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Abstract
Previous studies have shown that individuals with overweight and obesity may experience attentional biases and reduced inhibition toward food stimuli. However, evidence as to whether the attentional bias is present even before stimuli are consciously recognized is scarce. Moreover, it is not known whether differences in the underlying brain morphometry and connectivity may co-occur with attentional bias and impulsivity towards food in individuals with different BMIs. To address these questions, we asked fifty-three participants (13 males, age M = 23.2, SD = 2.9) to perform a breaking Continuous Flash Suppression (bCFS) task to measure the speed of subliminal processing, and a Go/No-Go task to measure inhibition, using food and nonfood stimuli. We collected whole-brain structural magnetic resonance images and functional resting-state activity. A higher BMI predicted slower subliminal processing of images independently of the type of the stimulus (food or nonfood). This higher threshold of awareness is linked to lower grey matter (GM) density of key areas involved in awareness, high-level sensory integration, and reward, such as the orbitofrontal cortex, the bilateral temporal areas, the operculum, and insula only in individuals with a higher BMI. In addition, individuals with a higher BMI exhibit a specific reduced inhibition to food in the Go/No-Go task, which is associated with lower GM density in reward brain regions (orbital gyrus and parietal operculum) and lower resting-state connectivity of the orbital gyrus to visual areas. Independently of BMI, our study also showed how volumetric variations and connectivity patterns in different brain regions are associated with variability in bCFS and Go/No-Go performances. These results suggest that in individuals with a higher BMI differences in brain structure and connectivity may be linked to attention and inhibition alterations. 
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Highlights
· Higher BMI is linked to slower subliminal processing of food and nonfood images
· This correlates with lower GM density in the OFC, temporal areas, operculum/insula 
· Higher BMI predicts reduced inhibition for food in the Go/No-Go task
· Reduced inhibition for food correlates with lower GM density in reward areas 
· It also correlates with lower connectivity of the orbital gyrus to visual areas 
[bookmark: _Toc528590096]
1 - Introduction
An attentional bias consists of the preferential allocation of attention to specific salient stimuli in the environment. Several conditions, such as addiction and anxiety, have been associated with a bias in the processing of symptom-related cues (Field and Cox, 2008; Bar-Haim et al., 2007). In particular, attentional biases towards food have been repeatedly observed in individuals with obesity and overweight (Brooks et al., 2011; Castellanos et al., 2009; Hendrikse et al., 2015). When shown food pictures, individuals with overweight/obesity have been reported to direct their first gaze more often towards them than individuals with a healthy weight, even though they later show a tendency to avoid looking at them (Werthmann et al., 2015). This approach/avoidance behavior suggests that an initial automatic attentional engagement of attention in food observation is then followed by a later top-down driven food avoidance, reflecting different alterations involving early and late attentional components (Kemps and Tiggemann, 2015; Veenstra et al., 2010; Werthmann et al., 2015). The early attentional capture could be one of the causes leading to obesity, as an early attentional bias toward unhealthy foods is predictive of an increase in BMI (Calitri et al., 2010), while attentional re-training has been shown to reduce attentional bias and consumption of high-calorie food (Zhang et al., 2018).
 Crucially, salient stimuli in the environment are detected and processed even when they are presented subliminally (Bogler et al., 2011; Schmack et al., 2016; Straube et al., 2006). Exposure to subliminal arousing stimuli has been shown to elicit activation of a network incorporating primary visual areas, somatosensory, implicit memory, and conflict monitoring regions, that has been proposed as a core neuronal arousal in the brain which may be at first independent of conscious processing (Brooks et al., 2012). To date, only a few studies have investigated whether individuals with overweight/obesity have an attentional bias towards food even before it is consciously recognized. For instance, Cserjesi et al. (2016) found that, compared with healthy-weighted controls, individuals with overweight/obesity show an implicit preference for large food portions, which is not matched with their explicit evaluation of food portions. In contrast, we recently observed an attentional bias toward food in individuals with a higher BMI at a late stage of stimulus processing, but not at an early one (Osimo et al., 2019). In that study, we investigated subliminal processing and reduced inhibition towards food in a sample of individuals with different BMI, ranging from underweight to obesity. We used a breaking Continuous Flash Suppression task (bCFS) and a Go/No-Go task. Breaking CFS is a technique of binocular rivalry that measures the processing times of different stimuli at a subliminal level of processing (Tsuchiya and Koch, 2005). Faster stimulus processing time is interpreted as reflecting faster access to consciousness. Importantly, it has been shown that personal features that alter stimuli relevance influence suppression times (Schmack et al., 2016), and that clinical disorders, such as anxiety and depression, can influence suppression times of disorder-related stimuli (Capitão et al., 2014; Yang et al., 2011). The Go/No-Go task is a well-established paradigm to measure attention and response inhibition towards a stimulus category (Schulz et al., 2007); within this task, participants with overweight/obesity participants frequently show worse performance than controls when inhibiting responses toward food (Kulendran et al., 2017; Price et al., 2015; Svaldi et al., 2015; but see Loeber et al., 2013; Bartholdy et al., 2016; Aiello et al., 2018). Using these tasks, we observed that a higher BMI was associated with a bias toward food only in the Go/No-Go task, and with prolonged subliminal processing in the CFS task which, however, was independent of the type of the stimulus (Osimo et al., 2019). Hence, the question about the extent to which individuals with a higher BMI’s attentional bias also extends to subliminal unconscious food stimuli requires further investigations. 
The aim of this study was to confirm and extend our prior results in a sample of individuals with different BMIs, by also investigating the neural correlates of subliminal attentional biases and inhibition reduction using both voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC). While the neural underpinnings of reduced inhibitory control have already been studied in individuals with different BMIs, showing a correlation between reduced behavioral inhibition and reduced activation of frontal inhibitory regions in individuals with overweight/obesity (Batterink et al., 2010), evidence concerning the neural bases of subliminal processing of food stimuli in individuals with overweight and obesity is still lacking. It has been shown that suppressed images are masked at the site of interocular competition and result in lower activation of early visual areas (Yuval-Greenberg and Heeger, 2013). The suppressed information, however, travels beyond lower-level visual areas, and high-level information on the semantic content or motor affordances of the shown images reach areas responsible for high-level sensory integration, such as the fusiform face, parahippocampal place areas, and dorsal regions (Fang and He, 2005; Sterzer et al., 2008). Also, the time that it takes for stimuli to break suppression has been related to the activation of the occipitotemporal and orbitofrontal cortex, suggesting a crucial role of these high-level cortical regions devoted to reward in processing the preconscious affective salience of the stimulus and in influencing the speed of visual awareness through top-down modulation of visual areas (Schmack et al., 2016). Crucially, we recently found that the excitatory modulation of the right prefrontal cortex, a high-level cortical region involved in awareness (Dehaene and Changeux, 2011), reduces detection times in the bCFS tasks especially in individuals with a higher BMI (Osimo et al., 2019). On this basis, we expect to replicate the result that higher BMI correlates with slower subliminal processing and reduced inhibition. We predict that reduced inhibition at the Go/No-Go task will be linked to lower GM density and reduced connectivity of frontal regions (Batterink et al., 2010), and that behavioral differences in suppression times in the CFS task in individuals with a higher BMI will be reflected in lower GM density and connectivity of frontal control and reward regions, such as the prefrontal cortex and the orbitofrontal cortex.
[bookmark: _Toc528590097]2 - Methods
[bookmark: _Toc528590098]2.1 Participants
Fifty-three participants (thirteen males) aged 19-33 years (M = 23.2, SD = 2.9) with normal or corrected-to-normal eyesight took part in the study. Participants were recruited on a volunteer basis through advertisements on different internet platforms. Potential participants were screened for conditions incompatible with MRI scanning, such as metal prostheses, pregnancy, and cardiopathy, as well as for color blindness and strabismus. Participants filled the EAT-26 questionnaire, assessing their risk of having an eating disorder (Dotti and Lazzari, 1998; Garner et al., 1982), and reported their BMI. One participant was excluded from analyses for not completing the tasks correctly. The final sample included fifty-two participants: 12% underweight, 67% normal weight, 15% overweight, and 6% obese participants. The participants’ median BMI was 22.2. Shapiro-Wilk’s test’s results showed that participants’ BMI and EAT-26 scores were not normally distributed (W = 0.834, p < 0.001 and W = 0.845, p < 0.001, respectively). Participants also rated their hunger level on a Likert scale from 1 to 7 and reported how much time had passed since their previous meal. Table 1 summarizes the demographical data of the experimental sample in participants with a BMI higher than the median (“Higher BMI group”) and lower than the median (“Lower BMI group”). 
[bookmark: _Ref527043234]Table 1
Demographic data of the experimental sample. The data is shown separately for the lower and higher BMI groups, subsets of the data obtained splitting the sample according to the BMI’s median.
	
