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(EN) Summary

The fast accumulating data on genetic sequences from all branches of the

tree of life, supported by recent advances in genome sequencing technologies,

has enabled rapid scientific progress in the field of evolutionary biology and in

our understanding of gene evolution through natural selection. Such progress,

however, requires the support of dedicated bioinformatics software to efficiently

aid hypothesis formulation on gene function and evolution through comparative

genomics approaches. These must furthermore be designed to be freely

accessible and able to analyse an ever increasing amount of genomes from

public repositories. Specifically, detailed experimental characterisation of the

biological processes and functions associated with the increasing numbers of

newly sequenced genes from less-known species is not scalable. Computational

approaches are therefore required to build on existing knowledge from

better-studied species and make predictions or inferences that are supported by

a cross-species evolutionary framework. This thesis showcases new approaches

aiming to support such research efforts through automated comparative

genomics tools, by characterising the evolutionary trajectories of genes from

hundreds of species and associating them with putative functional roles.

Arthropods are invertebrate animals, comprising almost 80% of the total

described animal diversity. Including crustaceans, arachnids, myriapods, and

insects, among others, they constitute an ideal study system for characterising

gene evolutionary-functional correspondences, given their vast range of

physiological and ecological adaptations over more than 600 million years of

evolution. Furthermore, they comprise key species of fundamental

epidemiological and agroecological interest, and a better understanding of their

genetic sequences is fueled by global societal challenges, including the spread of

devastating diseases, agricultural pest control, and biodiversity conservation.

This thesis work thus aims to specifically improve the resolution of

evolutionary-functional correspondences across arthropod species with available

genomic data, and provide a readily-available resource to explore

evolutionarily-informed putative gene function predictions of previously

undescribed genes. These include the generation of statistically supported
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hypotheses associating the evolutionary histories of gene families with biological

processes such as organismal development, cellular organisation, immune

response mechanisms, chemosensation, and insecticide resistance among

others.

The first chapter presents the Evol-Feat toolkit, a scalable bioinformatics

workflow to characterise the evolutionary trajectories of genes from multiple

species. Used to compare the genes from 170 arthropod genome sequences, the

first chapter focuses on the design and computation of “evolutionary features”:

metrics designed to quantify changes in genetic sequences and gene repertoires.

The second chapter focuses on clustering methods applied to the distributions of

arthropod gene evolutionary features, to identify subsets of genes that show

similar evolutionary profiles, and presents methodologies for associating these

sets of genes with putative functions. The third chapter presents the application

of the Evol-Feat toolkit to investigate the evolutionary-functional relationships

between immune-related genes, in a proof-of-concept case-study focussed on

the African malaria mosquito, Anopheles gambiae. The fourth and last chapter

showcases the collaborative scientific work which accompanied the design and

development of the Evol-Feat workflow through specific research studies

including phylogenomic reconstructions of arthropod lineages, the exploration

and description of available genomic resources, the investigation of physiological

and ecological adaptations in hymenopterans, and bioinformatics software

development.
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(FR) Resumé

L'accumulation rapide de données sur les séquences génétiques de toutes

les branches de l'arbre du vivant, soutenue par les récentes améliorations des

technologies de séquençage du génome, a permis des progrès scientifiques

rapides dans le domaine de la biologie évolutive et dans notre compréhension de

l'évolution des gènes par la sélection naturelle. Ces progrès nécessitent toutefois

l'utilisation de logiciels bioinformatiques spécialisés pour faciliter la formulation

d'hypothèses sur la fonction et l'évolution des gènes par des approches de

génomique comparative. Ces logiciels doivent en outre être développés pour être

librement accessibles et capables d'analyser un nombre toujours croissant de

génomes provenant de banques de données publiques. Plus précisément, la

caractérisation expérimentale détaillée des processus et fonctions biologiques

associés au nombre croissant de gènes nouvellement séquencés provenant

d'espèces moins connues n'est pas extensible. Des approches computationnelles

sont donc nécessaires pour s'appuyer sur les connaissances existantes des

espèces mieux étudiées et faire des prédictions ou des déductions soutenues par

un cadre évolutif inter-espèces. Cette thèse présente de nouvelles approches

visant à accompagner de tels efforts de recherche par le biais d'outils

automatisés de génomique comparative, en caractérisant les trajectoires

évolutives de gènes de plusieurs centaines d'espèces ainsi qu’en leur associant

des rôles fonctionnels hypothétiques.

Les arthropodes sont des animaux invertébrés, qui représentent près de

80 % de la diversité animale totale actuellement décrite. Comprenant entre

autres des crustacés, des arachnides, des myriapodes et des insectes, ils

constituent un système d'étude idéal pour caractériser les correspondances

évolution-fonction des gènes, étant donné leur vaste gamme d'adaptations

physiologiques et écologiques sur plus de 600 millions d'années d'évolution. En

outre, ils comprennent des espèces clés d'un point de vue épidémiologique et

agroécologique, et une meilleure compréhension de leurs séquences génétiques

est nécessaire au vu des défis sociétaux globaux rencontrés, notamment la

propagation de maladies dévastatrices, le contrôle des parasites agricoles et la

conservation de la biodiversité. Ce travail de thèse a donc pour but d'améliorer la
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résolution des correspondances évolution-fonction chez les espèces

d'arthropodes ayant des données génomiques disponibles, et de fournir une

ressource facilement accessible pour explorer les prédictions de fonctions

génétiques informées par l'évolution de gènes non décrits auparavant. Ces

prédictions comprennent la génération d'hypothèses soutenues statistiquement,

associant l'histoire évolutive des familles de gènes à des processus biologiques

tels que le développement de l'organisme, l'organisation cellulaire, les

mécanismes de réponse immunitaire, la chimiodétection et la résistance aux

insecticides, entre autres.

Le premier chapitre présente la boîte à outils Evol-Feat, un workflow

bioinformatique permettant de caractériser les trajectoires évolutives des gènes

de plusieurs espèces. Après la description théorique et méthodologique

d’Evol-Feat, utilisé pour comparer les gènes de 170 génomes d'arthropodes, le

premier chapitre se concentre sur la conception et le calcul des "caractéristiques

évolutives" : des métriques conçues pour quantifier les changements dans les

séquences génétiques et les répertoires de gènes. Le deuxième chapitre se

concentre sur les méthodes de regroupement appliquées aux distributions des

caractéristiques évolutives des gènes d'arthropodes, afin d'identifier des

sous-ensembles de gènes qui présentent des profils évolutifs similaires, et

présente des méthodologies pour associer ces ensembles de gènes à des

fonctions putatives. Le troisième chapitre présente l'utilisation d’Evol-Feat pour

étudier les relations entre évolution et fonctions chez les gènes liés à l'immunité,

dans le cadre d'une étude de validation de concept axée sur le moustique

africain de la malaria, Anopheles gambiae. Le quatrième et dernier chapitre

présente le travail scientifique collaboratif qui a accompagné la conception et le

développement d’Evol-Feat par le biais d'études de recherche spécifiques,

notamment des reconstructions phylogénomiques de lignées d'arthropodes,

l'exploration et la description des ressources génomiques disponibles, l'étude des

adaptations physiologiques et écologiques chez les hyménoptères et le

développement de logiciels bioinformatiques.
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Introduction

The increasingly thorough sampling of the tree of life through genomic

sequencing offers new opportunities to explore the links between gene evolution

and gene function (Lemmon and Lemmon 2013; Waterhouse 2015). Due to their

incredible biological diversity, arthropods present an ideal study system,

considering their vast range of physiological, behavioural, and ecological

adaptations (Giribet and Edgecombe 2019). However, this diversity, coupled with

rapidly growing amounts of genomic data, presents a challenge to understanding

the underlying biology because detailed functional genetics research requires

significant investments in time, expertise, and resources. Comparative genomics

approaches must therefore continue to assist the interpretation of such

increasingly accessible genomic data (Thomas et al. 2020; Kapli, Yang, and

Telford 2020). This thesis presents an evolutionary biology framework for

comparative genomics analyses, providing biologists with an exploratory

resource to capture the evolutionary histories of gene sequences and map them

to their putative functional roles and constraints. It proposes a novel approach to

characterise arthropod genomic diversity, shaped through hundreds of millions of

years of evolution and at the origin of the extraordinarily diverse range of

organismal functions. Deepening our understanding of such diverse arthropod

evolutionary-functional correspondences cannot be sustained without an

increased access to automated and scalable bioinformatics tools (Richards,

Childers, and Childers 2018; Li et al. 2019). Such approaches will therefore be

crucial, not only for scientific progress but also to inform strategies facing

several of the global challenges posed to human societies by an increasing

jeopardisation of arthropod populations, exacerbated by rapid climate change.

Arthropods (from the Ancient Greek words for “jointed-feet”) are

invertebrate animals with an exoskeleton, segmented body, and paired jointed

appendages. Comprising not only insects, arthropods group every species of

chelicerates (spiders, scorpions, mites, horse-shoe crabs, and others) and

mandibulates (crustaceans, hexapods, centipedes, millipedes, and others) (E.

Clark, Peel, and Akam 2019). Together they form the phylum Arthropoda, which

vastly surpasses the total number of species in all other phyla combined, and
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with an estimated count of 7 million species, it comprises some of the largest

animal taxonomic classes, orders, and families: 5.5 million insects species

including 1.5 million beetles, and 1.3 million non-insect terrestrial arthropods,

including 1 million mite species (Stork 2018). Arthropods could be viewed as the

most representative phylum for metazoan comparative analyses simply for their

sheer diversity and dominant presence within animal taxonomy. They are

estimated to represent more than 80% of the total described animal diversity. As

an example, Curculionidae, the true weevil family of beetles, is the largest

animal family by species count, with currently 62’000 described species and

220’000 estimated species (Oberprieler, Marvaldi, and Anderson 2007).

Moreover, insects have been proposed as a flagship for global biodiversity and

conservation, due to their capacity to act as powerful indicators for

environmental quality and threats, and the effectiveness of conservation

programmes (Wilson and Fox 2021). Such an enormous taxonomic span mirrors

the arthropods’ astounding range of occupied habitats and ecological functions,

such as pollination, seed dispersion, food supply, predation, and decomposition .

Their ecological diversity includes large and tiny herbivores (beetles and

aphids), flying predators (dragonflies and robber flies), highly complex eusocial

colonies (ants, termites, and social hymenopterans), and solitary individuals

(solitary bees and spiders). They evolved to be plant pollinators (hymenopterans

and lepidopterans), obligatory blood-feeders (ticks and lice), or both

(mosquitoes and true flies). Arthropods have colonised every continent and can

be found in most habitats of the world, from sea bottoms to deserts. As key

ecological actors of so many diverse landscapes, this incredible arthropod

biodiversity must be better understood and protected against threats of

anthropogenic disturbances, including global warming, habitat disruption,

pesticide overuse, and invasive species transportation (Harvey et al. 2020;

Wilson and Fox 2021). Nevertheless, arthropods can hugely impact human

societies with agroecological, forestry conservation, and epidemiological

challenges as they are also associated with the spread of devastating diseases,

crop failures, and ecosystem disruptions. Crop-destructing pest species like the

fall armyworm or disease vectors like the African malaria mosquito constitute a

threat to millions of people worldwide, particularly in the poorest regions of the

world (Neafsey et al. 2015; Sinka et al. 2020; Harrison et al. 2019).
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Entomologists have described much of this ecological diversity shaped

over ~600 million years of evolution, and during the last two decades, genomics

technologies have begun to catalogue and characterise the correspondingly large

genetic and genomic diversity (Misof et al. 2014; Schwentner et al. 2017;

Tihelka et al. 2021). The number of arthropod genomes in publicly available

repositories has grown steadily thanks to decreasing sequencing costs and the

relative ease of genome assembly when compared to often larger genomes of

vertebrates (Gregory et al. 2007). Since the first arthropod genome in 2000,

when the genome of the common fruit fly Drosophila melanogaster was

published (Adams 2000), the National Center for Biotechnology Information

(NCBI) databases have seen the number of hosted arthropod genomes rising to

represent ~2’000 species (Schoch et al. 2020; Feron and Waterhouse 2022a).

The constant and fast progress in the development of genome sequencing and

assembly technologies will help increase this number further and to an extent

unimaginable only a decade ago (Hotaling et al. 2021). As a consequence,

increasingly comprehensive molecular phylogenomics studies are already

continuously challenging our knowledge on arthropod evolution and development

(Neafsey et al. 2015; E. Clark, Peel, and Akam 2019; Thomas et al. 2020; Sun

et al. 2021). To be able to take advantage of these data to help understand

arthropod biology, it is thus essential to develop innovative interpretative

informatics tools powered by comparative genomics analyses (Feron and

Waterhouse 2022b).

To bridge the gap between raw genomic data and biological insights, the

scientific community is facing two main challenges: on the one hand, the

large-scale genome data interpretability to associate genetic signatures with

biological or ecological properties (Nagy et al. 2020). On the other hand, these

evolutionary-functional correspondences are still fundamentally poorly

understood. As such, evolutionarily-informed gene function predictions can help

fill the knowledge gap linking gene sequences to biological functions with

statistically supported hypotheses (Gabaldón and Koonin 2013). Investigating

the relationships between gene evolution and genetic functional diversity might

shed light on how natural selection forces shape these correspondences

(Tatusov, Koonin, and Lipman 1997). Such forces are defined as the combination
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of functional constraints hypothesised to regulate the evolution, survival, and

adaptability of populations through selection-driven processes spanning millions

of years (Koonin 2003; Koonin and Wolf 2010; Koonin 2011). Specifically, gene

families are characterised by quantifiable characteristics such as differing levels

of sequence conservation and evolutionary rates, or the emergence of

lineage-specific gene losses and gene family expansions (Krylov 2003; Wolf,

Carmel, and Koonin 2006; R. M. Waterhouse et al. 2007; R. M. Waterhouse,

Zdobnov, and Kriventseva 2011).

The thesis focuses on the principal building blocks of the central dogma of

genotype-to-phenotype mechanisms, that is, genes, and specifically

protein-coding genes, assuming that the potentiality of function can be

determined at the gene level. As with any model, this approach abstracts some

of the realities of the biological complexities determined by preceding and

subsequent molecular mechanisms of the gene-to-protein chain of events. It will

not investigate gene regulatory networks of gene activation and expression

through, e.g. intron sequences, regulatory elements, transcription factor binding

sites, differential splicing, transcript inhibition and degradation, as well as

different modes of gene sequence transmission, including horizontal gene

transfer events, introgressions, virus-like and retrovirus insertions. Addressing

such complications would require further analyses largely beyond the scope of

this thesis. The approach and methodology defined hereafter are nevertheless

conceptual, and aspects of it could be applied to investigate the

evolutionary-functional correspondences of families and classes of genetic

elements other than protein-coding genes.

Ultimately, the output-oriented goals of this thesis include: 1) providing

experimental biologists with a readily-available resource where thousands of

arthropod genes from model and non-model species alike can be explored in the

context of their evolutionary-functional correspondences; and 2) providing

computational biologists with a tool to capture and compare the evolutionary

features of genes to support evolutionary-functional hypotheses on custom data.

Gene evolutionary features include measurements of phylogenetic age and

species-span, conservation and synteny scores, copy-number variation,

sequence evolutionary rates, quantifications of gene family losses and expansion
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events. Mapping similarly behaving genes (in terms of their evolutionary

features) across a phylogeny of arthropod species then allows the exploration of

associations with putative broad biological functions using Gene Ontology

enrichment analysis. Such systematic approaches are necessary, and

increasingly so, in this era of rapidly decreasing genome sequencing costs,

characterised by fast-accumulating data but not as fast-developing interpretative

capabilities. This work therefore aims to benefit the arthropod biology scientific

community by providing a readily-available tool for exploring arthropod gene

evolution and function while showcasing the leverageable information gathering

potential of large-scale comparative genomics studies.

The first chapter of this thesis focuses on the theory and the definition of

novel evolutionary features, their exploratory analyses, pairwise comparisons,

their distributions across the genomic space, initial interpretative results, and a

description of the bioinformatics workflow to compute these features, Evol-Feat.

The second chapter then expands on the clustering techniques applied to the

evolutionarily-defined profiles of arthropod orthologous genes and how they can

be partitioned into separate modules of evolutionary trajectories. These modules

are then assessed from a functional perspective, to characterise

evolutionary-functional correspondences that help build informed hypotheses on

arthropod gene functions. The third chapter presents a case-study application of

the evolutionary features conceptual framework on the immune gene repertoire

of the African malaria mosquito, Anopheles gambiae. The fourth and final

chapter summarises the additional scientific collaborative research efforts and

outputs that helped drive progress and shape the practical implementation of the

Evol-Feat bioinformatics workflow and its theoretical conceptualisation.
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Chapter 1: Evol-Feat, a Toolkit for
Quantifying Gene Evolutionary Features

Summary

This chapter focuses on the reasoning behind the planning and

implementation of the Evol-Feat bioinformatics workflow, starting with an overall

introduction to the concept of evolutionary features and modules, and the

biological motivations to investigate the correspondences between gene

evolution and gene function. This is followed by the descriptions of the online

resources providing the data at the origin of the thesis work. After describing the

choice and nature of the databases, reporting then focuses on the evolutionary

features grouped by data source type while describing their computational

methodology and biological relevance. The chapter then expands on descriptions

dedicated to the Evol-Feat workflow usage, reproducibility, and scalability. The

last section focuses on preliminary and exploratory statistics, including pairwise

comparisons, correlations, and principal component analysis of the feature

distributions.
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Theoretical Background on Gene Evolutionary Features

Comparative genomics offers opportunities for improving the

understanding of animal biology through integrative and evolutionarily informed

approaches to elucidating the putative functions of thousands of genes from

hundreds of genomes. By leveraging existing resources and propagating the

knowledge from better to less studied systems, comparative approaches can be

used to generate well-supported hypotheses on gene function (Koonin 2005).

This requires developing cross-species comparisons to quantify patterns of

change and explore the relations between how genes evolve and the biological

roles they perform: gene evolutionary-functional correspondences. Such

correspondences, within the context of comparative evolutionary analyses, are

identified as originating from a specific theoretical framework of analysis, and

cornerstone of describing evolutionary relationships between genes: sequence

homology, and more specifically, orthology.

Homology has been used by evolutionary biologists throughout history as

a term describing common evolutionary ancestry between anatomical structures

across different species. Usually supported by similarities in morphology and

function, two anatomical structures would nevertheless not be defined

homologous when not originating from the same common ancestor species. For

centuries, comparing fossil records to hypothesise the evolution of homologous

anatomical structures fueled the scientific description of species taxonomy and

evolutionary relationships. With the advent of molecular biology, sequence

homology became the equivalent concept applied to DNA, RNA, and protein

sequences, defining two or more sequences homologous strictly when sharing

common molecular ancestry (Fitch 1970). High percent sequence similarity and

identity of aligned amino acids and nucleotides are good starting measures to

infer homology across sequences; however these are not definitive, as they may

arise from convergent evolution or by chance, especially in shorter sequences.

High confidence inferences of sequence homology must thus be supported by

appropriate statistical testing, such as the bit score and E-value from the NCBI

BLAST (Kerfeld and Scott 2011), determining the likelihood of sequence

similarities arising by chance.
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Orthology extends the concept of homology by defining as orthologs those

genes in different species derived by vertical descent from a single gene in their

last common ancestor species (Koonin 2005): i.e. homologous genes are

orthologs when emerging through speciation events. Sequence homology can,

however, emerge through other mechanisms too: paralogy indicates homology

via within-species gene duplication events, and xenology via horizontal gene

transfer. While xenologs are considerably less widespread in eukaryotes than

prokaryotes (Krylov 2003), paralogs are common, and their true identity is often

challenged by imperfect automated genome annotations, where undetected

genes in other species could grant them ortholog status. Adding to the

complexity presented by such intricate evolutionary scenarios, the identification

and definition of homologous genes are further complicated by the inclusion of

more than one pair of genes and species, and the occurrence of gene losses and

domain rearrangements such as gene fusions and fissions. Additionally, different

sequence evolutionary rates can contribute to an increased sequence divergence

through point mutations, insertions, and deletions. As well as affecting gene

function to varying degrees, these possible changes are also likely to influence

orthology delineation and subsequent functional inferences guided by orthology

data. The full range of evolutionary scenarios must thus be considered when

using comparative approaches to investigate putative gene functions. The

consequences of such diversifications may result in different functional outputs

through pseudo- or neo-functionalisation, non-functionalisation,

sub-functionalisation, or gene dosage increase (Zhang 2003; Micheli and

Camilloni 2022).

Nevertheless, orthology is widely considered a powerful approach to infer

the biological functions of uncharacterised genes in newly sequenced genomes

from experimentally validated gene functions of model organisms. At the origin

of this often implicit procedure stands the ortholog conjecture, stating that

orthologs carry out biologically equivalent functions in different organisms; and

that the functions of paralogs typically diverge after duplication (Koonin 2005).

More importantly, it is generally recognised that physiologically essential

functions (where the corresponding gene knock-outs are lethal to the organism)

are likely to be conserved across species through conserved orthologous genes

18



(Altenhoff et al. 2012; Gabaldón and Koonin 2013). Additionally, the ortholog

conjecture stands firmer concerning single-copy orthologs, i.e. orthologous

genes with no detected paralogs, and likely indicators of highly conserved

sequences bound to be maintained so as not to disrupt the organism’s fitness.

Such observations could mechanistically be explained, for example, by the fact

that the oldest genes are, to some extent, interlocked in more extensive

functional networks, wholly inherited during the evolution of extant lineages

(Schlitt et al. 2003; Domazet-Lošo, Brajković, and Tautz 2007).

As orthologous genes must refer to their last common ancestor, orthology

delineation is, by definition, hierarchical and relative to the selected set of

species. Different methodologies have been employed to capture orthologous

genes, for example, by reconstructing homologous gene trees followed by a

reconciliation with the species tree (Emms and Kelly 2019). OrthoDB - the

hierarchical catalogue of orthologs - (Waterhouse et al. 2013) employs a

different procedure, progressively clustering all-against-all pairwise sequence

comparisons. The resulting hierarchical clusters of orthologs are subsequently

expanded with all closely related in-paralogs (within-species duplicated genes

emerging after a particular speciation event). This procedural definition of

orthology unequivocally defines the multi-species hierarchical relationships of

genes, including orthologs, co-orthologs (multi-copy orthologs), and paralogs.

The hierarchical clusters of orthologs are named orthologous groups and refer to

sets of all homologous genes evolving from a single ancestral gene after a

reconstructed speciation event. The earliest phylogenetic classification efforts to

define hierarchical clusters of orthologs provided their first definitions, including

the microbial clusters of orthologous groups of proteins (COGs, (Tatusov et al.

2000)) and the eukaryotic orthologous groups (KOGs, (Koonin et al. 2004)).

However, only the OrthoDB orthologous groups, as defined by (Kriventseva et al.

2019), will serve as the supporting data for the orthology delineation of

arthropod genes at the basis of this thesis work.

Orthology delineation, specifically the KOGs, supported the first

systematic explorations of the correspondences between gene evolution and

function. Multi-species comparisons to explore gene evolutionary features were

pioneered by Koonin and colleagues in (Krylov 2003), identifying the propensity
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for gene loss (PGL) and sequence divergence as complementary measures of the

conservation of a gene. Analysing seven eukaryotic genomes, the PGL, a

measure of gene loss frequency across eukaryotic lineages, was positively

correlated with the amount of amino-acid substitutions in the corresponding

protein sequences. Low PGL scores were further associated with high gene

essentiality (measured as the lethality from gene knockout effects), high

expression rates, and a higher number of protein-protein interactions.

Nevertheless, fewer amino-acid substitutions were not found to be significantly

associated with the indispensability of the biological function, leaving the

hypothesis that essential genes tend to evolve slower than non-essential ones

(the “knockout-rate” prediction, (Jordan et al. 2002)) to be further tested. These

exploratory results and first quantification efforts of evolutionary features

highlighted gene loss as a strong evolutionary driving force defining the gene

repertoires of eukaryotes through functional constraints. The functional

adaptation potential of eukaryotic genes through higher sequence mutation

frequencies, as captured by the KOGs’ evolutionary rates, seems to be restricted

by the size of the protein’s interaction network, expression levels and

physiological viability.

Initially subject to correlational analyses only, these first evolutionary

features were extended and further investigated in (Wolf, Carmel, and Koonin

2006) with a Principal Component Analysis (PCA). The resulting first three main

axes were found to be related to 1) the gene’s status: positive contributions

from expression levels, number of protein-protein interactions, number of

paralogs (copy-number), and knockout lethality (essentiality), in parallel with

negative contributions from sequence evolutionary rates and gene losses; 2) the

gene’s adaptability: enhanced by an increased number of gene copies, a higher

number of protein-protein interactions, and lower knockout lethality; 3) the

gene’s reactivity: positively driven by gene losses, expression levels, and

copy-number while negatively driven by the number of protein-protein

interactions. The first axis was interpreted as the gene’s overall essentiality,

while the second and third axes as a reflection of the role of the gene in the

organism’s functional and evolutionary plasticity. Functional annotations of

extreme values highlighted the associations of high PC1 (status) scoring genes

with the translation system and cytoskeletal proteins. High PC2 (adaptability)
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scoring genes were instead associated with cellular processes and signalling

genes, while high PC3 (reactivity) scores with metabolic enzymes.

Soon after, macroevolutionary adaptations were characterised by more

comprehensive phylogenies associated with D. melanogaster gene evolutionary

histories, an approach the authors called genomic phylostratigraphy

(Domazet-Lošo, Brajković, and Tautz 2007). Without the direct use of orthology

delineations, the analysis framework included D. melanogaster phylogenomic

strata and embryo gene expression data. The phylogenomic strata were defined

from sets of homologous genes obtained with NCBI BLAST and associated with

different phylogenetic ages of D. melanogaster genes. The results of the

phylostratigraphic map indicated epoch-specific emergences of protein families

and that some genes retain ancient signals of their evolutionary histories:

ancestral genes become interlocked into pathways during the evolution of

lineage-specific adaptations. With the increasing availability of genome data,

genomic phylostratigraphy may be applied to uncover broad evolutionary

processes in Drosophila and other lineages.

These rather theoretical observations came in parallel with a series of

more applied studies which examined additional evolutionary features and

expanded the exploration of evolutionary-functional correspondences. The

acquisition of the second mosquito genome, Aedes aegypti, enabled the detailed

characterisation of the immune-related genes and pathways by sequence

divergence, copy-number, and species span (Waterhouse et al. 2007), in

comparison with the already available genome sequences of A. gambiae and D.

melanogaster. Distinct evolutionary trajectories were associated with different

immunity-related functional modules: recognition receptors of bacteria and fungi

are characterised by universal and copy-number expanded genes; adaptations of

ancient recognition domains drive neo-functionalizations such as malaria parasite

recognition; immune signal modulators show a range of dynamics reflecting the

species-specific adaptations of protein networks’ assemblies; signal transduction

pathways are universally constrained, and their genes evolve in concert, likely

interlocked in protein-protein interactions; effector mechanisms are

characterised by diverging evolutionary trajectories, depending on their effector

activity.
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Evolutionary features of essentiality, gene copy-number, taxonomic span

and sequence divergence were further investigated with the categorisation of

orthologous genes from 40 vertebrates, 23 arthropods, and 32 fungi genome

sequences (Waterhouse, Zdobnov, and Kriventseva 2011). Supported by a vastly

increased genome availability, sequence evolutionary rates were found to be

significantly more constrained in single-copy orthologs and in orthologous groups

containing physiologically essential genes, confirming the “knockout-rate”

prediction previously undetected in (Krylov 2003). The study further highlighted

two main evolutionary trajectories within gene repertoire diversity, the first

characterised by young, lineage-specific, and evolutionarily dynamic sequences,

and the second by old, universal, and evolutionarily stable sequences. The

“single-copy control” versus “multicopy licence” is hypothesised to play an

underappreciated role in the forces driving the expansion of the evolutionary

landscape of gene families.

Shortly after, the evolutionary rate covariation (ERC), defined as the

sequence covariation of a pair of proteins over evolutionary time, was identified

as a promising phylogenetic signature in 18 budding yeast species; it was

associated with proteins’ physical interactions and shared function (N. L. Clark,

Alani, and Aquadro 2012). Notwithstanding assumptions of orthology, ERC may

reflect the co-evolution of the molecular interfaces between interacting proteins

but has nevertheless been demonstrated to also emerge across non-interacting

but co-functional enzymes. Multi-species ERC characterisations of entire gene

repertoires could serve as a powerful addition to the suite of evolutionary

features for the automated functional group assignments of uncharacterised

proteins.

Others too have recognised the potential of using approaches to quantify

gene evolutionary trajectories. Several bioinformatics tools were developed to

define and measure gene evolutionary features and then explore how these

relate to biological pathways and functions. Evolutionary barCode (EvoluCode,

(Linard et al. 2012)) used metrics of sequence and domain conservation,

orthology, synteny, and phyletic distributions to barcode the human proteome on

a vertebrate evolutionary timescale. Resulting clusters of evolutionary barcodes,
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consisting of protein subsets sharing similar evolutionary histories, were

successfully enriched with biological functions. The automated workflow was

successfully implemented to predict the functional roles of the proof-of-concept

methionine salvage sub-pathway, and could be extended to all pathways and

higher evolutionary scales, although with particular care to the high sensitivity

derived from highly correlated parameters.

CLustering by Inferred Models of Evolution (CLIME, (Li et al. 2014)) used

phylogenetic profiles within a species tree, a homology matrix, and pathways of

interest to partition gene sets into evolutionary models. CLIME expands the

pathways of interest with newly scanned genome components by partitioning the

gene sets into evolutionary modules defined by the homology- and

phylogeny-inferred evolutionary histories. Applied to ∼1’000 annotated human

pathways and the proteomes of yeast, red algae, and the malaria parasite, it

revealed that half of the resulting modules contained genes with no shared

sequence similarity, and increased the modularity of traditionally well-studied

pathways. While limitations arose from the poorer resolution of the homology

matrix compared to orthology delineations, these observations further highlight

the need for alternative evolutionary features in the quest for putative gene

function prediction. Similarly to CLIME, Protein Phylogenetic profiling (ProtPhylo,

(Cheng and Perocchi 2015)) used co-evolution profiles constructed from

orthology delineations and phyletic profiles corresponding to presence/absence

in the species subset to identify functionally-linked proteins in 2’048 sequenced

organisms. ProtPhylo ultimately provides functional annotations for all the

considered proteins, including subcellular localisations, the presence of

transmembrane helices, protein domain families, and protein-protein

interactions.

In summary, as a result of the increased genomic sampling and new

bioinformatics tools for comparative genomics studies, several efforts have

quantified changes in gene sequences and copy-numbers across hundreds of

species, associating them with the emergences and losses of gene families,

phenotypical, and physiological adaptations (Thomas et al. 2020; Fernández and

Gabaldón 2020; Guijarro-Clarke, Holland, and Paps 2020). These initial

exploratory studies and subsequent detailed comparative genomics efforts
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provide us with an overview of the expectations and potential progress in

advancing our understanding of evolutionary-functional correspondences of

arthropod genes. Different categories of genes have originated through and can

be identified by different evolutionary trajectories, here defined in terms of rates

of repertoire and sequence changes. Defining and computing different measures

of gene evolution can place genes along a spectrum of evolutionary features

such as slow- to fast-evolving, or stable to dynamic copy-numbers. Some of

these properties are correlated, some are anti-correlated, and others seem

unique or follow more subtle underlying interactions. Subsets of genes can be

characterised by extreme values of certain features while presenting average

values of others.

These observations suggest that unique evolutionary features, or

combinations of features, can capture specific functional properties while others,

acting in concert, are likely reflections of the evolution of genes in interlocked

pathways bound by physiological constraints. Characterising such evolutionary

trajectories can thus inform the prediction of generic functional properties such

as essentiality, expression levels, or interactions; detailed and lineage-specific

functional adaptations; or broader functional complexes, modules, and

pathways. Rather than seeing the complexity of gene families’ evolution as a

problem, this thesis work aims to leverage the full spectrum of possible

evolutionary trajectories of arthropod genes, harnessing the existing knowledge

to build accordingly complex models and enhance the resolution of hypotheses

on gene function.

