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A B S T R A C T   

Genome-level sequencing is the next step in understanding species-level relationships within Anthozoa (soft 
corals, anemones, stony corals, and their kin) as morphological and PCR-directed (single-locus) sequencing 
methods often fall short of differentiating species. The sea anemone genus Metridium is a common northern 
temperate sea anemone whose species are difficult to differentiate using morphology alone. Here we use Met-
ridium as a case study to confirm the low level of information available in six loci for species differentiation 
commonly sequenced for Actiniaria and explore and compare the efficacy of ddRAD and sequence-capture 
methods in species-level systematics and biogeographic studies. We produce phylogenetic trees from concate-
nated datasets and perform DAPC and STRUCTURE analyses using SNP data. The six conventional loci are not 
able to consistently differentiate species within Metridium. The sequence-capture dataset resulted in high support 
and resolution for both current species and relationships between geographic areas. The ddRAD datasets dis-
played ambiguity among species, and support between major geographic groupings was not as high as the 
sequence-capture datasets. The level of resolution and support resulting from the sequence-capture data, com-
bined with the ability to add additional individuals and expand beyond the genus Metridium over time, em-
phasizes the utility of sequence-capture methods for both systematics and future biogeographic studies within 
anthozoans. We discuss the strengths and weaknesses of the genomic approaches in light of our findings and 
suggest potential implications for the biogeography of Metridium based on our sampling.   

1. Introduction 

The majority of marine invertebrate species are described following 
a morphological species concept, which defines new taxa based on 
unique aspects of anatomy or biology. Likewise, synonymies are 
generally justified through the demonstration of identity in these visible 
features. Although these data are certainly relevant for species delimi-
tation in hexacorallian cnidarians, ecophenotypic variation can be very 
high (e.g., Hoeksema & Crowther 2011), and phylogenetic analyses 
have repeatedly highlighted the plasticity and high levels of conver-
gence of key features in sea anemones (González-Muñoz et al., 2015; 
Rodríguez et al., 2012, 2014; Grajales & Rodríguez 2016; Daly et al. 
2017; Gusmão et al. 2020) and other anthozoans (e.g., Bo et al., 2018; 
Budd et al., 2010; Cachet et al., 2015; Sánchez et al., 2003). This has cast 

doubt on the effectiveness of morphological characters as the arbiter of 
species boundaries within this lineage. 

Beyond its historical importance and despite its practical problems, 
morphology has remained the primary system for species determination 
in anthozoans because genetic tools have not been very effective. Many 
anthozoans have a very slow rate of mitochondrial sequence evolution, 
and standard mtDNA barcodes like Cytochrome Oxidase 1 (CO-I) or 16S 
rDNA generally do not differentiate species (Shearer et al. 2002; Hebert 
et al. 2003; Huang et al. 2008; McFadden et al. 2011; but see Sanamyan 
et al. 2020). For sea anemones, the insufficiency of each traditional 
marker has been circumvented through the concerted evaluation of 
multiple traditional markers (e.g., Pereira et al. 2014; Grajales & 
Rodríguez 2016; Larson & Daly 2016; Titus et al. 2019a) and by at-
tempts to identify new markers (e.g., Brugler et al. 2018) but these 
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studies generally have shown low support and resolution for relation-
ships at species level. 

Genome-scale approaches reveal new possibilities for testing species 
boundaries in groups whose members cannot be differentiated with 
conventional PCR-directed loci. These efforts have included both size- 
based and sequence-based approaches. Size-based studies have effec-
tively used Amplified Fragment Length Polymorphisms (AFLPs) and 
MIG-seq of inter-simple sequence repeats (ISSRs) to detect fine scale 
population genetic structure and species boundaries in anemones and 
other anthozoans (e.g. Reitzel et al. 2008; Thornhill et al., 2013; Suyama 
& Matsuki 2015; Richards et al. 2018; Takata et al., 2019). However, 
because AFLPs and ISSR markers are size-based rather than sequence 
based, they are subject to repeatability issues, hidden allelic diversity, 
and non-Mendelian inheritance that may bias analyses of population 
diversity and structure (reviewed in Mendelson & Shaw 2005; Holliday 
et al. 2018). 

High-throughput sequencing methods such as Restriction Associated 
Digest methods (e.g., RAD, ezRAD, ddRAD) have since been used to 
evaluate connectivity or species boundaries in corals (e.g., Toonen et al. 
2013; Bongaerts et al. 2017; Forsman et al. 2017; Devlin-Durante & 
Baums 2017; Leydet et al. 2018; Quattrini et al. 2019) and in a small 
number of sea anemones (Spano et al. 2018; Bellis et al. 2018; Titus et al. 
2019b; Cornwell 2020; Porro et al. 2020), generally finding greater 
molecular diversity in the studied species than expected based on 
anatomy or taxonomy. For example, Titus et al (2019b) and Cornwell 
(2020) found significant differentiation within currently accepted spe-
cies of Bartholomea and Anthopleura, respectively, but the diversity could 
be accommodated in existing species concepts. In contrast, Spano et al 
(2018) found that morphology-based species hypotheses failed to 
recognize significant, geographically-structured diversity within 
Anthothoe chilensis (Lesson, 1830 in Lesson and Duperrey (1830), and 
Porro et al. (2020) failed to find correspondence between genetic di-
versity in RAD sequences, color, or geography in the widespread species 
Anemonia viridis (Forsskål, 1775) despite significant genetic variation. 
Although their high variability and ease of use in novel systems are 
major benefits (Reitzel et al., 2013), allele dropout, batch-effects asso-
ciated with the random amplification steps in RAD approaches, and 
variation in bioinformatic methods can be problematic (reviewed by 
Puritz et al. 2014; Shafer et al. 2017; Lee et al. 2018; Bresadola et al. 
2020). Furthermore, RAD data are difficult to connect to studies at 
different levels of hierarchical organization and may be complicated to 
parse in species that harbor photosymbionts (Titus & Daly in review). 