	Lower BMI group (n=26)
	Higher BMI group (n=26)
	Group comparison

	
	Mean (SD)
	range
	Mean (SD)
	range
	

	Age
	22.6 (2.7)
	19-28
	23.7 (3.2)
	20-33
	t(48.65)=1.328,
p = 0.191

	Body Mass Index (BMI)
	19.9 (1.6)
	15.3-22
	26.0 (4.6)
	22.3-41.9
	t(30.76)=6.391,
p < 0.001

	Eating Attitudes Test-26 (EAT-26)
	12.3 (14.9)
	0-56
	10.9 (9.1)
	0-29
	t(41.29)=-0.394,
p = 0.696

	Hunger level
	2.58 (1.2)
	1-5
	2.69 (1.7)
	1-6
	t(44.5)= 0.278, p = 0.78

	Time since last meal
	3.96 (4.2)
	0.5-17
	3.02 (2.9)
	0-13
	t(44.1)= -0.946,
p = 0.35

	Corrected vision
	14/26
	18/26
	[2(1)=0.731,
p = 0.39



Participants were tested at Udine’s Santa Maria della Misericordia Hospital. This study was approved by SISSA’s Ethics Committee (protocol number 8414-III 13) and by Friuli Venezia Giulia Ethics’ Committee (protocol number 28311). All participants signed a consent form. This study was carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki).
[bookmark: _Toc528590099]2.2 Behavioral tasks 
The behavioral tasks were run outside of the scanner in a quiet dedicated room inside the hospital, on the same day that the acquisition of the imaging data took place. All experimental tasks were run on a notebook computer with Windows XP. Stimuli were displayed on a 17” LCD monitor with a resolution of 1280 × 1024 pixels and a refresh rate of 60 Hz, positioned 50 cm away from participants’ eyes. A chin rest was used to minimize head movements. Participants completed the bCFS and the Go/No-Go task, always in this order. The order of the tasks was kept constant to avoid consciously viewing food stimuli in the Go/No-Go task to prime subliminal processing of food in the bCFS task. The tasks and stimuli were taken from Osimo et al. (2019).
2.2.1 Procedure and experimental tasks 
2.2.1.1 Breaking CFS and NoCFS tasks
Breaking CFS task is a binocular rivalry task, during which participants are instructed to detect and respond to static (suppressed) images while ignoring distractors. To achieve suppression, stimuli and distracters were each embedded in separate squared frames and shown side by side on the screen. Stimuli were displayed in one of the quadrants of one square, while the distractors were displayed over the whole other square. Participants looked at the screen through a mirror stereoscope, which was individually calibrated to show the two squares as superimposed. Therefore, participants’ perception was that of a single superimposed and perfectly aligned square. This triggered binocular rivalry, as the two eyes received different inputs in the same field of view. Participants were instructed to indicate via keypress as fast and as accurately as possible the position of the stimulus relative to a central fixation cross. Distractors were shown at 100% contrast and changed at a rate of 10 Hz, while the contrast of the stimuli increased linearly from 0% to 60% over one second, and then stayed at 60% until response. The order of the stimuli, the quadrant in which they were shown, and the eye they were shown to, were semi-randomized for each trial and each participant. Each participant saw each stimulus twice in all four quadrants in a different order and saw half of the stimuli with their right, and half with their left. Trials ended when a response was given, or, in its absence, after eight seconds. Participants then performed an equivalent task without suppression, hence NoCFS. This task had the same instructions and stimuli as the bCFS task, but stimuli and distractors were superimposed and shown to both eyes, and therefore they did not elicit binocular rivalry and were immediately visible. Participants performed 40 trials of training, during which a dedicated set of images was displayed, and 320 trials of the bCFS task and NoCFS task each, with a break every 30 trials. The total testing time was of about one hour and 15 minutes. Example trials of the bCFS and NoCFS tasks are shown in Figure 1A and 1B. The tasks were programmed in and presented with Python using the Psychopy library (Peirce, 2007). Stimuli consisted of 20 images of food and 20 images of nonfood items (e.g. animals, man-made objects, etc.), selected from the FRIDa database (Foroni et al., 2013). Half of the food stimuli depicted highly caloric food (i.e. cookies), and the other half low-calorie foods (i.e. strawberries); in each group, half of the depicted foods were highly transformed (ice cream, fruit salad) and the other half was comprised of natural foods (almonds, cherries). Food and nonfood items were matched for brightness [p= 0.82] and spatial frequency [p = 0.09] since low-level visual features can influence suppression times (Gayet et al., 2014; Gray et al., 2013; Yang and Blake, 2012). Food and nonfood items also did not differ in valence, familiarity, typicality, or arousal according to the database-independent ratings [ps > 0.15]. A subset of the stimuli is depicted in Supplementary Figure 1. The distractor images consisted of a set of 100 pictures with colorful oval shapes of different sizes creating random patterns.
[bookmark: _Toc528590101]2.2.1.2 Go/No-Go task 
Participants were instructed to respond as quickly as possible to Go stimuli and to refrain from responding when a No-Go stimulus was presented. In half of the blocks, Go cues consisted of food images and No-Go cues of nonfood images (depicting kitchen utensils), while in the other half the assignment was reversed. There were four blocks of 40 trials each. In each block, 12 out of 40 trials (30%) were No-Go trials. The Go/No-Go task and the stimuli were the same as those used by Aiello et al. (2017). The order of the blocks was semi-random (ABAB or BABA) and changed across sessions and participants. An example trial is depicted in Figure 1C.
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An example trial of the bCFS task (A), of the NoCFS task (B), and of the Go/No-Go task in a block using food images as Go cues (above) and in a block using nonfood pictures as Go cues (below). Panel C is adapted from Aiello et al. 2017.
2.2.2 Analyses
2.2.2.1 Breaking Continuous Flash Suppression
We investigated the effect of the participants’ BMI on RTs in the bCFS and NoCFS tasks using linear mixed-effects models (LMMs). All analyses were run using the software R (version 3.6.2, R Core Team, 2017). LMMs were tested using the “lmer” function (lme4 package, Bates et al., 2015). Reaction times were cleaned by removing trials with no responses (12.79% across all participants), wrong responses (1.35%), with RTs below 500 ms (0.19%), and with RTs that were more than 2.5 SD from the mean of each subject (0.02%). RTs were log-transformed, and BMI and EAT-26 scores were mean-centered. Summary statistics on the included and excluded trials are reported in Supplementary Table 1.
