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The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical com-
ponent of normal motor function, it has become a key target for deep brain stimulation in the treatment of
Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but
these have never been shown conclusively in humans. In this work, a data driven method with diffusion
weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain con-
nectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good corre-
spondence with that described in the animal literature. The local connectivity of each sub-region
supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and
posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatom-
ical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which
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has important future implications for deep brain stimulation surgery.
Crown Copyright © 2012 Published by Elsevier Inc. Open access under CC BY license.

Introduction

The subthalamic nucleus (STN) is a small bi-convex structure situated
in the diencephalon. Also known as the corpus Luysii, it was first de-
scribed by French neurologist Jules Bernard Luys in 1865 (Luys, 1865).
A critical region in the regulation of normal movement, it is also involved
in limbic and associative processing (Karachi et al., 2005). The STN is a
common surgical target when performing deep brain stimulation (DBS)
for the symptoms of Parkinson's disease (Limousin et al., 1998). More re-
cently it has also been proposed as a target to modulate neuropsychiatric
disorders such as obsessive-compulsive disorder (OCD) (Mallet et al.,
2008) and Tourette's syndrome (Martinez-Torres et al., 2009).

Located at the diencephalo-mesencephalic junction, the borders of
the STN are defined by the zona incerta superiorly and postero-
medially; prelemniscal radiations and postero-lateral hypothalamus
anteromedially and cerebral peduncle laterally. On its inferior-most lat-
eral surface, lies the superior aspect of the substantia nigra pars reticu-
lata. The inferior tip lies level with the mid-point of the red nucleus
(RN), the superior tip lies at the level of the posterior commissure
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(Naidich et al, 2009). Each nucleus is between 120 mm> and
175 mm?> in volume (Hardman et al, 1997, 2002; Lévesque and
Parent, 2005), with the majority appearing hypointense on T2*-weight-
ed images due to the presence of iron containing neuromelanin
(Dormont et al., 2004; Tribl et al.,, 2009; Zecca et al., 2003). It lies in a
densely populated well vascularised region, and is the only excitatory
glutamatergic nucleus within the basal ganglia network, projecting fi-
bres to numerous targets (Marani et al., 2008); principally the internal
pallidum, putamen, substantia nigra and thalamus. Direct cortical con-
nections from and to the STN exist, forming the basis for the hyperdirect
pathway in motor processing (Nambu et al., 1997, 2002).

Primate studies have demonstrated three functional zones within the
STN: limbic, associative and sensorimotor regions residing in the anteri-
or, mid and posterior STN respectively (Joel and Weiner, 1997; Karachi et
al,, 2005; Parent and Hazrati, 1995). However, these functional subdivi-
sions of the STN have not been conclusively demonstrated in humans.

Diffusion weighted imaging (DWI) is a magnetic resonance imag-
ing (MRI) technique that allows analysis of white matter integrity in
vivo (Pierpaoli and Basser, 1996). Using probabilistic tractography,
spatial distributions of white matter fibres (i.e. connectivity profiles)
can be estimated for a single voxel (Behrens et al., 2003). These esti-
mated white matter fibre pathways have been previously validated in
histological studies and correspond with known anatomy (Dyrby et
al., 2007). These connectivity profiles have been previously used to
achieve accurate segmentation of regions not otherwise visible
using conventional MRI techniques, for example the pre-motor
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cortices (Klein et al., 2007). The objective of this study was to explore
STN connectivity and segmentation in a bottom-up, prior free fashion
by proceeding stepwise through the following aims:

1. Define the normal connectivity profile within the subthalamic nu-
cleus of healthy controls to cortical and subcortical targets.

2. Use the diffusion tractography (DT) data to estimate the number of
sub-clusters within the STN.

3. Using a clustering algorithm and calculated cluster number, segment
the STN into distinct regions based on the connectivity profiles.

4, Examine how cortical and sub-cortical connectivity corresponds to
the calculated sub-clusters.

5. To define functional zones based on the sub-regional connectivity
patterns compared to pre-existing literature.

Methods
For clarity, the methodological pipeline is summarised in Fig. 1.
Subjects

Twelve healthy right handed adults (six male, mean age
males=33.6y, females=34y), underwent a single MRI scanning
session at the Wellcome Trust Centre for Neuroimaging. Involvement
of human volunteers was approved by the local ethics committee and
each provided written informed consent prior to MRI examination.

Image acquisition

All examinations were performed on a 3T whole-body MRI system
(Trio, Siemens, Erlangen) with a 32-channel RF receive coil. The follow-
ing images were acquired from each participant (see Table 1 for acqui-
sition details): A 3D T1-weighted modified driven equilibrium Fourier
transform (MDEFT) image (Deichmann, 2006), two identical DWI data-
sets and several images to estimate parametric T1 and T2* maps

Region of interest pre-processing

R2* MT MDEFT

Freesurfer Cortical Parcellation ] - ¢
SUIT Cerebellar Parcellation f 1) 75 Cortical targets per hemisphere
H 2) 11 Sub-cortical targets per hemisphere

(“multispectral sequence”) (Lutti et al., 2010). The multispectral acqui-
sition protocol produces magnetic transfer (MT), T1 and Proton Density
(PD) weighted images (1 mm isotropic resolution, total acquisition
time 19 min) (Helms et al., 2008). For each subject quantitative MT,
T1 and R2* (1/T2*) maps were extracted from the images using in-
house MATLAB code. B1 RF field maps (4 mm isotropic resolution)
were acquired using a 3D EPI SE/STE method (Lutti et al., 2010) and
used to correct the T1 maps for RF transmit field inhomogeneity effects.

Diffusion preprocessing

The two diffusion acquisitions were eddy current corrected and av-
eraged using FSL (FIMRIB, Oxford, England). Skull stripping was per-
formed by applying brain masks derived from the images with
b=100 s/mm? using the unified segmentation within SPM8 (http://
www. fil.ion.ucl.ac.uk/spm/) (Ashburner and Friston, 2005). The skull
stripped brain was visually checked for errors prior to any further pro-
cessing. Initial tensor estimation was performed using DTIfit in FSL
(http://www.fmrib.ox.ac.uk/fsl/), and the results visualised prior to ten-
sor estimation using a ball-and-stick model in BEDPOSTX (Behrens et
al., 2007). Registration to structural space was also performed using
FLIRT in FSL. For each subject, the resulting structural to diffusion regis-
tration was manually checked to ensure satisfactory alignment, with
particular attention paid to the regional borders of the STN.

Brain parcellation

The major cortical and subcortical structures were initially parcel-
lated using the Freesurfer recon-all pipeline (Fischl et al,
2004)(http://surfer.nmr.mgh.harvard.edu/). This produced 75 cortical
regions per hemisphere that were divided according to the Destrieux
2009 atlas (Destrieux et al., 2010). Using this pipeline, six subcortical re-
gions per hemisphere were also defined (nucleus accumbens, caudate,
putamen, pallidum, thalamus, and amygdala). The pallidal regions
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Fig. 1. Methodological pipeline, refer to text for details. Abbreviations: CSF = Cerbrospinal fluid, CN = Caudate nucleus, GPe = External segment of the globus pallidus, GPi = In-
ternal segment of the globus pallidus, MT = Magnetic transfer, NA = Nucleus accumbens, NNMF = Non-negative matrix factorisation, RN = Red nucleus, SN = Substantia nigra,

STN = Subthalamic nucleus.
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Table 1
Imaging parameters.

Image Slice FOV Acquisition matrix TR TE Flip angle Echo no. Notes

type no (mm?) (voxels) (ms) (ms)

MDEFT 176 224 x 256 224x 256 20.66 8.42 25 - Resolution =1 mm?>
T1 =640 ms
Bandwidth = 178 Hz/pixel
Acquisition time =12 min

DTI 80 220%220 128x128 170 102 90;180 - Resolution = 1.7 mm?
Average of two acquisitions
Acquisition time =32 min
68 images:
61 evenly distributed directions (b= 1000 s/mm?),
(Jansons and Alexander, 2003)
7 b=100 s/mm? images

MTw 176 240 %256 240 %256 23.7 [2.2:2.5:14.7] 6 6 Resolution =1 mm?>

Tiw 176 240 x 256 240 x 256 23.7 [2.2:2.5:14.7] 20 8 Parallel imaging (GRAPPA) (Griswold et al., 2002)

PDw 176 240 x 256 240 x 256 18.7 [2.2:2.5:19.7] 6 6 along phase encoding direction

B1-Map 48 192x256 48 x 64 500 (SE:37.06; SE:[230: 2 Partition partial Fourier (6/8)

STE:68.26) —10:130] Bandwidth = 425 Hz/pixel
Fieldmap 64 192x192 64 x 64 1020 10; 12.46 90 2

were then subdivided using ITK-SNAP (http://www.itksnap.org)
(Yushkevich et al.,, 2006) “draw over label” function, into the internal
(GPi) and external globus pallidus (GPe) using the medial medullary
lamina as the boundary between the two. This was clearly demarcated
on the MT images. The substantia nigra and red nucleus were defined by
generating population tissue probability maps for six tissue classes
using a novel segmentation algorithm developed in-house. For this,
the group MT and R2* images were normalised using DARTEL in SPM
(Ashburner, 2007) to MNI space at 1 mm? resolution and the corre-
sponding Jacobian determinants calculated. A modified version of a
mixture of Gaussians model was then fitted to the collection of spatially
normalised images, accounting for regional expansion or contraction by
incorporating the Jacobian determinants into the computations. Be-
cause the images were quantitative, the intensity distributions of each
tissue class were assumed to be identical for all subjects and modelled
as a bivariate Gaussian. In addition, the model assumed that at any loca-
tion in all of the spatially normalised images, there were the same prior
probabilities in observing the various tissue types. These prior probabil-
ities were estimated from the model and served as population tissue
probability maps. For each region of interest (ROI), the regional proba-
bility maps covering our areas of interest were extracted using previ-
ously defined spatial priors from n=10 subjects which were dilated
using 5 mm Gaussian smoothing and binarised at a threshold of 0.01.
For each subject, the labels were assigned based on the maximum
joint probability between the population spatial tissue probability
maps, and individually calculated voxel intensity probability density
functions (for white matter and ROI).

