
Designing a Tit-for-Tat Based Peer-to-Peer
Video-on-Demand System

Kévin Huguenin, Anne-Marie Kermarrec
IRISA / INRIA

Rennes, France

Vivek Rai, Maarten van Steen
Vrije Universiteit

Amsterdam, The Netherlands

ABSTRACT

Video-on-demand (VoD) is a next-generation Internet appli-
cation of increasing interest allowing users to start watching
a movie almost instantaneously by downloading the video
on-the-fly. Provided that all users contribute to the system,
shifting to the P2P paradigm allows efficient broadcast with
a limited-bandwidth source. In VoD applications pieces are
downloaded in order. This prevents us from directly apply-
ing a BitTorrent-like tit-for-tat incentive scheme. We advo-
cate the use of a loose structure in P2P VoD applications to
achieve high playback rates. In this paper we propose a de-
centralized piece dissemination scheme built on loosely cou-
pled structures maintained using gossip. Peers are grouped
into clusters depending on their playback position. Swarm-
ing is performed within the clusters while distributed feed-
ing ensures that less advanced clusters get missing pieces
from more advanced ones. Our simulations demonstrate
that structured dissemination improves from 61% to 77%
the achievable playback rate.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—Distributed Applications

General Terms

Algorithms, Design

1. INTRODUCTION
Video-on-demand (VoD) is a next-generation Internet ap-

plication of increasing interest allowing a user to start watch-
ing a movie of his choice almost instantaneously. The media
content is downloaded during the playback in order to en-
sure that every piece of the media is available at the device
when the playback position reaches it. Therefore, at the
price of a small time delay (i.e., compared to the naive solu-
tion consisting in downloading the full movie before starting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$10.00.

the playback), the movie can be played smoothly without in-
terruption. The high bitrates of the broadcast content and
the quality of service requirements of VoD applications make
centralized solutions costly.

Over the last decade, the peer-to-peer (P2P) paradigm
proved to be an efficient way to distribute content in a de-
centralized fashion [2,9]. A very popular P2P swarming pro-
tocol enabling file sharing between peers is BitTorrent [4].
With only a limited number of peers injecting content in the
system (namely seeders) and proper forwarding techniques
performed at the peers fetching content from the system
(namely leechers), P2P systems provide a fully decentral-
ized distributed framework allowing efficient content distri-
bution at low cost. Therefore, they appear as a natural
cheap solution for VoD applications. However, applying the
P2P paradigm to VoD systems is a difficult problem for two
reasons: (i) constraints on the piece download order and
the low piece diversity in the system drastically decrease
the performance of the system and (ii) considering the fact
that the download speed relies on possibly selfish peers, it
is impossible to guarantee any kind of quality of service to
the users.

While the first problem can be fixed by designing proper
piece dissemination schemes, the latter requires a complete
rethinking of the P2P paradigm: incentives should be used
to encourage peers to contribute their fair share to the sys-
tem. The tit-for-tat distributed incentives used in the pop-
ular file sharing system BitTorrent have proved to ensure
that a peer contributes to the swarming process as much as
it exploits the system. Tit-for-tat is implemented by limit-
ing piece exchange to a bidirectional transfer between peers
having mutual interest. Although tit-for-tat solves the prob-
lem of selfish peers, using them in a VoD application – where
the peers only have the pieces before their playback position
– raises the question of how two peers at different playback
positions could be useful to one other?

In this paper we propose a fully decentralized protocol for
efficient tit-for-tat based peer-to-peer VoD systems. This
protocol trades the traditional random piece dissemination
scheme against a loosely structured dissemination scheme
based on linked lists following the intuition below. Ordering
peers according to their playback position and, linking them
that way, achieves an optimal throughput as all peers con-
tribute to the piece dissemination. This ensures a constant
goodput over time, a useful piece being disseminated at each
exchange. The resulting protocol achieves this in a practical
setting by grouping peers in subsystems. This solution relies
on two main components. First, there is a set of swarming