The initial model investigating the effect of participants’ BMI on the reaction times of the bCFS and NoCFS tasks, derived from the experimental hypothesis, included Task (bCFS, NoCFS), Stimulus Type (Food, NonFood), BMI as predictors, and Participant, Image, Stimulus Location an Age as random intercepts. To control for the effect of dysfunctional eating habits on attentional bias and inhibition, EAT-26 scores were covaried in all models. To verify that all predictors and all interactions significantly improved the model fit, non-significant interactions and predictors were removed from the model, and the resulting model and the initial one were compared, on the basis of the AIC criterion (Bolker et al., 2009), using the “anova” function (lmerTest package, Kuznetsova et al., 2017). All factors and interactions that did not significantly improve the initial model were pruned. To confirm that high-level interactions explained more variance than the combination of the lower-level interactions between, we compared the AIC of models with and of models without the high-level interactions, and only included high-level interactions that improved the models’ fit.
To make sure our predictors were not correlated between themselves, we computed the variance inflation factor (VIF) for the predictors of the final model using the vif function of the car package (Fox and Weisberg, 2019). All VIF values were between 1 and 4, indicating low collinearity between predictors.
 The final model included Task, BMI, and Stimulus Type as predictors, and the interactions between Task and BMI and Task and Stimulus Type. The comparison between the initial and final model is reported in Supplementary Table 2.
2.2.2.2 Go/No-Go task
As in the bCFS and NoCFS tasks, we used linear mixed-effects models (LMMs) to calculate the effect of the participants’ BMI on RTs in the Go/No-Go task. One participant was excluded from the analyses omitting to respond in a fourth of the trials. To calculate the effect of the participants’ BMI on accuracy, we used a general linear mixed model (GLMM) fitted on binomial data. LMMs were tested using the “lmer” function, and the GLMM using the “glmer” function (lme4 package, Bates et al., 2015). In the analysis of the RTs of the Go trials, only correct responses that did not deviate more than 2.5 SD from each participants’ mean were included (wrong responses = 1,89%, outlier responses = 0.03%). RTs were log-transformed, and BMI and EAT-26 scores were mean-centered. Accuracy in the Go/No-Go task was coded as a binomial variable (1 = correct response, 0 = wrong response). Summary statistics on the included and excluded trials are reported in Supplementary Table 1.
In the analysis regarding the effect of BMI on the RTs in the Go/No-Go task, the initial model included Stimulus Type and BMI as predictors, and Participant, Image, and Age as random intercepts. EAT-26 scores were covaried. The same stepwise procedure used in the analyses of RTs in the bCFS and NoCFS tasks was adopted to make sure all factors increased the models’ fit. The final model included only Stimulus Type, BMI, and their interaction as predictors. In the analysis on accuracy, the initial model included Trial Type (Go, NoGo), Stimulus Type and BMI as predictors, EAT-26 scores as a covariate, and Participant, Image, and Age as random intercepts. The final model only included Trial Type as a predictor and EAT-26 scores as a covariate. Variance inflation factors (VIF) for the predictors of the final models were between 1 and 2, indicating low collinearity between predictors.
All comparisons between initial and final models are reported in Supplementary Table 2.
[bookmark: _Toc528590102]2.3 Imaging
[bookmark: _Toc528590103]2.3.1 Data acquisition and preprocessing
A 3 Tesla Philips Achieva scanner was used to acquire the anatomical and functional images. Anatomical images consisted of high-resolution T1-weighted images [brain scan acquired along the AC-PC plane, 170 sagittal slices, FOV = 176 × 240 × 240 mm, voxel size = 1 × 1 × 1 mm, reconstruction matrix = 256 x 256, flip angle = 12°, TR = 8.1 ms, TE = 3.7 ms]. For the functional data acquisition, participants were asked to relax and keep their eyes open. No stimulus was displayed during this time. The scan lasted 8 minutes. Functional T2*-weighted echo planar images were acquired over 36 transverse slices of 3 mm slice thickness using a single-shot pulse sequence [slice order interleaved, FOV = 230 × 230 × 108 mm, acquired voxel size = 3.59 × 3.71 × 3.00 mm, acquisition matrix = 64 x 62, flip angle = 90°, TR = 2500 ms, TE = 35 ms].
In the VBM analyses, preprocessing was done using the SPM12 (version 7219, Friston et al., 2017) and CAT12 (version 12.3, r1318; Gaser and Danhke, 2016) toolboxes in Matlab (version 2017a 9.2.0 www.mathworks.com/products/matlab.html). Scans were spatially normalized using the DARTEL algorithm and SPM12 tissue probability maps were used to segment the scans into grey matter (GW), white matter (WM), and cerebrospinal fluid (CSF) and for spatial registration, after which the Total Intracranial Volume (TIV) was calculated. Data were then smoothed with an 8 mm full width at half maximum (FWHM) gaussian kernel. The final voxel size was of 1.5 × 1.5 × 1.5 mm. For the resting state analyses, data were preprocessed and analyzed using the CONN toolbox (version 17; Whitfield-Gabrieli and Nieto-Castanon, 2012). The preprocessing was done following CONN’s default processing pipeline. Raw functional images were realigned and unwarped, time-slice corrected, and coregistered to T1 weighted image. Images were then normalized in MNI space and spatially smoothed with an 8 mm FWHM kernel. Data were processed by removing movement parameters by covarying the 6 rotation/translation movement, as well as regressing motion outliers using the ART package (Artifact Detection Tools, https://www.nitrc.org/projects/artifact_detect). Following the standard settings implemented in CONN, no participant was discarded from the analysis, since acquisition's frame-wise displacements were below 0.9mm and global BOLD signal changes were below 5 SD for all participants. In addition, other sources of noise were estimated by extracting the average BOLD time series from seeds located within the white matter and CSF areas, and the first five components of the signal were regressed out, following CONN’s default processing pipeline (Whitfield-Gabrieli and Nieto-Castanon, 2012). Finally, the BOLD signal was band-pass filtered (.008Hz–.09 Hz). 
[bookmark: _Toc528590104]2.3.2 VBM analyses
The VBM analyses were designed to investigate three main experimental questions. The first experimental question was whether GM density in specific brain areas significantly correlated with participants’ performance on the bCFS and Go/No-Go tasks. Secondly, we investigated whether GM concentration in specific brain areas correlated with participants’ BMI. Finally, when BMI influenced participants’ performance, we aimed to explore the connection between task performance and BMI, i.e. whether participants’ performance in the behavioral tasks predicted GM density differently in participants with a lower and with a higher BMI. To answer these experimental questions, we run a series of multiple regressions using SPM12 (Friston et al., 2017). In the first level analyses, the preprocessed fMRI data were entered into a bivariate correlation. In all models, age, gender, and total intracranial volume (TIV) were covaried. Regressors were mean-centered.
