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Chapter 1

Introduction and Notation

One of the primary topics in finance and insurance is the investigation of risk models, via stochastic analysis and
quantitative estimation of the ruin related indications, such as ruin probability, ruin time and some other important
risk measures, which provides crucial information for actuaries and decision makers.

In Chapter 2 we are concerned with the asymptotic behaviour, as u — oo, of P {supte[O’T] X, (t) > u}, where X, (t),t €
[0,T],u > 0 is a family of centered Gaussian processes with continuous trajectories. A key application of our findings
concerns P {SUPte[o,T] (X(@)+g() > u}, as u — oo, for X a centered Gaussian process and g some measurable
trend function. Further applications include the approximation of both the ruin time and the ruin probability of the
Brownian motion risk model with constant force of interest. This part also give us the main idea to solve the problems
of Gaussian related models with trend.

Next in Chapter 3 and Chapter 4, we consider the Parisian ruin of Brownian motion risk models which is a development
of the Brownian motion risk model in Chapter 2. Let B(¢),t € R be a standard Brownian motion. Define a risk

process

t t
RS (t) = % (u + c/ e %%ds — 0‘/ e_‘ssdB(s)> ,t >0, (1.1)
0 0

where u > 0 is the initial reserve, 6 > 0 is the force of interest, ¢ > 0 is the rate of premium and ¢ > 0 is a volatility
factor. For S € (0,00) in Chapter 3 and S = oo in Chapter 4, we obtain an approximation of the Parisian ruin

probability

XS (u, Ty) == IP’{ inf  sup RI(s) < O} ,
t€[0,5] se[t,t+T,]

as u — oo where T, is a bounded function. Further, we show that the Parisian ruin time of this risk process can be
approximated by an exponential random variable. Our results are new even for the classical ruin probability and ruin
time which correspond to T,, = 0 in the Parisian setting. When S = oo, it turns out that the Parisian ruin probability
decays exponentially as u tends to infinity and is a decreasing function of the force of interest for u large. Moreover,
we obtain the approximations of Parisian ruin time.

With motivation from [49], in Chapter 5 we derive the exact tail asymptotics of «(t)-locally stationary Gaussian
processes with non-constant variance functions. We show that some certain variance functions lead to qualitatively
new results.

Based on our analysis of one-dimensional related Gaussian risk model, in Chapter 6 we focus on the vector-valued
scenario. Let X (t) = (X1(t),...,X,(t)),t € T C R be a centered vector-valued Gaussian process with independent
components and continuous trajectories, and h(t) = (hi(t),...,h,(t)),t € T be a vector-valued continuous function.

We investigate the asymptotics of

P {316117) 1r§nz‘1£n(Xi(t) + hi(t)) > u}

as u — 00. As an illustration to the derived results we analyze two important classes of X (t): with locally-stationary

structure and with varying variances of the coordinates, and calculate exact asymptotics of simultaneous ruin proba-



2 Introduction and Notation

bility and ruin time in a fractional Brownian risk model.

Another problem related to vector-valued Gaussian processes, the L” norm of Gaussian processes with trend, is
investigated in Chapter 7. For X(t) = (X1(¢),...,Xn(¢)) and ¢(¢) a continuous function, the asymptotics of tail
distribution of || X (?)[|, have been investigated in numerous literatures. In this chapter we are concerned with the

exact tail asymptotics of || X (t) ¢ > 0, with trend g(¢) over [0,7]. Both scenarios that X (¢) is locally stationary

[
and non-stationary are considered. Important examples include Y. |X;(¢)| + ¢(¢) and chi-square processes with
trend, i.e., > i X2(t) + g(t). These results are of interest in applications in engineering, insurance and statistics,

etc.

Further, extending our ideas to the scenario of two dimensional Gaussian fields with trend, we consider the drawdown
and drawup of fractional Brownian motion with trend in Chapter 8, which corresponds to the logarithm of geometric
fractional Brownian motion representing the stock price in financial market. We derive the asymptotics of tail
probabilities of the maximum drawdown and maximum drawup as the threshold goes to infinity, respectively. It turns
out that the extremes of drawdown leads to new scenarios of asymptotics depending on Hurst index of fractional
Brownian motion.

In the former results, we notice that the Pickands and Piterbarg constants play a pivotal role. Numerous papers
are focus on the Pickands related constants, but the analysis about Piterbarg constants, especially the quantitative

analysis are rare. Hence in Chapter 9, we investigate generalised Piterbarg constants

P

hs= lim E sup eV/2Ba(t)=[t" ~h(t)
’ T—o0 te87[0,T)

determined in terms of a fractional Brownian motion B, with Hurst index a/2 € (0,1], the non-negative constant
0 and a continuous function h. We show that these constants, similarly to generalised Pickands constants, appear
naturally in the tail asymptotic behaviour of supremum of Gaussian processes. Further, we derive several bounds for
fPZ’ s and in special cases explicit formulas are obtained.

Through this thesis, the notation always has the following definition, unless we redefined them. First is Pickands-type
constant defined by

1 [e3
Ho = lim —Ho[0,7], with H,[S,T] =E{ sup eV2BO-1"% 7> g (1.2)
T—oo 1 te[0,T]

where S, T € R are constants with S < T and B,, is an fBm. Further, define for f € C§([S,T]) and a positive constant

a
P IS, T) =E{ sup eV2eBat)=altl®=f() (1.3)
’ te[S,T]
and set
:P(fya[oaoo) = lim :Pfxa[ovT]a :Pga(foovoo) = lim ?(J;a[s7T]
’ T—o0 ? ’ S——o0,T—00 ”

The finiteness of P/ ,[0,00) and (P(J;’a(—oo, 00) is guaranteed under weak assumptions on f, which will be shown in
the proof of Theorem 2.2.1, see [134, 76, 77, 43, 114, 13, 116, 118, 47, 63, 37, 65, 40, 121, 57, 64, 44, 79, 34] for various
properties of Hy and Pf ,[0,00).

In our notation, ~ means asymptotic equivalence when the argument tends to 0 (or oo). Below ®(-) and ¥(-)
stand for the distribution function and survival function of an N(0,1) random variable, respectively. Note that

w2
U(u) ~ e~z ,u — oo. Denote by I'(-) the gamma function and Iy the indicator function.

1
V2mu



Chapter 2

Extremes of Threshold-Dependent (Gaussian

Processes!

2.1 Introduction

Let X (t),t > 0 be a centered Gaussian process with continuous trajectories. An important problem in applied and

theoretical probability is the determination of the asymptotic behavior of

p(u) zP{ sup (X (t)+g(t)) > u}, U — 00 (2.1)
te[0,T)

for some T' > 0 and ¢(¢),¢ € [0,T] a bounded measurable function. For instance, if g(t) = —ct, then in the context of
risk theory p(u) has interpretation as the ruin probability over the finite-time horizon [0,7]. Dually, in the context
of queueing theory, p(u) is related to the buffer overload problem; see e.g., [53, 47, 63, 84, 40].

For the special case that g(t) = 0,t € [0, T] the exact asymptotics of (2.1) is well-known for both locally stationary and
general non-stationary Gaussian processes, see e.g., [115, 118, 132, 18, 119, 9, 80, 49, 54, 121, 24, 23, 5|. Commonly,
for X a centered non-stationary Gaussian process it is assumed that the standard deviation function o is such that
to = arg max;e[o,7) 0 (t) is unique and o(to) = 1. Additionally, if the correlation function r and the standard deviation

function o satisfy (hereafter ~ means asymptotic equivalence)
1—r(s,t) ~alt — 5|, 1—o(to+1t) ~ blt]?, s,t = to (2.2)
for some a, b, 8 positive and « € (0, 2], then we have (see [119|[Theorem D.3|)
p(u) ~ Coula " FP{X (to) > u}, u— oo, (2.3)
where (z)4 = max(0,z) and
a/eb=VPD(1/B + 1)H,, if a<f,
Co=1¢ PHI° if a=4,
1, if a>g.
The more general case with non-zero g has also been considered in the literature for both finite- and infinite-time
horizon; see e.g., [123, 33, 125, 53, 82, 91|. However, most of the aforementioned contributions related to finite-time
horizon treat only restrictive trend functions g. For instance, in [123][Theorem 3] a Holder-type condition for g is
assumed, which excludes important cases of g that appear in applications. The restrictions are often so severe that

simple cases such as the Brownian bridge with drift considered in Example 2.3.3 below cannot be covered.

A key difficulty when dealing with p(u) is that X 4 ¢ is not a centered Gaussian process. It is however possible to

IThis chapter is based on L. Bai, K. Dgsicki, E. Hasnorva, aND L. J1 (2018): EXTREMES OF THRESHOLD-DEPENDENT GAUSSIAN
PRrocessEs, published in the Science China Mathematics, to appear.



4 Extremes of Threshold-Dependent Gaussian Processes

get rid of the trend function g since for any bounded function g and all large u (2.1) can be re-written as

= su U :7X(t)
pT(u)—P{te[O%]Xu(t)> } Xul) = 1= G LT (2.4)

The advantage of the above rearrangement is that, for each large u, the process X, (t), t € [0,T] is centered. However,
X, (t) depends on the threshold u, which makes the analysis more complicated than in the classical centered case
(2.2).

Our principal result is Theorem 2.2.2 which derives the asymptotics of pr(u) for quite general families of centered
Gaussian processes X, under tractable assumptions on the variance and correlation functions of X,. To this end,

using tailored double sum method, in Theorem 2.2.1 we first derive the asymptotics of

pa(u) =P< sup X,(t)>up, u— o0
teA(u)

for some short compact intervals A(u)C[0, 7], w > 0, for which pr(u) ~ pa(u), as u — oo.

The idea of transformation of the original problem into the crossing probability of some threshold-dependent Gaussian
process and then application of the double sum technique was used also in several contributions that deal with analogs
of (2.1) for infinite time horizon, i.e. for T = oo; see e.g., [47, 63, 89-91]. However, the transformation used there
needs different time-scaling than proposed in this contribution, i.e. is of the form X, (t) = X (ut)/(1+g(ut)/u). Then
the asymptotics of poo(u), as u — 00, is usually concentrated around t,, := arg max;e[g,oo) var (Xu (t))7 with the local

structure of variance

var (X, (t))

T (alty)) = Lt~ 1)1+ o(D), 5)

2
n

on the right hand side of (2.5) simplifies next steps of the analysis, which is usually based on the double sum technique.

as t — t,, where o7 = var(n(t)) and 7 is some Gaussian process with stationary increments. The factorization present
In this paper we focus on finite-time case T' < 0o, which requires transformation like in (2.4), where the local structure
of the variance function of X, has more complicated form than (2.5); see assumption A2 in Section 2.2. It is worth
mentioning that a slightly different transformation than (2.4) has also been adopted in, e.g., [53, 82] when dealing
with finite-time case; however, in those contributions lower and upper bounds are derived to reduce the difficulty of

the problem, for which some Hélder-type condition on g has to be imposed.

Theorem 2.2.2 extends partial results analyzed in literature, as e.g. in [53], from the class of Gaussian processes with
stationary increments with specific drift to more general family of Gaussian processes with general drift functions.
More specifically, applications of our main results include new results for a class of locally stationary Gaussian
processes with general trend (Proposition 2.3.1) and that of Proposition 2.3.3 for the class of non-stationary Gaussian
processes with trend, as well as those of their corollaries. For instance, a direct application of Proposition 2.3.3
yields the asymptotics of (2.1) for a non-stationary X with standard deviation function ¢ and correlation function

r satisfying (2.2) with t9 = argmax,cpo,rjo(t). If further the trend function g is continuous in a neighborhood of to,

g(to) = max;c(o,) 9(t) and
g(t) ~ g(to) —clt —to|”, t—to (2.6)

for some positive constants ¢, 7y, then (2.3) holds with Cy specified in Theorem 2.3.5 and S, u being substituted by
min(8,2y) and u — g(tg) respectively. As an application of the derived results, in Section 2.3.3 we find asymptotics
of ruin probability in a Gaussian risk model with constant force of interest.

Complementary, we investigate asymptotic properties of the first passage time (ruin time) of X (¢) + g(¢) to w on the
finite-time interval [0, T, given the process has ever exceeded u during [0, T]. Here all the derived results are new. In

particular, for

Tu =1inf{t > 0: X(t) >u—g(¢t)}, (2.7)
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with inf{#} = co, we are interested in the approximate distribution of 7, |7, < T, as u — oco. Normal and exponential
approximations of various Gaussian models have been discussed in [91, 81, 41, 42, 45]. In this paper, we derive general
results for the approximations of the conditional passage time in Propositions 2.3.2; 2.3.6. The asymptotics of pa (u)
for A(u) displayed in Theorem 2.2.1 plays a key role in the derivation of these results.

Organisation of the rest of the paper: In Section 2, the tail asymptotics of the supremum of a family of centered
Gaussian processes indexed by u are given. Several applications and examples are displayed in Section 3. Finally,

we present all the proofs in Section 4 and Section 5.

2.2 Main Results

Let X, (t),t € R,u > 0 be a family of threshold-dependent centered Gaussian processes with continuous trajectories,
variance functions o2 and correlation functions r,,. Our main results concern the asymptotics of slight generalization
of pa(u) and pp(u) for families of centered Gaussian processes X, satisfying some regularity conditions for variance

and covariance respectively.
Let C§(FE) be the set of continuous real-valued functions defined on the interval E such that f(0) = 0 and for some
€ >€1 >0
li t)/[t| = oo, li t)/[t|* =0, 2.8

Lm0/ = oo, T f(0)/1 (28)
ifsup{r:x € E} = oo or inf{z:z € E} = —o0.
In the following R,, denotes the set of regularly varying functions at 0 with index « € R, see [69, 129, 136] for details.
We shall impose the following assumptions where A(u) is a compact interval:

A1l: For any large u, there exists a point ¢,, € R such that o, (t,) = 1.
A2: There exists some A > 0 such that

(m — 1) u? — f(ut)

lim sup =0 2.9
U090 e A (u) f(u)‘t) +1 ( )
holds for some non-negative continuous function f with f(0) = 0.
A3: There exists p € Ry /2, € (0,2] such that
1-— t ty +1
lim sup Tu(2U+S’ + )—1‘:0.
U—00 s, tEA(u) P (It - S|)
t#s
In the rest of the paper we tacitly assume that
2
o ()
77 *‘ll_l;% 52/)\ E[Ov ]a

with A given in A2.
Remarks 2.2.1. i) If f satisfies f(0) =0 and f(¢) > 0,t # 0, then

lim sup
U0 te A(u),t#£0

1 1
ou(tutt) B
w2 f(uM) ‘

for some A > 0 implies that (2.9) is valid.

ii) Condition A2 is crucial for getting precise tail asymptotics of supyc () Xu(tu + t) given in Theorem 2.2.1. More
precisely, together with A3 it guarantees that the conditional process, which plays a key role in main steps of the
proof of Theorem 2.2.1, weakly converges to v/2aB,(t) — a|t|* — f(t) for some appropriately chosen a > 0, shaping
the form of the asymptotic constant in the derived asymptotics; see (1.3). Assumption A3 extends (2.2) allowing

local behavior of the correlation to behave according to the class of regularly varying functions.

Using that o, (t,) = 1, assumption A2 covers the case oy, (t, +1t) = 1 — cu™7t?(1 + o(1)) for suitably chosen ~, 3 and
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power function f. For example, if t, = 0,0,(t) = 1 —t? and A(u) = [0,u~}], then (2.9) holds with f(t) = t? and
A=1.

For the regularly varying function p(-), we denote by ‘o (-) its asymptotic inverse (which is asymptotically unique).
Further, we set 0- 0o =0 and v=*° =0 if u > 0.

In the next theorem we shall consider two functions @1 (u), z2(u),u € R such that 21(3) € Ry, z2(+) € Ry, with

M1y 2 Z )\7 and

lim vtz;(u) = 2; € [~00,00],i = 1,2, with z; < xs. (2.10)
U— 00

Theorem 2.2.1. Let X, (t),t € R be a family of centered Gaussian processes with variance functions o2 and corre-
lation functions ry,. If A1-A8 are satisfied with A(u) = [x1(u), x2(u)], and f € C§([z1,x2]), then for M, satisfying

M, ~ u,u — o0, we have
P{ sup X, (t, +1t) > Mu} ~C (u)‘(ﬁ(u_l))_ﬂ{":(”} U(M,), u— o0, (2.11)
teA(u)

where

x

C = ipg,n[xh .’,132], Zf n € (Oa OO), (212)
SUPte[z,,20] e_f(t)a Zf n =0,

Ha ;7 e TWdt, if n=oo,

and P}, , (—00,00) € (0,00).

Remark. Let o € (0,2],a > 0 be given. If f € C{([x1,x2]) for z1,22,y € R, 21 < x2, as shown in Appendix, we
have, with f,(t) := f(y+t),t €R

?é,a[xh xQ] = Tiﬁa[wl —Y, T2 — y}v :sz,a[xh OO) = j)(];y}a[xl - Y, OO) (2'13)
In particular, if f(t) = ct,c > 0, then for any z € R
PG alw, 00) = PEEFE0, 00) = e PE [0, 00).

Next, for any fixed T' € (0, 00), in order to analyse pr(u) we shall suppose that:

A1’: For all large u, o,(t) attains its maximum over [0, 7] at a unique point ¢, such that

ou(ty) =1 and lim ¢, =ty € [0,T].

U— 00

A4: For all u large enough

inf
te[0,7] \l(rtlu-i-A(u)) o (%) u?

(2.14)

holds for some constants p > 0,q > 1.

AS5: For some positive constants G,¢ > 0
E {(Yu(t) - Yu(s))Q} <G|t —s|°

holds for all s,t € {z € [0,T]: o(z) # 0} and X, (t) = f:((tt))
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Below we define for A\ given in A2 and v, d positve

0,6, if 4, =0,
[—tus Ouls if t,~du™" and v > ),
A(u) = [=0u, 6ul, if ty ~du™ orT —t, ~du™" when v <\, or tg € (0,T), (2.15)
[—0u, T —ty], if T—t,~du™" and v >\
[—6u, 0] if t,=1T,

A\ A
where 6, = (%) with ¢ given in A4.

Theorem 2.2.2. Let X,(t),t € [0,T] be a family of centered Gaussian processes with variance functions o2 and
correlation functions r,. Assume that A1°,A2-A5 are satisfied with A(u) = [e1(u), ca(u)] given in (2.15) and
lim ¢;(u)u® = x; € [~00,00],i = 1,2, x; < xo.
uU—r 00
If f € C§([x1,x2]), then for M, such that lim, o M, /u =1 we have
]P’{ sup X, (t) > Mu} ~C (ukﬁ(u—l))‘““:‘”} U(M,), u— oo, (2.16)
te[0,T)

where C' is the same as in (2.12) if n € (0,00] and C =1 if n = 0.

Remark. In the case that A(u) does not depend on the time horizon T and ¢y < oo, the asymptotic result in (2.16) in
some cases allows for replacement of T by oco. In this case, Theorem 2.2.2 can be applied directly for the asymptotics
of the tail probability of maximum over infinite-time horizon of Gaussian processes with trend, under appropriate

conditions on variance of X (¢) or/and trend function g(t) as t — co.

2.3 Applications

2.3.1 Locally stationary Gaussian processes with trend

In this section we consider the asymptotics of (2.1) for X (¢),t € [0,T] a centered locally stationary Gaussian process

with unit variance and correlation function r satisfying

. 1—r(tt+h)
lim  sup — e
€0 4¢[0,7], | <e A

—a(t) =0 (2.17)
with « € (0,2], a(-) a positive continuous function on [0, 7] and further

r(s,t) <1, Vs,t € [0,T] and s # t. (2.18)

We refer to e.g., [16, 18, 87, 119, 22] for results on locally stationary Gaussian processes. Extensions of this class to

a(t)-locally stationary processes are discussed in [49, 83, 10].

Regarding the continuous trend function g, we define g,,, = max;c[o, ) g(t) and set
H:={s€[0,T]:9(8) = gm}-

Set below, for any to € [0,

—00, lf t() S (OyT)7
14T wy = 2.19
o {toc 0.1} Wio { 0, ifto=0orty="T. (219

Proposition 2.3.1. Suppose that (2.17) and (2.18) hold for a centered locally stationary Gaussian process X (t),t €
[0,T] and let g : [0,T] — R be a continuous function.
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i) If H = {to} and (2.6) holds, then as u — oo

IP’{ sup (X (t)+g(t)) > u} ~ Ctou(%7%)+\ll (U — gm), (2.20)
te[0,T]
where (set a = a(ty))
Qa1 y + D) He,y  if a < 2y,
Cyy = ng‘fJf [we,, 00), if a=2y,
1, if a>2y.

w) If H=1[A,B] C[0,T] with0 <A< B<T, then as u — 00

te[0,T] A

B 2
P{ sup (X(1) +g(1)) > “} ~ It / (a()/*dtu= ¥ (u— gm).

Remarks 2.3.1. 1) If H = {t1,...,t,}, then as mentioned in [119], the tail distribution of the corresponding supremum

is easily obtained assuming that for each ¢; the assumptions of Theorem 2.3.1 statement i) hold, implying that

P{ sup (X(t)+g(t)) > u} ~ (ZCtj)u(%_%)ﬂI!(u—gm), u — 00.
j=1

te[0,T)

ii) The novelty of Theorem 2.3.1 statement i) is that for the trend function g only a polynomial local behavior around
to is assumed. In the literature so far only the case that (2.6) holds with v = 2 has been considered (see [125]).
iii) By the proof of Proposition 2.3.1 statement i), if g(¢) is a measurable function which is continuous in a neighborhood

of to and smaller than g,, — € for some € > 0 in the rest part over [0, T], then the results still hold.

We present below the approximation of the conditional passage time 7|7, < T with 7, defined in (2.7).

Proposition 2.3.2. Suppose that (2.17) and (2.18) hold for a centered locally stationary Gaussian process X (t),t €
[0,T]. Let g : [0,T] — R be a continuous function, H = {to} and (2.6) holds.
i) If to € [0,T), then for any x € (we,, 00)

'ycl/“’ f":t eIt gy

-

Qi T(1/7) ’

P {ul/’Y(Tu _ tO) < SL"TU < T} ~ Tg\fa‘”’ [weg 2] if a = 27,

t|Y
P fwig ,00)

if a < 27y,

SUDyc [, 2] et ifa > 2.
i) If to =T, then for any x € (—00,0)

~el /Y I et gt

im0 Fa<?

1 Pt [—z,00 -
P{ul(r, —to) <alr < T} ~ el fa=2y,
e—clal” if a > 2.

Ezample 2.3.1. Let X(t),t € [0,T] be a centered stationary Gaussian process with unit variance and correlation
function r that satisfies r(t) = 1 — a|t|*(1 + o(1)), ¢ — 0 for some a > 0, @ € (0,2], and r(¢) < 1, for all ¢ € (0,T].
Let 7, be defined as in (2.7) with g(t) = —ct,c > 0. Then we have

o/ H,, @€ (0,2
]P’{ max (X(¢) —ct) > u} ~uE D () ca , a€(0,2),
tel0.7] Tgt,a[ovoo)v o = 27



Applications 9

and for any x positive

1—e  ae(0,2),
Ty < T} ~ N P [0.a]
T3 o =2

P {’LLTu <z
Pt [0,00)

Ezample 2.3.2. Let X(t),t > 0 be a standardized fBm, i.e., X (t) = B,(t)/t*/? with B, an fBm. Let ¢, T be positive

constants. Then for any n € N, we have

27t ~ 1 T 2 _ 1
P max X(t)+csin | — > U p o a? | Ha ue " 2W(u — ¢,
{te[T,(nH)T] ( ®) ( T )) } ; J Vv2crm ( )
where aj:%(W)7 i =1,...,n.

2.3.2 Non-stationary Gaussian processes with trend

In this section we consider the asymptotics of (2.1) for X (¢),¢ € [0,T] a centered Gaussian process with non-constant
variance function o?. Define below whenever o (t) # 0
X(t

X(t) = U(t)), t €10,7],

and set for a continuous function g

My (t) . U(t>

Ik Erym te0,7], u>0. (2.21)

Proposition 2.3.3. Let X and g be as above. Assume that t, = argmamte[oﬂmu(t) 18 unique with lim,_, . t, = to
and o(ty) = 1. Further, we suppose that A2-A5 are satisfied with o,(t) = TT”((;)), ru(s,t) = r(s,t), Xu(t) = X(t)
and A(u) = [e1(u), co(u)] given in (2.15). If in A2 f € C§([x1,22]) and

lim ¢;j(u)u® = x; € [~00,00],i = 1,2, 21 < x9,
U—r 00

then we have

su U p ~ o (ut oo 7ufg(tu) U — 00
P{te[o%()((twg(t)b} C(up(u™)) \1/( ) > — 00, (2.22)

where C' is the same as in (2.12) when n € (0,00] and C =1 when n = 0.

Remarks 2.3.2. i) Theorem 2.3.3 extends [123][Theorem 3] and the results of [53] where (2.1) was analyzed for special

X with stationary increments and special trend function g.

ii) The assumption that o(tg) = 1 is not essential in the proof. In fact, for the general case where o(tp) # 1 we have
that (2.22) holds with

2 _
oy “Ha f;f e~ Qf(t)dtv if n=o0,

C - fPUO _fzn[l‘l,.fg], if n S (0,00), opg = O'(to).
1, if n=0,

Proposition 2.3.4. Under the notation and assumptions of Theorem 2.5.3 without assuming A3,A5, if X is differ-

entiable in the mean square sense such that

T’(S,t) < 175 7é L, E {XIQ(tO)} > 0/2(t0)7
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and E{X"(t)} — 0'2(t) is continuous in a neighborhood of to, then (2.22) holds with

a=2 pt) = % (]E {X’2(t0)} - 0'2(t0)) 2.

The next result is an extension of a classical theorem concerning the extremes of non-stationary Gaussian processes
discussed in the Introduction, see [119][Theorem D.3].
Proposition 2.3.5. Let X(t),t € [0,T] be a centered Gaussian process with correlation function r and variance

function o? such that to = argmazicio,r)o(t) is unique with o(to) = o > 0. Suppose that g is a bounded measurable

function being continuous in a neighborhood of to such that (2.6) holds. If further (2.2) is satisfied, then

IP{ sup (X(t) +g(t)) > u} ~ Coula =7 )+ (”‘7(’50)) , (2.23)

te[0,T] o

where 8* = min(g, 2v),
o 2/agt/ag(, f“(fo e fOdt, if a < pB*,
Co = Ti)o_ga[wto, 00), if a = 3%,
1, if a > g%,
with f(t) = L |t1PLis—p-y + 2|t Lo —p) and wy, defined in (2.19).

Proposition 2.3.6. i) Under the conditions and notation of Theorem 2.3.3, for any x € [x1, x2] we have

I e f®Mat .
frlg e—F(t)dt? Zf 77 = o0,
z1
. A f T1,T .
ulggop{u (Tu —tu) < |7y <T} = ﬂffl:][[xf;j]’ if me(0,00), (2.24)

SUD;e (1 ] e fW if n=o0.

it) Under the conditions and notation of Theorem 2.5.5, if to € [0,T), then for x € (wy,, o)

f;”t e f®at
0

T e Toa if o <,
bl

: 28" () < < }: Pl alweg 7] ’

Jim B{u” (r —to) S ol < T B i)’ fo=p,

SUD ¢ [uy, 2] e O ifa>p*,

and if to =T, then for x € (—o0,0)

ff‘; e*f(f/)dt . N
fooo e—Ft)dt? ZfOé < ﬂ )

3 2/6* — = T£0[7 K ) -
ulgrgo}}”{u (T —to) < J)‘Tu < T} = W;Cs, if o = B,
e~ f@), if a > p*.

Ezample 2.3.3. Let X (t) = B(t) —tB(1),t € [0,1], where B(t) is a standard Brownian motion and suppose that 7,
is defined by (2.7) with g(t) = —ct. Then

]P’{ sup (X(t) —ct) > u} ~ 2w Few) (2.25)
te0,1]

]P’{u(ru— Y )Sm
c+ 2u

We note that according to [20][Lemma 2.7], the result in (2.25) is actually exact, i.e. for any u > 0,

Tu < 1} ~ ®(4x), x € (—00,00).
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P {SuPte[o,1] (X(t) —ct) > u} = =20 +eu),
Now, let "= 1/2. It appears that the asymptotics in this case is different, i.e.,

IP{ sup (X (t) —ct) > u} ~ B(c)e 2 e (2.26)
te[0,1/2]
and
u 1 O (4x)

P u < u S a ~ ) - 9 4].

{ (T c+2u)_ T 2} () x € (—00,c/4]
Similarly, we have

c 1 —2(u?—cu)
P< sup X(t)—i—i—c t_§ >up ~2¥(c)e (2.27)
teo,1]

and

4z _ (tl+o)?
e 2 dt

S
Tu < 1} ~ W, x € (—00,00).

