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A B S T R A C T   

Purpose: It is known from histology studies that lung vessels are affected in viral pneumonia. However, their 
diagnostic potential as a chest CT imaging parameter has only rarely been exploited. The purpose of this study is 
to develop a robust method for automated lung vessel segmentation and morphology analysis and apply it to a 
large chest CT dataset. 
Methods: In total, 509 non-enhanced chest CTs (NECTs) and 563 CT pulmonary angiograms (CTPAs) were 
included. Sub-groups were patients with healthy lungs (group_NORM, n = 634) and those RT-PCR-positive for 
Influenza A/B (group_INF, n = 159) and SARS-CoV-2 (group_COV, n = 279). A lung vessel segmentation algo-
rithm (LVSA) based on traditional image processing was developed, validated with a point-of-interest approach, 
and applied to a large clinical dataset. Total blood vessel volume in lung (TBV) and the blood vessel volume 
percentage (BV%) of three blood vessel size types were calculated and compared between groups: small (BV5%, 
cross-sectional area < 5 mm2), medium (BV5-10%, 5–10 mm2) and large (BV10%, >10 mm2). 
Results: Sensitivity of the LVSA was 84.6% (95 %CI: 73.9–95.3) for NECTs and 92.8% (95 %CI: 90.8–94.7) for 
CTPAs. In viral pneumonia, besides an increased TBV, the main finding was a significantly decreased BV5% in 
group_COV (n = 14%) and group_INF (n = 15%) compared to group_NORM (n = 18%) [p < 0.001]. At the same 
time, BV10% was increased (group_COV n = 15% and group_INF n = 14% vs. group_NORM n = 11%; p < 0.001). 
Conclusion: In COVID-19 and Influenza, the blood vessel volume is redistributed from small to large vessels in the 
lung. Automated LSVA allows researchers and clinicians to derive imaging parameters for large amounts of CTs. 
This can enhance the understanding of vascular changes, particularly in infectious lung diseases.   

Abbreviations: BV, Blood Vessel Volume (ml); BV5, Blood Vessel Volume of vessels with cross-sectional area <5 mm2; BV5-10, Blood Vessel Volume of vessels with 
cross-sectional area between 5 and 10 mm2; BV10, Blood Vessel Volume of vessels with cross-sectional area >10 mm2; BV%, Blood Vessel Volume percentage (%) (=
the ratio BV/TBV); BV5%, Ratio BV5/TBV, which is the Blood Vessel Volume percentage of vessels with a cross-sectional area <5 mm2; BV5-10%, Ratio BV5-10/TBV, 
which is the Blood Vessel Volume percentage of vessels with a cross-sectional area between 5 and 10 mm2; BV10%, Ratio BV5-10/TBV, which is the Blood Vessel 
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1. Introduction 

Computed tomography (CT) is an important diagnostic tool for viral 
pneumonia, e.g. in COVID-19 patients. Beyond qualitative description of 
findings on CT, algorithms can be used to derive quantitative parameters 
important for the improvement of patient care [1]. Regarding pneu-
monia, algorithms targeting CT imaging features of lung parenchyma 
involvement, such as ground glass opacities and consolidations, have 
been extensively studied [2-5]. 

In contrast, only few imaging studies have explored the role of the 
pulmonary vasculature in viral pneumonia. From the few studies 
focusing on algorithm development for segmentation of pulmonary 
vasculature in COVID-19, it appears that the blood vessel volume is 
redistributed from smaller to larger vessels [6]. Moreover, blood vessel 
volume redistribution was used as an image parameter to predict clinical 
outcome [7]. This phenomenon has only rarely been addressed in 
radiology, despite full coverage of lung vessels in every chest CT scan 
and growing evidence for vascular involvement in COVID-19 from other 
fields of research: among others, microcirculation disturbances [8], 
coagulation activation [9], and hypoxic pulmonary vasoconstriction 
[10] were observed. 

This leads us to the hypothesis that vascular imaging features may 
play an important role in viral pneumonia diagnosis. To further explore 
this hypothesis, methods for automated and batch-wise lung vessel 
analysis are required. 

The three main goals of this study are therefore: (1) To develop and 
test an algorithm for automated segmentation of lung vessels. (2) To 
apply this algorithm to a large chest CT dataset of patients with COVID- 
19, Influenza, and controls (patients with healthy lungs). (3) To derive 
vascular imaging parameters and assess differences between the three 
patient groups. 

2. Methods 

This retrospective, single-center study has been conducted in line 
with the regulations of the local ethics committee (Ethikkommission 
Nordwest und Zentralschweiz, project IDs: Req-2020–00595 and 
2020–00566). 