Among genome-scale methods, sequence-capture methods (see 
Faircloth et al., 2013; Lemmon and Lemmon, 2012) represent an alter-
native to RAD approaches. Sequence-capture approaches require exist-
ing genomic resources for species and entail some upstream 
development (reviewed in Harvey et al. 2016). Sequence-capture ap-
proaches generally work with DNA of lower quality and concentration 
compared to RAD methods, can be scaled and replicated more easily (see 
Faircloth et al. 2012), and the same loci can be targeted across different 
taxonomic scales (e.g., species to family to class). A set of sequence- 
capture baits developed for Anthozoa to resolve broader questions 
(Quattrini et al., 2018, 2020) has been adapted to address questions of 
narrower taxonomic scale (Erickson et al. 2020, Cowman et al. 2020, 
Untiedt et al. 2021). Initial studies of these newly-designed baits for 
species- and genus-level questions in hard/stony (Cowman et al. 2020) 
and soft corals (Erickson et al., 2020) show promise for resolving re-
lationships at those scales in anthozoans. 

Here we explore the potential of genome-scale sequencing ap-
proaches to decipher the genetic and geographic diversity in Metridium 
de Blainville, 1824, a genus of sea anemones found from the shallows to 
depths of 200 m in coastal waters across the Northern hemisphere. 
Metridium senile (Linnaeus, 1761) was first described from Scandinavia 
but is well-known throughout the British Isles and Northern Europe, the 
Atlantic and Pacific coasts of North America, Northern Japan, North 
Eastern China, and Eastern Russia (reviewed in Glon et al. 2020). 

Species of Metridium have been circumscribed and re-named based on 
anatomy, reproductive attributes, and geography, with as many as eight 
Northern Hemisphere species recognized in addition to M. senile; seven 
species are currently considered valid (Daly & Fautin 2020) 

Because of their accessibility as intertidal animals and the known 
variation in color, body size, and biotic processes like incidence or 
asexual reproduction, Metridium was among the earliest groups of 
anemones to undergo genetic investigation. Using biochemical markers 
to examine allozyme variation, Bucklin & Hedgecock (1982) distin-
guished California (Bodega Harbor) Metridium exile Hand, 1956 from 
California (Bodega Harbor) M. senile. These markers further identified 
two distinct clusters of M. senile, one containing clonal and one con-
taining solitary individuals, with the large and solitary form later being 
raised to species level as Metridium farcimen (Brandt, 1835) by Fautin 
et al. (1989). However, these markers were unable to distinguish the 
Atlantic (Maine) M. senile from the clonal variety of M. senile in the 
Pacific. Bucklin (1985) examined allozyme variation in Atlantic Metri-
dium and failed to recover the distinction Stephenson (1935) had made 
between the British M. s. dianthus (Ellis, 1767) and M. s. pallidum 
(Holdsworth, 1855). These early perspectives have not been re-assessed 
with either single markers (e.g., DNA barcodes) or genome-level data. 

The high intra-population variation in anatomy, reproduction, and 
genetics along with their geographic distribution make Metridium a 
compelling system in which to investigate the intersection of genetic, 
morphological, and geographic diversity. We evaluate the utility of 
conventional, PCR-directed markers for species identification in Metri-
dium and then apply and explore genomic scale methods of ddRAD and 
sequence-capture to members of the genus. The results are used to un-
derstand how each of these genomic methods can contribute to under-
standing species diversity and connectivity across the distribution of 
these anemones. Our comparison between sequence-capture and ddRAD 
identifies strengths and challenges with each of these approaches to 
consider for future studies of Anthozoa. Our application of hexacoral- 
targeted sequence baits (Cowman et al. 2020) to explore phylogeo-
graphic structure and connectivity in a small sampling of Metridium in-
dividuals represents the first step in applying sequence-capture 
approaches to species-level relationships in Actiniaria. 

2. Material and methods 

2.1. Specimen collection 

We collected Metridium throughout the known range in the Atlantic 
and Pacific (Appendix Table 1.A). Specimens were obtained mainly by 
hand by the authors or by collaborators from floating dock fouling 
communities, intertidal depths, or by SCUBA diving to depths of 30 m, 
and preserved with 99% EtOH. We attempted to minimize sampling 
multiple anemones from a single clonal group by collecting individuals 
separated from each other on discontinuous substrate or of different 
colors if in close proximity (see Hoffmann 1976; Shick et al. 1979). In-
dividuals in the Atlantic Ocean include those considered to be M. senile 
(US and Canada; Norway) or M. dianthus (Ireland, Northern Ireland), 
though names are used somewhat interchangeably across the Atlantic. 
For clarity within this study, we apply only the name M. senile in the 
results and figures to individuals collected from the Atlantic. We 
included samples from the Gulf of Alaska and the Bering Sea collected 
during a 2017 NOAA trawl survey that were identified as M. farcimen 
based on their size and the depth where collected. The M. farcimen 
specimens collected from California and Washington were identified by 
their large size and solitary nature, as compared with the smaller and 
clonal-type M. senile collected from docks and intertidally along the 
Pacific coast. Because Diadumene Stephenson, 1920 is the sister clade to 
Metridium (see Rodríguez et al. 2014), Diadumene lineata (Verrill, 1869) 
and Diadumene lighti (Hand, 1956) were used as outgroup taxa. For all 
samples, we extracted genomic DNA using the Qiagen DNeasy Blood and 
Tissue Kits (Qiagen Inc.) or the E.Z.N.A. Tissue DNA Kit (Omega Bio-Tek, 
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Norcross, GA, USA) according to the manufacturer’s protocol. 