The cerebellum was parcellated into 28 regions and two dentate nu-
clei using the SUIT toolbox (http://www.icn.ucl.ac.uk/motorcontrol/
imaging/suit.htm) (Diedrichsen, 2006; Diedrichsen et al, 2009) in
SPMS8. A CSF exclusion mask that included the ventricles was generated
for each subject using ITK-SNAP snake function within the CSF spaces
on the MT images. Finally all the labelled ROIs were moved back to sub-
ject space using the SPM-Deformations tool.

The pedunculopontine nuclei were not analysed as target or seed re-
gions for tractography in this current study. This was because they could
not be clearly delineated from the closely associated lemniscal system
or superior cerebellar peduncle on any of the acquired images.

STN identification

Due to the variability in STN position and orientation, direct visu-
alisation is the most accurate method to identify the structure
(Ashkan et al., 2007; Hariz et al., 2003; Stancanello et al., 2008).
Using R2* images, the hyperintense region of the STN was manually

segmented using ITK-SNAP software (Supplementary Material 1) by
the investigator (CL). Surrounding anatomical structures were visua-
lised simultaneously on the MT images using ITK-SNAP multisession
function, and were used to aid identification of the superior and later-
al boundaries of the STN (as described in Supplementary Material 1
legend). To ascertain reproducibility, a functional neurosurgeon (LZ)
defined STN pairs on four of the subjects, providing eight STN vol-
umes to ascertain reliability of STN delineation.

Probabilistic tractography

Probabilistic tractography was performed using FSL probtrackX
software (Behrens et al., 2007). Within each of the ROIs, uncon-
strained whole brain tractography was performed for every individu-
al voxel. Each voxel was sampled 5000 times with a curvature
threshold of 0.2, modelling two fibres per voxel and applying a CSF
exclusion mask applied. Tractography was run from 11 seed regions
per hemisphere (22 in total). These were the putamen, nucleus
accumbens (NA), caudate (CN), GPi, GPe, thalamus, STN, red nucleus
(RN), substantia nigra (SN), amygdala and dentate nucleus. Using
MATLAB 20093, the raw, single voxel tractography distributions
were initially analysed by calculating their maximum connectivity
values with the 202 parcellated regions including bilateral cortical
(N=150), sub-cortical (N=22) and cerebellar (N=30) targets, and
then defining the frequency with which these connections existed
in each sub-region across the group.

Analysis
All analysis was performed using MATLAB 2009a.
Literature review

A PUBMED search for the term “subthalamic nucleus” was per-
formed and identified 3771 publications. Any report using or review-
ing tract tracing was obtained and reviewed, and any connections
with the STN documented. The inclusion criteria were reports written
in English (n=4 excluded (Makoev, 1981; L'vovich, 1978; Oleshko,
1985; Sotnichenko and Istomina, 1984)), only involving mammals
(n=3 excluded (Belekhova, 1991; Brauth et al., 1978; Martinez-
Marcos et al., 1999)). Four articles were unobtainable (Jackson and
Crossman, 1981a; Nauta and Cole, 1974; Nauta and Domesick, 1984;
Saper and Loewy, 1982). Probabilistic tractography studies were not
included (Aravamuthan et al., 2007) in this review to attempt to gen-
erate a gold standard baseline of expected connectivity. Only direct


http://www.itksnap.org
http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm
http://www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm

86

pathways were considered, as these are the ones that are detectable
using DTI. A recently reported disynaptic projection to the cerebellum
(Bostan et al., 2010) was classified according to the intermediate di-
rect projection to the pontine nuclei. Also, several papers also define
a parasubthalamic nucleus (Goto and Swanson, 2004; Mascaro et al.,
2009), that lies medial border of the subthalamic nucleus at the pos-
terior level of the lateral hypothalamus (Paxinos and Watson, 2007).
This structure has been described in rodents but not primates. How-
ever, to better understand the tractography results, these have been
included in the review and specifically labelled as separate categories.
A total of 130 articles from 1947 to 2011 were reviewed and the infor-
mation has been summarised in an ideogram shown in Fig. 2 using
the circular graph making software Circos (http://circos.ca/)
(Krzywinski et al., 2009). Each connection has been coloured accord-
ing to afferent (red) or efferent (blue) connectivity. Parasubthalamic
nucleus connections are differentiated using orange or light-blue.
The width of each ribbon indicates the normalised proportion of re-
ports as a percentage. Normalised proportion (P,) was calculated
first calculating the number of reports (N) detailing a regional con-
nection (c) as a percentage of the total number of reports (T) for
that particular type of connection (i), where i is either the afferents

or efferents, where the parasubthalamic afferents and efferents

were added to the STN. Four connection classes (k) were considered,

namely STN afferents and efferents, and parasubthalamic afferents
and efferents. This was primarily done to try and account for the
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fact that there are far more STN afferents reported (n=226) than ef-
ferents (n=184):

N
P =100% | =5
(Zgl Nci

P
P, =100*| — % .
! <Z£‘11Pck>

Pn is intended to reflect the pattern of afferents and efferents be-
tween the STN and a region of interest. Supplementary Material 2 in-

cludes a table giving the proportions (P) for each region and lists all
papers used in the review.

Seed connectivity

Using a probability index of connectivity (PICo) threshold of 1%,
the connectivity between each STN to the ipsilateral sub-cortical
ROIs (all seed images plus hippocampi) was defined and images for
each sub-cortical ROI demonstrating the spatial location of connect-
ing voxels were generated. For the seed ROIs, this was additionally re-
fined by defining the voxels that connected from the ROI to the
ipsilateral STN, and the product of the two images used for further
analysis. These images were warped into 1 mm MNI space using

Fig. 2. Circular ideogram summarising a literature review of the STN afferent and efferent connectivity in mammals. For comparison, reported parasubthalamic connections are included
but uniquely labelled. STN afferents are shown in red and efferents in blue. Para-STN afferents are in orange and efferents in pale blue. The width of each connecting ribbon represents the
normalised proportion (as a percentage) of the respective connections. Refer to the Methods for details on how this was calculated. A summary of the data and articles reviewed can be

found in Supplementary Material 2.
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DARTEL in SPM8 (Ashburner, 2007) and the data were averaged to
create connection probability maps for each structure. The cortical
connectivity was analysed by applying a previously described method
of STN-cortical thresholding (Aron et al., 2007). Specifically, the max-
imal connectivity value from the STN to the cortex was defined for
each subject, and then a threshold of 2% maximum cortical value
was applied to the individual tractography distributions. On average,
this corresponded to a PICo value of 19 in arbitrary units. This method
was chosen for two reasons. First, it provided a means of distance cor-
recting the PICo values, which are known to decrease with distance
from the target. Second, as in Aron et al., the intention was to examine
the spatial distribution of STN-cortical intersections, relying on exact
overlap of fibres across subjects in standard space, which tends be
overly conservative. These images were binarised, transformed to
common space, and then group averaged. For every region, the per-
centage of subjects with connectivity within a region was defined.
Connections present in >25% were reported. Additionally, the corre-
sponding tractography-cortical intersections were visualised by
thresholding the group tractography distribution at 25% and multi-
plying it with a grey-matter mask. The results were rendered in
ITK-SNAP and resultant mesh smoothed for illustrative purposes
with an 8 mm FWHM Gaussian kernel.

STN sub-segmentation

The raw, full brain PICo distributions for each STN voxel were
binarised at a threshold of 1%. Using the binarised distributions at
1 mm isotropic resolution, a cross correlation matrix was generated
according to previously described methods, but with no down-
sampling or binning of data (Johansen-Berg et al., 2005). The correla-
tion matrices were clustered using a cluster-Ward-linkage algorithm.
Ward's linkage is an agglomerative, hierarchical clustering method
that attempts to minimise the sum of squares error at each stage,
and can be implemented via the linkage function in MATLAB.