93

subsystems, referred to as clusters, which enable peers close
with respect to playback position, to exchange pieces of im-
mediate interest as in traditional swarming systems. The
second component is a distributed seeding/feeding protocol
used to exchange pieces between clusters. The intuition is
that the most advanced clusters, in terms of playback po-
sition, feed the less advanced ones, while the less advanced
clusters push useful pieces to the most advanced ones. Those
useful pieces, from the standpoint of the most advanced clus-
ters, are provided by the seed to the less advanced clusters,
in order to provide them with some bargaining power.
We evaluate our solution through simulations on top of

the BitTorrent framework. The protocol consistently out-
performs the tit-for-tat-compatible VoD system based on
random exchanges proposed in [1]. Typically our structured
piece dissemination protocol improves the achievable play-
back rate from 61% to 77% and the throughput from 68% to
87%. Moreover, our simulations show that, in constrast to
an unstructured piece dissemination protocol, the efficiency
of our dissemination protocol does not require the peers to
store all the pieces they already played. This implies that
the protocol will also work with resource-constrained devices
such as set-top boxes (for instance some IPTV boxes have
only 1GB of memory while a high-definition video file is of a
few gigabytes). When nodes are allowed to store only 10%
of the whole file (slidding window), our protocol achieves
a playback rate of 77% whereas the unstructured protocol
achieves a playback rate of only 18%.
Section 2 provides relevant work in the design of peer-

to-peer VoD systems. Section 3 gives our design rationale.
Section 4 provides a high-level description of our algorithm,
followed by a detailed description in Section 5. There, we
also show how to provide a fully decentralized implementa-
tion. Protocol analysis and simulation results are given in
Section 6 and Section 7. Section 8 concludes the paper.

2. RELATED WORK
Most of the large-scale peer-to-peer content dissemination

schemes are designed using a (multi)tree-like structure [2,5].
A general argument against such approaches is their rel-
atively higher cost of maintenance in a dynamic environ-
ment [7]. In addition, since the transfer of content is not
bidirectional, they are not compatible with tit-for-tat based
incentive models.
Several mesh-based solutions such as BitTorrent [4] have

also been proposed for content dissemination [6]. The ad-
vantage of such a solution is high scalability due to decen-
tralization. In BitTorrent-styled file dissemination, a file is
divided into multiple pieces such that each piece is inde-
pendently downloaded. The incentive mechanism, namely
tit-for-tat, implies that in order to download a piece, a peer
must upload a piece in return. Tit-for-tat cannot be used
directly in VoD applications where the piece diversity is low
and two peers at different playback position have no mutual
interest in exchanging pieces.
A solution introduced in [8] consists in prefetching some

pieces randomly while the rest is downloaded in a sequen-
tial order. The motivation for downloading pieces in a ran-
dom order is to achieve high piece diversity and provide less
advanced peers with pieces to trade with more advanced
ones. Random downloads help increase the throughput of
the swarming process, while downloading pieces in a sequen-

tial order is critical for the performance of the VoD applica-
tion.

Increasing piece diversity can also be achieved by slightly
relaxing the sequentiality requirement using the segment
model introduced in [1]. In this model, a file is divided
into nonoverlapping segments, where a segment is a group
of continuous pieces. The segments are downloaded in a se-
quential order, but there is no restriction on the order in
which pieces are downloaded within a segment. This pro-
vides a high piece diversity within a segment. However, as
segments are downloaded in sequential order, this results in
only a small increase in the piece diversity over the entire
swarm.

Note that none of these solutions are designed to work
with decentralized incentives such as tit-for-tat. These may
work with tit-for-tat, however, with reduced performance.

3. DESIGN RATIONALE
Consider a simple example of a VoD system with two par-

ticipants denoted by n1 and n2. We assume that n2 is at a
more advanced position compared to n1 such that the piece
set of n2 forms a superset of that at n1. Thus, even though
n2 can upload the piece needed by n1 it cannot receive any-
thing in return as n1 does not have the piece needed by n2.
Hence piece exchange is not possible. In order to make pos-
sible an exchange between the two peers, a seed can upload
the pieces needed by n2 to n1 such that n1 can further ex-
change those pieces with n2. In addition, this enables the
bandwidth of both peers to be utilized for the dissemina-
tion process. Extending this idea for more than two partic-
ipants, we now consider k nodes such that nodes nk to n1

are arranged in decreasing order of their playback position
as depicted in Figure 1. Therefore, the piece set of an in-
termediate node ni (1 ≤ i ≤ k) is a superset of the piece
sets of all the nodes with lower playback position. Now, an
optimal throughput can be obtained if the seed uploads the
piece required by nk to n1, and n1 forwards this piece via
all the intermediate nodes on a forward path that eventually
reaches nk. Similarly a reverse path can be obtained where
node ni downloads pieces in sequential order from ni+1 in
return for pieces transfered on the forward path. Note that
since, in BitTorrent, a piece can only be uploaded by a peer
after it has been completely and successfully received (i.e.,
full download requirement), this approach works only if all
peers are at different playback positions.

nk

n
2

n
1

seed

missing piece

downloaded piece

Figure 1: The seed forwards the most advanced
piece to the least advanced peer. This piece is even-
tually uploaded to the most advanced peer on a for-
ward path. In return, in order pieces are down-
loaded on a reverse path.