Plu(nl) <

We conclude this section with an application of Theorem 2.3.3 to the calculation of the ruin probability of a Brownian

motion risk model with constant force of interest over infinite-time horizon.

2.3.3 Ruin probability in Gaussian risk model

Consider risk reserve process U (t), with interest rate 6 modeled by
t ¢
Ul(t) = ue® + c/ St gy — a/ SEABW), t>0,
0 0

where ¢, §, 0 are some positive constants and B is a standard Brownian motion. The corresponding ruin probability

over infinite-time horizon is defined as

p(u):P{ inf U(t)<0}.

te[0,00)

For this model we also define the ruin time 7, = inf{t > 0: U(¢) < 0}. Set below

h(t)—i(\/t—FrQ—r)Q, t €10, 00), 7“:%.

=
We present next approximations of the ruin probability and the conditional ruin time 7,|7, < co as u — oo.

Theorem 2.3.1. As u — o0
1
p(u) ~ Pt 502 [—1r?,00) ¥ <\/ 20u? + 4cu> (2.28)
’ o

and for x € (—r?,00)

2 g)h —7"2756‘
P ’LL2 6_267—“ _ ( c ) < .’L"Tu <00 S~ M.
5u+c ?175/02 [_T ,OO)

Remark. According to [78] (see also [68]) for any ¢, positive we have

. o (V2 V2e
P{tel[(r){io)U(t) < O} =v (0 (u—i—r)) /\I/ (aﬁ) . (2.29)
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By (2.28) and (2.13)

2
P{ inf U(t) < 0} ~ E{ sup  exp < 2—(QSB(t) — % (\/t +7r2— r) — 62|t|> } v (1\/ 20u? + 4cu)
te o o o o

[0,00] te[—r2,00)

c? c c?
~ E sup  exp (ﬁB(t)(tJrU%)Jr:\[d\/tJrU%hﬁ) W(?(wa"))

t€[7 ;25 )OO)
= E< sup exp (\/ﬁB (t) —2t+20\/1€) v @(u—i—r) ,
te[0,00) U\/g ag
which combined with (2.29) implies that for any ¢, d, o positive
V2¢ ( 2¢
U ~—=|E{ sup exp|V2B(t)—2t+ \ﬁf) =1. 2.30
<a¢s e =2+ (230

2.4 Proofs

In the proofs presented in this section C;,7 € N are some positive constants which may be different from line to line.

We first give two preliminary lemmas, which play an important role in the proof of Theorem 2.2.1.

Lemma 2.4.1. If p be a regularly varying function at 0 with index a/2 € (0, 1], then there exists a centered stationary

Gaussian process £(t),t € R with unit variance, continuous sample paths and correlation function r satisfying
1—7(t) ~ap(t]), t—0, a>0. (2.31)

Moreover, if f is a continuous function, and K, is a family of countable index sets, then for

(P (uM)t)

2 = T G ey

te [51,52],

where A > 0 and —oo < S1 < Sy < 00, we we have

1
lim sup |=——+——P sup  Zy(t) > My (u) p — RIS, S0]| =0, 2.32
u‘)OOkGKu \IJ(Mk(u)) {tE[Sl,Sg] () ( )} 77[ 1 2] ( )
provided that My (u),k € K, is such that
lim sup Mi(w) 1’ =0, (2.33)
U=RO ek, | U

where 1 := limy o ’;EQ € (0,00] and h(t) = f(n~t) for n € (0,00), h(t) = f(0) for n = co and

325[51,52] = IE{ sup

V2aBo () —alt]* (/1) | _ Hala/*S1,a'/*S5] () =0,
te[Sl,Sz]

Pl [S1, 5] otherwise.

PROOF OF LEMMA 2.4.1 The existence of £ is guaranteed by the Assertion in [89][p.265] and follows from [73, 74].
Next, set n~ /% = 0 if n = oo and set further

Gu =" (u™h). (2.34)

The proof follows by checking the conditions of [60][Theorem 2.1] where the results still holds if we omit the require-
ments f(0) =0 and 0 € [Sq, Sa]. By (2.33)

lim inf Mj(u) = occ.

u—o0 keK,,
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By continuity of f we have

lim sup M2 (u)u=2 f(quut) — f(n~ )| = 0. (2.35)
U0 Le K, ,tE[S1,5]

Moreover, (2.31) implies
var(§(qut) — €(qut’)) = 2 = 2r (Jau(t — t')]) ~ 20p* (lqu(t = t')]), u — oo,
holds for ¢,t" € [Sy,S2]. Thus by (2.33)

lim sup  sup M (u) var(€(gut) — €(aut')) —1|=0. (2.36)

Wl rersos | w2 200 (gt — )

Since p? € R, which satisfies the uniform convergence theorem (UCT) for regularly varying function, see, e.g., [19],

ie.,

lim  sup  [u? (qult —)]) — [t —¢]°| = 0, (237)
U004 /€[S1,52]

and further by the Potter’s bound for p?, see [19] we have

u?p” (lqu(t —t')])

limsup sup TP < Crmax (S — 82|71, [S1 — 82| *F1) < oo, (2.38)
u—oo tels;,s] |t —t[|*TE
£t

where 1 € (0, min(1, «)). We know that for « € (0, 2]
[[t|* — |t'|%| < Cylt — t'|*M, t, ' €[Sy, Sa). (2.39)
By (2.31) for any small ¢ > 0, when u large enough

r(aut) <1—p*(qulth(1 =€), r(qut) 21— p*(qult(1 +€) (2.40)

hold for ¢t € [S1, S2], then by (2.33) for u large enough

sup sup M (w)E{[E(qut) — €(qut")]1E(0)}
keK, [t—t'|<e,t,t’€[S1,52)

< Cqu? sup 7 (qut) — r(qut’)|
[t—t'|<e,t,t' €[S1,52]

<C swp ([P (ault) — w2 (gl D]+ elup (qult)] + elu®o? (gult' D))
[t—t'|<e,t,t'€[S1,S2]

<GCs sup (lu®p? (lgu(®)]) = 6] + [ p® (Jqu()]) = '] + [1t]* = [¢']]
[t—t'|<e,t,t’€[S1,52]

+Cye (Jt]*= + [¢'|**)) (2.41)
< CseM + Cge, u — 0 (2.42)

— 0,e = 0,¢e = 0,

where in (2.41) we use (2.38) and (2.42) follows from (2.37) and (2.39).
Hence the proof follows from [60][Theorem 2.1]. O

Lemma 2.4.2. Let Z,(s,t),(s,t) € R? be a centered stationary Gaussian field with unit variance and correlation

function vz, (-, -) satisfying

a/2

1—rz,(s,t) =exp (—au_2 <’s

+‘t

M)) . (s,t) €R?, (2.43)

with a > 0. If K, is some countable index sets, then for My (u), k € K, satisfying (2.33) and for any Sy, 52, T1,To > 0
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such that max(Sy, S2) > 0, max(Ty,Ts) > 0, we have

lim sup
U=O LK,

1
— P Zuls,t) > M — F(Sy, Sy, Th, T
U (M (u)) {(s?tl)lgD (5,) k(u)} (51, 52,1, T2)

where D = [—S1, 53] x [-T1,Ts] and
F(S1, 52, T1,Tz) = Hoo[—a® Sy, a* 8o H jo[—a* “T1, a* *T).

PROOF OF LEMMA 2.4.2 The proof follows by checking the conditions of [45||[Lemma 5.3].
Since by (2.43)

var(Zy(s,t) — Zu(s',t") = 2—2rz, ((s—5),({t—1t"))
~ au72 (|S - 8/|a/2 + |t 7 t/|a/2) ,

we obtain

Zy(s,t) — Zy(s', 1
lim sup sup M7 (u) var( u(/s, /)2 u(s ; ))2 - 1’ =0.
U= ke K, (s,8)#£(s' ¢')ED 2a(|s — S |a + |t —t |0‘/ )

Further, since for a/2 € (0, 1]
Htla/2 o |t/|a/2| < (Cl‘t _ tl|oz/27 and ||s|a/2 _ ‘8/|a/2| < CQ‘S _ Sl|a/2
hold for t,t' € [-T1,T3],s,s" € [—51,S2), we have by (2.43)

sup sup M;?(’U,)E {[Zu(3,t) — Z(s',1)] Z2.,(0,0)}
kEK, |(s,t)—(s',t")|<e
(s,t),(s",t")eD
< Csu? sup |7z, (s,t) =71z, (s, 1)
[(s,t)=(s",t")|<e
(s,t),(s",t")ED
<Csa  sup |[s|*Z 4 [t — 5|2 = ¢/
[(s,t)—=(s",t")|<e
(s,t),(s',t")ED

<Cia sup (Il = 1512+ 12— )2
[(s,t)=(s",t")|<e
(s:t),(s",t")ED

< Cse®? 50, u— 00,6 — 0.

Hence the claim follows from [45][Lemma 5.3].
PROOF OF THEOREM 2.2.1 We have from A3 (recall the definition of ¢, in (2.34))

2
lim 7 (t)

A2
t—0 $2/X ’

=nec [07 OO], lim UAQu =n
U—> 00

Without loss of generality, we consider only the case ¢, = 0 for u large enough.
By A2 for ¢t € A(u), for sufficiently large u,

1

— <o, <
Faget) =0

Fo ) Fue(t) =1+u"? [(1£e)f(ut) £e

for small constant € € (0,1). Since further

m(u) = IP’{ sup X, (¢t) > Mu} = IP’{ sup X (t)ou(t) > Mu},

teA(u) teA(u)

207

(2.44)

(2.45)

(2.46)
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we have

W(U)SP{ sup Xu(t))>]\/[u}, W(U)ZP{ sup XU(t))>Mu}

teA(u) H:'u,fs(t teA(u) Hju +5(

Set for some positive constant S
Ix(u) = [kqusS, (k +1)quS], k € Z.

Further, define

9u7+5(k) - Mu sup Sru,+8(8)’ Nl(u) =
s€lk(u)

z1(w) |
Squ {z1<0}>

wo(u)
w_e(k) =M, inf Fy_.(s), No(u)= I,
Gu,—e(k) gelﬁ(@ —<(8), Na(u) { S0, J + Lz <0y

In view of [89], we can find centered stationary Gaussian processes Yi.(t),t € R with continuous trajectories, unit

variance and correlation function satisfying
ree(t) =1— (1 £e)p*(It))(1 +0(1), t— 0.

Case 1) n = oo:

For any positive u

(u)—1 2 Na(u)
> IP{ sup X, (t) > Mu} S OES(MESY ]P’{ sup X (t) > Mu}, (2.47)
k:Nl(u)Jrl telk(u) i=1 k:Nl(u) telk(u)
where
NQ(U)
A (u) = Z P{ sup X, (t) > M,, sup X,(t)> Mu},
k=N1(u) tel, (u) t€Ipy1(u)
and
Ao(u) = Z ]P’{ sup X, (t) > M, sup X,(t) > Mu} .
Ny (w)<kI<Na(u)i>kt2  (FET() €l (u)
Set below
Ho [ s
O(u) = o ). e dtU(M,,).

which is well-defined since fff e~ T dt < oo follows by the assumption f € Cg([x1,x2]). By Slepian inequality (see
e.g., [1]), (2.46) and Lemma 2.4.1

Na(u) Na( u)
Z IP’{ sup Xu(t)>Mu} < IP’{ sup t) > Gy —e(k }
Mo 25 A kv LtEL u)
Na(u)
S P{ sup Y—i—a > 9u —a }
k=N (u) tel, (u)
Na(u)
- IP{ sup Yio(t) > Gu o (k }
k=N (u) telp(u)
Na(u)
~ Hal0, (1 + &) *S]¥(Gu,— (k)
k=N1(u)
N2 (u)
S N e T S
k=N1(u)
~ :}Ca [0, (1 + E)l/aS] /582 6_(1_E)f(t)+8dt\I’(Mu)
Surqy, o

~ Ou), u— 00,5 —00,e—0. (2.48)
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Similarly, we derive that

Na(u)—1
Z ]P’{ sup X, (1) >u} > (14 0(1))O(u),u — o0, S — 00, € = 0.

k=N (u)+1 tel (u)
Moreover,
Ng(u) R ~
M) < <IP’{ sup Yi(t) > 9%_5(1@)} + ]P’{ sup  Yi.(t) > 9%_5(1@)}
k=N (u) tel, (u) te€lpy1(u)
-P sup Y_.(t) > gu,-‘r&(k)
tel, (u)UT k41 (u)
Nz(u) =R
< Y (29600, (1 )7 8] = 54 [0,2(1 — ) /8] ) W(Gu, o (R))
k:Nl(u)
Nz(u) =R
< (2900, (14 €)8] = 360,201 = 9)Y2S5]) Y0 UGu,.(h))
/c:Nl(u)
= 0(O(u)), u— 00,5 = 00,6 = 0, (2.49)
where

gu,—a(k) = min(gu,—a(k)v 9u,—8(k +1)), gu,-‘rs(k) = max(gu,+6(k)a 9u7+8(k +1)).

By A3 for any (s,t) € Ip(u) x I;(u) with Ny(u) < k,1 < Na(u),l > k + 2 we have
2 <var (X, (s) + Xy (t) =4—2(1 —ry(s, ) <4 —p*(t —s]) <4—Cru?|(l -k — 1)S]/?

and for (s,t),(s',t") € Ix(u) x I;(u) with Ny(u) <k, 1 < No(u)

1_(;0@( Xals) + Xt (') + Xl )
\/Var Xo(s) + Xu(t) \/Var (Xu(s') + Xu(t))
" ( Xa(s) + Xalt) Xale) + Kalt) )
- “__ _ (5) + Xult)
VVar (Kuls) + X)) \/Var (Ku(s) + Xu(t)

B Var (E(S) + X,

+Var (X, (s") + Xu

Mot
VVar (Ku(s) + X)) \/Var (Ku(s)) + Xu(t)
<28 { (Kuls) - Xul(s) "} + 28 { (Ku(t) - Ku(t))"} + E{ (Fuls) - Kuls) + Fult) - X))}
<8(1 —ry(s,8") + 1 —ry(t,t))

— 16u~2 (‘S ¢ a/2+‘t —t Q/Q) :

Gu qu
In view of our assumptions, we can find centered homogeneous Gaussian random fields Z, (s, t) with correlation

t /2
rz,(s,t) = exp (—32u2 ( 5 — ))

a/2

@

Slepian inequality, Lemma 2.4.2 and (2.48) imply

Ag(u) < > JP{ sup X, (s) > M,, sup Xu(t>>Mu}
Ny (u)<kI<Na(u)i>k42 (S€Lk(w) t€li(u)
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IN

> P { sup (Xu(s) + Xu(t) > 250, —c(k, l)}
() i>k+2 (&0

Ny (u)<k,I<No )€ (u) X I (u)

26, _e(k, 1
< Z ]P’{ sup Zu(s,t) > 5 <l ) }
Ny () <k N ishas L0 xTo(w) Va4 —Cu2|(l—k—1)S|o/?
28 (k1
< (#a 200, 322/as ( i (5,1 /2>
N () S <N () 1>k +2 VA= Cru (= k= 1)S]

Na(u) Na(u)—Ni(u)

< 2 H 032/5 25u,c (k) )
= szlu) ; ( a2l <\/ — Cru—2(i8)°/2
Na(u) o
<2 Y ( a/20322/a51) U (Gu—o(k) Y e Gt
k=N (u) 1=1
N3 (u)
< 290,32%/08e~ SN gg, [0,322/25]W (S, ()
k=N1(u)

= 0(0O()), u—00,5—00,e—0,
where AQ'U’,E(k, 1) = min(Gy,—c(k), Gu,—(1)). Combing (2.47)-(2.49) with (2.50), we obtain
m(u) ~O(u), u— oo.

Case 2) n € (0,00): This implies A\ = 2/a.
Set for any small constant 6 € (0,1) and any constant S; > 0

o -5y, if 11 = —o0; o = (g — O)nt/, if 2y € (—00,00);
! (z1 +0)nt/e,  if 2y € (—o0,00), 2 S1, if x5 = oo,

g _ -5, if 1 = —o0; g _ (zo + O)n/®,  if 25 € (=00, 00);
! (1 —0)n'/*,  if z; € (—o0,00), 2 S, if x5 = o0.

With K* = [q,ST, ¢u55] and K** = [¢,S7*, ¢.S5*] we have for any S7 > 0 and u large enough

() > IE”{ sup X (t) > Mu} ,

teK*

No(u)
m(u) < IE”{ sup X, (t) > Mu} + Z IP’{ sup X, (t) > Mu}
)

teK** k=N (u tel (u)
k#0,—1

Using Slepian inequality and Lemma 2.4.1, we have that

P{sup Xu(t)>Mu} > ]P’{sup V() >Mu}

teK* tei* Fue(t)
~  PRH[ST, S31U(M,), u— oo,

where hi.(t) = (1 £¢)f(n~'/t) + ¢, and similarly

Plam o>} < r{a gu,f& .}
(

~ PREISTL SR (M,), u — oo

17

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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Moreover, in light of (2.8), the Slepian inequality and Lemma 2.4.1

S R Yie(t)
Z ]P{ sup Xu(t)>Mu} < Z ]p{ sup +E>Mu}
k=N (u) tely (u) k= Ny (w) tel, (u) .rfuyfe(t)
k#-1,0 kt—1.0
Nz(u)
< Z P{ sup Y+E(t)>9u7_€(k)}
k=Ny(u) \(t€lo®)
k#—1,0
Na(u)
~ Y Hal0 (L4 2) S (e (R))
k=N (u)
k#—1,0
Nz (u)
~ Ha[0,(1+2) /2 S|U(M,) Y e Miectniy (A=e)f(sn™ /" 5)—¢)
k Ny (u)
k#—1,0
~ (C4j{ \I;( )Se Cs(n~ 1/'15')51/2 c
= 0(¥(M,)), u— 00,5 — 0o,e = 0. (2.56)

Letting ¢ — 0, S1 — 00, S — 00, and § — 0 we obtain
m(u) ~ Tg’n[xl,xg]\lf(Mu), U — 00.
Next, if we set z1(u) = — (1“7”))\ T (u) = (v ) then

xy=—00, Tz=o00, S]=-51, S;=5, SiT=-5 Sr=5

Inserting (2.55), (2.56) into (2.54) and letting € — 0 leads to

lim m(w)

< pf (5 ?
S TR [-S,5] + CyH,Se™ < 00

«,n

By (2.53), we have

lim m(u)

> P/
U—00 \I/(Mu> - @

,77[_51’ Sl] > 0.

Letting S; — 00, S — 0o we obtain
Tgm(—oo, o0) € (0,00), w(u) ~ (Pf7 (=00, 00)¥(M,), u— oo.

Case 3) n = 0: Note that

Ng(’u.)
m(u) < IP’{ sup X (t)o(t) > Mu} + Z IP{ sup X, (t)oyu(t) > M, } =: Ji(u) + Ja(u).
te((I-1(u)Ulp(u))NA(u)) k=N (u) tel(u)
k#—1,0
By (2.45)
1 1 1
— < g,t) < < - 2.57
H:u,—i-e(t) o ( ) g:u,—a(t) 1+ u=2 lnfseA(u)[(l - 5)f(u)‘3) - 6} ( )

holds for all ¢t € A(u). Hence Lemma 2.4.1 implies

Ji(u) < IP’{ [ sup X, (t) > M, (1 +u™? inf [(1—¢)f(uts) — é‘]) }

—quS,quS] s€A(u)
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IN

IE”{ [ sup  Yi(t) > M, <1 +u=? inf [(1—e)f(uts)— 5])}

—QuS,QuS] SGA(u)

~ Ha[0,2(14¢)*S]T < <1+u QSQEE,L)[(I_E)JC(“AS)—SD)
~ Ha[0,2(1 + )OS (M) e~ (17w e

~ U(M)e ™ u—o00, S0, c—0,

where w* = infie[y, 2, f(t). Furthermore, by Lemma 2.4.1, for any = > 0

Nz(u) NQ(U)
Dw) < P{ sup Yio(t) > Gy o (k } S Ha[0,(1+2) S (G, (k)
k=Ni(u) \t€lo(w) k=N (u)
k#—1,0 k#—1,0
<20 [0,(1+ ) YS]W(M,) Y e (-2 ke P2
k=1
< CHaU(M,)Se 7@ = 5 (W(M,)), u — 0o,z — 00, S — 0, (2.58)
hence
lim m(u) <e ™. u— o0
U—00 \I/(Mu) - ’ ’

Next, since f € C§([z1, z2]) there exists y(u) € A(u) satisfying

lim y(u)u® =y € {z € [x1, 2] : f(2) = w*}.

U— 00

Consequently, in view of (2.57)

r(w) > P{Xu(y(u) > M,}
> P{Xu(y(u) > Mu(1+[(1+e) f(uPy(u)) +eJu™?)}
= U (M(1+ (14 e)[f(uty(w) +elu?)
~ U (M)e Wy 00, e =0,
which implies that
m(u) ~ U (M,)e ™™, u— o0
establishing the proof. O

PROOF OF THEOREM 2.2.2 Clearly, for any u > 0

71'(11,) < ]P{ sup Xu(t) > Mu} < W(u) + 7Tl(u)v

t€[0,T]

where with D(u) := [0,T]\ (t, + A(uw)),

w(u):=Pq sup Xy(ty +1t)> M, p, m(u) =P sup X,(t) > M, ;.
teA(u) teD(u)
Next, we derive an upper bound for 71 (u) which will finally imply that
m(u) =o(m(u)), u— oo. (2.59)

Thus by A4, A5 and Piterbarg inequality (see e.g., [119][Theorem 8.1], [122][Theorem 3] and [45][Lemma 5.1])

mi(u) = ]P’{ sup X, (t)ou(t) >Mu}

teD(u)
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IN

_ Inw)?
P sup X, (t) > M, —&—(Cllm
teD(u) U

IN

q
(CQTMS/c\I/ (Mu + Clp(lnu)>
u

= o(V (M), u— oo (2.60)
Since A1’ implies A1, by Theorem 2.2.1 and A2, A3, we have
ug;C;u ;12 e_f(t)dt7 if =00,
m(u) ~ W (M) PL w1, 2], if ne(0,00), u— o0, (2.61)
1, if n=0,
where the result of case n = 0 comes from the fact that f(t) > 0 for ¢ € [x1, 2], f(0) =0 and 0 € [z1, x2].
Consequently, it follows from (2.60) and (2.61) that (2.59) holds, and thus the proof is complete. O
PRrROOF OoF THEOREM 2.3.1 Without loss of generality we assume that g,, = g(to) = 0.
a\ 1/
i) We present first the proof for ¢y € (0,7). Let A(u) = [—d(u), §(u)], where 6(u) = (%) with some large
g > 1. By (2.6) for u large enough and some small € € (0, 1)
1-— v 1 — 1 v
e _uglht) | gt | (4o 06
u ou(t +to) u u u

holds for all t € [—6,6],0 > 0. It follows that

M(u) <P {tes[lépr](X(t) +g(t)) > u} < II(u) + Iy (u),

with
n1<u>:=rp>{ sup <X<t>+g<t>>>u}7
e ([0, T\ [to—6,t0+6]

and

IM(u) := IP’{ sup  (X(t) +g(t)) > u} = IP’{ sup  X(¥) LIS u} .

tEfto—0,to+6] tEfto—0,t0+6] u— g(t)

By (2.62), we may further write

1 1 1 1
lim  sup % —1|= lim sup % -1 =0,
u=00 4 A(u) e20 | CuUT T[T U0 e A (u) 0 | CUT 2 Ut/ TEY
and
_ q
wf 1 S 14 (I —¢e)e(lnu) .
te[—0,61\A(u) 04, (t + to) u?
In addition, from (2.17) we have that
1—r( t,t
lim sup T(O+’O+8)—1:O,
U005 te A(u) Cl|t - S|a
t#£s

and

sup E{X(t)— X(s))*} < sup (2 —2r(s,t)) < Cqft —s|*
5,t€[to—0,t0+0) 5,t€[to—0,t0+0]
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hold when @ is small enough. Therefore, by Theorem 2.2.2

%aaé fljj et at, if o< 2y,

I ~ (%*%H\p clt|” ’ : _
(u) ~u (W) Pala [wy,y,00), if a=2y,
1, if a>2y.

Moreover, since gg := SUpe(o, 1)\ [to—0,t0-+0] 9(t) < 0 we have

T

1

M(u) <P sup X(t)>u—gop~Ha / ——dt us U (u — gg) = o(I(u)), u— oo,
t€[0,T]\[to—0,t0+0] o a(t)

hence the claims follow.
For ty = 0 and to = T', we just need to replace A(u) by A(u) = [0,d(u)] and A(u) = [—d(u), 0], respectively.
ii) Applying [119][Theorem 7.1] we obtain

B
IP{ sup (X (t) +g(t)) > u} = P{ sup X(t) > u} ~ /A (a(t))l/o‘dtf}{au%\ﬂ(u).

te[A,B] te[A,B]

Set A; =[A—¢,B+¢|N[0,T] for some € > 0, then we have

JP’{ sup (X(t)+9(t))>u} > JP’{ sup (X(t)+9(t))>u}7

te[0,T] te[A,B]

IP’{ sup (X (t)+g(t)) > u} < P{sup (X(t)+g(t) > u} + ]P’{ sup (X (t) +g(¢t)) > u} .

te[0,7] teA, te[0, T\ A

Since g is a continuous function and g. := sup,cio rp\a. 9(t) <0

P{te[sup (X(t)+g(t))>u} < ]P’{ sup X(t)>u—g€}

0,T\A. te[0,TI\A:
< Cou®*U(u — g.) :O(UQ/Q\I/(U)) , u—o00,e—=0.
Further, we have
B+e . )
P{sup (X(t) +g(t)) >u} < P{sup X(t) >u}~/ (a(t))=dtHou=T(u)
teEAL teA, A—e
B 1 2
~ / (a(t)>dtHou=T(u), u— 00, —0.
A
Hence the claims follow. O

PROOF OF THEOREM 2.3.2 We give the proof only for ¢y = 0. In this case, z € (0,00). By definition

P {suprio -1/ (X(1) + 9(1)) > u}

P{ul/”(Tu —tg) < x|y < T} - P{Supte[O,T](X(t) +9(t) > u}

Set A(u) = [0,u~/7z]. For all large u

teA(u) teA(u) u—g(t)

]P’{ sup (X(t)—|—g(t))>u}—IF’{ sup X(t) “ >u}.

Denote X, (t) = X(t) and o, (t) = As in the proof of Theorem 2.3.1 i), by Theorem 2.2.1 we obtain

=D TEIOR

a=H, foz et at, if o< 2y,

P{ sup (X() +g(t) >up ~ula™ 20w () P[0, ], if a=2y,
teA(u) .

1, if a>2y.
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Consequently, by Theorem 2.3.1 statement i), the results follow. O

PROOF OF THEOREM 2.3.3 Clearly, for any v > 0

JP{ sup (X(t) + g(t)) >u} :P{ sup X (1) mu(t) u—g(tu)}7

t€[0,T) t€[0,T) My () o(ty)

and A1’ is satisfied. By the continuity of o (t), lim,_ o t, = to and o(tg) = 1, we have that for u large enough

u— g(tu)

U(tu) > 0; and 0’(T ~ U, U — OQ.
Set next )
R m'U.
X, () =X (t . telo,T],
(0 =X re0.1]
My, (t,+1)

which has standard deviation function o, (t) = == Gy~ and correlation function ry(s,t) = r(s,t) satisfying assump-
tions A2-A4. Further, X ,(t) = X(¢) implies A5. Hence the claims follow from Theorem 2.2.2. O

PROOF OF THEOREM 2.3.4 For all large u

E{[X(tu+1t) = X(tu +5)*} = [o(tu + 1) — ot + 5)]?