Previous DT studies have specified the number of clusters based
on a prior hypothesis formed from the literature. In the STN, animal
studies suggest that three regions may be present, however, there is
little in the way of human data to support this. Therefore a data driv-
en method to define the number of clusters was tested. To define the
optimal number of clusters, the algorithm was run from two to twen-
ty clusters for each subject. At each point the percentage ratio be-
tween the new within cluster sum of squares and total sum of
squares was calculated. This was performed as follows. Taking the
two dimensional connectivity correlation matrix(C), consisting of N
voxels, the total sum of square errors (Tssg) was calculated:

N N 1N 2
Togr = Z]: > (c,-j—NZ] cmj> .

J m=

Given that K is the total number of clusters at each point, for each
subcluster k, P=1 if a voxel belongs to that cluster and 0 otherwise,
where k<K and K>2, the within clusters sum of square errors
(Wssg) is:

K
k=

NN Y N PoiCo
_ _ &—=m mk-mj
Was =33 3 (- SEmn)

1i=1 j=1

The fractional variance explained for each selected total cluster
number is given by:
_ W

1 .
Tsse

The fractional variance explained was plotted for each individual, and
the elbow criterion (Timm, 2002) used to support the optimal cluster

number. Further analysis was performed using the calculated optimal
cluster number that occurred most frequently. The “elbow” was assessed
visually (Young et al., 2006), and defined as the point in the plot where a
sharp, angled change occurred after which the fractional variance
explained changed very little with the addition of more clusters, indicat-
ing that minimal additional information is gained after this point. An ex-
ample of this is shown in Fig. 4. This approach avoided bias both in the
selection of cluster number and also the delineation of cluster bound-
aries, as each was generated automatically through this method.

For each sub-parcellated STN region, the connectivity values to and
from each clustered sub-region were re-calculated for every individual
and all the results averaged in standard space. The process was repeated
for each STN sub-region across all ROI tractography distributions. If con-
nectivity was found in > 50% of subjects, the spatial distribution of cluster
sub-cortical connectivity was visualised by rendering the regions that
overlapped in at least 25% of subjects, defining each according to which
cluster had the maximum group connectivity probability value. 25% was
chosen for visualisation due to the loss in spatial resolution and tendency
for non-contiguous clusters to result from the smoothing of rendered
meshes. Corresponding colour-coded renderings were created using
MATLAB and ITK-SNAP with 8 mm mesh smoothing. Overlap regions
were also analysed. This was done by initially warping each sub-regions
tractography profiles to standard space and creating six average images.
These were the anterior, mid and posterior cluster tracts for the left and
right sides. These were used for classifying each brain voxel within a
ROI according to the combination of these summary distributions that
connected with it (using the 1% threshold for all subcortical structures,
and 2% maximum connectivity for the cortical and cerebellar hemisphere
results).

Visualisation of results

Three-dimensional renderings have been generated using ITK-
SNAP to aid the interpretation of the results (Figs. 3, 5 and Supple-
mentary Material 3). These have all been smoothed for illustrative
purposes with an 0.8 mm kernel. This can cause the clusters to appear
smaller, and non-contiguous in the rendered images compared to the
original data. Additionally the cortical renderings (Fig. 2) rely on full

Fig. 3. Cortical regions of common ipsilateral STN connectivity across the group. Dark
grey regions demonstrate cortico-tractography intersections. Each hemisphere is
shown on the corresponding side. Views, clockwise from top-left: Left medial surface,
anterior surface, right medial surface, right lateral surface, right lateral insula, inferior
surface, left lateral insula, left lateral surface. Superior surface central image. See
Table 1 for details of cortical regions.
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Table 2

Summary of group STN ipsilateral connectivity. Results >25% reported (i.e. connec-
tions present in 3 or more subjects).

Classified according to the Destrieux atlas, 2009.

Percentage of subjects

Left Right
Ipsilateral sub-cortical regions:
Thalamus 100 100
Caudate nucleus 100 100
Putamen 100 100
Globus pallidus external segment 100 100
Globus pallidus internal segment 100 83
Substantia nigra 100 100
Red nucleus 100 100
Hippocampus 83 75
Amygdala 67 58
Ipsilateral cortical regions:
Frontal
Frontal middle gyrus 25 33
Pars opercularis 58 25
Orbital gyrus - 33
Inferior frontal sulcus 50 33
Inferior precentral sulcus 50 58
Superior precentral sulcus 75 58
Precentral gyrus 33 50
Superior frontal sulcus 67 67
Superior frontal gyrus 50 67
Medial wall 83 83
Insula
Anterior short insula gyrus 58 58
Superior peri-insular sulcus 75 58
Gyrus longus and sulcus centralis 75 58
Inferior peri-insular sulcus 67 92
Cingulate
Pericallosal sulcus 92 100
Middle anterior cingulate 25 42
Middle posterior cingulate 75 92
Posterior dorsal cingulate 50 33
Marginalis cingulate sulcus 42 50
Parietal
Central sulcus 42 50
Subcentral gyrus 75 75
Postcentral gyrus 33 42
Supramarginal gyrus 58 42
Anterior collateral fissure 67 42
Temporal
Lingual gyrus 50 58
Lingual sulcus 33 42
Fusiform gyrus 25 33
Parahippocampal gyrus 58 58
Temporal pole 33 -
Planum polare 67 58
Posterior lateral fissure 50 58

intersections between the tractography and grey matter mask, hence
all the regions reported in Table 2 may not be visible on the rendered
images. For this reason we refer to the connectivity visualised in the
cortical renderings as “cortico-tractography intersections”, and the
results should be interpreted in conjunction with Table 2.

Results
STN Volume

The average STN volume was 1554 mm? (right, standard devia-
tion=24.9 mm?) and 155 mm? (left, standard deviation = 28.6 mm?).
There was no significant difference between STN volumes on the left
and right side (p>0.05). Analysis of reliability between observers
(Cronbach's alpha) for the manual delineation of the STN was 0.96.
Reported STN volumes are variable, and the values here fall within the
range cited by Lévesque and Parent (2005) (175 mm?>+ 20.3). A likely
explanation for the differences is the variation in iron distribution,

which is known to decrease in the posterior portion of the nucleus,
leading to reduced MR contrast.

Literature review

The literature review of STN tract tracing is summarised in Fig. 2
and in the Supplementary Material 2. It provides a basis with which
to interpret the results listed below.

Global cortical connectivity pattern

A summary of cortical and subcortical connectivity with the STN is
shown in Table 2 and Fig. 3. In discussing these results, a distinction is
drawn between weak and strong connectivity. Weak connectivity is
defined as being present in 25-50% of subjects whereas strong con-
nectivity is present in more than 50% of subjects.

Subcortical

All the sub-cortical regions analysed demonstrated strong connec-
tivity to the entire STN. Interestingly two distinct clusters in each hip-
pocampus were robustly identified in the majority (>75%) of
subjects.

Cortical

Bilateral cortical regions that demonstrated strong connectivity to
the entire ipsilateral STN across subjects were the precentral, medial
and superior frontal gyri. These are the regions in which the motor
and pre-motor areas reside, and include the origin of the hyperdirect
pathway fibres (Nambu et al., 1997). The tractography-cortical inter-
sections show clustered connections to these regions, which agrees
with current models of STN function. Additionally, two distinct clus-
ters within each insula were reliably identified across subjects, one
anterior and one posterior. A section through the cortex revealing
each insula is shown in Fig. 3, demonstrating the two clusters.
Table 2 provides a breakdown of bilateral STN ipsilateral cortical con-
nectivity. Though largely symmetric, asymmetrical projections (de-
fined as only being present in one hemisphere) were identified in
two regions with weak connections (33% of subjects); the temporal
pole on the left and the orbital gyrus on the right.

Cerebellum

There were no significant connections to any part of the cerebel-
lum that survived thresholding. The maximum connecting value in
arbitrary PICo units was 9.

Sub-parcellation of the STN

For each STN a whole brain binary connectivity matrix was gener-
ated and correlated using the described methods. An example elbow
plot for the repeated clustering is shown in Fig. 4. It clearly demon-
strates that the “elbow” criterion occurs at three clusters, which cor-
responds to the optimal number of clusters within the data. This was
repeated over the 24 STN volumes. The majority (58%) had an opti-
mal cluster number of three (17% =2, 13% =4, 8% =15, 4% =38). This
agrees with animal data in which three functional sub-territories of
the STN are well described. Each of the sub-clusters (anterior, middle
and posterior), were reliably identified bilaterally in all subjects. The
sub-segmented image (Fig. 5) was produced by defining regions pre-
sent in >25% at a group level, and in the resulting image each voxel
was labelled according to maximal probability. These images corre-
spond well to the human projection of monkey data shown in
Yelnik et al. (2007).



C. Lambert et al. / Neurolmage 60 (2012) 83-94 89

Elbow Plot Analysis of Subthalamic Dataset
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Fig. 4. Example elbow plot demonstrating optimal cluster number given probabilistic
tractography data for a single STN. Clear “elbow” shown at n=3 clusters.

Division of functional zones

Cortical and subcortical connectivity results were recalculated at
an individual subject level as previously described. Two methods
were used to analyse the sub-segmented regions. First, the subcortical
regions were hard-segmented into functional zones based on maxi-
mal probability of connection to the corresponding STN cluster.
These results are shown in the Supplementary Material 3. Second,
overlap with the group-averaged regions was examined as shown in
Fig. 6.