Current limitations of such studies include a low descriptive resolution

originating from either the inclusion of only a few measured evolutionary

features or from a small and imbalanced selection of genomes, especially in

older studies. Methods to quantify evolutionary features may not be easily

reproducible as they are often conceived and developed for single applications,

especially in mainly theoretical studies. Most studies highlight genomic variations

across vast taxonomic ranges, describing patterns of evolution across metazoan

and eukaryotic evolutionary timeframes. These likely overlook more subtle

lineage-specific evolutionary trajectories associated with more recent arthropod

radiations of great societal interest, such as mosquitoes and pollinators.
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Moreover, orthology delineation may prove challenging, especially for large

evolutionary timescales or with a limited number of considered genomes. These

limitations are often identified and commented on by the authors, who point out

how such coarse measurements and analyses will become more refined with the

increasing availability of sequenced eukaryotic genomes (Krylov 2003;

Domazet-Lošo, Brajković, and Tautz 2007; Li et al. 2014). Ultimately, this thesis

takes advantage of growing genomic resources for diverse arthropod species by

taking inspiration from these initial explorations on quantifying gene evolutionary

features and relating them to putative biological roles and functional modules. It

first defines a higher-resolution evolutionary framework of comparative analyses

to characterise and partition arthropod genes and secondly provides a

customisable workflow for exploring evolutionary-functional correspondences

and using them to inform hypotheses on gene function, particularly for less

studied organisms.

Arthropod Gene Evolutionary Feature Characterisation

The major part of the thesis work aimed to 1) take advantage of

improving taxonomic resolution with the increased collection of available

arthropod genomes; 2) define a more comprehensive suite of quantifiable

multi-species evolutionary features; and 3) build a deployable, reproducible and

scalable workflow to measure the evolutionary features on custom datasets. The

thesis's scientific novelty consists of defining a suite of 16 evolutionary features

and computing them across genomic and phylogenomic data spanning 170

arthropod species. The species selection includes all high-quality arthropod

genomes available in OrthoDB, the hierarchical catalogue of orthologs, version

10.1 (Kriventseva et al. 2019). It spans 56 dipterans, 40 hymenopterans, 16

lepidopterans, 16 hemipterans, 10 arachnids, nine coleopterans, six crustaceans

and 17 other arthropods comprising two odonates, two springtails and one

representative caddisfly, strepsipteran, cockroach, mayfly, thrip, orthopteran, ice

crawler, body louse, termite, bristletail, dipluran, horseshoe crab, and centipede.

The complete list of species is available at https://www.orthodb.org and from the

species tree in Appendix 2. In the context of this thesis, the evolutionary
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features are defined as metrics capturing particular characteristics of the

evolutionary trajectories of arthropod genes and were computed at their

orthologous group level, meaning that individual scores were assigned to each

arthropod orthologous group (sometimes referred to as gene family). Such

features can be grouped into four main subgroups: 1) orthology metrics

computed from OrthoDB’s orthology relationships, 2) ancestral state metrics

computed from gene family evolution analyses, 3) phylogenomics relationships,

and 4) sequence and structural evolutionary metrics computed from

protein-protein alignments and genome annotations.

Design and Development of the Evolutionary Features

Features were quantified as a suite of 16 orthology-based evolutionary

metrics per orthologous group that included: universality (UNI) computed as the

proportion of the total species present; duplicability (DUP) computed as the

proportion of species present with multi-copy orthologs; average ortholog

copy-number (ACN); copy-number variation (CNV) computed as the standard

deviation of ortholog counts per species present divided by the ACN;

evolutionary age (AGE) of the last common ancestor in terms of millions of years

since divergence from the ultrametric species phylogeny; relative universality

(RUN) computed as the universality score divided by the number of species

emerged from the orthologous group’s last common ancestor species. Gene

turnover was estimated using the Computational Analysis of gene Family

Evolution (CAFE5, (Mendes et al. 2020)) software to quantify proportions of gene

gains (expansions, EXP), gene losses (contractions, CON), or no copy-number

changes (stable, STA). Additional CAFE5-derived metrics were computed by

dividing gene gains, losses and no copy-number changes by the orthologous

group’s last common ancestor clade species-span, i.e. relative expansions (REX),

relative contractions (RCO) and relative stability (RST). Orthology data combined

with genomic location data were used to quantify average synteny conservation

(SYN) as the proportion of orthologs that maintain their orthologous neighbours

in the genomes of the other species. The synteny conservation metric was

followed by the addition of the maximum cross-species synteny conservation
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score (MSY), and the synteny conservation score relative to the size of the

orthologous group’s last common ancestor clade species-span (RSY). Finally,

each orthologous group's evolutionary rate (EVR) corresponds to the average

rate of protein sequence divergence normalised by the distance between each

pair of species as computed by OrthoDB (Waterhouse et al. 2013).
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Table 1: Evolutionary feature descriptions. For each evolutionary feature, the
feature name, acronym, description, and source data are presented. Acronyms: CAFE5,
Computational Analysis of gene Family Evolution version 5; OG, Orthologous Group; GFF,
General Feature Format file.

Evolutionary
Feature

Acronym Description Data Source

Taxonomic Age AGE Age of the last common ancestor of species in an OG, in terms
of millions of years since divergence, computed from the

ultrametric species phylogeny

170-arthropod
orthology;

170-arthropod
phylogeny

Universality UNI The proportion of the total species present in an OG (all
species, UNI=1)

170-arthropod
orthology;

Duplicability DUP The proportion of species present in an OG that have
multi-copy orthologs

170-arthropod
orthology;

Average Copy
Number

ACN The average (mean) ortholog copy number across all species
present in an OG

170-arthropod
orthology;

Copy Number
Variation

CNV The standard deviation of ortholog counts per species present
in an OG divided by the ACN

170-arthropod
orthology;

Expansions EXP CAFE5 quantified proportions of gene gain nodes for an OG 170-arthropod
orthology;

170-arthropod
phylogeny

Contractions CON CAFE5 quantified proportions of gene loss nodes for an OG 170-arthropod
orthology;

170-arthropod
phylogeny

Stability STA CAFE5 quantified proportions of no copy-number change
nodes for an OG

170-arthropod
orthology;

170-arthropod
phylogeny

Synteny SYN The species-averaged proportion of orthologs in an OG that
maintain their orthologous neighbours in the genomes of the

other species

170-arthropod
orthology;

159-arthropod
GFF

Evolutionary Rate EVR The average rate of protein sequence divergence normalised
by the distance (% identity) between each pair of species as

computed by OrthoDB

170-arthropod
orthology;

Relative
Universality

RUN UNI divided by the number of nodes derived from OG’s last
common ancestor

170-arthropod
orthology;

170-arthropod
phylogeny

Relative
Expansions

REX EXP divided by the number of nodes derived from OG’s last
common ancestor

170-arthropod
orthology;

170-arthropod
phylogeny

Relative
Contractions

RCO CON divided by the number of nodes derived from OG’s last
common ancestor

170-arthropod
orthology;

170-arthropod
phylogeny

Relative Stability RST STA divided by the number of nodes derived from OG’s last
common ancestor

170-arthropod
orthology;

170-arthropod
phylogeny

Relative Synteny RSY SYN divided by the number of nodes derived from OG’s last
common ancestor

170-arthropod
orthology;

170-arthropod
phylogeny;
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159-arthropod
GFF

Maximum Synteny MSY The species-maximum proportion of orthologs in an OG that
maintain their orthologous neighbours in the genomes of the

other species

170-arthropod
orthology;

159-arthropod
GFF

29



Orthology-Only Features

Genes of any two or more different species can be defined as orthologous

when they descend from a single gene present in the last common ancestor of

the compared species. Orthologous groups are sets of genes across multiple

species found to be orthologous amongst themselves. Orthology is a powerful

evolutionary concept for gene function prediction if we assume that

physiologically essential functions are likely to be conserved across species

through orthologous genes. In this context, our first analyses are based on a

dataset of orthology information from the genesets of 170 arthropod species

downloaded from OrthoDB v10 (Kriventseva et al. 2019). The orthology

delineation was obtained from all 170 arthropod species, comprising 2’206’003

genes assigned to 82’474 orthologous groups using pair-wise assessments of

protein sequence homology between complete genomes as described in

(Zdobnov et al. 2021). Orthology-based features were designed to quantitatively

describe gene family evolutionary trajectory properties capturing arthropod gene

essentiality, phylogenetic span, age of emergence, and copy-number variations.

Four evolutionary features were computed directly from gene copy counts

by processing the orthology delineation table (relating gene identifiers to

orthologous group memberships). Universality (UNI) was defined as the number

of arthropod species represented in each orthologous group divided by the total

number of considered species (170 arthropods). For example, an orthologous

group that included genes from only two species would be considered very

specific, scoring a total of 2/170 UNI, or approximately 0.012 out of 1. In

contrast, a score of 1 would indicate an orthologous group recovering at least

one gene for all 170 species and defining it as universal.

Duplicability (DUP) was defined as the proportion of arthropod species in

an orthologous group with more than one gene copy over the total number of

species with at least one gene copy. The duplicability feature was designed to

capture the propensity of orthologous groups to evolve towards either

generalised multi-copyness or single-copyness. This feature and the following

ones describing gene copy-number propensities and variations are deemed
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relevant in characterising evolutionary-functional correspondences, as gene copy

number expansions are supposedly a critical evolutionary strategy likely driving

functional diversity, specifically gene neo- or sub-functionalisation. A duplicability

score of zero indicates that the orthologous group is fully represented by

single-copy genes, whereas a score of one indicates that the orthologous group

is granted a multi-copy licence, as described in (Waterhouse, Zdobnov, and

Kriventseva 2011).

Average copy number (ACN) was defined as the mean average number of

gene copies across the orthologous group’s representative species. Copy-number

variation (CNV) was defined as the standard deviation of ortholog counts per

species in any given orthologous group divided by the ACN. These features were

designed to capture the orthologous group’s trend across the species phylogeny

to settle the gene family expansion towards a particular number of copies. Gene

families can differ significantly in how much freedom functional constraints allow

for expansions, ranging from just a couple of gene copies to several dozens. ACN

scores range from 1, indicating that the orthologous group will likely maintain

only one gene copy, to the maximum computed score of 73 mean gene copies

per species. A CNV score of 0 indicates that the orthologous group will likely

maintain the same number of copies across all represented species. In contrast,

an increase will indicate a larger variability of gene copy counts, up to the

maximum computed score of 6.

Phylogenomics Features

The time of emergence of each orthologous group’s last common ancestor

gene could be estimated using a molecular phylogenomic reconstruction of the

170 arthropod species. The species phylogeny was reconstructed using

orthologous groups, which showed at least 90% single-copyness (meaning that a

minimum of 90% of the orthologous group’s represented species assigned one

and only one gene copy to the group) and 90% universality (meaning that a

minimum of 90% of the species assigned at least one gene copy to the group).

This resulted in a selection of 1’363 arthropod orthologous groups. More

31



stringent selection parameters did not yield sufficient orthologous group

numbers as the occurrence of fully universal single-copy genes inversely

decreases with the considered evolutionary timescale, being absent in the

OrthoDB version 10’s Arthropoda-level delineated orthology. Multi-copy genes,

when occurring, were processed by selecting the longest sequence; missing

genes were represented with ‘-’ gaps in the concatenated super-alignment.

The sequence retrieval, processing, trimming, alignment, concatenation

and phylogenetic reconstruction was computed with Orthophile, a side-project

explicitly developed for this purpose, and with additional manual adjustments to

reflect the topology from the most recent literature. Obtaining the best possible

phylogenetic reconstruction plays an essential role in the validity of the overall

Evol-Feat workflow, as it constitutes the preliminary data from which most

features are subsequently computed, and the correct placement of arthropod

taxa had to be carefully assessed. More details on the Orthophile workflow and

usage, as well as the detailed arthropod phylogenetic reconstruction

methodology, can be found in the specific section in Chapter 4. The resulting

species tree can be found in Appendix 2.

The corresponding taxonomic age (AGE) dates each arthropod orthologous

group with an evolutionary feature score ranging from 602 million years (myr),

indicating orthologous groups with representative genes from the last common

ancestor species of all considered arthropods; to 7.5 myr, representing

orthologous groups with the only representative genes from the two most

closely-related species, Drosophila yakuba and Drosophila erecta. The relative

universality (RUN) feature builds on the species phylogeny to compute a score

representing the species span within the specific clade the orthologous group has

emerged from. That is, the number of species represented in the orthologous

group divided by the number of species emerging from the orthologous group’s

last common ancestor. This feature was designed to capture universality within

smaller clades, particularly relevant for younger orthologous groups.
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Gene Turnover Features

Gene turnover was estimated with computational analysis of gene family

evolution using CAFE5 (Mendes et al. 2020). Outputs of CAFE5 include

orthologous group-specific trees with annotations of estimated gene copy counts

on the internal nodes of the species phylogeny. From the extant species’ gene

copy counts, CAFE5 modelled each orthologous group tree with a lambda

parameter, the rate of change of evolution (gene turnover rate, also called

birth-death parameter). Maximum likelihood scores were then used to select

among the different distributions and gamma rates to define the final estimated

number of gene copies per ancestral node. The analyses included the addition of

an error model estimation, compensating for assembly errors (e.g. missed

detection of genes during orthology delineation). Computational efforts did not

produce results unless the 84 largest orthologous groups were removed from the

dataset, as the extreme variation in copy numbers would impede the algorithm's

convergence to estimate the global lambda. The first CAFE5 run, only including

the orthologous groups going up to the root of the species tree and without the

largest orthologous groups, estimated a global lambda (≅ 0.0017) as a

full-phylogeny baseline value to compute the orthologous group-specific gene

turnover rates. The second CAFE5 run refined the estimates with the

specification of the previously obtained lambda and computed estimates for all

converging orthologous groups (including the non-root groups). A recursive

custom script was then employed to gradually re-include the 84 largest

orthologous groups into lambda convergence with subsequent CAFE5 runs,

merging the results at each iteration. Finally, from the 82’474 orthologous

groups only 18 could not be assigned estimated gene turnover rates and

ancestral gene copy counts, for the reconstruction of their ancestral dynamic

state phylogeny never reached convergence.

For each resulting orthologous group tree, summary counts of gene copy

number expansion and contraction events were inferred. Gene expansion events

(EXP) were detected when children nodes showed higher copy counts than the

parent node with custom regular expression formulas recursively scanning each

orthologous group tree. Gene contraction (CON) events, or gene losses, were
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detected when children nodes showed lower copy counts than the parent node,

and stable (STA) gene copy counts were detected when no change appeared

between parent node counts and children node counts. Lineage-specific gene

turnover features were defined by dividing the previously defined CAFE5 event

counts by the total number of nodes emerging from the orthologous group’s

common ancestor species. This would result in three additional features which

captured clade-specific dynamics rather than generic absolute counts: relative

expansions (REX), relative contractions (RCO), and relative stability (RST). The

inclusion of gene turnover features was fundamental as lineage-specific gene

losses and expansions have been consistently identified as major contributors to

eukaryotic functional adaptations driven by selective pressure (Krylov 2003),

and as main evolutionary forces determining gene sequence divergence and

conservation.

Synteny-Conservation Features

The role of synteny in determining or keeping a functional genetic

repertoire is being increasingly explored and understood. It is thought that

metazoans show signs of ancestral syntenic blocks, which could have formed a

constrained framework of an essential genetic toolbox fundamental for animal

chromosome evolution (Simakov et al., 2020), and synteny consideration has

been proven to increase overall genome assembly quality (Anselmetti et al.

2015; Vakirlis, Carvunis, and McLysaght 2020; Waterhouse et al. 2020).

Additionally, the insect immune system exploratory study results showed how

important such a measurement of synteny can be by adding a unique

evolutionary signature capable of capturing a yet unexplored corner of the

evolutionary genetic map (Ruzzante et al. 2022), as detailed in Chapter 3.

Most genome annotations were retrieved from several online genome

repositories, including the AntGenome and BeeBase portals from the

Hymenoptera Genome Database (Elsik et al. 2018), the AphidBase portal from

the BioInformatics Platform for Agroecosystem Arthropods (Legeai et al. 2010),

ButterflyBase (Papanicolaou et al. 2008), FlyBase (Thurmond et al. 2019),
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EnsemblGenomes (Yates et al. 2022), the i5k Initiative (i5K Consortium 2013),

VectorBase (Giraldo-Calderón et al. 2015), InsectBase (Mei et al. 2022),

MidgeBase (Yoshida et al. 2022), GenBank (Sayers et al. 2019), and RefSeq

(O’Leary et al. 2016). The corresponding gene identifiers were mapped to the

OrthoDB custom gene identifications with custom Python scripts employing

regular expression functions. Of the 170 species, only eleven General Feature

Format (GFF) files could not be obtained, including the ones from: Drosophila

busckii, Bombyx mori, Camponotus floridanus, Ceratosolen solmsi marchali,

Galloisiana yuasai, Harpegnathos saltator, Lasioglossum albipes, Melipona

quadrifasciata, Mengenilla moldrzyki, Ooceraea biroi, and Solenopsis invicta.

The GFF files served as a source to compute orthologous group synteny

conservation scores by extracting the orthologous genes’ chromosomal position

and producing an ordered list of genes per species. This approach does not

capture genes’ proximity other than along the DNA sequence (primary

structure). The ordered gene lists were then cross-compared to detect whether

neighbouring genes in a given species belonged to the same orthologous groups

as the neighbouring genes of another species. Local duplications of genes (i.e.

multiple neighbouring genes mapping to the same orthologous group) might

have incorrectly prevented the identification of syntenic blocks of genes. The

synteny conservation detection algorithm was hence instructed to evaluate the

first next neighbouring gene with different orthologous group membership.

Synteny conservation scores were computed by assigning 0.5 points per left-side

conserved synteny and 0.5 points per right-side conserved synteny at each

species-pair comparison. One point was granted to the orthologous group if two

species showed both-sides conserved gene synteny. Adding up the all-versus-all

species synteny conservation points per orthologous group generated three

separate features: average synteny (SYN) when divided by the total number of

species with an annotated genome file; maximum synteny (MSY), the maximum

possible cross-species synteny-conservation score; and relative synteny (RSY)

when divided by the number of species arising from the orthologous group’s last

common ancestor. Synteny conservation scores could not be computed for 4’319

orthologous groups, i.e. groups assigned solely to genes for which the respective

gene identifier could not be traced back from the GFF files to the OrthoDB

nomenclature. Although generically referred to as synteny, these evolutionary
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features more precisely capture ortholog-level microsynteny, as only the

orthologous groups from the immediate neighbouring genes were considered for

the measurement of synteny conservation scores along the organisation of

protein-coding genes.

Additional User-Input Features

The last evolutionary feature was defined as the average rate of protein

sequence divergence normalised by the distance between each pair of species

and aims to capture the orthologous group’s evolutionary rate (EVR). The

uniform distribution of the EVR scores correspond to previously reported

accounts from the literature (Waterhouse, Zdobnov, and Kriventseva 2011), with

most orthologous groups showing low to intermediate evolutionary rates, and a

far-right stretch capturing fewer orthologous groups with high EVR scores.

Although the EVR was extracted from OrthoDB data repository, it can be

extracted from protein sequences’ pairwise comparison scores as computed by

OrthoFinder. Other user-provided features could be e.g. dN, dS, dN/dS

(computed themselves per OG), and in principle, others too. Population-level

amino-acid variation metrics, as well as multi-species whole-genome alignment

conservation metrics were successfully employed in Chapter 3, when

investigating the evolutionary features of A. gambiae immune-related genes.

Evol-Feat Bioinformatics Workflow

The computation of the evolutionary features has been automated with an

open-source, scalable, and reproducible bioinformatics workflow. Contrary to

previous exploratory efforts of evolutionary-functional correspondences, this

newly defined framework of gene metric characterisation has been designed to

be fully accessible and easily usable by biologists to interpret their data from

orthology delineation of gene sets, species phylogenies, and, optionally, gene

annotations. This enables the automated exploration of different eukaryotic

species and lineages at different evolutionary timescales. The workflow was
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implemented as R and Python scripts within a Snakemake (Köster and Rahmann

2012) framework, an increasingly popular workflow management tool.

Snakemake enables the definition of controlled input to output rules, avoiding

unnecessarily repeated computing, and allows for traceability and automated

logging, automated management of resources with an optimised allocation of

memory and computational time requirements. Reproducibility of the workflow

was granted by defining dedicated Conda environments for each set of

computational steps requiring dependencies in the form of external R and Python

packages.

Evol-Feat is provided with a user guide specifying input requirements and

formatting, definitions of computed features, config file parameters, and

descriptions of the output. The minimal input requirements include an orthology

delineation table and a species phylogeny, allowing for the computation of most

of the evolutionary features. Orthology delineation tables can be easily

downloaded from existing online sources such as OrthoDB, or computed with

available tools such as OrthoFinder. The latter also provides a species phylogeny

reconstruction inferred from single-copy orthologous genes. If the species of

interest are included in OrthoDB, a species phylogeny can be further obtained

with only a list of species names with the Orthophile workflow, described in

Chapter 4.

Computation of synteny-related features requires the additional optional

input of genome annotation data. Detailed definitions of the features and the

data used for their computation are summarised in Table 1. Evol-Feat outputs

include a table of the evolutionary feature scores per orthologous group, and the

corresponding clustering results. Summary results of dimensionality reductions,

clustering visualisations, and orthologous group-to-cluster memberships are

automatically saved into tabular output files. If the user additionally provides

gene ontology annotations, the workflow will run a functional enrichment

sub-workflow for the evolutionarily similar clusters of orthologous groups. Details

of this procedure and interpretations are discussed in Chapter 2. The workflow

further allows the user to define species lists, enabling the extraction of

lineage-specific evolutionary feature scores and clustering. The increased

resolution of evolutionary profiles characterisation and clustering corresponding
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to single species or subsets of species allows for more precise formulations of

the evolutionary-functional correspondences in specific sublineages. An example

is provided at the end of Chapter 2 with the extraction of D.

melanogaster-specific evolutionary profiles. Finally, adding a table of

user-defined gene sets allows a hierarchical clustering of the gene sets of

interest by their average evolutionary feature scores, as shown in Figures 8 and

9.

Exploratory Assessments of the Feature Distributions

Once the evolutionary features were defined and computed, even though

each captured and represented specific features by itself, it was crucial to

integrate them into a framework of comparable values that could be used to

assess high and low feature scores in a dimensionless system. This

nondimensionalisation, or scaling, which is a necessary step for the following

statistical analyses, aimed to centre and scale the distribution of each feature

while also removing the features’ dimensional units. With the dimensionless

features, scaled and centred, an evolutionary profile (the vector of relative

evolutionary features scores) was assigned to each Arthropoda orthologous

group. The scaling of units was performed with the base-R function scale,

centring the feature distributions by subtracting the means and scaling them by

dividing them by their standard deviations. From the initial 82’474 OrthoDB

orthologous groups, 4’337 contained missing values for either CAFE5 analyses or

synteny conservation scores and were removed, resulting in N = 78’137 distinct

scaled evolutionary profiles.

The first step to understanding how the previously defined features shape

the evolutionary trajectories of arthropod genes was to examine each

distribution, check for pairwise comparisons, and test for cross-feature

correlations. An initial overview of each feature definition's uniqueness and

interdependencies confirmed already known relationships while highlighting

undescribed patterns of evolutionary feature correspondences. The pairwise

comparison plots, feature distributions and Pearson’s correlations are presented
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in Figure 1 and were produced with the ggpairs version 2.1.2 R package. The

statistically significant correlation p-values were computed with the cor.test

function, performing a t-distribution test on the null hypothesis, assuming no

correlation exists between paired-sample distributions (Pearson's correlation

coefficient ⍴ = 0). Shapiro-Wilk, Anderson−Darling, and one−sample

Kolmogorov−Smirnov tests for normality, together with Bartlett’s test of

homogeneity of variances, rejected the normality-distribution and

homoscedasticity assumptions for each of the 16 scaled features, indicating that

parametric statistical testing and modelling need to be carefully considered. For

this and other reasons, comparisons of median average values of the feature

distributions were generally preferred to the comparisons of arithmetic means,

as exemplified and further detailed in the clustering sections of Chapters 2 and

3.

Most orthologous groups appear to represent few species, with the

universality distribution inversely exponential, but with an increase in

orthologous group counts towards complete universality. Considering the large

number of diverse species (170) and the long evolutionary timespan (600 million

years), it is expected that fully universal orthologous groups make up only a

small fraction of the complete set of all orthologous groups. Approximately 44%

of orthologous groups are represented by two species only (UNI ≅ 0.012), while

0.5% are universal (UNI = 1, not discernible from the zoomed-out

representation in Figure 1). The duplicability feature highlights the tendency of

most orthologous groups to be single-copy (DUP = 0); at the same time, smaller

peaks can be found at intermediate duplicability levels, corresponding to

orthologous groups which expanded in specific clades only (e.g. lineage-specific

maintained duplications), and at extreme levels (DUP = 1), capturing fully

multi-copy orthologous groups. These observations confirm similar gene

universality and duplicability patterns highlighted across twelve drosophilids

comparative genomics analyses in (Waterhouse, 2015), indicating that arthropod

genes are also attracted to opposite poles of single/multi-copyness and

clade-specificity/universality. Most genes are single-copy and either widespread

or sparse; few have intermediate universality scores, and virtually no multi-copy

genes are intermediately spread.
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The taxonomic age (AGE) feature distribution is skewed, showing different

peaks across the feature’s range. Specifically, the highest peak is represented by

orthologous groups dating 602 million years, about 21% of all orthologous

groups. These numbers seem to contradict the UNI distribution; they indicate,

however, that a significant number of orthologous groups is shared across two

species only, no matter their evolutionary divergence time, and that for a

significant part of them, the two species are a chelicerate and a mandibulate

(i.e. the first branch separation in the phylogeny). Several smaller peaks appear

in the distribution, at ~550 myr and corresponding to the initial radiation of

chelicerates, at ~300-420 myr and corresponding to the radiation of hexapods,

at 100-180 myr and corresponding to the first radiation of mosquitoes and a last

one at 10-70 myr, corresponding to the genus-specific radiations of the

over-represented drosophilids and anophelines. The clear partitioning between

older genes and younger genes is further highlighted by the universality (UNI) to

relative universality (RUN) comparison. Figure 1 indicates that with an increase

in RUN, a measure of lineage-specific taxonomic spread, the corresponding UNI

distinguishes between two increasingly separated evolutionary trajectories: the

first capturing fully universal genes present across the whole arthropod

phylogeny, and the second capturing highly lineage-specific genes with low

overall UNI scores. The orthologous groups characterised by strongly matching

UNI and RUN scores indicate a robust linear relationship between the two

evolutionary features, and the corresponding evolutionary trajectory likely

captures essential genes which cannot be lost even when characterised by

intermediate levels of taxonomic span across the whole phylogeny.

Among the highest positively-correlated features, we can find UNI and

stability (STA), indicating that the more species an orthologous group is

represented by, the more likely it will show stable gene copy numbers across the

phylogeny, rather than expansion or loss events. The relationship is supported

by a strong positive correlation (0.983, p < 0.001) in a linearly increasing

fashion. This pattern confirms the hypothesis that the oldest and universally

present genes are constrained to stable gene-copy counts, which are in turn

partly associated with lower sequence evolutionary rates, largely confirming the

“knockout-rate prediction”. Similarly, STA also positively correlates with RUN,

although with a bifurcation creating two distinct trajectories. The first is
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characterised by an increasing relative universality corresponding to an

increasing stability in gene copy-counts. Contrastingly, the second trajectory

associates an increase in relative universality with constantly low copy-number

stability scores. Genes universally present within specific lineages are likely

representing essential and relatively old lineage-specific adaptations. The

bifurcation between the RUN and STA features in Figure 1 precisely showcases

how such genes fall into one of two clearly separated groups: either

characterised by very stable gene copy counts, or by fast gene turnover.

Furthermore, the trajectory representing the highly stable and relatively

universal orthologous groups indicates a positive linear relationship between the

two features. Such a clear-cut is distinctive to the RUN-STA comparison, while

only faintly recovered by the UNI-STA comparison.

The higher taxonomic resolution provided by RUN indicates how the

known relationships between universality and copy-number stability are not fully

explanatory with respect to the evolution of lineage-specific gene families, for

which a two-way mode of operation emerges. The first mode captures the

“knockout-rate” prediction already observed at larger evolutionary timescales for

fully universal orthologous groups. The second mode captures an additional

evolutionary trajectory, suggesting that relatively universal genes, likely

representative of essential lineage-specific adaptations, can further be

characterised by fast gene turnover, represented by low scores in gene

copy-number stability. Such relationships are nevertheless not clearly observed

between RUN and the relative stability (RST), and high RST scores are

associated with younger genes. These observations may hence indicate the

recruitment of old and overall stable genes during the evolution of

lineage-specific adaptations, for which different copy-numbers emerge across

different arthropod subclades. The overall gene copy-number stability scores of

such genes are hence inevitably affected by lineage-specific spikes of

copy-number expansions and contractions. Ultimately, this characterisation may

enable the distinction between old, universal and stable genes, and the old,

relatively universal but unstable genes recruited during the evolution of

lineage-specific essential adaptations. This interpretation is in line with the

conclusions from the genomic phylostratigraphic map of D. melanogaster

macroevolutionary adaptations in (Domazet-Lošo, Brajković, and Tautz 2007):
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ancestral genes are observed to be interlocked into pathways during the

evolution of lineage-specific adaptations while retaining signals of their

evolutionary histories.
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Figure 1: Distributions and pairwise comparisons of the 16 scaled and centred
evolutionary features. The plots below the diagonal show each pairwise-feature
comparison in blue, where the horizontal axis represents the right panel’s feature scaled
values and the vertical axis the top panel’s feature scaled values. The diagonal shows
each feature’s distribution in red. The boxes above the diagonal report the
pairwise-feature Pearson’s correlation coefficient, ranging from -1 for total negative
correlation, 0 for no correlation, and 1 for total positive correlation. The significance level
of the paired-samples correlation is represented with *** if the p-value is < 0.001, ** if
< 0.01, * if < 0.05, and nothing otherwise.
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Interpreting the Evolutionary Features through
Dimensionality Reduction Techniques

Dimensionality reduction is a crucial process when analysing

high-dimensional data. It enables the first visualisation of distinctive groups of

samples when projecting the coordinates in a two-dimensional plot and reduces

the computational requirements of clustering algorithms by reducing the number

of considered variables. Two different non-linear dimensionality reduction

algorithms were initially explored: t-Distributed Stochastic Neighbour Embedding

(t-SNE, R package Rtsne) and Uniform Manifold Approximation and Projection

(UMAP, R package uwot). Both techniques are routinely used in bioinformatics

analyses when using genomic datasets with high dimensionality. They usually

clearly separate sample clusters by artificially exaggerating the distances across

data points. Figure 2 presents the two-dimensional distributions of all

Arthropoda evolutionary profiles (scaled vectors of evolutionary features) by

both tSNE and UMAP dimensionality reduction techniques. The respective best

clustering algorithm partitioned the coordinates to visualise the separation of

sample groups. tSNE coordinates (Figure 2A) were assigned cluster

memberships by the Ordering Points To Identify Cluster Structure (OPTICS, R

package dbscan) algorithm. UMAP (Figure 2B) coordinates were assigned cluster

memberships by the Density-Based Spatial Clustering of Applications with Noise

(DBSCAN, R package dbscan).
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Figure 2: Distributions of Arthropoda evolutionary profiles following
dimensionality reduction. The first two tSNE coordinates (Figure 2A, with the
perplexity parameter set to the square root of the number of samples) were plotted and,
for the sole purpose of visualisation, colour-coded by their corresponding cluster
memberships computed with the OPTICS algorithm. Figure 2B shows the first two UMAP
coordinates (default parameters) plotted and colour-coded by their corresponding cluster
memberships computed with the DBSCAN algorithm.
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The dimensionality reductions and subsequent clustering of the

evolutionary profiles highlight a few large clusters of orthologous groups with

similar evolutionary trajectories, constituting the core of the data, as opposed to

the periphery consisting of several scattered small clusters of outlying

evolutionary profiles. Nevertheless, neither tSNE nor UMAP coordinates were

investigated further as the biological interpretation of the resulting non-linearly

transformed space cannot be associated with the individual feature

contributions. Principal Component Analysis (PCA) was therefore preferred as the

default dimensionality reduction technique, where its feature contributions can

unambiguously describe each coordinate axis (principal component). The

arguments favouring the use of PCA coordinates also stand out when performing

more complex clustering of the evolutionary profiles, as will be further discussed

in Chapter 2. Specifically, using principal component coordinates automatically

solves the bias of partitioning the data by several hyper-correlated variables,

defined by arbitrary design choices (the individual PCA coordinates being

projections of the data over orthogonal eigenvectors, hence pulling the

hyper-correlated features towards a single dimension). Additionally, using PCA

coordinates rather than tSNE or UMAP resulted in a more homogenous

partitioning of the evolutionary profiles across the Self-Organising Map, the main

clustering algorithm used in Chapter 2.
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Figure 3: Principal Component Analysis. Figure 3A represents the evolutionary
profiles projected onto the first two principal components space. Principal Component 1
(PC1) contributes to 25.9% of the dataset’s explained variance, PC2 to an additional
18.4%. The arrows show the directions and magnitudes (colour-coded percentages) of
the specific feature contributions to each PC. Figure 3B shows the cumulative proportion
of explained variance increasing with each additional principal component. The red line
indicates 95% of explained variance, crossed at the inclusion of the first 10 principal
components.
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Principal Component Analysis was performed with the stats R package

function princomp. Cumulatively, the first 10 principal components correspond to

95% of the explained variance. As highlighted in Figure 3A, the first two

components show initial groupings of evolutionary features capturing different

directionalities of the first two principal components. RST and RCO’s similar

direction and magnitudes might indicate that orthologous groups which

underwent gene loss events in specific lineages of the phylogeny also tend to

maintain stable copy counts where gene losses did not occur. Other features with

aligned directionalities are the contributions of copy-number features (DUP, ACN,

CNV) as well as universality (UNI), stability (STA) and expansions (EXP). Within

this group, whose contributions are all rather closely aligned, nuances of the

differences across features are lost. Still, it seems natural that expansion events

are linked with copy-number features while universality is linked with stability,

confirming the patterns shown in the pairwise comparisons of features. Pointing

to their specific directions are the contributions of the lineage-specific features:

relative expansions (REX) and relative universality (RUN), as well as taxonomic

age (AGE) and gene losses (CON). The sequence evolutionary rate (EVR) and

synteny-conservation features (SYN, MSY, RSY) are not well represented by PC1

and PC2; they nevertheless contribute strongly to PC6 and PC3, respectively.

