
1.  Introduction
The presence of fractures modifies the mechanical and hydraulic properties of rocks, which can impact 
several activities from monitoring 2COE  geological sequestration and underground radioactive-waste repos-
itories to geothermal energy and hydrocarbon production (e.g., Bakulin et al., 2000; Klimentos, 1995; Metz 
et al., 2005; Tester et al., 2007). Seismic methods represent a popular tool to detect and characterize fractures 
because seismic wave propagation can be strongly affected by their presence. In particular, an important 
physical mechanism for seismic attenuation and velocity dispersion occurs when a passing wave deforms 
a fluid-saturated fractured medium. The compressibility contrast between the compliant fractures and the 
stiffer embedding background allows for the generation of fluid pressure gradients between them. Then, 
seismic energy is dissipated due to viscous friction in the pore fluid during the associated fluid pressure 
diffusion (FPD) process (Pride et al., 2004; White et al., 1975). The frequency dependence of this process in 
fractured media has been theoretically studied either assuming idealized geometries such as, e.g., ellipsoids 
(Chapman, 2003; Masson & Pride, 2007, 2014), planar layers of either infinitely small (e.g., Brajanovski 
et al., 2005) or finite aperture (e.g., Quintal et al., 2014), and other more intricate although still artificial 
fracture geometries (Lissa et al., 2019; Rubino et al., 2014). Idealized geometries have also been considered 
for experimental studies (Amalokwu et al., 2015, 2016; Maultzsch et al., 2003; Tillotson et al., 2014). While 
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idealized fracture geometries are useful for simplifying the study of the effects of FPD on seismic waves, the 
characteristics of this phenomenon for real fracture geometries remain to be evaluated.

Real fractures can exhibit roughness and curvature of their walls, contact areas, as well as the presence of 
some degree of occlusion, mineralization, or other alteration processes (e.g., Jaeger et al., 2007; Karpyn 
et al., 2007; Masson & Pride, 2015; Montemagno & Pyrak-Nolte, 1999; Nakagawa et al., 2019). Considering 
that they are not simply empty cavities, a generally accepted, conceptually simple, and physically intui-
tive description of fractures is an effective fluid-saturated poroelastic inclusion (Brajanovski et al., 2005; 
Masson & Pride, 2007; Pride et al., 2004; Quintal et al., 2014; Rubino et al., 2013). Poroelastic fractures are 
often represented as single planar layers (Brajanovski et al., 2005; Nakagawa & Schoenberg, 2007; Quintal 
et al., 2014; Schoenberg, 1980), or as distributions of thin-planar layers (Caspari et al.,  2016, 2019; Guo 
et al., 2018; Hunziker et al., 2018). Few studies consider more complex fracture geometries and analyze 
their impact on the seismic response of fractures. Rubino et al. (2014) considered 2D planar fractures to 
analyze the impact of the geometrical and mechanical properties of contact area distributions on the overall 
seismic response. This study was later generalized by Lissa et al. (2019) for more realistic 3D planar-fracture 
models, showing that the anisotropic seismic response in the presence of fractures having complex aperture 
distributions can be reproduced by an equivalent thin-planar-layer model (ETLM). Nakagawa et al. (2013) 
experimentally measured seismic attenuation due to FPD in a saturated Berea sandstone having a single 
nearly horizontal fracture that could not be reproduced by an ETLM, which points to the need of better 
understanding the limitations of this simplification.

In this work, we numerically compute the effective anisotropic velocity and attenuation of P and S waves 
under fluid-saturated conditions of a medium having a fracture of realistic geometry. The methodology 
is described in Section 2. First, in Section 2.1, we describe the workflow followed to create the numerical 
models. To do so, we use microcomputed tomography images of a fractured Berea sandstone sample (Kar-
pyn et al., 2016) to reproduce the complexity of a real fracture geometry. Then, in Section 2.2, we provided 
the mathematical formulation used for the numerical solution based on Biot's equations (Biot, 1941). Also, 
we describe the employed numerical approach to obtain the seismically-induced effects of FPD in the frac-
tures and background due to the action of P and S waves. In Section 2.3, we describe the methodology to 
obtain the properties required for the analytical solution of a typically employed ETLM. For this, we use 
an inversion procedure to infer the mechanical properties and effective aperture of the ETLM using the 
numerically obtained normal-incidence P wave modulus dispersion and compliance of the model with the 
realistic fracture. In Section 3, we present fracture-geometry-related effects and the limitations of the ETLM 
to reproduce the seismic response of a real fracture. Finally, in Section 4, we explain the impact of a real 
fracture geometry on FPD effects and illustrate the sensitivity of these effects to the fracture permeability.