Subcortical

STN regions separated into two distinctive networks correspond-
ing to the anterior and posterior clusters. The anterior network had
unique clusters in the baso-lateral nucleus of the amygdala, anterior
hippocampi, posterior-medial GPi, mid GPe and anterior thalamic nu-
clei. These regions support the hypothesis that the anterior STN is
predominately a limbic structure (Kogan and Richter-Levin, 2008;
Smith et al., 2004; Yelnik et al., 2007) in agreement with the animal
literature (Hamani et al., 2004). Limbic connections were also found
in the ventro-lateral thalamus which is a motor region, however
this may represent a limbic-motor interface and will be considered
further in the discussion. Smaller, bilateral clusters were also present
in the mid-putamen region. The cluster size within the anterior “lim-
bic” network was asymmetric, with larger clusters present (at 25%
threshold) on the left particularly in the GPi (left — 187 mm?> vs
right — 10 mm?), GPe (843 mm? vs 453 mm?) and the amygdala
(158 mm> vs 82 mm?). Though direct amygdalo-STN connectivity
has not been previously demonstrated, a portion of the ventral amyg-
dalofugal pathway passes around and through the STN without ter-
minating (Price and Amaral, 1981), which would account for the
observed result. Additionally the parasubthalamic nucleus receives

both afferents and efferents from the amygdala (Goto and Swanson,
2004), however a homologous structure has not yet been shown to
exist in primates.

Conversely, the posterior network had large, distinctive clusters in
the posterior third of the putamen and GPe, mid tail of the caudate
nucleus, posterior end of the hippocampi and the ventrolateral nuclei
of the thalamus. These regions have been previously defined as motor
regions (Draganski et al., 2008; McFarland and Haber, 2000; Yelnik et
al., 2007) and support the hypothesis that the posterior STN belongs
to a motor network. The remaining central “associative” cluster
shared common features with both limbic and motor networks. Anal-
ysis of the overlap regions highlights this, showing a gradient from
purely limbic regions to purely motor regions with the defined asso-
ciative network being found between these in the GPe, putamen and
thalamus (Fig. 6 and Supplementary Material 5). Additionally, struc-
tures receiving purely limbic projections (anterior hippocampus,
amygdala and GPi) also have small contributions from the associative
projections, as do purely motor regions (posterior putamen, caudate
nucleus and posterior hippocampus).

Cortical

Most cortical regions possessed some projections to all the STN
sub-zones. One region where distinct separation was found was the
insula bilaterally, with a predominately motor zone found posteriorly
and limbic zone found anteriorly, again more prominently on the left.
To disentangle the regional STN cortical connectivity within cortical
regions, each voxel was assigned to one of the seven overlap classes.
Each region was then described according to the proportion of each
type of voxel classification within that area (see Fig. 6 legend). The
majority of connecting cortical regions were found to receive contri-
butions from all STN subregions, but with different proportions of
each type (summarised in Supplementary Material 4). In most re-
gions the dominant connection is motor and motor-associative. Bilat-
eral symmetrical distributions of sub-region projections appear to be
present in few cortical regions. The most obvious exceptions are the
supramarginal gyrus and superior frontal sulcus. The limbic connec-
tions are more prominent in the left hemisphere except for the
middle-frontal gyrus, middle anterior cingulate and superior precen-
tral gyrus where there is right-sided dominance.

Discussion

Animal studies have demonstrated that the STN projects to a
broad array of sub-cortical (Hazrati and Parent, 1992; Kita and Kitai,
1987; Nauta and Cole, 1978) and cortical (Afsharpour, 1985; Degos
et al., 2008; Jackson and Crossman, 1981b) targets. These show strong
concordance with the current results. Histopathological primate stud-
ies (Karachi et al., 2005) have demonstrated STN subdivision into
three functional zones, named motor, limbic and associative due to
their overlap with the corresponding regions in other striatal struc-
tures (Karachi et al., 2005). Presented data based on non-invasive

Fig. 5. Rendering of group averaged sub-segmented STN regions. The voxel borders of the group were defined according to which cluster they were maximally assigned to across all
subjects. Anterior “limbic” cluster = red, middle “associative” cluster = green, posterior “motor” cluster = blue. Left lateral, superior and anterior views demonstrated above. The
relationship to group averaged renderings of the red nuclei (dark red) and substantia nigra (grey) are shown. Similar segmentation patterns were achieved on an individual subject

basis.
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Fig. 6. Overlap of group averaged projections from sub-segmented STN regions. Overlap regions are defined by group averaged tractography distributions in standard space for each
STN subregion, and then classifying each ROI brain voxel according to the combination of these average distributions that is connected with it. This is summarised in the top left
legend. These demonstrate that the associative regions previously shown (Supplementary Material 2) represent an overlapping network between distinctive motor and limbic net-

works, sharing regions common to both.

anatomical connectivity supports this functional subdivision in humans,
and begins to elucidate the relationships between these regions.

Motor STN

The posterior aspect of the STN demonstrates connectivity with
targets consistent with a motor structure. Namely, these are the pos-
terior insula (Chikama et al., 1997; Flynn et al., 1999; Afif et al., 2010),
posterior putamen and GPe, mid-caudate nucleus and ventro-lateral
thalamic nuclei (Yelnik et al., 2007). Projections to the posterior GPi

were expected (Yelnik et al., 2007) but not found, but instead were
present in the associative and limbic portions of the STN. This may
be due to several factors, including misclassification of the posterior
GPi during manual segmentation, atlas differences (Morel, 2007) or
due to the anatomical arrangement of fibres. Some STN fibres exit via
its anterior-medial pole to reach GPi via ansa lenticularis (Marani et
al., 2008), whilst fibres of the subthalamic fasciculus reach the GPi by
crossing the internal capsule at right angles (Parent and Parent, 2004).
Both of these factors could contribute to produce the observed tracto-
graphy result. Pulse gating, higher angular resolution, or a higher b
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value may help resolve this (Behrens et al., 2007), especially if sub-
population sampling was used during the tractography.

Injury to the STN produces the rare clinical symptom of hemibal-
lismus, an involuntary, irregular flailing movement affecting the con-
tralateral limbs (Shannon 2005). STN ablation in primates reproduces
this symptom (Carpenter, 1955). However, it has also been described
following localised damage to other regions. Case reports detailing
non-STN hemiballismus demonstrate focal lesions affecting the pos-
terior insula (Etgen et al., 2003), posterior putamen, posterior GPe
(Posturma and Lang, 2003), and ventrolateral thalamus
(Schmahmann, 2003; Yoshikawa and Oda, 1999). These lesions over-
lap closely with motor STN projections (Fig. 7). This supports the hy-
pothesis that hemiballismus arises through interruption of STN
afferent and efferent projections, causing an imbalance between in-
hibitory and excitatory transmissions that modulate normal motor
control (Bhatia and Marsden, 1994).

Limbic STN

The anterior STN was found to project to the baso-lateral amygda-
la, inferio-mid putamen, mid-GPe and ventral-anterior thalamus.
These projections are consistent with a limbic structure (Kogan and
Richter-Levin, 2008; Smith et al., 2004). Evidence exists from patients
undergoing STN deep brain stimulation that further supports this
possibility. Mallet et al. (2007) report two cases of reproducible hypo-
mania arising from anterior STN stimulation. The acute effects of lim-
bic STN stimulation include spontaneous laughter and pathological
crying (Krack et al., 2001; Wojtecki et al., 2007). These are charac-
terised by marked motor responses and may explain why limbic pro-
jections were also found in the ventro-lateral thalamus. Other limbic
DBS effects such as elevated mood, cognitive and perceptual changes
manifest after prolonged (>12h) STN stimulation (Herzog et al.,
2003; Mallet et al., 2007; Mandat et al., 2006; Temel et al., 2005,
2006). This suggests that human STN DBS may modulate neural func-
tion by different methods including both short and long term mecha-
nisms of neuroplasticity (Destexhe and Marder, 2004).

Associative STN

There is sparse literature concerning the associative STN. The pro-
jections found in this study are consistent with the definition provid-
ed by Hamani et al. (2004). Further, the current study demonstrated
that the associative region projects to both limbic and motor path-
ways, providing a link between two distinct circuits, which may rep-
resent a functional gradient rather than distinct sub-regions with
clear cytoarchitectual boundaries (Karachi et al., 2005). Indeed, the

Etgen et al, 2003

.
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STN connections with the putamen, thalamus and GPe demonstrate
a distinctive functional topological gradient, which provides a mor-
phological correlate with the closed reciprocal, open non-reciprocal
spiral loops previously demonstrated in other parts of the basal gang-
lia (Haber, 2003; Haber et al., 2000) (Supplementary Material 5).