20 (ty +t)o(ty + 5) (2:63)

1—r(ty +tty+ )=

Using that

E{[X(t, +t) — X(tu +8)]*} = E{X?(t,+3)}(t—35)>+o0((t—s)?),
oty +1) —o(tu+ ) = o”(tu+1)(t—3)” +o((t —5)%),

we have, as u — oo

_E{X?)}-0"()

Since D(s,t) := 55 (5)0 () is continuous at (to,to), then setting D = D(tg,to) we obtain

1—r(ty + 1ty
lim sup rltu + ;Jrs)—l’:(),
U0 4 A (1), s€A () DIt — 5|
t#s

which implies that A3 is satisfied. Next we suppose that o(t) > % for any ¢ € [0, 77, since if we set Ey = {t € [0,7] :
o(t) < 13}, by Borell-TIS inequality

]P’{sup (X(1) + g(t)) > u} <exp | -2 <u — sup g(t) — c1>2 —0 (\1; (ug(tu)»

teE, te[0,T

as u — 0o, where C; = E {SuptE[O,T] X(t)} < 0. Further by (2.63)

E{(X(t)—X(s))?} <2—2r(t,s) <4| sup E{X?(0)}(t—s)>— inf o?O)(t—3s)*]|,
6€0,T] 6€[0,T7
then A5 is satisfied. Consequently, the conditions of Theorem 2.3.3 are satisfied and hence the claim follows. O
PROOF OF THEOREM 2.3.5 Without loss of generality we assume that g(t) satisfies (2.6) with g(tg) = 0.
First we present the proof for ¢ty € (0,T). Clearly, m, attains its maximum at the unique point ¢y. Further, we have

o (P R o A AL v i &
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Consequently, by (2.2) and (2.6)

m =1+ (blt7 + S[¢7) (14 0(1)), =0 (2.64

(Inu)?
u

2/B*
holds for all large u. Further, set A(u) = [—d(u),d(u)], where §(u) = ( ) for some constant ¢ > 1 with

B* = min(B3,2v), and let f(t) = b|t|°I{3_p-} + c|t|"[{2,=5-}. We have

(mT?t([)ti)t) _ 1) ul — f(u2/,3*t)

“1520 teAS&])p,t;éo f(u2/87t) + Iy 52241 =0 (2.65)
By (2.2)
E{(X(t) - Y(s))Q} =E {(Y(t))Z} +E {(Y(s))Z} —2E{X(t)X(s)} =2—2r(s,t) < Cqt — s|* (2.66)

holds for s,t € [to — 0, to + 6], with 6 > 0 sufficiently small. By (2.64), for any ¢ > 0

My (to) (Inu)?

—————>1+Cy(1— 2.67

may(to +1) — + Gl —2) (2.67)
holds for all t € [0, 0] \ A(u). Further

M) = P{ swp (X(0) +g(t) > u} < P{ sup (X(1) + g(t)) > u} < T(u) + T (u),
te[to—0,t0+6] t€[0,T]
with
I (u) := IP{ sup (X(t)+g(t) > u} )
t€([0,T7\[to—0,to+6])
By(2.2), (2.65)-(2.67) which imply A2-A5 and Theorem 2.3.3, we have
Hoalle [ e fWdt,  if a < B*,
(2-%) > .
() ~u'a™ 74 (u) § PL [wy,, 00), if a = B, (2.68)

1, if a > B*.
In order to complete the proof it suffices to show that
IT; (u) = o(II(w)).
Since og 1= max;e ([0, 1)\[to—6,t0+6]) (1) < 1, by the Borell-TIS inequality we have

(u — (C3)2
203

I (u) < IP’{ sup X(t) > u} < exp <_

te([0,T]\[to—0,t0+0])

) = ot

where C3 =E {SuPte[o,T] X(t)} < 00.
For the cases tp = 0 and to = T, we just need to replace A(u) by [0,0(u)] and [—d(u), 0], respectively. Hence the

proof is complete. O

PROOF OF THEOREM 2.3.6 i) We shall present the proof only for the case ty € (0,7T). In this case, [x1, 23] = R. By
definition, for any z € R

P{suPreio ) (X (D) + 9(1) > u}

P{uMry —ty) <zl <T) =
(i =) el <1 P {supyeio.z (X (1) + (1)) > u)
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For uw > 0 define
My (ty, + 1)

Moy (tw)

My (ty, + 1)

Xu(t) = X(t, +1) (L)

y  Ou (t) =

As in the proof of Theorem 2.3.3, we obtain

IP’{ sup (X(t) +g(t)) >u} :IP{ sup X, (t) > “9@0}7
te|

0,ty+u— z] t€[0,ty+u—>x] o(tu)

and A1’, A2-A5 are satisfied with A(u) = [~J,,u"*z]. Clearly, for any u > 0

m(u) <P sup Xu(t) > u=9(ts) < 7w(u) + m(u),
tE[0,ty+u—>x] o(tu)

where

W(u)zp{fe[t o Xu(t)>“_9<tu)}, m(u):P{ sup Xu(t)>“—9<tu)}_

W) tutu—Pa) o(tu) t€[0,ty —5(u)] o(tu)

Applying Theorem 2.2.1 we have

(t) uj;(:;u fjoo e*f(t)dt’ if 7= oo,
m(u) ~ ¥ <“g“) PL (00, 2], if € (0,00), (2.69)
SUPte (—o0,a] e/ if p=0.

In view of (2.60)

hence

]P’{ sup (X(t)+g(t) >u} ~m(u), u— o0

te[0,ty, +u—*x]
and thus the claim follows by (2.69) and Theorem 2.3.3.
ii) We give the proof of ty = T'. In this case z € (—o0,0) implying
P{suprcio rsumzio (X (8) + g(1)) > u

P {supyeqor) (X (1) + 9(8)) > u

P{u2/5*(7'u -T) < x|7'u < T} =

a\ 2/B”
Set §,, = (M> for some ¢ > 1 and let

u

Aw) = [F0u,u™7 ), ou(t) = nn»:ﬂ(i?)’
with . a(t) X, (1) = X () 2l
mat) = T a7 A=

For all large u, we have
m(u) SP{ sup  (X(t) +g(t)) >u} < 7T(u)JrIP’{ sup (X (t) +g(t)) >U},
te[0,T+u—2/8" z] te[0,7—5,]

where

7(u) ::IF’{ sup (X(T+¢t)+g(T+1t)) > u} :]P’{ sup X, (T +1t) > u}
teA(u) teA(u)



Proofs

As in the proof of Theorem 2.3.5 it follows that the Assumptions A2-A5 hold with A(u) = [—6,,u"%/# z]. Hence
an application of Theorem 2.2.1 yields

25
al/*K,, fi e fMat, if a < p*,
m(u) ~ W& F )y (u)

Tfy’a[—x, 00)7

eff(m)’
In view of (2.60)

if = 3%,

(2.70)
if a > B*.
]P’{ sup  (X()+g(t)) > u} = ]P’{ sup
te[0,T—6,]
implying

Xu(t) > u} =0(U(u), u—o©
te[0,T—6,]

P sup
te[0,T+u—2/8" z

(X(t)+g(t) > u} ~7(u), u-— o0
Consequently, the proof follows by (2.70) and Theorem 2.3.5.
PROOF OF THEOREM 2.3.1 Set next A(t) = fg e~%dB(v) and define

O
t
Ut) = u—|—c/ e v — g A(t), t>0
0
Since

sup E{[A(t)]*}
t€[0,00)

implying sup,c(o o0) E{[A()|} < oo, then by the martingale convergence theorem in [112] we have that U() :
lim;_, o U(¢) exists and is finite almost surely. Clearly, for any u > 0

= P{ inf U(t)<0
s = B it G0 <o}
t
= IP{ sup (crA(t)—c/ 65”dv> >u}
t€[0,00] 0
P (A( Lint—Sa tl))>
= sup (cA(—==Int) — —(1 —¢t2 uyp.
tG[OI,)l] 25 0

The proof will follow by applying Theorem 2.3.3, hence we check next the assumptions therein for this specific model.
Below, we set Z(t) = 0 A(—45 Int) with variance function given by

7% Int 2
VZ(t) = Var O’/ e %"dB(v)
0

o
=—(1-1¢), te]l0,1].
55 (1= 1), t€[01]
We show next that for u sufficiently large, the function

YR LCC . AL

= 0<t<1

Gu(t) 1+£&1—t/2) = =7

with G (t) :==u+ §(1 — t7) attains its maximum at the unique point ¢, = (
dM,(t) dVz(t)

(8]

5u+c) . In fact, we have
U Vz(t) (cu, 1\ _ w AV2(t) , o
dt Gu(t)  Gi(t) ( 20 ) o | a V0=
uo?t—1/? c e\ 1
- W[r(“ﬁ)f J

(2.71)
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Letting [M,(t)]: = 0, we get t,, = <6uc+c) By (2.71), [My(t)]: > 0 for t € (0,t,) and [M,(t)]: < 0 for t € (t,,1], so

t,, is the unique maximum point of M, (t) over [0, 1]. Further

au

V20u? + 4cu \/>

M, = M,(t,) = (1+0(1)), u— oo.

2
We set §(u) = (M> for some ¢ > 1, and A(u) = [—ty, d(u)]. Next we check the assumption A2. It follows that

u

)VZ(tu)]Q — [GU(tu)VZ(tu + t)]2
+ )V (ty) + Vz(ty + 1)Gu(ty)]

M, 1 [Gu(ty +
M, (t, +1t) ~ Vz(ty + 1)Gu(ta

S
)
S
—

We further write

(Gult + DVt = (GultValtu + 1)
=[(++5)-5 tu“]zza(l—” (v 5) - 5va] G50 w0
= (1 §) G5t 2 (v §) S0V T VR 1) - G
= (1 §) 5t -2 (u ) G50 - VRGATT R
=5 [0 5) - () v v
7 (4 20) (- v

[\
(o)

Since for any ¢t € A(u)

Vﬁﬂté(»<v(t+w< Ot S0 < Gultu +1) <u+t &
2% u u)) = Vz\ly > 267“ s s u U) > Gylly SUu 5’

we have for all large u

Vit DG () Gultu + OVa () + Valtu + 0Gult)] < % (u+ 5)’

and

Vz(ty +6)Gu(te)[Gu(ty + 0)Vz(ty) + Vz(ty + 1)Gu(ty)] >

Thus as © — o

inf My /My (ty +1) — 1 = - 2, 2
tEAI(B)’t#O ? 1 c? c 2 = (U + %)2
;<\/ﬁ§) u? 5( t+(5u)2_ﬁ>

where we used the fact that for t € A(u)

V=t ( s )
ou)  du
Furthermore, since

C2
0 < N ES — \/t+(5u)2+5u < t+(51 —Vit+ty
. Y P Y. 2 S
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— < — (i E)
(VI+ Tt +VE)(Jt + o + VI L) Vi ( 5“)

we have as u — oo

M, /M,(t -1
sup u/Multu +1) -1

B
teA(u),t#£0 2 2 : 1 / c? c 2
’ ;(,/u2t+§2_§) u=? §( t+(5u)2_ﬁ>
+
C
5

IN

Consequently, (2.72) and (2.73) imply

My, /My (t, +t) —

lim  sup 5 —1/=0. (2.74)
uU—r 00 uw
tEA () 140 ! ( Pt s - §> 2
Since for 0 < ¢ <t < 1, the correlation function of Z(t) equals
E {(0’ fo_% —5vdB fO 351 e—évdB(’U))} 1T—¢ t—t
r(t, ) = = =1- ;
o o 1- 1-t(vV1-t 1—-1
\/2—;(1—t)\/2—§(1—t’) V1—t VI—t(VI-t'+V1-1)
we have
1T—r(ty +t,t, +1t) 1‘ < 2 )
sup — = Sup _
£, €A (u) 1/t it =1 trea) | VI —t =t (VI =t —t, + VTt —1,)
1
< —-1—-0, u— o0. (2.75)

1 (5)7 — (1)

Further, for some small 6 € (0, 1), we obtain (set below Z(t) = A0
E(Z(t) - Z(t))* =2 — 2r(t,t) < Cy|t — ¥/| (2.76)

for ¢, € [0,6]. For all large u

TI(u) := IE”{ sup, (Z(t) - §(1 - t%)) > u} < p(u) < TI(w) + T(w),

t€[0,0

where

II(u) :P{ sup (Z(t) - 5(1 ft%)) > u} §IP’{£}(1}))1] Z(t) > u}

R A e N s O T Y
M My O 2 3 (00) Gl 2l (1~ ) 2[u + 51— i)
Co62(u) (Inw)24

Y%

Co(VE = VE,)* >

> Cs

(\/W+m)2 B

2

holds for any ¢ € [t, + §(u), 0], therefore

M, (Inu)9
inf >1+C )
tefty +5(u) 6] M, (t) 2
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The above inequality combined with (2.74), (2.75), (2.76) and Theorem 2.3.3 yields

2

II(u) ~ TT(;/UQ [—gZ,oo) v (1\/ 26u? —|—4cu> , U — 00.
’ o

Finally, since

]

sup V7 (t) <

(1-0), and IE{ sup Z(t)} < Cy4 < 00,
te(6,1]

telo,1]

SR

by Borell-TIS inequality

Il(u) < IP’{ sup Z(t) > u} < exp (—W> = o(Il(u)), u— oo,

te[o,1]

which establishes the proof. Next, we consider that

2
P{u2<e_25“—< ¢ ))Sx
ou-+c

< } LIl sy 0 U0 < 0]
R P {inficqo o) U (1) < 0}
B P {SUpte[o,tqum%] (O'A(—% Int) — £(1 - tﬁ)) > u}
P {supte[()’l] (O’A(—% Int) — §(1 - t%)> > u}

Z]P’{uQ(T{:—tu) <zt < 1}7
where X
ro={te0.1]: 0A(~ 55 Int) - §(1 —t3) > b,
The proof follows by Theorem 2.3.6 i). O

2.5 Some Technical Results

Proof of (2.13): Let £(¢),t € R be a centered stationary Gaussian process with continuous sample paths, unit

variance and correlation function r satisfying
1—r(t) ~alt|]*, t =0, a>0, ae(0,2]. (2.77)

In view of by Theorem 2.2.1, for —oco < 21 < x2 < 00 and f € C§([x1,x2]) we have

£(t)
P su = S ~U(u)PL r,as], u— oo
{te[uz/"‘mll,)uQ/"‘zg] 1+ U_2f(u2/at) ( ) ’ [ ! 2]

and for any y € R

£()
P Sup S A U
{tG[uQ/aazl,uz/amz] 1+ U_Qf(u2/at>

{ E(t+yu ) (L +u 2 f(y))
telu—2/(z,

I
~

sup

> u(l+u?f(y))
—puo(e—y) LT U Y+ utot) ( (

2

U(u(l+u2f(y) PO W[z —y, 25 —y]
~ () PLr D[y — y, 22 — ).

Let
-2/« -2
2, = DB e ooy =)o o~ )
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and denote its variance function by 0% (). Then

LN\ eo L+u2f(y+u?t) uzif(y+u2/at)ff(y)
(UZ (t) 1) ( 1+u2f(y) 1> 14w f(y)

ie.,

1 2
(Uzu(t) - 1) u

lim sup | —1=0.
u—oo te[u—2/%(z1—y),u"2/%(z2—y)] f(y + u2/at) - f(y)
Consequently, we have
Pl olwr, wo] = Pl w1 — y, 22 — ).
Further, letting 25 — oo yields Pf, ,[x1,00) = Téﬁa [£1 — y,00). This completes the proof. O

Proof of Example 2.3.1: We have ty = 0,7 =1, g, = 0. In view of Theorem 2.3.1 statement i)

—-1,1/« 2/01713{0[ 2
P{max (X(t)—ct)>u}wa(u){c at/ %y , a€(0,2),

t€[0,T] Pgl 10, 00), a=2.

Since for all large u

P {supreio o1 (X (1) — 9(0)) > u}
P {sup,cpo.r (X (1) — (1) > u

]P’{m'u <z

TugT}:

)

then using Theorem 2.3.2, we obtain for € (0, c0)

fT 7ctdt

T ergr @ €(0,2),
limP{UTquTUST}Z fcfe Hdt
uU—00 Pe.al07] -9
.o T2
Proof of Example 2.3.2: We have that X (¢) = % is locally stationary with correlation function
ar(Ba

1" + 1t + Al — A" _

t,t+h =
rx(tt+h) = 2|t(t + h)|>/2 - 2te

|h|a+o |h]%), h—0

_ Aj+nT
lj="—"71—

for any ¢ > 0. Since g(t) = csin (2££) ,¢ € [T, (n + 1)T)] attains its maximum at ¢, ,7 <nand

g(t)—c—ZC(T) jt— 1521+ 0(1)), t = t;, j<n

the claim follows by applying Remarks 2.3.1 statement i). O
Proof of Example 2.3.3: First note that the variance function of X (¢) is given by 02(t) = t(1 — t) and correlation

function is given by r(t,s) = \/7”:'((11? 0<s<t<L

Case 1) The proof of (2.25): Clearly, m,(t) := Vli(cltz) attains its maximum over [0,1] at the unique point ¢, =

o € (0,1) which converges to tg = % as u — 0o, and m} := my,(t,) = 11+ o Furthermore, we have
mp - u—+ct tu(l—tu)_l_(u—i—ct) tu(1—ty) — (u+cty)/t(1 — 1)
my (1) t(1—t) u-+tcty t(1—t)(u+ cty)
B (u+ ct)?t, (1 —t,) — (u + cty)?t(1 —t) (2.78)
t(1 — t)(u + cty)[(u + ct)\/tu )+ (u+ cty)\/t(1 — 1)) '
Setting A(u) = [ (In u)‘l, (lnu) } and (¢, + A(u)) C [0 ,%] for all large u, we have

(u+ct)t, (1 —t,) — (u+ct,)*t(1 —t) = u?[(ty —t2) — (t — t3)] + 2cutt, (t — t,) + At (t —t,)
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= (t—tu)*u(u+c) (2.79)

and

u4

9 (u+ 5)2 2 < 2(u+ct)2[t(1 —t)] < % (u+ ,)

for all t € (t, + A(uw)). Then

. t t)—1 - t t)—1
fm  sup |/l DL g |/l Do 1’ —0. (2.80)
U0 e A(u),t£0 2t U0 pe A(u),t£0 2(ut)?u
Furthermore, since
1—-1¢ 1—-1%)—t(1— t—
r(t,s)zis( ):1+\/s( ) — Vi 5):1_ > ,
t(1—s) t(1—s) VEL = s)(v/s(L—t) + /t(1 —s))
and
S S VI + i) S 5+
2 u 2 u
for all s <t, s,t € (tu + A(u)), we have
lim sup 1_7‘(%—1—2&’%4—8)—1 =0.
U0 ¢ se A(u) Z‘t - S|
t#s
Next for some small 6 € (0, %), we have
< (2 |t — s|
E{(X(t) - X(S)) } = 2(1 - T(t,s)) < m
2
holds for all s,t € [& — 6, 2 4 6]. Moreover, by (2.78), (2.79) and
1 e 2
20u+ ct)?[t(1 —t)] < 2 [u +ec <2 + aﬂ (2 + 9)
for all ¢t € [3 — 6, 3 + 6], we have that for any ¢ € [§ — 0,1 4 0]\ (t. + A(u))
my, 1> (Inw)2e
()7 Fur s+ OP(G 07
and further
my (Inw)? 1 1
u_>14C tel=—0,= 40\ (ty + Aw)). 2.81
a1+l e lp =05+ 0\ (o Al) (2.81)

Consequently, by Theorem 2.3.3
o0 2 2 2 .
P sup  (X(t) —ct) >up ~ 89‘(1u/ e B dtv (2 cu + u2) ~ 2 e,
te[to—0,t0+0] —0

In addition, since og := max;c[0,1]/[to—0,t040] 7 (t) < o(to) = %, by Borell-TIS inequality

2
(U —-E {Supte[o,l] X(t)})

P sup X(t)>up <exp|— 5

+€[0,1]\[to—0,t0+0] 205

= o(e 2w teuw)), (2.82)

IN

P sup (X(@t)—ct)>u
t€[0,1]\[to—6,to+0]
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Thus, by the fact that

IP’{ sup (X(t) —ct) > u} EP{ sup  (X(t) —ct) > u}

te[O,l] t€[t0*0,t0+0]

and

]P’{sup (X(t)—ct)>u}§IP’{ sup (X(t)—ct)>u}+]P’{ sup (X(t)—ct)>u},
[ te[0,1]\

te[0,1] teto—0,to+0] [to—06,to+6]

we conclude that

]P’{ sup (X(t) —ct) > u} ~ 720 teu)

For any v > 0

P {subye(o.r, o) (X (D) = ct) > u}
Tu < 1} =
P {SUPte[o,1] (X(t) —ct) > u}

and by Theorem 2.2.1

P sup (X@t)—ct)>up~ 83—(1u/ e 8 dtw (2 cu+ u2) .
te[ty— 120 ¢, fu—1a] —00
The above combined with (2.81) and (2.82) implies that as u — oo
IP’{ sup (X (t) —ct) > u} ~P sup (X)) —ct)>up ~ 85—(1u/' e 8 a4t T (2 cu + u2) .
te[tu— —oo

te[0,ty+u—ta] (lnu)q tutu—lz ]

Consequently,

f =8t at
Tu < 1} foooo e = ®(4z), z € (—00,00).

P{U(Tu Y >§x
c+ 2u

Case 2) The proof of (2.26): We have ¢, = 5. € (0, 3), which converges to ty = 4 as u — co. Since

by Theorem 2.3.3

c/4
]P’{ sup (X(t) —ct) > u} ~ 8}Clu/ e 8 (2 cu+ u2> ~ @(0)672(1‘2““).
te[0,1/2] —00

As for the proof of Case 1) we obtain further

1 L B(42)®(c), @ € (—o0,c/4]
Ty < =~ ~= , x € (—o0, .
2 fC/4 e—8t2 Jt

Case 3) The proof of (2.27): The variance function ¢2(t) is maximal for ¢ € [0,1] at the unique point ¢ty = %, which

is also the unique maximum point of £ fc|tf %|,t€ [0, 1]. Furthermore,
1 1\? 1
=Vt —t)~=—(t—= t— =
o)) = V=D~ -(t-3) + 12
and

1
r(t,s) ~1—=2]t—s|, s,t— 3



32 Extremes of Threshold-Dependent Gaussian Processes

By Theorem 2.3.5 as u — oo

IP’{ sup (X(t)+;—c

tel0,1]

1 > 2
t— 2‘) > u} ~ 89‘(1u/ e~ (87 4delt]) gy (2u — ¢) ~ 20 (c)e 2w —ew)

and in view of Theorem 2.3.6 ii)

U — 0.

fx e—(S\t|2+4c|t\)dt
Ty <15~ 2222
YT, eGP g




Chapter 3

Parisian Ruin of Brownian Motion Risk

Model over a Finite-Time Horizon!

3.1 Introduction
In a theoretical insurance model the surplus process R, (t) can be defined by
R,(t)=u+ct—X(t), t>0,

see [69], where v > 0 is the initial reserve, ¢ > 0 is the rate of premium and X (¢),¢ > 0 denotes the aggregate claims
process. More specifically, we assume that the aggregate claims process is a Brownian motion, i.e., X (t) = o B(t), o >
0. Due to the nature of the financial market, we shall consider a more general surplus process including interest rate,
see [130], called a risk reserve process with constant force of interest, i.e., RS(t), t > 0, in (1.1). See [130, 41, 86] for
more studies on risk models with force of interest.

During the time horizon [0, S], S € (0, 00], the classical ruin probability is defined as below

V& (u) ::]P’{ inf Ri(t)<0}, (3.1)

t€(0,5]
see [69, 89, 91, 63]. In [68, 78] the exact formula of ¥%_(u) for § > 0 is shown to be

v <\/§u+ @)

¢go(u): - , u> 0.
(/5

For ¢ = 0, the exact value of ¢ (u) is well-known (cf. [62]) with

__ 2cu

Yo (u)=e 7%, u>0.

In the literature, there are no results for the classical ruin probability in the case of finite time horizon, i.e., S € (0, c0).
For S € (0,00), with motivation from the recent contributions [42, 43] we shall investigate in this paper the Parisian

ruin probability over the time period [0, S] defined as

K&(u,T,) :=P< inf sup RI(s)<O0p, (3.2)
te(0,5] se[t,t+T,)

IThis chapter is based on L. Bai, anp L. Luo (2017): PARISIAN RUIN OF THE BROWNIAN MOTION RISK MODEL WITH CONSTANT
FORCE OF INTEREST, published in the Statistics € Probability Letters , Volume 120, 34-44.
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where T;, > 0 models the pre-specified time. Our assumption on T, is that

lim T,u® =T € [0,00)

U—00

and thus 1% (u) is a special case of X% (u,T,) with T, = 0.
Another quantity of interest is the conditional distribution of the ruin time for the surplus process Ri(t). The classical
ruin time, e.g., [41, 81, 91], is defined as

m(u) = inf{t > 0: R%(t) < 0}. (3.3)
Here as in [42] we define the Parisian ruin time of the risk process R (t) by
n(u) = inf{t > T, : t — ko > T, RS(t) <0}, with sy, = sup{s € [0,#] : R%(s) > 0}, (3.4)

and 7(u) is a special case of n(u) with T, = 0.
Brief organization of the rest of the paper: In Section 2 we first present our main results on the asymptotics of
IK‘SS(u, T.) as u — oo and then we display the approximation of the Parisian ruin time. All the proofs are relegated

to Section 3.

3.2 Main results

Before giving the main results, we shall introduce a generalized Piterbarg constant as

P(T) = lim P(\,T), T >0, (3.5)

A—00

where for \,T >0

P\, T)=E{ sup inf V2B (t—s)—[t—s|—(t—s) |
te[0,7] S€E0,T]

Note further that the classical Piterbarg constant Pf ;[0,00) equals P(0) and P1.110,00) =2, see [38, 13, 82].

Theorem 3.2.1. For § > 0,5 > 0 and lim,_,o, T,u?> =T € [0,00), we have

- (%mm+ga—eﬁﬂv e 56)

4
K (u, Ty) ~ P(aT)¥ P

L 2626—255
where a := m.

Remarks 3.2.1. a) When T, = 0, X%(u,T,) reduces to the classical ruin probability 13(u), and by Theorem 3.2.1
with T =0

u+ g(1—e %9
K (u,0) = ¢ (u) ~ 20 (V%(U\;—lé_(leims ))> , U — 00.

b) If § =0

t€[0,5] se[t,t+T,)

~ P(OT) T <“;:/C§S

X (u,T,) = ]P’{ inf  sup (u+ecs—oB(s)) < 0}

) , U — 00, (3.7

where b := 5357 and we used the result of Corollary 3.4 (ii) in [43].
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Further, if 6 =0 and T, =0, by (3.7) with T = 0, we get the asymptotic result of the classical ruin probability

Yg(u) ~ 20 (“;\/%S) , U — 0. (3.8)

In fact, [62] gave the exact result of ¥%(u), u > 0, i.e.,

wg(u) _ <u+cS> g (cS—u)

aV'S oV
S
~ 20 (+) w0,
oS
which follows from
_ 2cu cS—u _2¢ _ 2cu cS—uy _ 1 _(?705)2/2
hm ‘ Uzq) 0'\/5): hm 026 - q)(g\/g) a 271'56 v :1
U— 00 \IJ(“+CS) U— 00 N 1 67(1:::/%3 )2/2 ’
ovS oV2rS

Our next result discusses the approximation of the conditional ruin time.

Theorem 3.2.2. Let n(u) satisfy (5.4), under the assumptions of Theorem 3.2.1, we have for any x > 0 and § > 0,

P{u?(S + T = n(w) > aln(u) < S+ Tu} ~ { Zzig‘zg’ ;g U ums,

9827258 1
where a := F(1—e 52 and b := 5o5gy .

Remark. If T,, = 0, then n(u) = 7(u) and by Theorem 3.2.2, we obtain as u — oo

exp (—azx), iftéd >0,

P{u*(S = 7(u)) > x| (u) < S} N{ exp (~bz), if 6=0.

Hereafter we assume that C;,7 € N are some positive constants.

