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Centimeter-scale mapping of phototrophic biofilms in glacial 
forefields using visible band ratios and UAV imagery
Matteo Roncoroni a, Davide Mancini a, Tyler J. Kohler b, Floreana Miesena, 
Mattia Gianinia, Tom J. Battinb and Stuart N. Lane a

aInstitute of Earth Surface Dynamics, University of Lausanne, UNIL Mouline, Lausanne, Switzerland; bRiver 
Ecosystems Laboratory, Alpine and Polar Environmental Research Center Ecole Polytechnique Fédérale de 
Lausanne (EPFL), Lausanne, Switzerland

ABSTRACT
Microbial biofilms have received great attention in the last few dec
ades from both aquatic ecologists and biogeomorphologists. Most 
recently, this has focused on mapping biofilms to understand their 
spatial distributions and ecosystem services. Such studies often 
involve the use of satellite imagery, which typically provides large 
temporal and spatial scales and wide-range spectral information. 
Although satellites have the advantage of multi- and hyper-spectral 
sensors, images often have low spatial resolution that limits their use 
in river studies, where both rivers are narrower and stream processes 
occur at resolutions smaller than the footprint of satellite sensors. 
Spatial resolution is sensor quality dependent but also controlled by 
sensor elevation above the ground. Hence, high resolutions can be 
achieved either by using a very expensive sensor or by decreasing the 
distance between the target area and the sensor itself. To date, sensor 
technology has advanced to a point where multi- or even hyper- 
spectral cameras can be easily carried out by an Uncrewed Aerial 
Vehicle (UAV) at unprecedented spatial resolutions. Where such sen
sors have high spectral resolution, they are often prohibitively expen
sive, especially as their use in extreme environments such as glacial 
forefields risks UAV damage. In this paper, we test the performance of 
visible band ratios in mapping biofilms in an Alpine glacier forefield 
characterized by a well-developed and heterogeneous stream eco
system but using a low-cost UAV. The paper shows that low-cost and 
consumer grade UAVs can be easily deployed in such extreme envir
onments, delivering both quality RGB images for photogrammetric 
(SfM-MVS) processing and sufficient spectral information for benthic 
biofilm mapping at high temporal and spatial resolution.

HIGHLIGHTS
● RGB cameras are an alternative to expensive multi- or hyper- 

spectral cameras.
● Phototrophic biofilms can be detected and mapped through 

visible band ratios.
● High-temporal and high-resolution imagery can be collected by 

consumer-grade UAVs.
● Biofilm presence is restricted to stable and water-fed terraces in 

summer.
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1. Introduction

Biofilms are surface-attached microbial communities (Costerton et al., 1995) encapsulated 
in an extracellular polymeric matrix (Flemming and Wingender, 2010). The biofilm mode 
of life has been shown to be ubiquitous and highly adapted to primary colonization in 
aquatic environments (Flemming and Wuertz, 2019). In streams and rivers, benthic 
biofilms are involved in ecosystem processes (Battin et al., 2003, 2016) including nutrient 
uptake and recycling and carbon fluxes, and serve as the base of the food web. Biofilms 
may also stabilize fine sediments (Neumeier et al.,2006; Gerbersdorf et al., 2009; Fang et al. 
2014; Gerbersdorf and Wieprecht, 2015), even at large spatial scales (e.g. in estuaries; 
Brückner et al., 2021), thereby reducing vertical infiltration and supporting plant devel
opment in water-stressed environments (Miller and Lane, 2019; Roncoroni et al., 2019). 
Accordingly, several papers have argued that benthic biofilms should be included in the 
list of ecosystem engineers (sensu Jones et al., 1994) due to their capacity for modifying 
the physical state of biotic and/or abiotic materials for the benefit of other organisms 
(Gerbersdorf et al., 2008; Gerbersdorf et al.,2009; Roncoroni et al., 2019).

In recent years, research has mapped benthic biofilms to understand their spatial 
distributions (e.g. Méléder et al., 2003) and/or to determine their biomass (e.g. Combe 
et al., 2005). This is often possible due to the different spectral signatures of benthic 
biofilms, including photosynthetically active pigments (e.g. chlorophyll-a), compared to 
uncolonized substrates (Benyoucef et al., 2014; Salvatore et al., 2020). Such studies usually 
involve satellite or airborne imagery, which is excellent for large spatial scales and can 
provide a wide range of spectral information (e.g. by using multi- and hyper-spectral 
sensors).

For example, Méléder et al. (2003) mapped the presence of benthic biofilms for 
Bourgneuf Bay (France) between 1986 and 1998 with the Normalized Difference 
Vegetation Index (NDVI; Tucker, 1979) calculated from multi-spectral satellite imagery. 
The authors found that biofilms had a specific NDVI range that allows discrimination from 
the uncolonized substrata but also from macro-algae. In the same way, Benyoucef et al. 
(2014) investigated the inter-annual distribution of benthic biofilms in the Loire estuary 
(France) between 1991 and 2009 and found that the NDVI derived from multi-spectral 
imagery was efficient for mapping purposes at the large scale. Both studies reported that 
the spatial resolution of their imagery (typically 20 × 20 m) was too coarse to measure 
high-resolution spatial variations in biofilm distribution, which may extend down to the 
centimetre-scale (Méléder et al., 2003; Benyoucef et al., 2014). More recently, Salvatore 
et al. (2020) and Power et al. (2020) used high-resolution satellite-based NDVI to identify 
the inter-annual and intra-seasonal distribution of photosynthetically active biofilms in 
the Fryxell basin, Antarctica. Both studies confirmed the efficiency of the NDVI in mapping 
biofilms, and Power et al. (2020) went even further by estimating the microbial mat 
biomass of the Fryxell basin.

Combe et al. (2005) estimated biofilm biomass and mapped biofilm distribution within 
Bourgneuf Bay using airborne hyper-spectral imagery. These authors found that this 
produced more reliable results than the multi-spectral imagery used by Méléder et al. 
(2003), primarily due to the increased spectral resolution of the sensor. Kazemipour et al. 
(2012) and Launeau et al. (2018) used hyper-spectral data to discriminate the main 
assemblages of benthic biofilms (e.g. diatom, cyanobacteria, etc.), and their biomass, 
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from the hyper-spectral datasets of Bourgneuf Bay. In both studies, discrimination was 
possible due to prior knowledge of the spectral response of the key biofilm assemblages 
(Kazemipour et al., 2012; Launeau et al., 2018).

The use of airborne sensors in the previous studies, rather than satellites, produced 
high spatial resolution datasets ranging from 5 × 5 m in Combe et al. (2005) to 0.7x0.7 m in 
Launeau et al. (2018). However, such spatial resolutions were at the expense of temporal 
ones, and in Combe et al. (2005), Kazemipour et al. (2012) and Launeau et al. (2018), the 
study zones were imaged only once or twice. In the presence of sharp environmental 
gradients, a higher spatial resolution may be a critical requirement. Indeed, higher 
resolution datasets, although sometimes more limited in spatial extent, may reduce the 
occurrence of spectral mixing (see Bioucas-Dias et al., 2013) and improve mapping 
accuracy and precision.

In stream studies, there is the need for sub-metre resolution datasets to appreciate 
stream processes (e.g. Carbonneau et al., 2004; Marcus and Fonstad, 2008; Woodget et al., 
2015; Woodget and Austrums, 2017). Here, habitat gradients can occur over just a few 
centimetres to metres such as in actively braiding rivers. Here, the environments most 
conducive to biofilm development are commonly more stable secondary channels that 
may be only a few metres or less in width. Therein, centimetre-resolution data may be 
desirable and/or necessary because abiotic or biotic features can occur in or vary within 
very few centimetres of the channel.

Although spatial resolution is typically sensor-quality dependent, it is also controlled 
by the difference in elevation between the sensor and the ground (Westoby et al., 2012). 
Hence, high spatial resolution can be achieved either by using a very expensive sensor like 
those on board satellites/aircrafts or by decreasing the distance between the target area 
and the sensor itself. To date, sensor technology has advanced to a point where minia
turized multi- or even hyper-spectral surveys may be carried out by an uncrewed aerial 
vehicle (UAV), yielding wide-ranging spectral information at unprecedented spatial and 
temporal resolutions. For instance, (Harrison et al. 2020) used an UAV to collect hyper- 
spectral information for a 275-m-long reach of the American River in California (USA) and, 
amongst other techniques, used a biofilm-related chlorophyll-a map at 0.15 m resolution 
as a proxy to detect fall-run Chinook salmon (Oncorhynchus tshawytscha) spawning 
grounds. To our knowledge, benthic biofilm distribution and/or biomass has never 
been estimated from UAV-based multi-spectral imagery, and studies involving those 
sensors have focused upon algal bloom studies (see Kislik et al., 2018), trophic state 
monitoring (Su and Chou 2015), and aquatic vegetation mapping (Chabot et al., 2018; 
Song and Park, 2020; Taddia et al., 2020).

In this study, we assess the extent to which low-cost UAVs with integrated RGB cameras 
can be a cost-effective alternative to multi- or hyper-spectral devices in mapping benthic 
biofilm distributions in extreme environments such as glacial forefields where very high 
(cm) spatial and high (daily to weekly) temporal resolution is required. Although RGB 
sensors have a very low spectral resolution (the three visible bands, namely, red, green 
and blue), it should be possible to map benthic biofilms in shallow and clear channels 
based on these bands as compared to the un-colonized substrata (Benyoucef et al., 2014). 
This is partially confirmed by the studies of Xu et al. (2018) who were able to map green 
algal tides with visible band ratios, Flynn and Chapra (2014) who mapped submerged 
vegetation with statistical analysis of RGB images, and by Kislik et al. (2020) that mapped 

INTERNATIONAL JOURNAL OF REMOTE SENSING 3



filamentous algae by applying a supervised classification to their RGB images. The use of 
low-cost UAVs allows the costs of repeated mapping to be lowered and the financial 
consequences of sensor loss to be reduced.

We test the use of UAV-based and high-frequency RGB image acquisition with 
Structure-from-Motion Multiview-Stereo (SfM-MVS) photogrammetry (Westoby et al., 
2012; Fonstad et al., 2013; Tamminga et al., 2015; Woodget et al., 2015; James et al., 
2017, 2020; Dietrich, 2017; Roncoroni and Lane, 2019; Lane et al., 2020) to generate a high- 
resolution orthomosaic time series over a 5-month period of an Alpine glacier forefield 
characterized by a well-developed and heterogeneous stream ecosystem. We assess the 
performances of orthomosaic-derived visible band ratios and logistic models in mapping 
benthic biofilm distributions at high spatial and temporal resolutions. Aware that visible 
bands and ratios between them have limited capabilities in segmenting features based on 
their spectral response, we demonstrate that when basic mapping, but at high frequency, 
is necessary there is no need for expensive sensors.

2. Methods

2.1. Study site

The forefield of the Glacier d’Otemma is situated in Val de Bagnes (Valais, Switzerland) 
(Figure 1). The forefield has formed since the early 2000s in response to retreat of the 
Glacier d’Otemma, which has retreated at an average of 50 m per year (Mancini and Lane, 
2020). The resultant fluvial braidplain is approximately 900 m long and 150 m wide and 
characterized by a well-developed floodplain drained by a complex and heterogeneous 
kryal, krenal and rhithral stream system. The braidplain is active and continuously 

Figure 1. Forefield of the Glacier d’Otemma (Valais, Switzerland); Orthomosaic (a) and digital elevation 
model (b) of the study zone.
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reworked during the melt-season (Mancini and Lane, 2020), typically constraining pioneer 
vegetation and benthic biofilms to the right-side terraces until rates of morphodynamic 
activity decline in the autumn.

