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Abstract 

The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in 

dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT 

dysfunction has been involved in different neuro-psychiatric disorders including Parkinson’s disease 

(PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor 

(GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF 

over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) 

decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, 

may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is 

induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was 

investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral 

vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 

0.03, 0.5 and 3 mg/ml) in the drinking water during 5 weeks. We found that 3mg/ml DOX promotes 

an increase in striatal GDNF expression of 12x basal GDNF levels and both DA uptake decrease and 

TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5 mg/ml DOX 

promotes a GDNF expression increase of 3x basal GDNF levels with DA uptake decrease but not TH 

down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation 

and in situ proximity ligation assay revealed that the DA uptake decrease is associated with formation 

of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT 

levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA 

uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis. 

Key words: dopamine transporter, tyrosine hydroxylase, GDNF, inducible adeno-associated viral 

vectors, Parkinson's disease. 
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Introduction 

The uptake of dopamine (DA) into presynaptic terminals is the primary mechanism controlling 

the duration and intensity of DA signaling in post- and presynaptic DA receptors (Giros et al., 1996). 

The DA transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) 

cells, responsible for DA uptake through a Na
+
/Cl

-
-coupled cotransport mechanism (Giros and Caron,

1993; Freed et al., 1995). DAT dysfunction has been involved in a number of neuro-psychiatric 

disorders, including Parkinson’s disease (PD) (Le Couteur et al., 1997; Bezard et al., 1999; Storch et 

al., 2004). Taking into account that oxidative stress plays a central role in the pathogenesis of PD, 

that DA metabolism is the main source of reactive oxygen species in DA-cells, and that the cytosolic 

content in DA depends mostly on the DA uptake (Bannon, 2005), DAT activity has been involved in 

DA-cell degeneration in PD. This idea is supported on the fact that midbrain DA-cells showing high 

susceptibility to degeneration contain higher levels of DAT mRNA and glycosylated (functional) 

DAT protein than those showing resistance (Uhl et al., 1994; Afonso-Oramas et al., 2009). Moreover, 

DAT transports natural and synthetic DA analogue neurotoxins, and its blockade or deficient 

expression makes DA-cells resistant to these neurotoxins (Bezard et al., 1999; Schober, 2004; 

Afonso-Oramas et al., 2010).  

DAT is acutely regulated by different factors including extracellular DA levels, DA 

autoreceptors, and interactions with presynaptic proteins such as α-synuclein, protein kinases and 

phosphatases which promote either its trafficking to the plasma membrane and activity or its 

internalization (Mortensen and Amara, 2003; Wersinger and Sidhu, 2003; Miranda and Sorkin, 2007; 

Eriksen et al., 2010; Foster et al., 2012). On the other hand, phenotypic and functional properties of 

DA-cells, including DA transport, are maintained by different neurotrophic factors (Alexi et al., 

2000; Pascual et al., 2008; Apawu et al., 2013). Particular interest has been focused on the glial cell 

line-derived neurotrophic factor (GDNF). In vitro and in vivo experiments show that besides 

protecting DA-cells against different neurotoxins (Kirik et al., 2004; Garbayo et al., 2011), GDNF 

promotes tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) expression and DA 

release, turnover and uptake (Lin et al., 1993; Salvatore et al., 2004; Yang et al., 2009). Based on 

these findings, GDNF was proposed as a hopeful neuroprotective therapy in PD. However, further 

studies in rodents revealed that prolonged GDNF release may lead to TH down-regulation 

(Rosenblad et al., 2003; Georgievska et al., 2004), probably as a consequence of the elevated DA 

turnover induced by excessive GDNF over-expression (Rosenblad et al., 2003; Sajadi et al., 2005). 

So, it is possible that other players in DA handling are affected by sustained GDNF treatment. Given 

the role of DAT in DA handling and in the pathogenesis of PD, here we investigated whether DAT is 
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also regulated by prolonged GDNF treatment, and more important, if DAT may be regulated without 

affecting TH expression. Taking advantage of the fact that regulatable viral vectors allow a fine 

control of target gene expression through external inducers (Goverdhana et al., 2005; Chtarto et al., 

2013), experiments here were based on intrastriatal injections of a tetracycline-inducible adeno-

associated viral vector expressing human GDNF cDNA and treatment with different doses of 

doxycycline in rats.   

Material and methods 

Plasmids 

The pAC1-M2 plasmid comprising AAV ITRs bracketing the bidirectional tetracycline-responsive 

cassette expressing both rtTAM2 and EGFP has been previously described (Chtarto et al., 2007). To 

obtain pAC1-V16, the rtTA transactivator of pAC1 (Chtarto et al., 2003) was replaced by rtTAV16, a 

rtTA mutant selected in the presence of a low doxycycline dose (Zhou et al., 2006). The human 

GDNF cDNA (hGDNF) was introduced in this autoregulatory tetracycline inducible vector at the 5’ 

end of the bi-directional tetracycline promoter (ptetbidiON). 

Viral production 

To produce recombinant AAV2/1 viral stocks, HEK-293T cells (5.0 x 10
6
 cells per 10 cm plates)

were cotransfected, in a 1:1 molar ratio, with the vector plasmid (3 μg/ plate) together with the 

helper/packaging plasmid pD1rs (10 μg/ plate) expressing the AAV viral genes (rep gene from AAV 

serotype 2 and cap gene from AAV serotype 1) and the adenoviral genes required for AAV 

replication and encapsidation (Plasmid Factory, Heidelberg, Germany). Fifty hours post-transfection, 

the medium was discarded and the cells were harvested by low-speed centrifugation and resuspended 

in Tris pH 8.0, NaCl 0.1 M. After three cycles of freezing/thawing, the lysate was clarified by 30 min 

centrifugation at 10 000 g, treated with benzonase (50 units/ml, Sigma, St Louis, MO) at 37°C for 

30 min, and centrifuged at 10 000 g for 30 min to eliminate the residual debris. The virus was further 

purified by iodixanol gradient according to a well-established method (Zolotukhin et al., 2002). Viral 

genomes (vg) were titrated by quantitative PCR as previously described (Lock et al., 2010).   

Animals 

The experiments were carried out on male Sprague–Dawley rats (300-350 g; Charles River, 

France). Rats were housed in groups of 3–4 per cage, in conditions of constant temperature (21–22 

°C), a 12 h light/ dark cycle, and given free access to food and water. Experimental protocols were 

approved by the Ethical Committee of the University of La Laguna (Reference # 091/010), and are in 
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accordance with the European Communities Council Directive of 22 September 2010 (2010/63/EU) 

regarding the care and use of animals for scientific purposes. 

Stereotaxic injections (David Kopf Instruments, Tujunga, CA) were performed under ketamine 

(Imalgene®, 100 mg/kg i.p.) and xylazine (Rompun®; 45 mg/kg, i.p.) anesthesia using a syringe 

(Hamilton 701N, Reno, N V) with a 26S gauge blunt-tip needle. Rats received 3 µl of a viral 

suspension of recombinant AAV2/1-V16-hGDNF (n =18) or AAV2/1-V16-EGFP (n=14), or vehicle 

(dulbecco's phosphate-buffered saline; BioWhittaker, Walkersville, MD, USA; n = 14) in the left 

striatum. Viral suspension (3.5x 10
11 

vg/ml) and vehicle were delivered in two deposits (1.5 µl each) 

0.7 mm apart along the same needle tract at a diffusion rate of 0.5 μl/min at the following 

coordinates: 0.5 mm rostral to bregma, 2.6 mm lateral to midline, and 5.2 mm (first deposit) and 4.5 

mm (second deposit) ventral from the skull surface (Paxinos and Watson, 1998). After injection, the 

needle was left in place for 5 min to allow diffusion of the viral suspension in the parenchyma and 

then slowly removed. Viral vector injected rats were treated with doxycycline (DOX) in the drinking 

water containing 3% sucrose at a concentration of 0.01, 0.03, 0.5 and 3 mg/ml since the injection day 

to the sacrifice. Animals were sacrificed by an overdose of sodium pentobarbital at 5 weeks after 

injection and the brains were removed and processed for morphological and biochemical analysis. A 

group of rats receiving 3 mg /ml DOX was maintained without DOX treatment for 20 additional days 

before sacrifice.  Experimental groups included at least 5 rats in each experiment. 

  

DAT antibodies 

 Several commercial anti-DAT antibodies against different fragments of human and rat DAT 

have been tested in our laboratory to determine their specificity and sensitivity. Brain samples of 

different mammalians and cells transfected with wild type and mutated DAT forms were processed 

for immunohistochemistry, western-blot and immunoprecipitation (see Alfonso-Oramas et al., 2009, 

2010; Cruz-Muros et al., 2009).  Taking into account the results of these tests, a goat anti-DAT 

polyclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) was used for western-blot, and a 

rabbit anti-DAT polyclonal antibody (Millipore, Billerica, MA) for immunoprecipitation. For the 

study of DAT-DAT interaction using in situ proximity ligation assays, the goat anti-DAT polyclonal 

antibody was combined with a rabbit anti-DAT polyclonal antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA). 