Table 2 reports the individual feature contributions to the first 10 principal

components, whose coordinates will constitute the starting data for the

unsupervised clustering and evolutionary profile partitioning of Chapter 2.
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Table 2. Feature percentage contributions to the Principal Components. Each
principal component is summarised by its percentage explanation of total variance, its
main feature contributions in units of PC coordinates’ space (reporting the ones with an
absolute percentage contribution greater than 6%), and a qualitative description of the
corresponding interpreted evolutionary driving forces. Strong positively contributing
evolutionary features are represented in black (driven by high feature scores), and
strong negatively contributing features are highlighted in red (driven by low feature
scores).

Principal
Component

Explained
Variance
(%)

Main Feature
Contributions (>
|6%|)

Evolutionary Feature
Description

1 25.87 AGE (0.367), EXP
(0.351), UNI (0.347),

STA (0.341), CNV
(0.334), RCO
(-0.318), RST
(-0.311), DUP

(0.279)

Age, universality, widespread and
stable gene duplications opposing
lineage-specific stability and gene
losses.

2 18.42 RUN (0.462), RST
(0.383), RCO (0.356),

REX(0.332),
DUP(0.253)

Lineage-specific dynamics and
duplicability.

3 16.13 SYN (-0.579), MSY
(-0.569), RSY

(-0.540)

Synteny conservation.

4 12.07 STA (-0.445), UNI
(-0.438), DUP

(0.357), ACN (0.342),
RUN (-0.305), REX

(0.273)

Lineage-specific gene expansions
opposing universality and stability.

5 5.99 CON (0.750), EVR
(-0.358), RCO

(0.351), RST (0.313)

Gene losses opposing sequence
evolutionary rate.

6 5.36 EVR (-0.870), REX
(0.331), CON

(-0.267)

Lineage-specific expansions
opposing sequence evolutionary
rate and gene losses.

7 4.07 ACN (0.583), REX
(-0.565), EXP
(0.395), CON

(-0.289)

Widespread expansions opposing
widespread gene losses and
lineage-specific expansions.

8 2.83 CNV (-0.532), AGE
(-0.413), REX
(0.382), CON

(0.336), EXP (0.284),
RCO (-0.253)

Expansions and widespread losses
opposing age, copy-number
variations and lineage-specific
losses.
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9 2.57 AGE (0.601), CNV
(-0.486), REX
(0.286), RUN
(-0.281), RCO

(0.269)

Age, lineage-specific expansions
and losses opposing copy-number
variations and relative universality.

10 1.84 RSY (-0.705), MSY
(0.481), DUP

(-0.315)

Maximum synteny conservation
opposing relative synteny
conservation and duplicability.
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Concluding Remarks

The principal component analysis of 16 gene evolutionary features from

170 arthropod genomes identified four main axes of evolutionary forces driving

the diversification of the evolutionary trajectories of arthropod genes. Using a

different suite of evolutionary features and benefitting from a higher

computational resolution, the results of this chapter confirm and expand on the

conclusions from early exploratory studies on gene evolutionary features.

The first axis of arthropod gene evolution is characterised by the gene’s

age, universality, widespread and stable gene duplications on one end of the

spectrum, and by lineage-specific stability and gene losses on the opposing end.

In line with Koonin’s definition of gene status or importance (Jordan et al. 2002),

the first axis likely captures old, universal, highly conserved and physiologically

essential genes. The second axis is characterised by the gene’s lineage-specific

dynamics and duplications, including gene copy-number expansion and

contraction events. In line with Koonin’s definition of gene adaptability, the

second axis likely captures lineage-specific adaptations through copy-number

increases and subsequent negative purifying selections.

The third axis of arthropod gene evolution is instead characterised by the

absence of microsynteny. Emerging as a major contributor to the diversity of

arthropod evolutionary trajectories, synteny conservation may play a role in

particular metabolic pathways by affecting the functionality of synteny blocks, as

in the conserved Osiris and TipE-like genes of flies (Li, Waterhouse, and Zdobnov

2011; Shah et al. 2012). Higher scores of conserved gene synteny can be

associated with increased protein connectivity. Therefore, the third axis partially

captures Koonin’s definition of reactivity, also expressed in terms of low numbers

of protein-protein interactions. The remaining partial definition of Koonin’s

definition of reactivity, expressed in terms of gene copy-numbers and losses, is

readily recovered by the fourth axis, characterised by lineage-specific gene

expansions and duplicability, together with the minor fifth axis, mostly defined

by gene losses.
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In line with the phylostratigraphic map of D. melanogaster genes

(Domazet-Lošo, Brajković, and Tautz 2007), lineage-specific adaptations are

confirmed to also recruit ancestral genes retaining signals of their evolutionary

history and characterised by dynamic gene turnover. Widespread, universal, and

old genes are instead characterised by stable copy-number counts (or slow gene

turnover), and are distinctly separated from younger, lineage-specific genes.

These are further associated with either high or low potential for duplicability, in

line with and expanding the “single-copy control” versus “multicopy licence”

descriptions from (Waterhouse, Zdobnov, and Kriventseva 2011), and likely

indicators of essential, ancestral, and housekeeping functions versus more

recent lineage-specific adaptations. The distribution of sequence evolutionary

rates seems to follow more subtle evolutionary trajectories than previously

observed in (Waterhouse, Zdobnov, and Kriventseva 2011) and in more

lineage-specific or case-study analyses, as in immunity-related mosquito genes

(Ruzzante et al. 2022). This observation further identifies the change in

sequence evolutionary rates as a strong predictor driving the diversification of

the genetic repertoire in more recent and lineage-specific adaptations, while

losing its explanatory power when considering larger evolutionary timescales. At

the broader Arthropoda scale, fast and slow gene evolution is found to be less

tightly associated with age and universality, and more with the distribution of

gene losses and family expansions.

The confirmation of several hypotheses on evolutionary feature

distributions and relationships from previous studies, coupled with the

uncovering of novel observations and trajectories, supports the translatability of

evolutionary hypotheses based on few eukaryotic species to large-scale

arthropod genome studies. Understanding the patterns of eukaryotic gene

evolution requires fine-tuning of the definitions and range of evolutionary

features. In parallel with a higher taxonomic resolution, this work will provide a

fundamental theoretical basis for future arthropod comparative genomics

research studies.
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Chapter 2: Characterisation of
Evolutionary-Functional Correspondences

Summary

This chapter first provides a theoretical background for partitioning genes into

evolutionary modules and describes the reasoning behind the automated

generation of gene function from high-throughput genomic data. This

introductory section is followed by an overview of the methodology enabling

functional inference and an initial exploration and verification step of the

functional associations of extreme values of the evolutionary feature

distributions. The focus then switches to cluster analysis, detailing the

techniques that resulted in the most meaningful and optimised partitioning of

arthropod gene evolutionary features. After describing the main types of

evolutionary trajectories adopted by clusters of arthropod genes, the discussion

then highlights the emerging functional properties of such evolutionary modules

assigned through gene ontology enrichment analysis. The chapter concludes by

showcasing an additional analysis framework, leveraging the full arthropod-scale

evolutionary-functional correspondences to generate more detailed and

lineage-specific hypotheses and concluding remarks.
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Theoretical Background on Evolutionary Profile
Clustering and Functional Inference

In Chapter 1, 82’474 orthologous groups delineated from over 2.2 million

arthropod genes were assigned individual evolutionary profiles defined by their

phylogenetic age, taxonomic span, synteny conservation, sequence evolutionary

rate, copy-number dynamics and turnover, for a total of 16 distinct evolutionary

features. By extending the concept of inferring gene function by bringing

together genes through sequence homology and orthology delineation, Chapter

2 leverages the increased evolutionary resolution to cluster arthropod genes into

sets of similar evolutionary trajectories and assign them to functional modules

and putative biological roles. Previous attempts to partition the evolutionary

histories of genes include a phylogenetic inference-based approach optimising

the selection of clustering methods for sequence alignments (Gori et al. 2016),

and the annotations of human biological pathways to evolutionary modules

inferred from species trees and sequence homology matrices (Li et al. 2014).

The most comprehensive high dimensionality description and visualisation of

complex evolutionary histories, enriched with detailed molecular functions, was

deployed by EvoluCode (Linard et al. 2012). The study partitioned the human

proteome into evolutionary profiles defined by metrics of sequence identity and

protein domains, among others. Inspired by these attempts, this chapter

showcases the exploration of different clustering techniques and challenges to

obtain an unprecedented higher-resolution evolutionary-functional map of

biologically meaningful clusters of arthropod genes.

Cluster analysis is the approach of grouping samples with similar

quantifiable properties using statistical methods, creating labels for groups of

samples that are more similar to each than to the rest of the samples. Cluster

analysis - or clustering - falls into the category of unsupervised machine learning

algorithms, intending to assign samples to clusters without a priori knowledge of

the cluster sizes nor assisted by a validation learning process to guide the cluster

membership assignments. Clustering techniques can vary greatly; therefore,

care and consideration need to be put into a cluster analysis as results will likely

be variable depending on the selected algorithms, parameters, and thresholds.
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As there is no universally recognised best technique of clustering for every type

and size of data, clustering techniques may be chosen simply because a specific

approach has been successfully deployed in the past with similar types of data or

by carefully evaluating the algorithm’s statistical convergence and optimal

trade-offs. Examples include the elbow method and the silhouette analysis, used

after k-means clustering to determine the optimal number of clusters and

maximise the explained variation (model’s fit) to the number of clusters ratio,

thus limiting the possibilities of overfitting the model to the data. Ultimately, the

goal of cluster analysis applied to the evolutionary features was to partition

arthropod orthologous groups to verify whether (and if so, which) functional

biological properties are associated with evolutionarily similar clusters of

orthologous genes, i.e. sharing similar cross-species evolutionary trajectories. In

the case of emerging evolution-to-function patterns, the resulting evolutionary

modules could serve as models for theoretical broad-scale (considering all genes

from all species) or fine-scale (a set of genes from one or few closely related

species) evolution-to-function predictions.

Building predictive automated functional annotations of sets of genes is

required when working at scale, where comparative genomics can provide

solutions when large-scale experimental elucidation efforts are not conceivable.

Following a similar approach to EvoluCode (Linard et al. 2012), the Evol-Feat

workflow assigns statistically supported putative gene functions to

evolutionarily-defined modules using Gene Ontology enrichment analyses. The

Gene Ontology (GO) database is the most comprehensive resource detailing

gene function (Ashburner et al. 2000; Gene Ontology Consortium 2019),

allowing for a hierarchical characterisation of a gene’s biological processes,

cellular compartmentalisation, and molecular functions. It provides a structured

representation of the current scientific knowledge that allows contrasts to

determine which biological processes, functions, and cellular locations are

significantly over- or under-represented in groups of genes from high-throughput

studies (Yon Rhee et al. 2008; Robertson et al. 2018; Sun et al. 2021). Inherent

biases from the GO are likely to be present and will inevitably affect the quality

of the functional annotations. With respect particularly to arthropod genes, these

may include over-representations of model organism species, particularly

Drosophila melanogaster, and research topics including immunity, development
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or insecticide resistance experiments. Related enriched GO terms will most likely

emerge from the scientific descriptions of biological mechanisms most

investigated in arthropod biology research.

Enrichment Analysis for Gene Ontology is the process of quantifying and

validating with statistical testing the overrepresentation of annotated functions

(GO terms) for a given list of genes (foreground) compared to the annotations of

all other genes (background). Commonly used statistical tests include Fisher's

exact and Kolmogorov-Smirnov (KS) tests, providing comparable p-values for

statistical support and hypothesis testing for each GO term. Randomly generated

lists of genes statistically tested against the full spectrum of the GO database

are unlikely to generate meaningful and well-supported functional enrichments.

Accordingly, one of the goals of this chapter is to determine whether lists of

genes that share similar evolutionary profiles can generate statistically

significant GO term enrichment results. Functional annotations emerging from

sets of orthologous groups partitioned by evolutionary features will indicate

whether gene functional constraints can determine the course of gene family

evolution across the arthropod phylogeny, allowing for the exploration and

evolutionarily informed predictions of biological processes of uncharacterised

genes.

If genes with similar or analogous functional roles are constrained to

follow similar evolutionary trajectories, then clustering genes using their

evolutionary profiles should bring together genes with similar or analogous

functional roles. Clusters showing statistically supported enrichments for certain

biological functions (using the GO as the means of annotating functions) likely

indicate that modules of evolutionary trajectories effectively bring together

genes with similar or analogous functions. Such observations also confirm that a

gene’s functional role defines and constrains the evolutionary path it can follow.

The principal expectation driving the work presented in this chapter is that

starting from a higher-dimensional description of arthropod evolutionary

trajectories, it is possible to infer an equivalent higher resolution partitioning and

description of the associated functional roles and constraints.
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Orthologous Group Gene Ontology Annotations

Function prediction of evolutionary-defined modules was performed with

enrichment analysis for gene ontologies on clusters of orthologous groups with

consensus GO term annotations obtained from deep learning-, sequence

similarity- and protein domain-based approaches. In order to obtain a consistent

and comprehensive catalogue of gene functional annotations, GO terms were

assigned to the 2.2 million arthropod protein-coding genes using CrowdGO

(Reijnders and Waterhouse 2021b). CrowdGO provides machine learning and

semantic similarity-guided consensus GO annotations from the results of four

sequence-based functional annotation tools: DeepGOPlus (Kulmanov and

Hoehndorf 2020), Wei2GO (Reijnders 2022); InterProScan (Jones et al. 2014);

and FunFam (Scheibenreif et al. 2019). In order to assign function predictions to

genes, DeepGOPlus uses a deep learning model to detect protein motifs (short

conserved sequence patterns associated with distinct functions); Wei2GO uses

sequence homology; while InterProScan and FunFams use domain homology

(groups of folded three-dimensional protein structures with distinct molecular

functions). CrowdGO then re-evaluates each gene-term annotation, and a

consensus dataset is produced with high-scoring confident annotations and

low-scoring rejected annotations. Only the Biological Process (BP) GO terms with

CrowdGO’s default 0.5 cut-off were retained for downstream analyses.

Orthologous group GO terms were thus assigned by merging all of the GO terms

from each gene in the orthologous group and removing the terms represented

by a single gene only. This filtering step was applied in order to exclude possibly

erroneous or highly specific GO terms, aiming to avoid single-gene-based GO

term predictions propagating to the whole group.

Functional Enrichments of Individual Evolutionary

Features

Before exploring the distributions and functional annotations of the evolutionary

profiles, the extreme values of the evolutionary features were investigated with
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enrichment analysis for gene ontologies. This first exploratory step and sanity

check informs and tests some of the hypotheses regarding the correspondences

between evolutionary features and gene function introduced in Chapter 1 and

the current literature (Krylov 2003; Waterhouse, Zdobnov, and Kriventseva

2011), for example, the functional relationships between gene stability and

duplicability, universality and essentiality. Additionally, this approach validates

whether similar functional properties characterise correlated features. The

enrichment analyses were performed on the top and bottom percentiles of each

of the 16 evolutionary feature scores with the R package topGO (Alexa and

Rahnenfuhrer 2020). The distributions of orthologous group evolutionary feature

scores were assessed for enriched GO terms using the Kolmogorov-Smirnov test

with the weight01 algorithm and a nodeSize parameter of 10, pruning the GO

hierarchy from the terms which have fewer than 10 annotated orthologous

groups. The resulting statistically significant enrichments were then processed

with GO-Figure! (Reijnders and Waterhouse 2021a), a software to summarise

and visualise GO enrichment analysis results, which can be repetitive/redundant

given the hierarchical structure of the GO graph. For simplicity, Table 3 reports

only the statistically significantly enriched GO term descriptors for the extreme

values (top and bottom) of each evolutionary feature.

Examples of GO-Figure! processed enrichment analyses for ontologies are

provided in Figure 4 for the top orthologous group expansions (EXP, left), and

relative expansions (REX, right) feature scores. The sanity check here is to ask

whether the enrichment analysis has identified biological processes associated

with gene families known to show frequent expansions. Among the wide range of

GO term descriptors, known lineage-specific and universal expanded biological

processes are nevertheless recovered, including digestive system development

and metabolic processing of organic substances (gene family expansions likely

linked to dietary adaptations); signalling, phagocytosis, and immune response to

bacteria (gene family expansions likely linked to immune-related pathways).

Other more generic and essential biological processes might have been captured

from ancestral and conserved expansion of genes for a variety of biological

purposes, ranging from the emergence of novel signalling pathways and

enzymatic functions to gene dosage increases linked to the regulation of
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transcription and generic cellular processes, as well as organelle organisation

and cell-type differentiation.
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Figure 4: GO-Figure! representation of significantly enriched GO terms from the
top expanded (EXP, Panel A) and relatively expanded (lineage-span scaled,
REX, Panel B) orthologous groups. GO terms are grouped by their semantic similarity
as computed in GO-Figure! and scaled (circle size) by their number of represented
terms. The log10 p-value scale indicates that all p-values are < 10-33, due to the few but
diverse included groups from the skewed distributions, compared to the much larger and
uniform background.
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Enrichment analysis results of large lists of generic but diverse GO terms

are difficult to interpret. For this reason, Table 3 mainly serves as a checking

point, overall validating the hypotheses relating expected functional constraints

and characteristics to evolutionary trajectories. Patterns confirming expected

associations can nevertheless be found and interpreted. Conservative

copy-number variations are linked to essential and generic genetic transcription,

anatomical development and regulation of metabolic processes. The youngest

orthologous groups are enriched with immune-related functions, including

cytolysis and disruption of cells from foreign organisms, indicating the dynamic

and neo-functionalisation characteristic of parts of the immune response, as it

may result from molecular arms races against pathogens. Orthologous groups

characterised by the least amount of gene family losses (CON) are associated

with old essential and conserved cellular mechanisms such as phagocytosis, the

highly conserved TOR and Notch signalling pathways, mitosis and DNA damage

control processes, and mitochondrial activity.

In contrast, groups with the most gene copy losses are enriched with

more specific compound metabolism, sensory perception processes, and immune

response regulation. It seems likely that processes associated with large gene

family expansions are also expected to be lost along the arthropod phylogeny.

Similarly, enriched bottom percentiles of features associated with highly

conserved and essential mechanisms are represented by low scores of

duplicability (DUP), evolutionary rates (EVR) and expansions (EXP). These

regulate metabolic activity and transcription, anatomical and post-embryonic

development, and cell structure organisation. Although linked to several generic

biological processes, orthologous groups with the highest evolutionary rates

(EVR) are also functionally enriched with all the expected expanded and

ecologically diversified processes, including sensory perception, receptor

signalling, chemosensation, the immune response through pathogen interaction

and disruption. These biological processes are shared with the top scoring values

of relative contractions (RCO) and low values of stability (STA, specifically

chemosensation, notoriously characterised by large gene family expansions) and

universality (UNI), likely representing orthologous groups capturing highly

dynamic gene families, lineage-specific and with high gene turnover rates. More

generic GO term enrichments are found across top scores of EVR and low
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synteny conservation (SYN, MSY, RSY), reflecting the heavy skewness of their

respective distributions.
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Table 3: Most distinctive GO enrichment analyses of evolutionary features’

extreme values.

Evolutionary
Feature

Direction Descriptors of Significantly Enriched GO Terms (p-value <
0.05)

ACN & CNV bottom positive regulation of metabolic process; anatomical structure
development; RNA splicing, via transesterification reactions;
post-embryonic development; nucleoside phosphate metabolic
process

AGE bottom killing of cells of other organism; disruption of cells of other
organism; cytolysis

CON bottom phagocytosis; positive regulation of cellular process; cytosolic
transport; protein ubiquitination; small molecule metabolic process;
neurogenesis; mitochondrion organization; oogenesis;
ubiquitin-dependent protein catabolic process; protein targeting;
transmembrane receptor protein serine/threonine kinase binding;
snRNA 3'-end processing; positive regulation of Notch signaling;
ribosome biogenesis; sensory perception of pain; nuclear division;
mitotic G2 DNA damage checkpoint; mitochondrial translation; lateral
inhibition; synapse organization; vacuolar transport; TOR signaling;
vesicle-mediated transport to the plasma membrane; DNA repair;
dorsal closure; carbohydrate metabolic process; neural precursor cell
proliferation

top glycosyl compound metabolic process; nuclear division; ammonium
ion metabolic process; behavior; regulation of transmembrane
receptor protein serine/threonine kinase signaling pathway; detection
of stimulus involved in sensory perception; regulation of synapse
structure or activity; epithelium migration; negative regulation of
cytokine process; leukocyte migration

DUP bottom cellular macromolecule metabolic process; positive regulation of
metabolic process; positive regulation of nucleic acid-templated
transcription; anatomical structure development; RNA splicing, via
transesterification; regulation of cellular metabolic process; cell
differentiation; post-embryonic development; nucleoside phosphate
metabolic process

EVR bottom regulation of cellular localization; protein-containing complex subunit
organization; behavior; microtubule-based movement; epithelium
migration; cell junction organization

top sensory perception; cilium movement; cytoskeleton-dependent
intracellular transport; mitotic nuclear envelope disassembly;
negative regulation of endopeptidase; cell projection morphogenesis;
telomere maintenance; nucleic acid metabolic process; microtubule
cytoskeleton organization; killing of cells of other organism;
disruption of cells of other organism; protein-DNA complex assembly;
detection of stimulus involved in sensory perception; ionotropic
glutamate receptor signaling; cytolysis; negative regulation of
cytokine production; chemosensory behavior; double-strand break
repair; male meiotic nuclear division; innate immune response;
transcription by RNA polymerase III; regulation of mitotic
metaphase/anaphase

EXP & REX bottom positive regulation of metabolic process; anatomical structure
development; post-embryonic development; nucleoside phosphate
metabolic process

MSY bottom post-embryonic development; anatomical structure development;
peptidoglycan metabolic process; potassium ion transport; behavior;
cell wall macromolecule metabolic process; cellular calcium ion
homeostasis; signaling; cell junction organization; nucleoside
phosphate metabolic process; regulation of cellular response to
growth factor stimulus

RCO top killing of cells of other organism; disruption of cells of other
organism; detection of stimulus involved in sensory perception;
cytolysis
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RST top regulation of cellular macromolecule biosynthetic process; nuclear
division; positive regulation of developmental process; multicellular
organism; aging; determination of adult lifespan; mitochondrion
organization; positive regulation of transcription; cytosolic transport;
RNA splicing, via transesterification; lateral inhibition; regulation of
synapse structure or activity; anterior/posterior axis specification;
Golgi organization; dorsal closure; carbohydrate metabolic process;
ubiquitin-dependent protein catabolic process

RSY bottom organic substance metabolic process; post-embryonic development;
anatomical structure development; regulation of cellular
macromolecule biosynthetic process; regulation of macromolecule
metabolic process; potassium ion transport; peptidoglycan metabolic
process; behavior; cell wall macromolecule metabolic process;
cellular calcium ion homeostasis; cell junction organization; signaling;
regulation of transmembrane receptor protein serine/threonine kinase
signaling pathway; nucleoside phosphate metabolic process;
microtubule-based movement; response to stimulus

RUN bottom reproduction; epithelium development; post-embryonic development;
nuclear division; protein ubiquitination; neurogenesis; endocytosis;
cellular calcium ion homeostasis; cytoskeleton-dependent intracellular
transport; cell junction organization; RNA splicing, via
transesterification; regulation of transmembrane receptor protein
serine/threonine kinase signaling pathway; glycosyl compound
metabolic process; potassium ion transport

top protein ubiquitination; regulation of catabolic process; RNA splicing,
via transesterification; imaginal disc-derived wing morphogenesis;
Golgi organization; carbohydrate metabolic process; germ-line stem
cell population maintenance

STA bottom chemosensory behavior

SYN bottom post-embryonic development; anatomical structure development;
peptidoglycan metabolic process; potassium ion transport; behavior;
cell wall macromolecule metabolic process; cellular calcium ion
homeostasis; signaling; cell junction organization; nucleoside
phosphate metabolic process; regulation of cellular response to
growth factor stimulus

UNI bottom microtubule-based movement; killing of cells of other organism;
disruption of cells of other organism

65



Filtering and practical considerations: Given the skewed distributions of

some of the evolutionary features (see Figure 1), some enrichment analyses

resulted in extensive lists of statistically significantly enriched GO terms. When

most orthologous groups are pulled to one side, the few but diverse orthologous

groups on the opposite side percentile produce strongly statistically significant

enriched terms as they are compared to the much larger noisy background of

the GO universe (the list of all orthologous groups’ GO terms). Percentile

distributions of features which resulted in too large lists with extreme statistically

significant GO term enrichments (p-value < 1x10-30 for 50 terms or more) are

thus not shown in Table 3 but still considered for further interpretation. Such GO

terms likely obtain high statistical support thanks to their high-frequency

annotations in gene lists, are very generic and do not necessarily contribute to

the biological interpretation of the functional annotations. They included

descriptors such as: “cellular process”, “metabolic process”,

“nucleobase-containing compound metabolic process”, “cellular metabolic

process”, “protein metabolic process”, and “transcription, DNA-templated”.

Functional enrichments of bottom percentiles of Average Copy-Number and

Copy-Number Variation, as well as CAFE5 Expansions and Relative CAFE

Expansions, resulted in the same enriched terms and were thus combined.

An Overview of Orthologous Group Clustering

A number of clustering techniques were tested to analyse the arthropod

evolutionary features and allow for a diversity of interpretations and alternatives

to a single clustering method. This provides opportunities to compare results

based on different methodologies while simultaneously serving as an example of

evolutionary feature data-tailored clustering strategies that should serve as a

baseline and eventually be expanded in future work. Exploration of initial

clustering results from some of the most common unsupervised clustering

algorithms currently used in various applications, such as pattern recognition or

genomic data grouping (Borkowska et al. 2014; Manduchi et al. 2021), enabled

an informed selection of the most suitable techniques. Distribution-based

algorithms were discarded, given the skewness and unknown distributions of the

evolutionary features, as shown in Chapter 1, hampering the meaningfulness of
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distribution-specific properties such as medians and standard deviations.

Hierarchical-, centroid- and density-based clustering techniques were thus

preferred, including Density-Based Spatial Clustering of Applications with Noise

(DBSCAN), Hierarchical-DBSCAN (HDBSCAN), Ordering Points To Identify the

Clustering Structure (OPTICS), k-means, hierarchical clustering with a cut-off

and Self-Organising Maps (SOM). The resulting clusters had to be comparatively

similar in size, as subsequent functional annotation of lists with tens of

thousands of orthologous groups would produce vague and non-significant

function predictions, de facto removing most of the data from meaningful

assessments, as exemplified by the imbalanced distributions of evolutionary

feature scores shown in Figure 1.

For this reason, the clustering techniques were deemed valid when

producing clusters of evolutionary profiles with non-extreme differences in

cluster sizes. K-means, OPTICS and DBSCAN were discarded as they produced a

handful of clusters regrouping most of the orthologous groups in central clusters

and a constellation of small-sized peripheral clusters. Additionally, the k-means

algorithm requires a user-specified number of resulting clusters, which can be

estimated with several techniques, such as the elbow method or the silhouette

analysis. However, the optimal number of clusters was always deemed too low to

be helpful for this case. While statistically solid and correctly representing the

evolutionary profiles’ unbalanced distribution, it could not serve the purpose of

discriminating a number of clusters to be manually interpreted and evaluated.

The trade-off lies between clustering accuracy and the number of obtained

clusters, and no balance could be found. HDBSCAN, a hierarchical decision tree

approach to DBSCAN, was discarded as too many orthologous groups were

considered “unclustered”, i.e. they could not statistically be grouped to any final

DBSCAN cluster. Hierarchical clustering of the ~80’000 evolutionary profiles

showed to be too computationally demanding (with a time complexity of (n3)

requiring (n2) memory), with the added difficulty of cut-off parameter selection

at which cutting the dendrogram for cluster membership designation. Finally, the

Self-Organising Map was identified as the most appropriate clustering and

visualisation algorithm, homogeneously distributing orthologous groups across a

size-predetermined grid of multi-dimensional predicted ranges of evolutionary

profiles.
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Self-Organising Map: Clusters of Evolutionary Profiles

Traditional clustering methods often perform poorly on high-dimensional

datasets, given the unoptimised similarity measures and underlying complexity.

Dimensionality reduction techniques are successfully employed to increase the

clustering efficacity through low-dimensional data representations. Nevertheless,

combining standard dimensionality reduction techniques with traditional

clustering methods does not yield results that can be easily represented in

human-interpretable dimensional spaces, and more sophisticated approaches are

required (Manduchi et al. 2021). Contrastingly, the self-organising map (SOM),

or Kohonen network (Kohonen 1982; Wehrens and Kruisselbrink 2018), is a

computational method for clustering and visualisation of high-dimensional data

which provides interpretable and low-dimensional representations of complex

input data. High-dimensionality datasets are ultimately projected in a

two-dimensional grid of nodes where spatially closer clusters are enriched with

similar input feature values. The resulting grid thus conserves the underlying

structure of the input data space.

The SOM algorithm builds an unsupervised learning model and is best

suited for cases when it is crucial to maintain the topology between input and

output spaces. Preserving the topology was an essential aspect of clustering the

evolutionary profiles, given the different shapes and skewness of the feature

distributions. The algorithm works by initialising a list of predefined i * j nodes

positioned in a grid where all possible values of the model parameters are

inferred from the range of the input feature values. Each sample is assigned to a

node with a competitive learning training process, randomly initialising samples

to node associations and updating them through successive retraining iterations

to obtain the best matching unit via euclidean distance measurements. The node

weights are updated to match the input vectors, and the final models,

corresponding to the grid clusters, are called codebook vectors and are

represented by hexagonal cells in the grid visualisation. The resulting codebook

vectors correspond to gene models defined by hypothetical evolutionary profile

scores built from the full range of the input evolutionary feature scores. These

evolutionary “archetypes” are conceptually equivalent to the eigengenes of gene
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expression profiles from gene co-expression network studies (Langfelder and

Horvath 2007). The hexagonal shape of the cells better represents cell

proximities to other cells when compared to squared shapes.

SOM clustering was performed on the full range of arthropod evolutionary

profiles. The top 10 principal components’ scores were preferred to the

evolutionary feature scores to avoid clustering biases guided by unbalanced

groups of strongly correlated features. Using the first N * M matrix (N = 78’474

orthologous groups; M = 10 principal components) as input data, the SOM was

built with the supersom function from the R package kohonen version 3.0

(Wehrens and Kruisselbrink 2018). The number of learning process iterations

was set at rlen = 500, and the learning rates were set at the default alpha

values, linearly decreasing from 0.05 to 0.01. The number of learning process

iterations matches the times the complete dataset is presented to the network.