2.  Methodology
2.1.  Fracture Models

We consider a cm-scale Berea sandstone sample containing an artificially created fracture following the 
procedure described by Karpyn et al. (2007). Here, we use the segmented image of the fracture (Karpyn 
et al., 2016), which was digitized in a way that it is split into four smaller fracture images of an approxi-
mately square shape of 22 mm per side. For the analysis, we consider them as independent fractures, each 
one embedded in a cubic background (Figure 1). To create the numerical models, we employ the software 
AVIZO 2019.1 (Thermo Fisher Scientific Inc.) for importing the segmented images, creating the cubic back-
ground embedding the fractures and generating a mesh only on the surfaces of both the fracture and the 
background.

Quintal et al. (2016) showed that seismic effects associated with FPD occurring inside planar fractures rep-
resented as a poroelastic medium exhibits similar behaviour as those obtained when fractures are modelled 
as cavities filled with a fluid in which linearized Navier-Stokes equations are solved. In this work, fractured 
are modelled as poroelastic inclusions having both contact areas and open spaces. This representation is 
based on the fact that real fractures can have some degree of occlusion, mineralization, or other alteration 
processes (e.g., Jaeger et al., 2007). The contact areas are assigned with the same bulk properties used for 
the background, which has properties representative of a Berea sandstone (Nakagawa & Schoenberg, 2007). 
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For the open regions, we assume a solid matrix with high compressibility, porosity, and permeability to 
emulate fluid-filled open regions in a poroelastic context (Quintal et al., 2019). Given that FPD effects are 
largely dependent on the mechanical contrast between the fractures and the embedding background, we 
estimate the poroelastic fracture properties that minimize the difference on the overall deformation of the 
medium under dry conditions between models where fractures are represented as voids and as poroelastic 
inclusions (Supporting Information S1). Finally, at the grain level, same properties are used for the fractures 
and background. All material properties are listed in Table 1.

2.2.  Numerical Framework

2.2.1.  Equations of Poroelasticity

The seismic response of a fractured Berea sandstone is numerically modeled considering a poroelastic up-
scaling approach (Lissa et al., 2019; Masson & Pride, 2007; Quintal et al., 2011). For that, we solve the qua-
si-static Biot's equations (Biot, 1941) in the frequency domain, which are

   0,σ� (1)



 

   
 

,i pw� (2)

where E σ is the total stress tensor, w is the relative fluid displacement vec-
tor, p is the fluid pressure, E  is the angular frequency and i is the complex 
unity. The material properties E  and E  are the permeability and the fluid 
viscosity, respectively. These equations are coupled through

     2 ,m me pIσ � (3)

     ,p M e M w� (4)

where E  is the strain tensor, E I is the identity tensor, and e is the trace of the 
strain tensor. The symbols mE  and mE  are Lamé’s parameters of the dry 
frame, and E  and E M are Biot's poroelastic parameters given by

  1 ,m

s

K
K� (5)

Figure 1.  (left) Numerical model consisting of a cube (orange box) having ∼22 mm per side and a fracture (blue 
region) in the middle. (right) Four different models are obtained by embedding each of the four fractures in such a 
cubic background.

Background
Open regions of 

fractures

Grain bulk modulus sE K   = 36 GPa sE K   = 36 GPa

Grain density sE   = 2,700 kg/m3 sE   = 2,700 kg/m3

Porosity E   = 0.18 E   = 0.9

Permeability E   = 200 mD E   =   510E   mD

Drained bulk modulus mE K   = 9 GPa mE K   = 0.001 GPa

Drained rock shear modulus mE   = 7 GPa mE   = 0.001 GPa

Fluid bulk modulus fE K   = 2.25 GPa fE K   = 2.25 GPa

Fluid density  fE   = 1,000 kg/m3  fE   = 1,000 kg/m3

Fluid viscosity E   = 0.001 Pa s E   = 0.001 Pa s

Table 1 
Material Properties for the Poroelastic Equations Used for Forward 
Modeling
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where mE K  , sE K  , and fE K  are the bulk modulus of the dry frame, of the grains, and of the fluid, respectively, 
and E  is the porosity.