Topological functional arrangement of the STN

In this study, we have described the topological properties of STN
subdivisions and assigned them to a functional network based on the
patterns of connectivity. While this result is consistent with previous
descriptions (Joel and Weiner, 1997; Yelnik et al., 2007), it is also the
case that the STN connectivity patterns are complex. There are differ-
ent patterns between the efferent and afferent projections (Joel and
Weiner, 1997), in addition to several overlapping somatotopic repre-
sentations to cortical and subcortical regions (Joel and Weiner, 1997;
Nambu et al., 1996; Miyachi et al., 2006; Romanelli et al., 2005). The
current method used to parcellate the STN is based on quantifying
differences between tractography distributions, which represent the
sum total of afferents and efferents from a given voxel to all regions
(given the lack of information in DWI data regarding anatomical po-
larity). The more divergent the paths, the greater the measured dif-
ferences will be. This means subtle, overlapping, region dependent
somatotopy may well require either a much higher level of clustering
to detect or alternatively, a region selective analysis rather than the
global approach currently used. Our results bring strong evidence
that the somatotopic differences between the STN and other subcor-
tical regions that drive this segmentation. These are most similar to
the previously described pattern of afferent projections (Joel and
Weiner, 1997). Additionally, though we found evidence of a spatial-
gradient of connections particularly between the thalamus, GPe and
putamen, the presence of STN sub-region specific projections both
within these regions and also to the insula, caudate, amygdala and
hippocampus, indicates that specialised, closed networks do exist. It
may be the case that there are unique limbic and motor STN zones,
and that the associative zone represents an overlapping, somatotopi-
cally arranged transition between the two. This would provide an an-
atomical substrate for communication between two distinctive closed
networks similar to the spiral loops that have previously been de-
scribed for nigro-striatal pathways (Haber, 2003; Haber et al., 2000).

STN-hippocampal connectivity
The STN-hippocampal connectivity reported in this study is un-

precedented, which may be due to a combination of reasons. We ob-
served well-circumscribed clusters that could be missed in lesion

Postuma & Lang, 2003  Yoshikawa & Oda, 1999

Fig. 7. Overlap between published isolated lesions causing non-STN hemiballismus (top row) and motor-STN projections defined in the current study (bottom row). Top row im-
ages reproduced with kind permission from Springer Science and Business Media (left) and Elsevier (centre and right) and with the corresponding authors' permission.


image of Fig.�7

92 C. Lambert et al. / Neurolmage 60 (2012) 83-94

studies, a previously noted problem in the hippocampus (Chronister
et al., 1975; Sikes et al., 1977). Afferents to the hippocampus have
been reported from the nearby zona incerta, ventral tegmental area,
substantia nigra, pedunculopontine nucleus (PPN) (Amaral and
Cowan, 1980), parasubthalamic nucleus (Goto and Swanson, 2004)
and anterior thalamic nuclei (Von Gudden, 1881). Possibly, projection
fibres from these regions are closely associated with the STN (Jackson
and Crossman, 1981b) and for this reason were included in the trac-
tography results presented here. Acknowledging these potential con-
founders, the results remain noteworthy. Using blind parcellation of
the STN with no prior specification of “limbic” or “motor” structures,
we have shown connectivity to other regions consistent with these
divisions. Likewise, the hippocampi show a clear sub-division into
an anterior limbic/limbic associative region, and a posterior motor/
motor-associative region. This parcellation of the hippocampus has
anatomical validity. Primates and rodent studies demonstrate prefer-
ential posterior hippocampus involvement in spatial tasks (Colombo
et al., 1998; Moser and Moser, 1998; Moser et al., 1995), a finding rep-
licated in fMRI human studies (Burgess et al., 2002; Maguire et al.,
2000). The MNI coordinates within the centre of the motor-STN hip-
pocampal clusters ([31,-22,10],[-31,-28,-7]) are precisely where volu-
metric grey matter changes were demonstrated in experienced
London Taxi drivers (Maguire et al, 2000). A recent review
(Fanselow and Dong, 2010) proposed that ample evidence exists for
dividing the hippocampus into distinct zones; a posterio-superior
“cold” zone for locomotion and navigation; and anterior-inferior
“hot” zone for motivated and emotive behaviours. Although too
early to speculate whether the STN plays a role in hippocampal pro-
cessing, these findings do support an anterior-posterior functional
split within the hippocampus.

Comparison with previous studies

One previous study that formally examined tractography from the
STN was by Aravamuthan et al. (2007). However, there are several
methodological differences that make direct comparison difficult. In-
stead of examining global STN connectivity, they instead examined
for connections that were strongly implicated in STN connectivity,
namely the motor and pre-motor cortices. In this regard our results
are consistent with their findings, and build upon them by examining
all cortical and sub-cortical regions. Additionally, they specifically ex-
amined for motor somatotopy, which we cannot comment on in this
current study. However, the most important distinction is the selec-
tion of seed voxels. In this current study, considerable effort was
taken to directly visualise and define all the voxels falling within
the STN. In contrast, Aravamuthan et al. defined a single voxel based
on surrounding landmarks that they were confident fell within the
STN. The presence of cerebellar connections, which were absent in
this study and second order connections via the pontine nuclei
(Bostan et al., 2010), indicate that perhaps some of their STN seeds
additionally sampled the nearby fasciculus cerebellothalamicus
(Astrom et al., 2010; Gallay et al., 2008).

Surgical implications

STN DBS is increasingly used in the treatment of movement disor-
ders, predominately for the motor symptoms of Parkinson's disease.
The sensorimotor region of the STN has been reported as the optimal
stimulation site (Lanotte et al., 2002; Romanelli et al., 2005; Voges et
al., 2002). However, STN DBS is not infrequently associated with ad-
verse events, predominately cognitive and neuropsychiatric compli-
cations, speech problems and balance disturbances (Hariz et al.,
2008). Whilst these could represent advancing Parkinson's disease,
it is thought that a proportion result from stimulation of unwanted
fibre pathways, e.g. speech disturbance due to stimulation of the cer-
bellothalamic fasciculus (Astrom et al., 2010; Tripoliti et al., 2008).

The current study provides evidence that the human STN can be
segmented on neuroimaging in vivo into its three functional zones.
This segmentation was demonstrated in individual subjects (Supple-
mentary Material 6) as well as across subjects. Replication in patients
with basal ganglia pathology may provide prognostic information
with regard to response to STN DBS. Additionally, such connectivity
maps could conceivably play a role in image-based targeting of the
motor portion of the STN, particularly when combined with T2* se-
quences optimised specifically for visualising the STN to make identi-
fication and delineation of the nucleus more accurate.

Methodological limitations and considerations

This study is not without limitations, which must be taken into
consideration when interpreting the results. First, probabilistic trac-
tography is, as the name implies, a probabilistic method. Seed and tar-
get region size, distance of tracking, regions with dense crossing
fibres, MRI artefact and noise will all affect the absolute PICo value
obtained and therefore certain regions that may be expected could
fall below the threshold and not be seen, or only occur in a few indi-
viduals. For this reason, we report both “weak” and “strong” connec-
tivity values. Second, it is not possible to determine the direction of
connections using DT, rather they represent the sum total of both af-
ferents and efferents. As such, it is not possible to place the current
framework in terms of direct, indirect and hyperdirect loops. Instead,
this paper attempts to describe the spatial arrangement of the net-
work between subcortical structures and the STN, showing similar re-
sults to anatomical studies and supporting the concept of spiral loops
(Supplementary Material 4). Third, tractography relies on tracking
groups of axons by virtue of their anisotropy, hence disynaptic con-
nections via intermediary grey matter structures, such as those to
the cerebellum via the PPN (Bostan et al., 2010), are unlikely to be
seen. Additionally, this study visually assessed for the “elbow point”
which is a common approach (Young et al, 2006), however it
would be better to develop an objective measure to detect this
based on the rate of gradient descent. Finally identification of the
STN relies on the MRI contrast provided by the neuromelanin. It is
known that the iron content falls in the posteromedial aspect
(Dormont et al., 2004), and therefore this area may not be visible on
R2* weighted scans. However, our absolute STN volumes fall well
within the range of the previous studies (Dormont et al., 2004;
Hardman et al., 2002; Lange et al., 1976; Lévesque and Parent,
2005). Additionally, this study demonstrates high concordance with
previous animal studies, and also identifies limbic, associative and
motor networks based purely on their connections and the literature.
Though it is possible that the motor portion was underestimated,
these results suggest that three regions were reliably identified.
Though higher field strengths may help resolve this further, the addi-
tional advantage with this study is it was performed at a clinically rel-
evant, widely used MRI field strength and as such has the potential to
be utilised both in a hospital setting and by the broader research com-
munity. One future improvement will be to use T2* weighted se-
quences specifically optimised for imaging the STN, improving
structural identification of the most superior sensorimotor region.

Conclusion

In summary, this DWI study demonstrated the existence of three
distinct sub-regions within the human STN and provided detailed
analysis of both whole and sub-regional STN connectivity to cortical
and sub-cortical structures in vivo. Using connectivity data, we have
provided evidence that supports an anterior “limbic”, middle “asso-
ciative” and posterior “motor” STN existing in humans. Anatomical
precision was achieved by employing an automated segmentation ap-
proach for the majority of ROIs. The current gold standard for STN lo-
calization is direct manual identification and was employed in this
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study. These findings are novel in several aspects: First, the use of a data
driven method to independently determine optimal cluster number
within a region of interest, thereby confirming the existence of three
distinct regions within the STN. Second, STN was segmented into func-
tional sub-regions with corresponding cortical connectivity in vivo.