GDNF immunohistochemistry 
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Animals were transcardially perfused with heparinized ice-cold 0.9% saline followed by 4% 

paraformaldehyde in PBS, pH 7.4. The brains were removed, and the midbrain and forebrain blocks 

were stored in the same fixative at 4 °C overnight, cryoprotected in a graded series of sucrose–PBS 

solutions, and stored at −80 °C until processing. Coronal sections (30 µm) were obtained with a 

freezing microtome and collected in 6-8 parallel series. Floating sections were immersed for 30 

minutes in 3% H2O2 to inactivate endogenous peroxidase, and incubated for 60 minutes at RT in 4% 

normal donkey serum (NDS, Jackson ImmunoResearch, West Grove, PA) in PBS, containing 0.05% 

Triton X-100 (TX-100, Sigma), and overnight in PBS containing 2% NDS and a goat anti-GDNF 

polyclonal antibody (1:500; R&D Systems, Minneapolis, MN). After several rinses, sections were 

incubated for 2 h in biotinylated donkey anti-goat antiserum (1:1000, Jackson ImmunoResearch) and 

1:200 NDS in PBS. Immunoreactions were visible after incubation for 1 h at RT in ExtrAvidin-

peroxidase (1:5000, Sigma) in PBS, and after 10 minutes in 0.005% 3´-3´-diamiobenzidine 

tetrahydrochloride (DAB, Sigma) and 0.001% H2O2 in cacodylate buffer 0.05N pH 7.6.  

In situ proximity ligation assay (PLA) 

This technique is based on the use of oligonucleotide-conjugated antibodies, ligation of 

oligonucleotides by a bridging probe in a proximity-dependent manner, rolling-circle amplification, 

and visualization by complementary fluorescent probes (Söderberg et al., 2006). DAT-DAT 

interaction and DAT interactions with D2R and α-synuclein were studied using the Duolink II in situ 

PLA detection kit (Sigma) as described by Castro-Hernandez et al. (2015). Briefly, for the study of 

DAT-D2R and DAT-α-synuclein interactions, sections were incubated overnight at 4ºC with a goat 

polyclonal anti-DAT antibody (1:200; Santa Cruz Biotechnology) and one of the following 

antibodies in the antibody diluent: rabbit polyclonal anti-D2R antibody (1:200; Millipore) or rabbit 

polyclonal anti-α-synuclein antibody (1:200, Santa Cruz Biotechnology). Thereafter, sections were 

incubated (2 h, 37 °C) with PLA probes detecting goat and rabbit antibodies (Duolink II plus PLA 

probe anti-goat and Duolink II minus PLA probe anti-rabbit) and processed for ligation, 

amplification, and detection as described by the manufacturer. For the study of DAT-DAT 

interactions, sections were incubated with two anti-DAT antibodies directed to the C-terminus (1:200 

rabbit polyclonal anti-DAT and 1:200 goat-polyclonal anti-DAT) and PLA probes detecting rabbit 

(plus) and goat (minus) antibodies. For negative controls, one of the primary antibodies was 

substituted by non-immune goat or rabbit IgG, resulting in negative staining. Some sections were 

additionally processed for tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) 

immunofluorescence by using a mouse monoclonal anti-TH antibody (1:4000, Sigma). To avoid 
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autofluorescence caused by the presence of fluorescent pigments such as lipofucsin or  elastin and 

also by the fixative, sections were treated with CuSO4 in ammonium acetate buffer (5 mM CuSO4, 

50 mM ammonium acetate pH  5.0) for 10 s (Zieba et al., 2010). After several washes they were 

mounted in mounting medium with DAPI and examined under a confocal laser scanning microscopy 

system (Olympus FV1000, Hamburg, Germany). Images were acquired in Z-stack mode (8.5 µm 

total thickness, 4 z-steps). Fluorescent PLA point-like signals were quantified, in number and size, in 

at least 12 striatal regions (400µm x 400µm) from 5 different rats per experimental group for each 

pair of primary antibodies, by using the ImageJ standard program. 

Striatal GDNF determination by enzyme-linked immunosorbent assay (ELISA) 

Five weeks after injection, rats (n=5 in each experimental group) were sacrificed and left striata 

were dissected in ice from freshly obtained brains using a brain blocker. The samples were sonicated 

in homogenization buffer (137mM NaCl, 20mM Tris (pH 8.0), 1% NP40, 10% glicerol, 1mM PMSF, 

10μg/ml aprotinin, 1μg/ml leupeptin and 0.5mM sodium vanadat) and striatal GDNF levels were 

determined by ELISA test following the manufacturer’s guidelines (commercial kit G7620, Promega 

Corporation, Madison, WI). Data are expressed as picograms of GDNF per milligram of total 

proteins.  

Synaptosomal [
3
H]-DA uptake  

Rat striata were obtained as described for GDNF ELISA, and processed according to Afonso-

Oramas et al. (2009). Samples were immediately homogenized in 20 vol of ice-cold sucrose 

bicarbonate solution (SBS, 320 mM sucrose in 5 mM sodium bicarbonate, pH 7.4) with 12 up and 

down strokes in a Teflon-glass homogenizer. The homogenates were centrifuged (1000 x g, 10 min, 

4ºC), and the pellets (P1) containing nuclei and large debris discarded. The supernatants (S1) were 

centrifuged (17,000 x g, 20 min, 4ºC), and the pellets (P2) were resuspended in 500 µl ice-cold assay 

buffer (125 mM NaCl, 5 mM KCl, 1.5 mM MgSO4, 1.25 mM CaCl2, 1.5 mM KH2PO2, 10 mM 

glucose, 25 mM HEPES, 0.1 mM EDTA, 0.1 mM pargyline and 0.1mM ascorbic acid). For [
3
H]-DA 

uptake assays, a range of temperatures (25-35ºC), DA concentrations (20-500 nM), incubation times 

(5-30 min) and striatal protein concentrations (0.2-3μg/μl) were checked in order to establish the 

working parameters in the linear ascending segment of the uptake curve.  Fifty µl of synaptosomal 

suspension (0.5 μg total protein/μl) were preincubated with 50 nM DA (Sigma) with or without 10 

μM nomifensine (Sigma) in assay buffer (30 ºC, 5 min). Subsequently, 20 nM [
3
H]-DA (final 

concentration; Amersham, Buckinghamshire, UK) was added to each tube. The total assay volume 
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was 200 μl. After 10 min incubation at 30 ºC, DA uptake was stopped by the addition of 200 μl ice-

cold assay buffer. The suspension was immediately filtered under vacuum through MultiScreen®- 

0.45 μm hydrophilic filters (Millipore, Molsheim, France). The filters were washed twice with 200 μl 

ice-cold assay buffer, excised and placed in scintillation vials containing 3 ml liquid scintillation 

Cocktail (Sigma), and stored overnight at room temperature (RT). Accumulated radioactivity was 

quantified using a liquid scintillation counter (LKB Rackbeta 1214; Turku, Finland). Non-specific 

uptake, defined as the DA uptake in the presence of nomifensine, was subtracted from total uptake to 

define DAT-mediated specific uptake. All assays were performed in triplicate. 

Western-blot in whole striatal extracts and plasma membranes 

DAT expression was studied using western-blot analysis of total extracts and the plasma 

membrane fraction of striatal synaptosomes. The striata were dissected as described for DA uptake. 

Whole protein extracts were obtained using the acid phenol method, resuspended in 

radioimmunoprecipitation assay (RIPA) lysis buffer pH 7.4 containing protease and phosphatase 

inhibitor cocktails (Roche Diagnostics, Indianapolis, IN), and quantified using the bicinchoninic acid 

method and bovine serum albumin as standard. Plasma membranes were obtained following the 

impermeant biotynilation procedure (Salvatore et al., 2003). Synaptosomes (300 μg total protein) 

were incubated for 1 h at 4ºC with continual shaking in 500 μl of 1.5 mg/ml sulfo-NHS-biotin 

(Pierce, Rockford, IL) in PBS/Ca/Mg buffer (138 mM Na Cl, 2.7 mM kCl, 1.5 mM KH2PO2, 9.6 mM 

Na2HPO4, 1mM MgCl2, 0.1 mM CaCl2, pH 7.3) and centrifuged (8,000 x g, 4 min, 4ºC). In order to 

remove biotinylating reagents, the resulting pellets were resuspended in 1 ml ice-cold 100 mM 

glycine in PBS/Ca/Mg buffer and centrifuged (8,000 x g, 4 min, 4ºC). The resuspension and 

centrifugation steps were repeated. Final pellets were resuspended again in 1ml ice-cold 100 mM 

glycine in PBS/Ca/Mg buffer and incubated for 30 min at 4ºC. Samples were washed three more 

times in PBS/Ca/Mg buffer, and then lysed by sonication for 2-4 seconds in 300 μl Triton X-100 

buffer (10mM Tris, pH 7.4, 150 mM NaCl, 1mM EDTA, 1 %Triton X-100) containing protease and 

phosphatase inhibitor cocktails (Roche Diagnostics). After incubation in continuous shaking (30 min, 

4ºC), the lysates were centrifuged (18,000 x g, 30 min, 4ºC), and the supernatants were incubated 

with monomeric avidin bead - Triton X-100 buffer (100 μl) for 1 h at RT, and centrifuged (18,000 x 

g, 4 min, 4ºC). The resulting pellets (containing avidin-absorbed biotynilated surface proteins) were 

resuspended in 1 ml Triton X-100 buffer and centrifuged (18,000 x g, 4 min, 4ºC). Resuspension and 

centrifugation were repeated two more times, and the final pellets were stored.  
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Protein samples for western-blot analysis were diluted in Laemmli’s loading buffer (62.5 mM 

Tris-HCl, 20% glycerol, 2% sodium dodecyl sulfate [SDS; Sigma], 1.7% β-mercaptoethanol and 

0.05% bromophenol blue, pH 6.8), denatured (90ºC, 1 min.), separated by electrophoresis in 10 % 

SDS-polyacrylamide gel, and transferred to nitrocellulose (Schleicher & Schuell, Dassel, Germany). 

