Notes. Average number of entrants by phase (bars with spikes indicating 95% confi-
dence intervals) and 95% confidence interval of the predicted number of entrants (gray
band).

Figure B4: Histogram of posterior probability of assignment to EUT type.
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Table B4: Finite mixture model estimates.

EUT type CPT type

Relative size 0.127 0.873
(0.029) (0.029)

CRRA (η̂) 0.080 0.141
(0.013) (0.034)

Likelihood sensitivity (γ̂) 0.471
(0.021)

Optimism/pessimism (δ̂) 0.930
(0.055)

Number of subjects 134
Number of observations 2680
Log likelihood -7875.8
AIC 15765.6
BIC 15806.9
Notes: Robust standard errors, clustered on subjects, in parentheses.
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C Experimental instructions

This appendix section shows a translated version of the experimental instructions that
were handed out to subjects on paper (original instructions were in German). First we
show the instructions of the main experiments (pages 41 to 49), followed by the instructions
for the additional experiments described in section 4.3 (pages 50 to 56) and in section 5.3
(pages 57 to 61).

General instructions for the participants 

You are about to participate in multiple economic experiments. The experiments are independent 
of each other. If you read the instructions carefully, you can, depending on your decisions, earn 
more or less money. It is therefore important to read the following instructions carefully.  

The instructions you received from us are solely for your private information. Communication with 
other participants is strictly forbidden during the course of the experiment. Please ask an instructor 
in case of any questions. If you don’t comply with those rules we will have to exclude you from 
the experiment including from any payments. 

During the experiment, your income will not be computed in Swiss francs but in points. The points 
that you earn during the experiment will be converted to Swiss francs and paid out in cash. The 
following exchange rate applies:  

1 point = 1.5 Swiss cents. 
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Instructions for experiment 1 

 

For this experiment you receive an endowment of 800 points, which corresponds to 12 Swiss 
francs.  

The experiment in which you are participating consists mainly of a lottery. The experimenter has 
a deck of 28 cards. On each of these cards there is one of the following 28 symbols:  

 

   #       E       *       +       €       J       %       $       O       ?       Q       ö       ¬       [ 

   |       ¦       §       =       ¢       7       !       (       A       £       @       Y       S       1 

 

The 28 symbols are now distributed to the participants. At the end of the experiment two cards will 
be drawn at random. The two participants with the corresponding symbols on their cards will 
receive 50 Swiss francs in addition to the earned points that will be converted to Swiss francs. 

To begin, you are prompted on the screen to choose one of those 28 symbols. Insert your choice 
and confirm with the OK-button. 

The probability is pretty high, though, that more than one person chooses the same symbol. This 
problem will be addressed on the second screen.  

In the cases where a particular symbol is chosen twice or more times we run an auction. The 
participant who wins the auction receives his or her desired symbol. To the other participants the 
computer will randomly assign another symbol which is not yet taken. For you to be able to 
participate in the auction we endowed you with 800 points. Though, the auction is not a “normal” 
auction where the participants progressively increase their bids. It works a bit differently:   

The auction we perform is a so-called second-price auction. In this type of auction every 
participant can make exactly one bid which the other participants don’t see. The bids are then 
compared with each other. As in “normal” auctions, the participant who made the highest bid gets 
the good, which in our case is the desired symbol. In contrast to “normal” auctions, however, the 
winner only pays the second highest bid. To illustrate, consider the following example:  

Suppose there are three participants A, B, and C who take part in the auctioning of symbol X. 
They make the following bids:  

- A bids x points 

- B bids y points 

- C bids z points 

Let z be the highest bid and x be the lowest bid: z > y > x. C wins the auction and receives 
symbol X. He or she pays for it the second highest bid which is y points. A and B receive another 
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symbol at random which is not chosen by any other participant. After the auction C’s account 
balance will be 800 minus y points and the account balance of A and B is 800 points each.  

If two or more participants make the same bid, the computer will decide randomly who wins the 
auction. The winner will then pay exactly his or her bid as the second bid is the same.  