From the above discussion we can conclude that a natu-
ral structure to support efficient utilization of upload band-
width is to arrange peers in a linked list. This linked list

94

structure implies that half of the upload bandwidth is uti-
lized on the forward path for forwarding pieces from the
seed to the most advanced peer while the other half is ded-
icated to the reverse path for uploading pieces from a more
advanced peer to a less advanced peer in sequential order.
However, this approach poses several problems: (i) only half
of the upload bandwidth used serves the peers’ immediate
interests; (ii) it requires all peers to be at a different play-
back position; (iii) the throughput of the linked list is lim-
ited by the bandwidth of the slowest peer; (iv) it is hard to
maintain such a structure in practical decentralized setting
in the presence of churn.

4. STRUCTURED PIECE DISSEMINATION
In the previous section, we identified that a linked list

structure is a natural solution for providing tit-for-tat based
VoD, which can achieve maximum throughput. However,
due to several practical reasons, we concluded that a solu-
tion based on a single peer-level linked list is not viable. A
natural extension is to maintain several linked lists, which
are seeded separately as illustrated in Figure 2. The seed-
ing capacity can be equally divided between all the linked
lists. However, this solution is not scalable either because
the number of linked lists grows with the size of the system.
this solution also suffers from a poor performance due to
lack of piece exchange between peers at the same playback
position. In addition, it is based on a fragile structure hardly
maintainable in a practical setting.

...
...

...
...feeding

position in file

seed

Figure 2: Distributed feeding using multiple linked
lists at the peer level (horizontal piece exchanges)

Remember that the solution proposed in [1] relaxes the
sequentiality requirement by splitting the file into segments,
which are downloaded sequentially. However, the pieces
within a segment are downloaded in a random order. The
set of peers downloading the same segment can now be con-
sidered as an independent swarm (referred to as a cluster)
such that each of these clusters can be seeded separately.
Thus, only the vertical exchanges are performed such that
pieces are exchanged between peers within the same seg-
ment. If sufficient seeding capacity could be provided to all
these clusters, a very high throughput can be attained. A
simple way to provide seeding is to equally divide the seed-
ing capacity between clusters as demonstrated in Figure 3.
However, if the number of clusters is very high, the available
seeding capacity may not be sufficient.

seed

swarming

position in file

Figure 3: Independent swarming with centralized
seeding (vertical piece exchanges)

Notice that the distributed feeding technique as depicted

in Figure 2, which is based on horizontal piece exchanges
is complementary to the independent swarming technique
shown in Figure 3 that is based on vertical transfers. How-
ever, neither of these techniques is sufficient enough by it-
self. Therefore, we design a hybrid scheme where the vertical
piece transfers are utilized for swarming and horizontal piece
transfers are used for distributed feeding (see Figure 4). In
order to achieve that, we allow the peers within the same
segment to be grouped into clusters. These clusters are then
fed with pieces in a distributed manner using a linked-list
structure. This hybrid scheme solves all those problems that
we encountered in a similar linked-list styled piece dissemi-
nation structure at the peer level.

...
...

...
...

feeding

swarming

position in file

seed

Figure 4: Hybrid solution at a cluster level

There are several advantages to this hybrid scheme, for ex-
ample, the length of the list is now solely limited by the num-
ber of segments which is a constant and does not vary with
the size of the swarm, meaning that the delay remains con-
stant. Further, facilitating piece transfers within a segment
allows for vertical transfers between peers in the same seg-
ment and hence eliminate the bottlenecks described above.
Note that even in this model, the horizontal piece exchanges
are done over a linked list. However, these linked lists are not
independent and they can thus be fed through each other.
In a linked list at the peer level, every piece has to feed at
least one piece on its forward path in order to download one
piece on a return path in a sequential order. Therefore, a
linked list at the peer level can achieve a maximum goodput
of only 50%. Nevertheless, in the cluster model, all peers
within a cluster are responsible for feeding pieces. Thus, the
fraction of bandwidth utilized per peer in feeding pieces is
significantly reduced and hence a much higher goodput can
be expected.