3.3 Proofs

PrROOF OF THEOREM 3.2.1 For S > 0 and u large enough

X (u,Ty) =P{ sup  inf (cr/ e %%dB(z) fc/ e‘szdz> >u
te[0,5] SE[t,t+Tu] 0 0

zlP’{ sup  inf Y(s)fu(s) > fu(S)}

te[0,9] SElt,t+Tu] fu(s)

:]P’{ sup inf  X,(s) > fu(S)}’

te[0,5] s€ltt+Tu]
with

N u+ S(1—e % _
X(s) = O’/O e_‘sde(z), X(s) = cfi((i))’ fuls) = 4_‘5(7(}1((5)) and X, (s) = X(s)

fu(S)
fu(s)’

where 0% (s) is the variance of X (s) with 0% (s) = g—;(l — 7208,

Set p(u) = (1“7“)2 and for any A > 0, Bonferroni inequality yields

ol =80 inf Xy (s) > fu(S) p < KE(u, Tu) < To(uw) + Ty (u) + (), (3.9)
te[S—Au—2,8] SE[Lt+Tu]
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where

Iy (u) = IP’{ sup inf  X,(s) > fu(S)} , a(u) = IP’{ sup inf  X,(s)> fu(S)} :

te[0,5—p(u)] SE[Et+Tu] te[S—p(u),S—Au—2] SE[t,t+Tu]

First we give some upper bounds of II; (u) and IIz(u) which finally show that
IT; (u) + Ha(u) = o (p(u)), u— oo. (3.10)

For all u large

" {(XU(tl) - Xu(t2))2} - { (X(tl)u + gj(pqi(k—g)e‘”l) - X(tQ)u + E{i(f)eéf2)> }

¢ 2 c ~58 c —554\ 2
2z +4(1—-e%) u+£(1—e)
< 5z uTs - 5
(Cl]E{<‘/tl e dB(Z)> }""(CZ <u+§(1_e—6t1) u+%(1_e—5t2)

< (C3|t1 7t2‘, t1 < tQ, tl,tg S (O,S]

Moreover,

fu(5)>2: £2(5)
fut)) ~ 2S5 =p(w)

sup  var(X,(t))=  sup <
t€[0,5—p(w)] t€[0,8—p(w)]

where we use the fact that f,(¢) is a decreasing function for ¢ € [0, S] when u large enough. Therefore, by Theorem
8.1 in [119], we obtain

IM(u) <P sup X (t) > fu(S) p < Cau® ¥ (fu(S — p(w))), (3.11)
t€[0,S—p(u)]
and direct calculation yields that

u2 - £i(5) (fu %zggu)) _1> ~ f32<8>
V27 £, (S)
~ a2 I ONP(£,(8)) = 0 (U(fu(S))), u— oo,

W2 (£,(5 = plu))) <

—25
where a = % and we use the fact that

fu(s) 66—265'
T fu(S—t) T 1—e S

1 t, t—0. (3.12)

Set
Ap=[kM™% (k+ 1) %], k€N, and N(u)= |A""p(u)u®],

where || stands for the ceiling function, then

Iy (u) < IP’{ sup Xu(t) > fu(S)}

telS—p(u),S—Au~2]

:P{ sup Xu(S_t)>fu(S)}

teAu=2,p(u)]

<> P{;zp XS —1) > fu(S)}
N (u)

< ;; P{sup X(S —t) > fu(S — lmﬂ)}

teEAy
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N(u)
< Z ]P’{ sup X (S —u"2t) > f,(S — k‘)\u_Q)} . (3.13)
=1 te[0,A]
Clearly,
£ fu , , )
1<k1£N fu(S = kXu™?) = oo, u — oo (3.14)

and for t1 < to, t1,to € [O,S],

— 1—e20t
rx(tte) = E{X () X(t2)} = \ [ T— =2

Further,
X(S—u?t)—X(S—u?t
lim sup sup fﬁ(S _ k_}\u_g)VaI“( ( u 1) ( u 2)) 1
U0 k<N (u)  ti#ts, 2alt] — to|
tl,tQE[O,A]
2-2 —u "y, 8 —u
= lim  sup sup | f3(S — k u"?) rx(§ —uTh, 5 — uT) — 1’
U0 RN (u) t1#ts, 2alty — to|
tl,tze[O,A]
=0, (3.15)
and

sup sup  f2(S — kMuT)E {(X(S —u™t) — X (S —u?t)) X(5)}
lngN(u) ‘t17t2‘<8
t1,t2€[0,7]
< Csu® sup |rx(S—u?t,8) —rx(S—u’t,9)
‘t17t2|<€
t1,t2€[0,A]

< Ceu? sup |V1— e 20(S—u2t) _ /1 — ¢—26(S—u3ta)
‘tl—t2|<6

tl,tze[o,)\]
<C; sup |t1—t2] =0, u— 00, e —0. (3.16)
|t1—t2‘<8
tl,tze[o,/\]

According to (3.14), (3.15), (3.16) and Lemma 5.3 of [45], (3.13) is followed by
) < CsA Z (fu(S — kdu"2)) < CoW /\Z ~CrokX — 65 (W(fu(S))), u =00, A =00,  (3.17)

where the last inequality follows from (3.12).
Next we give the asymptotic behavior of IIy(u) as u — oo based on an appropriate application of the Appendix in

[43]. For any €1 > 0 and u large enough

Iy(u) = ]P’{ sup inf  X,(s) > fu(S)}

te[S—Au—2,8] SE[t,t+Tu]

< IP’{ sup inf Xu(s) > fu(S)}

[S—au—2,8] s€[t,t+(1—e1)Tu~?]

P{ inf Xu(S+ u s — UiQt) > fu(S)}
tGO)\] s€[0

1 61)T]

=P inf Y. (t,s) > fu(S
{teOA]SG (1—e1)T] (t8) > ful )}
=: 11§ (u)
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and

Iy (u) > ]P’{ sup inf Y. (t,s) > fu(S)} =:1I; (u),

te[0,A] S€E[0,(14€1)T]

where Y, (t,5) := X, (S +u=2s —u=2t), for (t,s) € [0, \] x [0, (1 +¢&1)7T].

Since

w(S
= /var (Y, = Vvar(Xu(S +u=2s — u?t)) = fu(S + 1{*(23)— u=2t)

288

and (3.12), there exists d(t, s) = 22“—<(t — s) such that

lim sup [u*(1 — oy, (t,s)) — d(t,s)] = 0. (3.18)
U0 (¢.5)€[0,A] X [0,(14¢1)T)

Moreover, for (t1,s1), (t2,52) € [0,A] x [0, (1 4+¢1)T] and 51 — t1 > so — ta,

var(Yy,(ti, s1) — Yu(t2, 52))
_ (9)E { X(S +u2s; —u"2t)) X(S+u"2sy —u2ty) ) }2

+ %(1 — 675(S+u*2517u*2t1)) w -+ %(1 — e 0(SHu2sy—u=2ty)

= [a(S)(1(u) + Ja(u) + Js(u)),

X(S+u2s; —u=2t)) — X(S +u"2sy —u"2ty) 2
u+ 2(1 _ 675(S+u*2517u*2t1)) ’

Jl(u):E{

—5(S+u"2s1—u"2ty) _ ,—8(SH+u"%sa—u"ts)
Ja(u) = 2 (e c )
2 T T (u+ % (1-— e—0(S+u=2s;—u- 2f1)))(u + %(1 _ e—a(s+mzsg—m?t2)))
S +u- 51 —Uu 2t1) (S —+ U7252 — uiztg) _9 _9
{( (1 _6—5(S+u—251—u—2t1)) X(S+u So2 —U t2) :0,
%(676(S+u’2517u72t1) _ (S tuT s —u ) 2 , L
Jd(u) - (u + %(1 — 6—5(S+u*2sl—u*2t1)))(u + %(1 — 6—5(S+u*252—u*2t2))) E {X(S tu sz —u t2)} :
Since
ll)m u? f2(9)J1 (u) = li)m FASE{X(S+u?s1 —ut)) — X(S+u s —u_2t2)}2
= lim u72072(6725(s+u_2527u_2t2) _ 6725(S+u_2517u_2t1))
U—00 L(l _ 6—258) 20
25e —268S
= 1767,255((51 —82) = (t1 — t2))
256_265
T 1 o255V (B(s1 —t1) — B(s2 — t2)),
ll)m U2f2(S)J3(u) < 1511 C11(€—5(S+u*251—u*2t1) _ 6—5(S+u*252—u*2t2))E {X(S + u_282 B U_2t2)}2 —0,
thus
. 25205
ul;rgo uvar (Y, (t1,51) — Yy(ta, s2)) = T o-mg VT (B(s1 —t1) — B(s2 — t2)). (3.19)

Further, there exist some constant G, ug > 0, such that for any u > ug

u2var(Yu(t1, 81) — Yu(tg, 82)) S G(ltl — t2| + ‘81 — 52|) (320)
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holds uniformly with respect to (t1, $1), (t2, s2) € [0,A\] x [0, (1 + &1)T]. By (3.18), (3.19), (3.20), Lemma 5.1 in [43]
and limy, o fu(5)/u=1/0x(S), we obtain

II; (u) ~ P(aX, a(l +1)T)U(f,(S)), u — oc. (3.21)
Similarly

I (u) ~ P(aX, a(l — e)T)U(fu(S)), u— co.
Letting €1 — 0 and A — oo, we have

o (u) ~ P(aT)U(fu(S)),u — .

The above combined with (3.11) and (3.17) drives (3.10), therefore by (3.9) the proof is complete. O
PROOF OF THEOREM 3.2.2 Case 1 § > 0: According to the definition of conditional probability, for any z,u > 0

P{u*(S + T —n(u) >z [ n(u) < S+T,}

P {SUPte[o,Sﬂcuﬁ] infep i, (0 5 e7%dB(z) — ¢ [y e7%%dz) > u} (3.22)

P {SUPte[o,S] infep i, (0 f5 e792dB(z) — cfoS e%dz) > u}

Using the same notation of X (s), X(s), fu(s), Xu(s), ox(s) as in the proof of Theorem 2.1, we have for u large

P sup inf (g/ eféde(Z) 70/ e‘szdz) >
te[0,S—zu—?2] sE[t,t+Ty] 0 o

P{te[ sup inf Y(s)fu(s) > fu(S)}

0,S—zu—?2] SE[t,t+Tu] fu(s)

=P sup inf  X,(s) > fu(S) ¢,
te[0,S—zu—2] SE[t,t+Tu]

enough

Set p(u) = (1“—“)2 For any A > 0, Bonferroni inequality yields

u

i (u) <P sup inf X, (s) > fu(S) p <I§(u) + I3 (u) + I35 (u), (3.23)
te(0,S—zu—?2] s€[t,t+Tu]
where
I} (u) =P su inf  X,(s) > fu(S) ¢,
0( ) {tE[Smu_Q)\S_Q,qu—2] s€[t,t+Tu] ( ) f ( >}

te[0,5—p(u)] SEMEt+Tu]

IT3 (u) = IE”{ sup inf X, (s)> fu(S)} ,

I3 (u) = IP’{ sup inf X, (s) > fu(S)} .

te[S—p(u),S—zu—2—Au—2] SE[t,t+Tu]

By (3.11) and (3.17) in the proof of Theorem 3.2.1, we know
I (u) = 0 (U(fu(S))), u— oo, (3.24)

and

I3 (u) < IP’{ sup inf X, (s) > fu(S)} =0 (U(fu(9))), u— 00, A = 0. (3.25)

te[S—p(u),S—Au—2] SE€[t,t+Tu]
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Next we give the asymptotic behavior of IT§(u) as u — co. For any €1 > 0 and u large enough

e =% {[] e FOR > fu<5>}
—Pp {te[swfklfQ,SM] Se[ggmx(s)W o (S — m_z)}
= {te[szuzsg?,smﬂ Se[t,t+(%n£1)Tu2]X(s)W > fulS = ‘“‘_2)}
—P {t:}(leA] s b XS+ w%s — u% — u2a) P q]:i(2i = z@_b;:)_ oy > S qu)}

= IP’{ sup inf . Yo (t,s) > fu(S— xuz)}

te[0,A] SE[0,(1—e1)T]

= 115" (u),
and
IT5(u) > P< sup inf Y (t,s) > fu(S —zu™2) b =115 (u),
o(w) {te[o,A] e (t,s) ( ) 0o (uv)
% ¥ 2. 2, .9 fu(S—zu"?) 2 o
where Y (t,s) == X(S+u?s—u?t—u “x) e B (t,s) € [0,A] x[0,(1+¢e1)T] and o5.(¢,s) =

* (S —zu™2 2
Var(Yu (tv S)) = (fu(S—i-i—(?s—inQt)—u—?z)) .
Using the similar argumentation as (3.18) in the proof of Theorem 3.2.1, we have

lim sup [u*(1 = oy (t,s)) —d(t,s)| =0,
WO (t,5)€[0,\] x[0,(1+£1)T]

68—255

with d(t, s) = >%=zs (t —s). Moreover, (3.19), (3.20) still hold for Y;*(t, s) and (1, s1), (t2,52) € [0, A] x [0, (14-£1)T7.

By Lemma 5.1 in [43] and lim, o fu(S)/u = 1/0x(S), we obtain
IS (1) ~ Pa, a(l +e)T)U(fu(S — zu~2)) ~ e~ P(ad, a(l +e1)T)U(f.(5)), u— oo.
Similarly,
I (1) ~ e~ PlaX, a(l — e1)T)U(f£u,(5)), u— .
Letting e;1 — 0 and A — oo, we have
I3 (u) ~ =" P(aT)¥(fu(S)), u — oc.

The above combined with (3.23), (3.24) and (3.25) derives that

IP{ sup inf  X,(s) > fu(S)} ~ e P(aT)U(fu(S)), u— 0.

te[0,S—au—2] SE[t,t+Tu]

Thus, the claim follows by using the results of Theorem 3.2.1 and (3.22).
Case 2 § =0:

P {SUPte[msfm—?] infyepiq1,)(0B(s) —cs) > u}

P{u?(S + Ty —n(w) > z|n(u) < S+T,} = :
P {Supte[O,S] infoers 7, (0B(s) —cs) > u}
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For u large enough

t€[0,5—zu—2] SEMt L+ Tu te[0,S—zu—2] SEMEHT]

]P’{ sup inf ](UB(S) —cs) > u} = IP’{ sup inf  X,(s) > fu(S)},

with
. B(s) utes o fu(9)
X(s) =0B(s), X(s)= , fuls) = and X,(s) = X(s .
(9) = aB(s). X0 = =2, fu(s) = T2 (5) = X5
Set p(u) = (IHT“)2 For any A > 0, Bonferroni inequality yields
ﬁo(u) <P sup inf )Z'u(s) > ful(S) p < ﬁo(u) + ﬁl(u) + ﬁQ(u),
te[0,5 —zu—2] SE[t+Tu]
where
Iy(u) =P sup inf X, (s) > fu(S)},
te[S—zu—2—Au—2,S—gu—2] SE[t,t+Tu]
I (u) = P sup inf  Xu(s) > fu(S) ¢
te[0,5—p(u)] SEMEt+Tu]
I(u) =P sup inf X, (s) > fu(S) }.
te[S—p(u),S—zu—2—Au—?] SE[t,t+Tu]

Notice that for u large enough

B{ (%)~ Xul12)?) = §E { (A2 gy - 11 CSB(t2)>2}

< CpE {(B(tl) - B(tQ))Z} +Cus <u+ ct1  u-+cty

< Culty —ta], t1 <ta, ti,t2 € (0,5],

and

fu(5>)2 I G
F2(

swp | var (Xu(t)) = sup (fu(t) S = p(u))’

te[0,S—p te[0,S—p(u)]

where we use the fact that f,(¢) is a decreasing function for ¢ € [0, S] when u large enough.

Moreover,

fu(S) 1
l—m ~ %t, t—)O,

inf  fu(S —k u"?) = 0o, u — o0,
1<kE<N (u)

and for t; < t9, t1,t2 € [0, 9],
_ _ t
rg(ti,t) == ]E{X(tl)X(t2)} = i
Then

-1

X(S—u?t) - X(S—u?%t
lim  sup sup f,g(S—k:)\ud)Var( (5 —ut1) (8 —ut))

UDOO <N (u) t1#ts, 2b|ty — to|
tl,tze[o,)\]

u+cS u+cS>2

41

(3.26)
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2—2rg(S —u 2,5 —u?ty)

= lim sup sup  [f2(S — kdu~? —11=0, 3.27
U0 I<k<N(u) t1#t2, ( ) 2b|t1 - t2| ( )
tl,tze[o,)\]
where b = ﬁ, and

sup sup  f2(S — kM T)E {(X(S —u™t) — X (S —u?t)) X(5)}
1§k§N(u) ‘t17t2‘<€
tl,tQE[O,)\]
< Cisu?  sup r(S— u?t1,8) —rg(S— u72t2,5)|
|t17t2‘<6
t1,t2€[0,A]

< Cipu® sup
|t1—t2‘<€
t1,t2€[0,A]

<Cy7 sup |t1 —t2| =0, u— 00, €= 0. (3.28)
[t1—t2|<e
t1,t2€[0,7]

\/S—u*Qtl - \/S—u*th‘

By Theorem 8.1 in [119] and Lemma 5.3 in [45], using the similar argumentation as in the proof of Theorem 3.2.1,

we derive
I () 4 o (1) = 0 (¥(£u(S))), u— 0o, A — oc. (3.29)

Next we give the asymptotic behavior of ﬁo(u) as u — oo. For any £; > 0 and u large enough

o(u) =P { sup inf X (s) ful5)

te[S—zu—2—Au—2,S—zu—2] SE[t,t+Tu] fu(S)

)
=P sup inf Y(S)M
te[S—zu—2—Au—2,S—zu—2] SE[L,t+Tu] fu(s)

> fu(S)}
> fu(S — I’Uz)}

< ]P’{ sup inf ?u(t,s) > fu(S — xuz)}

te[0,x] $€E10,(1—&1)T]

=: 0 (u)
and
Iy (u) > P inf  Y,(t S—au?)p =10
O A S RV AL S )
where Y, (t,s) := X(S +u2s — u™2t — u"2z) fu(s+£'igi:ig2u,2m), for (t,s) € [0, A] x [0, (1 +&1)T].

Using the similar argumentation as (3.18), (3.19) and (3.20) in the proof of Theorem 3.2.1, we obtain that

lim sup \uz(l —og (t,s)) —d(t,s)| =0,
=00 (4 6)€[0,A][0,(14+€1)T] “

with d(t,s) = 5 (t — 5) and oy (t,8) == var(Yy(t, s)),

~ ~ 1
lim u2var(Yu(t1, 81) — Yu(tQ, 82)) = —var (B(Sl — tl) — B(82 — tg)) s

U— 00 S

and for some constant G and all u large enough

’LL2VaI(Yu(t1, 81) — Yu(tg, 82)) S G(|t1 - t2| + ‘81 - 82|)

uniformly for (¢1,s1), (t2,52) € [0,A] x [0, (1 4+ ¢&1)T].
By Lemma 5.1 in [43] and lim, o fu(S)/u = ﬁ, we obtain

I (u) ~ POX, b(1 + &) T)U(fu(S — zu~2)) ~ e " PbA, b(1 4 1)T)¥(£,(S)), u — oo.



Proofs
Similarly,
I (u) ~ e PPN, b(1 — e)T)W(fu(S)), u— .
Letting € — 0 and A — oo, we have
o (u) ~ e " POT)U(f,(5)), u— .

The above combined with (3.26) and (3.29) leads to

P{te[ sup inf  X,(s) > fu(Sm(u))} ~ e TP(OT)U(£,(S)), u— .

0,S—zu—2] SE[t,t+Tu]

Using the above asymptotic equality and b) of Remarks 3.2.1, we obtain the results.

43
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Chapter 4

Parisian Ruin of Brownian Motion Risk

Model over an Infinite-Time Horizon!

4.1 Introduction
In the risk theory, the surplus process of an insurance company can be modeled by
R,(t)=u+ct—X(t), t>0,

see [69], where u > 0 is the initial reserve, ct models the total premium received up to time ¢, and X (¢),¢ > 0 denotes
the aggregate claims process. One of the most important characteristics in risk theory is the ruin probability defined
by

IP’{ inf Ru(t)<0}.

t€[0,5]

Some contributions, i.e., [28, 31, 42, 43], extend this classical ruin probability to the so-called Parisian ruin probability
which allows the surplus process to spend a pre-specified time under level zero before ruin is recognized. The name
for this problem is borrowed from the Parisian option. Depending on the type of such an option, the prices are
activated or canceled if the underlying asset stays above or below the barrier long enough in a row (see [26, 4] and
[32]). We believe that the Parisian ruin probability could be a better measure of risk in many situations, giving
insurance companies the chance to achieve solvency. Moreover, originated from Chapter 11 of the U.S. bankruptcy
code, Parisian ruin is also considered as a theoretical description of the liquidation risk, see [103, 110]. Figure 4.1 in

Appendix depicts both the classical ruin and Parisian ruin scenarios.

As in [42, 43], the Parisian ruin of R,(t) is defined by

Ks(u,T)=P<¢ inf sup Ru(s)<0,, Se€(0,00], (4.1)
t€[0,5] seft,t+T]

where T € [0,00) models the pre-specified time. Calculation of the probability of Parisian ruin Kg(u,T’) is more
complex than the calculation of the classical ruin P {infte[o’ 51 Ru(s) < 0}. When S = oo and X is modelled by a
specific class of Lévy processes, exact formulas for K, (u, T) with T' € (0, 00) are derived in [28, 31]. See [27, 29, 30, 102]
for some recent developments. But if X are not Lévy processes, such as Gaussian processes, exact formulas usually
are very difficult to obtain. Some contributions such as [42, 43, 11] then focus on the asymptotic results.

For X(t),t > 0 a Gaussian process, the asymptotics of Kg(u,T) over finite-time horizon, i.e. S € (0,00), are
investigated in [43]. Further, [42] showed the tail asymptotic results of R, (t) over infinite-time horizon, i.e. S = oo in
(4.1), where X (¢) is a self-similar Gaussian process. In this paper considering the nature of the financial market, we
introduce the force of interest § into the model R, (¢) as RS (¢) in (1.1) when X (t) = B(t). [11] gave an approximation

I This chapter is based on L. Ba1 (2018): AsyMPTOTICS OF PARISIAN RUIN OF BROWNIAN MOTION RISK MODEL OVER AN INFINITE-TIME
HORIZON, published in the Scandinavian Actuarial Journal, to appear.
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of the Parisian ruin probability

Ke(u, T):=P< inf sup R(s)<0p, Se(0,00),
t€[0,5] set,t+T]

as u — 0o. See [130, 41, 86, 78] for more studies on risk models with force of interest. In the literature, no results are
available for the approximation of Parisian ruin probability over infinite time horizon for § > 0. In this contribution

we shall investigate the asymptotics of the Parisian ruin probability

Ko(u, T):=P{inf sup RS(s)<0},
t20 get,t4T]

as u — 0o. The findings of this paper are mainly of theoretical relevance. Nonetheless, since we are able to derive the
results for the Brownian motion setup, which is a benchmark model in actuarial practice and comes as the limiting

model in approximations, our results have some importance also for actuarial practice and risk management.

When T = 0, according to [78] (see also [68]) we have

%5 (u,0) = U (‘?‘5 (u+ g)) Jv (ﬁg) . (4.2)

When 6 =0 and T € [0, 00), [42] showed that

2¢*T 2
K(u, T) =P {inf sup (u—+es—oB(s)) < O} ~F (02) exp (?) , U — 00,
t>0 SE[t,t+T) a g

where

F(T) = lim lE sup inf eﬂB(t+s)f(t+s) )
A—r00 te[0,7] SE[0,T]

Hereafter we make the convention that sup {0} = 0 and inf {0} = cc.
Complementary, we investigate the conditional distribution of the ruin time for the surplus process RS (t). The

classical ruin time, e.g., [41, 81, 91|, is defined as
7(u) = inf{t > 0: R’(t) < 0}. (4.3)
Here as in [103, 42, 11] we define the Parisian ruin time of the risk process R’ (t) by
n(u) = inf{t > T :t— ke, >T,R(t) <0}, with w;, =sup{s € [0,t]: R%(s) > 0}, (4.4)

and n(u) = 7(u) when T = 0.
Brief outline of the rest of the paper: In Section 2 we present our main results on the asymptotics of K°(u,T) and

the approximation of the Parisian ruin time. All the proofs are relegated to Section 3.

4.2 Main results

Now we turn to our principal problem deriving below the asymptotic behaviour of X?(u,T) as u — co. For § > 0,

setting

RS (s) :u—l—c/ e_‘s”dv—a/ e vdB(v), s>0.
0 0

Since for ¢ € (0, 00)
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t 2
sup E { [U/ e‘s”dB(v)] } < 00
te[0,00) 0

t
sup E{ o/ e %%dB(v) } < 00,
te[0,00) 0

by the martingale convergence theorem, see [112], RS (c0) := limy_,s R3(t) exists and is finite almost surely. Thus

then

implies that

for any u >0

Ké(u,T):]P’{ inf  sup RJ()<O}:]P’{ inf  sup R5()<0}

t€[0,00) se[t,t4T] t€[0,00] st t+T]

=P< sup inf (a/ e dB(v) — c/ e“svdv) >up =:P(u).
tE[0,00] SE[t,t+T] 0 0

Thus in the analysis of our main results, we consider t(u).

Theorem 4.2.1. For § >0 and T € [0,00), we have for any A > %—2

uU—r 00 640 _ 1

2\e s
PI10,A] < lim JC‘SuT/\I'< 5“+C)>§ P10, A + £ (4.5)
and further letting A\ — oo

uU—r 00

lim %% (u, T) w( 5“+c)> = P/[0,00),
where

P10, 00) = /\li_)m PI10,A] := lim E{ sup inf exp (\[B(st) — st — f(st))} ,

A— 00 te[0,A] s€la,1]

with a = e~ and f(t) =t — 2/t

ft(t) = oo for

Remarks 4.2.1. 1) By [13], when A > 0, a € [0,1] and f(t) is a continuous function satisfying lim;

some € > (0, we have

PI10,M] € (0,00), PL[0,00) € (0,00).

a

Note further that U~’g [0,A] = e~ (© and

te[0,\]

P{0,X =E { sup exp (ﬁB(t) — It - f(t)> } ,

see e.g. [38, 13, 82| for more details of P/,

ii) In Theorem 4.2.1, if T'= 0, a = 1,we get the asymptotic result of the classical ruin probability, i.e., as u — oo

(u,0) =B { inf RS ~ E{ swp e e V2(0utc)
fK(u,O)IP’{tlglgRu(s)<0} E{te[ogo) xp(\/iB(t) t f(t))}\lf( " )

_ B0, 00w [ Y2OuLC)
- iPl[ov )\Il< O'\/S )a (46)

which corresponds to the results in [12].
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iii) Since X°(u, T) < K%(u,0), by (4.2) and Theorem 4.2.1 we have

\/ic of
U (oﬁ) P10, 00) < 1.

Further, T' = 0 yields that

V2 5110 o0y —
v (M) P1[0,00) = 1.

iv) Since @j [0,00) is an expectation of the supremum of a process over an infinite time interval, it is difficult to

simulate the exact result and (4.5) give the bounds over a finite time interval to simplify the simulation.

By (4.5), we get the upper and lower bounds of K°(u, T'). Table 4.1 is the simulated bounds of X°(u,T). We notice
that the bounds decrease when 7' increases. Moreover, 55 [0, ] is a decreasing function of T, and we get the same
relation. In fact, when T is bigger, it means that we allow the surplus of a company to stay longer time under level
zero before the ruin happens, thus the ruin probability should be decreasing. Further, we notice that the bounds
decrease when § increases. Since 5155 [0,00) is a decreasing function of § > 0 and ¥ (%) is decreasing when
¢ increases and u > ﬁ, the asymptotic of K?(u,T) is also a decreasing function of . The effect of § is not an

intuitionistic result from the original risk model.

Table 4.1: The simulated bounds of K?(u, T

U c o ) T A upper bound lower bound
5 0.1 1 0.05 5 600 0.3760 0.3869
5 0.1 1 0.05 6 600 0.3657 0.3766
5 0.1 1 0.07 5 600 0.0489 0.0492
5 0.1 1 0.07 6 600 0.0392 0.0395
5 0.1 1 0.1 5 1000 0.0078 0.0078
5 0.1 1 0.1 6 1000 0.0073 0.0073
4 0.1 1 0.1 5 1000 0.0286 0.0286
4 0.1 1 0.1 6 1000 0.0258 0.0258

Next recall the Parisian ruin time n(u) as in (4.4), and using the results in Theorem 4.2.1, we obtain the asymptotic

conditional distribution of n(u) as follows.

Theorem 4.2.2. Let n(u) satisfy (4.4). Under the assumptions and notation of Theorem 4.2.1, we have for 6 > 0
and x € (0,00)

lim P{n(u) < —iln (tu +2u™?) In(u) < oo} =1- ?5[077%] (4.7)
U—+00 - 20 “ ng[O, OO)’

2
where t, = (6u‘3+6) .

Remarks 4.2.2. 1) When § = 0, [42] showed that for z € R

lim P{u*% (n(u) - %) <z |n(u) < oo} = ®O(cx),

U—r 00

where ®(-) denotes the distribution function of an N(0, 1) random variable.
ii) When T = 0, n(u) = 7(u), by (4.7), we have

2 f ox

P10, %5
lim P u2 6—25T(U) _ (5 Cc ) S T ’7’](“) < 00 — #,
u—o0 u+c P10, 00)

which corresponds to the result in [12].
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4.3 Proofs

Hereafter we assume that C;,7 € N are positive constants.