The second-price auction has the following interesting property. It is optimal for every 
participant to bid exactly as much as the good is worth to him or her. The following example 
illustrates why:  

Suppose you are going to the sports store X to buy a skiing equipment set for a few hundred 
Swiss francs. You know exactly which one you want and you have already compared prices 
across different sports stores. Thus, you have already taken the decision to buy the skiing 
equipment set, that is, you will definitely buy it.  

Now, you are standing in front of the sports store and you see a crowd of people. A lady 
offers a voucher for sports store X with a value of 100 Swiss francs. Of course, she sells the 
voucher by means of a second-price auction. A few people are interested in the auction and 
the lady is distributing pieces of paper on which the bids should be written. How much should 
you bet now? Since you know that you are about to spend more than 100 Swiss francs in the 
sports store X, the 100 Swiss francs voucher is equivalent to 100 Swiss francs in cash. In a 
second-price auction it is therefore optimal for you to bid exactly 100 Swiss francs for the 
voucher. The explanation goes as follows:  

- If you bid less than 100 Swiss francs, say 90 Swiss francs, then someone who bids, for 
example, 91 Swiss francs will win the auction. But for 91 Swiss francs you would have 
been happy to buy the voucher. This reasoning holds for any bid below 100 Swiss francs.   

- If you bid more than 100 Swiss francs, say 105 Swiss francs, then you might end up 
paying too much for the voucher. For instance, if the second highest bid is 103 Swiss 
francs. This reasoning holds for any bid above 100 Swiss francs. It is never worth it to 
bit more than 100 Swiss francs. Not even if the second highest bid is less than 100 Swiss 
francs. In this case you could have bid just as well 100 Swiss francs to get the voucher at 
the same price as if you bid a higher price.  

This line of reasoning holds independently of the number of people bidding for the voucher. 
Thus, in a second-price auction it is always optimal to bid exactly as much as the good is 
worth to one.  

Back to the experiment: The assignment of symbols to participants for symbols that are chosen 
more than once will be settled by a second-price auction. To make sure that everyone is treated 
equally, everyone has to make a bid. The range of possible bids lies between 0 and 800. If you 
bid 0 you are, de facto, not participating in the auction. If your bid is above 0, you participate in 
the auction. This happens at a point in time where you don’t know yet whether your symbol was 
chosen multiple times. After everyone has chosen a symbol in the first step, you are shown the 
following screen:  
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On the top of the page the symbol that you have chosen will be displayed. Below, you must indicate 
how much of your endowment of 800 points you bid, if a second-price auction takes place. The 
range of possible bids is between 0 and 800 points.  

After inserting your bid, a screen will be displayed that informs you about the results. There are 
three possible cases: 

a) No one has chosen the same symbol as you. In this case you will keep your chosen symbol 
and you will not participate in any auction. You will therefore keep your endowment of 800 
points.  

b) Your symbol was chosen multiple times and your bid was the highest among all 
participants who have chosen the same symbol. In this case you receive your desired symbol 
and you pay the second highest bid which was made for your symbol. In case somebody else 
with the same symbol has made the same bid you will pay exactly the amount that you have 
bid.  

c) Your symbol was chosen multiple times but your bid was not the highest. In this case the 
computer will assign you randomly a symbol which is not yet taken. Since you didn’t win the 
second-price auction, you keep your endowment of 800 points.  

Memorize the symbol which you have chosen or the symbol which you were assigned, respectively. 
At the end of all experiments, there will be a random draw of a symbol to determine whether you 
win the lottery with your symbol.  
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Instructions for experiment 2 

 

The new experiment is split into 20 rounds. At the beginning of the experiment, the participants 
are split into two equally sized groups. The group composition remains unchanged for the whole 
experiment. It is thus the same in every round.  