5. ALGORITHM DETAILS
Structured piece dissemination is essentially distributed

feeding using multiple linked lists at the cluster-level to-
gether with swarming within a cluster over a random graph.
In order to make distributed feeding more effective, the for-
ward path should be as long as possible such that more clus-
ters can be fed along the reverse path. To achieve these
goals, we design our algorithm to (i) facilitate piece ex-
changes between peers within the same cluster, (ii) maxi-
mize the distance between the source cluster (to which the
advanced pieces are seeded) and the target cluster (for which
these pieces are of immediate interest) in terms of the play-
back positions; and (iii) maximize the number of interme-
diary clusters participating to the forward/reverse path.

To this end, we need to make three important modifica-
tions to the traditionally used algorithms/policies used in
BitTorrent. First, we introduce an alternate seeding pol-
icy. In BitTorrent, the objective of the seed is to provide
rare pieces to the system. However, our objective here is to
enable piece exchanges between peers in different clusters,
thus establishing as long as possible bi-directional linked list
structures for piece exchange, i.e., distributed feeding. Sec-

95

ond, we introduce a management technique for a peer set
(i.e., the set of peers a node can exchange pieces with) to
allow efficient swarming inside clusters and maximize the
number of intermediary clusters involved in linked lists. This
should be performed dynamically since the peer set must
evolve with the download progress. Finally, we change the
piece exchange policy. In BitTorrent, peers exchange a lo-
cally rare piece in order to maintain high piece diversity in
the swarm. However, in VoD the objective is to establish a
balance between swarming and feeding, therefore, an alter-
nate piece exchange policy is needed.

Seeding Policy An important component required for the
construction of a linked list at the cluster level is to identify
the pieces required by the most advanced cluster. Since
the pieces required by the most advanced cluster are not
available in the swarm those pieces are provided by the seed.
However, instead of directly uploading to the most advanced
cluster, the seed provides those pieces to the least advanced
cluster. This allows the least advanced cluster to have a good
bargaining power in the system. The exchange policy has
to be designed accordingly so that these pieces are further
fed on the forward path such that every intermediate cluster
downloads it and forwards it to the next cluster. Eventually
these pieces reach the most advanced cluster. A pseudo-code
version of the seeding policy is given by Algorithm 1. Note
that the seed can easily obtain a list of peers in the least
advanced segment from the tracker. The most advanced
segment can be obtained by the seed in a distributed fashion
by polling peers through the linked list.

Algorithm 1 Seeding policy

Input Seeding
s: seeding capacity
S+ and S−: most and least advanced segment
for i from 1 to s

n← random peer in S−

p← random piece in S+

push p to n

end for

Peer Set Management The peers in each cluster can ex-
change pieces among themselves and they can participate
in a linked list style feeding process. Therefore, we ensure
that the peer set of every node is limited to the peers ei-
ther from the same cluster or from the neighboring clusters.
When a new peer joins the swarm it gets connected to some
peers within the first group. The remainder of the peer set
is constructed by connecting to neighbors of neighbors. The
structure is maintained during the download through gos-
sip: peer set is updated periodically by exchanging set of
neighbors with current neighbors similarly to [10]. If the
peer remains within the same cluster, it asks its neighbors
to return a subset of the peers from their respective clus-
ters. When a peer moves out of a cluster, it should update
its neighborhood such that it is now connected to the peers
within its new cluster and also to some peers in the clus-
ters neighboring to this new cluster. This can again be done
by polling through neighbor of neighbors using gossip. This
way we can easily maintain the structure in a decentralized
way.