Combining Equations 2 and 4, the following expression can be obtained:

  


 
         

 
0,i pp i

M
u� (7)

where u is the solid displacement vector.

Equations  1 and  7 are so-called the u-p formulation of Biot's equations (Biot,  1941). The weak form is 
derived considering that the gradient of fluid pressure is zero at the boundary of the spatial domain, thus 
a natural undrained boundary is inherent to our numerical solution (Appendix B of Quintal et al. (2011)) 
and does not need to be explicitly implemented. We use the commercial software COMSOL Multiphysics (i) 
to generate the volumetric mesh with tetrahedral elements of the fracture models described in Section 2.1 
(Supporting Information S1) and (ii) to solve the weak form of Equations 1 and 7 following the finite ele-
ment method.

2.2.2.  Upscaling

Under the assumption that incident wavelengths are much larger than the size of the heterogeneities of a 
given medium, the effective seismic properties can be inferred from the spatially averaged stress and strain 
resulting from the application of either oscillatory stress (creep test) or displacement (relaxation test) fields 
on the boundaries of a representative elementary volume (REV) of the medium (Milani et al., 2016). In this 
work, we consider relaxation tests in which either a compressional or a shear oscillatory harmonic displace-
ments is applied on one boundary of a cubic model. In the case of the compressional tests, we set to zero 
the displacements perpendicular to all the boundaries except for that where the harmonic displacement 
is applied. In the case of the shear tests, we apply a harmonic tangential displacement on one boundary 
of the model. On the opposite boundary, we set to zero all solid displacement components. On the lateral 
boundaries, those components of the solid displacement that are perpendicular to the applied displace-
ment are set to zero. In both types of tests, no fluid flow is allowed to occur on any boundary of the model 
(i.e., undrained conditions). Due to the employed boundary conditions in our relaxation tests, the upscaled 
properties are representative of a medium consisting on a periodic repetition of the cubic numerical model 
(Figure 1). That is, a medium containing a periodic repetition in the vertical z-direction of semihorizontal 
fractures having infinite length in the x-direction and y-direction. In addition, the applied boundary condi-
tions account for the strain and stress field interactions of consecutive fractures (Lissa et al., 2019; Milani 
et al., 2016). The mathematical description of the applied boundary conditions is given in Appendix A.

To obtain the full anisotropic response of the 3D Berea sandstone fractured model, we extend to 3D the pro-
cedure presented by Rubino et al. (2016) for 2D samples to compute the effective stiffness matrix (   ijE CC  ), 
which is also detailed in Jian et al. (2021). The complete anisotropic stiffness matrix requires subjecting 
the numerical model to three compressional and three shear tests applied in the three cartesian directions. 
Then, we compute for each test and frequency the spatially averaged stress  ijE  and strains ijE   for i, j = 1, 2, 3, 
4, 5, 6. Under the assumption that these quantities are related through an effective stiffness matrix, we fol-
low a least-square minimization procedure to calculate, at each considered frequency, up to 21 independent 

ijE C  coefficients. Then, we calculate the complex wave numbers ( E k ) solving the dynamic plane wave equa-
tions using the components of the equivalent frequency-dependent complex-valued stiffness matrix (Rubi-
no et al., 2016). Finally, using the complex velocities derived from the complex wave numbers (   ( , )jE V   =  
 /E k ), the velocities for the P, VE S  , and HE S  waves and the corresponding quality factors as function of the 
incident angle are calculated (Carcione, 2007) as




 

 
 

  
2

1
2

( , )
( , ) ,

( , )
j

j
j

ImV
Q
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� (8)
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where j represents the P-, VE S  - or HE S  -wave mode.

2.3.  Equivalent Thin-Planar-Layer Model (ETLM)

To study the effects of the realistic geometry of the analyzed 3D numerical models, we compare their re-
sponse with a broadly used analytical solution based on the thin-planar layer model (White et al., 1975), 
which can be used for a medium consisting of a periodic alternation of background layers and planar frac-
tures. This analytical solution corresponds to a model with vertical (i.e., z-direction in Figure 1) transverse 
isotropy (VTI). First, we follow an inversion procedure to estimate the parameters of the analytical solution 
for the ETLM by adjusting the numerical results of the realistic models at normal incidence. Then, to obtain 
the response of the ETLM across all incidence angles, we use those estimated equivalent parameters in the 
analytical solution of Krzikalla and Müller (2011) for a 3D poroelastic VTI model consisting of a periodic 
repetition of a compliant planar-thin-layer (representing fractures) and a stiffer and thicker layer (repre-
senting the background). For that, we compute first the elements of the anisotropic stiffness matrix, and 
then the P and S wave velocities and attenuation as functions of frequency and incidence angle.