2.2. Sequencing PCR-directed loci 

We amplified three nuclear (ITS, 18S, 28S) and three mitochondrial 
(COIII, 12S, 16S) loci (see Table 1 for primer information) which are 
commonly used in actiniarian systematics and show low to no intra- 
individual variation (e.g. Daly et al. 2010; Rodríguez et al. 2014). We 
used IllustraTM puReTaq™ Ready-To-Go™ PCR beads (GE Healthcare) 
to amplify these markers from 39 individuals (Appendix Table A.1.). The 
thermal cycle for all primers was: 95.0 ◦C for 2 min, 30 cycles of 95.0 ◦C 
for 15 s, 45.0 ◦C for 1 min, 72.0 ◦C for 1 min 10 s), with a final extension 
at 72.0 ◦C for 3 min. Samples were sequenced in both directions at the 
TacGen sequencing center (Richmond, CA). We edited, aligned, and 
gathered sequence statistics in Geneious R11 (www.geneious.com: 
Kearse 2012). 

2.3. ddRAD library Preparation, Sequencing, and dataset assembly 

We used double-digest RAD methods, in which SNPs are identified 
after sequencing the fragments generated by two rounds of restriction 
enzyme digestion. We followed the protocol of Titus et al. (2019b), 
which modified protocols originally developed by Sovic et al. (2016). 
Samples were quantified (ng/μL) using a Qubit fluorometer and stan-
dardized to 25 ng/μL in 10 ul of elution buffer. DNA was digested using 
the restriction enzymes EcoRI-HF and PstI-HF and the restriction cut sites 
were annealed with Illumina compatible barcodes. Samples were 
manually size-selected to a range of 400–800 bp using gel electropho-
resis and quantified via quantitative PCR prior to pooling into final li-
braries for sequencing on Illumina HiSeq 2000 for 100 bp, single-end 
reads at the Duke GCB Sequencing Shared Resource. 

We used iPyrad v.0.7.27 and v.0.9.51 (Eaton 2014) to demultiplex 
and quality filter the raw Illumina reads. During the processing, we 
retained default parameters, keeping the maximum number of SNPs per 
locus at 0.2 (20%), the maximum number of shared heterozygous sites 
per locus to 0.5 (50%), and adjusting minimum depth parameters to 10. 
Additionally, we adjusted two of the stringency settings: the clustering 
threshold (clust_threshold) was loosened to 85% sequence similarity to 
allow for a less stringent pipeline (following Quattrini et al. 2019) and 
the minimum number of samples per locus for output (min_sam-
ples_locus) was set to 4 [10%; ddRAD_10] and 20 [50%; ddRAD_50] to 
allow comparison between two datasets; separate ingroup-only datasets 
were also built to obtain matrix statistics. We allowed our datasets to 
have a substantial amount of missing data (90% and 50%, respectively) 
as the aligned length of the resulting datasets offset effects of missing 
data; filtering too stringently across loci may drop important phyloge-
netic information (Huang & Knowles 2016; Eaton et al. 2017). All an-
alyses were conducted using the computing resources of the Ohio 
Supercomputer Center (1987). 

2.4. Bait capture library preparation, sequencing, and dataset assembly 

Sequence-capture library preparation and sequencing was conducted 
at Arbor Biosciences (Ann Arbor, MI) following protocols by Quattrini 
et al. (2018) using a recently redesigned bait set for Hexacorallia 
(Cowman et al. 2020). The Cowman et al. (2020) bait set was subset to 
target actiniarians specifically, resulting in 17,268 baits targeting 2496 
conserved elements (i.e., exons, ultraconserved (UCE) loci), which were 
synthesized by Arbor Biosciences (Ann Arbor, MI). Prior to sequencing, 
DNA quantity (ng/μL) and quality (260/280 & 260/230 ratios) were 
assessed for each sample using a Qubit 2.0 fluorometer and NanoDrop 
spectrophotometer, respectively. Up to 1000 ng DNA per sample was 
sent to Arbor BioSciences for library preparation and target enrichment. 
DNA was sheared to a target size of 400–800 bp and library preparation 
was performed using a Kapa Hyper Prep Kit, optimized for target cap-
ture, with universal Y-yoke oligonucleotide adapters and iTru dual- 
indexed primers (Glenn et al., 2016). Twelve libraries were pooled 
into equimolar ratios (100 ng) totaling 1.2 μg of DNA. Target enrichment 
was then performed following the MyBaits v. IV protocol using 500 
ng/rxn concentration of baits. Target-enriched libraries were sequenced 
on Illumina NovaSeq (~1Gb per library, 150 PE reads). 

Paired-end reads were cleaned using TrimGalore (https://github. 
com/FelixKrueger/TrimGalore) using a stringency of five and then 
assembled in SPAdes genome assembler v3.14.0 (Bankevich et al., 2012) 
using the –careful and cov-cutoff 2 parameters. We used the PHYLUCE 
pipeline (Faircloth 2016) to search for and match conserved element loci 
in the resulting assemblies to the bait set, following the online tutorial 
phyluce.readthedocs.io with some modifications (Quattrini et al. 2018). 
We used phyluce_assembly_match_contigs_probes with a min-coverage 
of 70% and min-identity of 70% to match baits to contigs. We then 
extracted loci using phyluce_assembly_get_match_counts and phlylu-
ce_assembly_get_fastas_from_match_counts and then aligned loci with 
MAFFT (Katoh et al., 2002) using phyluce_align_seqcap_align. We then 
trimmed loci internally using Gblocks (phyluce_align_get_g-
blocks_trimmed_alignments_from_untrimmed) with default parameters. 
Summary data were obtained using phyluce_align_get_align_summar-
y_data and phyluce_align_get_informative_sites. We obtained taxon oc-
cupancy matrices for both 50% and 75% completeness, as a comparison, 
and created separate ingroup-only datasets for calculating matrix 
statistics. 

Because we also were interested in the versatility of using sequence- 
capture SNP data for population studies, we followed previously pub-
lished SNP-calling pipelines (Zarza et al. 2016, 2018, Derkarabetian 
et al. 2019, Erickson et al. 2020). Scripts in this pipeline primarily use 
tools from PHYLUCE (Faircloth 2016) and GATK3 (McKenna et al. 
2010). We used the individual in our dataset with the highest number of 
unique loci as a reference and mapped reads back to that reference in-
dividual. Final SNP matrices were produced and filtered according to 
parameters listed below. 