Our motivation for studying the STN was to provide a methodo-
logical framework with which to study both pathological processes
affecting this network, and also surgical consequences of deep brain
stimulator surgery. Conformation and replication of previous findings
in non-human primates provide strong supportive evidence for these
results, and substantiates the proposed framework.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.neuroimage.2011.11.082.

Acknowledgments

This work was supported by Wellcome Trust Grant 075696/Z/04/Z
(R.S.J.F, Sarah Tabrizi, J.A.). We thank all participants in our study and
the radiographers at the Functional Imaging Laboratory for their as-
sistance acquiring data. The Wellcome Trust Centre for Neuroimaging
is supported by core funding from the Wellcome Trust 091593/Z/10/
Z.

The work undertaken at UCL/UCLH and was partly funded by the De-
partment of Health NIHR Biomedical Research Centres funding scheme.
The Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen
Square, London is supported by the Parkinson's Appeal, the Edmond J.
Safra Philanthropic Foundation and the Monument Trust.

References

Afif, A, Minotti, L., Kahane, P., Hoffmann, D., 2010. Anatomofunctional organization of
the insular cortex: a study using intracerebral electrical stimulation in epileptic pa-
tients. Epilepsia 51 (11), 2305-2315.

Afsharpour, S., 1985. Topographical projections of the cerebral cortex to the subthala-
mic nucleus. J. Comp. Neurol. 236 (1), 14-28.

Amaral, D.G., Cowan, W.M., 1980. Subcortical afferents to the hippocampal formation
in the monkey. J. Comp. Neurol. 189 (4), 573-591.

Aravamuthan, B.R., Muthusamy, K.A,, Stein, ].F., Aziz, T.Z., Johansen-Berg, H., 2007. To-
pography of cortical and subcortical connections of the human pedunculopontine
and subthalamic nuclei. Neuroimage 37 (3), 694-705.

Aron, AR, Behrens, T.E., Smith, S., Frank, M.J., Poldrack, R.A., 2007. Triangulating a cog-
nitive control network using diffusion-weighted magnetic resonance imaging
(MRI) and functional MRI. J. Neurosci. 27 (14), 3743-3752.

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. Neuroimage 38
(1), 95-113.

Ashburner, ]., Friston, KJ., 2005. Unified segmentation. Neuroimage 26 (3), 839-851.

Ashkan, K., Blomstedt, P., Zrinzo, L., Tisch, S., Yousry, T., Limousin-Dowsey, P., Hariz,
M.L, 2007. Variability of the subthalamic nucleus: the case for direct MRI guided
targeting. Br. J. Neurosurg. 21 (2), 197-200.

Astrom, M., Tripoliti, E., Hariz, MLL, Zrinzo, L.U., Martinez-Torres, I, Limousin, P., Wardell, K.,
2010. Patient-specific model-based investigation of speech intelligibility and move-
ment during deep brain stimulation. Stereotact. Funct. Neurosurg. 88 (4), 224-233.

Behrens, T.E., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S.,
Matthews, P.M., Brady, .M., Smith, S.M., 2003. Characterization and propagation
of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50 (5),
1077-1088.

Behrens, T.E., Berg, HJ., Jbabdi, S., Rushworth, M.F.,, Woolrich, M.W., 2007. Probabilistic
diffusion tractography with multiple fibre orientations: what can we gain? Neuro-
image 34 (1), 144-155.

Belekhova, M.G., 1991. Geniculo- and subthalamohypothalamic connections in the liz-
ard: HRP study. J. Hirnforsch. 32 (1), 55-59.

Bhatia, K.P., Marsden, C.D., 1994. The behavioural and motor consequences of focal le-
sions of the basal ganglia in man. Brain 117 (4), 859.

Bostan, A.C., Dum, R.P., Strick, P.L., 2010. The basal ganglia communicate with the cer-
ebellum. Proc. Natl. Acad. Sci. U. S. A. 107 (18), 8452-8456.

Brauth, S.E., Ferguson, J.L., Kitt, C.A., 1978. Prosencephalic pathways related to the
paleostriatum of the pigeon (Columba livia). Brain Res. 147 (2), 205-221.

Burgess, N., Maguire, E.A., O'Keefe, J., 2002. The human hippocampus and spatial and
episodic memory. Neuron 35 (4), 625-641.

Carpenter, M.B., 1955. Ballism associated with partial destruction of the subthalamic
nucleus of luys. Neurology 5 (7), 479-489.

Chikama, M., McFarland, N.R., Amaral, D.G., Haber, S.N., 1997. Insular cortical projec-
tions to functional regions of the striatum correlate with cortical cytoarchitectonic
organization in the primate. J. Neurosci. 17 (24), 9686-9705.

Chronister, Sikes, White, 1975. Postcommisural fornix: origin and distribution in the
rodent. Neurosci. Lett. 1, 199-202.

Colombo, M., Fernandez, T., Nakamura, K., Gross, C.G., 1998. Functional differentiation
along the anterior—posterior axis of the hippocampus in monkeys. J. Neurophysiol.
80 (2), 1002-1005.

Degos, B., Deniau, J.M., Le Cam, J., Mailly, P., Maurice, N., 2008. Evidence for a direct
subthalamo-cortical loop circuit in the rat. Eur. J. Neurosci. 27 (10), 2599-2610.

Deichmann, R., 2006. Fast structural brain imaging using an MDEFT sequence with a
FLASH-EPI hybrid readout. Neuroimage 33 (4), 1066-1071.

Destexhe, A., Marder, E., 2004. Plasticity in single neuron and circuit computations. Na-
ture 431 (7010), 789-795.

Destrieux, C,, Fischl, B., Dale, A., Halgren, E., 2010. Automatic parcellation of human cortical
gyri and sulci using standard anatomical nomenclature. Neuroimage 53 (1), 1-15.

Diedrichsen, J., 2006. A spatially unbiased atlas template of the human cerebellum.
Neuroimage 33 (1), 127-138.

Diedrichsen, ]J., Balsters, ].H., Flavell, J., Cussans, E., Ramnani, N., 2009. A probabilistic
MR atlas of the human cerebellum. Neuroimage 46 (1), 39-46.

Dormont, D., Ricciardi, K.G., Tandé, D., Parain, K., Menuel, C., Galanaud, D., Navarro, S.,
Cornu, P., Agid, Y., Yelnik, J., 2004. Is the subthalamic nucleus hypointense on T2-
weighted images? A correlation study using MR imaging and stereotactic atlas
data. AJNR Am. J. Neuroradiol. 25 (9), 1516-1523.

Draganski, B., Kherif, F., KI6ppel, S., Cook, P.A., Alexander, D.C., Parker, G.J., Deichmann,
R., Ashburner, ]., Frackowiak, R.S., 2008. Evidence for segregated and integrative
connectivity patterns in the human basal ganglia. ]. Neurosci. 28 (28), 7143-7152.

Dyrby, T.B., Segaard, L.\V., Parker, GJ., Alexander, D.C., Lind, N.M., Baaré, W.F.C,, Hay-
Schmidt, A., Eriksen, N., Pakkenberg, B., Paulson, O.B., 2007. Validation of in vitro
probabilistic tractography. Neuroimage 37 (4), 1267-1277.

Etgen, T., Winbeck, K., Conrad, B., Sander, D., 2003. Hemiballism with insular infarction
as first manifestation of Takayasu's arteritis in association with chronic hepatitis B.
J. Neurol. 250 (2), 226-229.

Fanselow, M.S., Dong, H.W., 2010. Are the dorsal and ventral hippocampus functionally
distinct structures? Neuron 65 (1), 7-19.

Fischl, B., Salat, D.H., van der Kouwe, A.J., Makris, N., Ségonne, F., Quinn, B.T., Dale, A.M.,
2004. Sequence-independent segmentation of magnetic resonance images. Neuro-
image 23 (Suppl. 1), S69-584.

Flynn, F.G., Benson, D.F,, Ardila, A., 1999. Anatomy of the insula functional and clinical
correlates. Aphasiology 13 (1), 55-78.

Gallay, M.N,, Jeanmonod, D., Liu, J., Morel, A., 2008. Human pallidothalamic and cere-
bellothalamic tracts: anatomical basis for functional stereotactic neurosurgery.
Brain Struct. Funct. 212 (6), 443-463.

Goto, M., Swanson, L.W., 2004. Axonal projections from the parasubthalamic nucleus. J.
Comp. Neurol. 469 (4), 581-607.

Griswold, M.A,, Jakob, P.M., Heidemann, R.M,, Nittka, M, Jellus, V., Wang, J., Kiefer, B,
Haase, A., 2002. Generalized autocalibrating partially parallel acquisitions (GRAPPA).
Magnetic resonance in medicine: official journal of the Society of Magnetic Reso-
nance in Medicine/Society of Magnetic Resonance in Medicine 47 (6), 1202-1210.

Haber, S.N., 2003. The primate basal ganglia: parallel and integrative networks. J. Chem.
Neuroanat. 26 (4), 317-330.

Haber, S.N., Fudge, ].L., McFarland, N.R., 2000. Striatonigrostriatal pathways in primates
form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20
(6), 2369-2382.