Exchange policy The exchange policy determines whether
two peers n1 and n2 should exchange pieces upon an en-
counter and which specific pieces p1 and p2 should be ex-

changed if any. If the peers are in the same group (i.e., their
positions in the file lie in the same segment S1 = S2) then
traditional swarming should be performed. Both peers look
in a random order for a piece in their common current seg-
ment S = S1 = S2 that they could upload to each other.
More specifically, they look for a piece in their piece sets
that does not belong to the other peer’s piece set. To ensure
piece diversity inside each segment, and thus efficient intra-
group swarming, such pieces are looked for by exploring the
segment in a random order. Due to the peer set structure
described in the previous paragraph advanced pieces can be
pushed only from a cluster to the immediate next one when a
peer connects to a member of the next cluster. In that situa-
tion the less advanced peer – say n1 – downloads a randomly
chosen useful piece for its current segment in exchange for a
piece in the future. Priority is given to the most advanced
pieces in segments after n2’s segment (denoted p2 > S2). If
no such piece can be exchanged, then n1 tries to upload a
random piece in S2. As explained in the previous sections,
the motivation for uploading the most advanced pieces with
highest priority is two-fold: (i) ensure fast feeding of the
most advanced segment and (ii) build an as long as possible
forward path and in turn a long reverse path establishing
intercluster feeding. If no mutual interesting pieces can be
found using this exchange policy, the contract between the
two nodes is simply broken. A pseudo-code version of the
piece selection algorithm is given by Algorithm 2.

Algorithm 2 Piece exchange policy

Input Upon encounter of peers n1 and n2 (assume n1 ≤ n2)
P1 (resp P2): piece set of n1 (resp. n2)
S1 (resp S2): n1’s (resp. n2’s) current segment
if n1 and n2 are in the same segment S = S1 = S2 then

if ∃p1, p2 ∈ S such that p1 ∈ (P1 ∩ P 2) and p2 ∈ (P2 ∩ P 1)
(p1, p2: random order search) then

exchange p1, p2
else

no exchange
end if

else {n1 < n2}

if ∃p1 ∈ S1, p2 > S2 such that p1 ∈ (P1 ∩ P 2) and p2 ∈

(P2 ∩ P 1) (p1: random order search, p2: decreasing order
starting from the end of the media) then

exchange p1, p2
else if ∃p1 ∈ S1, p2 ∈ S2 such that p1 ∈ (P1 ∩ P 2) and

p2 ∈ (P2 ∩ P 1) (p1, p2: random order search) then
exchange p1, p2

else
no exchange

end if
end if

Note that using the transfer strategy presented in the pre-
vious paragraph, pieces before a node’s playback position
are used only to feed peers in the previous group. There-
fore, a peer can drop pieces before the playback position of
the peers in the previous group without reducing its feeding
ability.

6. DISCUSSION
In this section, we analyze and discuss the behavior and

performance of our protocol in face of traditional issues spe-
cific to large-scale peer-to-peer systems deployed in the pub-
lic domain.

Protocol Stability First we consider the stability of the

96

protocol. By protocol stability we mean whether the system
will keep on functioning at its optimal level over time. The
protocol specifies that the seed pushes pieces from the most
advanced segment to the peers in the least advanced seg-
ment. When peers arrive at a regular rate, the last segment
is most likely to be the most advanced segment.
One might argue that since the pieces are forwarded using

intermediate clusters, the pieces of the last segment become
highly replicated in the system gradually loosing their bar-
gaining power. This may eventually lead to a situation in
which the system is blocked, since the peers in the least ad-
vanced clusters cannot get useful pieces in exchange of pieces
in the last segment. In fact this never happens since the seed
will automatically start pushing pieces from the next-to-last
segment. Effectively, the pieces from the last segment are
downloaded by the peers before they reach the last segment.
Thus the last segment is no longer the most advanced seg-
ment as peers leave the system before they reach the last
segment. The next-to-last segment will therefore become
the most advanced segment until all those peers which have
downloaded the last segment have departed from the sys-
tem. When that happens the most advanced segment shifts
back to the last segment. Thus, the most advanced segment
will oscillate between the last and next-to-last segment.

Bottlenecks and heterogeneity We now determine that
the bottlenecks we identified in the peer-level linked list can
be easily prevented in the cluster-level linked list. A bottle-
neck can occur if the feeding capacity falls below a certain
critical value, which results in all subsequent clusters getting
starved. Therefore, adjusting the size of the clusters (tak-
ing into account the average upload bandwidth of peers)
so that they able to feed an entire segment in one round
ensures that there is no starvation. To illustrate this point,
consider the case where a segment size is 20 and the fraction
of bandwidth employed for the feeding process is 50%. The
bandwidth required to download a segment is 20 pieces per
round. Assume that on average a peer can upload 4 pieces
per round. Then, there should be at least 10 peers in the
cluster in order to prevent the occurrence of a bottleneck.
To ensure that this property is satisfied, one can either set
the number of clusters such that it is highly unlikely that
the size of the cluster drops below the critical value or, if the
system size is not known in advance, the size of the clusters
can be automatically adjusted by merging two consecutive
clusters, whenever the size of one of the two clusters drops
below the critical value.