Each member of a group has to make a choice between Alternative A and Alternative B at the 
beginning of each round. You can earn points depending on which alternative you choose and 
depending on the choices that the other participants of your group make. The rounds are identical 
and independent of each other throughout the experiment. That is, the number of points that you 
earn in a particular round depends only on the choices in this particular round. After the 20th round, 
all the points you earned during the experiment will be added up to your total payoff. 

 

Computing the payoff in one round 

In each round you must choose either Alternative A or Alternative B. If you choose Alternative A, 
your will participate in a prize competition with the participants of your group who also chose 
Alternative A. If you choose Alternative B you will not participate in the prize competition. 

 

Your payoff if you choose Alternative A  

All participants in a group who chose Alternative A participate in a prize competition where you 
have the chance to earn between 100 and 215 points. 

Whether you win the prize competition is a matter of chance. A random number generator will 
assign to each participant a number between 0 and 100. For each participant, every number between 
0 and 100 is equally likely. For the participants who have chosen Alternative A the random number 
will determine who wins the prize competition. The participant whom is assigned the highest 
number by the random number generator wins the prize competition. If you are the only participant 
of your group to choose Alternative A you win the prize competition in any case.  

Your payoff in the price competition depends in particular on whether you win the prize 
competition. If you don’t win the prize competition you get a payoff of zero points for this round. 
If you win the prize competition, then your payoff depends on how many competitors there are in 
the prize competition, that is, how many other participants also chose Alternative A. The more 
group members participate in the prize competition, the higher is the winner’s payoff. The 
following Table summarizes the payoff as a function of the number of number of other participants 
who chose Alternative A:  
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Number of competitors in 
the prize competition 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Payoff for the winner [in 
points] 

100 130 155 175 190 200 205 209 212 214 215 215 215 215 

 

If, for instance, you and four other participants chose A and you are assigned the highest random 
number, then you receive 190 points and the other 4 participants receive zero points. 

 

Your payoff if you choose Alternative B 

If you choose Alternative B you don’t participate in the prize competition. You earn 45 points with 
certainty in the corresponding round. 

 

Detailed procedures of a round 

At the beginning of each round, you will see an input screen (Figure 1). On the left hand side of 
the header you see the number of the round you are currently in. On the right hand side of the 
header you see how much time you have left to make your choice.  

Your task on this screen is to make your choice for Alternative A or Alternative B in this round.  

Furthermore, you will be asked what choices you believe the other members of your group make. 
You are asked to indicate how many other members of your group you believe to choose 
Alternative A. Please note that you should indicate the number of other participants of your group 
who chose A, without counting yourself. If your estimate about the number of other group members 
to choose A turns out to be correct, you will get a bonus of 5 points for the corresponding round. 
Apart from that, your indicated estimate is inconsequential for the further procedure of the round.  

Once you have completed your inputs, please press the OK-button to confirm. 
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Figure 1: input screen 

 

Subsequently, the computer generates for each participant a random number between 0 and 100. 
All numbers are equally likely. The participants who chose Alternative B will be assigned a random 
number as well which, though, is not consequential for any payoff.  

For the participants who chose Alternative A, however, the random number determines whether 
you win the prize competition, that is, whether you earn a payoff between 100 and 215 points. Your 
random number will be displayed on the screen (Figure 2). Furthermore, it will be displayed how 
many participants chose Alternative A. Below you will see your payoff in this round and the 
indication, whether your estimate about the other group members’ choices was correct. If this is 
the case, you receive 5 additional points.  
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Figure 2: output screen. 
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Instructions for experiment 3 

 

The third experiment is identical to the previous one in terms of the procedures. Again, there are 
20 rounds to play. In each round you have to choose either Alternative A or Alternative B. The 
group composition is the same as in the previous experiment. The points you earn in this experiment 
will be added to the points that you earned in the experiments 1 and 3. The same exchange rate 
applies: 1 point will be converted to 1.5 Swiss cents and paid out at the end of the session.  