2.2. Image and ground control point acquisition

RGB imagery was collected from late June to early September 2020 on 52 non- 
consecutive days with an additional acquisition date in November 2020. To collect the 
images, we deployed a DJI Phantom 4 Pro quadcopter, which is a well-established UAV 
platform in SfM-MVS photogrammetric studies (James et al., 2020). Relatively low-cost and 
low-weight, the quadcopter allows for pre-programmed flight missions due to its incor
porated GPS. The integrated RGB camera has a 20 megapixel sensor, mechanical shutter, 
nominal 8.8 mm focal length, and stores images in both JPEG and RAW formats.

The forefield was imaged once or twice per day. Diurnal discharge variation related to 
the melt pattern of the glacier causes extensive inundation of the braidplain during the 
afternoon and evening. Therefore, we focused on the early morning flights (acquired from 
06h30 onwards) for biofilm mapping. We used the freeware Pix4Dcapture (v. 4.8.0) to 
manage flight missions and geometries, and automatically collect images in JPEG format. 
Flight geometries were designed to produce high-precision datasets free of systematic 
error DEMs (following James et al. 2020) for further analyses of the forefield. Each set of 
flights was composed of: i) four grids with the camera looking at nadir (90°), image overlap 
set at 80% and a flight elevation of 80 m; and ii) 7 circular missions with the camera taking 
off-nadir and centre-looking pictures every 6° of the circles and flight elevation of 60 m. To 
ensure continuous mapping, singular grids intersected with each other. Each flight 
session took roughly 3.5 hours to complete and was composed of about 2’000 JPEG 
images. Geometries, flight path dimensions, and camera positions are shown in Figure 2a.

In SfM-MVS photogrammetry, at least three well-scattered Ground Control Points 
(GCPs) are needed to scale, rotate and orientate DEMs and orthomosaics to a real-world 
coordinate system (Fonstad et al., 2013; Woodget et al., 2015). However, research has 
shown that GCPs are needed to improve the solution of the collinearity equations and to 
reduce the occurrence of systematic deformations in DEMs. The number of points needed 
is dependent on the spatial extent of the study site (James and Robson, 2014; James et al., 
2017, 2020). We fixed 77 GCPs across the zone of interest (Figure 2b). We measured the 
GCPs at the beginning and end of the season with a differential GPS (dGPS) Trimble R10, 
and collected their absolute coordinates in the Swiss coordinate system CH1903+ to 
a precision of better than ±0.01 m in the horizontal and ±0.02 m in the vertical. The 
dGPS base station was located at the end of the floodplain and on the top of a bedrock hill 
to maximize the radio communication between the base and the rover. The base was 
corrected into the CH1903+ coordinate system using the fixed monitoring Swiss Federal 
Office for Topography provided via SwiPOS©.

2.3. Image processing and orthomosaic generation

The SfM-MVS photogrammetric processing was undertaken with Agisoft Metashape (v. 
1.5.5) run on a dedicated workstation equipped with an AMD Ryzen 12-core processor 
(3.80 Ghz), 64 Gb RAM, and a GeForce RTX 2080 (8 Gb) graphic card allowing for GPU 
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acceleration. To ensure strong (i.e. free of systematic deformations), reliable and replic
able SfM-MVS photogrammetric processing within the totality of the datasets we 
followed the framework of James et al. (2017; 2020). Initially, we aligned the images 
of the first dataset (26 June 2020) to generate a sparse point cloud. We then explored 
how the different camera internal parameters (e.g. focal length, four radial and tangen
tial distortion coefficients, principal point offsets, etc.) in the bundle adjustment influ
enced the 3D re-shaping of the sparse point cloud. To do so, we first used a Monte Carlo 
framework (James et al., 2017) in which different sets of camera internal parameters, so- 
called camera models (Table 1), were evaluated within the bundle adjustments by using 
a variable selection (but always 50%) of GCPs and 11 prescribed GCP accuracies 
(Table 1). Specifically, for each camera model investigated, we ran 1100 bundle adjust
ments, corresponding to 100 adjustments with 100 GCP combinations for each pre
scribed GCP accuracy.

Based on the results of the Monte Carlo simulations, model 3, which includes focal 
length, principal point offset (Cx, Cy), affinity and orthogonality parameters (B1, B2), radial 
(K1, K2, K3) and decentring (P1, P2) distortions, delivered point clouds with the lowest 
probability of producing systematic errors even with the highest prescribed GCP accura
cies. Second, for each camera model (Table 1) and by using the whole GCP population, we 
reconstructed (namely tie) point covariance maps (James et al., 2020) to detect visually 
systematic deformations in the point clouds. These maps showed the agreement between 
the tie point positions, and we found that model 3 delivered point clouds without any 
spatial structure related to the presence of systematic deformation.

Figure 2. A) Flight geometries, camera positions and flight path dimensions. Image acquisition started 
at Flight zone 1, and take-off points were kept the same or similar throughout the season. b) Ground 
control point locations. Black GCPs were used in processing, while red GCPs were discarded after the 
Monte Carlo analysis. Orthomosaic ©swisstopo.
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We then assessed the quality of the GCPs by using model 3 in 900 bundle adjustments, 
but varying the percentage of GCPs (Table 1) used in each bundle adjustment (James et al., 
2017). Based on the Monte Carlo results, the RMSE of the XYZ components stabilized at 0.02  
m corresponding to the use of 60% of the GCP (n = 46) into the bundle adjustment. However, 
the best 46 GCPs were not spatially well distributed, hence why we retained 52 GCPs (68%) 
and discarded the 25 GCPs showing the highest vertical/horizontal errors (Figure 2b).

The chosen camera model and GCPs were applied in the processing of the remaining 
datasets (n = 53). In addition to this, each sparse point cloud was inspected before the 
bundle adjustment: i) to remove tie points seen by two images only, ii) to remove poorly 
positioned tie points (e.g. beneath the reconstructed surface), and iii) to remove images 
having fewer than 1000 projections in the tie points and error greater than 1 pixel 
(following James et al., 2020). With our workstation configuration and step-wise procedure, 
it took roughly 8 h per dataset to produce results with minimal 3D and optical distortions, 
fully georeferenced DEMs at 20 cm, and orthomosaics at 5 cm spatial resolutions.

2.4. Orthomosaic normalization

Multi-temporal images are often difficult to compare due to non-scene dependent 
changes, such as in sensor or illumination conditions (Schott et al.,1988; Du et al.,2002; 
Song and Woodcock, 2003; Liu et al., 2007; Bao et al., 2012). In our case, the sensor was the 
same throughout the field season (i.e. DJI Phantom 4 Pro’s camera), but illumination 
changed during image acquisition because of differences in cloud coverage or sun 
position (both within the same dataset and between datasets).

The easiest way to deal with this problem is to have a dataset-specific image calibration 
based on individual scenes. Ideally, it would be possible to use one or a subset of scenes to 
produce a general classification rule that could be applied to all scenes. This requires that 
each orthomosaic must have similar signatures, in our case requiring that pixels composing 

Table 1. Summary of the parameters used within the Monte Carlo frame
work. We evaluated eight camera models found in classic SfM-MVS 
papers (James et al., 2017, 2020), where: f is the focal length, Kn is 
a radial distortion parameter, Pn is a decentring distortion parameter, 
Cx and Cy are principal point offset, Bn is an affinity and orthogonality 
parameter. The prescribed GCP accuracies (m) were chosen to cover 
a wide range of accuracies, from centimetres to metres, and refer to 
accuracies we may expect for each GCP.

Camera internal parameters (i.e. camera models) Reference

Model 1: f, K1 (James et al., 2020)
Model 2: f, K1, P2 (James et al., 2020)
Model 3: f, Cx, Cy, B1, B2, K1, K2, K3, P1, P2 (James et al., 2020)
Model 4. f, Cx, Cy, B1, B2, K1, K2, K3, P1 (James et al., 2020)
Model 5: f, Cx, Cy, K1, K2, K3 (James et al., 2017)
Model 6: f, Cx, Cy, K1, K2, K3, P1, P2 (James et al., 2017)
Model 7: f, Cx, Cy, B1, B2, K1, K2, K3, K4, P1, P2 (James et al., 2017)
Model 8: f (James et al., 2017)

Prescribed GCP accuracies (m) tested within the bundle adjustments

0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.50, 1.00, 2.00

Percentage of GCPs used within the bundle adjustments

10, 20, 30, 40, 50, 60, 70, 80, 90
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non-biotic features (e.g. rocks, sand) should reflect the same quantity (i.e. digital numbers) 
of red, green, and blue bands throughout the measurement period. This is particularly 
important when a common logistic model (i.e. reference) is applied to a visible band ratio. 
To achieve this, we tested scene-to-scene normalization (Schroeder et al., 2006) using 
a relative radiometric normalization, the Pseudo-Invariant-Feature (PIF) method. This 
method aims to correct each image to a reference by applying a linear model on pixels 
that should not have experienced any reflectivity change between the two acquisitions 
(Schott, et al., 1988; Du et al.,2002; Bao et al., 2012). Typically, PIFs are artificial objects (e.g. 
roofs, roads, etc.) that do not show seasonal or biological activity with almost constant 
reflectivity through time (Schott et al.,, 1988).

In our study area, there was a lack of artificial objects, and the only ones suitable for 
a traditional PIF normalization were the GCPs scattered on the floodplain, which were black 
and yellow and large enough to allow for single pixel picking. We visually inspected the set of 
orthomosaics, and we selected 45 single pixels within the eight clearest GCPs. Furthermore, 
we sampled an additional 37 single pixels of pure and constant-through-time dry sand and/or 
sediment to complete the PIF population (n = 82). After several attempts, we found that 82 
PIFs provided a good trade-off between normalization quality and processing time. We also 
decided to use single pixels instead of averaging groups because of the important sub- 
decimetre variation in pixel colours. To cope with changes in light conditions and sun position, 
through the summer, we divided the dataset into three sub-datasets: i) Group 1, consisting of 
19 datasets spanning from 26 June to 19 July 2020, using 14 July as a reference; ii) Group 2, 
consisting of 22 datasets spanning from 21 July to 21 August 2020, using 26 July as 
a reference; and iii) Group 3, consisting of 11 datasets spanning from 23 August to 
13 September 2020, using 14 July as a reference. Group 3 shared the same reference as 
Group 1, although it is temporally distant because we noted that 14 July had good normal
ization performances on the images of the third group. The orthomosaic of 5 November 2020 
was treated separately and called Group 4, and due to snow coverage, no correction was 
applied.

Within each group and on a band-by-band basis, we regressed linearly the digital 
numbers of the reference PIFs against the digital numbers of the PIFs of each orthomosaic 
to be normalized. We then applied the three linear models to the totality of the pixels 
composing the single-band (red, green, and blue) orthomosaics to ultimately obtain 
radiometric normalized bands. We assessed the quality of the normalizations by evaluat
ing the root mean square error (RMSE) of pixel digital numbers before the normalization 
and after as compared with the relevant reference image, as well as by visually inspecting 
how the histograms changed after applying the linear models.

The orthomosaic normalization was performed through a Matlab (R2018a) routine. 
Even though PIF normalization should allow transferability of calibration models for 
biofilm mapping, we decided to also compare results with i) the non-normalized but 
group sorted orthomosaics and ii) a scene-by-scene calibration model.

2.5. Visible band ratios, logistic models, and probability maps

The non-normalized individual scenes and the normalized bands were used to compute 
visible band ratios, which have the advantage of summarizing the information of the 
three visible bands into one. Such ratios have been widely used in vegetation detection or 
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crop studies since the 1970s (e.g. Tucker, 1979; Woebbecke et al., 1995; Kawashima and 
Nakatani, 1998; Meyer et al., 1998; Adamsen et al., 1999; Louhaichi et al., 2001; Gitelson 
et al., 2002; Meyer and Neto, 2008; Saberioon et al., 2014), but also in aquatic studies (Xu 
et al., 2018). Here, we computed eight band ratios (Table 2) and tested their performance 
in mapping biofilms.