Blots were blocked for 2 hs at RT with 5% non-fat dry milk in TBST (250 mM NaCl, 50mM Tris, pH 

7.4, and 0.05% Tween20), and incubated overnight at 4ºC in blocking solution with one of the 

following primary antibodies: a goat polyclonal anti-DAT antibody (1:500, Santa Cruz 

Biotechnology), a mouse monoclonal antibody that recognized native tyrosine hydroxylase  (TH; 

Sigma; 1:10,000, overnight, 4 °C), a rabbit polyclonal antibody recognizing rat TH amino acids 

residues surrounding the phospho-serine 40 (THp40; PhosphoSolutions, Aurora, CO; 1:1000, 

overnight, 4°C) and a mouse anti-β-Actin antibody (Sigma,1:10,000, 2 h, RT). After several rinses in 

TBST-5% milk, the membranes were incubated for 1 h in horseradish peroxidase conjugated anti-

goat (1:5000), anti-rabbit (1:10,000) or anti-mouse (1:20,000) IgG (Jackson-ImmunoResearch). In 

Western blot for the THp40, milk was substituted by 5% bovine serum albumin in the blocking 

solution. Immunoreactive bands were visualized using enhanced chemiluminiscence (Immun-Star, 

Bio-Rad, CA) and a Chemi-Doc
TM

 XRS imaging system (Bio-Rad, Hercules, CA).

Different protein quantities, antibody dilutions and exposure times were tested to establish the 

working range of each antibody. The labelling densities for DAT, TH and THp40 were compared 

with β-Actin by using densitometry software (Bio-Rad). A rectangle of uniform size and shape was 

placed over each band, and the density values were calculated by subtracting the background at 

approximately 2 mm above each band. The effectiveness of the plasma membrane fractionation was 

evaluated by using Syntaxin (mouse monoclonal anti-syntaxin, 1:500, Sigma) as a marker of 

synaptosomal membrane. 

Western-blot analysis under non-reducing conditions 

Western-blot analysis under non-reducing conditions was performed according to Baucum et 

al. (2004). Briefly, synaptosomes were obtained as described for DA uptake using 0.32 M sucrose, 

supplemented with protease inhibitor cocktail and PhosStop phosphatase inhibitor cocktail (Roche 

Diagnostics) and 10 mM N-ethylmaleimide (NEM; Sigma) as homogenization solution. P2 pellets 

were resuspended in mili-Q water, protein concentration was quantified, and samples were mixed 

with loading buffer (2.25% SDS, 18% glycerol, 180 mM Tris base, pH 6.8, and bromophenol blue). 

Fifteen μg total protein was loaded into each well, separated by electrophoresis in 9% SDS-
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polyacrylamide gel containing 0.1% SDS, and transferred to nitrocellulose (Schleicher & Schuell). 

DAT immunostaining and quantification were performed as described above. 

Co-immunoprecipitation 

Co-immunoprecipitation was performed according to HadlocK et al. (2011) with minor 

modifications. Striatal tissue was homogenized in 1.5 ml ice-cold 10 mM HEPES, 0.32 M sucrose 

and 10 mM NEM pH 7.4, and centrifuged (800 x g, 12 min, 4ºC). The supernatants (S1) were 

centrifuged at 22,000 x g, 15 min, 4ºC, and the resulting pellets (P2) resuspended in 100 μl M-PER 

(Thermo Scientific, Rockford, IL). After 1 h at 4ºC in gentle shaking, samples were centrifuged 

again, the pellets were discarded, and protein concentration was quantified in supernatants. Aliquots 

of 500 μg proteins were incubated in protein A-Sepharose beads (100 μl stock suspension in 200 μl 

M-PER; 4ºC, 45 min) to pre-clear endogenous immunoglobulins. After gentle centrifugation, pre-

cleared supernatants were incubated with anti-DAT, anti-D2R or non-immune igG overnight at 4ºC 

in continuous shaking. In the experience of this laboratory, the most robust immunoprecipitates are 

obtained using 6 μl of rabbit polyclonal anti-DAT from Millipore®, rabbit polyclonal anti-D2R from 

Millipore®. Protein A-Sepharose beads (100 μl stock suspension in 200 μl M-PER) were added and 

maintained in continuous shaking at 4ºC for 3 h. Immuno-complexes were precipitated by gentle 

centrifugation. After extensive washing, they were resuspended in 40 μl Laemmli's buffer, denatured, 

separated by electrophoresis in 10 % SDS-polyacrylamide gel and transferred to nitrocellulose. Blots 

from DAT precipitates were immunoreacted for α-synuclein and DAT using a mouse monoclonal 

anti- α-synuclein (1: 500, BD Biosciences, San Jose, CA) and a goat polyclonal anti-DAT antibody 

(1:500, Santa Cruz Biotechnology). Blots from D2R precipitates were immunoreacted for DAT and 

D2R using a goat anti-DAT polyclonal (1:500, Santa Cruz Biotechnology) and a mouse monoclonal 

anti-D2R antibody (1:500, Santa Cruz Biotechnology). 

Statistics 

Mathematical analysis was performed using the one way ANOVA followed by the Tukey 

honest test for multiple post hoc comparisons. Analysis was performed using the Statistica program 

(Statsoft; Tulsa, U.S.A.). The degree of freedom in all comparisons was 1 (intergroup) and 8 

(intragroup). A level of p < 0.01 was considered as critical for assigning statistical significance. Data 

are expressed as mean ± standard error of the mean. 
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Results 

Regulated GDNF over-expression promotes DA uptake decrease without changes in DAT and TH 

expression. 

To determine the effect of different GDNF transduction levels on DAT and TH, viral vector 

injected rats were treated with doxycycline (DOX) for 5 weeks. DOX was administered in the 

drinking water at a concentration of 0.01, 0.03, 0.5 and 3 mg/ml. The daily drinking volume 

stabilized two days after GDNF injection at 57 ± 3 ml. As shown in Fig. 1A, striatal levels of GDNF 

in AAV-tetON-GDNF injected rats receiving 0.01 and 0.03 mg/ml DOX were similar to those in 

AAV-tetON-GFP injected rats receiving 0.01 and 3 mg/ml DOX, and sham injected untreated rats. In 

AAV-tetON-GDNF injected rats receiving 0.5 mg/ml DOX, GDNF transduction tripled the basal 

levels (69.3±3.6 vs. 22.6±5.2 pg/mg protein, p< 0.01; F= 12.18), and sparse neurons became 

immunoreactive for GDNF in the injection place (Figs. 1F, G). In rats receiving 3 mg/ml DOX, 

GDNF levels were 12 times higher (253.3±7.9 pg/mg protein; p< 0.001; F= 9.26) than in AAV-

tetON-GFP-injected rats, and many neurons became intensely immunoreactive for GDNF around the 

injection place (Figs. 1 H, I).  

Western-blot analysis of TH expression (Fig. 2A) revealed that, consistent with previous 

reports (Rosenblad et al., 2003; Georgievska et al., 2004), the levels of TH, in its native form, are 

decreased in striata with 12x basal GDNF over-expression (3 mg/ml DOX; 53%; p< 0.01, F= 6.31). 

However, no changes were detected in those with 3x basal GDNF over-expression (0.5 mg/ml DOX). 

TH phosphorylated at the Ser40 residue (THp40) followed the same pattern as the native form, with a 

decrease at 12x GDNF over-expression (80%; p< 0.01; F=12.48) but no changes at 3x GDNF 

overexpression. By contrast, the analysis of DAT expression in whole striatal extracts and in the 

plasma membrane of striatal terminals (Fig. 2B) revealed no differences between both experimental 

conditions,12x and 3x GDNF over-expression, and sham-injected rats. However, the analysis of 

nomifensine-sensitive DA uptake in striatal synaptosomes (Fig. 2C) revealed a significant DA uptake 

decrease in both 0.5 mg/ml DOX- (44.8  4.1 %, p< 0.01; F= 12.73) and 3 mg/ml DOX-treated rats 

(49.6  3.3 %; p< 0.01; F= 12.75) with respect to sham-injected rats. In addition, after 20 days 

without DOX, DA uptake returned to normal levels. These data indicate that sustained GDNF over-

expression induces a DA uptake decrease without changes in the expression levels and subcellular 
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distribution of DAT, and more interestingly, that a 3x increase in GDNF delivery reduces DA uptake 

without affecting TH expression.  