2.1. Patient population 

Three patient groups (SARS-CoV-2, Influenza A/B and control group) 
were compiled as follows: 

2.2. Group_COV (SARS-CoV-2) and Group_INF (Influenza A/B) 

All patients with a RT-PCR test positive for SARS-CoV-2 [between 
February 2020 and November 2020 (n = 3443)] and Influenza A or B 
[January 2014 - July 2020 (n = 3544)] were identified using the labo-
ratory information system of our institution. The laboratory information 
system was checked to ensure that none of the patients was simulta-
neously positive for both COVID-19 and Influenza. 

2.3. Group_NORM (control group) 

Using an in-house Picture Archiving and Communication System 
(PACS) search tool (https://pacs-ris-crawler.github.io/), we identified 
all chest CT scans (NECT and CTPA) with unremarkable lungs acquired 
between January 2014 and July 2020. Inclusion criterion was a written 
radiology report describing an unremarkable lung parenchyma and 
central airways [search terms: “No focus of thoracic infection” AND 
“Open central airways” AND “No pleural effusion” AND “No pneumo-
thorax” AND “No breathing artifacts”; reports at our institution are 
structured]. Finally, all reports were additionally reviewed by a radi-
ology resident in the first postgraduate year (J.P.) to confirm the cate-
gorization. Subsequently, the laboratory information system was 

checked to ensure that none of the patients was positive for COVID-19 or 
Influenza. Fig. 1a and 1b provide a detailed study cohort flowchart. 

2.4. Inclusion and exclusion criteria 

In group_COV and group_INF, all NECTs and CTPAs performed ten 
days before or after the positive RT-PCR test were identified in the PACS. 
The rationale behind the period of ten days is that the disease and 
associated chest CT findings mainly evolve within this time [11]. 

For all groups, studies with description of motion artifacts or severe 
lung abnormalities [malignancy, lobectomy, atelectasis, and pneumo-
thorax] in the written radiology report were excluded. 

2.5. Clinical information 

For all patients, information on comorbidities was extracted from the 
clinical data system. Information on comorbidities was missing for 61 
patients (5.6%). Furthermore, to quantify each patient’s health state, a 
disease severity score (from 1 to 6) has been calculated according to a 
modified World Health Organization disease severity scale (WHO score) 
[12]. This scale is based on the patient’s oxygen demand and ventilation 
(Appendix A provides details). 

2.6. CT acquisition parameters 

CTs were acquired in supine position and full inspiration using four 
CT scanners (SOMATOM Definition Edge [128 slices] (n = 167), 
SOMATOM Definition AS + [128 slices] (n = 671), SOMATOM Defini-
tion Flash [2x128 slices] (n = 171), SOMATOM Force [2x192 slices] (n 
= 63). All scanners from Siemens Healthineers, Erlangen, Germany. 

Acquisition parameters were as follows: mean peak tube voltage 
103.0 kVp (SD: 12.9), mean tube current time product 140.4 mAs (SD: 
94.0), mean computed tomography dose index (CTDI) 3.7 mGy (SD: 
2.0), mean dose length product (DLP) 127.0 mGy*cm (SD: 68.7) and 
mean pitch 1.6 (SD: 0.6). Concerning CTPAs, Ultravist 370 (n = 514; 
Bayer HealthCare, Leverkusen, Germany), Iopamiro 370 (n = 46; Bracco 
Imaging, Milano, Italy) and Xenetix 350 (n = 3; Guebert, Villepinte, 
France) were used as contrast agents. The mean contrast media volume 
was 65.0 ml (SD: 12.3) and the mean flow rate 3.9 ml/s (SD: 0.3). 

2.7. Lung segmentation and opacity quantification 

The software NORA (http://www.nora-imaging.com) was used to 
organize, visualize, and annotate data. The lung masks were predicted 
by an established lung segmentation algorithm based on a Retina-U-Net 
(DICE score: 0.97) [13]. Knowing that lung vessels become narrower 
towards the periphery and to assess an influence of vessel diameter on 
segmentation accuracy, the lung segmentation mask was divided into 
three isovolumetric zones: central, middle, and peripheral (Fig. 2). The 
zones were defined both in the left and the right lung separately, which 
resulted in 6 lung zones per CT. 

Furthermore, lung opacities (ground glass opacities and consolida-
tions) were quantified using an established threshold of − 600 to 
0 Hounsfield units (HU) [5]. Relative high attenuation area between 
− 600 and 0 HU (rHAA-600/0) is the ratio of opacity over total lung 
volume (TLV) and is expressed as a percentage. 