To classify the orthomosaics into biofilm distributions across the whole floodplain, we 
first developed training/calibration and validation datasets for each orthomosaic. These 
datasets were based upon the selection of 150 sites at the single pixel level that were 
biofilms and covering the range principal colour assemblages present on the floodplain 
(i.e. red-brown and green). The site selection was straightforward because “glacial” 
biofilms have a distinctive colour compared to the dry or wet un-colonized substrata 
(e.g. grey), and this was clearly distinguishable on the orthomosaics at the spatial resolu
tions we were using. An additional 150 sites were selected across the floodplain to 
account for the un-colonized substrata. This was the calibration dataset. We then selected 
another set of sites (n = 300, 50% biofilm), using the same criteria but with no overlap with 
the calibration dataset. The biofilm mapping was then based upon training logistical 
models using the calibration dataset.

The outcome of the logistic model was a probability of biofilm being present. For 
validation, we converted the probability (0 to 1) into binary values (0 or 1) by assigning 0 
(not biofilm) to sites with probability <0.5 and 1 (biofilm) to sites with probability >0.5. 
These predictions were combined with the validation to provide confusion matrices (i.e. 
true positive/negative vs. false positive/negative) and hence to assess model performance 
by comparing prediction accuracies, precisions, recalls, F-scores, and Matthews 
Correlation Coefficients (MCC) (Chicco and Jurman 2020).

The logistic models were applied in two ways. First, to understand the optimal choice 
of logistic regression model type (Table 2) we applied each type to the reference images 
(14 July for Groups 1/3 and 20 July for Group 2) and the November image (Group 4). 
Second, having identified an ideal model type, we trained a scene-by-scene model for 
each date to be our reference probability map dataset. This made use of calibration data 
and validation data particular to each scene. This approach is labour-intensive, but it 
avoids the need to make assumptions about the temporal stability of the logistical 
models derived, and no normalization is required. We call these the reference datasets. 
Finally, we applied the calibrated logistic models selected for the two reference images 
to both the raw and the normalized orthomosaics according to the group each 

Table 2. Band ratios tested for benthic biofilm. R, G, and B are non-normalized digital numbers (i.e. R, G, 
and B ranging from 0 to 255); r, g, b are normalized digital numbers (i.e. R, G, and B ranging from 0 to 1).

Name Acronym Formula Source

Chromatic Coordinates of Red RCC R/(R+G+B) Woebbecke et al. (1995)
Normalized Green-Red Difference Index NGRD (g-r)((g+r) Tucker (1979)
Excess Red Vegetation Index ExR 1.4*r-g Mao et al. (2003)
Excess Green Vegetation Index ExG 2*g-r-b Woebbecke et al. (1995)
Green Leaf Index GLI ((G-R)+(G-B))/(G+R+G+B) Louhaichi et al. (2001)
Visible Atmospherically Resistant Index VARI (G-R)/(G+R-B) Gitelson et al. (2002)
Kawashima and Nakatani Index KANA (R-B)/(R+B) Kawashima and Nakatani (1998)
Red Green Ratio Index RGRI R/G Saberioon et al. (2014)
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orthomosaic was in. Moving to calibration based upon a small number of references 
significantly reduces workloads, but makes the analysis more dependent on the relia
bility of normalization.

We produced three first probability map datasets: i) single – with a different calibration 
model for each scene, the single datasets; ii) raw – using the Group 1/3 and Group 2 
reference calibration models and applied to non-normalized imagery; and iii) normalized – 
as per (ii) but using normalized imagery. All logistic regressions, validations, statistics and 
probability maps were performed in Matlab (R2018a).

2.6. Micro-topography shadow modelling

The effect of the floodplain micro-topography on shading and hence on the probability 
map quality was also investigated. We avoided exploring the shadowing effect of the 
surrounding peaks because, when present, it only affected the very upstream part of the 
study zone. We also did not develop a physically based treatment of the shadowing 
effect caused by clouds because of a lack of cloud cover data to include in a model. The 
micro-topography shadowing effect was, to varying degrees, always present and it was 
caused either by large boulders or by steep river banks. Normalization could not correct 
for this.

We modelled the micro-topography shadow by applying to our DEMs a potential solar 
radiation model (Kumar et al., 1997). The model accounts for the acquisition time and date 
(in our case the start and end of each UAV survey), the local topography using our DEMs, 
and latitude of the study zone, and it models the potential solar radiation in W/m2 

received during the selected period. Shadows were easily identified due to their low 
solar radiation, and subsequently masked binarily to exclude those pixels from being 
mapped in our probability maps. A new set of probabilistic maps was generated from the 
previous three datasets, and they are called single-shadow, raw-shadow, and normalized- 
shadow.

2.7. Occupation maps and noise assessment

Each scene produced a map showing the probability of biofilm occurrence. To understand 
how biofilms develop through time, we calculated the cumulative presence (in days) of 
biofilm in each pixel of the study zone, which we call an occupation map. In doing so, we 
excluded the probability map of November because of the significant time since the last 
summer acquisition date (September 13). To produce the occupation maps, we firstly 
converted the pixel probability in binary classification by assigning 0 to pixels with prob
ability <0.5 and 1 to pixels with probability >0.5. We then multiplied each binary map by 
a scalar representing the time-lag between two given acquisition dates (i.e. time-lag: [tn +1 - 
tn-1]/2), and finally summed up the results to obtain the occupation (0–80 days) that biofilm 
was present in each pixel. Occupation calculations were performed in Matlab (R2018a), but 
maps were then exported in.ascii-format and converted into a suitable format (.tiff) for 
ArcMap (v. 10.5.1). In the GIS environment, we masked the study zone to exclude the 
vegetated edges, the sparse pioneer species across the floodplain, and the GCPs.
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These occupation maps are of significance for understanding biofilms because the 
duration of occupation likely influences the duration and intensity of ecosystem engi
neering that the biofilm can perform. Thus, to understand how sensitive occupation maps 
are to normalization and shadow correction, we take the single scene accumulation map 
without shadow correction as a reference. We then compare the generated maps: i) using 
the single scenes, shadow corrected; ii) the reference models applied to the raw scenes, 
shadow uncorrected and corrected; and iii) the reference models applied to the normal
ized scenes, shadow uncorrected and corrected to this reference. We call these compar
isons Occupations of Difference (OoD).

We also attempted to calculate noise in the occupation maps. First, in this kind of 
environment, biofilms may form rapidly, over the order of days, but also be destroyed rapidly 
such as by a lateral shift in the river channel. This would produce a run of time periods where 
biofilm are present followed by, if destroyed, a run of time periods where biofilms are absent 
until conditions again allow biofilm development. Noise would then interrupt these runs until, 
in the ultimate extreme, the biofilm present-absent time series is completely random. To 
assess this, we undertook a run test to lower the probability, for each pixel, that an occupation 
map is based upon non-randomly distributed presence-absence through time. The lower the 
p-value    the less a pixel is affected by noise and the more likely that the occupation is 
reflecting true biofilm growth and destruction. We call this the occupancy noise map and we 
calculated it for single, raw, and normalized datasets with and without shadow.

We then created a new set of occupation maps in which we used the occupancy noise 
maps to exclude occupation pixels that had less than 95% (p < 0.05) probability of 
reflecting true biofilm dynamics in a given dataset.

3. Results

3.1. Identification of logistic regression model type

3.1.1. Groups 1 and 3
The band ratios derived from the orthomosaic for 14 July 2020 were used to train 8 logistic 
models. The NGRD-, ExG-, GLI-, VARI-, and RGRI-derived models struggled to find 
a substantial separation between pixels with or without biofilms (see supplementary 
information). The ExR-derived model behaved slightly better compared to the previous 
ones, whilst the RCC-, and KANA-derived models were able to find a more consistent 
spectral separation (see supplementary information).

Table 3 shows the validation results based upon sites not used to train these previous 
models. Not surprisingly, models with a poor separation between biotic and abiotic pixel 
values during training underperformed (e.g. ExG and GLI, Table 3). To differing degrees, 
RCC, NGRD, ExR, VARI, and RGRI performed well when validated, but KANA produced the 
best validation results and was therefore selected as the model to map biofilm distribu
tions for groups 1 and 3.

3.1.2. Group 2
The eight models trained for 26 July did not significantly differ from the models of groups 
1 and 3 (see supplementary information). Findings between groups are consistent: NGRD-, 
ExG-, GLI-, VARI-, and RGRI-derived models were again not able to substantially separate 

INTERNATIONAL JOURNAL OF REMOTE SENSING 11



biotic and abiotic pixels. The ExR-derived model was slightly better, but the RCC- and 
KANA-derived models were the best at finding the natural boundaries between abiotic 
and biotic pixels (see supplementary information).

As expected, the validation (Table 4) results for 26 July followed those for 14 July. The 
ExG- and GLI-derived models underperformed compared to the others, while the NGRD, 
VARI, and RGRI models were overall acceptable. The ExR-derived model was excellent, but 
still slightly worse than the RCC- and KANA-derived models. The RCC- and KANA-derived 
models showed equal performances, but we selected the KANA model to be consistent 
with groups 1 and 3.

3.1.3. Group 4
Overall, the models for the November mosaic behaved in a similar way to the July 
datasets, with the NGRD-, ExG-, GLI-, VARI-, and RGRI-derived models still being unable 
to find a substantial boundary between abiotic and biotic pixels. ExR-, RCC-, and KANA- 
derived models found more obvious separations (see supplementary information).

Validation results (Table 5) did not differ significantly from July results, with ExG- and 
GLI-derived models having the lowest performances within the band ratios. NGRD-, VARI-, 
and RGRI-derived models performed slightly better in comparison with the July datasets, 
while the KANA-derived model performed slightly worse. In this case, the RCC models had 
a better performance compared to the KANA model, but the difference was small (1% in 
recall); therefore, we kept the KANA-derived model as with the previous groups such that 
our methodology is consistent.

Based on these results, the KANA-derived model was selected as the type of logistical 
regression for the subsequent analyses.

Table 3. Logistic regression coefficients and performances of the selected index-derived binary 
classifications for groups 1 and 3.

β0 β1 Accuracy Precision Recall F1 MCC

RCC −129.13 361.94 0.98 0.99 0.97 0.98 0.97
NGRD −4.36 −168.65 0.89 0.93 0.84 0.88 0.85
ExR −35.83 221.51 0.94 0.96 0.91 0.94 0.92
ExG −0.30 35.64 0.69 0.70 0.68 0.69 0.47
GLI −0.30 47.87 0.69 0.70 0.68 0.69 0.47
VARI −4.05 −88.96 0.86 0.91 0.80 0.85 0.80
KANA −8.12 107.63 0.98 0.99 0.97 0.98 0.98
RGRI −84.34 80.06 0.89 0.93 0.84 0.88 0.85

Table 4. Logistic regression coefficients and performances of the selected index-derived binary 
classifications for group 2.

β0 β1 Accuracy Precision Recall F1 MCC

RCC −528.58 1447.96 0.99 0.97 1.00 0.99 0.97
NGRD −3.38 −99.10 0.95 0.91 0.99 0.95 0.91
ExR −28.27 163.54 0.98 0.97 1.00 0.98 0.97
ExG −2.04 87.34 0.86 0.94 0.77 0.85 0.81
GLI −2.06 118.35 0.86 0.94 0.77 0.85 0.81
VARI −2.88 −53.27 0.91 0.86 0.99 0.92 0.84
KANA −27.84 280.36 0.99 0.97 1.00 0.99 0.97
RGRI −49.29 46.01 0.96 0.93 0.99 0.96 0.92
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3.2. Orthomosaic normalization

Figure 3 shows the digital number RMSE by band for each non-reference orthomosaic, 
both before and after normalization and in comparison with the relevant reference one 
(14 July for Group 1 and Group 3 datasets; 26 July for Group 2 datasets). The normalization 
behaved similarly between the bands.