To make the simpler model (or ETLM) equivalent to our numerical model, which is based on a real fracture 
geometry, we systematically choose its properties. First, for the background, we use the same properties as 
for the numerical solution (Table 1). Second, the properties of the fracture in the ETLM need to be properly 
inferred to account for geometrical aspects of the real fracture such as roughness, distribution of contact 
areas, and curvature of the fracture walls, which affect the effective compliance, porosity, permeability, and 
aperture of the fracture. We follow a minimization procedure to obtain the equivalent aperture (  fr

eqvE h  ) as 
well as dry bulk (  fr

eqvE K  ) and shear (  fr
eqvE  ) moduli for the planar layer. To do so, we minimize the discrepancies 

between the following properties obtained for the numerical model and for the ETLM: (a) the inverse of 
the dry normal and shear compliances and (b) the real component of the frequency-dependent effective P 
wave modulus at normal incidence (  33E C  ). For (a), the dry normal and shear compliances for the numerical 
models are computed following Lissa et al. (2019) (Supporting Information S1), and for the ETLM predicted 
by using the analytical solution as

 33/ ,N cZ f C� (10)

 44/ ,T cZ f C� (11)
with cE f   =   frE h  /  zE L  , where frE h  is an effective fracture aperture and zE L  is the model length. And for (b), the 33E C  
for the numerical models is computed following the described upscaling methodology and for the ETLM as

 
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 

 
   

       
                

       

2
1

0.5 0.5 0.5
33

1 2 (( / ) ( / )) ,
( ) ( )

[1 ] [1 ]
2 2

b b b fr fr fr
u u

usat b fr fr frz b fr
b fr

M P M PP
C L i N L h N hcot i k cot i k

� (12)

where   0.5( / 2 )j j jE k N  with j = b, fr being the properties of the background and fracture, respectively. 

dE P  and uE P  are the drained and undrained P wave moduli, respectively, and  d

u

PE N M
P

 .

For the minimization, we use the package fminsearchcon developed for MATLAB (D’Errico, 2006), which 
finds the minimum of a constrained multivariable function using the derivative-free method. We define the 
vector

     
 

       
  

1 33 1 33 2 33 2 33 33 33
1 1 1 1( ) ( ) , ( ) ( ) , , ( ) ( ) , , ,nu an nu an nu an

n n nu an nu an
N N T T

C C C C C C
Z Z Z Z

f� (13)

where E nu and E an correspond to the 3D realistic model numerically obtained and to the 1D analytical solu-
tion, respectively, and n corresponds to the number of evaluated frequencies (in this work, 7). Then, we 
minimize the square of norm 2 of the vector E f , i.e., F  =    2

2E f  . Assuming that the fracture permeabili-
ty is much higher than that of the background, the fluid-pressure relaxation process is controlled by the 
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background permeability (Barbosa et  al.,  2020). Therefore, we set the 
fracture permeability of the planar layer to that of the open regions of the 
fracture in the numerical model, which is arbitrarily chosen to be much 
higher than that of the background. The same is done for the porosity 
and, thus, we let the equivalent planar-layer aperture (  fr

eqvE h  ) accommodate 
the effective pore fluid storage of the real fracture. Due to the geometrical 
differences between the real and planar fractures, the effective porosity 
of both models can differ. The convergence of the final values during the 
inversion procedure is verified by considering multiple initial values of 
parameters to be optimized (  ,fr fr

eqv eqvE h K  , and  fr
eqvE  ). As a result of all those 

cases, we obtain the same final values for the optimized parameters. The 
material properties finally used for the planar fracture in the analytical 
solution are given in Table 1 and the optimized parameters (  ,fr fr

eqv eqvE h K  , and 
 fr

eqvE  ) are given in Table 2.

3.  Results and Discussion
In this section, we compare the seismic responses of the fractures having realistic geometries (Figure 1) 
with those of the ETLM. We first analyze the case of P waves with normal incidence and then we extend the 
analysis to P and S waves with oblique incidence.