2.8. Lung vessel segmentation 

A fully automated lung vessel segmentation algorithm (LVSA) newly 
developed for this project and based on classical image processing al-
gorithms was implemented in Python [14-18]. The vessel segmentation 
steps were limited to the area defined by the lung mask resulting from 
the previous segmentation step. In short, the contrast of the original 
dataset is increased by a filter. Local intensity maxima potentially 
correspond to voxels representing blood vessels. Considering other 

J. Poletti et al.                                                                                                                                                                                                                                   

https://pacs-ris-crawler.github.io/
http://www.nora-imaging.com/


European Journal of Radiology 150 (2022) 110259

3

properties such as morphology (tube-like structure) and size of con-
nected regions, the voxels most likely to correspond to blood vessels are 
identified. Via region growing, the result is the complete segmentation 
of the lung vessel tree, consisting of the vessel walls and the blood 
volume contained in the vessels (Fig. 3). 

2.9. Internal and external LVSA validation 

Internal LVSA validation was performed on 20 CTs, 10 NECTs and 10 
CTPAs. The 20 exams were randomly selected to represent the complete 
pulmonary opacity spectrum (rHAA-600/0 range: 3.2%-70.0%; mean 
[NECT] = 23.8%; mean[CTPA] = 20.1%). To test LVSA performance, we 
adopted a method proposed by the VESSEL12 challenge [19]: A total of 
160 points-of-interest (POIs) per lung were defined to mark two target 
structures: lung vessels (n = 60) and pulmonary parenchyma (n = 100). 
Regarding lung vessels, POIs were defined as follows: First, to avoid 
selection bias, 10 vessel POIs (arteries and veins) were randomly 
distributed in each zone. Then, radiology residents (J.P., PGY-1, R.S., 
PGY-4 and T.W., PGY-5) moved each POI to the artery/vein closest to 
the initial POI in axial orientation. In a second step, all POIs were 
individually checked by a board-certified radiologist with 11 years of 
experience in cardiothoracic imaging (A.W.S.) and modified, if needed. 

The 100 pulmonary parenchymal POIs per scan were also randomly 
distributed and moved only if they were initially placed over a vessel or 
another non-parenchymal structure. The number of vessel and paren-
chymal POIs was equally distributed over the 6 lung zones. The pro-
portion of POIs included in the vessel segmentation masks was 
calculated in total as well as for each scan and each region separately. 

External validation was performed with 10 studies (5 NECT, 5 CTPA) 

from two independent datasets. The five CTPAs datasets are part of the 
COVID-CAVA study [20] and the five NECTs were provided by a 
regional hospital. POI analysis was conducted using the same method-
ology as during internal validation. 

In addition, lung vessel segmentation quality of all cases was visually 
assessed by a supervised medical doctor (J.P.). If the segmentation 
quality of a case was rated unsatisfactory, it was discussed with a board- 
certified radiologist (A.W.S.) and potentially excluded in consensus 
(details and exemplary images in result section). 

2.10. Lung vessel analysis 

Starting points were the LVSA segmentation masks. Assuming a cy-
lindrical vessel shape, the cross-sectional area corresponds to a specific 
number of voxels in each vessel segment. Each vessel voxel was assigned 
to one of the vessel size categories by counting the number of voxels in 
its neighborhood. 

Thereby, the following imaging parameters were derived: First, the 
total blood vessel volume in lung (TBV) defined as the blood vessel 
volume of the vessel tree in ml. Second, the blood vessel volumes (BV) 
contained in three blood vessel types: vessels with a cross-sectional area 
< 5 mm2 (BV5), between 5 and 10 mm2 (BV5-10) and > 10 mm2 (BV10). 
Third, the ratio of BV over TBV, labelled as blood vessel volume per-
centage (BV%), for each blood vessel type (BV5%, BV5-10% and 
BV10%). Each parameter has been calculated for the entire lung as well 
as for each lung zone separately. 

A sub-analysis including those patients positive for SARS-CoV-2 and 
Influenza with rHAA-600/0 values equal to group_NORM was 
performed. 

Fig. 1. Study selection flow chart (a) for group_COV and group_INF and (b) for group_NORM.  
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2.11. Statistical analysis 

Statistical analysis was performed using SPSS version 25.0 (SPSS 
Inc., Chicago, IL). P-values of ≤ 0.05 were considered statistically sig-
nificant. To analyze group differences of continuous, normally distrib-
uted variables, T-Test [two groups] and one-way analysis-of-variance 
(ANOVA with Tukey-post-hoc test; three or more groups) were used. For 
comparison of categorical variables, Chi-square test was used. As part of 
an explorative analysis, the relationship between multiple patients’ 
characteristics (age, sex, TLV, comorbidities, rHAA-600/0, and WHO 
score) and the BV%-imaging parameters were investigated using non- 
parametric Spearman rank correlation analysis. The correlation co-
efficients were classified as weak (0.010–0.290), moderate 
(0.300–0.390), strong (0.400–0.690) and very strong (>0.700). Due to 
collinearity between many of the variables we deliberately refrained 
from a regression model analysis. To assess normal distribution, 
Shapiro-Wilk test, histograms, and Q-Q plots were used. 