Group 1 (26 June to 19 July or Julian day 178 to 201) showed a generalized important 
RMSE reduction, particularly on the red (x=-28.8%; σ = 12.9) and blue (x=-32.5%; σ=±15.6) 
bands as compared to the green one (x=-24%; σ=±10.2). Group 2 (21 July to 21 August or 
Julian day 203 to 234) had a tendency towards improvement (red band: x=-13.2%; σ= 
±10.6; green band: x=-13.6%; σ=±9.7; blue band: x=-19.9%; σ=±14.5), but RMSE reduction 
was variable within the orthomosaics. Dates closer to the group 2 to 3 transition profited 
from a RMSE reduction through the normalization, but RMSEs still remained high (espe
cially within the blue band). Dates closer to the group 1 to 2 transition had lower RMSEs 
before the normalization, and only a limited improvement was observed afterwards. 
Group 3 (23 August to 13 September or Julian day 236 to 256) had RMSEs <20 DNs before 
normalization (except 3 August), and the normalization was not particularly effective and 
the RMSE reduction was generally small. We observed a RMSE reduction of 14.3% (σ= 
±12.5) for the red band, of 9.3% (σ=±8.3) for the green band and of 9.9% (σ=±8.3) for the 
blue band.

Table 5. Performances of the selected index-derived binary classifications for group 4.
β0 β1 Accuracy Precision Recall F1 MCC

RCC −61.54 171.01 0.98 0.99 0.98 0.98 0.98
NGRD −1.85 −96.32 0.98 0.99 0.97 0.98 0.97
ExR −18.76 120.81 0.98 0.99 0.97 0.98 0.97
ExG −2.25 39.01 0.74 0.73 0.77 0.75 0.55
GLI −2.28 53.68 0.74 0.73 0.77 0.75 0.55
VARI −1.79 −58.11 0.98 0.99 0.97 0.98 0.97
KANA −6.48 60.42 0.98 0.99 0.97 0.98 0.98
RGRI −46.01 44.21 0.98 0.99 0.97 0.98 0.97

Figure 3. Digital Numbers (DNs) related RMSE of the pixels composing the non-reference images 
before and after normalization in comparison with their relevant reference orthomosaics for the red 
band, the green band and the blue band. Dates are in Julian days.
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The generalized RMSE reductions resulted from applying the specific band-by- 
band linear models to normalize the DNs of the non-reference orthomosaics such 
that they are closer to those of the reference ones. In some cases, however, the 
RMSEs did not decrease to low magnitudes or decreased differently between the 
bands, and this translated into poorly normalized orthomosaics. The orthomosaic of 
19 August (Figure 4) is an example of a poor normalization. The PIF points of the red 
and green bands were highly dispersed (resulting in poor R2) and most of them 
deviated towards the brighter side of the colour tone (i.e. left of the 1:1 line) before 
applying the models. As expected, their corresponding models sat on the brighter 
side of the colour tone (y-intercepts of >50 and slopes of roughly 0.8). The blue band 
was slightly better and the PIF points less dispersed (R2 = 0.9). The blue model had 
better y-intercept and slope compared to the previous two bands, but tones with 
DNs >125 were translated into brighter tones whilst tones with DNs <125 into darker 
ones. The poor models then translated into a poorly normalized orthomosaic 
(Figure 4b), with an unnatural colour grading and very different as compared to 
the reference image. This is also visible from the histogram of the normalized 
orthomosaic (Figure 4b), with the blue band that lost some information while the 
red and green bands gained counts in the bright tail of the histogram. Overall, the 
orthomosaic was brighter and green tones were enhanced.

The 7 July orthomosaic (Figure 5) is, in contrast, an example of a good normal
ization. The band-related RMSE magnitudness were low before the normalization 
(±10–13 DNs) and the PIF points well-aligned. The linear models showed high R2, 
slopes of 0.9 and y-intercepts ranging from 19.21 to 24.29 (Figure 5a). Such slopes and 
y-intercepts enhanced the brightness of the bands, slightly attenuating the dark 
tones. As a response, the left tail of the histogram (i.e. the darker tones) of the 
normalized orthomosaic (Figure 5) was reduced, eventually resembling the master 
histogram.

An example of an excellent PIF normalization is shown for 30 July (Figure 6). Compared 
to the previous two orthomosaics, in this case the band RMSE magnitudes were already 
low (<9 DNs) before the normalization and the PIF points were well aligned. As a result, 
the linear models had very high R2, slopes close to 1 and y-intercepts close to 0 (Figure 6a). 
For these reasons, the application of such models should have provided the best normal
ization possible for this orthomosaic (Figure 6b), even though pre-normalization differ
ences were already very low. A comprehensive summary of the normalization 
performances, including slopes and y-intercepts for each model, can be found in the 
supplementary information for this paper.

3.3. Quantitative evaluation of the PIF normalization

We compared the performances of the PIF normalization models (i.e. normalized) with the 
performances of the raw mosaics (Figure 7a). We also evaluated the normalized 
(Figure 7b) and raw (Figure 7c) mosaics in comparison to the single calibrations.

Overall, using the reference models (14 July 2026 July) on the raw and normalized mosaics 
for other dates produced good results (Figure 7a). Surprisingly, the raw datasets had 
a substantially better performance than the normalized ones. Performance deterioration 
was more severe in Group 2 as compared to the less divergent Groups 1 and 3. When 
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compared to the single models, the normalized dataset (Figure 7b) had a clearly poorer 
performance, and this was accentuated in Group 1 and notably Group 2, reflecting the 
difficulties encountered during the PIF normalization. The raw datasets (Figure 7c) were 
more similar to the single models, and even better in some cases. Interestingly, Group 2 
datasets produced better results, reflecting again that normalization could lead to model 
deterioration.

Figure 4. Example (19 August, Group 2) of a poor PIF normalization. a) Linear models and correspond
ing R2; b) Comparison between reference image (26 July), non-normalized orthomosaic (non- 
reference) and normalized one.
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3.4. Shadow model

An example of the micro-topography model and the subsequent biofilm presence/ 
absence masking is presented in Figure 8. Moving water in glacial channels often created 
artefacts in the DEMs, and those in turn created micro-relief at the resolution we used, and 
hence shadows. Unlike true micro-topography shadows, such zones had a minimal effect 
on the shadow masks, since they were located on the surface of moving glacial water, i.e. 
where biofilms did not develop. Biofilm probability maps were binarized (Figure 8d) 

Figure 5. Example (7 July, Group 1) of a good PIF normalization. a) Linear models and corresponding 
R2; b) Comparison between reference image (i.e. 14 July), non-normalized orthomosaic (non- 
reference) and normalized one.
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before being used as input in the occupation map calculations, but we also explored how 
biofilm presence/absence changed if micro-topography shadow areas were excluded 
from being mapped (Figure 8e). True micro-topography shadows were typically restricted 
to banks and boulders (Figure 8c). Removing micro-topography caused shadows did 
indeed remove zones mapped as biofilms. However, there were also some examples of 
micro-relief where biofilms were present in zones of shadow, notably around small 
boulders.

Figure 6. Example (30 July, Group 2) of an excellent PIF normalization. a) Linear models and 
corresponding R2; b) Comparison between reference image (i.e. 26 July), non-normalized orthomosaic 
before correction and normalized one.
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Figure 7. A) Comparison between normalized and raw performances, b) normalized and single 
performances, and c) raw and single performances.
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3.5. Evaluation of the resultant biofilm maps

Occupation maps for the single, raw and normalized, with and without accounting for 
micro-topography shadow, are shown in Figure 9. Qualitatively, results tend to agree 
among themselves, with the highest cumulative presence of biofilms in channels located 
on the edges of the topographic right-side of the braidplain.

Figure 8. Example of the applied micro-topography shadow model to a binary presence/absence 
biofilm map from 14 July: a) Hillshaded DEM, b) modelled solar radiation, c) micro-topography 
shadow, binarized at 6000 W/m2, d) presence/absence of biofilm (input of the occupation map), 
and e) presence/absence of biofilm masked by micro-topography shadows. Binarized micro- 
topography model and biofilm presence/absence were masked to exclude the edges.
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The use of the single and single-shadow probability datasets (Figure 9a,b) produced 
clusters of biofilm occupation that were very similar to each other, and only marginal 
differences were visible, most of which were located on the transitions between steep 
banks that created micro-topography shadows and water surfaces. Single pixels with an 
occupation range of 1 to 10 were present but widely distributed, found especially in the 
centre-part of the floodplain, and were likely to be noisy. Results of the raw and raw- 
shadow derived occupations maps (Figure 9c,d) did not significantly differ from the 
single and single-shadow ones, although in both scenarios there were fewer pixels 
within the 1 to 10 day range in the centre-part of the braidplain. Similarly to the single 
datasets, micro-topography shadow removal did not substantially modify clusters of 
biofilm occupation. When occupation was calculated with the normalized datasets (with 
and without shadows; Figure 9e,f), significant biofilm presence over periods of 1–10  
days was detected even in the active braidplain. This was not the case for the single 
datasets (Figure 9a,b) and the raw ones (Figure 9c,d), suggesting the presence of 
systematic mapping errors (i.e. spectral confusion plus noise) in the normalized prob
ability maps.

Comparison between single and single-shadow Occupation of Difference (OoD) 
maps (Figure 10a) showed that the single-shadow map gave slightly lower occupation 
(mean difference: −0.008 days) as compared to the single map, and some noise was 
successfully removed from the upstream half of the floodplain. However, the right-side 
channels of the single-shadow occupation map showed anomalously lower reduced 
occupation (mostly within the −5 day range) that resulted from the exclusion of pixels 
affected by micro-topography shadow, though those pixels were actually biofilm. 
Comparison between the raw occupation and single occupation maps with no shadow 
correction (Figure 10b) showed more heterogeneous differences, although the mean 
difference was still negative (−0.01). The centre-part of the braidplain had less noise, 
but there was either under- or over-estimation of occupation days in the side channels, 
both on the left and right sides of the braidplain. This result suggested that when 
applied to different dates the reference models (i.e. 14 July for groups 1 and 3, and 
26 July for Group 2) were either too weak, creating over-estimation, or too strong, 
creating under-estimation. The OoD maps with the raw-shadow dataset (Figure 10c) 
were similar to that of the raw dataset (Figure 10b), but the mean difference was 
slightly higher, suggesting that micro-topography shadow masking had a stronger 
impact. Not surprisingly, the normalized occupation-related OoDs (Figure 10d,e) 
showed systematic overestimation across the whole floodplain suggesting that the 
reference models were typically too weak such that many non-biofilm pixels (e.g. wet 
sediments) were mapped as being biofilms due to pixel values greater than the 0.5 
selected threshold.

3.6. Occupancy noise maps and p-value corrected occupation maps

The probability maps show those zones where the time-series of occupancy/non- 
occupancy is systematic (p < 0.05) and random (p > 0.05), the latter indicating possible 
noise (Figure 11). The single (Figure 11a,b) and raw (Figure 11c,d) scenarios showed 
similar results: i) single pixels (or small clusters) in the centre-part of the floodplain that 
may have a high total occupancy, but this occupancy is random and so likely to be noisy, 
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Figure 9. Occupation (in days) of biofilms on the floodplain of the Glacier d’Otemma during the period 
26 June to 13 September 2020. Occupation calculated from a) the single dataset, b) the single-shadow 
dataset, c) the raw dataset, d) the raw-shadow dataset, e) the normalized dataset, and f) the normal
ized-shadow dataset.
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and ii) zones in the side channels that also appeared to have some random occupancy. 
The normalized scenarios (Figure 11e,f) confirmed results in Section 3.5, with biofilm 
occupancy in the active braidplain being random and over-estimated.