In the model regarding the correlation between GM density and performance at bCFS task, the covariate variable was calculated as the mean suppression times in the bCFS task for each participant, normalized by their RTs in the NoCFS task, to account for differences in response times that are not due to longer suppression. In the models of the Go/No-Go task, we used as predictors of general performance the mean of the RTs on Go trials and the number of false alarms on No-Go trials. The models investigating a specific attentional bias towards food used the difference between the mean nonfood and food RTs on Go trials. Secondly, we investigated whether participants’ BMI significantly predicted GM density in any brain area. Finally, to assess whether in participants with a higher BMI, compared to participants with a lower BMI, performance in the behavioral tasks was connected to GM density in different areas, we formed two groups of participants, one with higher BMIs and one with lower BMIs, based on a median split. We run two full factorial model with suppression times in the CFS task and the mean difference between nonfood and food RTs in Go trials in the Go/No-Go trials as behavioral covariates, to assess whether a significantly different regression slope predicted GM density in the two groups, based on their behavioral performance. The regression slopes’ beta values were extracted using the REX MatLab toolkit (Duff et al., 2007). Corrections for multiple comparisons based on uncorrected voxel-level (alpha = 0.001) and Family-Wise Error Rate (FWE) at a cluster level (alpha = 0.05) were applied to all regressions.
2.3.3 Resting State Analyses
The resting-state analyses aimed at establishing whether the regions with altered GM density also showed connectivity patterns that correlated with participants’ BMI and task performance. The peaks of each resulting cluster of the VBM analyses were used as seeds for Seed-to-Voxel connectivity analyses. Custom spherical ROIs with a radius of 8mm were created centered on each peak using the MarsBaR toolbox in Matlab (MARSeille Boîte À Région d’Intérêt, Brett, et al., 2002). The behavioral variables that had led to the identification of each peak were used as regressors in the corresponding ROI connectivity analyses. Therefore, for example, participants’ performance on the bCFS task was used as a regressor in the analysis of the connectivity of the ROIs derived from the VBM on the bCFS task. Following the same approach, the peaks resulting in the VBM analysis whose regression slope, based on participants’ performance in the bCFS task, significantly differed in the two groups were used as seeds in the Seed-to-voxel analysis of the difference in connectivity between high- and low-BMI groups, as predicted by participants’ performance at the bCFS task. The same was done for ROIs resulting in the VBM analysis of Go/No-Go task performance. Beta values of the regression slopes were calculated using the REX MatLab toolkit (Duff et al., 2007), and correction for multiple comparisons was applied to all regressions (uncorrected peak level alpha = 0.001, cluster level FDR alpha = 0.05). All analyses included age and gender as covariates of no interest, as done in previous works (see e.g. Smith et al., 2017).
All images were produced using MRIcron software (www.nitrc.org).
[bookmark: _Toc528590105]3 - Results
[bookmark: _Toc528590107][bookmark: _Toc528590106][bookmark: _Ref10822861]3.1 bCFS and NoCFS task
3.1.1 Behavioral results
The linear mixed model on the RTs yielded a good fit to the data, explaining 71% of the data variance (marginal R2 = 0.64, conditional R2 = 0.71). Collinearity between factors was calculated using the corvif function in R (HighstatLibV10 library). No predictor showed collinearity with the other predictors (all variance inflation factors between 1 and 2). The results showed a main effect of Task [F (1, 27963.1) = 58629, p < 0.001], indicating longer RTs in bCFS compared to NoCFS, confirming that suppression had occurred during the bCFS task. Results also showed a significant Task x BMI interaction [F (1, 27943.9) = 226, p < 0.001], depicted in Figure 2. Higher BMI led to slower RTs in the bCFS task [p = 0.001] but not in the NoCFS task [p = 0.7]. Although the significant difference between bCFS and NoCFS was present in both lower and higher BMIs, it was higher in higher BMIs [lower BMIs t =161.5, p < 0.001; higher BMIs t = 183.2, p < 0.001]. 
[bookmark: _Ref528253542]Figure 2
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The interaction effect between Task and BMI. A higher BMI predicts longer RTs in the bCFS task, but not in the NoCFS task. Bands indicate 95% confidence intervals.
Results also showed a significant effect of Task x Stimulus Type [F (1, 27944.7) = 6, p = 0.016]. Post-hoc tests however failed to find a significant difference between Food and Nonfood either in the CFS task (p = 0.5) or in the NoCFS task (p = 0.7), while there was an equally strong effect of Task both in Food trials [t = 173.3, p < 0.001] and in Nonfood trials [t = 171.4, p < 0.001].
In summary, a higher BMI significantly predicted longer RTs in the bCFS task. This effect was irrespective of the Stimulus Category. The complete results are reported in Supplementary Table 3.
[bookmark: _Toc528590110]3.1.2 Correlation between grey matter density and bCFS task performance independently of BMI
[bookmark: _Ref527727998]We found a positive correlation between suppression times and GM density in right occipital visual areas (calcarine cortex and inferior occipital gyrus/occipital fusiform gyrus) and in the right caudate nucleus, i.e. higher GM density in these areas correlated with longer suppression times. On the other hand, a negative correlation between suppression times and GM density in the left dorsolateral PFC (left middle frontal gyrus) meant that higher GM density in this prefrontal region correlated with shorter suppression times. Results are reported in Table 2 and depicted in Figure 3.
[bookmark: _Ref528593414]Figure 3
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In warm colors, areas in which GM density correlated positively with suppression times in the bCFS task; in cold colors, areas in which GM density correlated inversely with suppression times in the bCFS task.
[bookmark: _Toc528590111]3.1.3 Group differences in the correlation between GM density and bCFS task performance
We found that beta values in the correlation between suppression times and GM density were significantly different in the high and low BMI group in the right temporal pole/middle temporal gyrus, in the left orbital gyrus, as well as in the left operculum and insula. Beta values indicate that longer suppression times are associated with lower GM density in these areas in the higher BMI group, but not in the lower BMI group.
Results are reported in Table 2 and visually represented in Figure 4.
[bookmark: _Ref527984653]Figure 4
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Different GM density association with bCFS performance in the higher and lower BMI groups.