The training process could be halted when improvements in mean euclidean

distances from the dataset to the network nodes did not substantially change

with additional iterations, while maintaining a homogeneous distribution of the

orthologous groups across SOM cell coordinates (i, j). Examples of such

assessment procedures are shown in Figure 5.
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Figure 5: Examples of SOM training process and orthologous groups
partitioning. In Panel A, the average of the euclidean distances from input vectors to
the corresponding closest network units is computed after each learning process
iteration. The distances are minimised when approaching 500 iterations, with a mean
value of ~0.004. In Panel B, colour-coded counts of orthologous groups mapped to SOM
nodes, with a mean of 87.5 groups (medium blue) per cell, a median of 78, a maximum
of 414 (dark red), a minimum of 4 (dark blue), and a standard deviation of 47.4. Cells
without orthologous groups assigned to them are coloured in grey.

70



The dimensions of the SOM grid were set at 30 * 30 cells for a total of 900

distinct SOM cells, or cluster archetypes, each corresponding to a particular

eigengene (or codebook vector), and assigned with matching orthologous

groups. The grid dimensions were chosen to partition between 80 to 100

orthologous groups per cell, a range corresponding to the maximum size of

orthologous group clusters that could capture meaningful functional annotations.

The topology of the SOM brings together cells with similar evolutionary profiles

while opposing sides of the grid correspond to the most dissimilar ones. It is

important to note that each randomly initialised implementation of the SOM can

vary greatly depending on the grid dimensions, expected cluster sizes and

homogeneity, input features and learning rates and iterations. The

implementations presented in this thesis are snapshots of possible ways to

represent the full arthropod evolutionary features data. However, new

exploratory analyses (either on lineage-specific subsets of this data or new data)

must be carefully defined to reflect the input data dimensions and variation.

71



Figure 6: Examples of SOM codebook vectors highlighting specific feature
weights of the model. In Panel A, eigengenes, or SOM codebook vectors, are coloured
by their corresponding values of PC1 (high dark red, low dark blue). PC1 is associated
with orthologous groups’ universality, stability and widespread gene duplications. In
Panel B, codebook vectors are coloured by their values of PC4, associated with
lineage-specific gene expansions.
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Eigengenes (SOM cell models, or codebook vectors) highlighted by their

feature weights can be visualised for each input feature. In Figure 6 are

represented examples corresponding to PC1 and PC4, fully described in Table 2:

the first associated with widespread stable, universal and duplicated orthologous

groups; the second associated with orthologous groups characterised by

lineage-specific expansions. These highlights suggest intricate distributions of

gene evolutionary features, not necessarily following one-directional gradients.

The bottom left corner of PC1 in Figure 6A captures patterns of old taxonomic

age coupled with high taxonomic spans and widespread stable gene duplications,

including lineage-specific expansions. On the other hand, the opposing corner of

the map captures orthologous groups with similar lineage-specific expansion

scores but characterised by young age, low universality, and unstable

copy-numbers. Enhancing individual feature contributions across the SOM

highlights the complexity of capturing clusters of high-dimensional evolutionary

trajectories: the presence of contrasting peaks and valleys confirms the

necessity of describing novel evolutionary features. Rather than focusing on

one-dimensional feature distributions, such complex multi-dimensional analyses

allow for the uncovering and characterising of undescribed landscapes of genes’

evolutionary features and histories.

Self-Organising Map: Superclusters of Evolutionary

Profiles

The dimensions of the arthropod SOM were tailored to optimise the

distribution of orthologous groups across the grid and allow specific and

meaningful functional annotations. The resulting extensive dataset required

summary interpretations and visualisation techniques, not for specific predictions

of evolutionary modules but for obtaining a more comprehensive interpretative

framework for relating patterns of evolution to functional constraints. A more

exhaustive exploration of the varieties of evolutionary trajectories and their

associations with correspondingly broader functional categories required

additional clustering methods on top of the SOM. The 900 codebook vectors
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were further clustered using the k-means algorithm, with the kmeans function

from the R stats package.

The k-means algorithm partitions the input data into the user-defined size

of k clusters in which each observation is assigned to the cluster with the

minimised euclidean distance to the iteratively updated cluster centre. The

choice of the algorithm reflected the necessity of preemptively selecting a

reasonable amount of k-means superclusters. The SOM cells were assigned to a

total of 60 k-means superclusters, twice the lateral size of the SOM, with an

expected average distribution of 15 cells per supercluster. Figure 7 displays the

full arthropod SOM highlighting each cell’s codebook vector feature contributions

with pie charts and the colour-coded background representing the k-means

supercluster memberships. The k-means superclusters are not always contiguous

across the SOM topology, given the different nature of the two clustering

algorithms when solving multi-dimensional proximity in a two-dimensional grid.

Nevertheless, the superclusters show overall high levels of spatial consistency,

further confirmed by the hierarchical clustering discussed in the next section.

As evolutionary profiles are distributed across the grid, islands of the most

distinctive ones can be recognised at the SOM edges. On the top right corner

are represented young, lineage-specific, slow-evolving orthologous groups with

lineage-specific expansions. Instead, the bottom right corner is represented by

groups with old, slow-evolving gene family expansions with maintained

copy-numbers, high synteny conservation scores and occasional gene losses. In

the immediate left are recovered orthologous groups with similarly high average

synteny conservation scores but lacking the lineage-specific expansions and,

interestingly, low lineage-specific synteny conservation. Towards the SOM's

mid-left edge, slow-evolving orthologous groups are strongly characterised by

fast-evolving lineage-specific and unstable expansions. Further confirming the

observations from Table 2, describing the principal components, high sequence

evolutionary rates seem to contribute to clustering driving forces only when

coupled with counts of gene losses and expansions.
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Figure 7: Self-organising map of arthropod evolutionary profiles with k-means
superclusters. The top 10 principal components of ~80’000 arthropod orthologous
groups’ evolutionary profiles were assigned to 900 cells of the self-organising map.
Cell-to-cell proximity indicates similarity in multi-dimensional evolutionary trajectories.
Within cells, pie charts represent the magnitudes of the node’s feature contributions,
where larger sectors correspond to stronger evolutionary driving forces. Each cell is
assigned to one of the 60 k-means superclusters, represented by an automatic selection
of the most distinctive pastel colour codes.
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Hierarchical Clustering of SOM Superclusters

While SOM cells and k-means superclusters are associated with specific

evolutionary profiles; these correspond to representative archetypes

(eigengenes) obtained from the algorithm’s learning model built from the input

data used for clustering optimisation and visualisation purposes. With the goals

of 1) highlighting patterns emerging from the raw data instead of modelled

values and 2) more concisely describing broader groups of evolutionary

trajectories, a hierarchical clustering algorithm was applied to the lists of

orthologous groups associated with the k-means superclusters. Employing the

SOM algorithm was necessary to spatially distribute and enrich clusters with

evolutionarily-similar orthologous groups in a lower-dimensional space that could

be more easily interpreted while maintaining the underlying topology of the

dataset. While such an approach is optimised for a detailed and precise

exploration of the evolutionary space of arthropod genes, it was crucial to further

summarise and characterise broader patterns of evolutionary trajectories for the

descriptive purposes of investigating more generic evolutionary-functional

correspondences.

Generating the SOM k-means superclusters summarised and vastly

reduced the size of the dataset, and hierarchical clustering was finally deemed

suitable to effectively discriminate the already sufficiently diverse superclusters’

average evolutionary feature scores. The hierarchical clustering algorithm was

therefore applied to 60 evolutionary profiles only, instead of the original ~80’000

from the initial dataset, overcoming the computational limitations described at

the beginning of this chapter. This additional clustering step would generate

hierarchical relationships, displayed as dendrograms in Figure 8, of both

superclusters of orthologous groups and their corresponding evolutionary

features. Relationships built on the evolutionary features, as described in

Chapter 1, rather than on principal components, enables an intuitive association

of evolutionary profile types with more easily interpretable and quantifiable

properties. Both feature and supercluster dendrograms were combined in Figure

9, displaying a heatmap highlighting comparable scaled feature values from each

of the 60 superclusters.
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Profiles built from the 16 quantified evolutionary features successfully

delineate key similarities and differences amongst the 60 SOM superclusters.

Contrasting the profile of a given supercluster against the profiles of all

superclusters reveals the evolutionary features that most clearly distinguish each

supercluster. Several bootstrap-supported groupings of superclusters and

subsets of features are revealed when hierarchical clustering is applied to the

matrix of evolutionary feature profiles of all arthropod orthologous groups.

Delineation of the hierarchical similarities amongst superclusters and features

enables the identification of subsets of features that vary in concert, and broad

groups of evolutionarily similar superclusters. The orthologous groups were

averaged by median values for each supercluster and employed to build a

dissimilarity matrix with Pearson’s correlation distances. Performing

bootstrapped clustering with the average linkage method resulted in several

well-supported subsets and groupings. Using Pearson’s correlation distances for

clustering aimed to give weight to the features’ directions rather than their

magnitudes or ranks (Kassambara 2017), on the lines of the principal

components approach employed for the SOM feature clustering.
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Figure 8: Hierarchical clustering relationships of evolutionary features and SOM
superclusters. Panel A represents the dendrogram of the hierarchical relationships of
the 16 evolutionary features. Panel B represents the dendrogram of the hierarchical
relationships of the 60 SOM k-means superclusters of orthologous groups. Both
dendrograms were cut at an arbitrary Pearson’s correlation distance of 0.6 (indicated
with yellow lines), obtaining six feature groups in A (1-6) and 10 evolutionary profile
types in B (A-J). Confidence measures for each node are represented by percentage AU
p-values in red (100% for maximum support and 0% for no support).
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The distance matrix was computed from the family medians using the dist

and cor functions from the stats package in R, with distances defined as

1-correlation for matrices computed with cor. Hierarchical clustering was

performed using R’s hclust function from the stats package, and bootstrap

support of the resulting hierarchies (dendrograms) was obtained using R’s

pvclust package with 10’000 bootstrap replicates and a fixed seed of 12345,

which calculates p-values for hierarchical clustering via multiscale bootstrap

resampling (Suzuki and Shimodaira 2006). The selection of clustering algorithm

method (average-linking), distance method (Pearson’s correlation dissimilarity

matrix) and profiles’ averaging function (median) reflects the methodology

described in Chapter 3 (Ruzzante et al. 2022). It corresponds to the

best-identified clustering algorithm combination revealed by similar analyses

performed on the evolutionary features of A. gambiae immune-related gene

families, producing the most reproducible distribution of approximately unbiased

(AU) support values across 10’000 hierarchical clustering bootstrap replicates

obtained with pvclust. The approximately unbiased (AU) p-values provide a

confidence measure for each node of the cluster dendrograms of families and

evolutionary features. The resulting heatmap displayed in Figure 9 was obtained

with the ComplexHeatmap R package (Gu, Eils, and Schlesner 2016).
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Figure 9: Heatmap from the hierarchical clustering of SOM superclusters and
evolutionary features. On the horizontal axis are represented the 16 evolutionary
features, and on the vertical axis are represented the 60 SOM k-means superclusters.
Opposing the labels are shown the corresponding dendrograms representing the
hierarchical relationships. Both features (1-6) and superclusters types (A-J) are colour
coded to indicate the cutoff partitioning from Figure 8. Heatmap squares are coloured
from dark blue to dark red to indicate the scaled values of the orthologous groups’
superclusters averaged by the statistical median.
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Figure 8A once again confirms some of the expected relationships

between evolutionary features: copy-number, duplicability and gene family

expansion features come together in group 1; group 2 is solely constituted by

widespread gene losses; group 3 captures taxonomy spread, age and stability

features; group 4 recovers sequence evolutionary rate; group 6 recovers the

three synteny-conservation features; and group 7 represents features of

lineage-specific dynamics, including relative universality, gene family losses and

stability. The robustness of the hierarchical clusters is indicated by the node

support values, consistently high throughout the dendrograms of features and,

to a lesser extent, superclusters. The description of distinct evolutionary feature

profiles associated with groups of superclusters in Figure 9 allows for a precise

characterisation of the 10 types of evolutionary trajectories of arthropod

orthologous groups. This step created a profiling framework that eased the

description of the correspondences between the 60 superclusters and their

respective functional annotation summaries, as presented in Table 2.

Type A describes 12 superclusters and 23’892 orthologous groups,

defined by high lineage-specific universality and gene turnover dynamics with

variable sequence evolutionary rates and young taxonomic age. Type B

describes two superclusters and 1’936 orthologous groups, defined by high

lineage-specific taxonomic spread, medium age, no gene losses and low

duplicability. Type C describes five superclusters and 1’428 orthologous groups,

defined by the highest synteny conservation scores, young age, high

lineage-specific taxonomic spread and low duplicability. Type D describes one

supercluster and 2’787 orthologous groups, defined by overall medium values

with slightly lower age and sequence evolutionary rates. Type E describes six

superclusters and 6’667 orthologous groups, defined by the fastest-evolving

genes with medium to low universality, stability, age and lineage-specific spread.

Type F describes four superclusters and 3’678 orthologous groups, defined by

the highest counts of lineage-specific expansions, consequential high

duplicability, few gene losses, young age, and mid-high evolutionary rates. Type

G describes two superclusters and 77 orthologous groups, defined by the highest

widespread expansions and copy-numbers of old and universally spread gene

families, with few gene losses. Type H describes 13 superclusters and 23’820

orthologous groups, defined by old age, low lineage-specific universality and
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dynamics, mid-low sequence evolutionary age and frequent losses. Type I

describes seven superclusters and 6’603 orthologous groups, defined by the

highest gene copy-number variation, high duplicability, old age, variable

evolutionary rates and low lineage-specific spread. Type J describes 12

superclusters and 7’249 orthologous groups, defined by the oldest age, most

stable and universally spread gene families with low sequence evolutionary

rates, mid-high expansions and variable loss frequencies.

Radically different evolutionary trajectory types can be found on the

opposing sides of the heatmap. At the top, type A captures the youngest,

lineage-specific and fast-evolving genes in striking contrast to the oldest,

universally maintained, slow-evolving and stable gene families of the bottom

type J. Interestingly, type J is also characterised by highly diverging counts of

gene losses (superclusters 7 and 33), potentially indicating variable functional

essentiality across different arthropod clades, for which the genetic

house-keeping properties are not universally maintained. More likely, these high

loss counts are a direct consequence of the widespread and lineage-specific

expansions, and plausibly not all gene copies might have been retained over

such large evolutionary time scales. Although, whenever expansion events have

not been detected, these widespread, old, slow-evolving genes are most likely

maintained in single or few gene copy counts, as indicated by the low

copy-number features and duplicability. Types F and G share large

lineage-specific expansions and medium to high evolutionary rates. Type F,

though, solely describes young and clade-specific genes, possibly indicating

frequent gene duplications acting as recent genetic adaptation mechanisms.

Alternatively, type G seems to capture those ancient, widespread, fundamental

gene family expansions shared and maintained across the entire arthropod

phylogeny.
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Functional Annotations of the SOM Clusters

Functional enrichment of the 900 SOM cells was performed with the same

approach described in the enrichment of extreme evolutionary feature values at

the beginning of this chapter. Instead of feature score ranks evaluated by the

Kolmogorov-Smirnov test, lists of orthologous groups were tested with Fisher's

exact test using topGO’s “weight01” algorithm. Of the 893 SOM cells successfully

associated with lists of evolutionarily-similar orthologous groups, 675 were

assigned statistically significant GO terms enrichments (p-value < 0.05), with no

cell showing patterns of extreme statistically significant terms as previously

observed in some of the most skewed extreme feature values. The 900 SOM cell

GO term enrichments were summarised and visualised with GO-Figure!. Given

the SOM’s relatively homogenous distribution and limited cluster sizes, functional

enrichments of its cells provide specific and easily interpretable functional

information on biological processes.

As an example, Figure 10 shows the GO-Figure! visualisations of the GO

terms enrichment of the peculiar SOM cell (30, 1), identifiable at the

bottom-right corner of the full arthropod SOM in Figure 7. The cell brings

together 14 orthologous groups, evolutionarily characterised by lineage-specific

dynamics and, in particular: old, slow-evolving gene family expansions with

maintained copy-numbers; high synteny conservation scores and occasional

gene losses. Querying the orthologous groups on the OrthoDB website reveals

how most groups are shared by several fruit fly species, with exceptions

including a few species of crustaceans, mosquitoes and lepidopterans. Functional

annotation of the cell pinpoints biological processes related to auditory behaviour

and sensory perception of sound. The potassium ion transport term may be

associated with the mechanical induction of the auditory neural circuit. The

distant semantic similarity between the first two terms and the 6th term,

although all related to the auditory system, are likely distanced by GO-Figure!

architecture, which keeps separated related processes when related by the “is a

process of” ontological connection. Interestingly, one additional significantly

enriched term (p=0.00213) not reported by GO-Figure!’s summarization

algorithm was “adult walking behaviour” grouped within the 6th term “response
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to auditory stimulus”, assuming that walking could be semantically described as

a response to sound stimuli in flies. Such results are nevertheless not meant to

produce precise molecular functional annotations across millions of arthropod

genes, for which detailed functional genetic research is still necessary, but rather

provide a range of automatically computed predictions for exploratory analyses.
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Figure 10: Summary visualisation of SOM cell (30, 1) functional enrichment. The
statistically significant (1: p=0.00046; 2: p=0.00594; 3: p=0.01666) groups of enriched
GO terms can be found from mid to top of the vertical axis; where the top edge
corresponds to the semantically similar terms relating to sound perception and auditory
behaviour, while the right group corresponds to a generic potassium transport term.
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Functional Annotations of the SOM Superclusters

Table 4 shows the k-means superclusters' functional enrichments, ordered by the

evolutionary profile types characterised in Figure 9. The statistical enrichment

was performed as previously described for the 900 SOM cells. Several

superclusters, mostly of type H and I, recovered large lists of statistically

significant (p-value < 0.05) GO terms due to capturing extensive lists of

orthologous groups associated with broad ranges of biological functional

properties. Of the 60 superclusters, 10 did not show statistically significant

functional enrichments for any term, particularly within type A and E, and a few

showed precise biological process enrichments, likely clustering orthologous

groups characterised by extremely peculiar evolutionary profiles. These

observations indicate that it is possible to recover similarly evolving genes from

comparative genomics analyses and successfully associate them with either

broad or specific functional categories. It is important to note that variations of

evolutionary trajectories are still present within evolutionary profile types and

SOM superclusters are here summarised by averages to ease the description of

generic patterns of evolution-to-function characterisations.

It is likely that different but fundamental biological processes, imposing

similar functional constraints shaped through individual organism fitness and

survivability or selective pressures on whole populations, adopt the same

evolutionary trajectories. These may not be distinguished by employing

evolutionary characterisation and would produce large clusters of

evolutionarily-described orthologous groups with a high variation in functional

annotations. Finally, the resolution at which such correspondences are inferred

cannot satisfy the characterisation of all arthropod gene families, for which

additional evolutionary properties may be needed to be defined and clustering

techniques refined and specifically tailored.

The following paragraphs discuss the identification and interpretation of

generic patterns of evolution-to-function correspondences while keeping in mind

that more specific annotations are gathered from the full SOM’s higher resolution

but cannot be individually discussed here. Ultimately, the 900 cell functional
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annotation plots will be made available for interactive exploration through a

Dash web application, an open-source framework for building data visualisation

interfaces for Python, currently in development. The web app will include a

browsable look-up table for the complete list of arthropod gene identifiers, the

corresponding associated orthologous group evolutionary feature scores and the

cell’s GO-Figure! plots of summarised functional enrichments.
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Table 4. Functional annotations of superclusters of orthologous groups. The 60
SOM k-means superclusters of orthologous groups (OG) are described by their size,
evolutionary profile type and top 30 statistically significant GO term enrichments
(p-value < 0.05, n.s. otherwise). Extremely significant terms (p-value < 10-33) emerge
from over-represented terms such as ‘cellular process’ or ‘metabolic process’ and were
filtered out. The largest lists of GO terms were manually curated and semantically
summarised to represent the most distinguishable biological processes.

Super-
Cluster
ID

Counts
of OG

Evolut.
Profile
Type

Curated Summaries of the Top 30 Significantly Enriched GO
terms

31 2’892 A phosphorus metabolism

14 3’855 A neuromuscular junction development; compound eye
morphogenesis; cell polarity; amnioserosa formation; posterior
Malpighian tubule development

27 789 A hemolysis in other organism; disruption of cells of other organism

4 2’288 A n.s.

40 2’541 A n.s.

6 2’671 A transport vesicle recycling; protein localization to Golgi apparatus

52 712 A transcription, RNA-templated

49 1’074 A n.s.

39 2’044 A n.s.

54 1’128 A positive regulation of antibacterial peptide biosynthesis

36 2’013 A n.s.

2 1’885 A cell adhesion; embryonic plasmatocyte differentiation; leg
morphogenesis; cell shape regulation; glial cell development;
trehalose biosynthesis; negative regulation of post-mating female
receptivity; mitotic spindle organization

59 1’146 B positive regulation of nucleic acid-templated transcription

51 790 B chloride transport

43 48 C chaeta development

13 68 C protein insertion into membrane

16 14 C auditory behavior; sensory perception of sound; potassium ion
transport

58 268 C meiotic DNA double-strand break processing involved in reciprocal
meiotic recombination; mitochondrial membrane organization

3 1’030 C chaeta development; heterochromatin assembly; cellular response
to X-ray; mevalonate pathway; response to symbiotic bacterium;
SAGA complex assembly; tricarboxylic acid cycle; ecdysone
biosynthesis; reciprocal meiotic recombination; apoptosis involved
in tissue homeostasis; cohesin loading; proteasome assembly;
spermatogenesis; protein secretion; citrate metabolism; digestive
tract development; response to nicotine; peptidoglycan
recognition protein signaling pathway

44 2’787 D response to gibberellin; chromate transport

34 260 E n.s.
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28 1’024 E protein localization to kinetochore; kinetochore assembly;
chromosome separation; aromatic amino acid transport;
regulation of chromosome segregation

26 403 E n.s.

45 2’431 E n.s.

35 1’798 E nuclear pore complex assembly; L-phenylalanine biosynthesis

11 751 E n.s.

20 367 F branching involved in ureteric bud morphogenesis; regulation of
hemocyte proliferation; sensory perception of bitter taste

19 1’893 F urea transmembrane transport; peptidyl-proline hydroxylation to
4-hydroxy-L-proline; 4-hydroxyproline metabolism; regulation of
voltage-gated potassium channel activity

23 1’162 F n.s.

18 256 F chemosensory behavior; hemolysis in other organism; disruption
of cells of other organism

29 71 G reproduction; nuclear division; leukocyte migration; glycosyl
compound metabolism; regulation of body fluid levels; flavonoid
glucuronidation; gene expression

1 6 G DNA metabolism; lipid hydroxylation; lauric acid metabolism;
amacrine cell differentiation; insecticide catabolism; nuclear
division; hemolymph coagulation; neural crest cell migration;
detection of chemical stimulus involved in sensory perception of
smell; cellularization; hyperosmotic response; epithelium
development; regulation of tumor necrosis factor production;
post-embryonic development; monosaccharide biosynthetis;
phenol-containing compound biosynthetis; cell motility; gene
silencing

41 1’642 H anatomical structure development; transmembrane receptor
protein serine/threonine kinase signaling pathway; nuclear
division; signaling; histone acetylation; response to insulin

38 2’856 H microtubule-based movement; social behavior; erythrocyte
homeostasis; basophil differentiation; benzoate transport;
gastrulation with mouth forming second; dosage compensation

9 1’090 H RNA splicing; nuclear division; neurogenesis; epithelium
development; skeletal system morphogenesis; histone acetylation

57 3’003 H growth; histone ubiquitination; axon extension; female
receptivity; microtubule-based movement

21 3’071 H post-embryonic development; microtubule-based movement;
reproduction; calcium homeostasis; anatomical structure
development; cell junction organization; cellular localization;
unidirectional conjugation; ethanolamine transport; nicotinamide
riboside transport; polyamine transmembrane transport

37 2’957 H development; microtubule-based movement; positive regulation
of gene expression; hatching behavior; postsynaptic density
organization

24 1’228 H nuclear division; kidney epithelium development; signaling;
sensory perception; reproduction; poly-hydroxybutyrate
biosynthesis; regulation of trehalose metabolism; RNA-dependent
DNA biosynthesis; astral microtubule organization

8 2’121 H oocyte microtubule cytoskeleton organization; cilium movement;
DNA methylation on adenine; axonemal dynein complex assembly

47 693 H neurogenesis; sensory perception; reproduction; nuclear division;
DNA transposition; L-cystine transport; negative phototaxis;
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protein localization to nuclear pore; sensory organ morphogenesis

55 1’743 H post-embryonic development; cellular calcium ion homeostasis;
reproduction; epithelium development; cell junction organization;
chloride transport; glycerol-3-phosphate metabolism; glycosyl
compound metabolism

53 1’020 H cellular calcium ion homeostasis; reproduction; epithelium
development; cell junction organization; regulation of
transmembrane receptor protein serine/threonine kinase signaling
pathway; growth; post-embryonic development; Notch signaling
involved in heart development; L-alanine metabolism; apical
protein localization; regulation of synapse structure or activity

5 1’801 H post-embryonic development; cellular calcium ion homeostasis;
epithelium development; microtubule-based movement;
monosaccharide biosynthesis; glycosyl compound metabolism;
reproduction; thermotaxis; cell-cell adhesion; response to
insecticide

56 595 H cytokine production; glycosyl compound metabolism; T cell
activation; leukocyte cell-cell adhesion; leukocyte migration;
sensory perception; pyridine nucleotide biosynthesis; plasmid
maintenance

48 783 I cell wall catabolism; oligosaccharide catabolism; response to
steroid hormone; substituted mannan metabolism;
cGMP-mediated signaling; envenomation of other organism;
defense response to Gram-negative bacterium; endopeptidase
activity; detoxification of cadmium ion; ganglioside catabolism;
chorion-containing eggshell pattern formation; self proteolysis;
carotenoid biosynthesis; inner ear development; chloride
transport; metal ion homeostasis; piRNA metabolism

32 101 I chorion-containing eggshell formation; columnar/cuboidal
epithelial cell development; hemolysis in other organism;
disruption of cells of other organism; telomere maintenance

42 1’568 I cellular response to methanol; negative regulation of
inflammatory response; cell wall organization; response to
paraquat

10 1’721 I chloride transport; paracrine signaling; imidazole-containing
compound catabolism; negative regulation of endopeptidase
activity; response to auditory stimulus; positive regulation of
cellular response to oxidative stress; fasciculation of motor neuron
axon; mediolateral intercalation; cardioblast differentiation;
regulation of Roundabout signaling pathway; protein arginylation;
deoxycytidine catabolic process; neuroblast differentiation;
inflammatory response

30 117 I reproduction; response to cold; adaptive immune response based
on somatic recombination of immune receptors built from
immunoglobulin superfamily domains; cellular calcium ion
homeostasis; cellular response to acid chemical; post-embryonic
development; negative regulation of cytokine production;
ionotropic glutamate receptor signaling pathway; bacteriocin
transport; detection of chemical stimulus involved in sensory
perception of pain; negative regulation of neuron migration

12 913 I response to cold; sensory perception; peptidoglycan biosynthesis;
lipopolysaccharide biosynthesis; pentacyclic triterpenoid
biosynthesis; phosphorylation of STAT protein; induction of
bacterial agglutination; pyridine nucleotide biosynthesis; fructose
6-phosphate metabolism; sex determination, primary response to
X:A ratio

17 1’400 I microtubule depolymerization; pronuclear migration; pole cell
formation; sensory organ morphogenesis; pronuclear fusion;
female meiotic nuclear division; filopodium assembly; cellular
component organization; secondary branching, open tracheal
system; regulation of asymmetric cell division; Malpighian tubule
tip cell differentiation; regulation of kainate selective glutamate
receptor activity
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22 901 J determination of adult lifespan; glycosyl compound metabolism

15 291 J reproduction; epithelium development; nuclear division; leukocyte
differentiation; response to cold; calcium homeostasis;
post-embryonic development; organic hydroxy compound
biosynthesis; cellular component organization; cellular response to
acid chemical; regulation of terminal button organization;
cytoskeleton-dependent intracellular transport

46 1’651 J epithelium development; post-embryonic development;
cytoskeleton-dependent intracellular transport; cilium movement

33 2’822 J ubiquitin-dependent protein catabolism

50 876 J nuclear division; reproduction; epithelium development; cellular
component organization; cytoskeleton-dependent intracellular
transport; post-embryonic development; skeletal system
morphogenesis

60 316 J response to stimulus; epithelium development; cytochrome
complex assembly; regulation of Rho protein signal transduction;
signaling; central nervous system neuron axonogenesis; calcium
homeostasis; reproduction

25 300 J post-embryonic development; response to peptide hormone;
glycolipid metabolism; leukocyte differentiation; regulation of
body fluid levels; ionotropic glutamate receptor signaling pathway

7 92 J sleep; reproduction; response to peptide hormone; regulation of
body fluid levels; development; cytokine production; leukocyte
differentiation; defense response to Gram-positive bacteria;
cuticle hydrocarbon biosynthesis
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Type A, defined by high lineage-specific gene losses and species-span with

low copy-numbers can be subdivided in two groups of sequence evolutionary

rate. Slow-evolving orthologous groups of type A (31-6 and 2) recover genes

involved in insect anatomical organisation, including embryonic, neuromuscular

and Malpighian tubule (arthropods’ osmoregulatory and secretion organs)

development, compound eye and leg morphogenesis. Significant behavioural

associations include post-mating female receptivity, trehalose biosynthesis

(involved in freezing and dehydration survival), hemolysis (involved in

blood-feeding), and disruption of other organisms’ cells (related to

stinging/biting insects). Fast-evolving type A genes are only significantly

enriched for the immunity-related regulation of antibacterial response, likely

reflecting evolutionary adaptations resulting from host-pathogen arms races.

Five superclusters show non-significant functional enrichments, evenly shared

across subtypes, indicating type A’s capacity to retrieve at the same time highly

specific and nonspecific functional annotations.

The only significant associations of type B, grouping those genes

characterised mainly by high levels of conservation and low copy-numbers, are

with chloride ion transportation and the positive regulation of transcription

mechanisms. With average values on all other evolutionary features, type B

likely recovers a wide selection of mediumly old, stably maintained and

physiologically important gene functions. Type B genes are not universally

widespread but seem to have higher-than-average relative universality scores,

possibly indicating lineage-specific essential adaptations. No particular functional

module or biological property emerged from the few statistically significant GO

term enrichments.

Functional annotation of superclusters profiled by type C, the most

synteny-conserving genes, young and with low copy numbers, strongly relate to

the development of chaetae. Chaetae are functionally diverse chitinous bristles

involved in various systems, including sensory reception and stridulation.

Emerging consequent functions include auditory behaviour and sound perception

from supercluster 16, capturing the most distinctive orthologous groups defined

by lineage-specific all-or-nothing gene losses, likely linked to functional

mechanisms tied to whole syntenic blocks of genes. Such syntenic mechanisms
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of all-or-nothing inheritance inevitably draw attention to mating-related

speciation mechanisms in dipterans (through cross-species radiation of

wing-vibration patterns) and orthopterans (through cross-species radiation of

stridulation patterns). Although not specifically retrieved from type C functional

annotations (let alone the X-ray irradiation response term), chitinous structures

are known to be involved in iridescence through light diffraction, notoriously in

the diversification of lepidopteran wing scales. These are also associated with

mating behaviour and possibly further support the syntenic-dependent

inheritance of type C genes, associating the heritability of highly syntenic blocks

of genes with chitinous structures and sexually-selected arthropod species

radiations. Additional interesting annotations specifically from supercluster 3

include responses to plant-defence mechanisms, including terpenes (mevalonate

pathway), citric acid (tricarboxylic acid cycle and citrate metabolism) and

nicotine. Again, these biological processes may drive speciation through selective

pressures in herbivore insects, as recently described in coleopterans (Seppey et

al. 2019).

Supercluster 44 is the only representative of the evolutionary type D,

grouping a large set of genes mainly defined by young age, low sequence

evolutionary rates and copy numbers. The resulting functional enrichment solely

points to chromate transport and response to gibberellin, a class of

phytohormones regulating various plant developmental processes. These genes

are likely brought up by herbivore insects, with chromate transport potentially

linked to a series of chromate-based insecticides. As such products are selected

for their high efficacy and durability, it is reasonable to assume that they target

conserved lineage-specific metabolic pathways governed by slow-evolving genes,

reducing the emergence potential of insecticide resistance-driving adaptations.