We then used the occupancy noise maps to exclude pixels with p > 0.05 from being 
considered biofilm pixels in the occupation map calculations. A new set of occupation 
maps was generated (Figure 12). Most of the salt and pepper noise was successfully 
removed from the single and raw scenarios (Figure 12(a–d)) using this criterion. The 

Figure 10. Occupations of Difference (OoD): a) Single-shadow minus single, b) raw minus single, c) 
raw-shadowminus single, d) normalized minus single, and e) normalized-shadow minus single.
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Figure 11. Maps of the probability that the time-series of occupation or non-occupation by biofilm is 
non-random (p < 0.05): a) the single dataset, b) the single-shadow dataset, c) the raw dataset, d) 
theraw-shadow dataset, e) the normalized dataset, and f) the normalized-shadow dataset.
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Figure 12. Occupation (in days) corrected for p-value of biofilms on the floodplain of the Glacier 
d’Otemma during the period 26 June to 13 September 2020. Occupation calculated from a) the single 
dataset, b) the single-shadow dataset, c) the raw dataset, d) the raw-shadow dataset, e) the normal
ized dataset, and f) the normalized-shadow dataset.
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overall biofilm extent mapped previously (Figure 9) was preserved in the new maps, 
although there was a generalized reduction of the biofilm extent at a threshold p-value =  
0.05. Though such a threshold might be too strong, it produced maps where biofilm 
presence had a 95% probability of reflecting true biofilm dynamics. The normalized 
scenarios (Figure 12e,f) experienced the most important changes, with noise and sys
tematic bias removed in large quantities from the new occupation maps, although some 
clusters and single pixels are still present. However, the overall extent resembled that of 
the more precise single and raw datasets (with and without shadow), with channels on 
the edges mapping the highest cumulative presence of biofilms.

3.7. Biofilm distribution in space and time

On the basis of the results in Section 3.6, we selected single corrected for p-value as the 
basis of the final biofilm maps. Being able to map the distribution of biofilms at the whole 
floodplain scale and at such a high temporal resolution allows investigation of the 
seasonal pattern of biofilm development. During the summer (Figure 13a) biofilms tend 
to develop in channels located on stable or less active zones. Our results demonstrate that 
occupation of biomass in the active floodplain is very uncommon during the melt-season, 
and most of the biomass accumulates in stable or less active channels that are discon
nected from the destructive glacial braided stream. In November (Figure 13b), biofilm 
distributions appeared very different as compared to the summer, in fact pixels with high 
probabilities of being biofilms are found even in the active braidplain that during that 
time is occupied by a less destructive glacial stream. In more general terms, the distribu
tion evolution shows that biofilms tend to develop in the channels located on stable 
zones from June through mid-September while they tend to migrate towards the main 
active floodplain from mid-September onwards (fall at such altitudes).

Figure 13. Season distribution of biofilm on the floodplain of the Glacier d’Otemma. a) Biofilm 
occupation map (single and p-value corrected), from 26 June to 13 September; b) Probability map 
for the 5 November.
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4. Discussion

4.1. Choice of logistic models

The choice of logistic models in this study produced very clear but different results. Within 
the band ratios and groups, the ExG and GLI significantly underperformed for the other 
indices analysed (Tables 3, 4 and 5). We assume that this finding is related to the nature of 
the benthic biofilms in the investigated forefield that were mainly reddish and/or brown
ish. In fact, both the ExG and GLI indices reduce the RGB information by using the green 
band as the principal component in the ratios and this may have biased the detection of 
red or brown patches. For instance, the GLI index (Louhaichi et al., 2001) was developed to 
detect wheat leaves and stems that have typically high green DNs compared to red (and 
blue). The NGRD, VARI, and RGRI ratios produced better results as compared to the ExG 
and GLI indices (Tables 3, 4 and 5). Similar to the GLI and ExG indices, the green band is 
a central component of the NGRD, VARI, and RGRI ratios, though the red band is more 
important which may explain their superior performance. Interestingly, the NGRD, VARI 
and RGRI indices had performances equal to the EXR, RCC, and KANA indices in Group 4 
(Table 5), but this could be explained by the presence of snow over the floodplain than 
created a very dichotomous situation where only snow-free channels had a different 
spectral signature compared to the rest of the floodplain. Overall, the ExR, RCC, and KANA 
indices gave the best results (Tables 3, 4 and 5). This may be explained by the central role 
of the red band in the calculations that matched with most of the biofilm pixels used in 
the training/validation process. The positive role of the red band is well known in 
vegetation studies. In fact, most vegetation indices use the red band combined with 
the near-infrared to map vegetation (Gitelson et al., 2002).

Finally, the KANA index (Kawashima and Nakatani, 1998) was selected for the mapping 
of phototrophic biofilms because it showed the overall best performance across the tests 
reported here. It has been shown (Kawashima and Nakatani, 1998; Gitelson et al., 2002) 
that the use of the blue band can have a beneficial effect when phototrophically active 
pigments must be detected. Kawashima and Nakatani (1998) noted that the blue band 
had a nearly constant response to chlorophyll-a content regardless of meteorological 
conditions, while red (and green) a negative correlation, and the use of blue as a base 
value (i.e. R-B) reduces the probability of having biased values. We therefore assume that 
the KANA index had generally better performances because of the presence of mostly 
reddish and/or brownish biofilms and the fact that the blue band attenuated the effects of 
changing light conditions.

4.2. Orthomosaic normalization and biofilm maps

Although as part of our study we undertook single scene-by-scene calibration, this is 
labour intensive. Hence, we tested the use of a smaller number of reference images to 
develop the calibrations. It has been shown that multi-temporal image comparison can be 
difficult due to non-scene dependent changes (Schott et al., 1988; Du et al., 2002; Song 
and Woodcock, 2003; Liu et al., 2007; Bao et al., 2012) that can affect the reflectivity of 
ground objects, and hence create inter-scene differences that are not related to the signal 
that is of interest. The goal of the PIF normalization was to homogenize the set of 
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orthomosaics to resemble as much as possible our reference ones allowing the calibration 
of one single logistic model within each group: 14 July (groups 1 and 3), 26 July (Group 2) 
and 5 November (Group 4). The reference mosaics were converted into visible band ratios 
(Table 2) that have the advantage of reducing the RGB information to a point that is less 
sensitive to the solar radiation (Woebbecke et al., 1995; Kawashima and Nakatani, 1998; 
Cheng et al., 2001).

Despite a generalized RMSE reduction after the PIF normalization (Figure 3), the 
relative radiometric normalization method showed relatively mixed results whether con
sidered in terms of the validation results (Figure 7) and the impacts on the occupation 
maps (Figures 9 and 10). Individual scenes had variable differences in their red, green and 
blue digital numbers before normalization and normalization was variable in the extent to 
which these differences could be reduced (Figure 3). Differences in the covariance of 
scene and reference digital numbers (compare Figures 4, 5 and 6) reflect this variable 
performance. We think it can be traced to three main reasons. First, it is preferable to 
select artificial PIFs (e.g. roofs, streets) to perform a radiometric normalization (Schott et 
al., 1988), but these only partially available here for the 55% of PIFs that were ground 
control points. These covered a restricted spectral range as they were black and yellow 
and were also distributed to optimize the SfM photogrammetric processing and not for 
the need of spectral normalization. Second, when shadows were present over the flood
plain (e.g. Figure 4b), they modified the reflectivity of the ground and those PIFs occurring 
in a shadowed portion of the floodplain had very different values compared to those of 
the reference orthomosaics. This increased point dispersion in the model (e.g. Figure 4a). 
Shadows could only be corrected at the scale of the micro-topography due to unknown 
cloud cover. Third, it took 3.5 hours to image the complete floodplain, and when the 
floodplain was imaged was conditioned by the need to survey at low flows when as little 
of the floodplain as possible was inundated by turbid water. PIF normalization works well 
with satellites (Schott et al., 1988; Liu et al., 2007) that instantaneously image large areas, 
which by definition contain no spatial signature of temporally evolving light conditions. 
This is partly reflected in differences between groups. Group 1 contained data from close 
to the summer solstice when the survey had to be completed before the sun had risen 
above local mountains due to rapid water level rise mid-morning. Group 3 contained data 
at the end of the summer when the river stage rose later and so the flight could be 
undertaken in fully light conditions. Both had more homogeneous lighting and the 
normalization was needed less (Group 3, Figure 3) or was more effective (Group 1, 
Figure 3) than for Group 2. Commonly, during Group 2 image acquisition the floodplain 
went from being fully shaded to being fully exposed to sunlight.

The negative impacts of normalization were reflected in a general overestimation of 
biofilm extent as reflected in the occupation and OoD maps (Figure 9e,f and 10d,e). This 
was partly reflected in the validation statistics (Figure 7) which suggested very mixed 
results, even degrading statistics markedly and notably for the Group 2 data. The over
estimation reflects the problem that re-assemblage of the single normalized bands into an 
RGB image can lead to a colour tone deterioration (Figure 4b), potentially caused by a new 
predominance of one of the three bands over the others. Here, the PIF normalization 
increased the DNs of our orthomosaics, then the index values and resulted in 
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a generalized and systematic exceedance of the reference thresholds (i.e. 0.5 probability 
threshold) when occupation maps were generated. Notably, red DNs (e.g. wet sediments) 
became red dominated and so mapped as being biofilms.

This would question whether normalization of the sort used here was appropriate and 
perhaps suggests the need for a more physically based model-informed spectral correc
tion (e.g. one that could be time-dependent when ambient lighting changes during data 
collection). The raw datasets were actually more consistent with the single image data
sets. However, they had a tendency to underestimate biofilm extent (Figure 10b,c). This is 
likely because the reference thresholds from the logistic model were too strong for most 
of the dates such that less biofilm was detected when the reference 0.5-probability limit 
was applied.

The single image calibration models produced the cleanest probability and occupation 
maps (Figure 9a,b). This is not surprising as we trained a logistic model for each ortho
mosaic, resulting in models most suitable for the given situation (i.e. adapted threshold). 
They performed better in capturing the lighting characteristics of each scene provided 
there is reasonable lighting homogeneity within that scene. The reason for the multi-hour 
UAV flight time was to secure the high resolution needed to capture biofilm development 
for small scales over a large spatial extent. Thus, for these kinds of surveys, lighting is likely 
to be an issue and, at least until a more advanced normalization process is developed, it 
implies that more labour-intensive scene-specific calibration models are required.

We also evaluated the extent to which micro-topography shadows had an impact on 
our classifications. Micro-topography shadows were successfully detected and masked 
through segmentation of the potential solar radiation models (Kumar et al., 1997). The 
DEM resolution was sufficiently fine that in some cases moving surfaces (e.g. water) were 
mapped as having relief that created shadow (Figure 8c). Such artefacts occurred where 
biofilm either cannot develop or be visible due to the highly suspended sediment load. 
Although the shadow correction had a clearly beneficial effect on removing zones that 
were not biofilms, there were some zones where masking micro-topography shadows 
excluded also pixels that were likely to be true biofilms and the OoD between the single 
and single-shadow datasets (Figure 10a) demonstrated this. These were commonly 
related to pebbles and boulders located within and/or on the edges of channels that 
created shadowed pixels that were subsequently masked and excluded from calculation 
in the occupation maps. The positive contribution of the micro-topography models was 
limited to those pixels located on the transitions between steep banks and water surfaces 
that likely caused spectral confusion in our models.

Finally, the runs test provided a biologically informed statistical way to filter our 
occupations maps in which the pixels with p-value >0.05 were discarded in occupation 
calculations. In the single and raw datasets (Figures 11(a–d)) and Figure 12(a–d)), this 
might have excluded some pixels that were likely to reflect true biofilm dynamics (e.g. 
biofilms in side channels), but ensured that what was eventually mapped had a 95% 
probability of reflecting true dynamics (either presence, presence/destruction, or 
absence). The normalized dataset quality (Figure 12e,f) was enhanced as compared to 
previous results (Figure 9e,f), but some of the systematic bias caused by the normalization 
process was still present.