PROOF OF THEOREM 4.2.1 Using a change of variable s = f% Ins*, s* € [t*e™20T t*], t* € [0, 1], we have

— 55 Ins* —35Ins*
Y(u)=Pq sup inf O’/ i e VdB(v) — c/ ’ e dv | > u
t*€[0,1] 8™ E[tre=20T 7] 0 0

=P sup inf W(s™) > ub
{t*e[(),l]s*e[t*e—zaqﬂ)t*] ( ) }

where

Cc

72ilns .
W(s) = o/ ' e dB(v) 5(1 —s2).
0

For simplicity, we still use s, t instead of s*,¢*.

a1
Below, we set Z(s) =0 [, % s e %"dB(v) with variance function given by

V2(s) := var{Z(s)} = E {(Z(s))?} :E{ﬁ/o_% nse—%vdv} _ %;(1 _9). selo1l.

We show next that for u sufficiently large

uVz(t)  mVi-t

M,(t) = = , <t<l1,
O=Gwn 1+ea-o7 °
with G (t) :==u+ §(1 — t7) attains its maximum at the unique point
2
. c
“ (6u + c) '
In fact, we have for ¢t € (0, 1)
dMu(t) dVZ(t) u Vz(t) Cu _ 1
M, = = . — _ -
M ()] dt dt G,(t)  G2(t) ( %" )
B u dV2(t) N
= o | e WO
uc?t=1/? c c\ ,1
LA 1 4.
G2 (V4 () 5 (v+3) 7] (4.8)

2
Letting [Mu(t)]t = Oa we get ¢, = 5u3—c

By (4.8), [My(t)]: > 0 for t € (0,t,) and [M,(t)]; < 0 for t € (t,,1), then ¢, is the unique maximum point of M, (t)
over [0,1] and ¢, — 0,4 — co. Further

o ovou o
M, = M,(0) = N m(l +0(1)), u— oo.

Set w(u) = (M)z, A(u) = [0,w(u)] and for a constant A > %2
Li(k) = [kAu, (k+ DA %], k€N, N(u)=[A""(Inu)?|.
We have for u large enough

o (u) < ¥(u) < Ho(u) + Iy (u) + Iz (u) + M3 (u), (4.9)
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where for 0 € (0,1)

—26T —26T
te[0, u—2] s€lte o] =1 tel, (k) s€lte ]

N (u)
My(u) = ]P’{ sup inf  Wi(s) > u} , Iy(u) = Z ]P’{ sup inf  W(s) > u} ,

t€lw(u),0] s€lte20T 1] t[0,1] sE[te=257 1]

Iy (u) = IE”{ sup inf ~ W(s) > u} , s(u) = IE”{ sup inf  W(s) > u} .
First we show the asymptotic of IIg(u). For u large enough

e =, o My (stuT?) u
Iy(u) =P f Z(stu?)——"—L > —
O(U) {t:][él,))\] Sé{‘llvl] (S B ) M, M, }

where Z(t) = VZZ((tt)) and a = e~ 2T,

By Appendix, we have

) Mu(stu_2)> 5 1
lim sup <1 ———— Ju* — = f(st)| =0. 4.10
u_>oot€[0,(lnu)2] Mu 2 ( ) ( )
s€0,1]

where f(t) =1t — %\/f For 0 < t; < t9 < 1, the correlation function of Z(t) equals

—Lint; —Sv — L Inty —Sv
E{(afo ey 1 10)) |Gl dB(v))}
T(tl,tg) = > >
Va -t/ 51— t)
VI ty—t (411)
VI—=t VI—tH(T—t+VI—1) '
which implies that
1 —r(ty,t2) ‘ 2
sup —_ -1 = sup -1
t1,t2 EA(u),t1 £ts %\h — to] trta €A () ti2ts | VI — (VT =t + /1 — 1)
1
S c 2 Inu\2 -1
1= (%) — (%)
— 0, u— o0 (4.12)
By Appendix, for t1,t3 € [0, A] and s1, s € [0, 1]
. = o M (s1t1u"? — o M, (sotau=2
uhﬁngou%ar (Z(s1t1u 2)% — Z(satou Q)u(;/[j)> = |s1t; — Sats]

= 2var (13(31751) ~ 7

V2
For some small € (0,1), by (4.11) we obtain that for ¢;,ts € [0, 6]
— S, 2
E (Z(tl) — Z(tg)) =2 — 27‘(t1,t2) S (C1|t1 — t2| (414)

holds. By (4.10), (4.12),(4.13), (4.14) and Lemma 5.1 in [43], as u — oo,

o (u) NE{tS}éI,)A] seiﬁzf,‘l] exp (C(st))}\ll (M) , (4.15)
where
)= 20— 2o — 2 s
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Next we show that as u — oo,

I (u) = o (Ip(w)), Ta(u) =o0(lg(u)), and Hz(u)= o (M(u)).
Let Y (t),t € R be a stationary Gaussian process with continuous trajectories, unit variance and correlation function

satisfying for a constant e3 € (0, %)
(1 + 53)

R et

By (4.10) and Slepian inequality in [119], we have

sup W(t) > u}
tel, (k)

tel, (k)

N(u)
< IP{ sup Z(t) > .Au(k:)}

where A, (k) := 3% (1 R (k)\ -2y k;)\)) and g2 € (0,1) is a small constant. We observe that

M, 2u2
u
inf A, (k) > — — 00, u— oco. 4.16
|<KEN (u) (k) 2 M, T (416
Further,
) var (Y (u=2t)) — Y (u=2ts)
lim  sup sup A2 (k) ( 25 (1Tes) ) -1
U0 <R<N(u)  t1#ta, oty — o
t1,t2€[0,A]
. 2 —2ry u*2t1 — u72t2
= lim sup sup  |[A2(k) 25(135 ) ) _ 1
U0 <R<N(u)  t1F#ta, =t — o
t1,t2€[0,A]
-0, (4.17)
and

sup sup  AZL(K)E{(Y(u?t1) = Y(u">t2)) Y(0)}
1<k<N(u) |[t1—t2|<e

t1,t2€[0,A]
2 -2 -2
< Cou? sup |ry(u?t) —ry (u )|
‘t17t2|<6
tl,t2€[0,>\]
< Czu?®  sup 1+es w2ty — to)
‘t17t2|<6 2
tl,tQE[O,)\]
<C4qy sup |t1—to| =0, u— o0, €= 0. (4.18)
|t1—t2‘<€
t1,t2€[0,A]

According to (4.16), (4.17), (4.18) and Lemma 5.3 of [45], we have as u — co0,e2 — 0,

N (u)

Oy(u) ~ XY U (A (k)
k=1
N (u) 1 22 ()
< e T 2z

S A ®

k=1
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N(u) 2
M, U 1—e¢9 2c 2e9
< - 1 —ZVEN) - 22
< Akz::l 27Tuexp< 2M3< + 03 (m 5 kA) u2)>
o () o 3 Le2 (- 2V
M,) TP 5
< 20 (u>)‘ie402>‘+;§6
< M,
k=1
2)\6;726 U
= ——VU(—). 4.1
64607)\271 (Mu> (4.19)
Moreover, for all u large
11 [Gu®)Vz(0)) = [Gu(0)Va(t)]?
M,(t) M, — 2uV3(0)G,(0)
0'2 (& [&] 2 C C
{9+ ()]t -2+ ) 5vE]
2u(g—§)3/2(u+§)
> Cst
2
> Cs(lng)
U

holds for any ¢ € [w(u), ], therefore

1 (Inu)? -t
sup M,(t) < ( + Cg ) .
te[w(u),6] ( ) M, u?

Thus the above inequality combined with (4.14) and Theorem 8.1 in [119] derives that

Mo(u) < P sup  Z(t)M,(t) >u
te€lw(u),0]
— 1 (lnu)2>
< P< sup Z(t >u<—|—(C
{te[O,G] ( ) M, s u?
1 Inu)?

S CQUQ\II (U (M—i-(Cg( u2) ))

= o(\II(u>> U — 00 (4.20)

= i) ) . .

Finally, since
2 o’

sup VZ(t) < —=(1—-0), and E< sup Z(t) p < Cyo < o0,
te(0,1] 26 te(6,1]

by Borell inequality in [1]

s (u) < P {t:}ﬁ] Z(t) > u} < exp (—W) =0 (qf (J\Z)) | u— 00, (4.21)

which combined with (4.9), (4.15), (4.19) and (4.20) shows that when u large enough for any A > %2

w(@zx&{ sup inf exp@(st))}%&),

t€[0,A] s€la,1]

P(u) < E{ sup inf exp (((st))} + i)fj U (]\Z) .

te[o,)] s€la,1] €12 — 1
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Consequently, letting A — oo, we have
V2(0u + c)
u) ~E< su inf ex st | ———
Y(w) {te[o,& TR >>} ( o

_ ] . V2(8u + c)
=F {teb[z)lgo) selﬁzf,l] exp (\/iB(st) — st — f(st)) } v (M) , U — 0.

O

PROOF OF THEOREM 4.2.2 We use the same notation as in the proof of Theorem 4.2.1. For z € (0,00) and u > 0

P {u2 <625n(u) _ (&Li C)2> < z|n(u) < oo}

P {inft'&[—,z—ltS In(u—2z),00) SUPse[t,t+T) Rz(s) < O}

P {inftg[o’oo) SUP, et 47 }Nﬁz(s) < 0}

P {Supt*e[o’ufzz] inf . cppe—20m o) W(s*) > u}

P {SuPt*e[o,l] inf e cpee—20m o) W(s*) > u

Y (u)
¥(u)

For 1, (u), using the similar argumentation about IIp(u) as in the proof of Theorem 4.2.1 with A\ = z, we obtain

~ su inf ex s M
Yalu) ~ E {te[o,go)se[af:l] P (< t))} v ( oV )

B , o V2(6u + ¢)
=E {tes[(;l,lgg] seu[}zf,l] exp (\/iB(st) st f(st)) } v (0\/5 > , U — 0.

Then we have

9 ~

gaf[o th]
li P 2 —20n. __ c < — ] ¢x(u) — ~a ) o2 .
w0 {u (e <§u+ c < o < o0 utioo Y(u)  PL0,00)

Thus the final result follows.

4.4 Some Technical Results

This section is dedicated to the proof of (4.10) and (4.13).
The proof of (4.10):

We have
L Mu(t) _ [Gu(t)VZ(0)]* = [Gu(0)Vz(#)]?
and
CuV2OF ~ [GuOVa P = [(wt 5) = V] T (wr &) Z-1)

]
) =2 ) e S

{5+ () ]2 () 53}

|
—~
<
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Since for any ¢t € A(u)

then for all large u

and

Vz(0)Gu(8)[Gu()VZ(0) + Vz(6)Gu(0)] >

Setting f(t) =t — 25/t, we have for ¢ € [0, (Inu)?], s € [0,1]

(1- 2 o Ly

M,

@+ )"+ ()]st -F@+9ust} 1/ o
- (w57 —u ~3 (-5 ve)
_1((%)2+U)st+%f((u+§)2—u—(u+g)u)
-1 "

(ut§) —u

§1<(§)2+“) (ln“)2+?(|§—1lu+§) 0w e

2 (ut§) —u

and

M,
3 u+92+92st—— uy/st
_3{[er9) <5(>u]+g)2< ) };(St_(ﬁ)
1 () st F A (w5~ (ut )
2 (u+5)°
1@ st (jurg)
2 (u+) )

Then (4.10) follows.

The proof of (4.13):
For t1,t5 € [0, /\} and s1, 89 € [O, 1]

Mu(sltlu_Z)

_ —_ M, (sotou™2
u?var (Z(Sltlu_2) A, — Z(82t2u_2)(8]f4_zu))
2
B u? B Z(s1tiu=2) Z(satou=2)
M,Z 1+ ﬁ(l — sltlu_z) 1+ ﬁ(l — v/ Sgtg’u_2)
2
u? E Z(s1tiu™2) — Z(satau™?) Z(satou™2) Z(satau™2)
MS 1+ ﬁ(l —V 81t1U_2) 1+ ﬁ(l — sltlu—Q) 1+ ﬁ(l — Sgtzu_2)
2
U

=10 (J1(u) + J2(u) + J3(u))
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where

. Z(sltlu_Q)—Z(sﬂgu_g) ?
Ji(u) =E ( 1+£(1—\/W) ) )

- 1 B 1 (Z(sltlu’Q) — Z(SQtQUiz))Z(52t2U72)
Jz(“)—2< )E{ L+ & (1= Vsitu™?) }

1 1 ? e
Jol) = <1+£(1—W)_1+@(1—W)> B{(Z(eatau™)’}

Since for t1,ts € [0, A] and s1, s2 € (0,1]

ou? . u? L o2
Jm g h) = Jim e e B (2t ™) = Z(satan™)'}

u? , [T (3102075 25
= lim o / e “%dv
uU—00 Mg(l + ﬁ(l — 1/ sltlu_Q))Q —2%; In(satau—2)
02|82t2 — 81t1|

lim
U—>00 25M3(1 + i(l — sltlu*z))2

= [s1t1 — satal,
2
. u? . 0%(1 — satou?)u? £ (Vsitiu=2 — V/satau=2)
lim —J3(u) = lim 5
u—roo M2 u—00 20M2 (1 + ﬁ(l — \/sltlu*Z)) (1 + 6%(1 — 82t2u72))
, 2
o lim 0'2<1 — Sgtgu_2> % (\/ sltl - \/Sgtg)
u=oo 26 M2u? (14 £ (1 —Vsit1u=2)) (1+ £ (1 — Vsatau=2))

Thus we have (4.13).

wﬁ\mm 4 i

0 T '

0 7(u) 71(u) n(u)

t
Figure 4.1: Ruin times of the classical case and Parisian case

Figure 4.1 shows the classical ruin time 7(u) and Parisian ruin time n(u) of a surplus process R, (t) where n(u)—7; (u) =

T is the pre-specified time under level zero.
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Chapter 5

Extremes of a(t)-Locally Stationary

(GGaussian Processes with Non-Constant

Variances'

5.1 Introduction and Main Result

For X(t), t € [0,T], T > 0 a centered stationary Gaussian process with unit variance and continuous sample paths
Pickands derived in [116] that

IP’{ sup X(t) > u} ~ THaau?/*P{X(0) > u}, u— oo, (5.1)
t€[0,7)

provided that the correlation function r satisfies (2.77) and
r(t) <1, Vt#0, (5.2)

with o € (0,2].

The deep contribution [18] introduced the class of locally stationary Gaussian processes with index «;, i.e., a centered
Gaussian process X (¢),t € [0,T] with a constant variance function, say equal to 1, and correlation function satisfying
(2.17).

Clearly, the class of locally stationary Gaussian processes includes the stationary ones. It allows for some minor
fluctuations of dependence at t and at the same time keeps stationary structure at the local scale. See [18, 21, 87] for
studies on the locally stationary Gaussian processes with index a.

In [49] the tail asymptotics of the supremum of a(t)-locally stationary Gaussian processes are investigated. Such
processes and random fields are of interest in various applications, see [49] and the recent contributions [8, 83, 85].
Following the definition in [49], a centered Gaussian process X (t),t € [0,T] with continuous sample paths and unit

variance is «(t)-locally stationary if the correlation function r(-,-) satisfies the following conditions:
(i) a(t) € C(]0,T)) and a(t) € (0,2] for all t € [0, T7;
(i) a(t) € C([0,T]) and 0 < inf{a(t) : t € [0,T]} < sup{a(t):t € [0,T]} < o0;

(iii) uniformly for ¢ € [0, T
L—r(t,t +h) = a(t)|h]*" +o(|n|*®), h =0,

where f(t) € C(T) means that f(t) is continuous on T C R.

In this paper, we shall consider the case that the variance function o?(t) = Var(X(t)) is not constant, assuming

IThis chapter is based on L. Bar (2017): ExTrREMEs oF a(t)-LocaLLy StarioNaRy GAussiaN Procksses WiTH NoN-CONSTANT
VARIANCES, published in the Journal of Mathematical Analysis and Applications, Volume 446, 248-263.

o7
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instead that:

(iv) o(t) attains its maximum equal to 1 over [0, 7] at the unique point ¢y € [0,7] and for some constants ¢,y > 0,

1 -
—— =1+4ce 0l (1 401 t — to.
O'(t) ( ( ))7 0
A crucial assumption in our result is that similar to the variance function, the function «(t) has a certain behaviour
around the extreme point ¢y. Specifically, as in [49] we shall assume:
(v) there exist §,6, b > 0 such that

alt +to) = alty) + blt|® + o(t|*T?), t— 0.

Remark. We remark that ¢y does not need to be the unique point such that «(t) is minimal on [0,T], which is
different from [49]. For instance, [0,7] = [0,2n], to = 0 and a(t) = 1+ 3sin(t), then 0 is not the minimum point
of a(t) over [0,27] which means assumptions about «a(t) in [49] are not satisfied but assumption (v) here is satisfied
with

alt) =1+ %|t| +o(|t]%), t — 0.

Below we set a:= a(tp), a := a(tp) and define 0* = oo for a < 0. Our main result is stated in the next theorem.

Theorem 5.1.1. If a centered Gaussian process X (t),t € [0,T] with continuous sample paths is such that the as-

sumptions (i)-(v) are valid, then we have as u — 0o

271/, if v < B,
o—1/v —2baf

IP’{ sup X(t) > u} ~ fal/o‘ﬂ'fauz/a(lnu)_ﬁll'(u) 5 e o2 dx, ify =,
t€[0,T)

—2bzP

B
fooo e % dux, if v > 8,
where v A 8 = min(v, 8) and

f— 1, ’Lftg:O O’I"tOZT,
1 2, ifte € (0,7).

Remark. i) If a(t) = « for all t in a small neighborhood of ¢y, the asymptotic of P {SUpte[o,T] X(t) > u} is the same
as in the case of v <  in Theorem 5.1.1.

ii) The result of case v >  in Theorem 5.1.1 is the same as the «(¢)-locally stationary scenario in [49], which means
that o(t) varies so slow in a small neighborhood of ty that X (¢) can be considered as a(t)-locally stationary in this

small neighborhood.

The following example is a straightforward application of Theorem 5.1.1.

Ezample 5.1.1. Here we consider a multifractional Brownian motion B H(t)(t), t >0, i.e., a centered Gaussian process

with covariance function
1 S S S
E {Bu(6)Bu(s)(5)} = 5 D(H(s) + H() [|s|1OHHO 4 [fHOHIO g gi0+H0O]

where D(z) = m and H (t) is a Holder function of exponent A such that 0 < H(t) < min(1, \) for ¢ € [0, 00).

For constants T, T with 0 < T7 < T», define

By (t)

B (t) = Vvar(Br i (0)

) te [TlaTQ]a
and
o(t):=1- €—|t—to|*"*7 t e [Ty, T,

with some ¢y € (T1,T>) and v > 0.



Proofs

By [49], Bu(t), t € [T1,T], is a 2H (t)-locally stationary Gussian process with correlation function
(bt h) =1 — %t*QH(t)|h|2H(t) +o(|h2H®), b 0.
Further, we assume that there exist 3,6,b > 0 such that H(t +ty) = H(tg) + bt? + o(t?+%), as t — 0. Then
2= 1/, if v < B,

o—1/~

0
—bx

_ H
]P’{ sup  o(t) B (t) > u} ~ 21*1/2H%Hu1/H(lnu)_ﬁ\Il(u)
te
JoS enr dx, if v > 3,

[Ty,T%] 0

with H := H(to).

5.2 Proofs

1B
¢ de, ify=p8, u—0.

99

In the rest of the paper, we focus on the case when ¢ty = 0. The complementary scenario when ty € (0,7] follows by

analogous argumentation.

Lemma 5.2.1. Under the assumptions of Theorem 5.1.1 we have

IE”{ sup X(t)>u}~]P’{ sup X(t)>u},u—>oo.
te|

t€[0,T 0,61 (u)]

Moreover, there exists a constant C' > 0 such that for all sufficiently large u

P sup X (t) >up < CTu?*(Inw) =438 (u),
ted2(u),T]

where for some constant ¢ > 1

51 (u) = <1>1M and 5 (u) = (O‘Q(ln(ln“))y/ﬁ.

2lnu —glnlnu B(Inw)

By (5.4), in the proof of Theorem 5.1.1, we derive that, as u — oo,

P sup X{@)>up=o|P sup X(t)>uyp |.
t€[52(w),T) t€[0,82 (u)]

(5.6)

Since d1(u) — 0,02(u) — 0 as u — oo and a(t) is continuous, without loss of generality, we may assume that
a(t) = a(0) = a for t € ([0,d1(u)] U[0,02(u)]). Moreover, by assumption (iv), we know that o(t) > 0 for ¢ €

([0,61(u)] U0, d2(u)]). Below we use notation X (t) = % for all ¢ such that o(t) is positive.

PROOF OF THEOREM 5.1.1 First we derive the asymptotic of

m(u) = ]P’{ sup X(t) > u} ,
teA(u)

as u — 0o, where A(u) = [0,d(u)] and

62(”)7 1f7>67
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with 61 (u) and d2(u) in (5.5), which combined with Lemma 5.2.1 finally shows that

P sup X(t) >up ~ w(u). (5.7)
te[0,T
In the following Q;, 7 € N, are some positive constants. For some S > 0, let Y, ,(¢),t € [0, S] be a family of centered

stationary Gaussian processes with
Cov (Y, u(s),Y,u(t)) = exp (,(1 —v)au~2|s — t‘a+2b63(u)) ’

for v € (0,1),u > 0 such that a + 2b5°(u) < 2 and s,t € [0, S]. Further, let Z, ,(t),t € [0, 5] be another family of

centered stationary Gaussian processes with
Cov (Zy,u(8), Zyu(t)) = exp (—(1 + v)au™?|s — t[*),

for v € (0,1),u > 0 and s,¢ € [0,S]. Due to assumptions (i) and (v), « is strictly smaller than 2, which guarantees
that covariance function of Y, ,,(¢),t € [0, 5] and Z, ,,(t),t € [0, S] are positive-definite. Hence the introduced families
of Gaussian processes exist.

By assumption (iv), for any small € € (0,1)

BRI

et .
o) = <1+ (1+¢)c (5.8)

1+ (1—e)ee 7 <

holds for t € [0,0(u)].
Case 1: v < 8. Set for any € € (0,1) and all u large

N(0) = N(u,0) := {WJ » Ne(w) = {(1 _6)61(u3€u2/aJ - {(21n151__q§31ulz/2)1/v5J ’

B .5 S te _ —((A=epd1 ()™
Bj(u) = Bjo(u) = {]UQ/Q,(]—l—l)uz/a],jeN, g. —u(1+(1:|:5)ce )
We notice the fact that

W(GEe) ~ W (u), u — oo,

u

and

L(u) < w(w) < I (u) + In(w), (5.9)

where

I (u) P sup Xt)>up, Lu)="P sup X(t)>up.
t€[0,(1—€)61 (u)] t€[(1—€)d1(u),61(u)]

Then by Bonferroni’s inequality, (5.8), Lemma 5.3.1 with £ = 0 and Lemma 5.3.2

u)
]P’{ sup X (t) > }
teB;(u)

Ne

—

Il (U)

HM

F(u)
< ]P’{ sup X > G, }
=0 teB;(u)
Ne(u)
< ]P’{ sup X (tu=?/?) > 9;8}
=0 teljs,(i+1)S]
N (u)
< ]P’{ sup Z,,(t >9;E}
i= te(0,5]



Proofs

Ne(u)
~ Y 96 0.5+ v)a) o] w (5,9)
j=0

M)
~ Y %, {O,S((l—i—u)a)l/a} U(u)
j=0
Ha [0,5((1 + v)a)t/«]
S
~ (1=e)((14v)a)/*Hou? %6 (u)T(u), u— oo, S — oco.

~ (1= e)u? 6y (u)

Similarly,
Nc(u)—1 Ne(u)—1
Z P<S sup X (%) >u} > Z IF’{ sup Y, (1) >9$5}
=0 teB;(u) =0 t€0,5]
~ (1=e)((1 —v)a)/*Hu? %6 (u)¥(u), u — oo, S — oco.
Since

Ne(u)—1
I (u) > Z IE”{ sup X(t)>u}— Z ]P’{ sup X(t) >u, sup X(t)>u}7

teB;(u) 0<j<k<N.(u) te€B;(u) t€B(u)

and by [49][Lemma 4.5]

IA

Z IP’{ sup X(t) >u, sup X(t)>u}

0<j<k<N.(u) teB;(u) tE By (u) teB;(u) t€B (u)

0<j<k<Nec(u)

= o (uz/o‘él(u)\ll(u)) , u— 00, S—o00, 0.
Thus inserting (5.11) and (5.13) into (5.12), we have

lim I (u)(2Inu — gInlnu)'/7

uU—00 u2/04\11(u) 2 <1 - 6)((1 - V)a’)l/ag{av

which combined with (5.10) gives that

al/ag{au2/a

I ~J
() (2Inu — glnlnu)t/v

U(u),u — o0, v =0, € = 0.

By (iii) and (v), we have for all u large

E{(X(t) = X(s))*} =2 —2r(s,t) < Qi]s — t|*,

Z ]P’{ sup X(t) >wu, sup X(t) >

61

(5.10)

(5.11)

(5.12)

}

(5.13)

(5.14)

uniformly holds for s,¢ € [(1 —€)d1(u), d1(u)]. By Piterbarg inequality for u large enough, see e.g., [119][Theorem 8.1]

or an extension in [45][Lemma 5.1]

LW <P]  swp X(0)>ub < Qoedi (we W (),
te[(1—e)d1 (u),01 (u)]

which implies

Inu—ql 1
lim lim L(u)(2lnu — glnlnw) -
e—0 u—o00 UQ/Q\I/(u)

Combining this equation with (5.9) and (5.14), we get

al/ag{au2/a
(2Inu — gInlnu)t/7

m(u) ~ () ~ a/*Hu? (2 u) V70 (u), u— .

(5.15)
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Case 2: 7= (. Set

1/B
di = di(u) := <ln( )(lnlfn(u))l/5> , Ap = Ap(u) = [dg, di+1] -

Further let M, (u) = max(k € N : dy < (1 —€)d1(w)) for some € € (0,1), then M(u) — oo, u — oo. Clearly

M (u)—1 Me(u)

U A C [0, (1 —€)dy(u U Ap.
We divide each interval A;, into subintervals of length S/u?/®(@) ie.,
B:. = B. = |d L d i 1)L
ik = Bik(w) = \di + J gy de + U+ D g

for j =0,1,...,N(k), where N(k) = N(k,u) := {Muwa(dk)J. Notice that

N(k)—1 N(k)
U BjJC C A C U Bj,k.
k=0 k=0
We have
I(u) < 7(u) < I (u) + Ix(u), (5.16)
where
L(u) = P sup Xt)>up, L(u=P sup X(@t)>up.
te[0,(1—€)d1 (u)) te[(1—e€)d1(u),d1(u)]

Then by Bonferroni’s inequality

Mc(u)—1N(k)—1
Ii(u) > Z Z P{tsgp X(t) > }— Z P{tsgp X(t)>u,t sup X(t)>u}
o (k)G ke (PEPIE €Bj1 s
(4,k)=<(3",k")
= Ji(u) — Ja(u), (5.17)

where £ = {(j,k) : 0 < k < M.(u) —1,0 < j < N(k) — 1} and
(k) < (5K i (B <E) Vv (k=K Nj<j),

and by (5.8), Lemma 5.3.1 and Lemma 5.3.2

(k)
IP’{ sup X(t) >u}
teB;j k

IP{ sup X(t) > 9;5}
teBj k

P< sup Z,.(t) > G,°
tel0,5]

M.