Type E, although mostly grouping together non-significantly enriched

superclusters, seems to mainly point to nuclear arrangement mechanisms

involved in cell division, represented by chromosome segregation, kinetochore

and nuclear pore complex assembly. These conserved and fundamental functions

are unintuitively associated with fast-evolving young genes. Nevertheless, given

the overall low statistical significance of type E enrichments and orthologous

groups’ median universality, it is possible that the emerging nuclear division
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functions are supported by a portion of genes within a broader functional

diversity and may not be adequately represented by the supercluster’s

evolutionary feature median values.

Type F orthologous groups are characterised by lineage-specific gene

expansions, high potential for duplication, high lineage-specific spread, young

age and relatively high sequence evolutionary rates. Similarly to type A, Type F

superclusters also bring together genes involved in Malpighian tubule (the

functional analogues to mammalian kidneys) development and activity, including

ureteric bud morphogenesis and urea transmembrane transport. More specific

than type A development-related functional enrichments, developmental

associations with type F are specific to Malpighian tubule formation and

mechanisms, further supported by the enrichment of hemocyte proliferation,

related to renal tubule morphogenesis in Drosophila (Bunt et al. 2010).

Hydroxyproline metabolism-related enrichments point to plant defence

mechanisms against pathogens and herbivore insects (Kite et al. 1995;

Bhattacharya et al. 2013), possibly linking Malpighian tubule-related

mechanisms of detoxification with selective pressures driving gene family

expansions in specific lineages. Such evolutionary-functional correspondences

confirm previous findings, associating lineage-specific expansions with response

to pathogens and environmental stress (Lespinet et al. 2002) across larger

evolutionary timescales. Supercluster 18 adds more generic enrichments to type

F for the perception of bitter taste, chemosensory behaviour and hemolysis.

Functional annotations recovered from enrichments of type G

superclusters emerge from a relatively low number of orthologous groups (77 in

total) compared to the much larger sizes of other evolutionary profile types.

Such groups are characterised by the most taxonomically widespread and old

gene family expansions, both universal and lineage-specific. These old groups

with few losses, consequently high copy-numbers and copy-number variations,

show average values of evolutionary rates. Seemingly, this peculiar evolutionary

type, bringing together only two superclusters, is adopted by a wide range of

biological functions, including reproduction, immunity, homeostasis, retinal

neuron differentiation and generic neuronal development, chemosensory

perception of smell, tumour necrosis and insecticide catabolism. Represented by
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such broad annotations, type G orthologous groups' functional correspondences

could be better informed by the higher resolution functional enrichments of

specific SOM cells.

Superclusters of type H constitute one of the largest clusters of

orthologous groups. With similarly large sizes compared to type A, they are

nevertheless contrastingly significantly enriched for a wide variety of biological

functions. More frequently than the rest, however, emerge enrichments related

to organs’ developmental processes and microtubule-based movement

(associated with the movement of organelles or other cellular components), with

the latter specifically enriched in 7 out of 13 superclusters. Contrary to type G

superclusters, bringing together only a few orthologous groups, the breath of

type H functional annotations could nevertheless similarly benefit from

higher-resolution GO term enrichments of its specific SOM cells, leaving room for

additional extensive explorations. Unsurprisingly, development and cellular

structure-related functions correspond to old genes with averagely low sequence

evolutionary rates, copy numbers and expansion potential. They are, however,

not universally widespread across the arthropod phylogeny, possibly bringing

together genes that may have been functionally replaced in specific sub-lineages

by other genes with different evolutionary types. It is also likely that such old

genes may not have been entirely captured and correctly annotated or

orthologically-delineated across the full breadth of the 170 arthropod genomes,

de facto biassing the computation of taxonomy-sensitive evolutionary features.

Evolutionarily similar to type H, type I also brings together a broad range

of diverse biological functions. Feature-wise, the main difference distinguishing

type I from type H is constituted by the higher scores from copy-number related

features, indicating functional constraints requiring higher potential for gene

duplicability. Within the large lists of significantly enriched GO terms, rather

unsurprisingly emerges the “response” descriptor, associated with terms relating

to the response to cold and different chemicals (methanol, acids and oxidative

stress), auditory stimulus, signalling pathways, and the inflammatory response.

More specific immune response mechanisms include cytokine production,

recombination of receptors from immunoglobulin domains and response to
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bacteria. Specific to superclusters 48 and 32 are worthy of note the enrichments

for eggshell formation.

Finally, type J superclusters are mainly enriched for developmental

processes. Similarly to type I, additional significant annotations include functions

associated with the immune response (including haemocyte differentiation,

cytokine production and defence response to bacteria) and various responses to

external stimuli. Supercluster 33 seems to be specifically enriched for the

ubiquitin-dependent catabolism of proteins across 2’822 orthologous groups.

Moreover, particularly highlighted for their higher-than-average gene expansions

and copy-numbers, superclusters 25 and 7 (the dendrogram’s sister groups to

the rest of type J superclusters) are additionally enriched for post-embryonic

development and cuticle biosynthesis. Such mechanisms are likely associated

with wide variations of cuticle proteins in arthropod developmental stages and

body regions (Charles 2010), regulating moulting and metamorphosis. Overall,

type J recruits genes from old orthologous groups defined by strikingly high

stability of ancestral state copy-numbers and widespread universality, including

widespread representations in specific arthropod sublineages with either low or

high gene-copy numbers. Low sequence evolutionary rates further highlight type

J's essential, ancient and universally maintained functional properties. When

detected, type J universal gene losses are strictly associated with

higher-than-average gene expansions with maintained universality and stability.

Such patterns are likely a result of gene copy-number decreases following large

gene family expansions, possibly by mechanisms of purifying selection, and are

not indicators of extensive gene losses associated with fundamental biological

functions related to developmental and immune-response processes.
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Lineage-Specific Evolutionary Frameworks

Alternative analysis frameworks capturing different evolutionary

timescales can be investigated by computing evolutionary features on different

user-input orthology delineation tables and phylogenies, from distant eukaryotic

radiations to more recent specific arthropod clades. Moreover, the Evol-Feat

workflow allows the user to specify a species list from the input data, enabling

the automated single-species or lineage-specific extraction of orthologous groups

and consequent clustering of evolutionary profiles and functional annotations.

Such approaches can focus the exploration of evolutionary-functional

correspondences on specific clades of interest with an increased clustering

resolution. By comparing the evolutionary modules of genes across different

clades and timeframes of functional constraints, such analyses may further

highlight gene evolution patterns unique to more recent adaptive radiations if

supported by the corresponding functional enrichments.

Extraction of lineage-specific orthologous groups was performed twice.

Chapter 3 of this thesis discusses in detail the evolutionary profiles of

immune-related genes of the African malaria mosquito, Anopheles gambiae,

further enriched with additional population-level evolutionary features and

compared with specific gene expression data. Here briefly showcases an example

of a species-specific analysis of the genes of the common fruit fly, Drosophila

melanogaster. The choice of species was supported by the extensiveness of D.

melanogaster genome annotations and related increased accessibility to

alternative gene functional information compared to other arthropod species,

potentially enabling further functional validation methods in the future steps of

this area of research. Alternative resources to validate gene function include

FlyBase gene groups (Thurmond et al. 2019), KEGG pathways (Ogata et al.

1999) and gene expression databases such as Bgee (Bastian et al. 2008).

From the same Arthropoda orthology and phylogeny input data, the

13’193 D. melanogaster genes assigned to 9’642 orthologous group evolutionary

profiles were extracted for clustering and functional enrichment analysis,

following the methodology described previously in this chapter. Principal
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component analysis reached a 95% combined explained variation with the first

eight principal components, as opposed to the 10 components from the complete

arthropod data. Similarly to the principal components analysis in Chapter 1, but

more distinctly defined here, four main groups of evolutionary features leading

to the distribution of the evolutionary profiles can be identified. These

corresponded to 1) universality, stability, and age features; 2) copy-number

features; 3) gene losses and; 4) lineage-specific, synteny-conservation, and

evolutionary rate features.

Clustering of the evolutionary profiles was performed with a SOM grid of

10x10 dimension, so as to distribute on average ~90 orthologous groups per cell

over a total of 100 SOM cells, following the same parameter selection used in

Chapter 1 for the full arthropod SOM. Hierarchical clustering analysis was then

performed on the 100 median evolutionary profiles extracted from the average

scores of orthologous group features per SOM cell. The robustness of clusters

was assessed with AU P-values, resulting in highly supported nodes across most

bifurcations of the hierarchical clusters of SOM cells’ orthologous groups and

evolutionary features. The corresponding statistically supported dendrograms

and heatmap are shown in Figure 11.
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Figure 11: Hierarchical clustering relationships of D. melanogaster evolutionary
features and SOM clusters. Panel A represents the dendrogram of the hierarchical
relationships of the 100 SOM clusters of orthologous groups. Panel B represents the
dendrogram of the hierarchical relationships of the 16 evolutionary features. Confidence
measures for each node are represented by percentage AU p-values in red (100% for
maximum support and 0% for no support). Panel C shows the corresponding heatmap
regrouping the hierarchical clusters in A and B, with colour-coded scaled scores of the
individual evolutionary features, averaged by median value across the orthologous
groups assigned to the SOM clusters.
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Compared with the complete arthropod heatmap, the D. melanogaster

orthologous groups are characterised by similarly behaving groups of

evolutionary features, with copy-number and turnover features clustering

together, evolutionary rate acting in concert with synteny-conservation features

and taxonomic age associated with universality and turnover stability.

Differences emerge at the universal gene loss feature (CON) placement,

grouping with copy-number and expansion features instead of age and stability.

The statistical support is nevertheless low in this case, and overall feature

relationships are widely recovered. More notable differences are identified within

the median score representations of the orthologous group’s feature scores.

Compared to the complete arthropod map from Chapter 2, larger portions of the

D. melanogaster-specific heatmap are occupied by relatively older, universal and

stable orthologous groups and those characterised by recent and syntenic gene

losses, likely mirroring more recent diversifications in the evolution of

drosophilids. These observations highlight how species- or lineage-specific

evolutionary maps, even if built from the same evolutionary timescale of

measurements, can directly increase the resolution of evolutionary trajectory

partitioning and add interpretative nuances to the description of arthropod

evolution.

Gene Ontology Enrichment Analysis was performed on the 100 SOM

clusters of orthologous groups, following the methodology described earlier in

this chapter. Statically significant functional enrichments were obtained for 18 of

the 20 SOM k-means superclusters and 91 of the 100 SOM clusters of the

orthologous groups containing D. melanogaster genes. Thanks to increased

access to functional annotations of D. melanogaster genes compared to all other

arthropod species, it is possible to validate the putative GO function prediction

with alternative resources. One of the possible methods included large-scale

comparisons with Drosophila gene groups, as defined in FlyBase (Thurmond et

al. 2019). However, the results are not reported here, as the comparison was

challenging due to a greater specificity within molecular function characterisation

of FlyBase’s gene groups when compared to the broader biological properties

emerging from the GO functional enrichment of the SOM clusters. Alternative

complementary functional validation strategies are thereby left for future work,

including comparisons with KEGG pathway memberships (Ogata et al. 1999),
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expression profiles and co-expression networks from transcriptomics analyses

(Kuang et al. 2022).
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Concluding Remarks

The results from Chapters 1 and 2 show how functional annotations can

be associated with sets of genes defined by the evolutionary trajectories of

arthropod orthologous groups. Both specific and broader types of

evolutionary-functional correspondences can be successfully identified with

statistically significant functional enrichments of most clusters of evolutionary

trajectories, capturing the evolutionary histories of arthropod genes and linking

them to putative biological roles. The resolution of this novel comparative

genomics toolkit can be further increased with lineage-specific profiling and

clustering of evolutionary features. The resulting arthropod

evolutionary-functional map constitutes a readily available resource for the

arthropod biology community, allowing for the exploration of more than two

million genes from 170 species, characterised by their evolutionary histories and

putative functional predictions. Moreover, the Evol-Feat bioinformatics workflow

enables the investigation of evolutionary-functional correspondences from

custom metrics, orthology, and phylogeny datasets. Gene Ontology enrichments

of 900 clusters of evolutionary profiles provided statistically supported

annotations of biological processes across the high-resolution evolutionary map

of arthropod genes. Patterns of evolutionary-functional correspondences were

recovered with hierarchical clustering and functional enrichments of the 60 most

distinct evolutionary trajectories. These were further summarised to identify 10

different evolutionary strategies observed from the evolution of arthropod gene

families, characterised with evolutionary-functional correspondences by

associating different evolutionary histories with functional modules of biological

properties.

Universally widespread orthologous groups with lineage-specific gene

losses and low copy-numbers are partitioned into two sets: slow-evolving genes

are enriched with functions related to organism development and anatomical

organisation, while the fast-evolving ones are associated with the

immunity-related regulation of antibacterial response. Highly syntenic and young

orthologous groups with low copy-numbers and lineage-specific all-or-nothing

gene losses are associated with the development of chaetae, auditory behaviour,
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sound perception, and response to plant-defence mechanisms. These seem to

recover lineage-specific adaptations requiring the diversification of, e.g. strongly

sexually selected traits such as sensory reception in fly mating behaviour,

mediated through the chitinous bristles known as chaetae. Similar evolutionary

trajectories, requiring highly syntenic genes to be inherited in genomic blocks,

are recovered from other lineage-specific adaptations too, including the response

to plant toxins in herbivorous arthropods.

Response to classes of insecticides and phytohormones are also associated

with young, slow-evolving orthologous groups with low copy-numbers. These

correspondences are likely driven by genes in specific clades of herbivorous

arthropods linked to essential but lineage-specific functions, representing the

ideal target for such classes of agrochemical products. Young, fast-evolving

orthologous groups defined by lineage-specific gene expansions and high

duplicability are associated with Malpighian tubule (the main osmoregulatory and

excretory organs of arthropods) development and activity, and the metabolic

detoxification of plant defence mechanisms. These evolutionary trajectories likely

recover young and lineage-specific adaptations for detoxification mechanisms

driven by gene family expansions in response to selective pressures from

environmental stress. Similarly, more specific functional enrichments point to

chemoreception and chemosensation. Contrastingly, old and widespread

orthologous groups defined by expansions and high copy-numbers with

intermediate evolutionary rates recover a vast range of biological functions, from

reproduction to immunity, neuronal development, and insecticide catabolism.

Characterising only relatively few orthologous groups, such evolutionary

trajectories are likely associated with specific and precise functional modules, but

similarly adopted in different organismal biological processes.

Developmental processes and housekeeping functions such as the

maintenance of cellular structure and components are associated with old,

slow-evolving orthologous groups with low copy-numbers and low potential for

gene family expansions. These groups bring together the largest numbers of

arthropod genes and more detailed functional annotations could be obtained

from the higher-resolution enrichments of the Self-Organising Map cells. Similar

evolutionary trajectories but with high copy-number counts and duplicability
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potential are enriched for various mechanisms of response to different sources

including: cold, chemicals, oxidative stress, auditory stimulus, bacteria, and

inflammatory response in general. More specifically, cytokine production,

immunoglobulin assembly, and response to bacteria. Haemocyte differentiation,

cytokine production, and response to bacteria are further enriched in old

orthologous groups characterised by the highest gene stability scores,

widespread taxonomic representation, and low sequence evolutionary rates.

These are further enriched with a range of developmental processes related to

the regulation of arthropod moulting and metamorphosis. Such evolutionary

trajectories recover even more ancestral and conserved biological functions,

where immunity-related and development-related genes likely point to known

pleiotropic properties.

In conclusion, the framework of analyses presented in this thesis

showcases a fully automated, reproducible, scalable, and novel approach to

explore the evolutionary-functional properties of uncharacterised genes from

model and non-model organisms. This framework is deployed in specific

test-case studies focusing on subsets of arthropod genes presented in Chapters

3 and 4. The assessments of function here rely on the Gene Ontology, i.e.

knowledge-based functional classifications. Alternative functional classifications

such as gene-expression-based clustering, as explored in the manuscript

presented in Chapter 3, could offer interesting new perspectives. The scientific

relevance and novelty of the work presented in this thesis originates from

developing and applying the Evol-Feat toolkit together with the necessary

conceptual framework. The outputs contribute to the goals of building

bioinformatics comparative genomics solutions to tackle the challenges of

comprehensively profiling and functionally interpreting the ever-growing amount

of genomic data from a comparative and evolutionarily-informed perspective.
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Chapter 3: Functional Constraints on Insect
Immune System Components Govern Their
Evolutionary Trajectories

Summary

The main research output of this doctoral thesis work was recently 

completed through the publication entitled “Functional Constraints on Insect 

Immune System Components Govern Their Evolutionary Trajectories” (Ruzzante 

et al. 2022), in the journal Molecular Biology and Evolution. The overarching 

goals of my thesis work centre on the question of whether quantitative 

characterisation of gene evolutionary histories can define distinct dynamics that 

are associated with different functional roles in biological systems. Using insect 

immunity as my test case system, I applied methods I developed as part of my 

main doctoral project to compute metrics that quantify gene evolutionary 

histories. These were employed to characterise evolutionary features of immune 

gene repertoires, and then to explore relationships between gene family 

evolutionary profiles and their roles in immunity to understand how different 

constraints may relate to distinct dynamics.

The multispecies comparative analyses identified evolutionary-functional 

correspondences suggesting that constraints on genes with similar or analogous 

functions govern their evolutionary trajectories. I identified three main axes of 

evolutionary trajectories characterised by gene duplication and synteny, 

maintenance/stability and sequence conservation, and loss and sequence 

divergence, highlighting similar and contrasting patterns across these axes 

amongst subsets of immune genes. The results provide the first 

multi-dimensional quantitative characterisation of gene evolutionary histories 

that support the conclusion that where and how different genes participate in 

immune defence responses limit the range of possible evolutionary scenarios 

that are tolerated by natural selection.
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On starting this thesis work, the field as a whole was using only a handful

of metrics to quantify gene evolutionary change dynamics: protein-level

sequence divergence, DNA-level sequence divergence, and occasionally

copy-number variation and population-level polymorphism (if data were

available), and a framework for combined analyses was lacking. Through the

extensive methods development part of my thesis work, I built a comprehensive

analysis workflow to quantify a suite of metrics comprising 18 different

evolutionary features, which I applied to this insect immunity study. Importantly,

this further involved building analysis workflows to run and compare results from

different clustering algorithms, including building creative data visualisation

solutions, to be able to confirm the robustness of the results. The test case study

system of insect immunity highlights the potential of applying the comparative

genomics approaches that were developed to characterise how functional

constraints on different components of other biological systems govern their

evolutionary trajectories. The published article is accessible from the link on the

next page and is attached in Appendix 1.
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Functional Constraints on Insect Immune System Components Govern

Their Evolutionary Trajectories

Livio Ruzzante, Romain Feron, Maarten J.M.F. Reijnders, Antonin Thiebaut, and

Robert M. Waterhouse *

Department of Ecology and Evolution, Swiss Institute of Bioinformatics,

University of Lausanne, Lausanne, Switzerland
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Associate editor: Thomas Leitner

Published manuscript: https://doi.org/10.1093/molbev/msab352
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Chapter 4: Scientific Collaborations and
Additional Resources

Summary

This chapter describes several collaborative scientific efforts, most of 

which led to successful publications in peer-reviewed journals or are currently 

being developed. Each section briefly introduces the research output, describes 

my specific contributions and highlights how such efforts strategically assisted 

the design and implementation of the Evol-Feat analysis workflow and the 

characterisation of arthropod evolutionary-functional correspondences. The 

research output includes scientific publications investigating the genome 

structures and the corresponding ecological adaptations of various arthropod 

lineages, from mosquitoes to hymenopterans. The technical contributions include 

the successful application of precursor versions of the Evol-Feat workflow and 

phylogeny reconstructions of arthropod clades. The last section of this chapter is 

dedicated to a detailed explanation of the phylogeny reconstruction of the 170 

arthropod species used for the analyses in Chapters 1 and 2, supported by the 

development of the Orthophile workflow, a tool for constructing species 

phylogenies from thousands of orthologous genes.
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Of Genes and Genomes: Mosquito Evolution and

Diversity

Published in Trends in Parasitology (Ruzzante, Reijnders, and Waterhouse

2019), the review article explored and presented the available resources and

applications supporting the research on mosquito evolution and diversity through

comparative and functional genomics approaches. This work enabled me to

familiarise themself with the “mozomics” (mosquito genomics) environment of

species diversity, databases and comparative genomics software, a crucial

starting point for the whole thesis work, especially for Chapter 3, which focuses

on the mosquito immune repertoire. Among the diversity of tools and resources,

the exploration of the NCBI Taxonomy (Schoch et al. 2020), the Mosquito

Taxonomic Inventory (Harbach 2013), VectorBase (Giraldo-Calderón et al. 2015)

and various mosquito genomics and transcriptomics data and data visualisation

techniques. It represents a comprehensive overview of the available

bioinformatics resources to help guide the research plans of biologists interested

in the study of mosquito species, and more generally in the use of comparative

genomics tools.

DOI: https://doi.org/10.1016/j.pt.2018.10.003

Evolutionary Superscaffolding and Chromosome
Anchoring to Improve Anopheles Genome Assemblies

This collaboration, published in BMC Biology (Waterhouse et al. 2020),

showcased the improvement of 21 Anopheles mosquito genome assemblies

using consensus sets from 3 gene synteny-detection methods to increase the

accuracy of scaffold adjacencies. With the abundance of available online genomic

data, this work illustrates how better quality genome assemblies can be obtained

with evolutionarily-informed techniques, avoiding additional sequencing costs.

My contribution resulted in the development of custom programming scripts to

process and measure synteny-conservation scores across mosquito genome
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assembly files, which contributed to the development of the

synteny-conservation features in the Evol-Feat workflow described in Chapter 1.

This research collaboration helped me become familiar with genome assemblies

and their structure, as well as with the General Feature Format (GFF) used to

detail gene structural annotations. It constituted my first scripting effort using

several programming languages including R, Python, and Bash to process and

analyse genomic data, and was crucial for my understanding of gene sets and

synteny-detection algorithms.

DOI: https://doi.org/10.1186/s12915-019-0728-3

Genome Sequence of the Wheat Stem Sawfly, Cephus
cinctus, Representing an Early-Branching Lineage of
the Hymenoptera, Illuminates Evolution of
Hymenopteran Chemoreceptors

The publishing of the genome sequence of Cephus cinctus (Robertson et

al. 2018) added a representative species from the Cephoidea superfamily of

sawflies to the collection of high-quality hymenopteran genomes. Part of an

early-branching lineage of Hymenoptera, the C. cinctus genome assembly

allowed for a better understanding of the evolution of hymenopteran

chemoreceptors through comparative genomics analyses. The results suggest

that C. cinctus presents small lineage-specific chemoreceptor gene family

expansions, possibly involved in molecular adaptations to agricultural wheat, for

which it represents a major agricultural pest. The research article included my

reconstruction of 17 arthropod species phylogeny and orthology profiling of the

corresponding gene sets. This scientific collaboration was fundamental for my

understanding and further development of phylogenetic reconstruction and

orthology profiling techniques, crucial for the first part of Chapter 1 of this thesis

work, including the computation of orthology- and phylogeny-related

evolutionary features.

DOI: https://doi.org/10.1093/gbe/evy232

114



Draft Genome Assembly and Population Genetics of an
Agricultural Pollinator, the Solitary Alkali Bee
(Halictidae: Nomia melanderi)

The publishing of the high-quality draft genome assembly of the solitary

bee Nomia Melanderi (Kapheim et al. 2019) constituted an opportunity to

become further accustomed to whole-genome data and associated comparative

genomics analyses. The research article uncovered previously uncharacterised

transposable elements as the most abundant type of the bee’s repetitive DNA.

Findings of recent population bottlenecks and slower-evolving genes might serve

as a basis for further understanding the evolutionary origins of eusociality in

bees. My collaboration included the computation and presentation of different

genome assembly quality statistics, including comparative tables reporting

scaffold N50, genome lengths and BUSCO (Simão et al. 2015) scores for several

hymenopteran species. It additionally included a phylogeny reconstruction for

15 arthropod species and measuring the single-copyness and taxonomic span of

the corresponding gene sets. The algorithms for the computation of genome

assembly statistics were collected in Infoseq, a publicly available repository at

https://github.com/laruzzante/infoseq. Getting familiarised with such analyses,

including implementing the quantification of taxonomic span and orthology

profiling, resulted in a necessary further training for the phylogenetic

reconstruction and orthology copy-number detection algorithms for the future

development of the Evol-Feat workflow presented in Chapter 1.

DOI: https://doi.org/10.1534/g3.118.200865

Genus-Wide Characterization of Bumblebee Genomes
Provides Insights into Their Evolution and Variation in
Ecological and Behavioral Traits

The de-novo sequencing and assemblies of 17 species of bumblebees,

representing all of the 15 subgenera, enabled the first genus-wide quantification

and characterisation of Bombus diversity (Sun et al. 2021). Patterns of genomic
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variation were associated with key ecological and behavioural traits of these

global pollinators, including positive selection for foraging, diet, immunity and

detoxification, lineage-specific social parasitism, and altitude adaptations. My

contributions consisted of computing a subset of the evolutionary features

described in Chapter 1 to identify the most dynamically evolving and conserved

genes together with their corresponding functional enrichments, as described in

the first sections of Chapter 2. This represents the first research application of

the beta-version of the Evol-Feat workflow. Specific results derived from my

analyses indicate that bumblebee orthologous groups with the broadest species

representation are functionally enriched for core biological processes, while

lineage-specific or sparse taxonomic spans are enriched for adaptive functions

including olfactory and gustatory perception and detoxification.

Lineage-specificity is additionally associated with higher sequence evolutionary

rates and turnover dynamicity. These patterns largely confirm the observations

described in Chapter 2’s functional assessment of evolutionary trajectories.

DOI: https://doi.org/10.1093/molbev/msaa240

Anopheles Mosquitoes Reveal New Principles of 3D
Genome Organization in Insects

Five Anopheles mosquito genomes were profiled to investigate the

influence of chromosome organisation mechanisms on gene function and

evolutionary dynamics (Lukyanchikova et al. 2022). Patterns observed from

genome-wide chromatin interactions revealed associations with cytological

structures, epigenetic profiles, and gene expression levels. My contribution

consisted of computing and providing a phylogenetic species reconstruction of

the Anopheles genus. This enabled me to further train my ability to build

phylogenetic reconstructions and test different phylogenetic reconstruction

software, with the ultimate goal of producing a significantly more challenging

phylogeny of 170 arthropod species.

DOI: https://doi.org/10.1038/s41467-022-29599-5
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The Orthophile Workflow and the Phylogenetic

Reconstruction of the Arthropoda Phylum

The phylogenetic reconstruction of the 170 arthropod species, supporting 

the computation of most of Chapter 1’s evolutionary features, required particular 

care and significant time investment. The main challenges at the origin of the 

phylogenetic reconstruction included a wide selection of substitution models and 

other parameters as well as the organisational and computational strategies and 

requirements to analyse a large dataset comprised of 231’710 gene sequences 

(from 1’363 universal orthologous genes per species). These were coupled with 

an overall large evolutionary timeframe and broad cross-species evolutionary 

distances and rate variations, stemming from a biassed species sampling 

overrepresenting the Anopheles and Drosophila genera above all and 

complicating the inference of a correct phylogenetic reconstruction. Retrieving, 

pre-processing, aligning, and comparing the different outputs of various 

phylogenetic reconstruction approaches for such a dataset required the 

implementation of a specific workflow. I therefore developed the Orthophile 

workflow, a necessary step to advance the thesis work and its continued 

development constitutes a valuable research tool for computational biologists to 

easily obtain comprehensive phylogenetic reconstructions from thousands of 

orthologous genes. The phylogenetic reconstruction of the Arthropoda phylum is 

attached in Appendix 2, branch lengths are shown provided in units of million 

years along the branches, while bootstrap values from 0 (minimum support) to 1 

(maximum support) are shown after node bifurcations.

The Snakemake workflow consists of a collection of Python scripts and 

Bash commands only requiring the user to input a list of species names or 

taxonomic identifiers (as defined in NCBI Taxonomy). The workflow then 

proceeds to send Application Programming Interface (API) queries to the 

OrthoDB server and fetches the sequences of orthologous genes in a 

user-specified output folder. The sequences are then automatically organised in 

specific subfolders, aligned, trimmed, and concatenated. Different parameters 

for the selection of orthologous groups can be tuned, including OrthoDB’s 

orthology delineation level (e.g. Eukaryota, Metazoa, Vertebrata), the
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percentage single-copyness, and percentage species-span. The resulting

phylogenetic reconstruction is then computed by either RAxML (for increased

precision) or FastTree (for increased performance), but additional software can

be included by tweaking the workflow’s rules and Conda environments.

Furthermore, parts of the workflow can be launched without satisfying prior

input requirements, as long as the name formatting is consistent with the

workflow’s rules. For example, custom gene sequences can be inserted into the

user-specified OrthoDB fetching folder, and the workflow will include those in the

phylogenetic reconstruction analysis. This specific case is a valid workaround for

when species of interest are not included in OrthoDB, but the user is still

interested in maintaining the overall framework of analyses provided by

Orthophile. The following paragraphs will detail the reconstruction process to

obtain the arthropod species phylogeny used in Chapters 1 and 2 by describing

the initial output of Orthophile and the subsequent necessary manual curation.

The protein sequences from 170 arthropod genomes were aligned with

muscle version 3.8 (Edgar 2004) and trimmed with trimAl’s version 1.4

(Capella-Gutierrez, Silla-Martinez, and Gabaldon 2009) -strictplus option

(optimised for Neighbour Joining phylogenetic tree reconstruction). A first

phylogenetic species tree was reconstructed with IQ-TREE (Minh et al. 2020) and

the msub -nuclear option, which selected the LG+F+R10 (LG = nuclear general

matrix (Le and Gascuel 2008), +F = empirical amino acid frequencies from the

data, +R10 = FreeRate model (Yang 1995; Soubrier et al. 2012) that generalises

the +G model by relaxing the assumption of Gamma-distributed rates. The

FreeRate model typically fits data better than the +G model and is

recommended for the analysis of large datasets) as the best possible model

among the generic amino acid substitution models. This combination of software

and parameter selection provided the best possible reconstruction compared

with the newest arthropod phylogeny literature, as other approaches failed to

either group non-insect hexapods in a monophyletic group or to place daphnia

among crustaceans. Nevertheless, although the overall placement of species

seemed largely correct, a few species, such as the body louse and thrips, were

not correctly placed. As many evolutionary features would subsequently be

computed on reconstructed events and evolutionary distances inferred from the

phylogeny, it was crucial to obtain its most accurate reconstruction.
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Lastly, this was achieved by manually adjusting the root placement of the

branches and following the desired topology with TreeView (Page 2003), creating

a subsequent alignment constraint file with a custom script provided by

FastTree, and re-running the phylogeny reconstruction using FastTree version

2.1 (Price, Dehal, and Arkin 2010), which allows for an input tree and a

constraint file to search for possible phylogenetic reconstruction reconciliations.

The resulting tree correctly placed all the species and major clades except for

the missing separation of diplurans and springtails. The molecular tree file was

re-rooted at the Chelicerata outgroup with the Newick Utilities (Junier and

Zdobnov 2010) and time-calibrated with the chronos function from the R

package ape version 5.0 (Paradis and Schliep 2019). The time calibration, which

allows for distributing the sequence evolution across a specified time range,

effectively converting a molecular tree into a time tree (in units of millions of

years), was obtained by specifying 11 evolutionary distances ranging from more

closely related species (e.g. the honeybee Apis mellifera and the common

eastern bumblebee Bombus impatiens) to more distant ones (e.g. the centipede

Strigamia maritima and the common fruit fly Drosophila melanogaster). The

cross-species divergence times were obtained from the TimeTree (Kumar et al.