28 M. RONCORONI ET AL.



Our results suggested that phototrophic biofilms can be mapped through the combi
nation of very low-cost UAVs and RGB cameras, but attention must be paid to lighting, 
hence the calibration of a scene-to-scene model (i.e. single) and using a biologically 
informed statistical feature appeared to be the most well suited for the range of condi
tions we encountered during the data collection.

4.3. Seasonal distribution of phototrophic biofilms and implications

Being able to map biofilm distributions and cumulative biofilm presence at high temporal 
and spatial resolutions provides important insights into benthic habitat functioning and 
how it responds to and co-evolves with external stressors. It is well known that glacial 
forefields are harsh environments due to their highly dynamic and unstable nature 
(Marren 2005; Heckmannet al., 2016). Bakker et al., (2019) demonstrated that during the 
summer glacial streams continuously rework their accommodation spaces (i.e. flood
plains) by erosion and deposition processes, resulting in low rates of environmental 
stability. This creates a disturbance-dominated regime that can influence biofilm devel
opment and/or survival, and is mainly controlled by the glacial-driven flow hydraulics. Bed 
load (i.e. bed instability) may impede biofilm development (Uehlinger et al., 1998; 
Uehlinger et al., 2002, 20102010 Rott et al., 2006), while high shear stresses may scour 
developed communities (Biggs and Close, 1989; Horner et al., 1990; Biggs and Thomsen, 
1995; Cullis et al., 2014). The high suspended load may be responsible for biofilm abrasion 
(Horner and Welch, 1981; Horner et al., 1990; Francoeur and Biggs, 2006; Luce et al., 2010, 
2013) but also limit the access to the photosynthetically active radiation (Uehlinger et al., 
2010). This explains why biofilm biomass is low during the melt-season (Uehlinger et al., 
2002, 2010), but reaches two maxima during spring and fall, known as ‘windows of 
opportunity’ (see Uehlinger et al., 2002, 2010), because environmental conditions are 
less harsh (i.e. low discharge, low turbidity, and low or no bedload). From our maps 
(Figure 12), it is not possible to retrieve biofilm biomass directly, but our results tend to 
confirm the assumptions of Uehlinger and colleagues in relation to an autumn window. 
Biofilm presence was restricted to stable and water-fed terraces from June through late 
August. As the rate of morphodynamic change reduced from late August onwards, biofilm 
extent increased and presumably reached its highest mapped surface in November when 
the gelatinous dark-brown Hydrurus foetidus (Rott et al., 2006; Uehlinger et al., 2010) 
colonized extensive areas, including the turbid, most morphodynamically active main 
stream.

5. Conclusion

Here, we present a framework for mapping biofilm distributions by applying logistic 
regression to visible band ratios using UAV-based imagery processed using SfM-MVS 
photogrammetry. We demonstrated that with mapping at high frequency (daily) and 
spatial (cm) resolution, there is no need for expensive multi- or even hyper-spectral 
sensors in order to obtain valuable information on biofilm dynamics. Use of a suitable 
visible band ratio would be enough in most mapping scenarios due to the different 
colours of biofilms compared to the un-colonized substratum and these are retrieva
ble in the visible range. We applied a basic linear normalization process to normalize 
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our orthomosaics. The effects of this were not conclusive and this was primarily 
because of non-homogeneous light conditions that caused considerable scatter in 
the training relations, but also meant that a linear correction was not always appro
priate. A biologically-informed filter was particularly effective at removing points that 
would otherwise have been mapped as biofilms. Despite these issues, we were able to 
generate a time-series of distribution maps of an Alpine glacial floodplain that covers 
an entire melting season, from June to September. These maps will allow new insights 
on how biofilms develop and co-evolve in the harsh environment of a glacial forefield.

Acknowledgements

We would like to acknowledge all the people that helped us in collecting the UAV images during the 
Otemma field campaign of summer 2020, in particular: Adrijan Seltaj, Frédéric Lardet, Margaux 
Hoffman, Alissa Pott, Lara Mercier, Gwendoline Perritaz, Boris Ouvry, Isabel Herr, Pierre Hauptmann, 
Valentine Grünwald and Valentin Cina-Colman.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study is supported by Swiss National Science Foundation Sinergia grant CRSII5_180241 
ENSEMBLE awarded to T. I. Battin, S. N. Lane, M. Lever and P. Wilmes; Schweizerischer 
Nationalfonds zur Förderung der Wissenschaftlichen Forschung [CRSII5_180241]

ORCID

Matteo Roncoroni http://orcid.org/0000-0001-6957-6225
Davide Mancini http://orcid.org/0000-0003-4022-4351
Tyler J. Kohler http://orcid.org/0000-0001-5137-4844
Stuart N. Lane http://orcid.org/0000-0002-6077-6076

Data availability statement

Data available at https://doi.org/10.5281/zenodo.6.598305

References

Adamsen, F. J., P. J. Pinter, E. M. Barnes, R. L. LaMorte, G. W. Wall, S. W. Leavitt, and B. A. Kimball. 1999. 
“Measuring Wheat Senescence with a Digital Camera.” Crop Science 39 (3): 
cropsci1999.0011183X003900030019x. doi:10.2135/cropsci1999.0011183X003900030019x.

Bakker, M., G. Antoniazza, E. Odermatt, and S. N. Lane. 2019. “Morphological Response of an Alpine 
Braided Reach to Sediment-laden Flow Events.” Journal of Geophysical Research: Earth Surface 
124 (5): 1310–1328. doi:https://doi.org/10.1029/2018JF004811 .

30 M. RONCORONI ET AL.

https://doi.org/10.5281/zenodo.6598305
https://doi.org/10.2135/cropsci1999.0011183X003900030019x
https://doi.org/10.1029/2018JF004811


Bao, N., A. M. Lechner, A. Fletcher, D. Mulligan, A. Mellor, and Z. Bai. 2012. “Comparison of Relative 
Radiometric Normalization Methods Using Pseudo-Invariant Features for Change Detection 
Studies in Rural and Urban Landscapes.” Journal of Applied Remote Sensing 6 (1): 063578. 
doi:10.1117/1.JRS.6.063578.

Battin, T. J., L. A. Kaplan, J. Denis Newbold, and C. M. E. Hansen. 2003. “Contributions of Microbial 
Biofilms to Ecosystem Processes in Stream Mesocosms.” Nature 426 (6965): 439–442. doi:10.1038/ 
nature02152.

Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and 
F. Sabater. 2008. “Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks.” Nature 
Geoscience 1 (2): 95–100. doi:10.1038/ngeo101.

Battin, T. J., K. Besemer, M. M. Bengtsson, A. M. Romani, and A. I. Packmann. 2016. “The Ecology and 
Biogeochemistry of Stream Biofilms.” Nature Reviews: Microbiology 14 (4): 251–263. doi:10.1038/ 
nrmicro.2016.15.

Benyoucef, I., E. Blandin, A. Lerouxel, B. Jesus, P. Rosa, V. Méléder, P. Launeau, and L. Barillé. 2014. 
“Microphytobenthos Interannual Variations in a North-European Estuary (Loire Estuary, France) 
Detected by Visible-Infrared Multispectral Remote Sensing.” Estuarine, Coastal and Shelf Science 
136: 43–52. doi:10.1016/j.ecss.2013.11.007.

Biggs, B. J. F. and M. E. Close. 1989. “Periphyton Biomass Dynamics in Gravel Bed Rivers: The Relative 
Effects of Flows and Nutrients.” Freshwater Biology 22 (2): 209–231. doi:10.1111/j.1365-2427.1989. 
tb01096.x.

Biggs, B. J. F. and H. A. Thomsen. 1995. “Disturbance of Stream Periphyton by Perturbations in Shear 
Stress: Time to Structural Failure and Differences in Community Resistance.” Journal of Phycology 
31 (2): 233–241. doi:10.1111/j.0022-3646.1995.00233.x.

Bioucas-Dias, J. M., A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot. 2013. 
“Hyperspectral Remote Sensing Data Analysis and Future Challenges.” IEEE Geoscience and 
Remote Sensing Magazine 1 (2): 6–36. doi:10.1109/MGRS.2013.2244672.

Brückner, M. Z. M., C. Schwarz, G. Coco, A. Baar, M. Boechat Albernaz, and M. G. Kleinhans. 2021. 
“Benthic Species as Mud Patrol—modelled Effects of Bioturbators and Biofilms on Large-Scale 
Estuarine Mud and Morphology.” Earth Surface Processes and Landforms 46 (6): 1128–1144. 
doi:10.1002/esp.5080.

Carbonneau, P. E., S. N. Lane, and N. E. Bergeron. 2004. “Catchment-Scale Mapping of Surface Grain 
Size in Gravel Bed Rivers Using Airborne Digital Imagery: MAPPING GRAIN SIZE in GRAVEL BED 
RIVERS.” Water Resources Research 40 (7). doi:10.1029/2003WR002759.

Chabot, D., C. Dillon, A. Shemrock, N. Weissflog, and E. Sager. 2018. “An Object-Based Image Analysis 
Workflow for Monitoring Shallow-Water Aquatic Vegetation in Multispectral Drone Imagery.” 
ISPRS International Journal of Geo-Information 7 (8): 294. doi:10.3390/ijgi7080294.

Cheng, H. D., X. H. Jiang, Y. Sun, and J. Wang. 2001. “Color Image Segmentation: Advances and 
Prospects.” Pattern Recognition 34 (12): 2259–2281. doi:10.1016/S0031-3203(00)00149-7.

Chicco, D. and G. Jurman. 2020. “The Advantages of the Matthews Correlation Coefficient (MCC) 
Over F1 Score and Accuracy in Binary Classification Evaluation.” BMC Genomics 21 (1): 6. 
doi:10.1186/s12864-019-6413-7.

Combe, J.-P., P. Launeau, V. Carrère, D. Despan, V. Méléder, L. Barillé, and C. Sotin. 2005. “Mapping 
Microphytobenthos Biomass by Non-Linear Inversion of Visible-Infrared Hyperspectral Images.” 
Remote Sensing of Environment 98 (4): 371–387. doi:10.1016/j.rse.2005.07.010.

Costerton, J. W., K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, and T. J. Marrie. 1987. 
“Bacterial Biofilms in Nature and Disease.” Annual Review of Microbiology 41 (1): 435–464. 
doi:10.1146/annurev.mi.41.100187.002251.

Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott. 1995. 
“Microbial Biofilms.” Annual Review of Microbiology 49 (1): 711–745. doi:10.1146/annurev. 
mi.49.100195.003431.

Cullis, J. D. S., L. F. Stanish, and D. M. McKnight. 2014. “Diel Flow Pulses Drive Particulate Organic 
Matter Transport from Microbial Mats in a Glacial Meltwater Stream in the McMurdo Dry Valleys.” 
Water Resources Research 50 (1): 86–97. doi:10.1002/2013WR014061.

INTERNATIONAL JOURNAL OF REMOTE SENSING 31

https://doi.org/10.1117/1.JRS.6.063578
https://doi.org/10.1038/nature02152
https://doi.org/10.1038/nature02152
https://doi.org/10.1038/ngeo101
https://doi.org/10.1038/nrmicro.2016.15
https://doi.org/10.1038/nrmicro.2016.15
https://doi.org/10.1016/j.ecss.2013.11.007
https://doi.org/10.1111/j.1365-2427.1989.tb01096.x
https://doi.org/10.1111/j.1365-2427.1989.tb01096.x
https://doi.org/10.1111/j.0022-3646.1995.00233.x
https://doi.org/10.1109/MGRS.2013.2244672
https://doi.org/10.1002/esp.5080
https://doi.org/10.1029/2003WR002759
https://doi.org/10.3390/ijgi7080294
https://doi.org/10.1016/S0031-3203(00)00149-7
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1016/j.rse.2005.07.010
https://doi.org/10.1146/annurev.mi.41.100187.002251
https://doi.org/10.1146/annurev.mi.49.100195.003431
https://doi.org/10.1146/annurev.mi.49.100195.003431
https://doi.org/10.1002/2013WR014061


Dietrich, J. T. 2017. “Bathymetric Structure-From-Motion: Extracting Shallow Stream Bathymetry 
from Multi-View Stereo Photogrammetry.” Earth Surface Processes and Landforms 42 (2): 355–364. 
doi:10.1002/esp.4060.