Table 1 
Sequence statistics and models used to calculate Maximum Likelihood analyses for the six regions.  

Dataset Primer Sequence ML Model Number taxa Aligned Length PI sites (ingroup) % PI sites Variable sites (ingroup) 

ITS Fwd: 5′-GGTTTCCGTAGGTGAACCTGCGGAA-3′

Rev: 5′-GTTCCCGCTTCATTCGCCATTAC-3′

HKY + G 36 731 11 1.50 14 

18S Fwd: 5′- AACCTGGTTGATCCTGCCAGT-3′

Rev: 5′- CAGACAAATCGCTCCACCAAC-3′

GTR 37 1805 1 0.06 7 

28S Fwd: 5′-GCCGACCCGCTGAATTCAAGCATAT-3′

Rev: 5′-TTCYGACTTAGAGGCGTTCAG- 3′

GTR + G 31 3163 18 0.57 49 

COIII Fwd: 5′- CATTTAGTTGATCCTAGGCCTTGACC-3′

Rev: 5′-CAAACCACATCTACAAAATGCCAATA- 3′

HKY + I 38 664 3 0.45 51 

12S Fwd: 5′- AGCCACACTTTCACTGAAACAAGG-3′

Rev: 5′- GTTCCCYYWCYCTYACYATGTTACGAC-3′

HKY + I 38 844 0 0.00 22 

16S Fwd: 5′- CACTGACCGTGATAATGTAGCGT-3′

Rev: 5′-CCCCATGGTAGCTTTTATTCG − 3′

HKY 38 447 0 0.00 12 

Concatenated  – 39 7654 33 0.43 155  
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2.5. Phylogenetic analyses 

For our PCR-directed loci dataset, we evaluated the best model of 
evolution for the six loci using jModelTest (Posada 2008) under the AIC 
criterion. We then conducted separate maximum likelihood phyloge-
netic analyses in IQTree v1.6.1 (Nguyen et al. 2015), with 1000 UFBoot 
bootstraps for each locus and an analysis of the concatenated dataset 
using partitioned models as calculated above with jModelTest (Nguyen 
et al. 2015; Chernomor et al., 2016). For the ddRAD and 
sequence-capture datasets, we carried out likelihood analyses using 
RAxML-NG (Kozlov et al. 2019), as it has performed well in regards to 
speed and may produce equivalent or higher-scoring trees against 
methods including IQTree, using 200 Felsenstein bootstraps (FBP). Trees 
were rooted using Diadumene spp. The UCE and exon loci within the 
sequence capture dataset were not separated, as studies (Quattrini et al. 
2020; Cowman et al. 2020) using this bait set have explored differing 
phylogenetic signal and found no difference in topology between UCE 
and exon loci. Phylogenetic trees were edited and mapped in R (R Core 
Team, 2020) using the ape (Paradis & Schliep 2019) and phytools 
(Revell 2012) packages, and outgroup taxa were removed from final 
figures to better visualize ingroup branch lengths. 

2.6. Genetic cluster analyses 

To compare the number of SNPs contained in each of the ddRAD and 
SC data matrices, we used vcftools (Danecek et al. 2011) to filter SNP 
data (iPyrad output .vcf file and SC SNP calling pipeline output). We 
applied separate filters and also a combination of filters to obtain SNP 
counts filtering to bi-allelic SNPs (minimum and maximum number of 
two alleles), thin 1000 as a proxy filter to simulate getting one snp per 
locus for SNP analyses, and a maximum of 25% and 50% missing data 
(–max-missing 0.75, 0.50). 

We used unlinked SNPs (one SNP per 1000 bp) from each dataset to 
examine how ddRAD and sequence-capture (SC) SNP datasets recovered 
major genetic partitions across broad biogeographic space. To be 
consistent with current methodology using ddRAD data, we used the 
iPyrad .ustr and .usnps files for the ddRAD datasets and the unlinked 
SNP files for the SC data. We conducted a discriminant analysis of 
principal components (DAPC; Jombart et al. 2015) conducted in R (R 
Core Team, 2020) via the adegenet package (Jombart & Ahmed 2011). 
We assessed the number of principal components to retain using the K- 
means method (K = 10, retain all principal components) and defined the 
most likely number of genetic clusters using the lowest Bayesian Infor-
mation Criterion (BIC) value. We determined the number of principal 
components to retain (optim.a.score) and assigned each individual to a 
cluster using DAPC. We plotted individuals to display their membership 
to each cluster and used a Principal Component Analysis (PCA) to 
display the clusters. 

We ran STRUCTURE v2.3.4 (Pritchard et al. 2000) to infer popula-
tion structure given K on the two ddRAD and one SC SNP datasets. We 
conducted five iterations over K = 1–8, with each MCMC chain for a 
single K running with a burn in of 100,000 and sampling over 200,000 
generations. We analyzed and plotted the results of STRUCTURE using 
CLUMPAK (Clustering Markov Packager Across K), selecting the best K 
according to Evanno et al. (2005). 

3. Results 

3.1. PCR-directed dataset 

Individually and in total, the six PCR-directed loci contain a low 
number of parsimony informative sites, with 0–18 sites per locus 
(<1.5%) and a combined total of 33 sites in the 7654 bp concatenated 
dataset (0.4%, Table 1). Each locus contributed strong support for 
grouping the Metridium samples together to the exclusion of Diadumene, 
but none individually provided strong resolution for subsets within 

Metridium (Appendix Fig. A.1.). Notable groupings from the trees based 
on individual loci are a clade of samples from Ireland (ITS, 28S), a clade 
of some California specimens (ITS), and a clade of M. farcimen samples 
(COIII). The tree from the concatenated dataset (Fig. 1) is largely un-
resolved and fails to group samples expected to have affinity to one 
another based on species identification. Only the clade of mainly 
M. farcimen at the base is supported (>95). For example, one specimen 
of M. farcimen did not resolve within the M. farcimen clade, while 
another specimen of M. senile resolved within the M. farcimen clade. The 
Northern Ireland individuals resolved within a poorly supported 
(bootstrap (BS) = 64) clade in the combined dataset as also suggested in 
the ITS and 28S trees, but the remainder of the Atlantic and Pacific 
M. senile were mixed, with no clear geographic or taxonomic structure. 