2017) online knowledge base.
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Chapter 5: Conclusions and Perspectives

Early research in the field preceding this thesis work highlighted several 

principles of how patterns of gene and gene family evolution relate to their 

functional properties (Jordan et al. 2002; Krylov 2003; Wolf, Carmel, and Koonin 

2006). Subsequent studies pioneered approaches to further quantify and explore 

these patterns using phylostratigraphy-based metrics (Domazet-Lošo, Brajković, 

and Tautz 2007), measures of gene copy-number dynamics and protein 

sequence divergence (Waterhouse, Zdobnov, and Kriventseva 2011), also adding 

synteny and protein domain compositions (Linard et al. 2012), or focusing only 

on covariations of protein sequence divergence (Clark, Alani, and Aquadro 

2012), or employing presence-absence matrices with tree-based (Li et al. 2014) 

or non-tree-based (Cheng and Perocchi 2015) profiling. These studies built a 

foundation but remained limited in several key aspects: they usually examined 

only a few evolutionary features at a time; they often focused on pairwise 

correlation analyses; they usually explored a single dataset with a fixed 

evolutionary span (e.g. all available eukaryotes); the early studies especially 

were limited in the number of species they could use; their use of 

multidimensional data analysis and clustering approaches was seemingly ad hoc, 

they did not provide tools and/or detailed-enough methods descriptions to be 

able to reproduce their results or redeploy their methods on new datasets; those 

using presence-absence matrices ignored signals from gene duplication patterns; 

and they often did not fully incorporate the species phylogeny, i.e. phylogenetic 

relatedness, into their analyses.

The work undertaken in this thesis was therefore driven by the 

motivations to answer four main questions: 1) Can we build a suite of 

evolutionary feature quantification methods that harmonises and extends the 

previous work in the field, with clearly defined metrics that can take advantage 

of using a variety of types of data? 2) Can we comprehensively examine the 

main multidimensional data analysis and clustering techniques to determine the 

most robust approaches to use for exploring the patterns and profiles derived 

from the quantified gene and gene family evolutionary features? 3) Can we build 

an analysis framework that allows others to apply these evolutionary feature
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quantifications to their own datasets and to the downstream steps of clustering

and dataset exploration? And finally, 4) can we combine the results from

evolutionary feature quantification and profiling with gene and gene family

functional information to investigate evolutionary-functional correspondences

with an enhanced resolution, using the diverse phylum of Arthropoda as our

study system? Practical outputs thus focused on: 1) providing experimental

biologists with a readily-available resource where thousands of arthropod genes

from model and non-model species alike can be explored in the context of their

evolutionary-functional correspondences; and 2) providing computational

biologists with a tool to capture and compare the evolutionary features of genes

to support evolutionary-functional hypotheses on custom data.

This chapter presents a brief summary of the principal conclusions from

the thesis work in the context of the current data and analysis framework. It

then explores the potential implications for the field, summarising the

perspectives gained and future outlook in the context of using multi-species

genomic datasets to further our understanding of gene evolutionary-functional

correspondences.
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Summary of the Principal Conclusions

The work presented in Chapter 1 firstly demonstrates how comparative

genomics datasets can be assessed using the Evol-Feat workflow to quantify a

suite of metrics that capture different gene evolutionary characteristics from

large collections of cross-species repertoires of orthologous genes.

Comprehensive analysis of feature correlations, pairwise and multidimensional,

confirm previous trends and expand on the conclusions from early exploratory

studies on gene evolutionary features. Multivariate analysis of the evolutionary

features dataset from 170 arthropod species identifies a first axis of gene metric

distributions capturing old, universal, highly conserved and physiologically

essential genes. The second axis captures lineage-specific adaptations through

copy-number increases and subsequent negative purifying selection. The third

axis of arthropod gene evolution is driven by synteny conservation scores. The

minor fourth and fifth axes capture, respectively, lineage-specific gene

expansions and gene losses.

Lineage-specific gene family expansions, likely associated with relatively

recent adaptations, are observed to recruit young genes as well as ancestral

genes characterised by dynamic gene turnover, in line with previous observations

from phylostratigraphy analyses on the evolutionary histories of D. melanogaster

genes. Widespread, universal, and old genes are instead characterised by slow

gene turnover and are distinctly separated from younger, lineage-specific genes.

These are further associated with either high or low potential for duplicability, in

line with and expanding previous descriptions of “single-copy control” versus

“multicopy licence” modes of gene evolution and likely indicators of essential,

ancestral, and housekeeping functions versus more recent lineage-specific

adaptations. The distributions of sequence evolutionary rates follow more subtle

evolutionary trajectories than previously observed in lineage-specific or

case-study investigations, e.g. mosquito immunity genes. Multidimensional

analysis of the evolutionary features highlighted how the orthologous

group-averaged evolutionary rates of protein sequence divergence is a much

stronger driver of genetic repertoire diversity in the Anopheles immunity

case-study when compared to the results from the the entire 170 arthropod
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species dataset. Sequence evolutionary rate is therefore considered a more

relevant variable for comparative analyses within specific lineages and recent

evolutionary timescales, while losing its applicability amid the variability of

larger, complete gene repertoires, and more distantly-related species. At the

broader Arthropoda scale, fast versus slow gene sequence evolution is found to

be less tightly associated with age and universality but more with the

distribution of gene losses and family expansions. The confirmation of several

hypotheses on evolutionary feature distributions and relationships from previous

studies that employed considerably smaller datasets, coupled with the

uncovering of novel observations and trajectories, supports the translatability of

evolutionary hypotheses based on a few eukaryotic species to large-scale

multi-species genome studies, here using arthropods as the study system. In

parallel with a greater taxonomic resolution, Chapter 1 brings a theoretical basis

for quantification in arthropod comparative genomics research studies, while

providing an open, modulable, and scalable bioinformatics workflow enabling

further explorations of evolutionary-functional correspondences on custom data.

Chapter 2 takes this further to firstly demonstrate that different

evolutionary features are associated with different functional annotation

enrichments. Using the suites of computed features, each arthropod orthologous

group was associated with a specific evolutionary profile. Clustering algorithms

were successively implemented to bring together and partition genes into sets of

distinct evolutionary trajectories, at high- and low- resolution scales, capturing

both broad and specific patterns of evolutionary-functional correspondences.

Coupling the clusters of evolutionary profiles with corresponding Gene Ontology

(GO) annotations, Chapter 2 describes the statistically significant functional

enrichments associating particular evolutionary trajectories (or strategies) with

identified sets of biological processes. Results from this chapter show how

evolutionarily-similar genes can exhibit similar or analogous functions,

supporting the hypothesis that functional constraints impact the range of

possible arthropod gene evolutionary trajectories. Among the fine- and

broad-scale described evolutionary correspondences, examples include

universally widespread genes with lineage-specific losses and low copy-numbers

being partitioned into two categories: slow-evolving genes are enriched with

functions related to organism development and anatomical organisation, while
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the fast-evolving ones are associated with the immunity-related regulation of

antibacterial response. Highly syntenic and young orthologous groups with low

copy-numbers and lineage-specific all-or-nothing gene losses are associated with

the development of chaetae, auditory behaviour, sound perception, and response

to plant-defence mechanisms.

Response to classes of insecticides and phytohormones are associated

with young, slow-evolving orthologous groups with low copy-numbers. Young,

fast-evolving orthologous groups defined by lineage-specific gene expansions

and high duplicability are associated with Malpighian tubule development and

activity, and the metabolic detoxification of plant defence mechanisms.

Functional enrichments of higher-resolution subsets of similar evolutionary

profiles point to chemoreception and chemosensation. Contrastingly, old and

widespread orthologous groups defined by expansions and high copy-numbers

with intermediate evolutionary rates recover a range of biological functions, from

reproduction to immunity, neuronal development, and insecticide catabolism.

Characterising only relatively few orthologous groups, such evolutionary

trajectories are likely associated with specific functional modules, adopted across

several organismal biological processes and subjected to similar selection

pressures. Developmental processes and housekeeping functions such as the

maintenance of cellular structure and components are associated with old,

slow-evolving orthologous groups with low copy-numbers and low potential for

gene family expansions. Similar evolutionary trajectories but with high

copy-number counts and duplicability potential are enriched for various

mechanisms of reaction to different environmental pressures including: cold,

chemicals, oxidative stress, auditory stimulus, bacteria, and inflammatory

response in general. Haemocyte differentiation, cytokine production, and

response to bacteria are further enriched in old orthologous groups characterised

by the highest gene stability scores, widespread taxonomic representation, and

low sequence evolutionary rates. These are further enriched with a range of

developmental processes related to the regulation of arthropod moulting and

metamorphosis. Such evolutionary trajectories recover even more ancestral and

conserved biological functions, where immunity-related and development-related

genes likely point to known pleiotropic properties.
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The framework of analyses presented in this thesis showcases a fully

automated, reproducible, scalable, and novel approach to explore the

evolutionary-functional properties of uncharacterised genes from model and

non-model organisms. This framework has been successfully deployed in specific

test-case studies focusing on subsets of arthropod genes presented in Chapters

3 and 4. The research output of these chapters includes scientific publications

investigating the genome structures and the corresponding ecological

adaptations of several arthropod lineages. Describing the evolutionary-functional

correspondences enabled the formulation of hypotheses on gene family evolution

and adaptation in various organisms, from mosquitoes to hymenopterans.

In Chapter 3, focussing on the insect immune repertoire, three main axes

of evolutionary trajectories are identified, these are driven by gene duplication

and synteny, maintenance/stability and sequence conservation, and loss and

sequence divergence, highlighting similar and contrasting patterns across these

axes amongst subsets of immune genes. Using a comprehensive taxonomic

selection of insect genomes for the quantification of the evolutionary features,

the observations are detailed, as a proof-of-concept, for the two species with the

most experimentally described immune gene functional information (i.e. the

most experimental work implicating genes in different immune responses): the

African malaria mosquito Anopheles gambiae, and the common fruit fly

Drosophila melanogaster. Characterising patterns of genomic change in species

where putative functions and interactions of system components are relatively

well described allowed us to explore whether genes with similar roles exhibit

similar evolutionary trajectories. The results suggest that where and how genes

participate in immune responses limit the range of possible evolutionary

scenarios they exhibit, associating known functional constraints with the

diversification of the insect immune-related gene families. The results from our

test-case study system of insect immunity highlight the applicability of

comparative genomics approaches for characterising how functional constraints

on different components of biological systems might govern their evolutionary

trajectories.

Chapter 4 describes several successful collaborative scientific efforts using

the Evol-Feat framework of analysis for a detailed description of arthropod genes
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characterised by their evolutionary features and putative functional roles

associated with them. Employed on genes annotated from the genome assembly

of the wheat stem sawfly Cephus cinctus, the Evol-Feat framework supported

the comparative genomics analyses for a better understanding of the evolution

of hymenopteran chemoreceptors. The results show that C. cintus has

representatives for most conserved and expanded chemosensory gene lineages

amongst bees, wasps, and ants (Apocrita). It also maintains several lineages

that have been lost from the Apocrita, most notably the carbon dioxide receptor

subfamily. The family analyses also show that C. cinctus presents small

lineage-specific chemoreceptor gene family expansions that might be involved in

adaptations to grasses including wheat. The Evol-Feat workflow was also

employed in a research study comparing bumblebee genomes representing all

15 subgenera of Bombus. The bumblebee genes from orthologous groups with

the broadest species representation are found to be functionally enriched for

core biological processes, while lineage-specific or sparse taxonomic spans are

enriched for adaptive functions including olfactory and gustatory perception and

detoxification. Lineage-specificity is additionally associated with higher sequence

evolutionary rates and turnover dynamicity. Other interesting patterns included

gene evolutionary features hinting at adaptations to recognise flowers, to better

cope with life at high altitudes, and to being able to forage scarce food sources

over long distances, as well as revealing that bumblebees have fewer genes

involved in detoxification of pesticides or defence against pathogens in

comparison to many other insects. These and other studies presented in Chapter

4 served as opportunities for the practical development of components of the

Evol-Feat workflow as well as for building an understanding of the needs of

biologists interested in incorporating evolutionary analyses into their research.
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Implications, Perspectives, and Future Outlook

As the field of genomics continues to advance, the amount of data

available to researchers is rapidly increasing. This influx has the potential to

greatly improve our understanding of gene function and underlying mechanisms

of evolution and adaptation. One of the key benefits of accessible genomics data

is the ability to use large-scale datasets to identify genetic associations with

specific traits including morphological, physiological, behavioural, and ecological

adaptations (Nagy et al. 2020). This can be accomplished through the use of

computational tools that can analyse large amounts of genomic data to identify

patterns, associations, and correlations. For example, illuminating genetic

variations that are linked to disease susceptibility or adaptations to specific

niches. Another benefit of data from new genomics technologies is the ability to

use functional genomics approaches to improve understanding of gene function

(Feder and Mitchell-Olds 2003; Walton, Sheehan, and Toth 2020). By combining

available functional genomics data with comparative genomics data (e.g.

orthology), researchers can develop computational models that enhance the

transfer of gene functional information from well-studied organisms to poorly

characterised species, providing a valuable tool for propagating knowledge and

investigating biological processes across the tree of life (Gabaldón and Koonin

2013). Furthermore, accumulating genomics data can be used to improve our

understanding of evolutionary processes at increasingly detailed levels of

resolution. By studying large-scale genomic datasets, researchers can identify

the genetic changes that have occurred over time, providing valuable insights

into the mechanisms of genome evolution (Koonin 2011) and the role of genetic

variation in shaping the diversity of life on Earth.

The research reported in this thesis leverages this potential of increasingly

accessible data by building a comparative genomics framework to quantify

genetic changes over evolutionary time in order to improve understanding of

gene function and evolution. A major implication for the field as a whole is how

the Evol-Feat framework offers new possibilities to refine how the community

grapples with the task of accurately transferring functional annotations from

well-studied species to others. The multiple metrics offer a multidimensional
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quantification of gene family evolutionary rates, delineating spectra that identify

“slow and stable” orthologous groups where we can more confidently transfer

annotations, and at the same time helping to distinguish “fast and dynamic”

orthologous groups for which the transfer of functional information needs to be

more tentative. As recognised by Eugene V. Koonin, “The huge majority of genes

in the sequenced genomes will never be studied experimentally, so for most

genomes transfer of functional information between orthologs is the only means

of detailed functional characterization.” (Koonin 2005). The process of transfer is

by no means standardised across the field, and there is no obvious

one-size-fits-all solution, however, the quantifications provided by the Evol-Feat

framework could be employed to bring a level of objectivity to future

standardisation efforts.

A further important implication for the field is that this framework allows

for the building of hypotheses on putative gene functional roles in a manner that

does not rely on sequence homology alone. Demonstrating that genes exhibiting

similar evolutionary profiles can be linked to similar or analogous functions

means that clustering genes by their quantified evolutionary dynamics instead of

their sequence similarities can provide an alternative means for the tentative

transfer of functional information. This concept is similar to the approaches of

using presence/absence genomic phylostratigraphy to identify genes that

themselves are not homologous but which function together as members of

physically interacting protein complexes. Instead of only considering

presence/absence matrices, the evolutionary profiles can be built using a suite of

features quantified by Evol-Feat and which are thus able to capture

co-evolutionary patterns that could point to potential functional dependencies,

similarities, or analogies.

An additional key implication, especially for researchers using functional

genomics to identify candidate gene sets of interest, is how the Evol-Feat

framework allows for the investigation of the evolutionary features of sets of

candidate genes. For example, gene lists from studying organismal responses to

various treatments and/or from examining life cycle progressions are typically

interrogated using GO term enrichment analysis to understand what is

functionally “special” about a particular set of genes. Going beyond functional
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properties, the suite of evolutionary features quantified for each gene provides

possibilities for researchers to also ask what is evolutionarily “special” about

their set of genes. For example, exploratory analyses with honeybee viral

infection data indicated that early-response genes were significantly enriched for

genes from “fast and dynamic” orthologous groups while late-response

up-regulated genes were evolutionarily “slow and stable”.

Beyond the domain of comparative genomics for investigating gene

evolution and function, there are broader implications for enhancing the ability

to use genomic data to better understand organismal biology, here focussing on

arthropods. Understanding and cataloguing the evolutionary landscapes of gene

families can assist, for example, in more precisely predicting the effectiveness of

agro-ecological phytotherapeutics, the immune response to pathogens across

species, or the ecological adaptation possibilities in species threatened by rapid

climate change. More specifically, rapidly expanding research and industrial

applications such as artificial gene-drive technologies, very promising in the

fields of pest control for disease spread limitation and crop protection, can

greatly benefit from complementary evolutionary-informed analyses. With the

purpose of disrupting populations of disease vectors and pests, gene-drive

models may be assisted in the quest for identifying ideal gene candidates by

detailed knowledge of specific gene repertoire’s evolutionary features and

putative functions. Gene essentiality and turnover, sequence conservation,

evolutionary rates, population-level sequence variations, clade-specificities, and

copy-number counts, coupled with hypotheses on the biological processes

associated with their respective evolutionary modules, can expand the search to

as-yet uncharacterised genes, while directing it towards ranges of required

evolutionary features. These include, for example, targeting genes with low

potential to evolve and adapt, involved in physiologically essential processes with

low/high lineage-specificity, high resistance to sequence change, or varying

degrees of taxonomic reach, all of which can increase the efficiency of

gene-drive model designs and aid in predicting and controlling their impact on

animal populations.

Moreover, facing global threats on ecosystems and biodiversity caused by

rapid climate change and habitat disruption from human interference requires
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understanding the genetic mechanisms and properties underlying the potential

for ecological adaptations across a wide range of species, especially non-model

organisms. The mapping across taxa, through comparative genomics, of genetic

modules associated with known adaptive traits can reveal or generate

hypotheses about the genetic plasticity and limitations of the response of

understudied organisms to shifting climatic and environmental conditions.

Species dispersion and habitat occupation models needed to guide biodiversity

conservation policies can greatly benefit from such complementary

evolutionarily-informed hypotheses. These include ranges of tolerance to

changing temperatures, resistance to altitude, air salinity, drought, seasonality

disruption, and the immune response adaptability to new pathogen exposures.

Such ecological-functional properties, even when lacking precise molecular

laboratory work within the species of interest, may be predicted via the

propagation of functional annotations from existing studies in well-described

species to under-studied species and lineages, through delineated modules of

gene evolutionary histories and features.

In summary, the increasing accessibility of genomics data can greatly

enhance our understanding of gene function and the underlying mechanisms of

evolutionary adaptation. By using the latest computational tools and approaches,

researchers can thus harness the power of large-scale genomic datasets to

improve our understanding of the genetic basis of biological processes and

develop new strategies for a wide range of animal and crop disease prevention,

pest control, and biodiversity conservation policy making. Nevertheless,

gathering functional information on uncharacterised genes, especially from

non-model organisms often at the centre of agroecological and epidemiological

societal challenges, still requires costly detailed laboratory work. As a result,

when investigating under-studied organisms, gene functional information is

usually transferred onto undescribed genes from sequence homology with genes

of well-described model organisms. Although successful in specific cases of

highly conserved gene sequences and functions, this approach leads to

discrepancies and disadvantages when describing the functions of gene

repertoires from under-represented or distant taxonomic clades. Therefore,

efforts to better understand the biological processes associated with the

astounding diversity of arthropod adaptations and the evolution of their genetic
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sequences lack specific resources and tools. The main purpose of the Evol-Feat

framework of analysis developed in this thesis work is to serve as a practical

example on how to face the complex challenge of interpreting the rapidly

accumulating amount of genomic data. In this case, the workflow is conceived to

exploit the, so-far relatively untapped, higher-resolution evolutionary-functional

correspondences harnessed with large-scale comparative-evolutionary analyses

from already available data collections, through automated and scalable

bioinformatics solutions.

The development of the Evol-Feat framework through a modulable,

open-source, and scalable bioinformatics workflow, means that these new

approaches can be further used for exploring evolutionary-functional

correspondences beyond arthropods. Such applications were beyond the scope

of the thesis work, but investing time and effort into the workflow design means

that the resulting tools offer the possibility to quantify evolutionary trajectories

and functional enrichments of evolutionarily-similar clusters of genes from

user-defined custom datasets. Throughout the development of the analysis tools

required to carry out the objectives of the thesis a large amount of exploratory

work was required to investigate the appropriateness of various approaches to

quantify evolutionary features, build reliable profiles, sanity-check the results,

and investigate evolutionary-functional correspondences. The major perspectives

gained from these efforts can be summarised by three main recurring issues:

constraints imposed by the reliance on a species phylogeny; the inherent

limitations of understanding lineage-specific patterns in lineages with little or no

functional data; and challenges to understand clustering robustness. These

recurring issues are not specific to this thesis work, and they remain challenges

for the field as a whole to consider.

With respect to species phylogenies, the rapidly accumulating genomics

data mean that the achievable species resolution is also increasing dramatically.

However, this usually makes the reconstruction of robust species phylogenies

even more challenging, with many uncertain branching patterns and conflicts

with described taxonomies. Many of the evolutionary features we wish to

quantify inherently rely on a species tree, e.g. the age of an orthologous group,

and in particular the quantifications that require ancestral state reconstructions
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across a phylogeny, e.g. gene gains and/or losses. It is therefore increasingly

clear that for progress to continue to be made, the field as a whole needs to

consider the development and implementation of methods that are less reliant

on a fixed species phylogeny but instead can operate by taking species and/or

gene tree uncertainty into account.

Another recurring issue that highlights a general perspective in

comparative genomics applications is the observation that lineage-specific

evolutionary patterns are usually challenging or near-impossible to relate to

functional properties. This is because the majority of knowledge on gene

functions comes from detailed studies in a few species, meaning that for many

lineages there are no well-studied representative species from which to derive

some functional hints. This outlook is changing as genome resources and

functional genomics experiments are expanding possibilities for developing new

arthropod model systems (Feron and Waterhouse 2022b). Nevertheless,

obtaining relevant lineage-specific functional data will continue to lag behind the

generation of reference genomes and therefore these limitations will persist.

Importantly, delineating lineage-specific evolutionary patterns highlights trends

that could help prioritise functional investigations, and in so doing the

identification of gaps serves to start addressing those gaps.

Regarding clustering and its robustness, the work for this thesis required

the exploration of an array of different approaches to assess their

appropriateness and effectiveness. Because the quantified evolutionary features

produce results that exhibit highly heterogeneous and non-normal distributions,

assumptions for most standard clustering techniques are violated. Combining

dimensionality reduction techniques with traditional clustering methods did not

yield results that could be easily represented in human-interpretable dimensional

spaces. Instead, profile clustering onto eigengenes emerged as the most

effective solution. The eigengenes represent an ensemble of possible

evolutionary feature profiles onto which each orthologous group can be mapped

based on the similarity to its own profile. This proved not only effective but also

flexible in terms of being able to apply this approach with variable numbers of

evolutionary features and orthologous groups. This therefore offers a new

perspective for the field to consider further as we aim to explore multiple
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dimensions of gene evolutionary histories, with different densities of species

sampling, and across longer or shorter evolutionary timescales.

Recognising the principal implications for the field and the key

perspectives gained from the thesis work, the future outlook can be summarised

with respect to the main questions that guided the thesis objectives. Firstly, the

developed framework harmonised and extended previous work in the field to

define a suite of evolutionary feature metrics: it is clear that some metrics are

more challenging to obtain than others (e.g. constraint from whole genome

alignments, or nucleotide polymorphisms from population genomics samples),

and that additional new metrics per gene or per orthologous group could be

defined (e.g. protein domain content/complexity, or orthologous group homology

uniqueness). While steps for obtaining gain/loss metrics were fully integrated

into Evol-Feat, other more challenging metrics rely on obtaining additional data

or using tools/workflows developed by others. Notably, the framework was

designed to incorporate additional user-provided metrics, and it provides the

exploratory tools needed to examine how such additional metrics contribute to

the evolutionary profiling, therefore such extensions in the future should be

entirely feasible. Secondly, although the exploration of options for

multidimensional data analysis and clustering techniques was extensive, new or

different combinations of methods might be useful to examine in the future.

Profile mapping onto eigengenes proved successful and it seems to be a suitably

extensible solution to use for exploring the patterns and profiles derived from

the quantified gene and gene family evolutionary features. Nevertheless, if new

metrics are added and/or very different combinations of metrics are employed

then this approach would need to be carefully re-evaluated. Thirdly, the future

applications of the framework to different taxonomic datasets or other biological

case studies (development, insecticide resistance, detoxification, etc.) would

serve to further test its generalisability. This is made possible by the fact that the

analysis framework was designed and built in a way that allows others to apply it

to their own datasets and to downstream dataset exploration and clustering

steps. The design also means that future applications can employ the

minimal-input orthology data, or additional inputs for feature quantifications,

according to the data available to the user. This will greatly facilitate the future

use of and possible development/extension of the Evol-Feat workflow with a
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wide range of possible applications. Fourthly, initial sanity checks and

subsequent investigations of evolutionary-functional correspondences focused on

combining the results from evolutionary feature quantification and profiling with

gene functional information in the form of GO term annotations. In the mosquito

immunity case study this was extended to examine correspondences using

functional categorisations based instead on gene co-expression analyses to

identify immune families that function in concert. For other taxa with

accumulating transcriptomics data, future studies will be able to use the

mosquito case study as a template for the co-interrogation of gene evolution and

function with an enhanced resolution. Finally, in terms of the practical output

objectives: the prototyped browsable interactive tools that would provide

experimental biologists with the ability to explore thousands of arthropod genes,

the context of their evolutionary-functional correspondences could be further

developed in the future. The tools for computational biologists to quantify and

analyse gene evolutionary features and functional properties on custom data will

greatly facilitate the use of multi-species genomic datasets to further our

understanding of gene evolutionary-functional correspondences.
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Abstract

Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and
population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent
phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene
and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes.
Characterizing patterns of genomic change where putative functions and interactions of system components are rela-
tively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary tra-
jectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories
can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolu-
tionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relation-
ships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may
relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication
and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar
and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how
genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study
system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how
functional constraints on different components of biological systems govern their evolutionary trajectories.

Key words: Anopheles mosquito, evolutionary profiling, gene expression, gene families, innate immunity.

Introduction
The concept of constraints in evolutionary biology encom-
passes a diverse array of interpretations and terminologies
shaped by the approaches of different research fields
(Antonovics and van Tienderen 1991). In general terms, con-
straints can be described as factors that limit or direct the
process of natural selection leading to outcomes representing
only a fraction of all theoretically possible scenarios.
Constraints may impact the capacity to generate new var-
iants as well as how selection either limits or promotes con-
sequent phenotypic change, often considered in
developmental biology (Richardson and Chipman 2003)
and population genetics (Hoffmann 2013) contexts.
Comparative genomics also recognizes the role of constraints,
in shaping the evolution of gene and genome architectures,
sequence evolutionary rates, and gene gains and losses, as well
as on the molecular phenotypes governed by their functional
products (Koonin and Wolf 2010). For example, protein se-
quence evolution is constrained by requirements for main-
taining proper protein structure and function, including
during folding and interactions with other macromolecules
(Worth et al. 2009). Functional constraints also impact the

evolution of gene families, for example, families of paralogs
with or without essential genes exhibit dramatically different
evolutionary regimes in terms of sequence divergence and
duplication rates (Shakhnovich and Koonin 2006). These
likely influence observed trends across the gene duplication
spectrum that show a dichotomy of constrained single-copy
control versus a multi-copy license for greatly relaxed copy-
number restrictions (Waterhouse et al. 2011). Integrative
analyses of evolutionary and functional constraints point to
emergent properties such as a gene family’s “importance” or
“status” characterized by low sequence divergence and pro-
pensity for gene loss with high expression levels, protein
interactions, and essentiality; or a family’s “adaptability” man-
ifested by high duplication levels, many genetic interaction
partners, and a tendency of genes to be nonessential; or a
family’s “reactivity” with high gain/loss and expression levels
but low sequence divergence, a paucity of essential genes, and
few physical or genetic interactions (Wolf et al. 2006). If such
constraints limit the realm of possibilities in terms of allowed
gene evolutionary trajectories then recurring patterns should
be observable for genes evolving under similar constraints.
Characterizing these patterns in the context of a relatively

A
rticle

� The Author(s) 2021. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited. Open Access
Mol. Biol. Evol. 39(1):msab352 doi:10.1093/molbev/msab352 Advance Access publication December 10, 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/1/m
sab352/6459179 by guest on 06 O

ctober 2022



well-studied system, where putative functional roles and
interactions of member genes are well described, offers an
opportunity to explore whether genes with similar or analo-
gous functions exhibit similar evolutionary trajectories, possi-
bly governed by common constraints.

The insect innate immune system is relatively well charac-
terized with respect to the functional roles and evolutionary
histories of key implicated pathways and component gene
families. It confers remarkable resilience to encountered
pathogens through the activation of powerful responses to
neutralize and clear infections (Rolff and Reynolds 2009;
Ligoxygakis 2017). The immune system comprises both hu-
moral and cellular responses with components dedicated to
recognizing signs of infection, signaling cascades to activate
primary defenses and induce transcriptional responses, mod-
ulators that control the intensity and direction of responses,
and effector proteins and biomolecules for pathogen killing.
Many of the genes and their protein products implicated in
these complex processes were first identified in the fruit fly,
Drosophila melanogaster (Lemaitre and Hoffmann 2007; Imler
2014). Classical receptor proteins that recognize pathogen-
associated molecular patterns include peptidoglycan recogni-
tion proteins (PGRPs) (Wang et al. 2019) and b-1,3-glucan
recognition or gram-negative bacteria-binding proteins
(GNBPs) (Rao et al. 2018). Pathogen recognition may then
trigger immune signaling through the Toll (Valanne et al.
2011), Imd (Myllym€aki et al. 2014), or the JAnus kinase protein
(JAK)/signal transducer and activator of transcription (STAT)
(Myllym€aki and R€amet 2014) pathways. Their activation leads
to the translocation of transcription factors to the nucleus
where the expression of effector genes such as those encoding
antimicrobial peptides (AMPs) (Lazzaro et al. 2020) is upregu-
lated. Defense responses are mediated by various cells and
tissues including hemocytes, the fat body, and the midgut,
and pathogen killing can occur via processes such as melani-
zation, phagocytosis, lysis, autophagy, and apoptosis (Hillyer
2016; King 2020), with RNA interference (RNAi) facilitating
major antiviral defenses (Mussabekova et al. 2017). These com-
plex interactions collectively offer insects protection from a
vast array of viruses, bacteria, fungi, protozoa, and nematodes.

Sequencing the D. melanogaster and Anopheles gambiae
genomes provided the first opportunity for comparative ge-
nomic analysis of immune-related genes in insects
(Christophides et al. 2002). Advances in genome sequencing
technologies have facilitated an increasingly dense sampling of
species to explore insect gene repertoires and perform cross-
species comparisons to trace gene evolutionary histories
(Waterhouse 2015). This has allowed comparisons beyond
Diptera to include Hymenoptera (Evans et al. 2006; Brucker
et al. 2012; Barribeau et al. 2015), Coleoptera (Zou et al. 2007),
Lepidoptera (Tanaka et al. 2008), and Hemiptera (Gerardo
et al. 2010), as well as expanded sampling of flies and mosqui-
toes (Sackton et al. 2007; Waterhouse et al. 2007; Bartholomay
et al. 2010; Sackton et al. 2017). These comparative studies
generally focused on the canonical immune-related gene rep-
ertoire, comprising genes that have been directly implicated in
immune responses through experimental research, or

indirectly linked to immunity through homology to known
immune proteins (Bartholomay andMichel 2018;Waterhouse
et al. 2020). Emerging patterns pointed to distinct evolutionary
dynamics that characterize different immune phases: (1) gene
and domain gains or losses (turnover) can create diversity in
recognition modules; (2) core signaling pathway members are
almost always maintained as single-copy orthologs often with
elevated levels of sequence divergence; (3) modulators appear
to form lineage-restricted units with members picked from
large families often with high gene turnover rates; and (4)
effectors like AMPs show dynamic gains and losses or are
lineage-restrictedwhereas oxidative defense effectors are wide-
spread with low levels of sequence divergence. These observa-
tions provide specific examples and strong expectations of
types of genes with similar functions that exhibit similar evo-
lutionary trajectories, within the established framework of in-
sect innate immunity that classifies genes and families into
broad functional categories of recognition, signal transduction,
modulation, and effector components.