=

u)

Il(u)

IN
™

IA
2 2
S IM=
e O e O
= B
2 52
=z U=

(]

k=0 j=0
M. (u) N(k)
~ 3 % [0.S(( v v (9,7
k=0 j=0
Me(u)
~ d"’LS’d’“u?/a(dkma [o, S((1+ y)a)l/a} U(u)

~
Il
o
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Ha [0,S((1 +v)a)/o] w2/ M o) ( 2la=atdp)
- %ol ((s = ]a 75 ) 3 () (e — d)etn (55
nu P
M (u) ) (vaf —aB+o
H,, 075((1+V)a)1/0‘ u2/e ~2(1—e1)(nw)(baf) —af+?)
= | S ] (lnu)l/ﬁm(“) ()P (g1 — dy)e o?
k=0
H, 1 /e 2/
< 0, S(1+v)a)/>] ¥ (u)
S (Inw)t/8
x Mi(ft)(lnu)l/ﬁ(dkﬂ - alk)e72(1751)1)(;1;U)l/ﬂdk)l3 62(1 Elmn:;dM (qu,

k=0

as u — 0o, where 1 € (0,1) is a small constant.
Moreover, using that dys ) < (1 — €)d1(u) and limy o0 (Inu)dy (w)? 0 = 0, we observe that

2(1— 51)(1nu)dM (qu

lim e o2 =1.
u—r 00

Finally, since

lim sup  (Inu)P(dpyr —di) =0
U0 k=0,..., M (u)

and
lim (Inu)*/?d 1 1)
uggo(nu) M. (w+1 = (1—¢€) 9 )
we obtain
Me(u) —2(1—51)b((1nu)1/ﬁdk.)ﬁ (176)(%)1” 201 8
3 1/8 _ — N %
uhﬁngo Z (Inw)?(dg41 — di)e z —/0 e Z .
k=0
Thus
Il(u)(lnu)l/ﬁ Ha [O,S((l + V)a)l/a] (1_6)(%)1/6 —2(1—e1)baf
lim < / e o dz, (5.18)
u—oo  u2/aP(y) S 0

and letting S — o00,e1,v — 0, and € — 0, we get the upper bound. Similarly, we derive that

1/8
Iim lim lim 7J1 (u)(Inv)

vage, [ % 19
> @ a2 . .
e—0 S —00 u—00 uz/a‘ll(u) Za « /0 ¢ r (5 )

By [49] [Lemma 4.5]

Jo(u) = Z IP’{ sup X (t) >u, sup X(t) >u}
c

CRONCD teBin tEB/ g
(4.k)<(5",k")

< IP{ sup X (t) >u, sup X(t) > u}
(k). kyes  (FEBix te€B, 4
(4.k)=<(5",k")
= o (u2/a(1nu)*1/ﬁ\11(u)> , U — 00, S—00,e—0. (5.20)

Thus inserting (5.19) and (5.20) into (5.17), we get

1 1/8

I 1 1/B 2 —2(1—eq)bal
lim G lim OO g / P S (5.21)

e—0 S—o00 u—r00 UQ/Q\II(

By (5.15)

1/
TR £10) | GIk0)
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Hence according to (5.16), (5.18), (5.21), and (5.22), we have

%)1/[3 abaf
m(u) ~ a"*Hou?*(Inw) =P (u) e dz, u — oo.
0

Case 3: 7 > (. We consider w(u) =P {Supt€[0752(u)] X(t) > u} with

Set for some € > 0

and we observe that

82 (u) = <W>I/ﬂ.

Srfa —u (1 + (1 4 5)06—(52(11))’7) LK = {t c [O7T] : U(t) #+ 0}7

Y (9-3:5) ~U(u), u— 0.

By [49][Theorem 2.1]

A
£
A

P sup X(t) >wu
t€[0,02 (u)]

P {supX(t) > u}
teX

~ al/o‘f}fauwa(lnu)*%/ e
0

IN

—2baP

dx¥(u), u — oo. (5.23)

Let dy, Ak, Bjx, N(k) be the same as in Case 2 and M (u) = max(k € N: dj < d2(u)). Clearly

M(u)—1 M (u) N(k)—1 N(k)
U Ak C 0 (52 U Ak, U Bj,k C Ak C U Bj’k,
k=0 k=0 k=0

and by Bonferroni’s inequality

7(u)

vV

2 2 F

M(u)—1 N(k)—1 {

sup X(t) > }— Z ]P’{ sup X (t) >wu, sup X(t)>u}

teB; Gk, (ke (1EBIE tEB;/ ks
(3.k)= (5" k")
Ji(u) = J3(u), (5.24)

where L' = {(4,k) : 0 <k < M(u)—1,0<j < N(k)—1}.
By (5.8), Lemma 5.3.1, Lemma 5.3.2 and similar argumentation as (5.19) with G replaced by F;*¢ and the fact that

(lnu)l/ﬁdM(u)H — 00, U — 00, we get

By[49][Lemma 4.5]

o B0
Jim Jim 2 > s [ (520

I (u)

Z ]P’{ sup X(t) > u, sup X(t)>u}

o). (7 kyesr  \PEBak tEB W
(4,k)=<(5",k")

Z IP{ sup X(t) >u, sup X(t) > u}

k), (ke (FEBak teBjr
(k)= (7 k")

= o (uz/a(lnu)*l/ﬁq/(u)) , U — 00. (5.26)

IN



Some technical results
Hence inserting (5.25) and (5.26) into (5.24), we have

/5 ,Zbﬁ
iy TN e, [

U—00 UQ/O‘\II(

which combined with (5.23) gives that

O _obah
m(u) ~ al/aﬂ'fauw“(lnu)_l/ﬁ\ll(u)/ e e dz, u— 0.
0

Consequently, according to Lemma 5.2.1 and

W(U)SP{ sup X(t)>u}§7r(u)+]}”{ sup X(t)>u},

te[0,T] te[6(u),T]

(5.7) is proved and all claims follow.

5.3 Some technical results

In this section we present the proofs of the lemmas used in the proof of Theorem 5.1.1.
PRrROOF OF LEMMA 5.2.1 Below Q, £ =0,1,2..., are some positive constants.
Step 1: First we prove (5.3). By the continuity of o(t) in [0,T], for any small enough constant 0 < 6 < 1

sup o(t) =: p(0) < o(to) =0(0) =1.
t€(0,T]

Then by Borell inequality in [1]

P{su)X@)>u}§mm<—w_f%)>ZOWMWL

te(6,T)

as u — oo, where Qp = {SuptGOT X(t) }

By assumption (iv), for any small € € (0, 1), when 6 small enough

14+ (1—e)ee M7 < <14 (14¢e)ee M7

holds for ¢t € [0,6]. Then

% >14(1—e)ee ™7 >14 (1 —e)eu2(Inu)?

uniformly holds for ¢ € [01(u), ].

Moreover by assumption (i) and (iii), when 6 small enough

E{(X(t) — X(s))*} E{X*(t)} + E{X?(s)} — 2E{X(t)X(s)}
2 —2(1 — 2a(t)|t — s|*®)

Q1|t — S|<

IN

IN

holds uniformly for s, € [0, 0], where Q1 = sup,¢(g g 4a(t) and < = inf;e(o g (t) > 0.
Then by Piterbarg inequality

]P{ [Sll(p) ]X(t) > u} < Qbu? T (u[l + (1 — &)eu 2 (Inw)?]) = o (¥ (u)), u— oco.
te[61(u),0

65
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Further, since

IP’{ sup X(t)>u}§]P{ sup X(t)>u}+P{ sup X(t)>u}+P{ sup X(t)>u},
te|

te[0,T] 0,01 (u)] ted1(u),0] te[0,T)

and

P{ sup X(t)>u}2ﬁ”{ sup X(t)>u}2P{X(O)>u}:\I/(u),

te[0,T) t€[0,81(u)]

we get

]P’{ sup X(t)>u}~IP{ sup X(t)>u}, u — 00.

t€[0,T] t€(0,61(u)]

Step 2: Next we prove (5.4). When v < 3, since 01 (u) = 0(d2(u)), as u — oo and by Step 1

P sup X(t)>up=o0(¥(u), u— oo.
t€[51 (), T

Then for u large enough, (5.4) is obvious.

When « > 3, for u large enough, we have d(u) < d1(u) and

P sup X(t)>u, <P sup Xt)y>up+P sup  X(t)>u,p.
ted2(u),T] ted2(u),01(u)] ted1(u),T]

By Step 1, we know for all u large

IP’{ sup X (¢t) > u} < U(u),

te[61(u),T)

and then we just need to deal with P {supte[(h(u)_’él(u)] X(t) > u}

Since 41 (u) — 0, u — oo, then by assumption (v)
3 B
alt) > a+ Zb(éz(u))

holds for all ¢ € [d2(u), d1(u)] when u large enough.
Let 0, = w2/ (e 50002(u)°) - Fop sufficiently large u and s, t € [d3(u), 01 (u)], there exists a constant Q3 > 0 such that

at2b(s3(u))P

1—r(s,t)<1-— e~ Qsls—t|

Let Y, (t),t > 0 be a family of centered stationary Gaussian processes with correlation functions

_ _g|ataoa(u)f
ry (s, t) = e Qls—t"4 .

Then from Slepian’s inequality we get for any constant S > 0

X (¢
P sup Xt)y>u, < P sup X() >u
€ [62(w), 61 ()] te[6a(u),0 (w)] (1)
< P sup Yu(t) > u
t€[d2(u),61(u)]
<

P< sup Yu(t) > u
telo0,S]
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IN

LSn, " J+1
Z ]P’{ sup Y. (t) > u}

i—0 t€[inu,(i+1)nu]

< (LSnJIJJrl)P{ sup Yu(t)>u}a

te[0,m]

for sufficiently large u. Notice that for each s,t € [0, 1]
1 — 7y (Nut, nus) = Qsu~?|s — t\a+%b(62(“))5(1 +0(1)) = Qsu?|s — t|*(1 + o(1)), u — oo.

Hence, from [119][Lemma D.1]

P sup Yu(t) >uyp ~ Ho[1]T(u),
tE[O,’r]u]

as u — oo. Combining this with the fact that

nrl = u/(eri%w) g 2/a2/(atihaw)-2/a _ 2/ay -5 )"/ (a(at§@2(w)”))

3 a2 (In(In u)) 3 8 4 In(In u)
— ¥y A (a(a+3(S2(u))?)) < w2/ T P — ’U,2/a(11’1 u)—4/(3/3)7

we get for some constant Q4 and all u large enough

P { sup X(t) > u} < QuSu?/*(Inw)~438W (u).
te[02(u),01(u)]

Then the result follows. O

Lemma 5.3.1. Under the notation in the proof of Theorem 5.1.1, for (j,k) € W ={(j,k) : 0 <k < M*(u),0 < j <

N(k)} and lim, @ = 1, there exists ug such that for each u > uy
1) P{supep,, X(0) > f)} = P{suppeio.s) Voult) > fu) 5

27) P {SuptEijk y(t) > f(u)} S P {Supte[O,S] Zu,u(t) > f(u)} ’
where

0, if v < B,
M*(u) = Mc(u), ify=75,
M(u), ify>p.

PrOOF OF LEMMA 5.3.1 Since the proofs of scenarios v < 3, v = 3, and v > § are similar, we only present the proof
of vy = B. Set X;ru(t) =X (dk + %), then supicp, X(t) 4 SUPyeo,5) Xjk,u(t). It is enough to analyze the
supremum of X 1. ., ().

1) For sufficiently large u and s,t € [0, 7]

_ 1S — iS +t
1—COU(Xj’k’u(S),Xj7k7u(t)) = 1—-—Cov (X (dk-i-M),X(dk—i—] + >>

a(dp+u=2/*R) (j541)
> (1-v/2)"afum?/e (s — ) (o o)

. (1 B 1//2)1/3au*2°‘(dk+“_2/a(dw(jSH))/a(dk) |(S _ t)|a(dk+u—2/a(dk)(js+t))

= (1-v/2)Y%ax I, x L. (5.27)

We deal with I; and I separately. For sufficiently large u, uniformly with respect to k,

Il _ u72a(dk+u_2/”(dk)(jSth))/a(dk)
=y 22(eld) —a(ditum/ ) (1S +1))) /aldr)

= u2e2nw)(a(do) —aditu™/ 0 (S +1)) ) /adr)
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> w21 -v/2)Y3, (5.28)
where the last inequality follows from the fact that

(Inu) ‘a(dk) -« (al;€ +u ) (5 4 t))‘ < (lnuw) (‘b(dk)ﬁ —b (dk +u (5 + t))ﬁ' + 25?”(“))

b
B+6
s (nw) ((lnu)(lnlnu)l/ﬁ 20, (u))
Bto
b +2(Inw) ) =0, u—
(Inlnw)t/8 " 2Inu —glnlnu e
For I, we need to prove that
Iy > (1 — v)2)/3]5 — o2l (W), (5.29)
Assumption (v) implies that
a (dk oy (g 4 t)) < o+ 2668 (u) (5.30)

for each (j,k) € U. Thus if |s — ¢| < 1, then (5.29) holds immediately. If 1 < |s —¢| < S, then by (5.30)

I = |(s—p)(dte?00Gs )

Ta(dk+u—2/a(dk)(J‘Sth))fabeéf (u) |S o t|a—i—2b§{3 (u)

v

T—zbaf(u) |s — t|a+2baf(u)

Y

Y

(1 _ V/2)1/3|8 _ t|a+2b§f(u)

for sufficiently large u. The above combined with (5.27), (5.28) and (5.29) gives that for sufficiently large u, uniformly
with respect to (j, k) € U,

1— Cov (Xjkul(s), Xjru(t) > (1 —v/2)au?|s — t\a“béf W > 1~ Cov (Yyu(s), Youl(t)).

Thus by Slepian’s inequality 1) is proved.

2) For all u large

— S+ s - S+t
1-Cov(X;ku(s), Xjku®) = 1—Cov <X <d;€ + M) , X <dk +? >)

a(dy+u=2/*@6) (jS+t)
< [ +V)1/3a‘u—2/a(dk)(s _4) (ds j ).

Following the argument analogous to that for the proof of 1), we obtain that for sufficiently large u, uniformly with
respect to k, and s,t € [0, 5]

1—Cov (X ku(s), Xjru(t) <1—Cov(Z,u(s), Zyu(t)).

)

Again the application of Slepian’s inequality completes the proof. O

Lemma 5.3.2. For S > 1, v € (0,1), and lim,_, @ =1, as u — oo, we have
1) B {supie s Yoult) > )} = 3o 0,501~ 1))/] ¥ (F(u)) (1 + 0(1));
2) P{subrcios) Zvalt) > S(u) } = o [0,5((1 +)a) /] W (£(w)) (1 + o(1).

PROOF OF LEMMA 5.3.2 We present the proof of 1) and omit the proof of 2) since it follows with similar arguments.
Following the definition of Y, ,, (), for each s,t € [0, 5]

lim /() [1 = Cov (Vi (ta(t = 1)) 7/%) Yo (s(al1 =) 7/2) )]

U—r 00

— lim (a(l . V))lf(a+2b5ﬁ(u))/a |S - t|a+2b5B(u) =|s— tla-

U—00
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Moreover, for all s,t € [0,.5], sufficiently large u and some constant C' > 0

P00 1~ Con (o 160 97). Vo sttt -1

< (a(1 - V))l—(a+2b5ﬁ(u))/a s — t|a+2b5ﬁ(u) < CT?|s — t)°,
where the last inequality follows from the fact that

|s — [ T2 () < g —gle ) if s —¢] < 1,
and

|s — ¢[o+200% () < 20 < TRog gl if ] < |5 — ¢ < T

Hence, by [90][Lemma 7], we conclude that

]P’{ sup Y, . (t) > f(u)} = P{t [ sup Y, «((a(1 _,/))*l/at) > f(u)}

te[o,9] 0,((1—v)a)t/«S]

= 3 [0.((1 = 1)) /S| ¥ (F(w) (1 +0(1),

as u — oo. This completes the proof. O
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Chapter 6

Extremes of Vector-Valued Gaussian

Processes with Trend!

6.1 Introduction and Preliminaries

Motivated by various applied-oriented problems, the asymptotics of

P {sup(X(t) + h(t)) > u} ) (6.1)
teT
as u — 00, for both T=[0,T] and T = [0, 00), where X (¢) is a centered Gaussian process with continuous trajectories
and h(t) is a continuous function, attracted substantial interest in the literature; see e.g. [89, 47, 90, 63, 84, 59, 52, 51]
and references therein for connections of (6.1) with problems considered, e.g., in risk theory or fluid queueing models.
For example, in the setting of risk theory one usually supposes that h(t) = —ct, with ¢ > 0 and X has stationary
increments. Then, using that P {sup,c4(X(¢) + h(t)) > u} = P{inficq(u— X(¢) + ct) <0}, (6.1) represents ruin
probability, with X (¢) modelling the accumulated claims amount in time interval [0, ¢], ¢ being the constant premium
rate and wu, the initial capital. The most celebrated model in this context is the Brownian risk model introduced
in the seminal work by Iglehart [93], where X is a standard Brownian motion. Extensions to more general class
of Gaussian processes with stationary increments, including fractional Brownian motions, was analyzed in, e.g.,
[113, 89, 90, 92, 91]. Recent interest in the analysis of risk models has turned to the investigation of multidimensional
ruin problems, including investigation of simultaneous ruin probability of some number, say n, of independent risk
processes
P{3icaViz1,.  n(ui — X;(t) + ¢;t) < 0},

see, e.g., [7] and [6]. Motivated by this sort of problems, in this paper we investigate multidimensional counterpart of

(6.1), i.e., we are interested in the exact asymptotics of

tefo,T) 1sisn

P{Jicjon X (t) + h(t) > ul} = P{ sup min (X;(¢) + hi(t)) > u} , (6.2)

as u — 00, T € (0,00), where X (t) = (X1(¢),...,Xn(t)),t € T C R is an n—dimensional centered Gaussian process
with mutually independent coordinates and continuous trajectories and h(t) = (h1(t), ..., h,(t)),t € [0,T] is a vector-
valued continuous function.

We note that (6.2) can also be viewed as the probability that the conjunction set 81, := {t € [0, 7] : miny<;<, (X;(¢)+

hi(t)) > u} is not empty in Gaussian conjunction problem, since

P{87., # 0} = IP’{ sup min (X;(t) + hi(t)) > u} ,

tefo,T] 1sisn

1This chapter is based on L. Bai, K. DeBickI AND P. Liu, (2018): EXTREMES OF VECTOR-VALUED GAUSSIAN PROCESSES WITH
TREND, published in the Journal of Mathematical Analysis and Applications, Volume 465, 47-74.
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see, e.g., [137, 57| and references therein.

The main results of this contribution extend recent findings of [57], where the exact asymptotics of (6.2) for h; =
0,1 <14 < n was analyzed; see also [61] where X (¢) is a multidimensional Brownian motion, h,(t) = ¢;t and T = oo,
and [56, 124] for LDP-type results. It appears that the presence of the drift function substantially increases difficulty
of the problem when comparing it with the analysis given for the driftless case in [57]. More specifically, as advocated

in Section 2, it requires to deal with

P<J sup min X, ;(t) >u,,
{te[o,T] 1<i<n ®) }

where (X, ;(t),t € [0,T])y, ¢ = 1,...,n are families (with respect to u) of centered threshold-dependent Gaussian
processes; see Theorem 6.2.1.

In Section 6.3 we apply general results derived in Section 2 to two important families of Gaussian processes, i.e. i) to
locally-stationary processes in the sense of Berman and ii) to processes with varying variance var(X;(¢)), ¢t € [0,7T].
Then, as an example to the derived theory, we analyze the probability of simultaneous ruin in Gaussian risk model.

Complementary, we investigate the limit distribution of the simultaneous ruin time
Ty = 1Inf{t > 0: (X (t) + h(t)) > ul},

conditioned that 7, < T, as u — oc.

Organization of the rest of the paper: Section 2 is devoted to the main result of this contribution, concerning the
extremes of the threshold-dependent centered Gaussian vector processes. In Section 3 we specify our result to locally-
stationary vector-valued Gaussian processes with trend and non-stationary Gaussian vector-valued processes with
trend. Detailed proofs of all the results are postponed to Section 4. Additionally, in Section 3 we analyze asymptotics

of the simultaneous ruin probability.

6.2 Main Results

We begin with observation that, for sufficiently large u,

P< sup min (Xz(t) + hl(t)) >up =P {Elte[O T]Xu(t) > Ul} R (63)
tefo,T) 1<isn ’
where X, (t) = (u"_X};l(ft)), ceey uu_Xhﬂ(ft))) is a family of centered vector-valued threshold-dependent Gaussian processes.

Since the above rearrangement appears to be useful for the technique of the proof that we use in order to get the exact
asymptotics of (6.2), then in this section we focus on asymptotics of extremes of threshold-dependent vector-valued
Gaussian processes.

More specifically, let X, (t) := (Xu,1(8), ..., Xun(t)),t € E(u), with 0 € E(u) = (z1(u), z2(u)), be a family of centered
n-dimensional vector-valued Gaussian processes with continuous trajectories. Let o ;(-) and r,;(-,-) be the variance
function and the correlation function of X, ;(¢), 1 < ¢ < n respectively. Moreover, we tacitly assume that X, ;(¢),
1 <7 < n are mutually independent.

We shall impose the following assumptions on X,,():

A1l: limy, o 0,(0) =0 > 0.

A2: There exist A\; € [0,00),1 < i < n with maxj<;<, A; > 0 and some continuous functions f;(-),1 < i < n with
£i(0) = 0 such that for any € € (0,1), as u — oo,

’(‘m ~ 1) u? — fi(uAit)‘ <e(|firt)[+1), teB(u).
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A3: There exist a; € (0,2] and a; >0, 1 <4 < n such that

1—ry(t
lim sup M — 1‘ =0.
U0 5 te E(u) ai|t - S|a1
t#s

In the following we write f € R, to denote that function f is regularly varying at co with index «, see [69, 129, 136]
for the definition and properties of regularly varying functions.
Let A := maxj<i<n Ai, & := minj<;<p, o, f(t) = (fvl(t), el ﬁ(t)) with

Fi(8) = fi () Tpa=ny
and suppose that z1(u) € R_,,, z2(u) € R_,,, with pq1, e > A and

lim w2y (u) = 2 € [—00,00),

U—r 00

lim utzy(u) = 29 € (—00,00], 71 < T2, (6.4)
U—r 00

lim uwdz(u) =0,i=1,2,1; < \.

U—r 00

If |x1] + |z2| = 0o, we additionally assume that

lim inf (i f;(Qt )
i=1 ¢

|t] =00
te(zy,z2]

/(zn: |Jz(§)|> > 0. (6.5)

> i=1
Assumption (6.5) means that the negative components of f—(gt), 1 <4 < n do not play a significant role to the sum in
g

comparison with the positive components.

Moreover, we suppose that 0-co =0, u=°° = 0 for any u > 0 and introduce
(21, 22] := lim f(u)[z1(u), z2(u)],

if limy, 00 f(u)z1(u) = 21 € [—00,00) and limy, o f(u)z2(u) = z2 € (—00, 00] With 1 < xs.

Next we introduce some notation and definition of the vector-valued version Pickands-Piterbarg constants.
Throughout this paper, all the operations on vectors are meant componentwise, for instance, for any given * =
(1,...,2n) € R® and y = (y1,...,yn) € R”, we write & > y if and only if x; > y; for all 1 < ¢ < n, write
/e = (1/x1, -+ ,1/x,) if ©; #0,1 < i <n, and write xy = (21y1,...,TnYn). Further we set 0 := (0,...,0) € R"
and 1:=(1,...,1) € R".

Define for S1,52 € R, S1 < So, a = (a1,a9,...,a,) with a; > 0, 1 < i < n and f(t) = (f1(t),..., fo(t)) with

fi(t), 1 <i < n being continuous functions
Tﬁ’a[Sth] = / e2i=1 Wi {Hte[sl,sg] (\/ 2aB,(t) — alt|]* — f(t)) > w} dw

= / 62?1“’1']}”{ sup ( min v/2a;B, i(t) — a;|t|* — fi(t) — wl> > 0} dw € (0, 00),
n te

[51,52] \1=isn
where B, (t),t € R is an n-dimensional vector-valued standard fractional Brownian motion (fBm) with mutually
independent coordinates B, ;(t) and common Hurst index «/2 € (0,1]. Let
PF [0,00) := lim PL _[0,5,), PL  (—00,00):= lim PF 151, o).
’ SQ‘)OO ’ ’ 514)700,32%00 ’

Let, for a > 0,
. 1
Haa = Thm Tin’a[O’T].

— 00

Finiteness of Ha,q, P 4[0,00) and Tﬁﬂ(foo, 00) is guaranteed under some restrictions on f(-) which are satisfied in

our setup; see [57, 12, 13]. We refer to, e.g., [13, 116, 118, 47, 63, 37, 65, 40, 121, 64, 44, 79, 58, 50] for properties of
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the above constants.
Let I{a:b} = (H{a1:b1}7 - 7H{an:bn})'

Theorem 6.2.1. Let X, (t),t € E(u) be a family of centered vector-valued Gaussian processes with continuous
trajectories and independent coordinates satisfying A1-A3 and (6.4)-(6.5) holds. Let further m,, be a vector function
m.,

of u with limy, 0o T =1 and for j € {1 <i < n: X = A}, f;(t) be regularly varying at +oo with positive index.

Then we have

—3r fi(t)
j{a,;%l{amu} f;f € et dta Zf A< 2/0[,
My i
P{HtGE(u)X’u( ) > my, } ~ U A+ H\II (O' > 3)5’2%1{&:”1} [.Tl,xg], Zf A= 2/0[,

Jgn €121 W]I{ate oo~ £ 50 }dw if A>2/a.

6.3 Applications
In this section we apply Theorem 6.2.1 to the analysis of the exact asymptotics of
P {3reo,r) (X (t) + h(t) > ul},
as u — oo. We distinguish two classes of processes X: processes with non-stationary coordinates and processes with
locally-stationary coordinates, including strictly stationary case.
6.3.1 Non-stationary coordinates

Let X(t),t > 0 be a centered vector-valued Gaussian process with independent coordinates. Suppose that o;(-),1 <

1 < n attains its maximum on [0, 7] at the unique point ¢y € [0, 7], and further

O'i(t) ZO'i(to) —bi|t—t0 ﬁi(l—FO(l)), t— 1o (66)

with b; > 0,3; > 0, and
ri(s,t) =1 —a;lt — s|“(1 +0(1)), s,t—to (6.7)
for some constants a; > 0 and «a; € (0,2]. We further assume that there exists p; > 0 such that

E ((X:(0) - Xi(5))*)

max S#,EEE[O’T] = s < 00. (6.8)
Let h(t) be a continuous vector function over [0, 7] satisfying
hi(t) = hi(to) — ci|t —to]" (1 +0(1)), t—to (6.9)
with ¢; < 0 and v; > %5 and ¢; > 0 and ~; > 0. Moreover, there exists us > 0 such that
max sup [ha(t) = ha(s)] < 0. (6.10)

i=1,...,n s#t,s,t€[0,T) |t - S|N2

Theorem 6.3.1. Suppose that X(t),t > 0 is a centered vector-valued Gaussian process with independent coordinates
satisfying (6.6)-(6.8), and h(t), t > 0 is a continuous vector function over [0,T] satisfying (6.9)-(6.10). Then

P{Jicpor) (X () +h(t)) > ul} ~ (_ﬁ)+H\1j< o to )>
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oy op .
J-COQ#tO)I{a:ul} fq e i f (x)dxv Zfa < B,

X a’#to)l{“:o‘l} [Qa 00)7 Zfa = 67
1, if a > B,
where o = miny<j<p @, f = Ming<j<, min(By, 2v;lge, 20y + 00lfe,—0y), @ = (a1, ...,an), o(to) = (o1(to), ..., on(to)),

f= (flv ) fn) with fl(t) = %‘ﬂﬁiﬂ{ﬁi:ﬂ} + %M%H{Q%:B}’ and

. { —oc0, ifto € (0,T), 6.11)

0, iftozo OT‘tOZT.
Remark. If n =1 and hy(¢) = 0, then Theorem 6.3.1 covers the classical Piterbarg-Prisjaznjuk result; see [123].

In the following corollary we apply Theorem 6.3.1 for the analysis of exact asymptotics of 7, = inf{t > 0 :
(X (t) + h(t)) > ul}, as u — oo, conditioned that 7, <T.

Corollary 6.3.1. Under the same assumptions as in Theorem 6.3.1 with to = T, we have for z € (0,00), as u — oo,

fox e Z?:1 fl(t)dt/ fooo e Z?:1 ft(t)dt, Zf o< 5’
_ 2/B « < } ~ i) / f if o0 = .
P{(T —ru?? <alr, <T Pl ot 0817 oy [0.00), e =5, (6.12)

la zfa>6

We give a short proof of Corollary 6.3.1 in Appendix.

6.3.2 Locally-stationary coordinates

Suppose that for each ¢ = 1,...,n, X; is a centered locally-stationary Gaussian process with continuous trajectories,

that is process with unit variance and correlation function r;(-,-),1 < i < n satisfying
ri(t,t+s) =1—a;(t)]s|* +o(|s]*), s—0 (6.13)

uniformly with respect to ¢t € [0, 7], where a; € (0,2], and a;(t) € (0,00) is a positive continuous function on [0, T].

Further, we suppose that
ri(s,t) <1, ¥s,t € [0,T] and s # t. (6.14)

We refer to e.g., [16, 18, 87, 119] for the investigation of extremes of one-dimensional locally-stationary Gaussian

processes under the above conditions.

Denote by

H= (:]1 {s € [0,7] : hi(s) = hyn = max hi(t)}.

Theorem 6.3.2. Let X(t),t € [0,T] be a locally stationary vector-valued Gaussian process satisfying (6.13) and
(6.14). Moreover, assume that h(t) is a vector function satisfying (6.10) and o = miny<;<p .
i) If H = {to} and (6.9) holds with ¢; > 0 and maxi<;<, ¢; > 0, then

n g{%a(to)l{a:au fqoo e Tia fi(x)dxa Z'fa < 2’77
2_1 .