3. Results 

3.1. Study cohort characteristics 

Of 1333 initially identified studies, 136 were excluded following the 
exclusion criteria. LVSA processing failed in 88 cases and 37 cases were 
excluded due to unsatisfactory vessel segmentation (Fig. 4). Pulmonary 
embolism was present in seven CTPAs for which the LVSA quality con-
trol did not find any vessel segmentation errors. A total of 1072 studies 
were included in the final analysis: n = 279 in group_COV (n = 190 

NECT; n = 89 CTPA), n = 159 in group_INF (n = 71 NECT; n = 88 CTPA) 
and n = 634 in group_NORM (n = 248 NECT; n = 386 CTPA) (details: 
Fig. 1a and 1b). 

Overall, viral infected patients were older (p ≤ 0.001) and more 
likely to suffer from comorbidities such as hypertension (p ≤ 0.001) (see 
Table 1). Group_COV showed an increased obesity rate (14.7%) when 
compared to group_INF (5.7%; p = 0.007) and group_NORM (5.4%; p ≤
0.001). The rHAA-600/0 rates (p ≤ 0.001) and the WHO scores (p ≤
0.001) were higher in viral infected patients and TLV was significantly 
decreased (4245.0 ml; p ≤ 0.001) in group_COV when compared to 
group_NORM (4638.9 ml). 

3.2. Lung vessel segmentation algorithm evaluation 

3.2.1. Internal validation 
The overall sensitivity of the LVSA was 88.7% (95 %CI: 83.4–94.0), 

meaning 88.7% of POIs were included in the lung vessel segmentation 
mask. Of note, the performance was significantly better in CTPAs 
[92.8% (95 %CI: 90.8–94.7)] compared to NECTs [84.6% (95 %CI: 
73.9–95.3)] (p = 0.008). A similar observation was made for the 
parenchymal POIs, in which 99.9% (95 %CI: 99.6–100; CTPA) and 
97.4% (95 %CI: 94.4–100; NECT) did (correctly) not intersect with lung 
vessel segmentation mask (p = 0.053). The LVSA performance was 
significantly worse in the central zone compared to middle and pe-
ripheral zones (all: p ≤ 0.05) (Table 2). 

In the 20 patients used for internal validation, the mean rHAA-600/ 
0 was 20.1% in CTPA and 23.6% in NECT. Correlation between the LVSA 
performance and the rHAA-600/0 rate in CTPAs (Rs = -0.333; p =

Fig. 2. Lung sub-division in three different zones signified as color overlay in a NECT of a 19-year-old female patient [group_NORM] in (a) axial, (b) coronal and (c) 
sagittal orientation. Number 1 labels the peripheral zone, number 2 the middle zone and number 3 the central zone. 
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Fig. 3. Illustration of LVSA results on a CTPA scan of a 19-year-old patient from group_NORM: (a) Original CT scan in axial orientation, (b) CT scan with the lung 
vessel segmentation mask produced by the LVSA as green overlay. (c) and (d) are 3D representations of the lung vessel segmentation. 

Fig. 4. Images illustrating the LVSA’ s performance: 
(a) NECT from group_COV and (b) CTPA from 
group_COV showing two typical cases of successful 
lung vessel segmentation. Of note, even in case (b) 
with substantial areas of high opacity, the algorithm 
performance is good. (c) CTPA of a patient from 
group_NORM with relevant parts of the central lung 
vessels not segmented. (d) CTPA of a COVID-19 pa-
tient from group_COV showing a case of significant 
vessel oversegmentation due to pulmonary opacities.   

J. Poletti et al.                                                                                                                                                                                                                                   



European Journal of Radiology 150 (2022) 110259

6

0.347) and NECTs (Rs = -0.620; p = 0.056) were not statistically 
significant. 

3.2.2. External validation 
The external validation showed LVSA sensitivity for CTPA of 91.9% 

(95 %CI: 88.9–95.0) and NECT of 92.9% (95 %CI: 91.2–94.7). The mean 
rHAA-600/0 of 8% in CTPA and 9% in NECT was statistically signifi-
cantly lower compared to the internal validation dataset (in both cases: 
p < 0.001). As during internal validation, lower vessel detection rates 
were found in the central zone compared to middle and peripheral zones 
(CTPA: 88.0% [central], 96.0% [middle], and 92.0%[peripheral]; 
NECT: 90.0%, 93.0%, and 96.0%). However, differences between zones 
were not statistically significant (p-values ranging from p = 0.235 to p =
0.646). 

3.3. Lung vessel imaging parameter analysis 

3.3.1. Total blood vessel volume 
For both NECTs and CTPAs, TBV of the whole lung was higher in 

group_COV (320.4 ml and 297.9 ml) and group_INF (312.7 ml and 279.4 
ml) when compared to group_NORM (285.4 ml and 232.3 ml) with 
statistically significant differences (p ≤ 0.001). However, an exception 
was noted between NECT group_INF and group_NORM, for which the 
difference was not statistically significant (p = 0.108) (details: Table 3 
and Appendix B). 