Hamani, C,, Saint-Cyr, J.A., Fraser, J., Kaplitt, M., Lozano, A.M., 2004. The subthalamic
nucleus in the context of movement disorders. Brain 127 (Pt 1), 4-20.

Hardman, C.D., Halliday, G.M., McRitchie, D.A., Morris, ].G.L,, 1997. The subthalamic nu-
cleus in Parkinson's disease and progressive supranuclear palsy. J. Neuropathol.
Exp. Neurol. 56 (2), 132.

Hardman, C.D., Henderson, J.M., Finkelstein, D.I, Horne, M.K., Paxinos, G., Halliday,
G.M., 2002. Comparison of the basal ganglia in rats, marmosets, macaques, ba-
boons, and humans: volume and neuronal number for the output, internal relay,
and striatal modulating nuclei. J. Comp. Neurol. 445 (3), 238-255.

Hariz, M.L, Krack, P., Melvill, R., Jorgensen, ].V., Hamel, W., Hirabayashi, H., Lenders, M.,
Wesslen, N., Tengvar, M., Yousry, T.A., 2003. A quick and universal method for stereo-
tactic visualization of the subthalamic nucleus before and after implantation of deep
brain stimulation electrodes. Stereotact. Funct. Neurosurg. 80 (1-4), 96-101.

Hariz, M.L, Rehncrona, S., Quinn, N.P., Speelman, J.D., Wensing, C., 2008. Multicenter
study on deep brain stimulation in Parkinson's disease: an independent assess-
ment of reported adverse events at 4 years. Mov. Disord. 23 (3), 416-421.

Hazrati, L.N., Parent, A., 1992. Differential patterns of arborization of striatal and subthala-
mic fibers in the two pallidal segments in primates. Brain Res. 598 (1-2), 311-315.

Helms, G., Dathe, H., Kallenberg, K., Dechent, P., 2008. High-resolution maps of magne-
tization transfer with inherent correction for RF inhomogeneity and T1 relaxation
obtained from 3D FLASH MRI. Magn. Reson. Med. 60 (6), 1396-1407.

Herzog, J., Reiff, J., Krack, P., Witt, K., Schrader, B., Miiller, D., Deuschl, G., 2003. Manic
episode with psychotic symptoms induced by subthalamic nucleus stimulation in
a patient with Parkinson's disease. Mov. Disord. 18 (11), 1382-1384.

Jackson, Crossman, 1981a. Subtalamic nucleus efferent projection to the cerebral cor-
tex. Neuroscience 6 (11), 2367-2377.

Jackson, A., Crossman, A.R., 1981b. Subthalamic nucleus efferent projection to the cere-
bral cortex. Neuroscience 6 (11), 2367-2377.

Jansons, K.M., Alexander, D.C., 2003. Persistent angular structure: new insights from
diffusion magnetic resonance imaging data. Inverse Problems 19, 1031.

Joel, D., Weiner, 1., 1997. The connections of the primate subthalamic nucleus: indirect
pathways and the open-interconnected scheme of basal ganglia-thalamocortical
circuitry. Brain Res. Brain Res. Rev. 23 (1-2), 62-78.

Johansen-Berg, H., Behrens, T.E., Sillery, E., Ciccarelli, O., Thompson, AJ., Smith, S.M.,
Matthews, P.M., 2005. Functional-anatomical validation and individual variation
of diffusion tractography-based segmentation of the human thalamus. Cereb. Cor-
tex 15 (1), 31-39.



94 C. Lambert et al. / Neurolmage 60 (2012) 83-94

Karachi, C,, Yelnik, J., Tandé, D., Tremblay, L., Hirsch, E.C., Francois, C., 2005. The pallido-
subthalamic projection: an anatomical substrate for nonmotor functions of the
subthalamic nucleus in primates. Mov. Disord. 20 (2), 172-180.

Kita, H., Kitai, S.T., 1987. Efferent projections of the subthalamic nucleus in the rat:
Light and electron microscopic analysis with the PHA-L method. ]. Comp. Neurol.
260 (3), 435-452.

Klein, J.C., Behrens, T.E., Robson, M.D., Mackay, C.E., Higham, D ., Johansen-Berg, H.,
2007. Connectivity-based parcellation of human cortex using diffusion MRI: estab-
lishing reproducibility, validity and observer independence in BA 44/45 and SMA/
pre-SMA. Neuroimage 34 (1), 204-211.

Kogan, I, Richter-Levin, G., 2008. Activation pattern of the limbic system following spa-
tial learning under stress. Eur. J. Neurosci. 27 (3), 715-722.

Krack, P., Kumar, R., Ardouin, C., Dowsey, P.L., McVicker, ].M., Benabid, A.L., Pollak, P.,
2001. Mirthful laughter induced by subthalamic nucleus stimulation. Mov. Disord.
16 (5), 867-875.

Krzywinski, M., Schein, ]., Birol, 1., Connors, ]., Gascoyne, R., Horsman, D., Jones, SJ.,
Marra, M.A., 2009. Circos: an information aesthetic for comparative genomics. Ge-
nome Res. 19 (9), 1639-1645.

Lange, H., Thorner, G., Hopf, A., 1976. Morphometric-statistical structure analysis of
human striatum, pallidum and nucleus su-thalamicus. Ill. Nucleus subthalamicus.
J. Hirnforsch. 17 (1), 31-41.

Lanotte, M.M., Rizzone, M., Bergamasco, B., Faccani, G., Melcarne, A., Lopiano, L., 2002.
Deep brain stimulation of the subthalamic nucleus: anatomical, neurophysiologi-
cal, and outcome correlations with the effects of stimulation. ]. Neurol. Neurosurg.
Psychiatry 72 (1), 53-58.

Lévesque, ].C., Parent, A., 2005. GABAergic interneurons in human subthalamic nucleus.
Mov. Disord. 20 (5), 574-584.

Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., Benabid, A.L.,
1998. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's
disease. N. Engl. J. Med. 339 (16), 1105-1111.

Lutti, A., Hutton, C., Finsterbusch, J., Helms, G., Weiskopf, N., 2010. Optimization and
validation of methods for mapping of the radiofrequency transmit field at 3T.
Magn. Reson. Med. 64 (1), 229-238.

Luys, J.B., 1865. Recherches sur le systéme nerveux cérébro-spinal text. Bailliére.

L'vovich, AL, 1978. Connections between the globus pallidus and putamen and the hy-
pothalamus and subthalamus. Arkh. Anat. Gistol. Embriol. 74 (5), 35-41.

Maguire, E.A., Gadian, D.G., Johnsrude, LS., Good, C.D., Ashburner, J., Frackowiak, R.S.,
Frith, C.D., 2000. Navigation-related structural change in the hippocampi of taxi
drivers. Proc. Natl. Acad. Sci. U. S. A. 97 (8), 4398-4403.

Makoev, V.U., 1981. Thalamic and cortical connections of the globus pallidus in the cat.
Arkh. Anat. Gistol. Embriol. 80 (6), 5-11.

Mallet, L., Schiipbach, M., N'Diaye, K., Remy, P., Bardinet, E., Czernecki, V., Welter, M.L.,
Pelissolo, A., Ruberg, M., Agid, Y., Yelnik, J., 2007. Stimulation of subterritories of
the subthalamic nucleus reveals its role in the integration of the emotional and
motor aspects of behavior. Proc. Natl. Acad. Sci. U. S. A. 104 (25), 10661-10666.

Mallet, L., Polosan, M., Jaafari, N., Baup, N., Welter, M.L., Fontaine, D., du Montcel, S.T.,
Yelnik, J., Chéreau, 1., Arbus, C., STOC Study Group (2008), 2008. Subthalamic nu-
cleus stimulation in severe obsessive-compulsive disorder. N. Engl. J. Med. 359
(20), 2121-2134.

Mandat, T.S., Hurwitz, T., Honey, C.R., 2006. Hypomania as an adverse effect of subtha-
lamic nucleus stimulation: report of two cases. Acta Neurochir. 148 (8), 895-898.

Marani, E., Heida, T., Lakke, E.AJ.F., Usunoff, K.G., 2008. The Subthalamic Nucleus: De-
velopment, Cytology, Topography and Connections. Springer Verlag.

Martinez-Marcos, A., Lanuza, E., Font, C,, Martinez-Garcia, F., 1999. Afferents to the red
nucleus in the lizard Podarcis hispanica: putative pathways for visuomotor inte-
gration. J. Comp. Neurol. 411 (1), 35-55.

Martinez-Torres, L., Hariz, ML, Zrinzo, L., Foltynie, T., Limousin, P., 2009. Improvement
of tics after subthalamic nucleus deep brain stimulation. Neurology 72 (20), 1787.

Mascaro, M.B., Prosdécimi, F.C., Bittencourt, J.C., Elias, C.F., 2009. Forebrain projections
to brainstem nuclei involved in the control of mandibular movements in rats. Eur.
J. Oral Sci. 117 (6), 676-684.

McFarland, N.R., Haber, S.N., 2000. Convergent inputs from thalamic motor nuclei and frontal
cortical areas to the dorsal striatum in the primate. J. Neurosci. 20 (10), 3798-3813.
Miyachi, S., Lu, X., Imanishi, M., Sawada, K., Nambu, A., Takada, M., 2006. Somatotopi-
cally arranged inputs from putamen and subthalamic nucleus to primary motor

cortex. Neurosci. Res. 56 (3), 300-308.