There is one important difference to experiment 2: 

The payoff for the participants who choose Alternative A are now determined in a different manner. 
There is no prize competition any more. Instead, everyone who chooses Alternative A receives the 
same number of points. As there is no prize competition anymore, there won’t be random numbers 
either. But the number of points that you receive under Alternative A still depends on the number 
of other participants who also choose Alternative A. The payoffs are summarized by the following 
Table: 

 

Number of other 
participants who choose A 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Total payoff for all 
participants who choose A 

100 130 155 175 190 200 205 209 212 214 215 215 215 215 

 

If, for instance, you and four other participants choose Alternative A, then you get 175 points 
together. This payoff is equally distributed among those who choose Alternative A so that you 
receive a payoff of 43.75 (=175/4) points. 

Everything else remains the same. The payoff possibilities of Alternative B remain at 45. Again, 
you can earn 5 points by give a correct estimate of the number of other participants to choose 
Alternative A.  
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Instructions for experiment 1 

 

Welcome 

 

Welcome to our economic experiment. If you read the instructions carefully, you can, depending 
on your decisions, earn more or less money. It is therefore important to read the following 
instructions carefully.  

The instructions you received from us are solely for your private information. Communication with 
other participants is strictly forbidden during the whole experiment. Please ask an instructor in 
case of any questions. If you don’t comply with those rules we will have to exclude you from the 
experiment including from any payments. 

During the experiment, your payoff will not be computed in Swiss francs but in points. The points 
that you earn during the experiment will be converted to Swiss francs and paid out in cash. The 
following exchange rate applies:  

 

1 point = 1.5 Swiss cents. 
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Instructions for experiment (i) 

In this experiment we ask you to make choices between two alternatives, Alternative A and 
Alternative B. At the end of each round you receive a payoff (= a certain number of points) which 
depends on the alternative you choose.  

You have to make this choice in a total of 20 consecutive rounds. Those 20 rounds are identical 
and independent of each other in terms of their procedure. Thus, your payoff in a particular round 
depends solely on your choice in this particular round. After the 20th round, all points that you 
received during the 20 rounds will be added to your total payoff.  

 

Computing the payoffs in one round  

In each round you must choose either Alternative A or Alternative B. If you choose Alternative A, 
your payoff will be subject to randomness. If you choose Alternative B you will receive a fixed 
payoff of 45. 

If you choose Alternative A, then it will be determined randomly whether you receive a payoff 
which is higher than what you get under Alternative B or whether you receive a payoff of zero. 
The level and the probability of the possible payoffs are variable. 

The payoffs are determined based on data of a completed experiment with another group of 
students. These students have already received their payoffs and they are not participating in 
today’s experiment. To make sure you comprehend the decision situations of the participants of 
the completed experiment, we ask you to read the instructions of the already completed 
experiment. You find them in the attachment.   

 

+++++++++++++++++++++++++++++++++++++++++++ 

Please continue with the attachment (colored paper).  

+++++++++++++++++++++++++++++++++++++++++++ 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Here we show the instructions for the WTA-condition of the main experiment 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Please return now to the instructions of today’s experiment (white paper). 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

After reading the attachment, please continue reading here. 

+++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Today we are interested to know, what choices you would make in this situation. You will also 
face the choice between Alternative A and Alternative B. 

In contrast to the completed experiment, however, your payoff for Alternative A will not depend 
on other participants’ behavior in this room. Instead, we will use the data of the completed 
experiment to determine the level of your payoffs and their winning probabilities.  

For this sake, during the experiment, you will be assigned a data set of a group from the completed 
experiment. If, in a given round, you choose Alternative A your payoff will be subject to 
randomness. It will be determined based on the number of participants who chose Alternative A in 
the corresponding round of the completed experiment. The choices of all participants will be 
replicated by the computer. 