3.3.2. Blood vessel volume analysis according to different vessel sizes 
Compared to group_NORM [BV5%: 18.4% (NECT) and 17.8% 

(CTPA)], BV5% was significantly lower in group_COV (NECT: 14.7%; 
CTPA: 14.0%) and group_INF (BV5%: 15.7% and 15.4%). On the con-
trary, BV10% was significantly higher in group_COV (15.1% and 16.5%) 
and group_INF (BV10%: 14.1% and 14.7%) compared to group_NORM 
(BV10%: 10.8% and 11.9%) (Fig. 5). This was true for all comparisons in 
the peripheral and middle zones (p < 0.001). 

In the periphery, the BV5-10% between group_INF (NECT: 75.9%; 
CTPA: 74.6%) and group_NORM (75.5%; 74.5%) did not differ signifi-
cantly. However, BV5-10% in group_COV (76.6%; 75.5%) was statisti-
cally significantly increased compared to group_NORM (p ≤ 0.001). 

Table 1 
Patient characteristics including comorbidities.   

Entire cohort 
(NECT and CTPA) 

NECT CTPA 

Group COV INF NORM COV INF NORM COV INF NORM 

Total 279 159 634 190 71 248 89 88 386 
Mean Age 

(SD) 
59.8 

(17.1) 
63.3 

(16.6) 
50.6a 

(18.6) 
59.6 

(17.6) 
60.4 

(15.8) 
50.1a 

(16.8) 
60.4 

(15.9) 
65.6 

(16.9) 
50.9a 

(19.7) 
Female 

(%) 
97 

(34.8) 
70 

(44.0) 
360 

(56.8) 
67 

(35.2) 
23 

(32.3) 
105 

(42.3) 
30b 

(33.7) 
47b 

(53.4) 
255b 

(66) 
Male 

(%) 
182 

(65.2) 
89 

(56.0) 
274 

(43.2) 
123 

(64.7) 
48 

(67.6) 
143 

(57.6) 
59b 

(66.2) 
41b 

(46.5) 
131b 

(33.9) 
Mean TLV in ml 

(SD) 
4245.0b 

(1309.7) 
4481.7 

(1381.6) 
4638.9b 

(1255.7) 
4400.7b 

(1345.2) 
4781.9 

(1513.10) 
5075.1b 

(1244.9) 
3912.5b 

(1169.5) 
4239.4 

(1221.4) 
4358.8b 

(1181.9) 
Mean rHAA-600/0 

(SD) 
17.3b 

(12.2) 
11.8b 

(8.0) 
7.42b 

(3.9) 
14.9b 

(10.7) 
10.0b 

(6.8) 
5.4b 

(1.5) 
22.8b 

(13.4) 
13.3b 

(8.6) 
8.7b 

(4.4) 
Mean WHO score 

(SD) 
2.9b 

(1.3) 
2.6b 

(1.2) 
2.0b 

(0.5) 
2.9b 

(1.3) 
2.5b 

(1.1) 
2.1b 

(0.4) 
3.0 

(1.2) 
2.7 

(1.2) 
2.0a 

(0.5) 
Comorbidities 

Asthma 
(%) 

25 
(9.0) 

11 
(6.9) 

35 
(5.5) 

20b 

(10.5) 
2 

(2.8) 
9b 

(3.6) 
5 

(5.6) 
9 

(10.2) 
26 

(6.7) 
COPD 

(%) 
6 

(2.1) 
22a 

(13.8) 
11 

(1.7) 
3b 

(1.5) 
6b 

(8.4) 
2 

(0.8) 
3b 

(3.3) 
16b 

(18.1) 
9b 

(2.3) 
Diabetes 

(%) 
62b 

(22.2) 
35 

(22.0) 
42b 

(6.6) 
43 

(22.6) 
13 

(18.3) 
14a 

(5.6) 
19 

(21.3) 
22 

(25) 
28a 

(7.2) 
Hypertension 

(%) 
122 

(43.7) 
63 

(39.6) 
132a 

(20.8) 
82 

(42.7) 
24 

(33.8) 
39a 

(15.7) 
40 

(44.9) 
39 

(44.3) 
93a 

(24) 
Cardiopathy* 

(%) 
57 

(20.4) 
40 

(25.1) 
84a 

(13.2) 
39 

(20.5) 
16 

(22.5) 
29a 

(11.6) 
18 

(20.2) 
24b 

(27.2) 
55b 

(14.2) 
Obesity 

(%) 
41a 

(14.7) 
9 

(5.7) 
34 

(5.4) 
30a 

(15.7) 
2 

(2.8) 
9 

(3.6) 
11 

(12.3) 
7 

(7.9) 
25 

(6.4) 

*“Cardiopathy” includes patients with history of coronary diseases, cardiac insufficiency, aortic stenosis, myocardial infarction, and heart surgery. 
a = results is statistically significantly different from the two other groups. b = results is statistically significantly different from the other groups marked with b (P- 
value of ANOVA/Chi-square Test < 0.05). SD = standard deviation. 