3.2. ddRAD dataset 

The ddRAD data were processed into two data sets: one in which the 
minimum percentage of samples for each locus was 10% (ddRAD_10) 
and one in which the minimum percentage of samples for each locus was 
50% (ddRAD_50). Unsurprisingly, because it includes loci shared by a 
smaller number of samples, the ddRAD_10 data set had six times the 

Fig. 1. Sanger multi-locus IQ-Tree Maximum Likelihood hypothesis based on 
1000 bootstraps. Individuals designated in black are putative Metridium far-
cimen individuals; all other color designations are assumed M. senile or M. 
dianthus, and are colored based on geographic location: red (Japan), orange 
(Pacific), blue (western Atlantic), green (eastern Atlantic). Support values are 
provided only for backbone support, where present, with a support of 95% or 
higher considered support for confidence in the clade. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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number of loci and six times the aligned length of the ddRAD_50 data set 
(Table 2). However, the greater number of sequences and aligned length 
did not translate to an equally large number of informative sites 
(ddRAD_10 has 1.5x the informative sites than ddRAD_50) and the dif-
ference in terms of missing data is striking, with ddRAD_10 having more 
than twice the missing data of ddRAD_50 (Table 2). Two samples in the 
ddRAD_10 dataset (PAC3 and N27) dropped out of the ddRAD_50 
dataset due to excess missing data. 

RAxML phylogenetic analyses for the ddRAD_10 dataset resolved 
four well-supported clades (Fig. 2A): Atlantic M. senile, Pacific M. senile, 
M. farcimen, and the Bering Sea/Japan Metridium. Though there is strong 
support for the grouping of M. farcimen with the Bering Sea/Japan 
Metridium, the placement of this combined clade relative to the Pacific 
and Atlantic M. senile clades is unsupported (Fig. 2A). Within the 
M. farcimen clade, there are three subgroupings: south of Aleutians, 
Bering Sea, and Japan + two dock-collected specimens from the Pacific 
Northwest (Coos Bay, OR and Hammond Marina, WA). These relation-
ships are most clearly seen in the ddRAD_10 tree (Fig. 2A). In the 
ddRAD_50 tree (Fig. 2B), despite greater matrix completeness, resolu-
tion and support are lacking: the only relationships that are well sup-
ported are the Atlantic as a single clade (95 BS) and lower latitude 
(below the Aleutian Islands) clade of M. farcimen. Although the BS 
support values are low, both the ddRAD_10 and ddRAD_50 trees resolve 
the same Bering Sea + Japan relationship. In the ddRAD_50 tree, the 
Pacific coast M. senile are a grade at the base of the tree, leaving re-
lationships among Pacific individuals ambiguous. 

3.3. Sequence-capture dataset 

As with the ddRAD data, the sequence-capture data were processed 
into one dataset in which the matrix completeness was lower (SC_50) 
and another in which it was higher (SC_75). The number of loci in the 
SC_50 dataset was roughly twice that of the SC_75 dataset (Table 2), 
though the number of parsimony informative sites (25.05% vs. 24.86%) 
and missing data (38.36% vs. 30.05%) were not substantially different 
between the two. The mean locus length was 1019 bp (range: 479–1976) 
in both the SC_50 dataset and in the SC_75 dataset (range: 297–2045). 
The ddRAD and sequence-capture reads are contained within the NCBI 
BioProject accession PRJNA666413, with individual accession numbers 
contained within Appendix Table A.1. 

Despite these differences in matrix completeness, the major clades 
within the phylogenetic trees produced by the two sequence-capture 
SNP datasets were identical, with minor variation in tip-level relation-
ships presumably due to short branch lengths and the impact of missing 
data. Within these trees, a major clade of M. farcimen is present, 
although not all individuals (purple, Fig. 2D&E) assumed to be 
M. farcimen upon collection are included. Notable and consistent in 
these trees is that these specimens of Metridium from the Bering Sea 
resolved as well supported within the Atlantic Metridium senile, rather 
than associating with samples from Japan or M. farcimen, as might be 
expected based on geographic proximity and as recovered in the ddRAD 
analyses (Fig. 2A&B). Within M. senile, there are two well-resolved 
subclades which further partitions these samples into largely Pacific 
and Atlantic groups (Fig. 2D&E). The Atlantic clade of M. senile is 
roughly split into Western and Eastern Atlantic. The exception is a single 
individual from near Bergen, Norway (N27) which appears to be more 
closely related to the individuals from the Western Atlantic than those in 

Europe, and another individual from Egersund, Norway (N58) which is 
more closely related to individuals from the Bering Sea. 

3.4. ddRAD and sequence-capture SNP data 

The raw number of SNPs in the ddRAD datasets was about ten-fold 
more than in the sequence-capture datasets. However, because of the 
high level of missing data within the ddRAD datasets (80.17% and 
56.84%), when applying the same SNP filters used on the sequence- 
capture dataset to the ddRAD data for unlinked SNPs and 75% com-
plete matrices, the number of SNPs in the ddRAD datasets was reduced 
to less than half than those retained in the sequence-capture dataset 
(Table 3). 

Using the K-means method, we identified 6 as the optimal K for both 
ddRAD datasets (Fig. 3, Appendix Fig. A.6), and 4 as the optimal K for 
the sequence-capture dataset (Fig. 4, Appendix Fig. A.6). However, as K 
= 6 also had a low BIC score for the sequence-capture dataset, we 
conducted additional DAPC analyses for K = 6. The optimal K using the 
Evanno et al. (2005) method was 5 for both the ddRAD_10 and 
ddRAD_50 datasets, and 7 for the sequence-capture dataset. Addition-
ally, as a means of comparison between datasets and with the DAPC 
results, we used the STRUCTURE analyses (Figs. 3 & 4) using K = 6 for 
all datasets, as well as an additional K = 4 for the sequence-capture 
datasets. 