The prize is determined the same way as in the completed experiment:  

 

Number of 
participants in the 
assigned group who 
chose A 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Payoff [in points] 100 130 155 175 190 200 205 209 212 214 215 215 215 215 

 

Detailed procedures of a round 

At the beginning of each round an input screen will be displayed (Figure 1). Your task on this 
screen is to choose either Alternative A or Alternative B for this round. Furthermore, you will be 
asked what choices you believe the participants of the completed experiment made. More 
concretely, you are asked to indicate how many of the 14 members of the group which you are 
assigned to choose Alternative A in the corresponding round. If your estimate regarding the 
behavior of the participants in the completed experiment is correct, you will get a bonus of 5 points 
for this round. Apart from that, your indicated estimate is inconsequential for the further procedure 
of the round.  

 

Once you have completed your inputs, please press the OK-button to confirm. 
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Figure 1: input screen 

 

Subsequently, the computer will generate exactly as many random numbers as there are participants 
who chose Alternative A in this particular round of the completed experiment. You will be assigned 
one of those random numbers.   

If you have chosen Alternative A, then this random number will determine whether you receive 
the prize, that is, whether you earn a payoff between 100 and 215 points. Is your random number 
the highest of all generated random numbers, then you receive a payoff of between 100 and 215 
points. Otherwise you receive a payoff of zero.   

If, for instance, you choose Alternative A in a given round and five participants of the completed 
experiment chose Alternative A in this particular round, then five random numbers will be 
generated. The random number that you are assigned to must be the highest for you to win the prize 
of 190.  

The random numbers are also generated if you chose Alternative B. But they will be 
inconsequential for your payoff. 

The results of these procedures will be displayed on the output screen (Figure 2).  
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Figure 2: output screen 

 

By clicking the „continue“-button, you get to the next round where you will face the same choice 
situation again.  
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Instructions for experiment (ii) 

 

In this experiment you will face again choices between Alternative A and Alternative B. In this 
stage, however, we change the mechanism to determine your chances to win under Alternative A 
as well as your level of information. 

 

Computing your payoff in one round 

In each round you must choose either Alternative A or Alternative B. If you choose Alternative B, 
you will still get a payoff of 45. If you choose Alternative A you still get an uncertain payoff in the 
range of 0 to 215. Your winning chances are still based on the results of the already completed 
experiment.   

In contrast to the previous experiment, you will not be assigned to a particular group for all rounds. 
Instead, in every round you will be randomly assigned any round of any group. Furthermore, you 
will learn the full statistical distribution of the A and B choices of the completed experiment. 

Overall, 180 rounds were played in the completed experiment: Thereby the following distribution 
per round resulted: 
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Number of 
participants who 
chose A 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Price to win in 
points 

100 100 130 155 175 190 200 205 209 212 214 215 215 215 215 

Absolute number 
of rounds 

1 0 1 8 20 35 51 30 15 13 2 4 0 0 0 

Relative 
frequency in % 

0.6 0 0.6 4.4 11.1 19.4 28.3 16.7 8.3 7.2 1.1 2.2 0 0 0 

 

Now, in every round, one of those 180 rounds will randomly be drawn as a basis to determine 
your payoff profile under Alternative A. If you happen to get a round where no participant chose 
Alternative A, you will get a payoff of 100 for this round.   

 

Detailed procedures of a round 

Again, at the beginning of each round an input screen will be displayed.  

Your task is again to indicate for which of the two Alternatives A or B you choose in this round.  

Furthermore, we will still ask you to indicate your beliefs about the behavior of the participants 
of the completed experiment. Now you have to indicate how many of the 14 group members 
chose Alternative A in the randomly drawn round. If your belief is correct, you get a bonus of 5 
points. 

Once you have completed your inputs, please press the OK-button to confirm. 

Subsequently, the computer will again generate exactly as many random numbers as there are 
participants who chose Alternative A in this particular round of the completed experiment. You 
will be assigned one of those random numbers. If you have chosen Alternative A, then this random 
number will determine your payoff according to the same procedure as described above.  

The results of these procedures will be displayed on the output screen. The screens correspond to 
the ones of the previous experiment.  
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Instructions CPT elicitation task
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Figure 1: Decision screen
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Figure 2: Result screen
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