Prolonged GDNF over-expression induces the formation of DAT dimers and DAT- α-synuclein 

interactions 

The finding of a decrease in DA uptake but not in DAT levels in whole striatal extracts or 

synaptosomal membranes suggests that the effect of prolonged GDNF over-expression on DA uptake 

is not mediated by DAT expression down-regulation or internalization. Although trafficking between 

the plasma membrane and intracellular compartments and lysosomal degradataion are considered the 

standard mechanisms of DAT regulation (Mortensen and Amara, 2003; Eriksen et al., 2010b; Gabriel 

et al., 2013), we know that transporters may form complexes with themselves (Hastrup et al., 2001; 

Torres et al., 2003; Baucum et al., 2004) and other presynaptic proteins which regulate transporter 

activity (González and Robinson, 2004; Chen and Reith, 2008; Eriksen et al., 2010b). Thus, possible 

changes in DAT-DAT and DAT interactions with two well-known members of its proteome, α-

synuclein (Lee et al., 2001; Wersinger and Sidhu, 2005; Oaks and Sidhu, 2013) and D2 DA receptor 

(D2R; Lee et al., 2007) were thereafter investigated. 

As shown in Fig. 3A, the analysis of whole striatal extracts of sham-injected rats under non-

reducing conditions shows a dense band at ~75kDa, corresponding to the DAT glycosylated 

monomeric isoform (Afonso-Oramas et al., 2009), and a weak band at ~ 150 kDa, i.e. a molecular 

weight corresponding to DAT dimer. The immunoblot pattern in AAV-tetON-GFP-injected rats 

receiving 0.5 and 3 mg/ml DOX and AAV-tetON-GDNF-injected rats receiving 0.03 mg/ml DOX 

was similar to that of sham-injected rats (Fig, 3 A, lines 1, 2 and 3). However, the intensity of the 75 

kDa band became weaker in AAV-tetON-GDNF injected rats receiving 0.5 and 3 mg/ml DOX (a 

decrease of 63.5  8.4% in 0,5 mg/ml DOX with respect to Sham, p< 0.01, F =10.15; 74.1  6.7% in 

3 mg/ml DOX with respect to Sham, p< 0.01, F =11.29), and that at ~150 kDa became more intense 

(an increase of 123.5  8.1% in 0,5 mg/ml DOX with respect to Sham, p< 0.01, F = 11.46; 144.9  

6.8% in 3 mg/ml DOX with respect to Sham, p< 0.01, F = 13.80), suggesting that prolonged GDNF 

over-expression enhances the formation of DAT dimers. To confirm this idea, striatal sections of 

sham-, and AAV-tetON-GFP- and AAV-tetON-GDNF-injected rats treated with 0.5 mg/ml DOX, 

were processed for DAT-DAT in situ PLA using two anti-DAT antibodies against the same DAT 

epitope domain.  Consistent with the suggestion that the ~150 kDa band detected under non-reducing 

conditions corresponds to DAT dimers, sparse DAT-DAT PLA dots were present around striatal cells 

in sham and AAV-tetON-GFP-injected rats (Fig. 3B, left), and immunofluoescence for TH confirmed 
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their localization in DA-terminals (Fig. 3B, center and right). The quantitative analysis revealed no 

differences in the number and size of PLA signals between sham- and AAV-tetON-GFP-injected 

rats. However, significant differences were found between these two experimental groups and AAV-

tetON-GDNF-injected rats (Fig. 3C and D). The number of PLA dots in AAV-tetON-GDNF- 

injected rats was 81% and 77% higher than in sham (p < 0.01 vs. sham, F = 20.64) and AAV-tetON-

GFP-injected rats (p < 0.01 vs. AAV-tetON-GFP, F = 20.42, Fig. 3C) respectively. Likewise, the 

average dot size in AAV-tetON-GDNF-injected rats (96±7.6 pixels) tripled that of sham- (32±2.3 

pixels; p < 0.001; F = 26.78) and AAV-tetON-GFP-injected rats (34±6.2 pixels; p < 0.001; F = 19.92; 

Fig. 3D), with the largest dots probably corresponding to two or more PLA signals localized close to 

each other. These data together with the differences in the immunoblot pattern between AAV-tetON-

GFP- and AAV-tetON-GDNF-injected rats support the idea that prolonged GDNF over-expression 

induces DAT dimer formation. 

With respect to DAT- α-synuclein and DAT-D2R interactions, co-immunoprecipitation and in 

situ PLA corroborated previous reports (Lee et al., 2001; Wersinger and Sidhu, 2003; Lee et al., 

2007) showing that DAT constitutively maintains a physical interaction with both of them (Fig. 4A-

C). However, the response of these interactions to prolonged GDNF over-expression was different. In 

the case of DAT- α-synuclein, the amount of α-synuclein immunoprecipitated with DAT as well as 

the number and size of DAT- α-synuclein PLA dots in AAV-tetON-GDNF- injected rats were higher 

than in AAV-tetON-GFP-injected rats (Fig. 4A, B), suggesting that GDNF over-expression promotes 

DAT- α-synuclein interaction. In the case of DAT-D2R, both co-immunoprecipitation and 

quantitative PLA parameters showed no significant differences between both experimental groups 

(Fig. 4C, D). 

Discussion 

In sum, our results show that prolonged 12x basal GDNF over-expression induces both DA 

uptake decrease and TH down-regulation, while 3x basal GDNF over-expression induces DA uptake 

decrease but not TH down-regulation. The decrease in DA uptake was associated with the formation 

of DAT dimers and changes in DAT- α-synuclein interaction but not in DAT expression levels or its 

compartmental distribution.  

Tyrosine hydroxylase and DAT, which are responsible for the synthesis and uptake of DA 

respectively, are pivotal players in DA signalling. Thus, potential antiparkinsonian therapies should 

preserve TH activity to maintain DA synthesis, but if possible, also regulate DAT activity to maintain 

DA inputs on postsynaptic receptors and to reduce oxidative stress in surviving neurons. The fact that 

TH is down-regulated following chronic release of GDNF in rodents (Rosenblad et al., 2003; 
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Georgievska et al., 2004), suggests that other actors in DA handling, e.g., DAT, may be involved in 

the adaptive response induced by prolonged GDNF transduction. Consistent with this idea, previous 

studies have shown an inverse relationship between GDNF and DAT expressions. For example, DAT 

activity is exacerbated in the striatum of GDNF heterocygous mice (Boger et al., 2007; Littrell et al., 

2012). In addition, data from our group show that constitutive GDNF mRNA levels in the ventral 

striatum are higher than in the dorsal striatum, while DAT protein levels and activity are higher in the 

dorsal striatum than in the ventral striatum (Barroso-Chinea et al., 2005; Afonso-Oramas et al., 

2009). In this respect, Zhu and coworkers (2015) have recently showed that the Rho-family guanine 

nucleotide exchange factor protein Vav2 interacts with the GDNF receptor tyrosine kinase Ret, 

forming a functional complex that downregulates DAT activity. Interestingly, Vav2 is robustly 

expressed in the ventral striatum but not in the dorsal striatum (Zhu et al., 2015), suggesting that the 

Vav2-Ret interaction may be involved in the differential regulation and functional meaning of DAT 

between dorsal and ventral striata.    

By using intrastriatal injection of an AAV-tetON-GDNF vector and DOX treatment in a dose 

range of 0.01-3 mg/ml in drinking water, here we show that chronic GDNF release promotes a 

decrease in DAT activity at an expression level (3x basal levels) lower than that required for TH 

down-regulation (12x basal levels). We have to note that although the catalytic activity of TH was 

not directly quantified, the close relationship between Ser40 phosphorylation and TH activity 

(Dunkley et al., 2004; Daubner et al., 2011; Dickson and Briggs, 2013) allows us to assume that TH 

activity is preserved in AAV-tetON-GDNF- injected rats receiving 0.5 mg/ml DOX.  

A large body of evidence indicates that conventional DAT regulation involves protein 

internalization for it to be thereafter recycled back to the plasma membrane or degraded through the 

autophagy lysosome pathway (Miranda and Sorkin, 2007; Eriksen et al., 2010a). However, the 

decline in DA uptake found here after 0.5 mg/ml (3x GDNF basal levels) or 3 mg/ml DOX (12x 

GDNF basal levels) was not associated with changes in the total expression or compartmental 

distribution of DAT. Noteworthy, the increase in DA uptake in mice with partial GDNF gene 

delection is also not paralleled by changes in DAT expression (Boger et al., 2007). Thus, DA uptake 

may be down- or up-regulated by prolonged GDNF over- or under-expression respectively, without 

affecting the total DAT expression or its subcellular distribution, suggesting the participation of 

alternative mechanisms. An increasing number of protein-protein interactions have showed to be 

involved in DAT trafficking and its recruitment at the plasma membrane (Eriksen et al., 2010b), with 

some of them, i.e. DAT-DAT, DAT-D2R and DAT- α-synuclein, playing a critical role in DAT 

function (Hastrup et al., 2001; Wersinger and Sidhu, 2005; Lee et al., 2007; Oaks and Sidhu, 2013). 