3.1.  P Wave Velocity Dispersion and Attenuation for Normal Incidence

Figure 2 shows the numerically computed P wave velocity dispersion and attenuation for the four fracture 
models shown in Figure 1. The imposed solid deformation on the top boundary of the numerical model 
generates a heterogeneous fluid pressure distribution, which depends on the geometrical, mechanical, and 
hydraulic characteristics of the fracture as well as on the frequency of the imposed oscillation. When the 
elapsed time during half wave period is similar to the time required for FPD to occur, energy is dissipated 
(Müller et al., 2010; Pride, 2005). For the chosen material and geometrical properties, attenuation and dis-
persion are mainly associated with FPD between the fracture and the embedding background and they are 
maximal at 410E   Hz (Figure 2). At the highest considered frequency, the time elapsed during half wave period 
is not long enough to allow significant FPD. At this frequency, attenuation is lower than at 410E   Hz and the P 
wave velocity is highest due to the maximum stiffening effect of the fluid in the pores. Moreover, the reduc-
tion of the attenuation and the flattening of the velocities with increasing frequency indicate the tendency 

Model  (m / Pa)nE  (m / Pa)tE  /n tE

fr
eqvE K  

(GPa)
 fr

eqvE  
(GPa)

fr
eqvE h  

(mm)

A 4.44  1210E 7.07  1210E 0.63 0.0220 0.0864 0.611

B 2  1210E 3.28  1210E 0.61 0.0462 0.1516 0.498

C 2.83  1210E 5.14  1210E 0.551 0.0484 0.1007 0.519

D 3.17  1210E 5.34  1210E 0.593 0.0378 0.1097 0.587

Table 2 
Inverted Equivalent Properties of Each Real Fracture to be Used in the 
ETLM

Figure 2.  P wave velocity ( VPE  ) and attenuation (  1QPE  ) for normal incidence as functions of frequency. Crosses 
correspond to the numerical solutions for each model based on a real fracture geometry and dashed lines denote the 
corresponding analytical solutions for each equivalent thin-planar-layer model (ETLM) (Table 2).
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of the curves to reach the high frequency limit, or unrelaxed state, at which no FPD occurs. At the low-fre-
quency limit, half wave period provides enough time for the fluid pressure gradients to fully equilibrate 
thus, minimizing the pore fluid stiffening effect on the P wave velocity, and attenuation is negligible. This 
scenario is commonly referred to as the relaxed frequency limit. Although the considered fracture models 
are subsamples of the same fracture, differences up to  10%E  (at the lowest frequencies) between their P 
wave velocities can be observed. This already points to the important role played by the geometries of the 
fractures. However, the characteristic frequency (at which attenuation is maximal), which depends mainly 
on the background permeability, thicknesses of the background, and relative aperture (or volume fraction) 
of the fracture (Carcione et al., 2013), remains the same for all the models. Table 2 shows the equivalent 
apertures for the four models with variations of up to  20%E  .

Figure 2 also shows the P wave velocity and attenuation obtained with the analytical solution for the planar 
fracture with the equivalent elastic moduli fr

eqvE K  and  fr
eqvE  and aperture fr

eqvE h  of the four ETLM given in Table 2. 
The effective fracture compliances (  ,n tE  ) can be obtained from the compliances treated in this manuscript 
as nE   =   z NE L Z  and tE   =   z TE L Z  . These values (    12 110 [mPa ]nE  ) are in the order of expected values for the 
scales of the models (mm to cm), as reviewed by Barbosa et al. (2019). The fracture compliance ratio (i.e., 
 /n tE  ) are close to those found by Nakagawa et al. (2013) ( E  0.55) from laboratory measurements on a frac-
tured Berea sandstone sample. Moreover, the excellent agreement observed between the numerical and an-
alytical solutions not only validates our optimization approach of fracture properties but, more importantly, 
it indicates that an ETLM can reproduce the P wave velocity for normal incidence for a fracture of realistic 
geometry having a mild curvature. In the following, we explore this comparison for other incidence angles 
of P waves as well as S waves.

3.2.  P and S Wave Velocities and Attenuation as Functions of Frequency and Incident Angle

In this section, we only consider results for the fracture model A of Figure 1, which is the fracture exhibiting 
the highest velocity dispersion and attenuation due to FPD between the background and the fracture. We 
analyze the response of the P and the S waves, in the following subsections, for both, the numerical realistic 
models and the ETLM following the analytical solution of Krzikalla and Müller (2011).