Du, Y., P. M. Teillet, and J. Cihlar. 2002. “Radiometric Normalization of Multitemporal High-Resolution 
Satellite Images with Quality Control for Land Cover Change Detection.” Remote Sensing of 
Environment 82 (1): 123–134. doi:10.1016/S0034-4257(02)00029-9.

Fang, H., Q. Shang, M. Chen, and G. He. 2014. “Changes in the Critical Erosion Velocity for Sediment 
Colonized by Biofilm.” Sedimentology 61 (3): 648–659. doi:10.1111/sed.12065.

Flemming, H.-C. and J. Wingender. 2010. “The Biofilm Matrix.” Nature Reviews: Microbiology 8 (9): 
623–633. doi:10.1038/nrmicro2415.

Flemming, H.-C. and S. Wuertz. 2019. “Bacteria and Archaea on Earth and Their Abundance in 
Biofilms.” Nature Reviews: Microbiology 17 (4): 247–260. doi:10.1038/s41579-019-0158-9.

Flynn, K. and S. Chapra. 2014. “Remote Sensing of Submerged Aquatic Vegetation in a Shallow 
Non-Turbid River Using an Unmanned Aerial Vehicle.” Remote Sensing 6 (12): 12815–12836. 
doi:10.3390/rs61212815.

Fonstad, M. A., J. T. Dietrich, B. C. Courville, J. L. Jensen, and P. E. Carbonneau. 2013. “Topographic 
Structure from Motion: A New Development in Photogrammetric Measurement.” Earth Surface 
Processes and Landforms 38 (4): 421–430. doi:10.1002/esp.3366.

Francoeur, S. N. and B. J. F. Biggs. 2006. “Short-Term Effects of Elevated Velocity and Sediment 
Abrasion on Benthic Algal Communities.” Hydrobiologia 561 (1): 59–69. doi:10.1007/s10750-005- 
1604-4.

Gerbersdorf, S. U., W. Manz, and D. M. Paterson. 2008. “The Engineering Potential of Natural Benthic 
Bacterial Assemblages in Terms of the Erosion Resistance of Sediments.” FEMS Microbiology 
Ecology 66 (2): 282–294. doi:10.1111/j.1574-6941.2008.00586.x.

Gerbersdorf, S. U., B. Westrich, and D. M. Paterson. 2009. “Microbial Extracellular Polymeric 
Substances (EPS) in Fresh Water Sediments.” Microbial Ecology 58 (2): 334–349. doi:10.1007/ 
s00248-009-9498-8.

Gerbersdorf, S. U. and S. Wieprecht. 2015. “Biostabilization of Cohesive Sediments: Revisiting the 
Role of Abiotic Conditions, Physiology and Diversity of Microbes, Polymeric Secretion, and Biofilm 
Architecture.” Geobiology 13 (1): 68–97. doi:10.1111/gbi.12115.

Gitelson, A. A., Y. J. Kaufman, R. Stark, and D. Rundquist. 2002. “Novel Algorithms for Remote 
Estimation of Vegetation Fraction.” Remote Sensing of Environment 80 (1): 76–87. doi:10.1016/ 
S0034-4257(01)00289-9.

Harrison L R, Legleiter C J, Overstreet B T, Bell T W and Hannon J. (2020). Assessing the potential for 
spectrally based remote sensing of salmon spawning locations. River Res Applic, 36(8), 1618– 
1632. 10.1002/rra.3690

Heckmann, T., S. McColl, and D. Morche. 2016. “Retreating Ice: Research in Pro-Glacial Areas Matters.” 
Earth Surface Processes and Landforms 41 (2): 271–276. doi:10.1002/esp.3858.

Horner, R. R. and E. B. Welch. 1981. “Stream Periphyton Development in Relation to Current Velocity 
and Nutrients.” Canadian Journal of Fisheries and Aquatic Sciences 38 (4): 449–457. doi:10.1139/ 
f81-062.

Horner, R. R., E. B. Welch, M. R. Seeley, and J. M. Jacoby. 1990. “Responses of Periphyton to Changes 
in Current Velocity, Suspended Sediment and Phosphorus Concentration.” Freshwater Biology 
24 (2): 215–232. doi:10.1111/j.1365-2427.1990.tb00704.x.

James, M. R. and S. Robson. 2014. “Mitigating Systematic Error in Topographic Models Derived from 
UAV and Ground-Based Image Networks.” Earth Surface Processes and Landforms 39 (10): 
1413–1420. doi:10.1002/esp.3609.

James, M. R., S. Robson, S. D’-Oleire-Oltmanns, and U. Niethammer. 2017. “Optimising UAV 
Topographic Surveys Processed with Structure-From-Motion: Ground Control Quality, Quantity 
and Bundle Adjustment.” Geomorphology 280: 51–66. doi:10.1016/j.geomorph.2016.11.021.

James, M. R., G. Antoniazza, S. Robson, and S. N. Lane. 2020. “Mitigating Systematic Error in 
Topographic Models for Geomorphic Change Detection: Accuracy, Precision and 
Considerations Beyond Off-nadir Imagery.” Earth Surface Processes and Landforms 45 (10): 
2251–2271. doi:10.1002/esp.4878.

32 M. RONCORONI ET AL.

https://doi.org/10.1002/esp.4060
https://doi.org/10.1016/S0034-4257(02)00029-9
https://doi.org/10.1111/sed.12065
https://doi.org/10.1038/nrmicro2415
https://doi.org/10.1038/s41579-019-0158-9
https://doi.org/10.3390/rs61212815
https://doi.org/10.1002/esp.3366
https://doi.org/10.1007/s10750-005-1604-4
https://doi.org/10.1007/s10750-005-1604-4
https://doi.org/10.1111/j.1574-6941.2008.00586.x
https://doi.org/10.1007/s00248-009-9498-8
https://doi.org/10.1007/s00248-009-9498-8
https://doi.org/10.1111/gbi.12115
https://doi.org/10.1016/S0034-4257(01)00289-9
https://doi.org/10.1016/S0034-4257(01)00289-9
https://doi.org/10.1002/rra.3690
https://doi.org/10.1002/esp.3858
https://doi.org/10.1139/f81-062
https://doi.org/10.1139/f81-062
https://doi.org/10.1111/j.1365-2427.1990.tb00704.x
https://doi.org/10.1002/esp.3609
https://doi.org/10.1016/j.geomorph.2016.11.021
https://doi.org/10.1002/esp.4878


Jones, C. G., J. H. Lawton, and M. Shachak. 1994. ”Organisms as Ecosystem Engineers.” Oikos 69 (3): 
373–386. JSTOR. doi:10.2307/3545850.

Kawashima, S. and M. Nakatani. 1998. “An Algorithm for Estimating Chlorophyll Content in Leaves 
Using a Video Camera.” Annals of Botany 81 (1): 49–54. doi:10.1006/anbo.1997.0544.

Kazemipour, F., P. Launeau, and V. Méléder. 2012. “Microphytobenthos Biomass Mapping Using the 
Optical Model of Diatom Biofilms: Application to Hyperspectral Images of Bourgneuf Bay.” 
Remote Sensing of Environment 127: 1–13. doi:10.1016/j.rse.2012.08.016.

Kislik, C., I. Dronova, and M. Kelly. 2018. “Uavs in Support of Algal Bloom Research: A Review of 
Current Applications and Future Opportunities.” Drones 2 (4): 35. doi:10.3390/drones2040035.

Kislik, C., L. Genzoli, A. Lyons, and M. Kelly. 2020. “Application of UAV Imagery to Detect and Quantify 
Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River.” Remote 
Sensing 12 (20): 3332. doi:10.3390/rs12203332.

Kumar, L., A. K. Skidmore, and E. Knowles. 1997. “Modelling Topographic Variation in Solar Radiation 
in a GIS Environment.” International Journal of Geographical Information Science 11 (5): 475–497. 
doi:10.1080/136588197242266.

Lamberti, G. A. 1996. “The Role of Periphyton in Benthic Food Webs.” In Algal Ecology, 533–572. 
Elsevier. doi:10.1016/B978-012668450-6/50046-1.

Lane, S. N., A. Gentile, and L. Goldenschue. 2020. “Combining UAV-Based SfM-MVS Photogrammetry 
with Conventional Monitoring to Set Environmental Flows: Modifying Dam Flushing Flows to 
Improve Alpine Stream Habitat.” Remote Sensing 12 (23): 3868. doi:10.3390/rs12233868.

Launeau, P., V. Méléder, C. Verpoorter, L. Barillé, F. Kazemipour-Ricci, M. Giraud, B. Jesus, and E. Le 
Menn. 2018. “Microphytobenthos Biomass and Diversity Mapping at Different Spatial Scales with 
a Hyperspectral Optical Model.” Remote Sensing 10 (5): 716. doi:10.3390/rs10050716.

Liu, Y., T. Yano, S. Nishiyama, and R. Kimura. 2007. “Radiometric Correction for Linear Change- 
detection Techniques: Analysis in Bi-temporal Space.” International Journal of Remote Sensing 
28 (22): 5143–5157. doi:10.1080/01431160701268954.

Louhaichi, M., M. M. Borman, and D. E. Johnson. 2001. “Spatially Located Platform and Aerial 
Photography for Documentation of Grazing Impacts on Wheat.” Geocarto International 16 (1): 
65–70. doi:10.1080/10106040108542184.

Luce, J. J., A. Cattaneo, and M. F. Lapointe. 2010. “Spatial Patterns in Periphyton Biomass After Low- 
Magnitude Flow Spates: Geomorphic Factors Affecting Patchiness Across Gravel–cobble Riffles.” 
Journal of the North American Benthological Society 29 (2): 614–626. doi:10.1899/09-059.1.

Luce, J. J., M. F. Lapointe, A. G. Roy, and D. B. Ketterling. 2013. “The Effects of Sand Abrasion of 
a Predominantly Stable Stream Bed on Periphyton Biomass Losses: Effects of Sand Abrasion of 
a Stable Stream Bed on Periphyton Biomass Losses.” Ecohydrology 6 (4): 689–699. doi:10.1002/ 
eco.1332.

Mancini, D. and S. N. Lane. 2020. “Changes in Sediment Connectivity Following Glacial 
Debuttressing in an Alpine Valley System.” Geomorphology 352: 106987. doi:10.1016/j. 
geomorph.2019.106987.

Mao, W., Y. Wang, and Y. Wang. 2003. “Real-Time Detection of Between-Row Weeds Using 
Machine Vision.” 2003, Las Vegas, NV July 27-30, 2003. 2003, Las Vegas, NV, July 27-30.  
10.13031/2013.15381

Marcus, W. A. and M. A. Fonstad. 2008. “Optical Remote Mapping of Rivers at Sub-Meter Resolutions 
and Watershed Extents.” Earth Surface Processes and Landforms 33 (1): 4–24. doi:10.1002/ 
esp.1637.

Marren, P. M. 2005. “Magnitude and Frequency in Proglacial Rivers: A Geomorphological and 
Sedimentological Perspective.” Earth-Science Reviews 70 (3): 203–251. doi:10.1016/j. 
earscirev.2004.12.002.