Using western-blot under non-reducing conditions, co-immunoprecipitation and in situ PLA, here we 
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show that the decrease in DA uptake following prolonged GDNF release is paralleled by an increase 

in DAT dimerization and DAT-α-synuclein interaction. In this regard, we have also recently found 

that prolonged treatment with the preferential D3R agonist pramipexole promotes a decrease in DA 

uptake mediated by changes in DAT interactions with its proteome partners (Castro-Hernandez et al., 

2015). Thus, changes in DAT-protein interactions may act as adaptive mechanisms of DA-neurons to 

regulate DA uptake in response to different long-term stimuli. Interestingly, while DAT dimerization 

is enhanced after prolonged exposition to both pramipexole and GDNF, DAT-D2R interaction is 

modified by pramipexole but not by GDNF, and DAT- α-synuclein interaction is strongly modified 

by GDNF but not by pramipexole. Thus, although further studies involving other DAT intereactions 

are needed, the results suggest that some of them, i.e. DAT-DAT, may be sensitive to different 

conditions, while others, i.e. DAT-D2R and DAT-α-synuclein, respond to specific ones.   

Studies in rodents and heterologous expression systems indicate that DAT and other members 

of the sodium symporter family, such as norepinephrine and serotonin transporters, are assembled as 

homodimers in the endoplasmic reticulum, and that dimerization is required for their trafficking to 

the plasma membrane (Kilic and Rudnick, 2000; Hastrup et al., 2001; Torres et al., 2003). In 

addition, different degrees of oligomerization can coexist in a single cell independently of the 

transporter density at the plasma membrane (Anderluch et al., 2014). However, the functional 

meaning of oligomeric forms in the physiology, pathophysiology and pharmacology of transporters 

has not been elucidated. Consistent with previous studies using western-blot under non-reducing 

conditions (Baucum et al., 2004; Hadlock et al., 2009), most striatal DAT in sham-treated rats is 

monomeric (75kDa), with only a small DAT amount showing a molecular weight that corresponds to 

the dimeric form (~150 kDa). The inversion of this immunolabelling pattern, consisting in an 

increase in labelling intensity at 150 kDa and a decrease in that at 75 kDa, observed after prolonged 

GDNF over-expression suggests a strengthening of DAT-DAT interactions. Similar changes in the 

DAT expression pattern were found, together with a DA uptake decline, after prolonged treatment 

with pramipexole (Castro-Hernández et al., 2015) and repeated injections of methamphetamine 

(Baucum et al., 2004), suggesting a role of DAT dimerization in DA uptake regulation. The evidence 

of DAT-DAT PLA signals and the increase of them after GDNF over-expression confirm that the 

150 kDa band corresponds, at least in part, to DAT dimers. Both the number and the average size of 

DAT-DAT PLA dots increased after GDNF treatment. The quantitative analysis of PLA signals is 

currently based on dot count, with the dot number being considered an index of the number of 

protein-protein interactions (Aubele et al., 2010; Aranguren et al., 2013), while the meaning of dot 

size has not been clarified. The increase in dot size observed in this study might reflect the presence 
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of two or more PLA signals localized close to each other or the formation of higher order DAT-DAT 

oligomeric forms. However, until direct evidence provides a solid explanation of this phenomenon 

we must be cautious in its interpretation.  

Alpha-synuclein is a presynaptic protein whose functions have not been entirely clarified. The 

interest in the role of α-synuclein in DA homeostasis comes from the finding of α-synuclein 

accumulation in Lewy bodies in parkinsonian brains (Baba et al., 1998), and mutations in the α-

synuclein gene in familiar forms of PD (Polymeropoulos et al., 1997). Alpha-synuclein has been 

involved in the synthesis, vesicular storage and uptake of DA (Perez et al., 2002; Wersinger and 

Sidhu, 2005). A direct DAT- α-synuclein interaction was identified for the first time by Lee et al. 

(2001), and thereafter confirmed by other authors (Wersinger and Sidhu, 2003). This interaction can 

operate at different stages of DAT maturation, including its release from the endoplasmic reticulum, 

trafficking through cytoskeleton, and recruitment at the plasma membrane (Jeannotte and Sidhu, 

2007; Colla et al., 2012; Oaks et al., 2013). Current data indicate that, in contrast to that occurring in 

α-synuclein over-expression or mutation (Polymeropoulos et al., 1997; Bennett, 2005; Sulzer et al., 

2010), under physiological conditions α-synuclein has a protective effect on DA-neurons. 

Furthermore, this effect is mediated by its interaction with DAT which acts as a negative modulator 

in DAT maturation and trafficking, impeding DAT insertion in the plasma membrane, the uptake of 

DA, and consequently, reducing the oxidative burden in DA-cells (Oaks and Sidhu, 2013). In this 

context, the finding of an increase in DAT-α-synuclein co-immunoprecipitation and PLA signals, 

without changes in total α-synuclein levels, indicates that GDNF promotes this interaction as a long-

term adaptive mechanism, contributing to the DA uptake decrease and probably to its protective 

effect on DA-cells.  

In conclusion, the use of adeno-associated regulatable vectors and exogenous drugs in a dose-

dependent manner allows us to find a point of human GDNF gene transduction at which DAT, but 

not TH, is regulated. The fact that DA uptake is more sensitive to prolonged GDNF delivery than DA 

synthesis indicates that at appropriate GDNF transduction levels, DA uptake, and consequently the 

oxidative burden in DA-cells, may be reduced without interfering with DA synthesis, preventing 

long-term side effects related to transgene over-expression. This fact may be of interest in the 

outcome of GDNF in treatment of PD. 

 

  



ACCEPTED MANUSCRIPT

Conflict of interest 

The authors declare no conflict of interest. 

Acknowledgments 

This study was supported by the following grants: BFU2010-21130 and BFU2013-47242-R 

(Ministerio de Ciencia e Innovación, Spain) to TG-H, the Swiss National Research Foundation (FNS; 

grant number: FN31003A-127177) and EU FP7 Marie Curie IAPP BrainVectors (contract n°. 

286071) to L-T; PB-C and JS-H were supported by the IMBRAIN project (FP7-REGPOT-2012-

CT2012-31637-IMBRAIN), funded under the 7th Framework Programme (Capacities). JC-H was 

supported by a predoctoral fellowship from the Fundación Canaria de Investigación y Salud (ID54). 

The authors thank Catherine Pythoud for her excellent technical assistance in vector preparation. 



ACCEPTED MANUSCRIPT

References 

Afonso-Oramas, D., Cruz-Muros, I., Alvarez de la Rosa, D., Abreu, P., Giraldez, T., Castro-

Hernández, J., Salas-Hernández, J., Lanciego, J.L., Rodríguez, M., González-Hernández, T., 2009. 

Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells 

in Parkinson's disease. Neurobiol. Dis. 36, 494–508. Doi: 10.1016/j.nbd.2009.09.002. 

Afonso-Oramas, D., Cruz-Muros, I., Barroso-Chinea, P., Álvarez de la Rosa, D., Castro-Hernández, 

J., Salas-Hernández, J., Giráltez, T., González-Hernández, T., 2010. The dopamine transporter is 

differentially regulated after dopaminergic lesion. Neurobiol. Dis. 40, 518–530. Doi: 

10.1016/j.nbd.2010.07.012. 

Alexi, T., Borlongan, C.V., Faull, R.L.,Williams, C.E., Clark, R.G., Gluckman, P.D., Hughes, P.E., 

2000. Neuroprotective strategies for basal ganglia degeneration: Parkinson's and Huntington's 

diseases. Prog Neurobiol. 60, 409-470. Doi: 10.1016/S0301-0082(99)00032-5. 

Anderluh, A., Klotzsch, E., Reismann, A.W., Brameshuber, M., Kudlacek, O., Newman, A.H., Sitte, 

H.H., Schütz, G.J., 2014. Single molecule analysis reveals coexistence of stable serotonin transporter 

monomers and oligomers in the live cell plasma membrane. J Biol Chem. 289, 4387-4394. Doi: 

10.1074/jbc.M113.531632. 

Apawu, A.K., Maina, F.K., Taylor, J. R., Mathews, T.A., 2013. Probing the ability of presynaptic 

tyrosine kinase receptors to regulate striatal dopamine dynamics. ACS Chem Neurosci. 4, 895-904. 

Doi: 10.1021/cn4000742. 

Aranguren, X.L., Beerens, M., Coppiello, G., Wiese, C., Vandersmissen, I., Lo Nigro, A., Verfaillie, 

C.M., Gessler, M., Luttun, A., 2013. COUP-TFII orchestrates venous and lym- phatic endothelial 

identity by homo- or hetero-dimerisation with PROX1. J. Cell Sci. 126, 1164–1175. Doi: 

10.1242/jcs.116293.  

Aubele, M., Spears, M., Ludyga, N., Braselmann,  ., Feuchtinger, A., Taylor,  . ., Lindner,  ., 

Auer, G., Stering,  .,  o fler, H., Schmitt, M., Bartlett, J.M., 2010. In situ quantification of HER2-

protein tyrosine kinase 6 (PTK6) protein–protein complexes in paraffin sec- tions from breast cancer 

tissues. Br. J. Cancer 103, 663–667. Doi: 10. 1038/sj.bjc.6605836. 

Baba, M., Nakajo, S., Tu, P.H., Tomita, T., Nakaya, K., Lee, V.M., Trojanowski, J.Q., Iwatsubo T., 

1998. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia 

with Lewy bodies. Am J Pathol.  152, 879–884. 