[bookmark: _Toc528590108]3.1.4 BCFS task-related connectivity networks
Longer RTs in the bCFS task correlated with greater connectivity between the right Calcarine ROI and two clusters located in the right and left supramarginal gyri, with the left cluster bordering on the postcentral gyrus (see Table 2 and Figure 5). No other ROI’s connectivity was significantly predicted by participants’ RTs in the bCFS task.
[bookmark: _Ref37261070]Figure 5
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Results of the connectivity analysis from the right Calcarine cortex ROI.
None of the ROIs resulting from the VBM group analysis of the bCFS task had significantly different connectivity in the higher and lower BMI groups, as predicted by the relative suppression times.
[bookmark: _Ref39487886]Table 2
	H
	Brain region
	p value
	Vol (MM3)
	MNI coordinates
   X          Y          Z
	T
	Z
	

	bCFS RTs and GM density
	

	R
	Calcarine
	< 0.001
	2335.5
	16
	-84
	6
	4.92
	4.41
	direct

	R
	Inferior Occipital g./ Occipital Fusiform g.
	0.007
	1312.88

	36
	-81
	-9
	4.04
	3.72
	direct

	R
	Caudate
	0.015
	1140.75
	15
	0
	27
	3.59
	3.36
	direct

	L
	Middle Frontal g.
	0.008
	1282.5
	-44
	20
	34
	4.55
	4.12
	indirect

	bCFS RTs and GM density in the higher BMI and lower BMI group
	 lower BMI
	 higher BMI