Table 2 
LVSA evaluation results on the internal validation dataset.   

NECT CTPA 

Vessel POIs detected by the algorithm in the entire lung 
(%, SD) 

508/600 
(84.6, 14.1) 

557/600 
(92.8, 2.5) 

Peripheral zone 
(%, SD) 

180/200 
(90.0, 10.7) 

194/200 
(97.0, 3.3) 

Middle zone 
(%, SD) 

178/200 
(89.0, 15.1) 

197/200 
(98.5, 2.2) 

Central zone 
(%, SD) 

150/200 
(75.0, 2.1) 

166/200 
(83.0, 7) 

Parenchyma POIs not part of lung vessel mask in the entire lung 
(%, SD) 

975/1000 
(97.5, 3.9) 

999/1000 
(99.9, 0.3) 

POIs = points of interest. SD = standard deviation. 
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A sub-analysis focusing on viral infected patients (group_COV and 
group_INF) with relatively low parenchymatous involvement (within 
the rHAA-600/0 range of group_NORM), has shown the same features, 
namely a decreased BV5% while TBV and BV10% were increased. A 
slightly increased peripheral BV5-10% in group_COV was observed 
(Appendix C). 

3.3.3. Correlation analyses 
The correlation between age and BV%- imaging parameters was 

weak: BV5% (Rs = -0.125; p ≤ 0.001), BV5-10% (Rs = 0.094; p = 0.002), 
and BV10% (Rs = 0.021; p ≤ 0.001). The same was true concerning the 
sex and comorbidities (Table 4). 

RHAA-600/0 and BV5% correlated strongly negatively (Rs = -0.582; 
p ≤ 0.001), rHAA-600/0 and BV10% strongly positively (Rs = 0.603; p 
≤ 0.001) in the entire cohort. The strongest correlations were found in 
group_COV for both BV5% and BV10% (Rs = -0.702 and 0.718; p ≤
0.001). In both group_INF and group_NORM, moderate to weak corre-
lations were found. 

The WHO score was negatively correlated with BV5% (Rs = -0.392; p 
≤ 0.001) and positively correlated with BV10% (Rs = 0.337; p ≤ 0.001) 
in the entire cohort. The strongest correlation between WHO score and 
BV5% was found in group_COV (Rs = -0.452; p ≤ 0.001). Moreover, the 
strongest correlation between rHAA-600/0 and the WHO score was once 
again found in group_COV (Rs = 0.548; p ≤ 0.001) (Table 4). 

4. Discussion 

This study confirms that the pulmonary vasculature is an important 

target structure for the development of imaging parameters in respira-
tory viral disease. It covered the development and application of a 
robust algorithm for lung vessel segmentation in chest CT which showed 
good segmentation performance. It revealed a decrease in blood vessel 
volume of small vessels (BV5%) and an increase in blood vessel volume 
of larger vessels (BV10%) as well as an increased TBV in patients with 
viral disease, reflecting blood vessel volume redistribution. 

The lung is among the organs most affected by viral diseases such as 
Influenza A/B and SARS-CoV-2 [21]. There is rising evidence from 
histology studies that profound knowledge of pulmonary vascular 
pathophysiology is crucial to understand the complex processes in res-
piratory infectious diseases [22]. However, ex-vivo methods signifi-
cantly alter lung physiology. Therefore, and because diagnostic methods 
for patients are required, there is demand for non-invasive imaging- 
based in-vivo methods [23]. 

Recently, Lins et al. [6] applied an automated blood vessel seg-
mentation algorithm that performs an eigenvalue analysis of the Hessian 
matrix to enhance and identify tubular structures. Scans from COVID-19 
patients (n = 103) showed a significant reduction of BV5% (p ≤ 0.001) 
and significant increases of BV10%. This is in line with our observations. 
The absolute values differed between their study and ours (e.g. BV5 
NORM: 30 ml vs. 18 ml; BV5 COVID-19: 25 ml vs. 14 ml, respectively). 
These differences could be caused by the differences in the algorithmic 
approaches. Nevertheless, the same basic observations were made, 
namely, a drastic decrease of BV5% and an increase of BV10% in COVID- 
19 compared to normal patients. The zone-specific approach (center, 
middle, periphery) adds more detail to the analysis: a significant drop of 
BV5% in all zones was shown for both COVID-19 and Influenza. 