Churn and VCR operations We analyze here the cost
of peers leaving and joining the system in the middle of
the download. To do so, a peer needs to download one
piece in the most advanced segment, which is essentially
the same as joining from the beginning. Further, a peer
needs to construct a peer set such that it maintains the
loosely coupled structure. This is automatically achieved
by the gossip-based maintenance technique that leverages
neighbors-of-neighbors. Similarly, when a peer leaves in the
middle of the download, all the links connecting to it are
broken. However, these broken links will be quickly re-built.
Finally, the procedure for skipping through the video is es-
sentially similar to re-joining in the middle the video.

Free Riding The tit-for-tat mechanism ensures that a peer
obtains new pieces only if it uploads pieces in return, making
the protocol resilient to free riding. However, one might ar-

gue that a freerider may deviate from the protocol by down-
loading only pieces in its current segment to increase its
immediate benefit, thus breaking the feeding process. First,
such a behavior is not guaranteed to increase long-term per-
formance as the peer will quickly loose its bargaining power
due to the lack of pieces in the future. Second, very ef-
ficient techniques using coding-based challenges have been
proposed to force peers to download out-of-order pieces [3].

7. EVALUATION
This section presents the results of our simulations.

7.1 Experimental setup
We compare our algorithm with the unstructured algo-

rithm presented in [1]. In order to establish connections, this
algorithm uses random encounters where peers randomly
poll the members of their peer set in order to establish a
piece exchange. If both peers belong to the same segment,
they try to exchange content within that segment. Other-
wise, if they are in different segments then the less advanced
peer can still download a piece in its current segment. How-
ever, the more advanced peer first tries to download a piece
in its current segment, and if that fails, it tries to download
any random piece available in the future.

We developed a discrete-time simulator, where time
evolves in rounds. A peer is allowed to upload only a certain
maximum number of pieces within a round. The tit-for-tat
incentives are implemented at the round level, implying that
a peer can download a piece from a neighbor only if it up-
loads a piece to that neighbor during the same round.

The simulation results presented in the next sections have
been obtained by running both algorithms in a network of
peers joining the system at a rate of 5 peers per round (Pois-
son law). The media file has been split in 10 segments of 25
pieces. The peer set size is set to 10 and the upload limit is
set to 4 pieces per round. The system is seeded by a single
source with an upload bandwidth of 10.

7.2 Evaluation metrics
We use three metrics to evaluate structured piece dissem-

ination techniques compared to a purely random algorithm:
(1) the fraction of upload bandwidth utilized for exchanging
pieces (i.e., throughput), (2) the maximum rate at which the
video can be played (referred to as achievable playback rate)
and (3) the fraction of pieces downloaded in the current seg-
ment.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

p
o
si
ti
o
n

time

δ r

Download position
Playback position

Figure 5: Evolution of playback position.

The achievable playback rate is the maximum rate at
which the video can be played: this means that whenever
a peer reaches a given playback position, the corresponding
piece is available. Since a peer needs a setup time for buffer-
ing the first pieces of the video, we allow a delay δ before

97

starting playback. The achievable playback rate is given by
the maximum rate r so that at any time t, all pieces up to
r · (t − δ) are available at the peer after t units of time as
illustrated in Figure 5. The delay is set to the minimum
required time to download two segments. Since structured
and random piece dissemination algorithms are equivalent in
a flash crowd scenario where almost all peers are in the same
segment, we compare simulation results in steady state using
a fixed rate Poisson peers arrival scheme. Both throughput
and playback rate are expressed as a fraction of the available
upload bandwidth.
The fraction of sequential downloads refers to the fraction

of pieces downloaded in the network that belong to the cur-
rent segment of the downloading peer. This metric reflects
the overall performance of the piece transfer algorithm and
network topology in a VoD context.
To compare the performance of both piece dissemination

algorithms in the context of a limited-memory device, we
run simulations of both algorithms with limited buffer size
by making the peers drop pieces more than k segments in
the past relative to the current playback position.