Morel, A., 2007. Stereotactic atlas of the human thalamus and basal ganglia. Informa
Healthcare.

Moser, M.B., Moser, E.I, 1998. Distributed encoding and retrieval of spatial memory in
the hippocampus. J. Neurosci. 18 (18), 7535-7542.

Moser, M.B., Moser, E.L, Forrest, E., Andersen, P., Morris, R.G., 1995. Spatial learning with a
minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. U. S. A. 92 (21), 9697-9701.

Naidich, T.P., Duvernoy, H.M., Delman, B.N., Sorensen, A.G., Kollias, S.S., Haacke, E.M.,
2009. Duvernoy's Atlas of the Human Brain Stem and Cerebellum: High-Field
MR, Surface Anatomy, Internal Structure, Vascularization and 3 D Sectional Anat-
omy. Springer Verlag.

Nambu, A., Takada, M., Inase, M., Tokuno, H., 1996. Dual somatotopical representations
in the primate subthalamic nucleus: evidence for ordered but reversed body-map
transformations from the primary motor cortex and the supplementary motor
area. J. Neurosci. 16 (8), 2671-2683.

Nambu, A., Tokuno, H., Inase, M., Takada, M., 1997. Corticosubthalamic input zones
from forelimb representations of the dorsal and ventral divisions of the premotor

cortex in the macaque monkey: comparison with the input zones from the primary
motor cortex and the supplementary motor area. Neurosci. Lett. 239 (1), 13-16.

Nambu, A., Tokuno, H., Takada, M., 2002. Functional significance of the cortico-
subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res. 43 (2), 111-117.

Nauta, H.J., Cole, M., 1974. Efferent projections of the subthalamic nucleus. Trans. Am.
Neurol. Assoc. 99, 170-173.

Nauta, HJ.W., Cole, M., 1978. Efferent projections of the subthalamic nucleus: an auto-
radiographic study in monkey and cat. ]. Comp. Neurol. 180 (1), 1-16.

Nauta, W.J., Domesick, V.B., 1984. Afferent and efferent relationships of the basal gang-
lia. Ciba Found. Symp. 107, 3-29.

Oleshko, N.N., 1985. Efferent connections of the caudate nucleus of the cat studied using ret-
rograde axonal transport of horseradish peroxidase. Neirofiziologiia 17 (4), 509-517.

Parent, A., Hazrati, L.N., 1995. Functional anatomy of the basal ganglia. Il. The place of
subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res.
Brain Res. Rev. 20 (1), 128-154.

Parent, M., Parent, A., 2004. The pallidofugal motor fiber system in primates. Parkin-
sonism Relat. Disord. 10 (4), 203-211.

Paxinos, G., Watson, C., 2007. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edi-
tion. Academic press.

Pierpaoli, C., Basser, PJ., 1996. Toward a quantitative assessment of diffusion anisotro-
py. Magn. Reson. Med. 36 (6), 893-906.

Posturma, R.B., Lang, A.E., 2003. Hemiballism: revisiting a classic disorder. Lancet Neu-
rol. 2 (11), 661-668.

Price, J.L., Amaral, D.G., 1981. An autoradiographic study of the projections of the cen-
tral nucleus of the monkey amygdala. J. Neurosci. 1 (11), 1242.

Romanelli, P., Esposito, V., Schaal, D.W., Heit, G., 2005. Somatotopy in the basal ganglia:
experimental and clinical evidence for segregated sensorimotor channels. Brain
Res. Brain Res. Rev. 48 (1), 112-128.

Saper, C.B., Loewy, A.D., 1982. Projections of the pedunculopontine tegmental nucleus in
the rat: evidence for additional extrapyramidal circuitry. Brain Res. 252 (2), 367-372.

Schmahmann, J.D., 2003. Vascular syndromes of the thalamus. Stroke 34 (9),
2264-2278.

Shannon, K.M., 2005. Hemiballismus. Current Treatment Options in Neurology 7 (3),
203-210.

Sikes, R.W., Chronister, R.B., White, L.E., 1977. Origin of the direct hippocampus-anteri-
or thalamic bundle in the rat: a combined horseradish peroxidase-Golgi analysis.
Exp. Neurol. 57 (2), 379-395.

Smith, Y., Raju, D.V,, Pare, J.F., Sidibe, M., 2004. The thalamostriatal system: a highly
specific network of the basal ganglia circuitry. Trends Neurosci. 27 (9), 520-527.

Sotnichenko, T.S., Istomina, L.A., 1984. Efferent connections of the centrum medianum
of the cat thalamus demonstrated by the autoradiographic technic. Neirofiziologiia
16 (2), 224-230.

Stancanello, J., Muacevic, A., Sebastiano, F., Modugno, N., Cerveri, P., Ferrigno, G.,
Uggeri, F., Romanelli, P., 2008. 3T MRI evaluation of the accuracy of atlas-based
subthalamic nucleus identification. Med. Phys. 35, 3069.

Temel, Y., Blokland, A, Steinbusch, HW., Visser-Vandewalle, V., 2005. The functional role of
the subthalamic nucleus in cognitive and limbic circuits. Prog. Neurobiol. 76 (6), 393-413.

Temel, Y., Kessels, A., Tan, S., Topdag, A., Boon, P., Visser-Vandewalle, V., 2006. Beha-
vioural changes after bilateral subthalamic stimulation in advanced Parkinson dis-
ease: a systematic review. Parkinsonism Relat. Disord. 12 (5), 265-272.

Timm, N.H., 2002. Applied Multivariate Analysis. Springer Verlag.

Tribl, F., Asan, E., Arzberger, T., Tatschner, T., Langenfeld, E., Meyer, H.E., Bringmann, G.,
Riederer, P., Gerlach, M., Marcus, K., 2009. Identification of L-ferritin in neuromela-
nin granules of the human substantia nigra: a targeted proteomics approach. Mol.
Cell. Proteomics 8 (8), 1832-1838.

Tripoliti, E., Zrinzo, L., Martinez-Torres, I, Tisch, S., Frost, E., Borrell, E., Hariz, M.L,, Lim-
ousin, P., 2008. Effects of contact location and voltage amplitude on speech and
movement in bilateral subthalamic nucleus deep brain stimulation. Mov. Disord.
23 (16), 2377-2383.

Voges, ]., Volkmann, J., Allert, N., Lehrke, R., Koulousakis, A., Freund, HJ., Sturm, V.,
2002. Bilateral high-frequency stimulation in the subthalamic nucleus for the
treatment of Parkinson disease: correlation of therapeutic effect with anatomical
electrode position. ]. Neurosurg. 96 (2), 269-279.

Von Gudden, B., 1881. Beitrag zur Kenntniss des Corpus mamillare und der sogenann-
ten Schenkel des Fornix. Arch. Psychiat. Nervenkr. 11, 428-452.

Wojtecki, L., Nickel, J., Timmermann, L., Maarouf, M., Stidmeyer, M., Schneider, F., Seitz,
RJ., Voges, J., Sturm, V., Schnitzler, A., 2007. Pathological crying induced by deep
brain stimulation. Mov. Disord. 22 (9), 1314-1316.

Yelnik, J., Bardinet, E., Dormont, D., Malandain, G., Ourselin, S., Tandé, D., Karachi, C.,
Ayache, N., Cornu, P., Agid, Y., 2007. A three-dimensional, histological and deform-
able atlas of the human basal ganglia. I. Atlas construction based on immunohisto-
chemical and MRI data. Neuroimage 34 (2), 618-638.

Yoshikawa, H., Oda, Y., 1999. Hemiballismus associated with Influenza A infection.
Brain Dev. 21 (2), 132-134.

Young, F.W., Valero-Mora, P., Friendly, M., 2006. Visual Statistics: Seeing Data with Dy-
namic Interactive Graphics. Wiley-Blackwell.

Yushkevich, P.A,, Piven, J., Hazlett, H.C,, Smith, R.G., Ho, S., Gee, ].C,, Gerig, G., 2006.
User-guided 3D active contour segmentation of anatomical structures: significant-
ly improved efficiency and reliability. Neuroimage 31 (3), 1116-1128.

Zecca, L., Zucca, F.A,, Wilms, H., Sulzer, D., 2003. Neuromelanin of the substantia nigra:
a neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26
(11), 578-580.



	Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging
	Introduction
	Methods
	Subjects
	Image acquisition
	Diffusion preprocessing
	Brain parcellation
	STN identification
	Probabilistic tractography
	Analysis
	Literature review
	Seed connectivity
	STN sub-segmentation
	Visualisation of results

	Results
	STN Volume
	Literature review
	Global cortical connectivity pattern
	Subcortical
	Cortical
	Cerebellum

	Sub-parcellation of the STN
	Division of functional zones
	Subcortical
	Cortical


	Discussion
	Motor STN
	Limbic STN
	Associative STN
	Topological functional arrangement of the STN
	STN-hippocampal connectivity
	Comparison with previous studies
	Surgical implications
	Methodological limitations and considerations

	Conclusion
	Acknowledgments
	References