These trends are based on observations from cross-species
comparisons of insect immune gene repertoires. Here we hy-
pothesize that comprehensive quantitative multispecies and
multifeature characterization of gene family evolutionary his-
tories can define distinct dynamics associated with different
functional roles in immune responses. Such detailed evolution-
ary profiling can then be used to address the question of
whether gene families involved in common immune func-
tional categories, modules, or processes exhibit similar evolu-
tionary trajectories possibly driven by shared constraints. We
take advantage of genomic resources available for 22mosquito
species (Holt et al. 2002; Nene et al. 2007; Arensburger et al.
2010; Lawniczak et al. 2010; Marinotti et al. 2013; Jiang et al.
2014; Chen et al. 2015; Neafsey et al. 2015; Matthews et al.
2018; Ruzzante et al. 2019) and 46 other insects to (1) develop
a suite of metrics that quantify gene and gene family evolu-
tionary histories, (2) employ these metrics to characterize the
evolutionary features of mosquito and fly immune gene rep-
ertoires, and (3) explore the relationships between gene family
evolutionary profiles and their functional roles in immunity to
understand how different constraints may relate to distinct
dynamics. The resolution afforded by multispecies compara-
tive analyses and our suite of gene sequence and copy-number
evolutionary metrics reveals the evolutionary features that
most clearly distinguish each family, and highlights similar
and contrasting patterns across all immune gene families.
Complementing knowledge-based functional categorizations
with gene coexpression analyses identifies immune families
that function in concert, revealing evolutionary-functional cor-
respondences where most prominently, families involved in
mosquito complement system responses show both high evo-
lutionary similarities and high expression similarities.

Results and Discussion

A Suite of Metrics to Quantify Gene and Gene Family
Evolutionary Histories
The developed set of evolutionary feature metrics is designed
to capture a broad spectrum of gene evolutionary dynamics

Ruzzante et al. . doi:10.1093/molbev/msab352 MBE

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/1/m
sab352/6459179 by guest on 06 O

ctober 2022



including taxonomic spread, copy-number changes, protein-
and DNA-level sequence divergence, conservation, and con-
straint, as well as genomic organization, and population-level
sequence variation (table 1). The 18 metrics are computed
using gene orthology delineated across 43 insect species (21
mosquitoes, 15 other dipterans, and 2 outgroup representa-
tives each for Lepidoptera, Coleoptera, Hymenoptera, and
Exopterygota), sets of whole genome alignments with 22
mosquitoes or with 36 Drosophila, or polymorphism data
from An. gambiae (see Materials and Methods).
Orthologous groups (OGs) comprised all genes descended
from a single gene in the last common ancestor of the set
of the extant species under consideration. As such they form
the principal unit for which the suite of metrics is computed.
OG compositions are used directly to quantify features such
as universality (UNI; the proportion of species present in an
OG) or duplicability (DUP; the proportion of species that
have multicopy orthologs). They are used as inputs for gene
copy-number turnover analysis to quantify gain (expansion)
and loss (contraction) events. Their aligned sequences are

used to compute protein- and DNA-level divergence metrics
per OG. Nucleotide-level measurements from whole genome
alignment or population variation data are computed over
each gene’s coding-sequence length and averaged over multi-
copy orthologs in anOG. Compositions of families range from
just a single OG for prophenoloxidases (PPO, 9 An. gambiae
genes, 3 D. melanogaster genes), to 23 OGs with 28
An. gambiae genes for small regulatory RNA pathway mem-
bers (SRRP) or 29 OGs with 37 D. melanogaster genes for C-
type lectins (CTL) (table 2). The suite of metrics represents a
comprehensive quantitative framework to enable detailed
evolutionary feature profiling analyses, here applied to 298
OGs containing 420 An. gambiae immune-related genes and
276 OGs with 354 D. melanogaster immunity genes.

The Evolutionary Feature Landscape of Mosquito
Immunity
Profiles built from the 18 quantified evolutionary features
successfully delineate key similarities and differences amongst
the catalog of 36 canonical mosquito immune-related gene

Table 1. Evolutionary Feature Metric Descriptions.

Evolutionary feature Acronym Description Data source

Taxonomic age AGE Age of the last common ancestor of species in an OG, in terms of
millions of years since divergence, computed from the ultra-
metric species phylogeny

43-insect orthology

Universality UNI The proportion of the total species present in an OG (all species,
UNI5 1)

43-insect orthology

Duplicability DUP The proportion of species present in an OG that have multicopy
orthologs

43-insect orthology

Average copy number ACN The average (mean) ortholog copy number across all species
present in an OG

43-insect orthology

Copy number variation CNV The standard deviation of ortholog counts per species present in
an OG divided by the ACN

43-insect orthology

Expansions EXP CAFE quantified proportions of gene gain nodes for an OG 43-insect orthology
Contractions CON CAFE quantified proportions of gene loss nodes for an OG 43-insect orthology
Stability STA CAFE quantified proportions of no copy-number change nodes

for an OG
43-insect orthology

Synteny SYN The proportion of orthologs in an OG that maintains their
orthologous neighbors in the genomes of the other species

43-insect orthology

Evolutionary rate EVR The average rate of protein sequence divergence normalized by
the distance (% identity) between each pair of species as
computed by OrthoDB

43-insect orthology

PAML’s dS PDS The number of synonymous substitutions per synonymous site
as computed by PAML

19-Anopheles orthology

PAML’s dN PDN The number of nonsynonymous substitutions per nonsynony-
mous site as computed by PAML

19-Anopheles orthology

PAML’s dN/dS SEL The nonsynonymous to synonymous substitution ratio (dN/dS)
as computed by PAML

19-Anopheles orthology

Nonsynonymous SNP proportion NSP The proportion of all coding-sequence SNPs that were nonsy-
nonymous (averaged over genes per OG)

An. gambiae variation

Nonsynonymous SNP density NSD The density of nonsynonymous SNPs over a gene’s coding-se-
quence length (averaged over genes per OG)

An. gambiae variation

Synonymous SNP density SSD The density of synonymous SNPs over a gene’s coding-sequence
length (averaged over genes per OG)

An. gambiae variation

Whole genome alignability WGA The number of species aligned, per nucleotide from the whole-
genome alignment, averaged over coding-sequence length
(averaged over genes per OG)

22 mosquitoes
36 Drosophila

PhastCons constraint PHC PhastCons quantified constraint scores, per nucleotide from the
whole-genome alignment, averaged over coding-sequence
length (averaged over genes per PG)

22 mosquitoes
36 Drosophila

NOTE.—For each evolutionary feature, the metric name, acronym, description, and source data are presented (see Materials and Methods for details).
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Table 2. The Anopheles gambiae and Drosophila melanogaster Immunity Gene Catalogs.

Acronym Summary description An. gambiae D. melanogaster

Genes OGs Genes OGs

GALE Galectins bind specifically to b-galactoside sugars and can function as pattern
recognition receptors in innate immunity

9 6 6 5

GNBP Gram-negative binding proteins (or b-1,3-glucan-binding proteins) are a family
of carbohydrate-binding pattern recognition receptors

7 3 3 3

PGRP Peptidoglycan recognition proteins are pattern recognition receptors capable
of recognizing the peptidoglycan from bacterial cell walls

7 5 12 6

SCRA Scavenger receptors are made up of different classes that function as pattern
recognition receptors for a broad range of ligands including from pathogens

5 5 5 4
SCRB 13 10 14 9
CTL C-type lectins are carbohydrate-binding proteins with roles in pathogen

opsonization, encapsulation, and melanization, as well as immune signaling
cascades

25 20 37 29

FREP Fibrinogen-related proteins (also known as FBNs) are a family of pattern rec-
ognition receptorswith homology to theC terminus of the fibrinogenb and c
chains

38 15 13 6

LRIM Leucine-rich repeat immune proteins are mosquito immune factors that ac-
tivate complement-like defense responses against pathogens

24 20 0 0

ML MD-2-like proteins, also known as Niemann-Pick Type C-2 proteins, possess
myeloid-differentiation-2-related lipid-recognition domains involved in
recognizing lipopolysaccharide

16 7 8 5

NIMROD Nimrods have been shown to bind bacteria leading to their phagocytosis by
hemocytes, they contain epidermal growth factor-like domains

3 3 12 8

TEP Thioester-containing proteins are related to vertebrate complement factors
and a2-macroglobulin protease inhibitors, their activation through pro-
teolytic cleavage leads to phagocytosis or killing of pathogens

10 5 5 5

IMDSIG The immune deficiency pathway is characterized by peptidoglycan recognition
protein receptors, intracellular signal transducers (IMDSIG) andmodulators
(IMDMOD), and the NF-jB transcription factor Relish

9 9 10 10
IMDMOD 6 6 6 6

JASTSIG The JAK and the STAT are two core components of the JAK/STAT pathway,
with signal transducers (JASTSIG) and modulators (JASTMOD) involved in
cellular responses to stress or injury

3 3 6 6
JASTMOD 3 3 4 4

TOLLSIG The intracellular components of the Toll pathway are homologous to the toll-
like receptor innate immune pathway in mammals, with signal transducers
(TOLLSIG) andmodulators (TOLLMOD) culminating in activation of the NF-
jB transcription factors Dorsal

5 5 6 6
TOLLMOD 8 8 8 8

CASP Caspases are cysteine-aspartic proteases involved in immune signaling cascades
and apoptosis

15 6 7 5

CLIPA Subfamilies of CLIP-domain serine proteases are defined by patterns of cysteine
residues, several CLIPs have roles as activators or modulators of immune
signaling cascades

20 13 12 10
CLIPB 27 20 15 13
CLIPC 8 6 7 7
CLIPD 9 8 10 10
CLIPE 9 7 3 3
IAP Inhibitors of apoptosis are important in antiviral responses and are involved in

regulating immune signaling and suppressing apoptotic cell death
8 5 4 4

SRPN Serine protease inhibitors, or serpins, modulate many signaling cascades; they
act as suicide substrates to inhibit their target proteases

18 16 30 20

AMP Antimicrobial peptides are the classical effectormolecules of innate immunity;
they include defensins, cecropins, and attacins that are involved in bacterial
killing by disrupting their membranes

9 8 10 5

LYS Lysozymes are key effector enzymes that hydrolyze peptidoglycans present in
the cell walls of many bacteria, causing cell lysis

7 1 17 3

PPO Prophenoloxidases are key enzymes in the melanization cascade that helps to
kill invading pathogens and is important for wound healing

9 1 3 1

GPX Glutathione, heme, and thioredoxin peroxidases are enzymes involved in the
metabolism of reactive oxygen species that are toxic to pathogens

2 2 2 2
HPX 15 10 10 9
TPX 5 5 6 6
SOD Superoxide dismutases are antioxidant enzymes involved in the metabolism of

toxic superoxide into oxygen or hydrogen peroxide
4 4 4 4

APHAG Autophagy-related genes participate in a form of cell death characterized by
the formation of an internal autophagosome where pathogens are degraded

19 19 22 22

SRRP 28 23 22 20

(continued)
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families and subfamilies (fig. 1). The evolutionary feature pro-
files for all families are visualized by averaging themetrics over
all OGs with genes belonging to each family. Contrasting the
profile of a given family against the profiles of all other
immune-related families reveals the evolutionary features
that most clearly distinguish each family (fig. 1; supplemen-
tary fig. S1, Supplementary Material online). This is clearly
illustrated by the leucine-rich repeat immune genes (LRIMs)
comprising 24 An. gambiae genes from 20 OGs, members of
which interact with thioester-containing proteins (TEPs) to
activate complement-like responses against pathogens
(Povelones et al. 2009; Levashina and Baxter 2018). Their tax-
onomic age (AGE) and UNI are significantly lower, consistent
with there being no detectable LRIM orthologs beyond mos-
quitoes (Waterhouse et al. 2010). They also exhibit fairly typ-
ical low DUP, average copy-number (ACN), and copy-
number variation (CNV), reflecting their mostly single-copy
ortholog status acrossmosquitoes. Thesemetrics describe the
family as a whole although allowing for differences amongst
members, for example, the gene duplications that gave rise to
three APL1/LRIM2 paralogs in one lineage of African
Anopheles (Mitri et al. 2020). Estimates of nonsynonymous
substitutions per nonsynonymous site (PDN) are higher than
for other families, and significantly so. They are not as ex-
treme, but still significantly higher than other families, for
synonymous substitutions per synonymous site (PDS).
Together this produces PDN:PDS ratios (SEL, i.e. dN/dS ratios)
that are significantly higher than other families, consistent
with positive selection or relaxed constraint as observed in
previous genus-wide analyses (Neafsey et al. 2015).

Gene gain/loss estimates for the LRIMs show significantly
fewer expansions (EXP) and significantly more contractions
(CON), but overall stability (STA) close to the mean, in agree-
ment with the copy-number metrics. Conservation of geno-
mic neighborhood, or synteny (SYN), is slightly lower than
average for LRIMs, although they notably show the most ex-
treme significantly elevated protein sequence evolutionary
divergence (EVR). Single nucleotide polymorphism (SNP)
data also show a significantly elevated proportion of non-
synonymous SNPs (NSP) and significantly above average non-
synonymous SNP density (NSD), with synonymous SNP
density (SSD) slightly below the mean. The family as a whole

thus appears to reflect the natural diversity and polymor-
phism observed for some family members (Rottschaefer
et al. 2011; Holm et al. 2012). Finally, whole genome alignment
data show that LRIMs are significantly less alignable (whole
genome alignability [WGA]) and significantly less constrained
(per-nucleotide levels of constraint [PHC]) than other im-
mune gene families, reflecting the patterns observed with
protein- and DNA-based measures of sequence divergence.

Family profiles highlight the extent to which each family
deviates from or matches the typical metric values for each
evolutionary feature. GNBPs are characterized by high values
for metrics capturing gene duplications (DUP and ACN) with
high alignability across mosquito genomes (WGA), consistent
with the birth of the B-type GNBP subfamily in the mosquito
ancestor (Bartholomay et al. 2010). In contrast, Imd pathway
signaling genes (IMDSIGs) are characterized as being relatively
ancient (high AGE and UNI) and copy-number stable (low
CON and high STA) with nevertheless a high protein se-
quence evolutionary rate (EVR), in agreement with previously
observed evolutionary dynamics of immune signaling path-
way members (Waterhouse et al. 2007). The subfamilies of
CLIP-domain serine proteases are characteristically young
(low AGE and UNI), except for CLIPDs which are older and
significantlymore taxonomically widespread (UNI), a contrast
also reflected by several other evolutionary features.
Differences amongst CLIP subfamilies could relate to the roles
of catalytic and noncatalytic members in modulatory cas-
cades and their hierarchies (El Moussawi et al. 2019).

The autophagy (APHAG) and SRRPs share many features
that are significantly different from the mean: They are an-
cient (high AGE and UNI), stable (low CON and high STA),
and constrained (low SEL, EVR, NSP, NSDwith highWGA and
PHC). However they differmarkedly with respect to estimates
of dN and dS with both PDN and PDS being significantly
lower for APHAGs and significantly higher for SRRPs. Their
overall conservation and stability is consistent with both
autophagy and RNAi being ancient cellular processes with
roles beyond immunity, although their contrasting levels of
substitutions could reflect different structural constraints on
protein–protein versus protein–RNA interactions. The SRRPs
do show above average DUP and ACN values, but not signif-
icantly so, consistent with reported single-copy orthologs of

Table 2. Continued

Acronym Summary description An. gambiae D. melanogaster

Genes OGs Genes OGs

Small regulatory RNA pathway members are involved in RNA interference and
include argonautes, dicers, piwis, and helicases

SPZ Spaetzle-like proteins contain a cysteine knot domain, the cleavage of Spaetzle
results in binding of the product to the Toll receptor and subsequent acti-
vation of the Toll pathway

5 5 6 6

TOLL Toll receptors connect extracellular pathogen recognition to intracellular Toll
pathway signaling and activation of immune defense responses

12 6 9 6

Totals: 420 298 354 276

NOTE.—Brief descriptions of immune gene families or pathway components are presented alongwith counts of the numbers of genes andOGs for themosquito and fly catalogs.
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Argonautes 1 and 2 and duplications of Piwi/Aubergine in
mosquitoes (Lewis et al. 2016). Indeed previous analyses of
SRRPs suggested faster evolution in Aedes and Culex rather
than Anopheles mosquitoes (Campbell et al. 2008), so con-
servative patterns observed here could be driven by the data
set consisting mainly of anophelines.

The distributions of computed OG metrics for all of the
mosquito immune gene families for each evolutionary feature
are presented in supplementary additional file 1,
Supplementary Material online together with statistical
assessments of the significance of deviations from the typical
metric values. The trends and significant differences observed
across the suite of quantified features facilitate evolutionary
profiling that recovers previous mostly qualitative observa-
tions and highlights similar and contrasting patterns across all
immune gene families (table 3).

Families with Similar Functional Roles Exhibit Similar
Evolutionary Profiles
Several bootstrap-supported groupings of families and sub-
sets of features are revealed when hierarchical clustering is
applied to the matrix of evolutionary feature profiles of all
mosquito immune gene families (fig. 2). Clustering aims to
objectively delineate the hierarchical similarities amongst
families and features to identify subsets of features that
vary in concert, and groups of evolutionarily similar families
(seeMaterials andMethods). Employing familymedian (fig. 2)
and mean (supplementary fig. S2, Supplementary Material
online) metric values to build a dissimilarity matrix with
Pearson’s correlation distances and performing bootstrapped
clustering with the average linkage method results in several
well-supported subsets and groupings. Using Pearson’s corre-
lation distances for clustering aims to give weight to the
metric directionalities rather than their magnitudes or ranks
(Kassambara 2017), to identify families with similar evolution-
ary feature profiles. Nevertheless, clustering with alternative
distance functions (Spearman’s and Kendall’s correlation, and
Euclidean distances) and additional agglomerative clustering
methods (Single, Complete, and Median linkage) confirms
support for many of the observed hierarchical similarities
(supplementary figs. S3–S6, additional file 2, Supplementary
Material online). Furthermore, clustering using principal com-
ponents instead of the metric values themselves also identi-
fies several of the observed family groupings (supplementary
fig. S7, Supplementary Material online). Overall, there are four
main subsets of evolutionary features that consistently cluster
together and somewhat more variable groupings of gene
families depending on the combinations of metrics and
methods applied.

First, with respect to evolutionary features (see table 1
for feature summary descriptions), four subsets of features
are repeatedly and robustly recovered: (i) PAML’s dN,
PAML’s dN/dS (SEL), the proportion of nonsynonymous
SNPs, CON (gene losses), and evolutionary rate (protein
sequence divergence); (ii) densities of synonymous and
nonsynonymous SNPs; (iii) ACN, EXP, duplications, and
CNV, often also including SYN as in figure 2; and (iv)
age, universality, constraint, and alignability, often also
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FIG. 1. Evolutionary feature profiles of mosquito immune gene fam-
ilies. Evolutionary profiling highlights similar and contrasting patterns
across all 36 immune gene families or subfamilies (rows). Deviations
from the typical metric values for the suite of 18 evolutionary feature
metrics (columns) are computed as the difference between the family
mean and the average over all OGs from other immune-related gene
families (D�x). For visualization, values ofD�x are scaled by the absolute
maximum D�x per metric, that is, for each metric the distribution is
transformed by dividing all values by the absolute maximum D�x.
Values therefore range from a minimum of –1 for metrics where
the largest deviation is below the mean, that is lower than other
families, and the maximum of 1 for metrics where the largest devia-
tion is above the mean, that is higher than other families. The signif-
icance of the difference of the distribution of metric values (no
scaling) for each family compared with all other families was assessed
using the Wilcoxon rank-sum (Mann–Whitney U) test and a permu-
tation test (asterisks correspond to the lower P value from these two
tests; ***P� 0.01, **P� 0.05, *P� 0.1). Feature acronyms are defined
in table 1. Family acronyms are defined in table 2 and are colored
according to categories defined based on their putative roles in the
principal immune phases: classical recognition (red), other recogni-
tion (blue), pathway signaling (bright green), pathway modulation
(purple), cascademodulation (orange), antimicrobial effectors (pink),
effector enzymes (olive green), autophagy (dark cyan), RNAi (black),
cytokines (brown), and toll receptors (dark green). See text for defi-
nitions of evolutionary feature acronyms: taxonomic spread and
copy-number features in blue; sequence-based features in red.
Evolutionary feature profiles of mosquito immune gene families
with median differences (D�x) are presented in supplementary figure
S1, Supplementary Material online.
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Table 3. Characteristic Evolutionary Features of Immune Gene Families and Subfamilies.

Family Significantly higher Significantly lower Interpretation summary

GALE – – No extreme features
GNBP DUP, ACN, SYN, WGA – Duplications, maintained neighborhood, widely alignable
PGRP EXP, NSD, SSD – Duplications, population variation
SCRA AGE CON Ancient, stable copy-number
SCRB AGE, UNI, WGA, PHC PDN, SEL, CON, NSD Ancient, widespread, widely alignable, constrained sequence, con-

strained substitutions, stable copy-number, population
conservation

CTL SEL, CON, SYN UNI, SSD, WGA, PHC Relaxed substitutions, losses,maintained neighborhood, widespread,
population conservation, sparsely alignable, relaxed sequence

FREP ACN, SEL, CON, NSP AGE, UNI, STA, SYN, WGA,
PHC

Duplications, relaxed substitutions, losses, amino acid divergence,
young, sparse, unstable copy-number, shuffled neighborhood,
sparsely alignable, relaxed sequence

LRIM PDN, PDS, SEL, CON, EVR,
NSP, NSD

AGE, UNI, EXP, WGA, PHC Relaxed substitutions, losses, amino acid divergence, population
variation, young, sparse, stable copy-number, sparsely alignable,
relaxed sequence

ML DUP, ACN, EXP, SYN PDS, STA Duplications, maintained neighborhood, constrained substitutions,
unstable copy-number

NIMROD – SYN Shuffled neighborhood
TEP EVR, NSD, SSD WGA, PHC Amino acid divergence, population variation, sparsely alignable, re-

laxed sequence
IMDSIG AGE, UNI, STA, SYN, EVR CON Ancient, widespread, stable copy-number, maintained neighbor-

hood, amino acid divergence
JASTSIG EVR, SSD SYN Amino acid divergence, population variation, shuffled neighborhood
TOLLSIG STA CON, WGA Stable copy-number, sparsely alignable
IMDMOD AGE, UNI, PDS, SSD, PHC CON, EVR, NSP Ancient, widespread, relaxed synonymous substitutions, population

variation, constrained sequence, stable copy-number, amino acid
conservation

JASTMOD – – No extreme features
TOLLMOD AGE, UNI, STA, PHC PDN, SEL, CON, EVR, NSP,

NSD
Ancient, widespread, stable copy-number, constrained sequence,
relaxed substitutions, amino acid divergence, population variation

CASP DUP, ACN, CNV, CON SSD Duplications, losses, population conservation
CLIPA – AGE, UNI, SYN Young, sparse, shuffled neighborhood
CLIPB PDN, SEL, CON, EVR, NSP AGE, UNI, PDS, STA, SSD,

WGA, PHC
Relaxed substitutions, losses, amino acid divergence, young, sparse,
constrained synonymous substitutions, unstable copy-number,
population conservation, sparsely alignable, relaxed sequence

CLIPC DUP, ACN, CNV, CON, EVR UNI, STA, PHC Duplications, losses, amino acid divergence, sparse, unstable copy-
number, relaxed sequence

CLIPD UNI CON, EVR Widespread, stable copy-number, amino acid conservation
CLIPE EVR, NSP AGE, UNI, PHC Amino acid divergence, young, sparse, relaxed sequence
IAP SEL WGA Relaxed substitutions, sparsely alignable
SRPN CNV, EVR, NSD SYN Duplications, amino acid divergence, shuffled neighborhood
AMP CON, NSD AGE, UNI, STA, WGA Losses, amino acid divergence, young, sparse, unstable copy-number,

sparsely alignable
LYS DUP, ACN, CNV, EXP, SYN STA Duplications, maintained neighborhood, unstable copy-number
PPO DUP, ACN, CNV, EXP STA Duplications, unstable copy-number
GPX EXP, PHC STA Duplications, constrained sequence, unstable copy-number
HPX UNI, STA, WGA SEL, CON, EVR Widespread, stable copy-number, widely alignable, relaxed substi-

tutions, amino acid conservation
TPX AGE, UNI, STA, WGA, PHC PDN, SEL, CON, EVR, NSP,

SSD
Ancient, widespread, stable copy-number, widely alignable, con-
strained sequence, constrained substitutions, amino acid conser-
vation, population conservation

SOD WGA, PHC PDN, SEL, EVR Widely alignable, constrained sequence, constrained substitutions,
amino acid conservation

APHAG AGE, UNI, STA, WGA, PHC ACN, CNV, PDN, PDS, SEL,
CON, EVR, NSP, NSD

Ancient, widespread, stable copy-number, widely alignable, con-
strained sequence, constrained substitutions, amino acid conser-
vation, population conservation

SRRP AGE, UNI, PDN, PDS, STA,
SYN, WGA, PHC

SEL, CON, EVR, NSP, NSD Ancient, widespread, relaxed substitutions, stable copy-number,
maintained neighborhood, widely alignable, constrained se-
quence, amino acid conservation, population conservation

SPZ STA – Stable copy-number
TOLL AGE, UNI, DUP, ACN, WGA PDN, SEL, CON Ancient, widespread, duplications, widely alignable, constrained

substitutions

NOTE.—For each immune-related immune family, evolutionary features with significantly higher or significantly lower metrics compared with other immune families are listed
with summarized interpretations.

Functional Constraints and Evolution of Insect Innate Immunity . doi:10.1093/molbev/msab352 MBE

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/1/m
sab352/6459179 by guest on 06 O

ctober 2022



including stability as in figure 2. These subsets are also
recovered when clustering using metric means rather
than medians, with the exception of PAML’s dS (supple-
mentary fig. S2, Supplementary Material online). Principal
component analysis (PCA) of both the median and mean

metrics supports three major groupings of the four subsets,
with PC1 dominated by set (iii) features contrasted by sta-
bility, and with PC2 clearly separating set (i) from set (iv)
features (fig. 2; supplementary figs. S2 and S8,
Supplementary Material online).
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FIG. 2. Clustering heatmap and dendrograms of immune families and their evolutionary features. Groupings of families and subsets of features
delineated by hierarchical clustering using thematrix of evolutionary feature profiles of all immune gene families. Hierarchical clustering results are
visualized for the immune families (n ¼ 36) and evolutionary features (n ¼ 18) using scaled median metrics with a Pearson’s correlation-based
distance matrix and average linkage agglomerative clustering. The heatmap displays the relative values of the scaled metrics from low in blue to
high in red. The dendrograms show the quantified distances (similarities) between each of the families, and between each of the features, and their
groupings, determined by the clustering algorithm and distancemethod. Support for each node of the twodendrograms is shownwith green-filled
circles, using multiscale bootstrap resampling to estimate AU support values. PCA supports three major groupings of the four subsets of
evolutionary features with PC1 and PC2 capturing 78.2% of the variance. Feature acronyms are defined in table 1. Family acronyms are defined
in table 2 and are colored according to categories defined based on their putative roles in the principal immune phases: classical recognition (red),
other recognition (blue), pathway signaling (bright green), pathway modulation (purple), cascade modulation (orange), antimicrobial effectors
(pink), effector enzymes (olive green), autophagy (dark cyan), RNAi (black), cytokines (brown), and toll receptors (dark green). See text for
definitions of evolutionary feature acronyms, colored according to groupings in the dendrogram and PCA. Clustering heatmap and dendrograms
of immune families and their evolutionary features using meanmetrics are presented in supplementary figure S2, Supplementary Material online.
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Set (i) captures both gene losses and several features re-
lated to protein sequence divergence. PAML’s dN and dN/dS
are computed from codon analysis of multiple protein se-
quence alignments, and the evolutionary rates are computed
from amino acid similarities from all-against-all protein align-
ments, thus they are expected to vary in concert. The ob-
served grouping of the proportion of nonsynonymous SNPs
with these protein-alignment-based metrics suggests that
long-term divergence over millions of years of mosquito evo-
lution is reflected in population-level polymorphism today.
The grouping of gene losses with these sequence divergence
and diversity features may appear less intuitive; however,
correlations between the propensity for gene loss and se-
quence evolutionary rates have been observed previously
from analyses of orthologs from seven distantly related eukar-
yotes (Krylov 2003). Here with a larger set of more closely
related species (43 insects but mostly mosquitoes and other
dipterans) this pattern is recovered while focusing exclusively
on immune-related genes. Set (ii) groups together the
expected correlated densities of genome-wide synonymous
and nonsynonymous SNPs.

Set (iii) captures all the copy-number features related to
gene birth, linked to local genomic organization (SYN). Gene
duplications lead to higher and often more variable copy-
numbers that are identified by computational analysis of
gene family evolution (CAFE) as EXP, so these metrics should
define different aspects of these features arising from the
same underlying process and hence are expected to vary in
concert. The link with maintained SYN suggests that dupli-
cated genes often alsomaintain their local genomic neighbor-
hoods. However, this phenomenon is driven by only a small
subset of families with both elevated DUP and SYN metrics:
GNBPs, MD-2-like proteins (MLs), and particularly lysozymes
(LYSs; fig. 1). For these immune genes it appears that retaining
their relative genomic locations played an important role in
maintaining their functionalities after duplicating in the mos-
quito or anopheline ancestor. Set (iv) captures the taxonomic
spread features together with DNA-level sequence conserva-
tion and constraint, linked to gene family copy-number sta-
bility. This grouping clearly connects conservation at whole-
gene and nucleotide levels, with older widespread immunity
genes generally showing signs of greater constraints. In gen-
eral, older genes do appear to evolve more slowly than youn-
ger ones (Alb�a and Castresana 2005); they are also longer,
more highly expressed, and subject to stronger purifying se-
lection (Wolf et al. 2009). In addition to constrained sequence
evolution, genes functionally characterized as essential are
more likely to be ancient and widespread (Waterhouse
et al. 2011). This highlights the ancient origins and essential
roles of several core components of the insect immune sys-
tem that have been maintained over millions of years of
evolution.

Clustering with a subset of 12 evolutionary features after
excluding PAML-based (dN, dS) and variation-based (SNPs)
metrics recovers sets (i), (iii), and (iv) observed with the full
suite of metrics (supplementary figs. S9 and S10,
Supplementary Material online). Thus the associations be-
tween gene loss and protein sequence divergence, between

DUP and SYN, and between taxonomic spread and DNA-
level sequence conservation, are identifiable using this subset
of features. Performing the same clustering analyses with the
D. melanogaster immune gene catalog also recovers the links
between gene loss and protein sequence divergence, and be-
tween taxonomic spread and DNA-level sequence conserva-
tion (supplementary figs. S11 and S12, Supplementary
Material online). However, despite MLs and LYSs showing
the same trend as for An. gambiae, SYN is no longer associ-
ated with copy-number features related to gene birth, indi-
cating that maintaining genomic neighborhoods after gene
duplication events is a family-dependent phenomenon rather
than a global trend. The GNBPs offer a specific example,
where the birth of the B-type GNBPs in the mosquito ances-
tor produced a new subfamily with members showing ele-
vated conservation of their genomic neighborhoods.

The evolutionary profiles describe contrasting features of
gene families and pathway members implicated in immune
responses. The suite of features covers a wide spectrum of
gene family evolutionary dynamics that can be broadly sum-
marized by three main axes delineated by the major PCA
groupings: axis 1, DUP and SYN; axis 2, maintenance/stability
and sequence conservation; and axis 3, loss and sequence
divergence. Axis 1might be driven by only a subset of families,
but the pattern is intuitive when considering the advantage of
maintaining expression regulatory coordination across sets of
duplicated genes. Axes 2 and 3 appear to reflect global trends
in gene evolutionary dynamics observed in different taxa and
over different timescales, suggesting that a broadly common
set of rules also applies to the evolution of components of the
immune system.