	R
	Temporal lobe /
Middle Temporal g.
	0.002
	1572.75
	50
	6
	-28
	4.18
	3.82
	0.019
	-0.045

	L
	Orbital g.
	0.003
	1542.38
	-27
	30
	-16
	4.55
	4.35
	0.005
	-0.044

	L
	Central operculum / anterior insula
	0.005
	1383.75
	-36
	4
	18
	4.14
	3.79
	0.007
	-0.032

	bCFS RTs and connectivity
	Seed

	R
	Supramarginal G.
	0.004
	1566
	46     
	-28
	32
	5.02
	0.07
	right Calcarine / bCFS RTs

	L
	Supramarginal G.
	0.006
	1312.88
	-66    
	-18
	22
	5.40
	0.07
	right Calcarine / bCFS RTs


Neural correlates of bCFS task performance
3.2 Go/No-Go task
3.2.1 Behavioral results
The linear mixed model on the RTs of the Go/No-Go task explained 33% of the data variance (marginal R2 = 0.01, conditional R2 = 0.33). No predictor showed collinearity with the other predictors (all variance inflation factors between 1 and 1.001). None of the main effects reached the significance level [all ps > 0.12]. We found an interaction effect of Stimulus Type * BMI [F (1, 5306) = 5.3, p = 0.02], shown in Figure 6. Post-hoc test showed that while BMI did not have a significant effect either in food not in nonfood trials [all ps < 0.07], participants with a higher BMI were slower in responding to nonfood Go trials, i.e. in blocks in which they needed to refrain to respond from food [t (176) = 0.57, p = 0.02], but participants with lower BMIs were not [t (177) = 2.29, p = 0.57]. This result indicates reduced inhibition in higher BMI participants specifically towards food. Results are reported in Supplementary Table 4.
[bookmark: _Ref22052049]Figure 6
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Interaction effect of BMI and Stimulus Type (Food, NonFood) in the analysis of RTs in the Go/No-Go task. Bands indicate 95% confidence intervals.
The model used in the analysis of accuracy explained 33% of the variance (theoretical marginal R2 = 0.22, 0.03; theoretical conditional R2: 0.33, 0.04). The results showed a main effect of Trials Type (2(1) = 189.8, p < 0.001), indicating overall lower accuracy in No-Go trials, and an effect of EAT-26 (2(1) = 4.7, p = 0.03), indicating lower accuracy in participants with higher eating disorders symptoms. Complete results are reported in Supplementary Table 5.
3.2.2 Correlation between grey matter density and Go/No-Go task performance independently of BMI
The analysis of RTs in Go trials of the Go/No-Go task showed that faster RTs were associated with higher GM density in the left frontal pole (see Figure 7 and Table 3).
[bookmark: _Ref527728031]Figure 7
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 Areas in which GM density inversely correlated with RTs in the Go/No-Go task.
Higher accuracy in No-Go trials, i.e. fewer false alarms, correlated with greater GM density in the vermal lobules VIII-X of the right cerebellum (see Figure 8 and Table 3). As EAT-26 scores influenced participants’ accuracy, we run a second model covarying EAT-26 scores. This model did not yield any significant correlation between the number of false alarms and GM density.
Neural correlates of accuracy on Go trials, i.e. missed targets, were not computed as accuracy on these trials was very high, as expected when testing healthy participants (mean 99.04%).
[bookmark: _Ref37255251]Figure 8[image: ]
Inverse correlation between the number of false alarms and GM density in the right cerebellum.
3.2.3 Group differences in the correlation between GM density and Go/No-Go task performance
As participants’ BMI significantly predicted a food-specific bias in Go trials of the Go/No-Go task, we explored the neural differences in GM density in the higher and lower BMI groups related to the difference between reaction times in nonfood and food trials. We found that a greater difference between nonfood and food trials, i.e. worse performance when inhibiting responses to food compared to nonfood, correlated with lower GM density in the higher BMI group in two areas, the right parietal operculum, and the orbital gyrus/right temporal pole (see Figure 9 and Table 3).
Since participants’ BMI did not significantly predict their accuracy in the Go/No-Go task, differences in the association between GM density and participants’ accuracy in the higher and lower BMI groups were not investigated.
[bookmark: _Ref39488004]Figure 9
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Areas in which GM density is predicted differently by the difference between nonfood and food RTs in the higher and lower BMI groups.
3.2.4 Go/No-Go task connectivity networks
In the Go/No-Go task, participants’ RTs and accuracy did not predict connectivity between the relative ROIs and the rest of the brain.
Connectivity of the ROIs resulting from the group analysis in the Go/No-Go task as predicted by the difference between nonfood and food go trials indicated that a stronger bias towards food correlated with greater connectivity in the higher BMI group between the right parietal operculum ROI and a cluster located in the left precentral/postcentral gyri, and with lower connectivity between the orbital gyrus ROI and three clusters located in visual areas, namely the right fusiform gyrus and the bilateral occipital cortex (see Figure 10 and Table 3).
[bookmark: _Ref38285329]Figure 10
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Connectivity of the ROIs resulting in the group analysis of the Go/No-Go task in the high and low BMI group. In green, the voxels with higher connectivity in the high than in the low BMI group. In violet, the voxels with lower connectivity in the higher than in the lower BMI group.  A) Seed: right parietal operculum B) Seed: left orbital gyrus.
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	H
	Brain region
	p value
	Vol (MM3)
	MNI coordinates
   X          Y          Z
	T
	Z
	

	Go/No-Go RTs and GM density
	

	L
	Frontal p.
	0.002
	1596.38
	-15
	75
	-4
	4.41
	4.01
	direct

	Go/No-Go false alarms and GM density
	

	R
	Cerebellum exterior
	< 0.001
	2004.75
	4
	-63
	-39
	3.90
	3.61
	indirect

	Go/No-Go RTs and GM density in the higher BMI and lower BMI groups
	 lower BMI
	   higher BMI