P {EItE[O,T] (X(t) + h(t)) > U]_} ~ ’U,(a 'y)+ H v (’U, — hm,i) :Pi,a(tO)I{a:al} [q, OO), ZfO[ = 2/77
i=1 .

17 Zfa > 2’}/,

where v = ming <j<n (Vil{e, 20y + 00lge,—0y), fi(t) = cilt|"I{y,—}, and q is given by (6.11).
ii) If H = [A,B] C [0,T] with A > B, then

B n
P {3icio.r) (X () + h(t) > ul} ~ / Hea(t)T ooy At us H U (u—hpm).
A i=1



76 Extremes of Vector-Valued Gaussian Processes with Trend

Similarly to Corollary 6.3.1, we get the asymptotics of 7, for locally-stationary coordinates of X.

Corollary 6.3.2. Under the same assumptions as in i) of Theorem 6.3.2, with to = T, we have for x € (0,00), as

u — 00,
f()z e~ 27:1 fi (t)dt/ f()oo e~ Z;nzl fi (t)dt, Zf a < 2!}/’
1 .
P{T = m)u Safn <Th~ § 8L 08P sy 000) =2 (6.15)
1, if a > 2.

6.3.3 A simultaneous ruin model

Consider portfolio U (t) = (U1 (t),...,Un(t)), where
U(t) =ud+ct — Ba(t), t>0,

with ¢ = (¢1,-+ ,¢n) € R", d = (dy,--- ,dp) > 0 and By, (t), 1 <1i < n, independent standard fractional Brownian
motions with variance var(B,, (t)) = t* for a; € (0,2], 1 < i < n, respectively. The corresponding simultaneous ruin
probability over [0, 7] is defined as

P {3t€[07T]U(t) < 0}

and the simultaneous ruin time 7, := inf{t > 0: U(t) < 0}. We refer to, e.g., [113] for theoretical justification of the
use of fractional Brownian motion as the approximation of the claim process in risk theory.

In the following proposition we present exact asymptotics of the simultaneous ruin probability and the conditional
simultaneous ruin time 7|7, < T, as u — oo.

ops . d? 1d?
Proposition 6.3.1. For T € (0,00), a = minj<i<n @, by = 57ds; and fi(t) = zgaﬁt, as u — 00, we have

2 _ - diu+ ¢;T
P {EItG[O,T]U(t) < 0} Nu(a 2)+ E[\I/ (W) (616)
n aidz -1 .
(21:1 miﬁrl) Hablig_ary, Ha<l,
x :Pi,bI{a:al} [07 OO), ifOZ =1,
17 ZfOé >1
and for x € (0, 00)
n aid%
l—e <Ei=1 et )m, ifa <1,
— ) < < } ~ ‘ .
P{(T - r)u? <aln, <T P oty 001/ 000), ifa=1, (6.17)
L if a > 1.

Specifically, Proposition 6.3.1 allows us to get exact asymptotics for multidimensional counterpart of the classical
Brownian risk model [93]. For simplicity we focus on 2-dimensional case. Let B(t) := (BM(t), B®)(t)), where B! (t)
and B (t) are two independent standard Brownian motions, ¢ = (c1,¢3) € R? and d = (di,d2) € R2. Then we

have, as u — oo,

dyu + et — BU(t) 0 b div+c;T dou + coT
P<d < ~ P10, 00V | ——— |V | ————
{ rel0T] ( dyu+ cot —BA(t) )~ \ 0 Lol0: ) T2 T2

and for z € (0, 00)

P {(T — Tu)u2 <z, < T} ~ fPﬁ')tb[O,x]/fPtl’fb[O, 00),

di  dj
where b = (W’ W)
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6.4 Proofs

Before proceeding to the proof of Theorem 6.2.1, we present two lemmas which play an important role in the proof
of Theorem 6.2.1. The first one is a vector-valued version of the uniform Pickands-Piterbarg lemma while the sec-
ond one gives an upper bound for the double maximum of vector-valued Gaussian process. Hereafter, we denote

by C;,1 € N some positive constants that may differ from line to line. Moreover, the notation f(u,S,€) ~ g(u) as
f(u,S,€) =1

g(u) ’
Forb > 0, \; € [0,00), and —oo < S1 < Sz < 00, define a vector-valued Gaussian process Z,(t) = (Zy,1(t), ..., Zun(t))

by

u — 00,5 — 00,e — 0, means that lim._,olimg_, o limy 0

o &i(t) .
Zny,i(t) = T b2 f, ) te[S,S)],i=1,...,n, (6.18)

where £(t) = (&1(¢),...,&n(t)),t € R is a vector-valued Gaussian process with independent stationary coordinates,

continuous sample paths, unit variance and correlation function r;(-) on i-th coordinate, 1 < i < n, satisfying

1— ri(t) = aglt|* (1 + o(1)), (6.19)

for a; > 0 and «; € (0,2], and f;(t),1 < i < n are some continuous functions. We suppose that the threshold vector
my (k) = (my1(k),...,my (k) satisfies

lim sup =0, ¢>0, (6.20)

—my(k) — ¢
U0 keEK,

u

with K, a family of countable index sets.

Denote by

Milpizoy) >0, F(t) = (fi(t), .-, fu(®), with fi () = fi () I{p,mnp-

a= min a;, A= max
1<i<n 1<i<n

Lemma 6.4.1. Let Z,(t) be defined in (6.18) and m., (k) satisfy (6.20).
1) If A < 2/a, then

P {Elte[u*Z/aShu*Z/aSQ]Zu(t> > mu(k)}

lim  su n — R{[S1, S]] =0,
i [, () 151, 52
where
P S8 i A=2/a
R{S1. 8] = ¢ 2O 15 6] if A < 2/,

a,ac?liq—q1}

g{a,aczl{azal}[slu S2]a Zf b=0.

it) If A > 2/a, then

=0.

lim sup
U0 ke K,

]P {Hte[u—kshu—ksﬂzu (t) > mu(k)}
)

_TCQfS S
[Ti— ) W(ma,(k) 0 (91, 52]

Proof. i) Suppose that A < 2/«. Conditioning on{S(O) =my (k) — #(k)} ,w € R™ we have for all u large enough

P {Hte[u*/asl,u*?/aSg]Zu(t) > mu<k)}
H?:l ‘I'(mu,z(k’))
_ : / o3 D (i ()= )
[T, V2mmey (k) ¥ (my; (k) Jrn

<P {Hte[sl,SQ]Zu(UZ/at) > mu(k)‘f(()) = mu(k) - ,’n:](k)} dw
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_(mui)? n ( vl
5 " Wi — ————
= e =t ‘ 2('"11 1(k) >P EI x t k >w dw
Hmn%“( k)W (mul(k)) /n { te[S1,52] (t, }
_(mui)?
2

Hmmum W) |

where X (t, k) = (X (t, k), ..., Xy, (t, k)) with

0 4t k) = 1, () (Zaw (=2 0) = 1 () + w3 6(0) = (k) — ——.
» S / i ®)
By (6.20), it follows that
n _ (”"u,i(k'))Q
e 2

lim sup —1|=0.

U= ke, 11;[1 V2mmy, i (k) U (my, i (k)
Thus in order to establish the proof, it suffices to prove that

lim sup | — R{[S1, 52]‘ —0. (6.21)

uU—r 00 keEK,

It follows that, for each W > 0, with W™ = [-W, W]" and W;‘ = {w € R"|w; € (—o0, —W) U (W, 00)},

sup Iu,k — R{\[Sl, 52}‘
keK,
w}
< ksuI]%) /~ e 1( 2m'ivi(k)>IP’{Hte[sl’sﬂfxg(t,k) >w) — eXiz1 Wi {3ies1,,1€ () > w}] dw‘
€K, n

+Z sup / e UiP {3, g, 5 XY (LK) > w} dw
— kek, Jivp
j=1

+ Z - eXi=1Wip {EItG[Sl,SQ]C(t) > w} dw
= I (u) + L (u) + I3(u),
where ¢(t) = (¢v2aBg — ac®[t|*){aza1} — f (tl{r=2/a})-

Next, we give upper bounds for I;(u),i = 1,2,3. We begin with the weak convergence of process X3, (¢, k).

Weak convergence of X/ (¢, k). Direct calculation shows that

E{(1+ b 2 [N )Xe (6 )} = —m2 (k) (1= ra(u2/8) + b2 fi(u200))

+w; (1 —ri(u”t) + biu_zfi(u)"‘_z/at)) ,
and

var (14 b2 (M 0)X(1 ) — (L+ b ()X (¢, b))
= o(0) (Var (6020 = 62/0)) = (rtu /o) = rue0))).

By (6.19) and (6.20), it follows that
E{(1+ b2 fi(uM )06 K)} = —Failt*Ta =) — ¢ (Fitlirzzsay)) (6.22)

as u — oo, uniformly with respect to t € [Sy, S2], k € K, w; € [-W,W]. Moreover, for any ¢,t' € [Sy, So] uniformly
with respect to k € K, any w; € R,

var (1 + b2 f; ()XY, (6, k) — (14 biu fi(ut )XY (', k) = 2¢2ailt — '|“T{a;—ay, (6.23)
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as u — oco. Combination of (6.22) and (6.23) shows that the finite-dimensional distributions of
{(1 4+ bu™?f ()X (¢, k), t € [S1, 5]}

weakly converge to the finite-dimensional distributions of {{(t),¢ € [S1,52]}. Moreover, by (6.19) we have that there
exists a constant C' > 0 such that for all ¢,¢' € [Sy,S2] and all large u

sup var ((1+ biufzfi(u/\it))x%(t, k) —(1+ biufzfi(u&t'))x%(t', k))
keK,

<m?,(k)Var ({i(’u*z/“t) - gi(u*/at')) <Ot -7, (6.24)
which combined with (6.22) implies that the family of distributions
P{(1+bu?f(u )X} (L, k) € (-)}
is uniformly tight with respect to k € K,, and w in a compact set of R". Consequently,

{1+ bu 2 f(u™M)X¥(t,k),t € [S1,Ss]} weakly converges to  {C(t),t € [St, Sa]}.

Since

li L+ bu 2 fi(ut)) — 1| =0
ugrc}olgl?nkseufg,te[sgl,)&]K o fl(u )) | ’

we conclude that
{XCY(t, k), t € [S1,S2)} weakly converges to  {C(t),t € [S1,Sa]}.

Upper bound for I;(u). We first show that

cu(w): = kseull() |]P’{3t€[51732]x5(t,k) > w} - P{Hte[sl,&](:(t) > w}|
= sup |Pq sup min (X2V,(t, k) —w;) >0, —P< sup min (¢(t) —w;) >0, =0,
kEK, te[S1,8] 1Sisn 7 te[Sy,9,) 1Si<n

for almost all w € R™. Let

A= {v : IP’{ sup  min (G(t) —v;) > O} is continuous at v} .
te

[51,82] 1§1§n
Note that if w € A, then

IP’{ sup  min (G(t) —w;) > x}

te[Sy,S,] 1sisn

is continuous with respect to x at x = 0. Hence by the continuity of functional sup min, we have that
cu(w) = 0,

for w € A and mes(A°) = 0. Thus in light of dominated convergence theorem, we have

w}
Ii(u) < e™W co(w)dw + W™ sup [1—e T7TEM) 50, uw— 0o,

N weWnNA wewn

Upper bound for Iz(u). Using (6.22) and (6.23), for some § € (0,1/2), |w;| > W with W sufficiently large and all

large we have

sup E{(1+biu2f;(ut) XY, (t, k) } < Cy + 5|w;]
k€K, te[S1,52] :
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and

sup var ((1+ biu_zfi(ul\it))x:f,i(t’ k)) < Co.
k€K ,te[S1,52]

Moreover, by the mutual independence of X, ,;(t,k),1 <i <n

IP’{EItE[ShSQ]x;"(t,k) > w} = P sup min (ng(tk) - wi) >0
te[S1,5:] 1Sisn
< PJ min sup Xi,(t,k)—w; | >0
I=isn \ ¢g[8y,Ss]

Consequently, it follows that

sup eXi=1 Wi {Hte[ghsz]x:f(t,k) > 'w} dw < J; x Ja,
k€K JWr

where by (6.24) and Theorem 8.1 of [119]

Ji = sup / e Pq sup Xy (¢, k) > w; o dw,
k€K, Jw;|>W te[S1,5]
< sup / e“’j[P’< sup (L4 bou™ fi(u6)) XY 5 (t, k) — E{(1 + b2 f;(w )Xy (¢, k) })
keKy J|w;|>W te[S1,52]
> (1 - 8)lwj| — C1) du
*° 1-9%)w,; — C
< 6_W+/ eu)j(cgij/a‘I](( )U}] 1)dwj
w Cy
= A (W)—=0, W— o0,
and
Jo = sup H </ ewip{ sup X, (¢, k) > wi}dwi>
keKy 7 \Jr te[S1,Ss]
i#j
< . Wi
i#j

+/°° eUiP ( sup ((1 + b fi (W)X (t k) — E {(1 b fi (W)X (¢, k)}) > (1— 8)w; — c1> dw,-)
2% te[S1,52]

H (ewl _|_/ ewi((:4wi2/aq; (%) de) < Cs,
w1 Cs

=1

i#]

IN

with W7 some positive constant. Thus we have
IQ(U) < n(C5A1(W) — 0, W — oc.

Upper bound for I3(u). Borell-TIS inequality (see, e.g., [1]) implies that

Is(u) = 0, u, W — oo.

Hence (6.21) follows.
ii) Suppose that A > 2/a. Observe that

P {Hte[u*ksl,u*kSﬂZu(t) > mu(k)}
[Ti2 ¥ (me,i(k))
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EENECIIYS I € X (L, k) d
H\/ﬂmm( B (mu,i(k')) /ne { te[S1,52] (t, >w} w,

where X2 (t, k) = (X (£, k), ..., X% ,,(t, k) with

w;

X i(t, k) = M, (k) (Z i (w™t) — m i (K)) + w; my,i(k)

(0) = mai(k) -

The rest of derivations for this case is the same as given in the proof for case A < 2/«, with exception that
E{(1+ biu_2fi(u’\"t))x37i(t, k)} — —2fi(t), u— o0,
and
var (X3 (¢, k) — Xy ; (', k) = 0, u — oo.

Hence we omit the rest of the proof. O

Lemma 6.4.2. Let X (¢), (t) € R be a centered vector-valued stationary Gaussian process with independent coordinates
X;’s. Suppose that for each i = 1,...,n, X;(t) has continuous sample paths, unit variance and correlation function
ri(+), 1 <i<mn, satisfying

0< 1—2ai|t

St S 1= T >0, @€ (0,2] (6.25)

for all t € [0,¢] with 0 < € < 1 small enough. Let K, be a family of countable index sets. Then we have for any
m, (k), wy(l) such that

lim sup
u—)ookeKu u

(k) —¢| =0, lim sup |—w,(l) —c

uU—r 00 ZEKu

:O’

and any T'(k,1) > S > 1 satisfying limy o SUPy, ;¢ i kD — 0, that

w u2/n¢

P {3iep0,s1u-270 X (t) > muu(k), Jperen. 7k, z)+s]u*2/aX(t) > wy(l)}

< FS5 exp(—G(T( H v (m“ ) v, 2(”)

holds uniformly for any k,l € K,, and all u large where o = mini<;<,(a;) and F,G are two positive constants.

PROOF OF LEMMA 6.4.2 By the independence of X;’s, we have that
P {3sep0,5u-2/ X (t) > mu(k), Jpe(me,0), 7 (k1) 8Ju—2/0 X (£) > wy (1) }

m sup  Xi(t) > myi(k) ¢, n sup Xi(t) > wy,i(k)
i=1 |t€[0,S]u—2/« i=1 €T (k,1), T (k,1)+Su—2/

H { sup  Xi(t) > mai(k), sup Xi(t) > wu,i(k)} .

[0,8]u—2/e te[T (k,1), T (k,1)+S]u—2/

IA
~

IN

Application of Lemma 6.3 in [119] (or Theorem 3.1 in [60]) for each term in the above product establishes the claim.
O

PROOF OF THEOREM 6.2.1 Let

m(u) = P{3iep)Xu(t) > m,} =P {EteE(”)X ((Z)) ZZ(((?) ” 07:(16) }

In view of A2-A3 and by Gordon inequality (see, e.g., Lemma 5.1 in [57]), we have that for e € (0,1) and u sufficiently
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large
My, my,
P eni Zu—o(t) > — b < 2(u) < PL e puy Zuse(t) > — L 6.26
{epe 2o > b < w0) <P {Bicp Zusel > o] (6.20)
where Yoo(t)
+e
Zu t) = o\ t Ra
20 '

with Yi.(¢),t € R being homogeneous vector-valued Gaussian processes with independent coordinates Y; 1.(t),t € R

having continuous trajectories, unit variance and correlation function satisfying

rite(t) = e”(AESailtl™

and wy, () = (Wy1,46(t), - - ., Wy n,+e(t)) with
Wy ite(t) =14 u? (fi(u’\'it) + E\fi(u’\"tﬂ + 5) , €€(0,1).

Next, we use the double-sum method to derive an upper and a lower bound of (6.26) and then show that they are
asymptotically tight. We distinguish three scenarios: A < 2/a, A = 2/a and A < 2/a.
o Case A < 2/a. For any S > 0, let

-2/« —2/a xl(u)
Ik(u) = [ku / Sa (k+1)u / SL kEZ, Nl(u): \‘Su_g/aJ _H{11S0}a
To(u
NQ(U’) = \‘Si_(g/)aJ + H{ngO}a 'Uu,ia(k) = (vu,l,ie(k)a e avum,ia(k))) (627)
with
My i My s
Vyi+e(k) = = sup Wy i4e(S), Vu,i—c(k) = %t inf Wy i,—c ().
+ ( ) Uu,i(()) se i (w) + ( ) ( ) Uu,i(o) s€lx(u) ( )
For u large enough, in view of (6.26) we have
m Natu) m
’/T(U) S P {ElteE(u)Zu,+a(t) > Uu(g)} S Z P {EltGIk(u)Zu,JrE(t) > O'u(76) } )
k=N1(u)
m Nz(u)—l m 2
m(u) > ]P’{HteE(u)Zuys(t) >~ (B)} >y P{ate,k(u)zu,s(t) >~ (76) } =) Ai(w),
“ k=Ni(u)+1 v i=1
where
N2 (u) m m
Al(u) = Z P {Eltelk(u)zu,s(t) > 7@3 3t61k+1(u)zu775(t) > O'u(la)} )
k=N1(u)
and
my, my,
AQ(U) = Z IP {Eltelk(u)zu7_5(t) > T(O)’Eltell(u)zu’_e(t) > o'u(o>} .
Ny (u)<k,I< Ny (u),l>k+2

Asymptotics of w(u). By stationarity of Y. and Lemma 6.4.1, we have that

NQ(U)

Z P {Htefk(u)Y+E(t> > 'Uu’,s(k)}
k:Nl(u)

NQ(U)

Z P {HtEIg(u)Y+E(t> > 'Uu77€(k)}
k:Nl(u)

IN

7(u)

IN

Ng(’u.) n

~ j{a,(lv%)c%l{a:au[o’s] Z H\P(Uu,i7—e(k))7 U — 0Q.
k=N (u) i=1
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Furthermore,
Na(u) n
Z H\Ij(vu,i,—s(k))
k=N (u) i=1
S ( L ( <k>)>
~ xp [ — b=
k=N (u) i=1 V210 i, e (F) 2
o (i )R " md 2 inf e ) (fi(us) — el fi(utis)| )
~ H\IJ 70 (0) Z exp | — 2 (0)
i=1 it k=N (u) i=1 Ut
. M i Ma(w) n mi, us 2 inf e ki) (f( TaSs) —elfi(ur T Ss)| —5)
~ (I (255 | -2 72.0)
i=1 we k=N (u) i=1 i
T (i VY g1 2/an [ JHO)
< \Il< : ) Sy A/ exp | — L dt, (6.28)
(11 (255) Ln
where ff(t) = fi (t) —e|fi (t)] — . In order to prove (6.28), we note that for —0o < 1 < 3 < 00,
Na() n 2 2 inf e g (fi(uh R Ss) — el fi(wh R Ss)| - )
Z exp | — Z 0_2 (O)
k=N1(u) i=1 U,

~ ST 1y2 A /1?2 exp —i: £ dt, u— oo
. 0_7/2 b b

1

which implies that (6.28) holds for —co < z7 < 22 < c0. Next we assume that —co < 1 < 2 = co. Let y be a

positive constant satisfying x1 < y < oo and N(u,y) = [yuzf;ik] Then it follows that
N(u,y) nomi w2 inf e ] (fi(u’\’i_%Ss) — | fi(ui— = Ss)| — 5)
Z exXp | — Z o2 (0)
k=N1(u) i=1 U,

1,,2/a=X Y . - fi ()

~ S~ exp E 5 | dt, u— oo. (6.29)
o’
1 i=1 v

By Potter’s Theorem (Theorem 1.5.6 in [19]) and the fact that for j € {1 <i <n:\; = A}, f;(t) is regularly varying
at oo with positive index, we have that for any 7 > 0 and sufficiently large y and u
o2 mEuin e (50N 85) = el fj (w5 Ss) — ¢
7,3 (0) Fr(w2Sk)

-1 <n

holds for all £ > N(u,y). Then we have that for &k > N(u,y)

mi,iu_Q infse[k,k+1] (fi(u)‘i_%SS) — €|fi(u>‘i_§Ss)| - E) Es(u/\fg‘gk) - |f;€(u §Sk)|
> o2.(0) 12073 D A

A=A 1

Using (6.4), it follows that

mi,z‘“ infoek k1 (fz( % Ss) —5|fi(u)”’_%53)| _5) fa(u’\i—%Sk)
lim sup Z 5 — L 5 =0.
u—roo Ni(u)<k<Nz(u) Ai <A Uu,i(o) A <A g;

Hence, for sufficiently large y and u we have that

n ol by (a0 TE85) el i TES) —e) o Faden) N [F(w-3sK)
2217_7,2'7

Z | a2 (0)

i=1 Ut
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holds for k& > N(u,y). Combining the above with (6.5) implies that

Na(w) n om u” 2 inf e pr) (fz( =% 8s) — el fi(uNi—% Ss)| — 5)
Z eXp |~ Z o2 (0)
k=N (u,y)+1 i=1 u,t
Na(u) _ )\,,
aSk
S exp( Zf . Zlf >|>
k=N (u,y)+

Sug‘AS‘/ eXp( Zfst -I-UZ'fst)

which together with (6.29) and the arbitrariness of 7 > 0 confirms that (6.28) holds. For other cases of 1 and x5,
we can similarly show that (6.28) is satisfied. By (6.4) and (6.5), we have that

T2 n Et
/ exp( Z z )dt<oo.
Xy i=1

Consequently,

m(u) < J{Q7%I{Q:a1}uz/a_k/ exp <— E fi(; ) dt (l I v (%)) ; (6.30)
E (o Ou.i
T i=1 i i=1 st

as u — 00, S — 00, € = 0. Analogously, we have

Ng(u)—l

Z P {Htefk(“)Zu’E(t) ” UT:(E)}

k=Nj(u)+1

Z2

.  fult) To [ M
> Ha RS o al}uz/o‘ /\/ exp Z 5= | dt H\Il : ,
1 i=1 Ui i=1 Ou;l(o)
asu — oo, S — o0, € = 0.

Upper bound for Aqi(u). It follows that

N (u)

m,, my,
Al('LL) = Z (]P) {Eltejk(u)zu,g(t) > p (O) } + ]P) {3tejk+1(u)zu75(t) > 0'(0)}
k=N (u) “ “
my
Nz(u)
< Z (P {Eltelk(u)Y—s(t) > "/)\u,-&-s(k)} +P {3t61k+1(u)Y_5(t) > "/;u,+s(k)}
k:Nl(u)

-P {Eltefk(u)UIkﬁ»l(u)Y*E(t) > 1~’u,+s(k)})

Na(u) n
~ (2%%(175);%1{,,:01}[0’5]— o, (1-) 2 Lo 01}[0725]) Z (H‘I’(Uu,i,+e(k))>

= 0<u2/a ’\H ( Mhuyg )), u — 00,5 — 00, — 0, (6.31)
O—ul

where
May,i

~ . May,i .
Vi, 4 (k) = min ( L inf Wy i 4e(S),

i f u,
0 s(0) setitu) inf w ,,+s<s>)

Ju,i(o) s€Lu41(u)

and

Vyi+e(k) = max (vy,iye(k), Vu,i+e(k+1)).
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Upper bound for As(u). In light of Lemma 6.4.2, we have that

my, my,
AQ(U) = Z P {Elte[k(u)Z%_E(t) > 0_7(0),3156[[(“)2%_5(1*,) > o (0)}
N1 (u)<k,l<No(u),l>k+2 w w
< > P {Zicrow)Y=c(t) > Bure(k), Jen @ Yoe(t) > Tute ()}
N1 (u)<k,l<Ng(u),l>k+2
< Z P {Htelo(u)Yfe(t) > Fuﬂre(k/’)a EItGIl,k(u)st(t) > ﬁu,+5(l)}
N1 (u)<k,I<Na(u),l>k+2
n a - @uifek +Eu7,ﬂfsl
< > C15%" exp(—Cao((I — k —1)5))1‘[\1/( L ()2 L ())
N1 (u)<k,I<Na(u),l>k+2 i=1
Na(u) n
< 22@15’2"exp —Co(19)*) > TP @ik
=1 k=N (u) i=1
< SZn exp(_Cgsa)u2/a—A ﬁ U My 5
B i1 O'UJ'(O)
= o<u2/o‘ AH (mw >>,u—>oo,5—>oo, (6.32)
Uu Z
where
Mo s
Vusite(k) = —2= inf wyi4e(s).

Ou,i (0) s€l(u)

Combination of (6.28)-(6.32) leads to

2/a—X fz(t M,i
ﬂ(u)wf}{%ﬁl{a:a”u / /m exp( Z p )dt (1_[\If(auz )) , u— o0.

l

o Case A = 2/a. Without loss of generality we assume that 1 = —oo0 and zo = 0o. The cases x1 > —o0 and xs < 00
can be dealt with analogously. In what follows, we use notation introduced in (6.27) and set I(u) = Io(u) U I_1(u).
Observe that for large u

mt
m(u) ZP{Htgf(u)Zu,—a(t) > = (70)}, (6.33)
<Pl - Z, . (t) > NQ(M)]PH Zoy (b)) > 6.34
7T(’LL) < tel(u) u’+g( ) > Uu(O) +k NZ( : tel) (u) u,+£( ) > o_u(o) . ( . )
1
k#—1,0

Lemma 6.4.1 yields that

m ai; = mi
P{Htef(u)ZU,:tE(t) > au(O)} ~ P e oy 7955 H‘P (Gi’u(0)> ’ (6.35)

as u — 00,& — 0. Moreover, in light of Lemma 6.4.1 and (6.5) we have

Nz (u) m

> P>
k=Ni(u)
k#—1,0

N2 (u)

Z P {Eltelo(U)Y+s(t) > Uu,fs(k)}

k=N (u)
k£—1,0
NQ(’U. n
~ j{ (1+5) S o= al} 0 S Z H\II Uy 1,75
k=N, (u) i=1

k#-1,0
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n Na(u) n 2 -2 re
My, My, infoe ik ky1) f5(Ss)
~ o142 amey [ <.H Y <am<o>)> 2 oo (‘ 2 72,0

i=1 k=N1(u) =1 "
k#—1,0
n Nz(u) noo. fe
s infsepp, ki) f5 (S5)
~ Ho(146) 5 T(arnny [0, 5] <H v (Ju "(O))> D> e <— > o2
=1 ’ k=N (u) =l '
k#-1,0

f(’fi))) seT = (H\P (et >> o

n
m
< Ca¥lo 3T ma) (1]1@ (Uu
as u — 00, = 0,5 — oo, where n € (1,00) is a constant. Inserting (6.35)-(6.36) into (6.33)-(6.34) and letting

S — oo, we obtain that

L n May,i
m(u) ~ fP @S a1 1_[1\11 (Uu,i(0)> e

This establishes the claim.

o Case A > % Without loss of generality we assume that 1 = —oo and 29 = co. For any S > 0, define

Je(u) = [ku=8, (k + Du=>S,k € Z, J(u) = Jo(u) U J_1(u),

Ka(0) = | 59| ~ Loy Kalw) = |25 | 4 Lo, ueeh) = (s selbhres v (0,

with
My .i Moy i
i k)= 2 i ) i—c(k) = ’ f i,—
Vyi e (k) 70.s(0) ses}ilzu) Wy i +e(8);  Vui,—e (k) 70.s(0) sel}l(u) Wy i,—e(8).
Then for u large enough, we have
m
W) > BB Zud) > ) (6.7)
m Ka(x) m
7r(u) < P {Htej(u)zu,+5(t) > - (16) } + Z P {Hte‘]k(u)zu’+5(t) > p (16) } . (6.38)
“ k=K1 (u) w
k#0,—1
It follows from Lemma 6.4.1 that
m n m
_ U ~ Zi: w; 7,U
P{ElteJ(u)Zu’is(t) > o-u(O)} /ne 1 H{Hte[ o (t)> }de\I/ (UW )> (6.39)
as u — 0o, € — 0. Moreover, similarly to (6.36), we have that
Kz(u) m n m
u U, —nlnS
> P{Eenw > s} < (H‘P (o 0))> o
k=K1 (u) =1
k#—1,0

_ <H@<UT“ >> u — 00,8 — oo. (6.40)

Inserting (6.39)-(6.40) into (6.37)-(6.38) and letting S — oo and € — 0 we derive that

~ Do Wi _ My i
W(U) < Rn c ' H{Hte<w,oo)’;(£)>w}dw> H‘II (07“ )> , U — OQ.