With respect to gene families (see table 2 for family sum-
mary descriptions), several groupings of different sizes are
recovered: from top to bottom in figure 2 (a) AMPs and
glutathione peroxidases; (b) cysteine-aspartic and CLIPC pro-
teases with serine protease inhibitors; (c) LRIMs, TEPs, CLIPA
protease homologs, CLIPB&E proteases, CTL, and fibrinogen-
related and Nimrod proteins; (d) GNBPs, MLs, lysozymes, and
PPOs; (e) PGRPs and galectins; (f) Toll, Imd, and JAK/STAT
signaling proteins; and (g) a large set comprising autophagy
and RNAi-related proteins, Toll, Imd, and JAK/STAT pathway
modulators, toll receptors, scavenger receptors A and B,
CLIPD proteases, superoxide dismutases, as well as heme
and thioredoxin peroxidases. Clustering with metric means
rather than medians results in different hierarchies but with
several broadly similar groupings including: LRIMs, CLIPA pro-
tease homologs, CLIPB&E proteases, and fibrinogen-related
proteins; cysteine-aspartic and CLIPC proteases; GNBPs,
MLs, lysozymes, and PPOs; and a large set comprising autoph-
agy and RNAi-related proteins, Toll, Imd, and JAK/STAT path-
way modulators, toll receptors and galectins, scavenger
receptors A and B, CLIPD proteases, superoxide dismutases,
as well as heme and thioredoxin peroxidases (supplementary
fig. S2, Supplementary Material online). Similar variations of
these groupings are obtained when clustering means or
medians using alternative distance-clustering method combi-
nations (supplementary additional file 2, Supplementary
Material online). Combining this variation with results from
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bootstrapping provides ameasure of evolutionary profile sim-
ilarity between all pairs of families (see Materials and
Methods). The families that most frequently cluster together
using metric means (supplementary fig. S5, Supplementary
Material online) or medians (supplementary fig. S6,
Supplementary Material online) include: PGRPs, galectins,
GNBPs, MLs, lysozymes, and PPOs; cysteine-aspartic and
CLIPC proteases; LRIMs, TEPs, CLIPA protease homologs,
CLIPB&E proteases, and fibrinogen-related proteins; and a
large set comprising autophagy and RNAi-related proteins,
Toll, Imd, and JAK/STAT pathway modulators, toll receptors,
scavenger receptors A and B, CLIPD proteases, superoxide
dismutases, as well as heme and thioredoxin peroxidases.
Thus, although the gene family groupings are more variable
across different distance-clustering method combinations
than those of the evolutionary features, the results identify
families with consistently similar evolutionary profiles.

Evolutionary profile clustering identifies features that are
shared by genes and families within each of the major im-
mune phases. Pairs of recognition protein families with similar
profiles include PGRPs and galectins, A- and B-type scavenger
receptors, and GNBPs andMLs, also indicating thatMLsmore
closely resemble classical than other recognition families,
thereby warranting their reclassification (fig. 2). PGRPs can
bind bacterial cell wall Dap- or Lys-type peptidoglycans
(Wang et al. 2019), whereas galectins can bind surface b-
galactosides (Vasta 2020). Similarly, GNBPs can recognize b-
1,3-glucans that make up structural polysaccharides of yeast
cell walls (Rao et al. 2018), whereas MLs can bind lipopoly-
saccharides from the outer membrane of Gram-negative bac-
teria (Shi et al. 2012). A- and B-type scavenger receptors may
have broader ligand specificities including lipoproteins and
surface molecules of Gram-negative and Gram-positive bac-
teria (Alquraini and El Khoury 2020). As important pattern
recognition receptors in animal immunity, these are all ex-
pectedly old families; however, despite interacting with
pathogens they remain relatively constrained (DNA-level)
and do not show extreme protein sequence divergence
(fig. 2). This apparent lack of evidence for an arms race sce-
nario may in fact reflect the relatively limited structural di-
versity of the main microbial ligands—peptidoglycan, b-1,3-
glucan, lipopolysaccharide—they must bind to or cleave.

Signaling genes of the Toll, Imd, and JAK/STAT pathways
group together, being generally ancient and stable but with
remarkably elevated rates of protein sequence divergence.
Their copy-number stability is possibly a reflection of con-
straints imposed by the large disruptive potential of dupli-
cates on core signal transduction functionality. Their protein
products work together as interacting partners, including the
death-domain-mediated MyD88-Tube-Pelle complex of the
Toll pathway (Valanne et al. 2011), the Imd pathway’s Imd–
Fadd–Dredd, Tab 2–Tak1, and IjB kinase complexes
(Myllym€aki et al. 2014), and the Domeless–Hopscotch com-
plex of the JAK/STAT pathway (Myllym€aki and R€amet 2014).
Their greater sequence divergence could therefore be
explained by the accumulation of compensatory amino
acid changes that maintain key interactions amongst these
partners, and overall pathway functionality. The signaling

pathway modulators are also old and stable, but instead
show constrained sequence evolution. These include several
enzymes, such as ubiquitinases like Effete and Bendless, or E3
ligases like Pellino and Pias, which are under strong con-
straints to maintain their enzymatic activities. They are in-
volved in proteasomal degradation and are therefore also
critical for many other processes beyond immune signaling
(Glickman and Ciechanover 2002). Other enzymes including
the superoxide dismutases as well as the heme and thiore-
doxin peroxidases involved in reactive oxygen species metab-
olism (Hillyer 2016), show similarly conservative evolutionary
profiles (fig. 2). Proteolytically activated PPOs oxidize phenols
in the melanin production process (Nakhleh, El Moussawi,
et al. 2017) and also show similar sequence constraints; how-
ever, multiple gene duplications result in an evolutionary pro-
file that is radically different. Thus although there is some
variation, in general the functional constraints on these types
of enzymes appear to restrict their patterns of molecular
divergence.

Members of ancient pathways controlling RNAi (SRRP)
and autophagy (APHAG) responses group with other conser-
vative evolutionary profiles characterized by low gene turn-
over and low sequence evolutionary rates (fig. 2). In contrast,
much more dynamic evolutionary profiles characterize the
grouping of families of immune cascade modulators like CTL,
CLIPA protease homologs and CLIPB&E proteases, regulators
of melanization responses like serine protease inhibitors, and
key players in mosquito complement-like responses, like TEPs
and LRIMs. Althoughmelanization is conserved across arthro-
pods (Hillyer 2016), the proteolytic cascades that trigger or
dampen melanin production often involve lineage-specific
members of large gene families including these dynamically
evolving modulators (Gulley et al. 2013; Meekins et al. 2017;
Bishnoi et al. 2019; ElMoussawi et al. 2019). The complement-
like responses centered on TEPs and LRIMs are specific to
mosquitoes, and are also triggered and regulated bymembers
of these large and dynamic families (Blandin et al. 2008;
Fraiture et al. 2009; Povelones et al. 2009, 2013, 2016). Based
on understandingmolecular functions of only a limited num-
ber of genes from these families, it appears that immune
responses requiring such finely tuned activation, amplifica-
tion, and deactivation processes source components from
dynamically evolving families from which to build functional
modules. The families involved are characterized with evolu-
tionary profiles showing a pattern of younger and less wide-
spread orthologs, with lower-sequence constraints, and often
elevated signatures of selection and population-level varia-
tion. This dynamism is more consistent with an arms race
scenario, where the effectiveness of such functional modules
is continuously being tested by evolving pathogen attacks
and evasion strategies.

Coexpression Analyses Identify Immune Families That
Function in Concert
Analysis of multisample gene expression data shows that
families with the strongest fine-scale or broad-scale expres-
sion similarities include many pairs whose members are
known to function together in vivo (fig. 3; supplementary
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fig. S13, Supplementary Material online). Thus, without pre-
supposing any functional categorizations, the similar expres-
sion profiles highlight families whose members are likely
working together across different conditions. Gene
expression-based quantification of functional similarities
amongst immune gene families provides an alternative ob-
jective classification that complements the classical categori-
zations based on their putative roles in key immune
responses. The VectorBase Expression Map (MacCallum
et al. 2011) defines clusters of genes with similar expression
profiles for 12,672 genes using normalized data across 202
conditions, enabling the quantification of fine-scale or
broad-scale gene expression similarities amongst all pairs of
immune-related families. Pairwise family similarities are

computed as the frequency of co-occurrences of gene family
members in the same region of the map, with significance
assessed taking into account family sizes and expression clus-
ter sizes (see Materials and Methods). Visualizing pairwise
family similarities as a springmodel layout network optimized
with the neato tool from the Graphviz package (Gansner and
North 2000; Gansner et al. 2005) identifies subsets of families
with putative roles in common immune processes (fig. 3).
These prominently include a quintet of families with highly
and significantly overlapping expression patterns: LRIMs,
TEPs, FREPs, CLIPAs, and CLIPBs (fig. 3), with members impli-
cated in coordinating and executing mosquito complement
system responses (Povelones et al. 2016; Reyes Ruiz et al.
2019).
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FIG. 3. Network of immune family expression similarities based on the VectorBase Expression Map. The network layout optimized with a spring
model provides a 2D visualization of expression similarities for pairwise comparisons of all 36 immune-related gene families computed as gene co-
occurrence scores across the VectorBase ExpressionMap (AgamP4.11 VB-2019-02). Families withmore similar gene expression profiles are placed
closer together in the graph. Significant co-occurrences are indicated with connecting lines: light blue <0.05, royal blue <0.01, and dark blue
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and are colored according to categories defined based on their putative roles in the principal immune phases: classical recognition (red), other
recognition (blue), pathway signaling (bright green), pathway modulation (purple), cascade modulation (orange), antimicrobial effectors (pink),
effector enzymes (olive green), autophagy (dark cyan), RNAi (black), cytokines (brown), and toll receptors (dark green).
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Anopheles gambiae TEP1 forms a stable protein complex
with a heterodimer of LRIM1 and APL1A/B/C (LRIM2 paral-
ogs) in the hemolymph until the complement response is
activated (Fraiture et al. 2009; Povelones et al. 2009; Williams
et al. 2015), so coordinated coexpression of these genes is
important for their functions. Like the LRIMs and TEPs, the
FREPs are also found in the hemolymph, and severalmembers
are infection-responsive and important for defense, for exam-
ple, FREP57/FBN8, FREP13/FBN9, and FREP40/FBN39 (Dong
et al. 2006; Dong and Dimopoulos 2009; Sim~oes et al. 2017).
FREPs themselvesmight dimerize or oligomerize, but whether
they interact directly with TEPs and/or LRIMs in mosquitoes
remains unknown, although evidence from snails indicates
that FREPs and TEPs do interact (Li et al. 2020), and the
observed expression similarities support at least some func-
tional, if not physical, interaction. CLIPA serine protease
homologs are positive and negative regulators of immune
responses mediated by TEP1, for example, CLIPA8
(Schnitger et al. 2007), SPCLIP1/CLIPA30 (Povelones et al.
2013), CLIPA2 (Yassine et al. 2014), CLIPA14 (Nakhleh,
Christophides, et al. 2017), and CLIPA28 (El Moussawi et al.
2019). These regulatory modules also involve the catalytically
active CLIPBs, for example, CLIPB14 and CLIPB15 (Volz et al.
2005), CLIPB8 (Zhang et al. 2016), and CLIPB10 (Zhang et al.
2021), and together CLIPAs and CLIPBs are also key modu-
lators of melanization responses (Volz et al. 2006). The avail-
able evidence therefore supports the family-level expression
analyses that demonstrate highly and significantly overlap-
ping expression patterns (fig. 3) of members of this quintet
of families that function in concert.

Of this quintet, expression of CLIPA protease homologs is
additionally strongly and significantly similar to that of
CLIPCs, CLIPDs, and SRPNs (serpins, or serine protease inhib-
itors). The CLIPC9 protease has recently been shown to reg-
ulate melanization downstream of SPCLIP1/CLIPA30, CLIPA8,
and CLIPA28, and to be inhibited by SRPN2 (Sousa et al.
2020). CLIPC2 may function together with SRPN7 controlling
the activation of effector mechanisms (Blumberg et al. 2013).
Specific roles for CLIPDs, which show an evolutionary profile
distinct from the other CLIPs (fig. 2), remain largely unknown.
Serpins themselves are most similar in expression to PPOs,
both of which would need to be replenished after being de-
pleted during melanization responses (Gulley et al. 2013;
Nakhleh, El Moussawi, et al. 2017). The PPOs in turn appear
significantly similar to the CTL, which are generally considered
glycan-binding recognition proteins, but at least two mem-
bers—CTL4 and CTLMA2—are key regulators of melaniza-
tion downstream of immune recognition (Schnitger et al.
2009; Bishnoi et al. 2019). The family-level expression similar-
ities (fig. 3) therefore derive from the functional links amongst
the CLIP, CTL, and SRPN family members that modulate the
activation of melanization, and the PPO enzyme effectors of
melanization activity.

Amongst classical recognition proteins, PGRPs and GNBPs
are most similar, and their expression patterns both closely
match those of AMPs and MD-2-like lipid recognition pro-
teins. These similarities are driven by the upregulation of
members of these gene families upon infection or following

a blood meal, which promotes growth of the gut microbiota,
for example, in response to blood-feeding (Dana et al. 2005),
microbes (Aguilar et al. 2005), Plasmodium (Dong et al.
2006), or fungi (Ramirez et al. 2020). They are nevertheless
not as tightly interconnected as components of the comple-
ment and melanization responses, possibly reflecting the
contrast between broad-scope protection of these systems
versus the generally much more pathogen-specific activities
of different families of recognition proteins and antimicrobial
effectors. Indeed feeding into and/or being transcriptionally
activated by different immune signaling pathways means
that these families may be thought of as performing analo-
gous roles rather than functioning in concert per se.
However, learning more about signaling crosstalk and re-
sponse overlap has shifted thinking from traditional func-
tional distinctions amongst immune pathways (Kounatidis
and Ligoxygakis 2012). Thus, these similarities might reflect
somewhat overlapping responses, but also a common read-
iness or priming to face newly perceived threats.

Notably, expression patterns of pathway signaling and
modulation components remain distinct from the recognition
and response families: Imd and JAK/STAT pathway modula-
tors are significantly similar, whereas Toll pathwaymodulators
group together with Toll and JAK/STAT pathway signaling
members. Genes involved in RNAi (SRRP) and autophagy
(APHAG) responses do not show significant similarities in ex-
pression patterns to other families; however, SRRP and
APHAG genes have highly and significantly overlapping ex-
pression patterns at broad-scale resolution, and are most sim-
ilar to modulators of all three pathways (supplementary fig.
S14, Supplementary Material online). At broad-scale resolu-
tion, the distinction between pathway signaling/modulation
and recognition/response families is accentuated, whereas the
melanization and complement responses become more
closely interlinked. Many of the most similar families also
show substantially overlapping expression patterns when
quantifying similarities across coexpression modules built
from a subset of immune-related experimental conditions
(see Materials and Methods, supplementary figs. S15 and
S16, table S2, additional file 3, SupplementaryMaterial online).
For example, families implicated in complement system
responses again show similar expression patterns (supplemen-
tary fig. S17, SupplementaryMaterial online), and at a broader-
scale resolution become more closely associated with melani-
zation responses (supplementary fig. S18, Supplementary
Material online). At broad-scale resolution pairs of similar rec-
ognition families include GNBPs and PGRPs, GNBPs and MLs,
as well as galectins and B-type scavenger receptors, whereas at
both resolutions Imd and JAK/STAT pathway signaling mem-
bers are highly and significantly similar. Multicondition coex-
pression analysis therefore identifies gene expression
similarities amongst sets of immune-related families with
members that are known or inferred to function in concert.

Complement-Related Families Exhibit Elevated
Evolutionary-Functional Similarities
Immune gene family evolutionary-functional correspond-
ences are revealed by employing quantifications of
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evolutionary similarities based on gene family feature profiling
and of functional similarities based on gene family expression
patterns (fig. 4; supplementary additional file 4,
Supplementary Material online). Most prominently, families
involved in mosquito complement system responses show
both high evolutionary similarities and high fine-scale and
broad-scale expression similarities: recognition family pairs
of LRIMs–TEPs, FREPs–TEPs, and FREPs–LRIMs, as well as
modulator-recognition family pairs of CLIPAs with FREPs
and TEPs, and CLIPBs with FREPs, TEPs, and LRIMs.
Members of these principal complement–response gene fam-
ilies exhibit common expression and evolutionary profiles
suggestive of common constraints. Both TEPs and LRIMs
are also highly evolutionarily similar to CLIPEs, for which
specific roles in complement responses remain largely un-
known, but with which their expression similarity increases
at broad-scale resolution, albeit remaining nonsignificant. The
CLIPA protease homologs and CLIPB proteases form a highly
similar pair, but their strong and significant expression simi-
larity is not maintained at broad-scale resolution, suggesting
tight functional coupling of these keymodulators. Conversely,
CLIPB and CLIPE modulators also form a highly similar pair,
but with strong and significant expression similarity only at
broad-scale resolution. In contrast, FREP-NIMROD expression
similarity is maintained at both resolutions and it is amongst
the most significant of all family pairs that also show high
evolutionary similarities. Although a much smaller gene fam-
ily than the FREPs, NIMRODs including draper, nimrod, and
eater, are also infection-responsive and important for defense
(Midega et al. 2013; Est�evez-Lao and Hillyer 2014). Combining
results from evolutionary profiling and knowledge-blind func-
tional clustering therefore identifies families that appear both
evolutionarily and functionally similar. These similarities are
notably pronounced for families with members known to
function in concert to coordinate and execute mosquito
complement system responses (Povelones et al. 2016; Reyes
Ruiz et al. 2019).

Additional families with above average evolutionary and
expression similarities at both resolutions include another
pair of modulators (CLIPA-SRPN), and another modulator-
recognition pair (CLIPE-FREP). Although CLIPAs and SRPNs
are known to function together in cascades regulating mela-
nization (El Moussawi et al. 2019), potential functional inter-
actions between CLIPEs and FREPs remain to be explored.
Themelanizationmodulator-effector pair of SRPNs and PPOs
shows the highest expression similarity at both resolutions,
but with negligible evolutionary similarity, suggesting that
regulating these responses and executing them are subject
to different constraints. Amongst other recognition proteins,
MLs show above average evolutionary and expression simi-
larities to the classical recognition families of galectins
(GALEs) at fine-scale resolution, and PGRPs at broad-scale
resolution with lower but still significant expression similarity
at fine-scale resolution. Compared with galectins or PGRPs,
theMLs are evolutionarily more similar to GNBPs, with which
they show lower, but still significant, expression similarity.
These patterns suggest analogous functionalities—recogni-
tion of foreign—with different specificities for

lipopolysaccharides, b-galactosides, peptidoglycans, or b-1,3-
glucans, that arise depending on the pathogen/microbe com-
munity composition. Common constraints faced by classical
recognition phase families appear to produce similarities
amongst their evolutionary trajectories, with functional sim-
ilarities quantified through gene expression patterns possibly
arising through immune pathway signaling crosstalk and
priming (Kounatidis and Ligoxygakis 2012).

Evolutionarily similar families that only show high expres-
sion similarities at broad-scale resolution include modulators
of the Imd and Toll pathways (IMDMOD-TOLLMOD) and
genes involved in autophagy and RNAi responses (APHAG-
SRRP). At fine-scale resolution, pathway components from
JAK/STAT and Toll signaling (JASTSIG-TOLLSIG), Imd and
JAK/STAT modulation (IMDMOD-JASTMOD), and JAK/
STAT signaling and Toll modulation (JASTSIG-TOLLMOD)
also show above average evolutionary and expression similar-
ities. These pathways and responses play key roles in pro-
cesses other than immunity, including in development and
morphogenesis, so their gene expression-based functional
similarities will vary depending on the conditions examined.
This also means that the functional constraints they experi-
ence are not solely derived from their roles in immune pro-
cesses. Their functional similarities are more stably evident
when the modules are abstracted to analogous phases of
signal input, signal processing, and signal output. Whether
functionally similar or analogous, these immune-related path-
ways and responses exhibit common conservative evolution-
ary profiles that distinguish them from other more
dynamically evolving components of the immune system
(fig. 2). These constrained evolutionary features could result
from the effects of pleiotropy, and possibly the modular
architectures, on the trade-offs during adaptive evolution
producing a limited range of available trajectories (Mauro
and Ghalambor 2020).

Conclusions
Through quantitative evolutionary feature profiling of genes
and gene families, integrated with knowledge- and
expression-based functional categorizations, our multispecies
comparative immunogenomic analyses identified
evolutionary-functional correspondences suggesting that
constraints on genes with similar or analogous functions gov-
ern their evolutionary trajectories. The profiles delineate
whether and how each family deviates from the feature value
distributions of other families, and provide the substrate for
clustering to define similarities amongst families and features.
We employed insect innate immunity as our test case study
system because the key implicated pathways and component
gene families have been well characterized. While acknowl-
edging that responses to infections involve diverse processes
beyond the canonical immune system (Sackton 2019) and
that immune-related genes may also function in other bio-
logical processes, this prior knowledge provided specific
examples and strong expectations of types of genes with
similar functions and distinguishing patterns of evolution,
enabling the interpretation of observed correspondences
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within an established framework. Feature analysis within the
limits of our study system identified three main axes of evo-
lutionary trajectories characterized by gene duplication and
SYN, gene maintenance/stability and sequence conservation,
and gene loss and sequence divergence. Clustering
highlighted similar and contrasting patterns across these
axes amongst subsets of immune gene families. For example,
classical recognition families, including the herein reclassified
MLs, showed patterns that can be explained by the limited
structural diversity of the principal microbial ligands with
which they interact. Pathway signaling genes on the other
hand exhibited trajectories that could relate to physical inter-
actions of protein complexes and constraints from the effects
of pleiotropy and disruptive effects of gene duplicates on
signal transduction. Functional similarities defined by coex-
pression analyses recovered sets of immune-related families
with members that are known or inferred to function in
concert. Most prominently, these included families involved
in the complement system and melanization responses, both
of which occur mainly in the hemolymph. Comparing these
with feature-based clustering results identified evolutionary-
functional correspondences that were particularly striking
amongst families with members known to function together
in the coordination and execution of complement system
responses. Our results suggest that where and how different
genes participate in immune defense responses limit the
range of possible evolutionary scenarios that are tolerated
by natural selection. Our test case analyses of insect immunity
that explored approaches to quantify gene evolutionary his-
tories and relate these to gene functions highlight the poten-
tial for future applications to advancing understanding of
functional constraints on evolution. Further developing and
applying such comparative genomics approaches to explore
constraints in evolutionary biology could offer opportunities
to advance the understanding of how functional constraints
on different components of biological systems govern their
evolutionary trajectories.

Materials and Methods

Orthology, Variation, Alignment, and Expression Data
OGs of genes were defined using the OrthoDB (Kriventseva
et al. 2015) orthology delineation procedure across 21 mos-
quitoes and 22 other insects (see supplementary materials,
orthology data, Supplementary Material online). OrthoDB
employs all-against-all protein sequence alignments to first
identify all best reciprocal hits (BRHs) between all genes from
each pair of species (Zdobnov et al. 2017). It then uses a
graph-based clustering procedure that starts with BRH trian-
gulation to progressively build OGs that include all genes
descended from a single gene in the last common ancestor.
SNPs for An. gambiae PEST, including all synonymous and
nonsynonymous SNPs in annotated coding regions, were re-
trieved using the BioMart data mining tool from VectorBase
(Giraldo-Calder�on et al. 2015). The SNPs derive from eight
variation data sets hosted at VectorBase (Neafsey et al. 2010;
White et al. 2011; Weetman et al. 2012; Markianos et al. 2016;
Hammond et al. 2017; Miles et al. 2017; Wiltshire et al. 2018).

Multispecies whole genome alignments were generated from
the assemblies of 22 mosquitoes available from VectorBase
and 36 Drosophila available from The National Center for
Biotechnology Information (supplementary table S1,
SupplementaryMaterial online). The alignment process starts
with pairwise sequence comparisons that are then progres-
sively combined following the species phylogeny using the
MultiZ approach of the Threaded Blockset Aligner
(Blanchette et al. 2004). Expression data for An. gambiae
genes were retrieved from VectorBase (Expression Stats VB-
2019-06) as log2 transformed expression values for 13,201
genes across 291 conditions (mean, variance, and number
of replicates). Immune gene family coexpression analysis
employed these expression statistics using a subset of the
conditions to build coexpressionmodules. Coexpression anal-
ysis also employed clusters of genes defined by the VectorBase
Expression Map (MacCallum et al. 2011), with gene member-
ship of all clusters/cells retrieved from the AgamP4.11 VB-
2019-02 map (comprising 12,672 genes and based on 202
conditions).

Anopheles gambiae and D. melanogaster Immunity
Gene Catalogs
The catalogs of An. gambiae and D. melanogaster immune-
related genes were built by combining and updating the
results of previous comparative immunogenomics studies
(Christophides et al. 2002; Waterhouse et al. 2007;
Bartholomay et al. 2010; Neafsey et al. 2015). Anopheles gam-
biae and D. melanogaster gene and OG membership for 36
immune-related gene families and subfamilies are summa-
rized in table 2.

Orthology-Based Evolutionary Features
Features were quantified as a suite of 13 orthology-based
evolutionary metrics per OG that included: the evolutionary
age (AGE) of the last common ancestor in terms ofmillions of
years since divergence from the ultrametric species phylog-
eny; the universality (UNI) computed as the proportion of the
total species present; the duplicability (DUP) computed as
the proportion of species present with multicopy orthologs;
the average ortholog copy number (ACN); the copy number
variation (CNV) computed as the standard deviation of
ortholog counts per species present divided by the ACN.
PAML (Yang 2007) was employed using the M0 model on
the alignments of OG member sequences to compute the
number of synonymous substitutions per synonymous site
(PDS); the number of nonsynonymous substitutions per non-
synonymous site (PDN); and the nonsynonymous to synon-
ymous ratio (SEL). Gene turnover was estimated using the
CAFE (Han et al. 2013) tool in order to quantify proportions
of gene gains (expansions, EXP), gene losses (contractions,
CON), or no copy-number changes (stable, STA). Orthology
data combined with genomic location data were used to
quantify SYN conservation as the proportion of orthologs
that maintain their orthologous neighbors in the genomes
of the other species. Finally, the EVR of each OG corresponds
to the average rate of protein sequence divergence
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normalized by the distance between each pair of species as
computed by OrthoDB (Waterhouse et al. 2013).

Variation-Based and Alignment-Based Evolutionary
Features
Five additional evolutionary feature metrics were computed
from polymorphism data and whole genome alignments. The
population genomics data for An. gambiae retrieved from
VectorBase were used to compute per-gene metrics of the
proportion of all coding-sequence SNPs that were nonsynon-
ymous (NSP), as well as the nonsynonymous (NSD) and syn-
onymous (SSD) SNP densities as the number of SNPs divided
by the total coding-sequence length. Multispecies whole ge-
nome alignments were used to compute per-nucleotide met-
rics of conservation and constraint. WGA measures the
proportion of the full set of 22 mosquitoes or 36 Drosophila
that were aligned to the An. gambiae or D. melanogaster ref-
erence genomes, respectively, for each nucleotide. PhastCons
(Siepel et al. 2005) was used to estimate PHC from the whole
genome alignments. Per-nucleotide values were averaged over
the full coding-sequence lengths of all genes to obtain per-
gene metrics. The variation-based and alignment-based per-
gene metrics were averaged over all genes in each OG to
obtain the per-OG values for each of the metrics.

Gene Family Metrics and Comparisons
The canonical immunity gene catalogs define immunity gene
membership of subfamilies (e.g. cecropins, defensins, attacins),
families (e.g. AMPs), and broader categories (e.g. antimicrobial
effectors), and the orthology data sets define gene member-
ship of OGs. Thus, the gene family evolutionary metrics were
computed by averaging values over all OGs containing genes
belonging to each cataloged immune gene family. These
family-level means for each metric were compared with the
means of all other OGs that contain at least one An. gambiae
immune gene to quantify the extent to which the metrics of
the OGs of a given immune gene family differ from all other
immune gene containing OGs, that is, delta-mean (D�x). For
graphical visualization, D�x values were scaled by dividing by
the absolute maximum D�x per evolutionary feature and plot-
ted with the color-blind safe RdYlBu palette from the
RColorBrewer package from R (R Core Team 2021). The
Wilcoxon rank-sum (Mann–Whitney U) test implemented
in the wilcox.test function in R (default two-sided test) was
used to test the significance of the difference of the distribu-
tion of each family’s OGs metric values (no scaling) compared
with all other immune-related OGs for all metrics and each
family. As several families contain fewOGs, a permutation test
implemented in R was also used to test the significance of the
difference of the metric distributions. Observed D�x was com-
pared with D�x from permutations of all OG metric values
randomly assigned to size-matched sets. The number of per-
mutation differences that were greater than the observed dif-
ference, divided by the total number of permutations provides
an empirical estimate of the probability of obtaining a D�x
greater than the observed D�x by chance.

Clustering of Gene Family Metrics
To assess and quantify the similarities of the evolutionary
feature profiles, hierarchical clustering of the evolutionary
features and families was performed with the hclust function
in R. For the An. gambiae analyses these comprised 18 fea-
tures and 36 families, whereas for the mosquito-fly compar-
isons these comprised a common subset of 12 features and 35
families. For all evolutionary feature metrics, both the means
and the medians of all OGs per family were assessed. Prior to
clustering, the scale function in R was used to normalize all
metric values by subtracting the means and then dividing the
(centered) values by their standard deviations. Dissimilarity
matrices were computed with the normalized metric values
using three correlation-based distance methods and the
Euclidean distance method in R. Clustering with hclust was
performed with all dissimilarity matrices using single, com-
plete, average, and median linkage agglomeration methods.
To estimate statistical support for the clustering of families
and features, 10,000 bootstrap replicates were performed
with the pvclust R package. In pvclust, the approximately un-
biased (AU) P values are computed using multiscale boot-
strap resampling (Suzuki and Shimodaira 2006), and provide a
confidence measure for each node of the cluster dendro-
grams of families and evolutionary features. The robustness
of gene family clustering across all 16 tested distance–method
combinations was further assessed by quantifying the co-
occurrence of all pairs of families within subtrees of all
160,000 pvclust bootstrap replicates. This evolutionary profile
similarity score (family subtree co-occurrence score) was
computed and normalized as follows: (2 � co-occurrence
of Family 1 and Family 2)/(co-occurrence of Family 1 with
any Family þ co-occurrence of Family 2 with any Family).
Normalized scores of zero indicate that these pairs of families
never appear in the same subtree and scores of one would
indicate that they occur as sister lineages in all bootstrap
samples from all distance–method combinations. Based on
these assessments of clustering stability, the dissimilarity ma-
trix from Pearson’s correlation method with the average link-
age agglomeration method was selected. Specifically, the
bootstrap replication analysis showed that the Pearson’s cor-
relation distances with the average linkage method produced
the fewest poorly supported nodes (based on AU P values)
across immune families and evolutionary features (see sup-
plementary methods, figs. S3 and S4, Supplementary Material
online). The hierarchical clustering results were visualized as
heatmaps with corresponding family and evolutionary fea-
ture dendrograms showing AU support, plotted with the
gplots and dendextend (Galili 2015) R packages. PCA of the
family by feature matrices of both median and mean metrics
were performed with the prcomp function from the stats
package in R. As well as producing well-supported nodes,
the Pearson.Average distance–method approach on the
scaled metrics produces similar family groupings to using
the top ten principal components with the standard
Euclidean-Ward.D2 distance–method approach (supplemen-
tary fig. S7, Supplementary Material online), that is, when
applying standard clustering techniques after transforming
the correlated metrics into principal components.
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Gene and Family Coexpression Analyses
Gene expression similarities amongst all pairs of An. gambiae
immune-related families were quantified using the gene ex-
pression data and Expression Map (MacCallum et al. 2011)
retrieved from VectorBase (Giraldo-Calder�on et al. 2015). The
map was analyzed to quantify co-occurrences of gene family
members in the same cell on themap (fine-scale resolution of
gene coexpression), and in the same supercell, the cell and its
immediate eight neighboring cells on the map including to-
roidal neighbors (broader-scale resolution of gene coexpres-
sion). Pairwise family cell/supercell co-occurrence scores
(expression similarity scores) were computed as the intersec-
tion, Family 1 n Family 2, divided by the union, Family 1 U
Family 2 (i.e. number of cells with at least one gene from both
Family 1 and Family 2/number of cells with at least one gene
from either Family 1 or Family 2). A score of zero: the pair of
families have no member genes that cluster in the same cell/
supercell. A score of one: all member genes from both families
always cluster in cells/supercells with at least one member of
the other family. Statistical significance of the family cell/
supercell co-occurrence scores was assessed with a permuta-
tion test: scores were recomputed after gene to cell assign-
ments were randomly shuffled (10,000 permutations)
preserving the total number of cells and families, and the
number of genes in each cell and each family. These were
used to calculate an empirical estimate of the probability (P
value) of obtaining a co-occurrence score greater than the
observed co-occurrence score by chance: the number of per-
mutation scores that were greater than the observed score,
divided by the total number of permutations.
Complementary assessments of gene expression clustering
were performed using the weighted correlation network anal-
ysis approach (Langfelder and Horvath 2008) on a subset of
24 conditions selected from the VectorBase gene expression
data set including blood feeding experiments and tissues
from Marinotti et al. (2006), Neira Oviedo et al. (2008), and
Baker et al. (2011). Expression similarities of pairs of immune
gene families and the significance of their co-occurrences
were computed as for the Expression Map but using module
membership rather than cell/supercell membership.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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