For all datasets, M. farcimen was retained in one (STRUCTURE) or 
two (DAPC) major clusters. The relationship of samples from Japan, 
while consistent with their respective phylogenies, are conflicting be-
tween the ddRAD (closest to Bering Sea Metridium) and sequence- 
capture (closer to Pacific M. senile). The Pacific M. senile are clustered 
well together in the sequence-capture dataset, except where K = 6 and 
there seems to be some mixing between Japan and Pacific M. senile in 
only the DAPC plots. Likewise, the ddRAD data suggests little mixing, 
though ddRAD_10 does partition three individuals separately. There is 
little variation among the Atlantic individuals, with a few exceptions 
from Norway that are equally seen in the phylogenetic trees. 

4. Discussion 

Our results concur with previous studies of other taxa in finding that 
the traditional PCR-directed markers provide low levels of biogeo-
graphic resolution and do not consistently differentiate among major 
species of Metridium or populations sampled here. The resolution and 
support provided by sequence-capture data is encouraging for future 
studies, as the paucity of effective PCR-directed markers, combined with 
challenging morphological features (Fig. 5), has left many species level 
relationships unresolved in anthozoan phylogenetics. Below we detail 
the strengths and weaknesses of each of these methods as it relates to 
this study, how they may be applied to future phylogenetic studies in the 
Actiniaria, and the preliminary insights that these data provide into the 
history of Metridium. 

4.1. PCR-directed loci 

None of the six PCR-directed loci are suitable as barcodes or for 
distinguishing among the three putative species in Metridium. The six 
loci used in symphony with each other suggested a distinction between 
M. farcimen and the remaining Metridium, although this inference was 

Table 2 
Models and sequence statistics for the ingroup of both the ddRAD and sequence-capture (SC) datasets.  

Dataset ML Model Number taxa (ingroup) Number loci Aligned Length PI sites (total) % PI sites % Missing Sites in aligned matrix 

ddRAD_10 GTR + FU + G4m 39 12,659 1,771,372 37,626 2.12 73.10 
ddRAD_50 GTR + FU + G4m 38 1667 235,427 10,361 4.40 37.40 
SC_75 GTR + FU + G4m 49 583 636,541 158,246 24.86 30.05 
SC_50 GTR + FU + G4m 49 1192 1,215,640 304,626 25.05 38.36  
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not consistent. Among the loci, the ITS and 28S trees displayed the most 
resolution, but the power of these to distinguish relationships was not 
equally distributed across the tree. The ITS region had the highest per-
centage of PI sites, but these were highly localized to the Ireland clade 
and were not able to distinguish M. farcimen from M. senile. Though 28S 
has the greatest sequence length, it contains only 0.5% PI sites. The 28S 
tree (see Appendix Fig. A.1) is the most resolved but most of its nodes are 
not retained in the concatenated tree, as was found more broadly for this 
marker (Daly et al. 2010). The six loci together appear to be useful for 
genus-level identification and at deeper taxonomic levels. Although 
equivalency of genetic divergence between sibling species in different 
lineages is as unlikely across sea anemones as it is in other lineages (e.g., 

Cádiz et al., 2018; Cognato, 2006), our results suggest that studies that 
distinguish subgeneric groups based on these markers (e.g., Pereira et al. 
2014; Grajales and Rodríguez 2016; Titus et al. 2019a) are likely 
recovering relatively deep signal, and may fail to identify more recent 
genetic lineages within their study systems (e.g., cryptic species). 

The majority of labs are well-equipped for standard DNA extraction 
and PCR; this combined with the affordability of Sanger sequencing and 
fast post-processing of data makes them an attractive first step in 
exploring intergeneric relationships in Actiniaria. However, there is 
high variation across studies of Actiniaria using the same markers; these 
resolve intergeneric and interspecific relationships inconsistently. Titus 
et al. (2019a) resolved superfamily relationships in clownfish hosting 

Fig. 2. RAxML-ng phylogeny with associated sampling locations for ddRAD and sequence-capture (SC) datasets: A) ddRAD_10, B) ddRAD_50, D) SC_50, and E) SC_75 
datasets based on 200 bootstraps. Individuals designated in black and purple are putative M. farcimen individuals; all other color designations are assumed to be M. 
senile, and are colored based on geographic location: red (Japan), orange (Pacific), blue (western Atlantic), green (eastern Atlantic). Support displayed only for 
backbone relationships; full support values available in Appendix Fig. A.2-5. Bootstrap support of 100 designated as (*), <60 designated as (-). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Comparison of SNP information for ddRAD and SC datasets. SNP data from the two ddRAD final datasets and the SC dataset were filtered using identical settings with 
vcftools: bi-allelic SNPs only (min/max-alleles = 2), final SNP matrix filtered at 75% completeness, thinned to a single SNP every 1000 bp (=unlinked SNP filtering), 
and a combination of thinned and completeness matrices at 75% and 50%.  

Dataset Initial SNPs Bi-allelic SNPs 75% Matrix Unlinked SNPs Unlinked and 75% Unlinked and 50% 

ddRAD_10 62,040 59,452 1497 9683 203 1615 
ddRAD_50 13,212 12,330 1497 1619 203 1615 
SC 22,668 22,047 16,434 1398 1164 1332  
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anemones but lacked support and resolution for relationships at the 
familial, intergeneric and interspecific level. Larson and Daly (2016) 
were able to provide support at the family level but had reduced support 
at the intergeneric level. Within the Aiptasiidae, Grajales & Rodríguez 
(2016) recovered major genera with relatively strong support and 
distinguished Exaiptasia brasiliensis (Grajales & Rodríguez, 2016) from 
Exaiptasia pallida (Agassiz in Verrill, 1864) but failed to resolve intra-
generic relationships in other genera within the family; genomic 
methods later confirmed the separateness of E. brasiliensis from E, pallida 
(Bellis et al. 2018). 