	R
	Parietal operculum
	< 0.001
	2575.13
	45
	-30
	22
	5.14
	4.53
	0.713

	0.471


	L
	Orbital g./ temporal pole
	0.005
	1370.25
	-24
	27
	-32
	4.97
	4.41
	-1.037
	-0.529 


	bCFS RTs and connectivity in the higher and lower BMI groups
	Seed
	
	

	L
	Precentral/ postcental g.
	0.009
	1272.38
	-52
	-8
	22
	4.52
	R parietal operculum
	3.58
	-1.14

	R
	Fusiform gyrus
	< 0.001
	1478.25
	32
	-60
	-14
	-4.64
	L orbital gyrus
	-2.52
	1.87

	R
	Lat. occipital cortex
	< 0.001
	806.63
	32
	-70
	18
	-4.51
	L orbital gyrus
	-2.15
	2.58

	L
	Lat. occipital cortex
	< 0.001
	688.5
	-22
	-82
	26
	-4.34
	L orbital gyrus
	-2.14
	2.70


Neural correlates of the Go/No-Go taks.
3.3 Neural correlates of BMI
3.3.1 Correlation between grey matter density and BMI
The VBM on BMI (see Supplementary Figure 2 and Supplementary Table 6) showed that participants’ BMI positively correlated with GM density in a large subcortical cluster located in the left, and partially right ventral diencephalon, including peaks in the left and right hypothalamus.
[bookmark: _Toc528590112]3.3.2 Body Mass Index ROI connectivity
Higher participants’ BMI correlated with lower functional connectivity between the ROI located in the hypothalamus and two clusters located in visual areas, namely a big cluster located between the left lingual gyrus, the bilateral calcarine cortex, and the left cuneal cortex, and a smaller cluster located in the left temporal occipital fusiform gyrus.
The results are depicted in Supplementary Figure 3 and reported in Supplementary Table 6.
4 - Discussion
In this study, we investigated subliminal attentional bias and inhibition toward food in individuals with different BMIs and identified the regions that correlated with individual differences in subliminal processing times and inhibitory performance through brain morphometry and connectivity analyses.
Slower subliminal processing and reduced inhibition towards food in individuals with a higher BMI 	
In line with our previous study (Osimo et al., 2019), we observed that individuals with a higher BMI showed slower subliminal processing of images than individuals with a lower BMI and that this subliminal processing disadvantage was not specific for food images. Also, individuals with a higher BMI were slower in responding to nonfood go trials than to food go trials in the Go/No-Go task. Slower RTs in nonfood go trials indicate greater difficulty in inhibiting response to food, suggesting a food-specific bias at a later stage of stimulus processing. The present results confirm, therefore, that the condition of obesity is not associated with a bias toward food at a subliminal stage of information processing but seems characterized by a domain-general attentional deficit at this stage. This observation complements various findings of general cognitive and attentional deficits in individuals with obesity, while our findings on Go/No-Go task are coherent with the literature that reports lower inhibition towards food images in individuals with overweight and obesity (Kulendran et al., 2017; Price et al., 2015; Svaldi et al., 2015).
Subliminal processing disadvantages in individuals with a higher BMI are linked to lower GM density in key regions deputed to awareness, high-level sensory integration, and reward.
We found that subliminal processing disadvantages in participants with a higher BMI resulted linked to regions implicated in top-down control such as the prefrontal cortex (Osimo et al., 2019), as well as with GM density of brain regions dedicated to awareness, high-level sensory integration, and reward such as the right temporal pole/middle temporal gyrus, the left central operculum and anterior insula, and the left posterior orbital gyrus. Among others, the anterior insula is a key region in awareness (Craig, 2009) and plays a central role in the emotional “salience network" that encodes emotional awareness of cognitive functions and emotionally modulates cognition (Harrison et al., 2010; Seeley et al., 2007). Interestingly, mental slowness in individuals with obesity has recently been found to be associated with an alteration in the salience network (García‐García et al., 2013). This is the first study documenting reduced grey matter density associated with the slowness of preconscious processing of stimuli in individuals with obesity, and more studies addressing this issue are needed since subliminal biases have been shown to have a strong influence on appetitive behavior (Finlayson et al., 2008; Forman et al., 2018; Takada et al., 2018). 
Reduced inhibition to food in individuals with a higher BMI is linked to lower GM density in regions implicated in food reward and reduced brain connectivity
Worse performance when inhibiting responses to food compared to nonfood in individuals with a higher BMI in the Go/No-Go task was linked to lower GM density in the right parietal operculum and left orbital gyrus/temporal pole. These areas are implicated in high-level sensory integration but are also associated with food reward and taste processing (Porubská et al., 2006; Beaver et al., 2006; Goldstone et al., 2009; Iannilli et al., 2012; Olson et al., 2007; Van Rijn et al., 2005; Simmons et al., 2005). According to the reward deficit model of obesity (Wang et al., 2002), the reduced GM density in reward regions may stimulate increase intake to compensate for the deficit. Notably, a greater food-specific bias predicted higher connectivity in the higher BMI group between the right parietal operculum and the controlateral precentral gyrus, an area whose activity has been related to the saliency of food stimuli (see for instance Litt et al., 2011) and that has been shown to have increased activation in response to food images in individuals with obesity (Brooks et al., 2013), as well as lower connectivity between the left orbital gyrus and visual areas, i.e. the right fusiform gyrus and the bilateral occipital cortex. Reduced connectivity of visual areas in individuals with a higher BMI is coherent with previous literature results (Zhang et al., 2020), and the observation that visual areas are activated more strongly by food than by nonfood images, possibly due to greater attentional and motivational salience of food objects (Adamson and Troiani, 2018; Frank et al., 2010; Masterson et al., 2019; Rosenbaum et al., 2008; van der Laan et al., 2011). Moreover, recognition of food has also been linked with the integrity of occipital areas in patients with dementia (Vignando et al., 2019). 
BMI correlates with GM density in subcortical regions and lower connectivity between the ventral diencephalon and low- and high-level visual areas