3.2.1.  P Wave

Figure 3 shows the P wave velocity dispersion (a) and attenuation (b) as functions of the incident angle  
( E  ) at the relaxed limit, unrelaxed limit, and at intermediate frequencies for the model with a real fracture 
and the ETLM with VTI (Krzikalla & Müller, 2011). Figures 3a and 3b show that the maximum discrepancy 
between the P wave velocities is found at intermediate angles (     [30 60 ]E  ) and it is always lower than 
1 %E  . Discrepancies can be observed for the attenuation curves at     [60 90 ]E  at 510E  and 710E   Hz, although 
they are significant only when values are close or below to an estimated minimum attenuation magnitude 
that can be measured in laboratory experiments (e.g., Borgomano et al., 2020; Spencer & Shine, 2016). We 
denote the minimum observable attenuation with a red dotted line in the attenuation plots of Figures 2–4 
at 1QE   =   310E  . Figure 3 also shows the P wave velocity dispersion (c) and attenuation (d) as functions of fre-
quency. Note that the excellent fitting for normal incidence ( E   =   0E  of Figures 3c and 3d) that was optimized 
with the inversion procedure is the same already shown in Figure 2 (blue curve). The minor discrepancies 
between the models can also be observed on the attenuation curves at   60E  and   90E  at frequencies 
higher than 510E   Hz. This means that the relaxation process for the real fracture is slightly changing with the 
incidence angle, while it remains predominantely unidimensional for the ETLM as shown by Müller and 
Rothert (2006). Based on Figure 3, we can conclude that an ETLM can satisfactory reproduce the aniso-
tropic seismic response of P waves, for incident angles lower than 30E  , across a real fracture exhibiting low 
curvature, variable aperture, and contact areas. For higher incident angles, and at frequencies higher than 

510E   Hz moderate discrepancies can be observed in the attenuation curve. The physical process behind these 
observations will be discussed in Section 4.

3.2.2.  S Wave

Now, we consider the two S wave modes coexisting in anisotropic media (Mavko et al., 2009). In this case, 
the SV motion is contained in the plane yz for E   =   0E  and for E   =   90E  (Figure 1), while the SH mode displace-
ments occur in the plane xz for E   =   0E  and in the plane xy for E   =   90E  . Figure 4 shows the S wave velocity 



Journal of Geophysical Research: Solid Earth

LISSA ET AL.

10.1029/2021JB022233

8 of 14

dispersion (c) and attenuation (d) as functions of frequency for E   =   0E  (normal incidence) and E   =   45E  for 
both considered models. The complex response of the real fracture is accurately reproduced by the ETLM 
for the SV wave at E   =   45E  . In that case, the characteristic frequency (  410E   Hz) matches that of the P wave 
velocity for normal incidence, as expected for an ETLM. However, unlike for P waves, normally incident 
S waves exhibit a different attenuation peak at  610E   Hz, which cannot be reproduced by an ETLM. The 
same occurs for SH waves at E   =   45E  . Figure 4 also shows the S wave velocities (a) and attenuation (b) for 
both models at 10 Hz (relaxed limit) and at 610E   Hz (characteristic frequency of the S waves at E   =   0E  ). At 

610E   Hz, the SV attenuation has a clear maximum around E   =   50E  for the ETLM (Figure 4b). However, the 
real-fracture model exhibits significant attenuation at all incidence angles, which results in a remarkably 
isotropic behavior of the SV wave. The SH wave, on the other hand, also exhibits measurable attenuation in 
the real-fracture model (at     [0 70 ]E  ) that cannot be accounted for by an ETLM, which predicts zero 
attenuation. For E   =   0E  both S wave modes show similar attenuation magnitudes, which means that the 
fracture is fairly isotropic in the xy-plane. The SH wave presents negligible attenuation for E   =   90E  because 
the fracture deformation is minimal in the plane xy, containing the fracture. While the fitting of S wave 
velocities is as satisfactory as for P waves, we found that, unlike for P waves, the ETLM cannot accurately 
reproduce the anisotropic attenuation of S waves in the presence of a real fracture.