Bannon M.J., 2005. The dopamine transporter: role in neurotoxicity and human disease. Toxicol 

Appl Pharmacol. 204, 355-360. Doi: 10.1016/j.taap.2004.08.013. 

Barroso-Chinea, P., Cruz-Muros, I., Aymerich, M.S., Rodriguez-Diaz, M., Afonso-Oramas, D., 

Lanciego, J.L., Gonzalez-Hernandez, T., 2005. Striatal expression of GDNF and differential 

vulnerability of midbrain dopaminergic cells. Eur J Neurosci. 21, 1815-1827. Doi: 10.1111/j.1460-

9568.2005.04024.x. 

Baucum II, A.J., Rau, K.S., Riddle, E.L., Hanson, G.R., Fleckenstein, A.E., 2004. Methamphetamine 

increases dopamine transporter higher molecular weight complex formation via a dopamine- and 

hyperthermia-associated mechanism. J. Neurosci. 24,3436–3443. Doi: 10.1523/JNEUROSCI. 0387-

04.2004. 

Bennett, M.C., 2005. The role of alpha-synuclein in neurodegenerative diseases.Pharmacol Ther. 



ACCEPTED MANUSCRIPT
 

 

105, 311-331. Doi:10.1016/j.pharmthera.2004.10.010. 

Bezard, E., Gross, C.E., Fournier, M.C., Dovero, S., Bloch, B., Jaber, M., 1999. Absence of MPTP-

induced neuronal death in mice lacking the dopamine transporter. Exp Neurol 155, 268–273. Doi: 

10.1006/exnr.1998.6995. 

Boger, H.A., Middaugh, L.D., Patrick, K.S., Ramamoorthy, S., Denehy, E.D., Zhu, H., Pacchioni, 

A.M., Granholm, A.C., McGinty, J.F., 2007. Long-term consequences of methamphetamine exposure 

in young adults are exacerbated in glial cell line-derived neurotrophic factor heterozygous mice. J 

Neurosci. 27, 8816-8825. Doi: 10.1523/JNEUROSCI.1067-07.2007. 

Castro-Hernández, J., Afonso-Oramas, D.,  Cruz-Muros, I., Salas-Hernández, J., Barroso-Chinea, P., 

Rosario Moratalla, R., Millan, M.J., González-Hernández, T., 2015. Prolonged treatment with 

pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine 

transporters to reduce dopamine uptake. Neurobiol. Dis. 74, 325–335. Doi: 

10.1016/j.nbd.2014.12.007. 

Chen, N., Reith, M.E., 2008. Substrates dissociate dopamine transporter oligomers. J Neurochem. 

105, 910–920. Doi: 10.1111/j.1471-4159.2007.05195.x 

Christophersen, N.S., Gronborg, M., Petersen, T.N., Fjord-Larsen, L., Jorgensen, J.R., Juliusson, B., 

Blom, N., Rosenblad, C., Brundin, P., 2007. Midbrain expression of Delta-like 1 homologue is 

regulated by GDNF and is associated with dopaminergic differentiation. Exp Neurol. 204, 791-801. 

Doi: 10.1016/j.expneurol.2007.01.014. 

Chtarto, A., Yang, X., Bockstael, O., Melas, C., Blum, D., Lehtonen, E., Abeloos, L., Jaspar, J.M., 

Levivier, M., Brotchi, J., Velu, T., Tenenbaum, L., 2007. Controlled delivery of glial cell line-derived 

neurotrophic factor by a single tetracycline-inducible AAV vector. Exp Neurol. 204, 387-399. Doi: 

10.1016/j.expneurol.2006.11.014. 

Chtarto, A., Bockstael, O., Tshibangu, T., Dewitte, O., Levivier, M., Tenenbaum, L., 2013. A next 

step in adeno-associated virus (AAV)-mediated gene therapy for neurological diseases: regulation 

and targeting. Br J Clin Pharmacol. 76, 217-232. Doi:10.1111/bcp.12065. 

 

Colla, E., Jensen, P.H., Pletnikova, O., Troncoso, J.C., Glabe, C., Lee, M.K., 2012. Accumulation of 

toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J 

Neurosci. 32, 3301-3305. Doi: 10.1523/JNEUROSCI.5368-11.2012. 

Cruz-Muros, I., Afonso-Oramas, D., Abreu, P., Perez-Delgado, M.M., Rodriguez, M., Gonzalez-

Hernandez, T., 2009. Aging effects on the dopamine transporter expression and compensatory 

mechanisms. Neurobiol. Aging. 30, 973–986. Doi: 10.1016/j.neurobiolaging.2007.09.009. 

Daubner, S.C., Le, T., Wang, S., 2011. Tyrosine hydroxylase and regulation of dopamine synthesis. 

Arch Biochem Biophys. 508, 1-12. Doi:10.1016/j.abb.2010.12.017. 

Dickson, P.W., Briggs, G.D., 2013.Tyrosine hydroxylase: regulation by feedback inhibition and 

phosphorylation. Adv Pharmacol. 68, 13-21. Doi: 10.1016/B978-0-12-411512-5.00002-6. 

Dunkley, P.R., Bobrovskaya, L., Graham, M.E., von Nagy-Felsobuki, E.I, Dickson, P.W., 2004. 

Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem. 91, 1025-1043. 

Doi: 10.1111/j.1471-4159.2004.02797.x. 

Eriksen, J., Bjørn-Yoshimoto, W.E., Jørgensen, T.N., Newman, A.H., Gether, U., 2010a. 

Postendocytic sorting of constitutively internalized dopamine transporter in cell lines and 



ACCEPTED MANUSCRIPT

dopaminergic neurons. J Biol Chem. 285, 27289-27301. Doi: 10.1074/jbc.M110.131003. 

Eriksen, J., Jorgensen, T.N., Gether, U., 2010b. Regulation of dopamine transporter function by 

protein–protein interactions: new discoveries and methodological challenges. J. Neurochem. 113, 27–

41. Doi: 10.1111/j.1471-4159.2010.06599.x.

Eslamboli, A., Georgievska, B., Ridley, R.M., Baker, H.F.,  Muzyczka, N., Burger, C., Mandel, R.J., 

Annett, L., Kirik, D., 2005. Continuous low-level glial cell line-derived neurotrophic factor delivery 

using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral 

recovery in a primate model of Parkinson's disease. J Neurosci. 25, 769-777. Doi: 

10.1523/JNEUROSCI.4421-04.2005. 

Foster, J.D, Yang, J.W., Moritz, A.E., Challasivakanaka, S., Smith, M.A., Holy, M.,Wilebski, K., 

Sitte, H.H., Vaughan, R.A., 2012. Dopamine transporter phosphorylation site threonine 53 regulates 

substrate reuptake and amphetamine-stimulated efflux. J. Biol. Chem.  287, 29702-29712. Doi: 

10.1074/jbc.M112.367706. 

Freed, C., Revay, R., Vaughan, R.A., Kriek, E., Grant, S., Uhl, G.R., Kuhar, M.J., 1995. Dopamine 

transporter immunoreactivity in rat brain. J Comp Neurol. 359, 340-349. Doi: 

10.1002/cne.903590211. 

Gabriel, L.R., Wu, S., Kearney, P., Bellvé, K.D., Standley, C., Fogarty, K.E., Melikian, H.E., 2013. 

Dopamine Transporter Endocytic Trafficking in Striatal Dopaminergic Neurons: Differential 

Dependence on Dynamin and the Actin Cytoskeleton. J Neurosci. 33, 17836–17846. Doi:  

10.1523/JNEUROSCI.3284-13.2013. 

Garbayo, E., Ansorena, E., Lanciego, J.L., Blanco-Prieto, M.J., Aymerich, M.S., 2011. Long-term 

neuroprotection and neurorestoration by glial cell-derived neurotrophic factor microspheres for the 

treatment of Parkinson's disease. Mov. Disord. 26, 1943-1947. Doi: 10.1002/mds.23793. 

Georgievska, B., Kirik, D., Björklund, A., 2004. Overexpression of glial cell line-derived 

neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of 

tyrosine hydroxylase in the intact nigrostriatal dopamine system. J. Neurosci. 24, 6437–6445. Doi: 

10.1523/JNEUROSCI.1122-04.2004. 

Giros B., Caron M.G., 1993. Molecular characterization of the dopamine transporter. Trends 

Pharmacol Sci. 14, 43-49.  Doi: 10.1016/0165-6147(93)90029-J. 

Giros B., Jaber M., Jones S.R., Wightman R.M., and Caron M.G., 1996. Hyperlocomotion and 

indifference to cocaine and amphetamine in mice lacking the dopamine transporter. 

Nature. 379, 606–612. Doi: 10.1038/379606a0. 

Gonzalez-Hernandez, T., Barroso-Chinea, P., de la Cruz-Muros, I., Pérez-Delgado, M.M., Rodríguez, 

M., 2004. Expression of dopamine and vesicular monoamine transporters and differential 

vulnerability of mesostriatal dopaminergic neurons. J. Comp. Neurol. 479, 198–215. Doi: 

10.1002/cne.20323. 