4.2. ddRAD sequencing 

The ddRAD methods generated the greatest number of potentially 
useful sites, but the proportion of missing data was high. This com-
monality across ddRADseq datasets is often overcome by the strength of 
reduced representation approaches in that these methods are capable of 
producing large quantities of informative loci. However, in Metridium, 
the fraction of sites that are parsimony informative and usable after 
processing is much smaller than the raw number of potential SNPs 
(Table 2). Furthermore, the success rate of this method was lower than 
any of the other methods in terms of sample success. Though likely due 
to low quality DNA and allelic dropout, only 41 of 71 samples passed 
through the iPyrad pipeline with enough loci (>3000) to be retained in 
the final dataset. Building a ddRAD library requires good quality, high 
molecular weight DNA, which is not always obtainable from previously 
collected specimens. Differences in sequencing platforms or lab condi-
tions may contribute to issues while integrating old data sets with newly 

sequenced individuals. As ddRAD data sets show both high individual 
and allelic dropout post-processing (e.g., Andrews et al., 2016; Gautier 
et al., 2013), it is difficult to combine studies or expand a ddRAD data set 
out to broader phylogenetic investigations at deeper evolutionary scales. 
Despite these challenges, ddRAD library preparation requires less 
development in terms of probes, primers, or other technical elements, 
and it can easily be used in lineages lacking genomic resources. The cost 
of preparing a library is generally lower (~$40–80 per sample) for 
ddRAD than sequence-capture (~$75–150 per sample), and it may be 
quicker to prepare libraries depending on the protocol and method used. 

In terms of the resolution of relationships, while the ddRAD trees do 
support four major groupings (M. farcimen + three M. senile clades of 
Atlantic, North American Pacific, and Japan/Bering Sea), they lack 
support for the positioning of these clades to each other. Although the 
currently accepted taxonomy is not supported sufficiently, support is 
relatively high towards the tips (Fig. 2), suggesting that ddRAD is well- 
suited to population-level and fine-scale analyses in this group. Branch 
lengths are short and the high within-region support values may be 
inflated by missing data. The outgroup taxon (Diadumene lighti) in the 
ddRAD datasets retained only 55 loci, which may have contributed to 
the lack of support at the base of the ingroup. Although it is possible in 
some cases to extract additional data from ddRAD sequencing events, 
including nearly complete mitochondria (Stobie et al. 2019), the shared 
variation we see between samples of Metridium and of Diadumene sug-
gest that this dataset would be difficult to expand taxonomically to 
include individuals outside of very closely related species in Metridium. 

Fig. 3. DAPC scatter and cluster plots of the ddRAD_10 and ddRAD_50 SNP datasets. Both datasets retained six PCs, and are based on six clusters for comparison. 
Structure plot (K = 6) included below with colors most closely matching the major clusters resolved in the DAPC. 
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4.3. Sequence-capture 

Although we recover fewer loci overall with sequence-capture than 
with ddRAD, the lower percentage of missing data and increase in PI 
sites allowed the sequence-capture data to outperform ddRAD in Met-
ridium. These results are most apparent when the final filtered number of 
SNPs are compared between the datasets. Overall, the geographic re-
gions and taxonomic groups were clearly resolved and supported 
consistently in the sequence-capture results. The well-supported and 
congruent backbone relationships in both sequence-capture datasets 
demonstrate that these are suitable for both phylogenetic questions and 
for the study of populations for actiniarians. Collins et al. (2018), who 
performed in silico comparisons, as well as Harvey et al. (2016), Manthey 
et al. (2016), and Erickson et al. (2020), found that for their focal taxa, 
ddRAD and sequence-capture both produced consistent and well sup-
ported topologies. In this study for Metridium, however, 
sequence-capture provided higher confidence in the topology than 
ddRAD. 

As with ddRAD, there are important practical and logistical consid-
erations in using sequence-capture. Bait sets are readily available for 
anthozoans and several other broad taxonomic groups (https://www. 
ultraconserved.org; Quattrini et al. 2018, Erickson et al. 2020, 
Cowman et al. 2020); however, designing bait sets requires having ge-
nomes and/or transcriptomes available for a suite of taxa within the 
lineage of interest. As sequence capture targets positions on the genome 
rather than shearing DNA with enzymes, the protocols are repeatable 
with greater overlap across efforts, experience less allelic dropout, and 
retain more individuals after processing and filtering steps. The 

PHYLUCE pipeline that we used is well-established for processing 
sequence-capture reads; however, recovering SNPs from sequence- 
capture data requires an additional step (e.g., Erickson et al. 2020) 
whereas an unlinked SNP file is a standard output by iPyrad. Though the 
initial effort and cost are high, the reproducibility of the sample prep-
aration is valuable and the ability to target loci, unlike in ddRAD, en-
ables the expansion out to include deeper relationships, creating the 
ability to re-use data for multiple studies which increases efficiency 
particularly in labs that commonly study closely related taxa. Further-
more, there is a potential for single locus discovery followed by directed 
PCR within the sequence-capture datasets, which can augment loci 
currently used in systematics of actiniarian sea anemones and further 
reduce the long-term cost in using targeted loci (see Ramirez-Portilla in 
review). Finally, this method can be used to obtain genomic data for 
relatively old (up to 50 yrs,) and fluid-preserved anthozoans in museum 
collections (Untiedt et al. 2021), highlighting the promise of this 
approach for integrating type material into systematic research. 