Méléder, V., P. Launeau, L. Barillé, and Y. Rincé. 2003. “Microphytobenthos Assemblage Mapping by 
Spatial Visible-Infrared Remote Sensing in a Shellfish Ecosystem.” Comptes Rendus Biologies 
326 (4): 377–389. doi:10.1016/S1631-0691(03)00125-2.

Meyer, G. E., T. Mehta, M. F. Kocher, D. A. Mortensen, and A. Samal. 1998. “Textural Imaging and 
Discriminant Analysis for Distinguishing weeds for Spot Spraying.” Transactions of the ASAE 41 (4): 
1189–1197. doi:10.13031/2013.17244.

INTERNATIONAL JOURNAL OF REMOTE SENSING 33

https://doi.org/10.2307/3545850
https://doi.org/10.1006/anbo.1997.0544
https://doi.org/10.1016/j.rse.2012.08.016
https://doi.org/10.3390/drones2040035
https://doi.org/10.3390/rs12203332
https://doi.org/10.1080/136588197242266
https://doi.org/10.1016/B978-012668450-6/50046-1
https://doi.org/10.3390/rs12233868
https://doi.org/10.3390/rs10050716
https://doi.org/10.1080/01431160701268954
https://doi.org/10.1080/10106040108542184
https://doi.org/10.1899/09-059.1
https://doi.org/10.1002/eco.1332
https://doi.org/10.1002/eco.1332
https://doi.org/10.1016/j.geomorph.2019.106987
https://doi.org/10.1016/j.geomorph.2019.106987
https://doi.org/10.13031/2013.15381
https://doi.org/10.13031/2013.15381
https://doi.org/10.1002/esp.1637
https://doi.org/10.1002/esp.1637
https://doi.org/10.1016/j.earscirev.2004.12.002
https://doi.org/10.1016/j.earscirev.2004.12.002
https://doi.org/10.1016/S1631-0691(03)00125-2
https://doi.org/10.13031/2013.17244


Meyer, G. E. and J. C. Neto. 2008. “Verification of Color Vegetation Indices for Automated Crop 
Imaging Applications.” Computers and Electronics in Agriculture 63 (2): 282–293. doi:10.1016/j. 
compag.2008.03.009.

Miller, H. R. and S. N. Lane. 2019. “Biogeomorphic Feedbacks and the Ecosystem Engineering of 
Recently Deglaciated Terrain.” Progress in Physical Geography: Earth and Environment 43 (1): 
24–45. doi:10.1177/0309133318816536.

Neumeier, U., C. H. Lucas, and M. Collins. 2006. “Erodibility and Erosion Patterns of Mudflat 
Sediments Investigated Using an Annular Flume.” Aquatic Ecology 40 (4): 543–554. doi:10.1007/ 
s10452-004-0189-8.

Power, S. N., M. R. Salvatore, E. R. Sokol, L. F. Stanish, and J. E. Barrett. 2020. “Estimating Microbial Mat 
Biomass in the McMurdo Dry Valleys, Antarctica Using Satellite Imagery and Ground Surveys.” 
Polar Biology 43 (11): 1753–1767. doi:10.1007/s00300-020-02742-y.

Roncoroni, M., J. Brandani, T. I. Battin, and S. N. Lane. 2019. “Ecosystem Engineers: Biofilms and the 
Ontogeny of Glacier Floodplain Ecosystems.” Wiley Interdisciplinary Reviews: Water 6 (6). 
doi:10.1002/wat2.1390.

Roncoroni, M. and S. N. Lane. 2019. “A framework for using small Unmanned Aircraft Systems 
(sUASs) and SfM photogrammetry to detect salmonid redds.” Ecological Informatics 53: 100976. 
doi:10.1016/j.ecoinf.2019.100976.

Rott, E., M. Cantonati, L. Füreder, and P. Pfister. 2006. “Benthic Algae in High Altitude Streams of the 
Alps – a Neglected Component of the Aquatic Biota.” Hydrobiologia 562 (1): 195–216. 
doi:10.1007/s10750-005-1811-z.

Saberioon, M. M., M. S. M. Amin, A. R. Anuar, A. Gholizadeh, A. Wayayok, and S. Khairunniza-Bejo. 
2014. “Assessment of Rice Leaf Chlorophyll Content Using Visible Bands at Different Growth 
Stages at Both the Leaf and Canopy Scale.” International Journal of Applied Earth Observation and 
Geoinformation 32: 35–45. doi:10.1016/j.jag.2014.03.018.

Salvatore, M. R., S. R. Borges, J. E. Barrett, E. R. Sokol, L. F. Stanish, S. N. Power, and P. Morin. 2020. 
“Remote Characterization of Photosynthetic Communities in the Fryxell Basin of Taylor Valley, 
Antarctica.” Antarctic Science 32 (4): 255–270. doi:10.1017/S0954102020000176.

Schott, J. R., C. Salvaggio, and W. J. Volchok. 1988. “Radiometric Scene Normalization Using 
Pseudoinvariant Features.” Remote Sensing of Environment 26 (1): 1–16. doi:10.1016/0034- 
4257(88)90116-2.

Schroeder, T. A., W. B. Cohen, C. Song, M. J. Canty, and Z. Yang. 2006. “Radiometric Correction of 
Multi-Temporal Landsat Data for Characterization of Early Successional Forest Patterns in Western 
Oregon.” Remote Sensing of Environment 103 (1): 16–26. doi:10.1016/j.rse.2006.03.008.

Song, C. and C. E. Woodcock. 2003. “Monitoring Forest Succession with Multitemporal Landsat 
Images: Factors of Uncertainty.” IEEE Transactions on Geoscience and Remote Sensing 41 (11): 
2557–2567. doi:10.1109/TGRS.2003.818367.

Song, B. and K. Park. 2020. “Detection of Aquatic Plants Using Multispectral UAV Imagery and 
Vegetation Index.” Remote Sensing 12 (3): 387. doi:10.3390/rs12030387.

Su, T.-C. and H.-T. Chou. 2015. “Application of Multispectral Sensors Carried on Unmanned Aerial 
Vehicle (UAV) to Trophic State Mapping of Small Reservoirs: A Case Study of Tain-Pu Reservoir in 
Kinmen, Taiwan.” Remote Sensing 7 (8): 10078–10097. doi:10.3390/rs70810078.

Taddia, Y., P. Russo, S. Lovo, and A. Pellegrinelli. 2020. “Multispectral UAV Monitoring of 
Submerged Seaweed in Shallow Water.” Applied Geomatics 12 (1): 19–34. doi:10.1007/s12518- 
019-00270-x.

Tamminga, A., C. Hugenholtz, B. Eaton, and M. Lapointe. 2015. “Hyperspatial Remote Sensing of 
Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): 
A First Assessment in the Context of River Research and Management: REMOTE SENSING USING 
UAVS.” River Research and Applications 31 (3): 379–391. doi:10.1002/rra.2743.

Tucker, C. J. 1979. “Red and Photographic Infrared Linear Combinations for Monitoring Vegetation.” 
Remote Sensing of Environment 8 (2): 127–150. doi:10.1016/0034-4257(79)90013-0.

Uehlinger, U., R. Zah, and H. Bürgi. 1998. “The Val Roseg Project: Temporal and Spatial Patterns of 
Benthic Algae in an Alpine Stream Ecosystem Influenced by Glacier Runoff.” IAHS Publ 248: 
419–424.

34 M. RONCORONI ET AL.

https://doi.org/10.1016/j.compag.2008.03.009
https://doi.org/10.1016/j.compag.2008.03.009
https://doi.org/10.1177/0309133318816536
https://doi.org/10.1007/s10452-004-0189-8
https://doi.org/10.1007/s10452-004-0189-8
https://doi.org/10.1007/s00300-020-02742-y
https://doi.org/10.1002/wat2.1390
https://doi.org/10.1016/j.ecoinf.2019.100976
https://doi.org/10.1007/s10750-005-1811-z
https://doi.org/10.1016/j.jag.2014.03.018
https://doi.org/10.1017/S0954102020000176
https://doi.org/10.1016/0034-4257(88)90116-2
https://doi.org/10.1016/0034-4257(88)90116-2
https://doi.org/10.1016/j.rse.2006.03.008
https://doi.org/10.1109/TGRS.2003.818367
https://doi.org/10.3390/rs12030387
https://doi.org/10.3390/rs70810078
https://doi.org/10.1007/s12518-019-00270-x
https://doi.org/10.1007/s12518-019-00270-x
https://doi.org/10.1002/rra.2743
https://doi.org/10.1016/0034-4257(79)90013-0


Uehlinger, U., K. Tockner, and F. Malard. 2002. “Ecological Windows in Glacial Stream Ecosystems.” 
Eawag News [Engl. Ed.] 54: 20–21.

Uehlinger, U., C. T. Robinson, M. Hieber, and R. Zah. 2010. “The Physico-Chemical Habitat Template 
for Periphyton in Alpine Glacial Streams Under a Changing Climate.” Hydrobiologia 657 (1): 
107–121. doi:10.1007/s10750-009-9963-x.

Westoby, M. J., J. Brasington, N. F. Glasser, M. J. Hambrey, and J. M. Reynolds. 2012. “‘Structure-From- 
Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications.” 
Geomorphology 179: 300–314. doi:10.1016/j.geomorph.2012.08.021.

Woebbecke, D. M., G. E. Meyer, K. Von Bargen, and D. A. Mortensen. 1995. “Color Indices for Weed 
Identification Under Various Soil, Residue, and Lighting Conditions.” Transactions of the ASAE 
38 (1): 259–269. doi:10.13031/2013.27838.

Woodget, A. S., P. E. Carbonneau, F. Visser, and I. P. Maddock. 2015. “Quantifying Submerged Fluvial 
Topography Using Hyperspatial Resolution UAS Imagery and Structure from Motion 
Photogrammetry.” Earth Surface Processes and Landforms 40 (1): 47–64. doi:10.1002/esp.3613.

Woodget, A. S. and R. Austrums. 2017. “Subaerial Gravel Size Measurement Using Topographic Data 
Derived from a UAV-SfM Approach.” Earth Surface Processes and Landforms 42 (9): 1434–1443. 
doi:10.1002/esp.4139.

Xu, F., Z. Gao, X. Jiang, W. Shang, J. Ning, D. Song, and J. Ai. 2018. “A UAV and S2A Data-Based 
Estimation of the Initial Biomass of Green Algae in the South Yellow Sea.” Marine Pollution Bulletin 
128: 408–414. doi:10.1016/j.marpolbul.2018.01.061.

INTERNATIONAL JOURNAL OF REMOTE SENSING 35

https://doi.org/10.1007/s10750-009-9963-x
https://doi.org/10.1016/j.geomorph.2012.08.021
https://doi.org/10.13031/2013.27838
https://doi.org/10.1002/esp.3613
https://doi.org/10.1002/esp.4139
https://doi.org/10.1016/j.marpolbul.2018.01.061

	Abstract
	Abstract
	1. Introduction
	2. Methods
	2.1. Study site
	2.2. Image and ground control point acquisition
	2.3. Image processing and orthomosaic generation
	2.4. Orthomosaic normalization
	2.5. Visible band ratios, logistic models, and probability maps
	2.6. Micro-topography shadow modelling
	2.7. Occupation maps and noise assessment

	3. Results
	3.1. Identification of logistic regression model type
	3.1.1. Groups 1 and 3
	3.1.2. Group 2
	3.1.3. Group 4

	3.2. Orthomosaic normalization
	3.3. Quantitative evaluation of the PIF normalization
	3.4. Shadow model
	3.5. Evaluation of the resultant biofilm maps
	3.6. Occupancy noise maps and <italic>p</italic>-value corrected occupation maps
	3.7. Biofilm distribution in space and time

	4. Discussion
	4.1. Choice of logistic models
	4.2. Orthomosaic normalization and biofilm maps
	4.3. Seasonal distribution of phototrophic biofilms and implications

	5. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	Data availability statement
	References