To further understand the physical mechanism behind the S wave attenuation we calculate the local atten-
uation in different regions (Solazzi et al., 2016) when the model is subjected to a shear test emulating the 
action of normally incident S waves. Figure 5a shows the S wave attenuation for model A saturated with 

Figure 3.  P wave velocity and attenuation as functions of the incident angle (a, b) and frequency (c, d), respectively, for model A based on the numerical 
solutions for fractures of real geometries (solid lines and circles) and the analytical solutions for the corresponding equivalent thin-planar-layer model (ETLM) 
(dashed lines).
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Figure 4.  S wave velocity and attenuation as functions of the incident angle (a, b) and frequency (c, d), respectively, for model A based on the numerical 
solutions for fractures of real geometries (solid lines, crosses, and circles) and the analytical solutions for the corresponding equivalent thin-planar-layer model 
(ETLM) (dashed lines). Note that in panel (b), SV wave attenuation at 10 Hz (red curves) and SH wave attenuation for the ETLM (violet dashed curve) do not 
appear because they are negligible.

Figure 5.  S wave attenuation at normal incidence ( E   =   0E  ) as function of frequency for the fractured model A considering different background ( kbkgE  ) and 
fracture ( k fracE  ) permeabilities. Black solid lines denote the total attenuation in the whole model. Red and blue dashed lines correspond to the attenuation taking 
place only in the background and only in the fracture, respectively.
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glycerin (  fE K   = 4.35 GPa,  fE   = 0 GPa, and  fE   = 1 Pa s). We change the saturating fluid from water to glycer-
in, as commonly used in laboratory experiments (e.g., Borgomano et al., 2017, 2020; Pimienta et al., 2015; 
Subramaniyan et al., 2015), to shift the characteristic frequency previously observed at 610E   Hz (Figure 4d) to 

310E   Hz (Figure 5a), thus keeping the attenuation curves inside the analyzed frequency range when changing 
the permeability in the models. We observe that both the dissipation in the fracture and in the background 
contribute to the total attenuation of a normally incident S wave. Again, for the ETLM, attenuation is neg-
ligible in both regions. To separate the frequency ranges at which effects occurring in the fracture and the 
background prevail, the background permeability is changed in Figure 5b. By doing so, the dissipation tak-
ing place in the background is significantly shifted to lower frequencies while the total attenuation is only 
slightly shifted. Figure 5c shows the effects of increasing fracture permeability while keeping it in the range 
of realistic magnitudes (Karpyn & Piri, 2007). In this case, the characteristic frequency of the attenuation 
taking place inside the fracture is shifted toward higher frequencies (   43 10E   Hz), which, in turn, is mani-
fested as a second attenuation peak on the total attenuation curve.

For the model depicted in Figure 5a, Figure 6a shows the normalized (with respect to the maximum) fluid 
pressure on a slice of the model perpendicular to the fracture, as a result of the same shear test at 310E   Hz. 
The fluid pressure gradients observed in the background trigger the FPD responsible for the attenuation in 
the background (dashed red line) observed in Figure 5a. Likewise, Figure 6b shows the normalized fluid 
pressure inside the real fracture whose gradient gives rise to the FPD responsible for the attenuation inside 
the fracture (dashed blue line) shown in Figure 5a.

4.  Squirt-Type Flow in a Real Fracture
Mild curvature of real fractures allows for a heterogeneous compression of the fracture and thus the gen-
eration of pressure gradients responsible for a squirt-type flow inside the fracture, in addition to the typical 
FPD between fractures and embedding background. Lissa et  al.  (2019) have shown that the seismic re-
sponse of horizontal fractures with rough walls can be accurately reproduced by an ETLM having equiva-
lent properties for all wave modes and incident angles. However, the middle plane of their fracture models 
were horizontal (i.e., not curved). Based on that, we conclude that the mild curvature of the fractures is 
responsible for the additional FPD effects observed in this contribution.

This squirt-type flow produces a contribution to the attenuation which is measurable based on current in-
strumental accuracy and that, as far as we know, has not been observed or quantified before. The squirt-type 

Figure 6.  Normalized pore fluid pressure for a S wave at normal incidence for the permeabilities corresponding to Figure 5a on a slice perpendicular to the 
fracture (a) and inside the fracture (b) at 310E   Hz.
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flow or FPD taking place inside the fracture is mainly parallel to the fracture walls, which implies that it is 
sensitive to the fracture permeability. Such squirt-type flow inside fractures has been described by Rubino 
et al. (2013) and Quintal et al. (2014) in the case of seismic waves propagating across fractures that are hy-
draulically interconnected. In that case, FPD is also parallel to the fracture walls (Quintal et al., 2019) and 
controlled by the fracture permeability. Rubino et al. (2017) also found that associated effects can be more 
prominent for S waves than for P waves. In both scenarios, this is related to the different deformation caused 
by each wave mode. While the P wave either compresses or dilates during half wave cycle, the S wave induc-
es both compression or extension depending on the orientation of the fractures in the model. As a result, the 
fluid pressure gradients induced by S waves can be much greater than those generated by P waves, and thus, 
attenuation. In the case of a single fracture, this relates to the curvature of the fracture while for multiple 
intersecting fractures it is often associated with the orientation of each individual fracture.