4.4. SNP data analysis 

The DAPC for both datasets largely confirmed the genetic structure 
among species and populations seen in the trees. DAPC groups form 
particularly tight clusters for the sequence capture data, recovering both 
species and populations. The STRUCTURE plots are also more clearly 
defined for the sequence-capture datasets. Because of the emphasis on 
quantity over reducing missing data for ddRAD methods, the SNP data in 
the ddRAD datasets may be influenced by noise (Leaché et al. 2015) or 
inconsistent levels of genetic signal related to uneven missing data (see 

Fig. 4. DAPC scatter and cluster plots of the sequence-capture (SC) SNP dataset for four and six K-clusters. Structure plot (K  = 4, K = 6) included below with colors 
most closely matching the major clusters resolved in the DAPC. 
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(Collins et al., 2018), and therefore may show varying membership to 
each of the major clusters depending on the individual. 

4.5. Taxonomic and biogeographic considerations in metridium 

Our genomic-scale data serve as a first step towards resolving 
phylogenetic relationships and biogeography of Metridium across the 
globe. We recognize that some of the variation in topologies may be due 
to slight differences in geographic sampling between datasets and the 
limited sampling (though approximately equal in each dataset) relative 
to the wide distribution range of Metridium. More individuals from 
additional locations are needed to fully resolve phylogeographic pat-
terns and relationships within this genus. Furthermore, we acknowledge 
that coalescent-based approaches are required to quantify and delimit 
species boundaries. 

The contiguous habitat and ranges of the putative species of Metri-
dium has historically complicated assessing species boundaries. The 
name M. senile has been used for populations on both the Northwestern 
and Northeastern Atlantic coasts and for populations in the North Pa-
cific. We sampled broadly across oceans to test preliminary affinities and 
distinctions between Atlantic and Pacific populations and between large 
and solitary Metridium and smaller and clonal Metridium. Despite our 
small sample size, the results clearly differentiate the large and solitary 
form from the smaller and/or clonal forms, which supports the 
distinctiveness of M. farcimen. This distinction is widely supported 
across data sets and methods. We also find clear support for the sepa-
ration of the smaller, clonal Metridium (M. senile) into Pacific and 

Atlantic clades. 
Based on our limited sampling for this study, we do not recover any 

distinction between the two smaller, clonal Metridium on the Pacific 
coast of North America, contradicting the expectation of a distinction 
based on allozymes (see Bucklin & Hedgecock 1982). Although the 
major clade that corresponds to M. farcimen is largely upheld in both the 
sequence-capture and ddRAD datasets, we see a distinction between 
those collected south of the Aleutians through California and a small 
number of samples collected in the Bering Sea that had been presumed 
upon collection to be M. farcimen and now appear to be M. senile. The 
affinity of samples from shallow waters in Alaska (ADK7, ADK13, MEFI) 
is inconsistent across data sets. The placement of the individuals from 
Japan differs between the ddRAD data and sequence-capture analyses, 
which requires greater sampling to determine whether they are more 
closely related to the Pacific M. senile, M. farcimen, or Bering Sea 
Metridium. 

The Northern Hemisphere habitats in which species of Metridium are 
found share deep-water connections through the Arctic, but habitat 
availability and connectivity were likely different in the past. Connec-
tions between Pacific and Atlantic populations are possible given pre-
sent distributions and have historical precedent. The passage through 
the Bering Strait opened during the early to mid-Pliocene (~3.5 and 5.5 
MYA), allowing exchange from the Pacific to the Atlantic (Durham & 
Macneil, 1967; Marincovich and Gladenkov, 2001; Gladenkov et al., 
2002), and slowed or halted exchange between oceans until after the last 
glacial maximum, around 13–11 ky ago (Kaufman and Brigham-Grette 
1993, Anderson et al. 2006, Laakkonen et al. 2020). Based on our 
STRUCTURE results for the sequence-capture data and the ddRAD DAPC 
results, the Japan and Bering Sea Metridium populations may represent 
two intermediate steps connecting the Eastern Pacific and the Atlantic 
M. senile. We interpret the directionality of dispersal to be from the 
Pacific to the Atlantic because in every tree, a Pacific-only clade (or 
series of clades) is sister to the clade comprised of Atlantic and Pacific 
populations of smaller and clonal M. senile. However, these biogeo-
graphic patterns warrant further investigation with increased sampling. 

The mixing of individuals within the Atlantic clade (New England, 
Ireland, and Norway), particularly in the ddRAD datasets, does not 
support a distinction between M. senile and M. dianthus as had been 
proposed in the past and which is implied by the use of separate names 
for these populations. The intermingling of Western and Eastern Atlantic 
populations of Metridium is also contrary to the findings of Bucklin 
(1985) but does support her conclusion that M. senile and M. dianthus are 
ecophenotypes and not distinct species. The propensity of Metridium 
individuals for being transported (see Glon et al. 2020) has undoubtedly 
impacted population structure in the Atlantic. Anthropogenic transport 
may also explain two individuals (Hammond Marina, OR and Coos Bay, 
OR) that are resolved as sister to the Japan clade; these locations see 
high shipping traffic from Japan, and in Coos Bay a ship has been 
documented as carrying M. senile larvae in the ballast water (Carlton & 
Geller 1993; see Glon et al. 2020). 

5. Conclusions 

Both ddRAD and sequence-capture approaches are capable of dis-
tinguishing M. farcimen from M. senile and show promise for differenti-
ating populations within M. senile. The preliminary insights discussed 
above support the recognition of two species, with a potentially complex 
history of M. senile in the Pacific Ocean. At least for the taxa studied here, 
the sequence-capture results better distinguish groups of populations 
and have higher support for intermediate nodes than the ddRAD results. 
The ability of sequence-capture approaches to recover a highly resolved 
and supported topology within Metridium, a group that has been his-
torically difficult taxonomically and biogeographically, underscores the 
broader utility of the anthozoan target-capture bait set (Quattrini et al. 
2018, Cowman et al. 2020). 

Fig. 5. Photographs of Metridium farcimen and Metridium senile displaying 
the variation in color, size, and clonal groups. Scale bars represent approxi-
mately 10 cm. Photographs by H. Glon. 
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