Table 3 
Imaging parameter results for group_COV, group_INF and group_NORM.  

Group COV INF NORM 

Entire Lung BV5 BV5-10 BV10 BV5 BV5-10 BV10 BV5 BV5-10 BV10 

BV% NECT 14.7% a 70.2% 15.1% a 15.7% a 70.1% 14.2% a 18.4% 70.8% 10.8% 
CTPA 14.0% b 69.5% a 16.5% b 15.4% b 70.0% 14.7% b 17.8% 70.3% 11.9% 

BV 
(ml) 

NECT 46.3 224.5 49.5 48.8 219.3 44.6 52.1 202.4 30.9 
CTPA 41.9 206.6 50.3 41.5 195.3 42.6 41.2 163.1 28.0 

TBV 
(ml) 

NECT 320.4 a 312.7 285.4 
CTPA 297.9 a 279.4 a 232.3  

Periphery BV5 BV5-10 BV10 BV5 BV5-10 BV10 BV5 BV5-10 BV10 

BV% NECT 17.9% a 76.6% a 5.5% a 19.2% a 75.9% 4.9% a 22.7% 75.5% 1.8% 
CTPA 17.0% b 75.5% a 7.5% b 19.4% b 74.6% 6.0% b 23.2% 74.5% 2.2% 

BV 
(ml) 

NECT 25.6 115.3 9.4 26.2 106.6 7.4 27.7 94.7 2.4 
CTPA 23.6 109.8 11.5 23.4 97.6 9.0 22.2 74.4 2.5 

TBV 
(ml) 

NECT 150.3 a 140.2 124.9 
CTPA 145.0 a 130.0 a 99.0  

Middle BV5 BV5-10 BV10 BV5 BV5-10 BV10 BV5 BV5-10 BV10 

BV% NECT 12.1% a 67.0% a 20.9% b 13.1% a 68.6% a 18.3% b 15.5% 71.5% 13.1% 
CTPA 11.3% b 65.5 % b 23.5% b 12.5% b 68.3% b 19.2% b 14.7% 71.3% 14.0% 

BV 
(ml) 

NECT 14.7 82.3 27.0 15.8 82.5 22.0 16.4 75.7 14.1 
CTPA 12.9 75.4 27.9 13.2 74.3 22.4 13.1 62.9 12.9 

TBV 
(ml) 

NECT 124.0 a 120.3 a 106.2 
CTPA 116.2 a 109.9 a 88.9  

Central BV5 BV5-10 BV10 BV5 BV5-10 BV10 BV5 BV5-10 BV10 

BV% NECT 12.3% a 58.4% 29.3% a 12.7% a 57.9% a 29.4% a 14.7% 58.5% 26.7% 
CTPA 12.1% a 57.8% 30.0% 12.2% a 59.8% b 28.0% 13.1% 57.9% 29.0% 

BV 
(ml) 

NECT 5.6 26.0 13.0 6.7 30.1 15.2 7.9 31.7 14.3 
CTPA 4.0 19.4 10.4 4.7 23.4 11.2 5.6 24.7 12.5 

TBV 
(ml) 

NECT 44.6 a 52.0 53.9 
CTPA 33.8 a 39.3 42.8 

Each vessel size category was compared to the same categories of the other groups (e.g. BV5%_COV vs. BV5%_INF vs. BV5%_NORM). Comparisons were made for BV% 
and TBV. The p-values are found in appendix B. 
a = the difference in this metric compared to group_NORM is statistically significant (p < 0.05). b = the difference in this metric compared to the two other groups is 
statistically significant. Red numbers = the highest values in group_COV for BV% and TBV. Blue numbers = the lowest values in group_COV for BV% and TBV. 
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In our study, the observed vascular changes were often more pro-
nounced in COVID-19 than in Influenza. A possible explanation for this 
could be the difference in location of the viral receptor entry gates: the 
vascular endothelial cells in COVID-19 [24], the respiratory tract cells in 
influenza [25]. Variations in TBV and BV% were also observed in viral 
infected patients with rHAA-600/0 values comparable to group_NORM, 
suggesting that vascular involvement might be a distinct feature of viral 
infection. 

As the frequencies of some comorbidities relevant to the size of lung 
vessels such as COPD and cardiopathy [26,27] differed significantly 
between the three patient groups, the observed vessel size changes are 
likely partly explained by this fact. However, the correlations with the 
BV%-imaging parameters were weak, pointing towards the fact that the 
vascular changes were mostly the consequence of viral infection. The 
same observations were made for age, sex and TLV. 