Nakagawa et al. (2013) performed laboratory experiments of oscillatory axial and shear (torsion) stresses 
applied normal to a nearly horizontal real fracture in a water-saturated Berea sandstone sample. FPD-re-
lated effects between the fracture and the background could be well explained using an ETLM for the com-
pressional test. However, significant attenuation was also observed for the shear test, which could not be 
explained using an ETLM. According to our results, the attenuation for a normal-incident S wave due to 
FPD taking place not only in the background but also due to a squirt-type flow inside the fracture can be 
considered as a possible explanation for their observation.

In this study, we adopted a poroelastic representation for a fracture using Biot's equations as previously 
done in others works (Brajanovski et al., 2005; Lissa et al., 2019; Masson & Pride, 2007; Quintal et al., 2011; 
Rubino et al., 2013). However, different modeling schemes, such as the linearized Navier-Stokes equations 
(e.g., Quintal et al., 2019) can be used. While the existence of the squirt flow inside the fracture does not 
depend on the chosen modeling approach, its magnitude and frequency behavior can be highly affected 
by the way fractures are conceptualized. This is partly due to the different permeability distribution inside 
the fracture for each modeling approach. Implementation and comparison of different modeling schemes 
can be part of future work. In addition, we employed a constant and high permeability value for the open 
regions of the fracture, which is not linked to the aperture distribution. However, we showed that, by chang-
ing this permeability value, the frequency range of the attenuation occurring inside the fractures is shifted 
proportionally while the magnitude and frequency dependence of the attenuation remains unchanged.

5.  Conclusions
We numerically calculated the effective seismic attenuation due to FPD associated with the presence of 
mesoscopic fractures on models derived from microcomputed tomography images of a fractured sample 
of Berea sandstone. We showed that an ETLM can fairly approximate the P wave velocity dispersion and 
attenuation for the models based on real fractures at all incidence angles.

We found that a mild curvature of a fracture causes a normally incident S wave to be significantly attenu-
ated, which is in disagreement with the analytical solution for an ETLM. We showed that the FPD between 
the fracture and the background and, also, inside the single fracture and approximately parallel to its walls, 
are responsible for these effects. These effects are particularly relevant and observable when analyzing the 
anisotropy of S wave attenuation. Our results not only help to improve the understanding of the seismic 
response of real fractures but also points to the possible perspective of inferring other practically important 
parameters of fractured media, such as fracture permeability, from S wave attenuation.

Appendix A:  Boundary Conditions
To calculate the effective P and S wave moduli of the considered models, we apply oscillatory harmonic test 
using the following boundary conditions. We define the domain of the model volume as    x y zE L L L  
and its boundary             1 2 3 4L L L L T BE  where

    1 [( , , ) : 0],L x y z x� (A1)

    2 [( , , ) : ],L
xx y z x L� (A2)



Journal of Geophysical Research: Solid Earth

LISSA ET AL.

10.1029/2021JB022233

12 of 14

    3 [( , , ) : 0],L x y z y� (A3)

    4 [( , , ) : ],L
yx y z y L� (A4)

    [( , , ) : ],T
zx y z z L� (A5)

    [( , , ) : 0].B x y z z� (A6)

We define n, iE t  and jE t  as the unit normal and unit tangents vectors, respectively, to each boundary of E  , 
with i, j = x, y, z states for the orientation of the unit tangents and iE j. In the case of the compressional test 
parallel to the z-direction, we set the boundary conditions as

   0, on ,Tuu n� (A7)

          1 2 3 40, on ,L L L L Bu n� (A8)

       0, 0, on ,x yn t n tσ σ� (A9)

   0, on ,p n� (A10)

In the case of a shear test applied in the xz-plane we set the boundary conditions as

          0, 0, 0, on ,T
x y zuu t n t n tσ σ� (A11)

              1 2 3 40, 0, 0, on ,L L L L
x y zn t u t u tσ� (A12)

 , on ,Bu 0� (A13)

   0, on .p n� (A14)

Data Availability Statement
These data are available online (at http://doi.org/10.5281/zenodo.4683013).
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