7.3 Experimental results
The following results are obtained by running 25 indepen-

dent simulation instances each run over 2, 000 rounds. On
average, the achievable playback rate attained by structured
dissemination is 77% of the upload bandwidth, whereas for
the same set of parameters the playback rate attained by
random dissemination as proposed in [1] is only 61%. An
achievable playback rate of 77% means that a peer with an
upload bandwidth of 1Mbps can smoothly watch a stream
of 770kbps. Figure 6 depicts the empirical probability den-
sity function (pdf) for throughput and playback rate. In
random dissemination, approximately 1% of the peers have
a playback rate equal to zero, which implies that they are
not able to even start the playback. An interesting observa-
tion is that the pdf of structured dissemination is narrower
compared to that with random dissemination. This implies
that there is more variance in the achievable playback rate
under random dissemination.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.2 0.4 0.6 0.8 1

fr
a
ct
io
n
o
f
p
ee
rs

achievable playback rate

Random
Structured

(a) achievable playback rate

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

fr
a
ct
io
n
o
f
p
ee
rs

throughput

Random
Structured

(b) throughput

Figure 6: Experimental pdfs.

The average achievable playback rate is better for two rea-
sons. First, the overall throughput in the system is increased
due to better utilization of the piece diversity present in the
swarm. Second, the goodput or the sequential throughput is
also increased because the pieces are now disseminated along
the linked list structure to maximize in-order piece delivery.
The average throughput achieved by random dissemination
is 68%, and 87% for structured dissemination. Similarly, the
average sequential throughput under random dissemination
is 66% and 75% for structured dissemination.
In Figure 7, we constrain the memory size to a fixed num-

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

a
v
er
a
g
e
p
la
y
b
a
ck

ra
te

memory (segments)

Random dissemination
Structured dissemination

Figure 7: Structured dissemination v.s. random dis-
semination with limited memory.

ber of segment: a peer cannot store an infinite number of
pieces but instead it keeps dropping the pieces which it has
already viewed. We observe that structured dissemination
performs drastically better compared to random dissemina-
tion. The reasons for this performance improvement are
intuitively clear as in structured piece dissemination a peer
is allowed to exchange pieces only within its cluster and the
neighboring clusters. Therefore, there is no need to store
more than one old segment.

8. CONCLUSIONS
Traditional file-swarming protocols are built using random

graph structures. We advocate the use of content dissem-
inating over a loosely structured graph to achieve higher
performance. We introduce the concept of a cluster-level
linked list. Our hybrid solution allows us to obtain higher
throughput within clusters (vertical dissemination via tra-
ditional swarming) and at the same time an efficient dis-
tributed feeding mechanism between neighboring clusters
(structured horizontal dissemination). Our solution is prac-
tical, simple to deploy and is built in a fully decentralized
fashion. Using simulations, we show that the our proposal
produces a significant improvement compared to the previ-
ously known best solution.

9. REFERENCES
[1] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena,

and P. Rodriguez. Is High-Quality VoD Feasible Using P2P
Swarming? In WWW, 2007.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-bandwidth
Multicast in Cooperative Environments. In SOSP, 2003.

[3] M.-L. Champel, A.-M. Kermarrec, and N. Le Scouarnec.
Phosphite: Guaranteeing Out-of-Order Download in P2P
Video on Demand. In P2P, 2009.

[4] B. Cohen. BitTorrent. http://www.bittorrent.com.

[5] Y. Guo, K. Suh, J. Kurose, and D. Towsley. P2Cast:
Peer-to-peer Patching Scheme for VoD Service. In WWW,
2003.

[6] N. Magharei and R. Rejaie. PRIME: Peer-to-Peer
Receiver-driven MEsh-Based Streaming. In INFOCOM,
2007.

[7] N. Magharei, R. Rejaie, and Y. Guo. Mesh or
Multiple-Tree: A Comparative Study of Live P2P
Streaming Approaches. In INFOCOM, 2007.

[8] N. Parvez, C. Williamson, A. Mahanti, and N. Carlsson.
Analysis of BitTorrent-like Protocols for On-Demand
Stored Media Streaming. In SIGMETRICS, 2008.

[9] F. Picconi and L. Massoulié. Is there a future for
mesh-based live video streaming? In P2P, 2008.

[10] X. Qiu, C. Wu, X. Lin, and F. C. Lau. InstantLeap: Fast
Neighbor Discovery in P2P VoD Streaming. In NOSSDAV,
2009.

98