We know from histology studies that the vascular alterations are 
related to inflammation and microcirculatory changes, which provide a 
likely explanation for the observed phenomenon [8]. BV%-imaging 
parameters and opacity have been described to be in close relationship 
in COVID-19 [28,29], a finding confirmed in this study: the opacity rate 
(rHAA-600/0) correlated positively with BV10% and negatively with 
BV5%. We also found a strong correlation between rHAA-600/0 and the 
WHO score [5]. Moreover, the strong negative correlation between the 
WHO score and BV5% in COVID-19 is in line with findings of Morris 
et al. [7], who suggested BV5% as a novel biomarker for predicting 
adverse outcomes in patients with COVID-19 seeking acute medical 
care. Therefore, a potential clinical use of the algorithm is the detection 
of early blood vessel changes to predict adverse clinical outcomes. To 
enable the swift exploration of other clinical use cases, the algorithm is 
implemented in a local clinic-near research platform accessible to ra-
diologists and researchers of our department. Furthermore, the algo-
rithm code is published on GitHub. 

The POI vessel performance analysis revealed a good performance of 
our algorithm. Despite a slightly better LVSA performance in CTPAs 
compared to NECTs, the same changes of blood vessel volume 

distribution were observed in both groups. Regarding the high-level 
architecture, the algorithms that participated in the VESSEL12 chal-
lenge differed significantly from ours and from each other [19]. An 
objective comparison is hampered by the fact that most algorithms are 
not publicly available. We believe that in times of a global pandemic, 
fast scientific exchange is only possible with an open-source approach 
and therefore we have published our algorithm on GitHub (https://gith 
ub.com/fsc-mib/travel). 

On the internal validation dataset, the LVSA performed well in 
NECTs (84.6%), but even better in CTPAs (92.8%). This can be explained 
by the improved vessel-parenchyma contrast inherent to CTPAs. The 
external validation yielded a similar result for CTPAs (91.9%), but a 
markedly improved performance on NECTs (92.9%). Because the mean 
rHAA-600/0 was much lower in the external validation dataset 
compared to the internal validation dataset, this is plausible: The higher 
amount of parenchymal opacities in the internal dataset decreases the 
performance on NECTs, but not on CTPAs with their vascular contrast 
agent that has much higher HU-values than the opacities. 

This study has limitations. First, the LVSA does not distinguish be-
tween arteries and veins. It is possible that vessel types are affected 
differently by viral infections. However, also the aforementioned studies 
did not make this discrimination, facilitating comparability. Second, the 
LVSA performance in the central zone was not as accurate as in the other 
two zones, a fact that is important when applying the algorithm. A 
possible reason would be that the maximum size of the blood vessels 
within the lung mask depends on the exact shape of this mask. The blood 
vessels being larger in the central zone, with size varying greatly from 
patient to patient, the algorithm might have problems in completely 
detecting these very large blood vessels. Third, while the negative cor-
relation between rHAA-600/0 and vessel detection rate in NECTs was 
not statistically significant, it showed a strong statistical trend. There-
fore, the opacity rate in NECTs could affect the LVSA performance. 
Fourth, LVSA processing failed in 6.6% of all cases. The main reason for 
algorithm failure in these cases was the presence of small artifacts in the 
image acquisition mainly caused by metal implants or external devices, 

Fig. 5. 3D representation of the imaging parameter 
analysis illustrating the vessels distribution of BV5 
(yellow), BV5-10 (blue) and BV10 (red) in: a) 60-year- 
old patient from group_NORM with typical blood 
vessel volume distribution. b) 50-year-old patient 
from group_INF with an increased portion of large 
vessels (red) spreading toward the pripheral part of 
the lung. (c) a 62-year-old patient from group_COV 
showing increased vascular diameter and volume 
distribution in the base of the lungs with a pro-
nounced spread of larger vessels in the peripheral part 
when compared to (a) and (b).   
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which resulted in artificial density changes in the lung parenchyma. This 
in turn significantly reduced the performance of the algorithm which for 
the moment limits its clinical applicability. A potential counterstrategy 
would be to use an AI-based vessel segmentation algorithm to increase 
robustness. 

To conclude, this study developed, tested, and applied an automated 
method for a comprehensive assessment of lung vessels in NECT and 
CTPA. The most important findings are an increased TBV and an 
increased blood vessel volume of larger lung vessels (BV10) in patients 
RT-PCR positive for viral disease (COVID-19 and Influenza). This pro-
vides a quantitative confirmation of qualitative results from other fields 
of research. Automated lung vessel analysis is a valuable source of im-
aging parameters that deserves further investigation. 

5. Data availability 

The LVSA algorithm used is available on GitHub: https://github.com 
/fsc-mib/travel. 

A sample dataset of 20 NECTs / CTPAs coming from the study cohort 
is freely available on: https://www.rapmed.net/#/publications/ 
NECT-CTPA. Cases 1 to 10 belong to group_NORM; Cases 11, 12, 13 
and 16 belong to group_INF; Cases 14, 15, 17, 18, 19 and 20 belong to 
group_COV. 
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