Finally, the participants’ BMI was found to correlate with GM density in a large subcortical area including the bilateral hypothalamus. Previous studies have associated the state of obesity with subcortical anomalies in the ventral diencephalon (DC) (Marqués-Iturria et al., 2013; Shott et al., 2015). The hypothalamus is a key region in the regulation of appetite (Tataranni et al., 1999), which activates when viewing food stimuli (Killgore et al., 2003). Interestingly, in our study higher BMI also predicted lower connectivity between the ventral DC and low- and high-level visual areas: the left lingual gyrus, the bilateral calcarine cortex, and the left cuneal cortex, and a smaller cluster located in the left temporal occipital fusiform gyrus. Various studies have reported abnormalities in the connectivity of the ventral DC, in individuals with overweight/obesity (Baek et al., 2017; Contreras-Rodríguez et al., 2017; García‐García et al., 2013; Nummenmaa et al., 2012; Olivo et al., 2016; Park et al., 2015; Steward et al., 2016), as well as reduced connectivity of the fusiform gyri and temporal visual areas (García-García et al., 2015; Kullmann et al., 2013). Lower connectivity between these areas may be linked to a dissociation between perceptive and reward mechanisms, which can be one of the factors leading to overeating in obesity.
Neural correlates of bCFS suppression times
Independently of BMI, our study provides new interesting evidence regarding structural brain variability associated with the performance in the CFS task. We observed that stronger suppression correlated with higher GM density in low-level (calcarine cortex) and high-level (inferior occipital/occipital fusiform gyri) visual areas. Interestingly, longer suppression times were associated with higher GM density in the right caudate nucleus, a structure implicated in reward-dependent behaviors (Balleine et al., 2007; Nakamura and Hikosaka, 2006). Similarly, Schmack et al. (2016) have found that suppression times can be predicted from activity in visual areas (right fusiform gyrus) and the orbitofrontal cortex. In a review on the neural correlates of arousing subliminal stimuli, Brooks et al. (2012) also found that suppressed arousing stimuli activated the primary visual cortex. Finally, shorter suppression times correlated with higher GM density in the left dorsolateral PFC, an area deputed to top-down control, whose activity is correlated with visual awareness (Dehaene et al., 2006). Therefore greater attention, inhibition ability, and modulation of the reward circuit are necessary for faster processing of visual stimuli in the bCFS task. 
Furthermore, stronger suppression in the bCFS task correlates with higher functional connectivity between visual areas (right calcarine cortex) and two areas located respectively in the right supramarginal gyrus and the left supramarginal and postcentral gyri. It is possible to hypothesize that when visual capture of the visual distractors is coupled with the effort of sensorimotor integration, this can impair the top-down modulation that enables the breaking of the suppressed stimulus into consciousness.
Neural correlates of reduced inhibition at the Go/No-Go task
Finally, our study also provides interesting results on the neural correlates of good performance in the Go/No-Go task independently of BMI. First, faster RTs in the Go/No-Go task resulted associated with greater GM density in the left frontal pole, an area deputed to high-level monitoring, task switching, and goal-directed behavior (Burgess et al., 2007). A negative association between frontal GM density and performance in the Go/No-Go task was also reported by Li et al. in alcohol-dependent patients (Li et al., 2010). Second, better inhibition, i.e. fewer false alarms, correlated with higher GM density in the right cerebellum. The cerebellum, besides being an important motor area, is implicated in multiple functions, including attention, executive control, and working memory (Strick et al., 2009). Interestingly, it has been found to have a role also in error and conflict processing and response inhibition (Peterburs and Desmond, 2016). This result, however, should be taken with caution, as it disappears when adding the EAT-26 score as a covariate. This suggests that dysfunctional eating habits may influence the relationship between accuracy and GM density in the cerebellum.
Limitations
Some issues should be acknowledged since they constitute limitations of this study. First, we cannot exclude that the absence of a subliminal attentional bias specific for food stimuli may be due to the composition of the sample, which includes a wide range of BMI but does not address the presence of a food bias in individuals with overweight vs normal-weight individuals. This choice was made to investigate the effects of BMI as a continuum, but these results may differ in a sample of individuals with higher BMIs. Also, future studies should address how dysfunctional eating attitudes influence subliminal food processing. Second, we did not screen our participants for history of eating disorders, which may have influenced our results. However, we used the EAT-26 scores, which are indicative of eating disorders symptomatology, as covariates in our analyses to isolate the possible effect of eating disorders symptoms. Finally, it is possible that choosing more salient food stimuli (highly caloric, highly palatable) might have yielded a food-specific subliminal bias. Third, it is important to notice that the Go/No Go task, even if established in the literature, tends to yield small effect sizes that are not always reproduced across studies (Bartholdy et al., 2016; Kulendran et al., 2017). 
5 - Conclusions
 In conclusion, this study adds novel findings to the current literature on obesity. It provides the first evidence that individuals with a higher BMI are characterized by slower subliminal processing of visual stimuli and that higher threshold of awareness might be linked to lower GM density of key areas involved in awareness, high-level sensory integration, and reward such as OFC, bilateral temporal areas, the operculum, and insula. It also confirms reduced inhibition toward food in obesity and shows that the food-specific bias measured through the Go/No-Go task resulted associated with lower GM density in the right parietal operculum and its higher functional connectivity with the left precentral gyrus, lower GM density in the left orbital gyrus/temporal pole, and weaker connectivity with visual areas.
	Also, we demonstrated that differences in brain morphology and connectivity are related to different behavioral outcomes at the CFS and the Go/No-Go task. Notably, better behavioral performance at the bCFS and Go/No-Go tasks correlates with higher GM density in frontal control areas, while slower subliminal processing is linked to higher GM density in areas involved in visual processing and reward, as well as to higher connectivity to sensorimotor areas and lower connectivity to visual areas. We, therefore, suggest that behavioral alterations in the performance of the bCFS and Go/No-Go task can be attributed to alterations in the reward and control circuits. This result paves the way for future investigations using these paradigms in healthy and pathological populations.
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