González, M.I., Robinson M.B., 2004. Neurotransmitter transporters: why dance with so many 

partners?. Curr Opin Pharmacol. 4, 30-35. Doi:10.1016/j.coph.2003.09.004. 

Goverdhana, S., Puntel, M., Xiong, W., Zirger, J.M., Barcia, C., Curtin, J.F., Soffer, E.B., Mondkar, 



ACCEPTED MANUSCRIPT

S., King, G.D., Hu, J., Sciascia, S.A., Candolfi, M., Greengold, D.S., Lowenstein, P.R., Castro, M.G., 

2005. Regulatable gene expression systems for gene therapy applications: progress and future 

challenges. Mol Ther. 12, 189-211. Doi: 10.1016/j.ymthe.2005.03.022. 

Hadlock, G.C., Baucum II, A.J., King, J.L., Horner, K.A., Cook, G.A., Gibb, J.W., Wilkins, D.G., 

Hanson, G.R., Fleckenstein, A.E., 2009. Mechanisms underlying methamphetamine- induced 

dopamine transporter complex formation. J. Pharmacol. Exp. Ther. 329, 169–174. Doi: 

10.1124/jpet.108.145631. 

Hadlock, G.C., Nelson, C.C., Baucum II, A.J., Hanson, G.R., Fleckenstein, A.E., 2011. Ex vivo 

identification of protein–protein interactions involving the dopamine transporter. J. Neurosci. 

Methods. 196, 303–307. Doi: 10.1016/j.jneumeth.2011.01.023. 

Hastrup, H., Karlin, A., Javitch, J.A., 2001. Symmetrical dimer of the human dopamine transporter 

revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proc. 

Natl. Acad. Sci. U. S. A. 98, 10055–10060. Doi: 10.1073/pnas.181344298. 

Jeannotte, A.M., Sidhu, A., 2007. Regulation of the norepinephrine transporter by alpha-synuclein-

mediated interactions with microtubules. Eur J Neurosci. 26, 1509-1520. Doi: 10.1111/j.1460-

9568.2007.05757.x. 

Kilic, F., Rudnick, G., 2000. Oligomerization of serotonin transporter and its functional 

consequences. Proc Natl Acad Sci U S A. 97, 3106-3111. Doi: 10.1073/pnas.97.7.3106 

Kirik, D., Georgievska, B., Bjorklund, A., 2004. Localized striatal delivery of GDNF as a treatment 

for Parkinson disease. Nat Neurosci. 7, 105-110. Doi: 10.1038/nn1175nn1175. 

Le Couteur, D.G., Leighton, P.W, McCann, S.J, Pond, S.M., 1997 Association of a polymorphism in 

the dopamine-transporter gene with Parkinson's disease. Mov. Disord. 12, 760-763. Doi: 

10.1002/mds.870120523. 

Lee, F.J.S., Liu, F, Pristupa, Z.B., Niznik, H.B., 2001. Direct binding and functional coupling of 

alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J. 15, 

916-926. Doi:10.1096/fj.00-0334com. 

Lee, F.J.S., Pei, L., Moszczynska, A., Vukusic, B., Fletcher, P.J., Liu, F., 2007. Dopamine transporter 

cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J. 

26, 2127–2136. Doi: 10.1038/sj.emboj.7601656. 

Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., Collins, F., 1993. GDNF: a glial cell line-derived 

neurotrophic factor for midbrain dopaminergic neurons. Science. 260, 1130-1132. Doi: 

10.1126/science.8493557. 

Littrell, O.M., Pomerleau, F., Huettl, P., Surgener, S., McGinty, J.F., Middaugh, L.D., Granholm, 

A.C., Gerhardt, G.A., Boger, H.A., 2012. Enhanced dopamine transporter activity in middle-aged 

Gdnf heterozygous mice. Neurobiol Aging. 33, 427 e1-14. 

Doi:10.1016/j.neurobiolaging.2010.10.013. 

Lock, M., McGorray, S., Auricchio, A., Ayuso, E., Beecham, E.J., Blouin-Tavel, V., Bosch, F., Bose, 

M., Byrne, B.J., Caton, T., Chiorini, J.A., Chtarto, A., Clark, K.R., Conlon, T., Darmon, C., Doria, 

M., Douar, A., Flotte, T.R., Francis, J.D., Francois, A., Giacca, M., Korn, M.T., Korytov, I., Leon, 

X., Leuchs, B., Lux, G., Melas, C., Mizukami, H., Moullier, P., Müller, M., Ozawa, K., Philipsberg, 

T., Poulard, K., Raupp, C., Rivière, C., Roosendaal, S.D., Samulski, R.J, Soltys, S.M., Surosky, R., 



ACCEPTED MANUSCRIPT

Tenenbaum, L., Thomas, D.L., Van Montfort, B., Veres, G., Wright, J.F., Xu, Y., Zelenaia, O., 

Zentilin, L., Snyder, R.O., 2010. Characterization of a recombinant adeno-associated virus type 2 

Reference Standard Material. Hum Gene Ther. 21, 1273-1285. Doi:10.1089/hum.2009.223. 

Miranda, M., Sorkin, A., 2007. Regulation of receptors and transporters by ubiquitination: new 

insights into surprisingly similar mechanisms. Mol. Interv. 7, 157–167. Doi: 10.1124/mi.7.3.7. 

Mortensen, O.V., Amara, S.G., 2003. Dynamic regulation of the dopamine transporter. Eur. J. 

Pharmacol. 479, 159–170. Doi: 10.1016/j.ejphar.2003.08.066. 

Oaks, A.W., Marsh-Armstrong, N., Jones, J.M., Credle, J.J., Sidhu, A., 2013. Synucleins antagonize 

endoplasmic reticulum function to modulate dopamine transporter trafficking. PLoS One. 8, e70872. 

Doi: 10.1371/journal.pone.0070872. 

Oaks, A.W., Sidhu, A., 2013. Parallel mechanisms for direct and indirect membrane protein 

trafficking by synucleins. Commun Integr Biol. 6, e26794. Doi: 10.4161/cib.26794. 

Pascual, A., Hidalgo-Figueroa, M., Piruat, J.I., Pintado, C.O., Gomez-Diaz, R., Lopez-Barneo, J., 

2008. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci. 11, 

755-761. Doi: 10.1038/nn.2136. 

Paxinos, G., Watson, C., 1998. The Rat Brain in Stereotaxic Coordinates. Academic Press, Orlando. 

Perez, R.G., Waymire, J.C., Lin, E., Liu, J.J., Guo, F. & Zigmond, M.J., 2002. A role for alpha-

synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22, 3090-3099. DOI: 11943812. 

Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., 

Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., 

Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I., 

Nussbaum, RL., 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson's 

disease. Science. 276, 2045-2047. Doi: 10.1126/science.276.5321.2045. 

Rosenblad, C., Georgievska, B., Kirik, D., 2003. Long-term striatal overexpression of GDNF 

selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. Eur J 

Neurosci. 17, 260-270. Doi: 10.1046/j.1460-9568.2003.02456.x. 

Sajadi, A., Bauer, M., Thöny, B., Aebischer,P., 2005. Long-term glial cell line-derived neurotrophic 

factor overexpression in the intact nigrostriatal system in rats leads to a decrease of dopamine and 

increase of tetrahydrobiopterin production. J. Neurochem. 93, 1482-1486. Doi: 10.1111/j.1471-

4159.2005.03139.x 

Salvatore, M.F., Apparsundaram, S., Gerhardt, G.A., 2003. Decreased plasma membrane expression 

of striatal dopamine transporter in aging. Neurobiol. Aging. 24, 1147–1154. Doi: 10.1016/S0197-

4580(03)00129-5. 

Salvatore, M.F., Zhang, J.L., Large, D.M., Wilson, P.E., Gash, C.R., Thomas, T.C., Haycock, J.W., 

Bing, G., Stanford, J.A., Gash, D.M., Gerhardt, G.A., 2004. Striatal GDNF administration increases 

tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J Neurochem. 90, 245-

254. Doi: 10.1111/j.1471-4159.2004.02496.x. 

Schober, A., 2004. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. 

Cell Tissue Res. 318, 215-224. Doi: 10.1007/s00441-004-0938-y. 



ACCEPTED MANUSCRIPT
 

 

Söderberg, O., Leuchowius, K.J., Gullberg, M., Jarvius, M., Weibrecht, I., Larsson, L.G., Landegren, 

U., 2008. Characterizing proteins and their interactions in cells and tissues using the in situ proximity 

ligation assay. Methods. 45, 227–232. Doi: 10.1016/j.ymeth.2008.06.014. 

 

Storch, A., Ludolph, A.C., Schwarz, J., 2004. Dopamine transporter: involvement in selective 

dopaminergic neurotoxicity and degeneration. J Neural Transm. 111, 1267-1286. Doi: 

10.1007/s00702-004-0203-2. 

Sulzer, D., 2010. Clues to how alpha-synuclein damages neurons in Parkinson's disease. Mov Disord. 

25, S27-S31. Doi: 10.1002/mds.22639. 

Torres, G.E., Carneiro, A.,  Seamans, K., Fiorentini, C., Sweeney, A., Yao W.D., Caron M.G., 2003. 

Oligomerization and Trafficking of the Human Dopamine Transporter. Mutational analysis identifies 

critical domains important for the functional expression of the transporter. J Biol Chem. 278, 2731-

2739. Doi:10.1074/jbc.M201926200. 

Uhl, G.R., Walther, D., Mash, D., Faucheux, B., Javoy-Agid, F., 1994. Dopamine transporter 

messenger RNA in Parkinson's disease and control substantia nigra neurons. Ann Neurol. 35, 494-

498. Doi: 10.1002/ana.410350421. 

Wersinger, C., Sidhu, A., 2003. Attenuation of dopamine transporter activity by alphasynuclein. 

Neurosci. Lett. 340, 189–192. Doi: 10.1016/S0304-3940(03)00097-1. 

Wersinger, C., Sidhu, A., 2005. Disruption of the interaction of alpha-synuclein with microtubules 

enhances cell surface recruitment of the dopamine transporter. Biochemistry. 44, 13612-13624. Doi: 

10.1021/bi050402p. 

Yang, X., Mertens, B., Lehtonen, E., Vercammen, L., Bockstael, O., Chtarto, A., Levivier, M., 

Brotchi, J., Michotte, Y., Baekelandt, V., Sarre, S., Tenenbaum, L., 2009. Reversible neurochemical 

changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a 

partial Parkinson's disease rat model. J Gene Med. 11, 899-912. Doi: 10.1002/jgm.1377. 

Zahniser, N.R., Sorkin, A., 2009. Trafficking of dopamine transporter in psychostimulant actions. 

Sem. Cell. Dev. Biol. 20, 411–417. Doi: 10.1016/j.semcdb.2009.01.004. 

 

Zhou, X., Vink, M., Klaver, B., Berkhout, B. & Das, A.T., 2006. Optimization of the Tet-On system 

for regulated gene expression through viral evolution. Gene Ther. 13, 1382-1390. 

Doi:10.1038/sj.gt.3302780. 

Zhu, S., Zhao, C., Wu, Y., Yang, Q., Shao, A., Wang, T., Wu, J., Yin, Y., Li, Y., Hou, J., Zhang, X., 

Zhou, G., Gu, X., Wang, X., Bustelo, X. R., Zhou, J., 2015. Identification of a Valv2-dependent 

mechanism for GDNF/Ret control of mesolimbic DAT trafficking. Nature Neursoci. 18, 1084-1093. 

Doi:10.1038/nn.4060 

Zieba, A., Wahlby, C., Hjelm, F., Jordan, L., Berg, J., Landegren, U., Pardali, K., 2010. Bright-field 

microscopy visualization of proteins and protein complexes by in situ proximity ligation with 

peroxidase detection. Clin. Chem. 56, 99-110. Doi: 10.1373/clinchem.2009.134452. 

Zolotukhin, S., Potter, M., Zolotukhin,
 
I., Sakai, Y., Loiler, S., Fraites, T.J., Jr., Chiodo, V.A., 

Phillipsberg, T., Muzyczka, N., Hauswirth, W.W., Flotte, T.R., Byrne, B.J., Snyder, R.O., 2002. 

Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. 

Methods. 28, 158-167. Doi:10.1016/S1046-2023(02)00220-7.  



ACCEPTED MANUSCRIPT

Figure legends 

Figure 1 

Striatal GDNF expression. (A) GDNF protein levels (pg/mg protein) measured by ELISA in rat 

striata 5 weeks after PBS (sham) or viral vector (AAV-tetON-GFP or AAV-tetON-GDNF) injection. 

Viral vector injected rats were treated with different doses of DOX (0.01, 0.03, 0.5 or 3 mg/ml) in the 

drinking water. The striatal GDNF levels in AAV-tetON-GDNF injected rats receiving 0.5 mg/ml 

DOX were 3 times higher than in sham rats and AAV-tetON-GFP-injected rats receiving 0.01 and 3 

mg/ml DOX. In AAV-tetON-GDNF injected rats receiving 3 mg/ml DOX, GDNF levels were 12 

times higher than in sham and AAV-tetON-GFP-injected rats. (B-I) Immunohistochemistry for 

GDNF in the striatum of sham rats (B) and viral vector injected rats treated with 0.5 (F) and 3 mg/ml 

DOX (D, H). (C, E, G and I) High-power magnification microphotographs of B, D, F and H, 

respectively. GDNF staining was not detected in the striatum of sham rats (C) and AAV-tetON-GFP-

injected rats treated with 3mg/ml DOX (E). Sparse GDNF positive cells were detected in the striatum 

of AAV-tetON-GDNF-injected rats treated with 0.5 mg/ml DOX (G). Striatal tissue was intensely 

immunoreactive for GDNF in AAV-tetON-GDNF-injected rats treated with 3 mg/ml DOX (H, I). 

Scale bar in H (for B, D, F and H), 800 μm; in I (for C, E, G and  ), 50 μm.  

Figure 2 

(A) Western-blot for native TH (TH) and TH phsophorylated at serine 40 (THp40) in whole striatal 

extracts. (B) Western-blot for DAT in whole striatal extracts and plasma membranes of striatal 

synaptosomes. (C) Striatal DA uptake. Both TH and THp40 were decreased in the striatum of AAV-

tetON-GDNF injected rats treated with 3 mg/ml DOX. No differences were found in the total and 

membrane DAT levels between sham rats and viral vector injected rats treated with different DOX 

doses. However, the striatal DA uptake was significantly reduced in AAV-tetON-GDNF injected rats 

receiving 0.5 and 3 mg/ml DOX, returning to normal levels after 20 days without DOX.  β-act, β-

actin; synt, syntaxin.  

Figure 3 

Effects of GDNF over-expression on DAT-DAT interaction. (A) Western-blot under non-reducing 

conditions revealed a weak band at 150 kDa, besides that at 75 kDa, in the striatum of sham rats (lane 

1), AAV-tetON-GFP-injected rats treated with 3 mg/ml DOX (lane 2), and AAV-tetON-GDNF-

injected rats treated with 0.03 mg/ml DOX (lane 3). The high weight band was significantly more 

intense in labeling and that at 75 kDa became weaker in AAV-tetON-GDNF-injected rats receiving 
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0.5 and 3 mg/ml DOX (lanes 4 and 5) compared with sham rats (p< 0.01). (B) DAT–DAT in situ 

proximity ligation assay (PLA, left) combined with TH immunofluorescence (center) in the striatum 

of sham rats and viral vectors-injected rats treated with 0.5 mg/ml DOX. The quantitative analysis 

(on the right) showed an increase in both number (top) and size (bottom) of PLA dots in AAV-

tetON-GDNF-injected rats treated with 0.5 mg/ml DOX compared with sham rats and AAV-tetON-

GFP-injected rats treated with 0.5 mg/ml DOX (C and D; p< 0.01). Arrows indicate that DAT–DAT 

PLA signals (red) localize in DA-terminals (green). Quantitative analysis was performed in 5 animals 

per group (see the Material and methods section). In the size diagram, the numbers indicate the 

average size (pixels) of PLA signals. Each dot corresponds to 8 PLA signals in a field of 200 μm
2

from a representative animal. β-act, β-actin. Scale bar in B, 5 μm. 

Figure 4. 

GDNF over-expression modifies DAT-α synuclein but not DAT-D2R interaction. (A) 

Immunoprecipitation for DAT (IP-DAT) and immunoblotting for α-synuclein (IB-α Syn) and DAT 

(IB-DAT).  The quantity of co-immunoprecipitated α-synuclein was higher in AAV-tetON-GDNF-

injected DOX (0.5 and 3 mg/ml)-treated rats (lanes 4 and 5) than in sham rats and AAV-tetON-GFP-

injected DOX (3 mg/ml)-treated rats (lanes 2 and 3; p<0.01). Lane 1 (IgG), control 

immunoprecipitation using non-immune IgG. (B) PLA for DAT and α-synuclein in the striatum of 

AAV-tetON-GFP-injected rats (left) and AAV-tetON-GDNF-injected rats (right) treated with 0.5 

mg/ml DOX. The PLA analysis showed that GDNF over-expression increases the number and size of 

PLA dots (p<0.01 vs AAV-tetON-GFP). (C) Immunoprecipitation for D2R (IP-D2R) and 

immunoblotting for DAT (IB-DAT) and D2R (IB-D2R). (D) PLA for DAT and D2R in the striatum. 

No differences were found in the levels of co-immunoprecipitated DAT among sham rats and AAV-

tetON-GFP- and AAV-tetON-GDNF-injected DOX-treated rats, and in the PLA analysis between 

both viral vector-injected DOX-treated rats. In (B and D), n = 5 animals/group, the numbers in the 

size diagram indicate the average size (pixels) of PLA signals. Each dot corresponds to 8 PLA signals 

in a field of 200 μm
2
 from a representative animal. Scale bar in B and D, 5 μm.
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Highlights 

Striatal GDNF over-expression is precisely regulated in AAV-tetON-GDNF injected rats. 

12x GDNF over-expression promotes DA uptake decrease and TH down-regulation.  

3x GDNF over-expression promotes DA uptake decrease but not TH down-regulation. 

The DA uptake decrease is associated with changes in DAT protein-protein interactions. 
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