This completes the proof. O
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PROOF OF THEOREM 6.3.1 We first focus on the case of ty € (0,7). Set
E(u) = [-0(u),d(u)], D(u) = [to — 0,t0 + 0]\ (to + E(w)),
where 6 € (0, %) is a small constant and 6(u) = (%)2/5 with ¢ > 1, f = minj<;<,, 8] and
B¢ =min (85, 27il{c, 20y + 00l{ei—01) -
Then it follows that
M () < P {Breorr) (X (1) + h(1) > ul} < T0y () + Ta(u) + Ta(u),
where

I(u) = P{3iepw (X(to+t)+h(to+1) >ul}, IHy(u)=P{Jepw) (X(t)+h(t)) >ul},
M3(u) = P{3iepm\to-b.t0+0) (X () +h(t)) > ul}.

Asymptotics of II1(u). In order to derive the asymptotics of IT; (u), we check the assumptions in Theorem 6.2.1. For

this purpose, rewrite

I (u) = P {Frep@Xu(t) > ul}, with Xu(t)= m

It follows straightforwardly that o, (t) = % satisfies limy, 0 04,(0) = o(tg) > 0 implying that A1 holds.

Next we verify A2. Direct calculation shows that

Uu,i(o) o 1 o - 1 O'i(to)
i) T g 0y ) o ) G ot + 1)

(hi(to) — hi(to +1)).

Thus by (6.6) and (6.9) we have that for all u large

0u,i(0) :1+( b; it

Ju,i(t) O’i(to)

&

Bi
+ u — hi(to)

|t

%‘) (1+0(1)), t — 0. (6.41)

Denote by f;(t) = %\ﬂﬁf‘ﬂ{gi:g;} + ¢i[t[""I{pr=2,}- Then we have

ou,i(0 r3 *
(O'u’,i((t)) - 1) u? — fi(u2/ﬁl t)

lim sup = =0, 6.42
U= e B(u) |fi(u?Pit)] +1 (0:42)

which confirms that A2 is satisfied. Apparently, A3 follows by (6.7). Thus we conclude that A1-A3 are satisfied.

Also, (6.4) holds with 1 = —oco and x9 = co. Therefore, in light of Theorem 6.2.1, we have, as u — o0,

= u — h;(to) & 53 (i) Ha=a1) [ e X fi@dy,  ifa < B,
11w [ 220 pf 0.0 . i3
11:[1 < oi(to) ) O"ml{a:al}( ,00), 3, ( )
_ b if a > p,

@l

Ty (u) ~ ula™

where f;(t) = %lﬂﬁiﬂ{ﬂi:B} + %Hpiﬁ{g%:ﬁ},l <i<n.
Upper bound for IIo(u). Observe that

o (u) = P{Fepeu) (X(t) + h(t)) > ul} < IP’{ sup  Y,(t) > u} , (6.44)
te[—0,0)\E(u)
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where
Yu(t) = Guilt)Xi(to +1), t € [~to, T — tol, (6.45)
=1
with
I, ., ottt )
G () = | 22IELI7 Uzhy(tott)/u)® , te[—to, T — to],
i(t) Au(to + 1) 1— hi(to + ) /u [—to o]
Ay(t) = |, telo,T)
Pt j:g# (1= h;(t)/u)?

In order to analyze the variance of Y,,, we introduce g, (t) = 3.1, —~—. Using (6.41) we have that

=1 oF (1)
M-0.0 = ¥ -3
I o B i=1 Ui,z(t) i=1 0124,1(0)
_ i (0u,i(0) = 0u,i(t))(0w,i(0) + oui(t))
P o i(t)as ;(0)
" 1 bi C;
> S Bi o ZE4|vi
> @Y i (i + )
Inw)?
> ol u2) (6.46)
holds for all t € [—6, 6] \ E(u) with a positive constant C. Consequently,
-1
noq_p 2
sp  var(Ya(t) = sup R T+ E-p —
te[—0,0]\ E(u) te[-0.0\B(w) \ =} ai(to +1) te[-0.00\E(w) Ju(t) ~ g,(0) + —
By (6.10) and the fact that in view of (6.8),
(oi(t) —0i(5))> < E {(Xl(t) — Xi(s))Q} < Cqlt—s)*, s,t€][0,T7,
we have that there exists p3 > 0 such that
max (Gui(t) — Gui(s)* < Caolt — 5|2, s,t € [0,T],
which together with (6.8) implies that
n n 2
2
E(Yu(t) = Yu(s))” = E (Z Gu,i(t)X;(t) — ZGu,i(S)Xi(S)>
i=1 i=1
= D E(Guit)Xi(t) — Gui(s)Xi(s))”
i=1
< 2) 07 (1) (Guult) = Gui(s)” +2) G (B (X,(t) — Xi(s))”
i=1 i=1
< Cslt—s*, s,t€]0,T] (6.47)

with p4 > 0. Consequently Piterbarg inequality (Theorem 8.1 in [119]) gives that

P sup Y. (t) >u
te[—6,0]\E(u)

Cyu?/ P4 (\/u2gu(0) + C’(lnu)q)

HQ (u)

IN

IN
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sup oi(t) < (1 —€)oi(tg), 1 <i<n.
te([0,T\[to—0,to+6])

Thus

n

t€[0,T]\[—0,6] i=1 1

which together with (6.47) and Piterbarg inequality (Theorem 8.1 in [119]) implies that

M3(u) = P{Fecqornito—.00+0) (X () + h(t)) > ul}
< P sup Yu(t) > u
te([0,T]\[to—0,to+0])
o 1/2
< Cyu?/Mw | (1—¢/2
< cothon (- (3t )

o(II1(u)), u — oo.

Therefore, we conclude that
P {Hte[O,T] (X(t)+ h(t) > ul} ~ T (u), u— oo,

which combined with (6.43) establishes the claim.

The case of tg = 0 (tg = T) can be dealt with using the same argument as above with the only difference that one
has to substitute F(u) by [0,d(w)] (or by [—d(u),0]).

Thus the proof is complete. O
PROOF OF THEOREM 6.3.2 i) We provide the proof only for case ¢ty € (0,T), since cases to = 0 and ¢ty = T can be

established analogously. Let E(u) = [—d(u), d(u)], where §(u) = (%)UW with ¢ > 1. It follows that
I(u) < P{3iepor) (X(t) +h(t) > ul} < (u) + I (u),
where
M(u) = P{Fiep@) (X(to+1) + h(to+ 1) >ul}, Ii(u) =P{Iicior)tot @) (X () + h(t) > ul}.

In order to derive the asymptotics of II(u) we apply Theorem 6.2.1 by checking conditions A1-A3. Set o, ;(t) =
m and then lim,_,+ 0,,;(0) = 1, which indicates that A1 holds. By the fact that
0ui(0) 1= hi(to) — hi(to +1t)
Ou,i(t) B u—hi(te) '

and (6.9), we have

Vi

(72((2)) — 1) u? — ci|uv%'t
1. U, _ O
im sup -

U0 e B(u) ci|u’h‘ tlr +1

£0

This confirms that A2 is satisfied. Moreover, (6.13) implies that

1-— Ti(t() +t,t0 + S)
a;(to)|t — s

lim sup —1| =0,
U= e B(u),s€E(u)

t#s

Qg
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which means that A3 holds. Also, we have that (6.4) holds with z; = —oc and zo = co. Therefore, by Theorem 6.2.1

n g‘fa7a01{a:a1} ffooo e > f’(m)dl‘, if a < 27’

I(u) ~ ul &=+ TT (u— hinyi)
i=1 1

(—OO, OO), ifa= 2’77

a,a0lia=a1}

if a > 27,

)

where v = min; <j<n (Vil{e, 20y + 00lge,—0y), fi(t) = cilt|"gy,—43, 1 <@ < n. Next we show that IT; (u) = o(I1(u)),u —
00. Observe that

I (u) = P{3icio.0\ (to+ £(w)) (X () +h(t)) > ul} <P sup Yu(t) >up,
£€[0,T]\ (to+E (u))

where
Yu(t) =Y Gui(t)Xi(to + 1), t € [~to, T — to], (6.48)
=1
with
HT'L—l j#i (1—h; tl 2 1
Gy it) = [ =7 AhsCott)/u) ,te [—to, T —tol,
+) ( Aulto +1) 1—hi(to+1t)/u (o, T = to]
Au(t) = . f[ % , teo,T].
=\t A= hi(0)/w)
Let
gu(t) = = -2 Z hi(to 4 1) /u)?. (6.49)
=1 i=1

Then by (6.9) and the fact that mini<;<, ¢; > 0, we have for § > 0 sufficiently small and u sufficiently large

n

gu(t) = 9u(0) = D (L= hilto+1t)/u)® =Y (1= hi(to)/u)®

M-

i=1 i=1
n hi(t()) — hi(to =+ t)
>
LT
(Inwu)?

t|Y
o
u

Y

> Ciam, € fto—0,t0+0)\ (to + B(w)).

Consequently, there exists C' > 0 such that

1 1
sup var(Y, (1)) = sup <
te[to—0,to+0)\ (to+E(u)) t€[to—0,to+0)\ (to+E(u)) Gu(t) gu(0) +

C(lnu)d "’
)

Moreover, for 8 > 0 sufficiently small and wu sufficiently large

i hilto) = 375 hilto + 1)

Gu (t) - gu(o) > w
C
> f t € [0,T)\ [to — 6, to + ). (6.50)
Thus there exists C7; > 0 such that
(Ya(t)) I — (6.51)
sup var(Yy, = sup < . .
te[0,T)\[to—0,to+6] te[0,T)\[to—0,to+0] gu(t) gu(o) + %
Consequently,
1
sup var(Yy (1)) < — G ma [0,T]\ (to + E(u)),
t€[to—0,to+0]\(to+E(u)) 9u(0) + =5
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with Cy > 0. Moreover, in light of (6.10) and (6.13), we have that
E (Y, (t) — Y (s))* < Cslt — s|*, s,t €[0,T] (6.52)

for p > 0. Piterbarg inequality (Theorem 8.1 in [119]) leads to

P sup Y. (t) > u
te[0, T\ (to+E(u))

Cyu2/My (U\/gu(O) n C2(LI;U)q)

= o(Il(u)), u— 0.

IA

1Ty (u)

IN

This establishes the claim.
ii) Without loss of generality, we assume that 0 < A < B < T. Then for € > 0 sufficiently small

IN

P {Ete[A7B] (X(t) + h(A)) > ul} P {Ete[O,T] (X(t) + h(t)) > ul}
P {EltE[O,A—e] (X (t) +h(t)) > Ul} +P {EItE[A—e,B+e] (X (t) + h(4)) > “1}

+P {HtG[B+G,T] (X(t) + h(t)) > ul} .

IA

In view of (6.13) and (6.14) and by Theorem 4.1 in [57], we have that for any 0 < a2 <y <T
P {Elte[r,y] (X(t) —+ h(A)) > ul} = P {Hte[x,y]X(t) >ul — h(A)}

Yy n
~ u% / j{aya/(t)l{r,x:al}dtH U (u— hm,i) , U — 00,
x i=1

where fj Haa(t)

is negligible. Rewrite

I(a_.1, dt is a finite and positive constant (see [57]). Next we show that P {3ici0,a—q (X(t) + h(t)) > ul}

P{3ic0,a—q (X(t) + h(t)) > ul} =P {Jse0,a—qYult) > u},

where Y, is defined in (6.48). Note that (6.51) still holds in the case considered with [0, A — €] instead of [0, 7]\ [to —
0,to + 0]. Therefore, in view of (6.52), by Piterbarg inequality we have that

P{Ete[O’A,e]Yu(t) > u} < Cyu®/ " (uy/gu(()) + C;) =0 (ui H U (u— hm,i)> , U — oo.
i=1

Analogously,
P {EltE[B—i-e,T] (X (t)+ h(t)) > ul} =0 (ui H U (u— hmﬂ-)> , U — oo.
i=1

Therefore, we conclude that as u — oo

B n
ud / ooty [ ¥ (= hons) < P {3 (X(8) +h(1) > ul}
A i=1
) B+e n
<t | Hoalama dt TT¥ (u— i)
€ i=1
We establish the claim by letting € — 0 in the above inequalities. This completes the proof. O

PROOF OF THEOREM 6.3.1 We notice that

p(u) =P {3ic0,1) (Bal(t) —ct) > ud} =P {Elte[O,T] (;Ba(t) - f;) > Ul} ;
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EilD satisty

and the variance function o?(¢) and correlation function 7;(s,t) of

rils,) = 1= galt = 5| (1 +0(1)), 5,1 = T,

TOQ‘/2 i )
oi(t) = —— - ﬁTat/Q‘l(T —t)(1+0(1)),t = T,

where T is the unique maximum point of o;(t),1 < i < n over [0,7]. Moreover,

cit c;T

di 4

Ci

—|T —t|, t—T.
+ ST =,
Therefore, in light of Theorem 6.3.1 and Corollary 6.3.1, we have that

Jle X fiar, ifa <1,

n Ha $lia=a1}
2_o dZU-I-ClT f . .
P {EIte[O,T] (Ba(t) —ct) > ud} ~ ula =2+ H R (W> P oo [0, 0), ifa =1,
=1 1, if > 1,
and
n a;d? =
1—e ( 1:1”‘“‘“) , ifa <1,
_ 2 < < } ~ .
P {(T Tu)u = TTu = T ?£ S$lia=a1} [07x]/j)£7§1{0¢:a1} [07 OO)’ if a = 1’
1, ifa>1,
where o = miny<j<p @, ¢ = (S1,...,$p) With ¢; = T% and f;(t) = TO‘ +1 \t| O

PrROOF OF COROLLARY 6.3.1 By definition,

P{3icir—u-2607) (X(t) + h(t)) > ul}
P{Jicjo.r) (X () + h(t)) > ul}

P{(T—T Y/ < .L“’T < T} (6.53)

The asymptotics of denominator in (6.53) follows by Theorem 6.3.1. In order to get the asymptotics of nominator of
(6.53) we follow the same argument as in the proof of Theorem 6.3.1 (part related with the asymptotics of II (u)),
which leads to

P {3ueprouomnry (X() +h(D) > ul} ~ a—)+H\p< ot ))

Lioron) f_ e~ 2= fil®dr, if a < B,

I
f : _
X :Pa70_2(t0)1{a:a1} [—x,0], ifa=p, (6.54)
1, if a >3,

which completes the proof. O



Chapter 7

Extremes of I.’~-Norm of Vector-Valued

Gaussian Processes with Trend!

7.1 Introduction

In engineering sciences, extreme values of non-linear functions of multivariate Gaussian processes are of interest in
dealing with the safety of structures, see [104] and the references therein. Probabilistic structural analysis to answer
the question is: what is the probability that a certain mechanical (or other) structure will survive when it is subject to
a random load. The load is then usually defined by some n-dimensional vector process Y (t) = (Y1(¢),...,Yn(t)), n >
1, ¢t € [0,T], and one seeks the probability that Y exceeds some more or less well-defined safe region, which is specific

for the structure as
P{Y (t) ¢ S.(t),for some ¢ € [0,T]}, (7.1)
where the time-dependent safety region S, (t) is defined by
Su(t) = {(z1,--  2n) €R™ : |zl < h(t,u)}
with h(t,u), t,u > 0 some continuous function and || - ||,, p € [1,00] the L? norm, i.e.,

n 1
] ‘{ (Eia )7, € Loo)
p=

max(|z1],...,|xn]), p= o0,
in the space LP = {x = (z1,...,2) : |||, < 00}
Assume that X (t) = (X1(t),...,Xn(t)) where X/s are independent copies of X (¢) a centered Gaussian process which
has continuous trajectories, variance function () and correlation function r(-,-) and
d=(dy,....dn), l=dy = =dp>dns1 >dmny2>>dp>0, 1<m<n. (7.2)
In the framework of (7.1), set Y (¢) =d* X (t) := (d1 X1(t), - ,dnXn(t)), then we can rewrite (7.1) as
P {ﬂte[o,T]Z(t) > h(t, U)}

where

Z(t) = Zy(t) == | X(t) = 4|, (7.3)

1 This chapter is based on L. Bar (2018): EXTREMES oF LP-NORM OF VECTOR-VALUED GAUSSIAN PROCESSES WITH TREND, published
in the Stochastics: An International Journal of Probability and Stochastic Processes, to appear.
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and hereafter, we call Z,(t) the L norm process.

When p = 2, for a positive constant ¢, as in the convention Z§(t) = (Z2(t)) is called the chi process when ¢ = 1 and
the chi-square process when ¢ = 2.

Further, as the Gaussian processes, we can introduce the stationary, locally-stationary, and non-stationary LP norm
processes according to the stationary, locally-stationary, and non-stationary properties of X (t), respectively.

The investigate of

P{Jicp0,1Z2(t) > u} = ]P’{ sup Za(t) > u} , asu— 0o
t€[0,T)

is initiated by the studies of high excursions of envelope of a Gaussian process, see e.g., [15] and generalized in [104—
106]. When X (t) is stationary with o(¢) = 1 and r(-) satisfies (2.77), [2, 3] develop the Berman’s approach in [17] to
obtain an asymptotic behavior of large deviation probabilities of the stationary chi-square processes.

Further, if there exists unique to € [0, 7] satisfies o (to) = sup,¢(o ) o(t) and
o) =1—"bto)|t —to|* + o(|t —to|*), 7(s,t) =1 —alto)|t — s> +o(|t — s|*), s,t— to,

where b(ty) and a(ty) are positive constants related to tg, the tail asymptotic behavior of the non-stationary Z3(t)
and Z,(t),p € (1,2) U (2,00) are investigated in [126] and [72], respectively, under the application of the so-called
"double-sum method" in [119].

Some recent contributions are focused on more general scenarios of chi process and chi-square process with h(t,u) =

u— g(t), ie.,

P{Hte[o’T]Zg(t) > h(t,u)} = IP’{ sup (Z5(t) +g(t)) > u} ,c=1,2,
t€[0,T]

where the continuous function g(t) is generally considered as a trend or a drift.
When X;,i = 1,...,n are non-stationary Gaussian processes, Zs(t) + g(t), the non-stationary chi processes with
trend, and Z2(t) — wt?,w, 3 > 0, the non-stationary chi-square processes with trend, are studied in [82] and [107],
respectively.
When X;,i = 1,...,n are locally-stationary Gaussian processes, [108] obtains the extreme of the supremum of Z3(t)
with trend, see, e.g., [18, 87| for more details about locally stationary Gaussian processes.
Considering both the locally stationary and non-stationary LP norm processes, the contribution of this paper concerns
an exact asymptotic behavior of large deviation probabilities for Z(t) + g(t) with p € [1, oc], constant ¢ € (0, 00) and
g(t), t € [0,T] a continuous function, which contains the aforementioned results.
Organisation of the rest of the paper: In Section 2, the notation and some preliminaries are given. Our main results

are displayed in Section 3. Finally, we present the proofs in Section 4 and several lemmas in Section 5.

7.2 Preliminaries

For the LP norm process Z(t) in (7.3) and a continuous function g(t),¢ € R, we shall investigate the asymptotics of

IP’{ sup (Z°(t) +g(t)) > u} , U — 00, (7.4)
t€[0,T)

with ¢ > 0 a constant. As in [72, 126], for p € [1, 00|, using the duality property of LP norm we find

P{ sup Z°(t) >uyp =P{ sup Z(t) >ul/c} =P sup Y(t,v) > ut/cy
t€[0,T] te[0,T] (t,v)€[0, T x84

where Y (t,v) = Y., d;v; X;(t) is a centered Gaussian field defined on cylinder [0,7] x 8, with

8y = {v e R" ¢ [Jo]|, = 1}, (7.5)
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Where%—i—%:lifqe(1,00),qzooifp:landq:lifp:oo.

Lemma 7.2.1. On 8, , > I, d?v? attains its mazimum d* at:

(i) for p € (2,00] at 2m points v, v’ i =1,...,m, where v, = (0,...,0,1,0,...,0) (1 stands at the i-th position),
vt =(0,...,0,—1,0,...,0) (=1 stands at the i-th position), d = 1;

(i1) for p =2 at points on {v,v € 84, v; =0,m+1<i<n},d=1;
(iii) for p € [1,2) at 2™ points z, where

)

n (2—p)/2p
z = (Zla LR} Zn), Z; = i(di/d)z/(q_Q)’ d = [Z d?p/(2p)‘|
=1

( we take all possible 2™ combinations of signs "+" and "-" ), where z; = £(d;/d)° = £1.

The proof can be easily carried out by method of Lagrangian multipliers or referring to [72] [Lemma 3.1].

Next by [99], we have the following lemma.

Lemma 7.2.2. For the LP norm process Z(t) in (7.3), if 0%(to) = var(X;(to)) =1, i = 1,...,n for some ty € [0, 00),

then we have that as u — 0o

e 2"(2 " p))(l_”)/Q, if pell,2),
c U - 2—m m—1 .
P{Z*(to) >u}~\If< y ) Ve i (L d) 73, if p=2,
2m, if pe€ (2,00,

with the convention [Ti_, (1 — d2)~2 =1 and d the same as in Lemma 7.2.1.

7.3 Extremes of L” norm processes with trend

In this section, recall that Z(¢) in (7.3) is the L? norm process and X;(t)’s are independent copies of X (t) with

continuous trajectories, variance functions o?(-) and correlation functions r(-,-).

7.3.1 Extremes of non-stationary LP norm processes with trend

As in [12], if X (¢) is non-stationary, we introduce the following assumptions:
(i) o(-) attains its maximum on [0, 7] at the unique point to € [0,7] and
o(t) =1—0blt —to|” +o(|t —to|”), t—to
for some positive constants b, 3.

(ii) r(s,t) =1 —alt — s|* + o(|t — s]%), s,t — ¢ for some constants a > 0 and « € (0, 2].
Further, we introduce a bounded measurable trend function g(¢) which satisfies

(iii) g(t) ~ —w|t —to|?, t — to for some constants v > 0 and w > 0.
Theorem 7.3.1. If assumptions (i)-(iii) are satisfied, then for d in (7.2) and d in Lemma 7.2.1, we have as u — 0o

war "B glag-2lagq, fg) e tWdt, if of < B,

IP{ sup (Z2°(t) + g(t)) > u} ~P{Z(to) > ub ¢ PIY L[Q, 00), if or =p,
T ’ .
t€[0,T] 1, if o> ",
. B .
where o = ac, B* = min(Bc, 25){ecoy + Bcliesay, f(t) = bl;z‘» Ligr—per + zz [t Lige_20ey, and Q@ = —o0 if

tg € (O,T), Q=0 ifto S {O,T}
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Remark. In Theorem 7.3.1, if we assume that w = 0, we get the extremes of centered non-stationary LP norm

processes 1.e.,

t€[0,T]

JP’{ sup Zc(t)>u}, U — 00.

7.3.2 Extremes of locally stationary L” norm processes with trend
Before giving the scenarios with trend, we consider the extremes of the centered locally stationary LP norm processes.

Theorem 7.3.2. Assume that o(t) = 1, i.e., unit variance and covariance functions r(-,-) satisfying assumptions
(2.17) and (2.18). Then we have for ¢ >0

T
P< sup Z°(t) >u N/ (a(t))édtd_%ﬂ-fau%IP’{Zc(O) >ul, u— 00,
t€[0,7) 0

where d is the same as in Lemma 7.2.1.

Theorem 7.3.3. Assume that o(t) =1, i.e., unit variance and correlation function r(-,-) satisfies assumptions (2.17)

and (2.17). Assume that g(t) t € [0,T] is a continuous function which attains its mazimum at a unique point to € [0, ]

satisfying assumption (iii) for some constants w,~y > 0. Further, set o = ac, f* = %H{c<2} and f(t) = “’c‘;'; and

d s the same as in Lemma 7.2.1.

If c € (0,2), then we have as u — oo
avd= a3, [T eI Wdt, if o < B,
P{ sup (Z°(t) +g(t)) > u} ~ulETENPLZ0(0) > up P L[Q, ), if a* =,

el 1, if a* > B,

where a = a(ty) and Q = —o0 if tg € (0,T), Q =0 if to € {0,T}.
If c = 2, then we have

T L 2 2
IE”{ sup (Z°(t) +g(t)) > u} ~ / (a(t))ée%dtd_EU{auT*]P’{ZC(O) >ul, u— 0.
t€[0,T] 0

If ¢ > 2, then we have

T
IP’{ sup (Z°(t) +g(t)) > u} ~ / (a(t))=dtd™ = Hous"P{Z°(0) > u}, u — .
te[0,7) 0

Remark. By the proof, we notice that for the case ¢ = 2 in Theorem 7.3.3, the result always holds for any continuous
function g(t),t € [0,1]. When ¢ > 0, the result holds for any bounded function g¢(t),t € [0, 1].

Ezample 7.3.1. For Z(t) in (7.3) with X;(¢) = B.(t),i = 1,...,n the independent fractional Brownian motions, we

have as u — oo

u%_Q (#)1/(1%& fooo e_f(t)dt7 if a< 1;
P
te0,1]

sup Z(t)—\/l—t>u} =P{Z(1) > u} (Péfg),z/Q[O,oo), if a=1,
1, if a>1,

where f(t) = 55t + d%t% and d is the same as in Lemma 7.2.1

Following example is a special case of Theorem 7.3.3, which is corresponded with [108] [Theorem 2.1].

Ezample 7.3.2. In Theorem 7.3.3, assume that p = 2, ¢ = 2 and g(t),t € [0,7T] is a continuous function, then we have

1-m/2 n 72 1
e%dtj—ca2 Hi:m-‘rl(l dz) 2 um2—1+%
I'(m/2)

Q=

t€[0,T]

T
IP{ sup (Z2(t) + g(8)) >u} ~/0 (a(t))
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7.4 Proofs

During the following proofs, Q;,7 € N are some positive constants which can be different from line by line and for

interval Ay, Ay C [0,00) we denote

Ly(A) =P {tselg) (Z€(t) + g(t)) > u} , Lu(A1,Ag) =P {tsEuAp (Z°(t) +g(t) > u,tsEuAp (Z°(t) +g(t) > u} )

and

Ku(Ay) := P{Sup Zt) > u} , Ku(Aq, Ag) = P{sup Z°(t) > u, sup Z°(t) > u} .
teA, teA, teAs

PROOF OF THEOREM 7.3.1 We first present the proof for the case ty = 0.

_ (Inw)”

Set 5* = min(fec, %)H{C<2} + B>y, @ = ac, §(u) = S with p > max (%, %) and for u large enough
Y(t,v) =Y diviXi(t), (t,v)eRxS,
i=1

with 8, the same as in (7.5) which is a centered Gaussian field.

We have for some small § > 0 and u large enough
Lu([0,6(w)]) < £u([0,T]) < Lu([0,6(w)]) + Lu([6(w), 0]) + Lu((0,T7]). (7.6)

We first give the upper bounds of £, ([0(u),8]) and £, ([0,T)).
Set 0 := sup,¢jgryo(t) < 1 and gm = sup,cjo ) 9(t) < oo. Then by Borell inequality as in [1] and Lemma 7.2.2 for

large u
L.([6,7]) < P{ sup Z(t)>(u—gm>”c}
te[6,T]
< ]P’{ sup Y(t7v)>(u—gm>”0}
(t,0)€[0,T]x 84
<

exp ( ((w—gm)"/ = @1)2>

2V
= o(P{Z°(0) > u}), u— oo, (7.7)

where Q; :=E {Sup(t,v)G[O,T]XSq Y(t,v)} < oo and

Vy = sup var (Y (t,v)) < ( sup 02(75)) d* = ojd* < d*.
(t,v)€[0, T x84 te[0,T)

By assumptions (i) and (iii), we know that for some &; € (0, 1)

L9 > (ut w1 — ) [H) (1 + (1 —en)belt]?) > u (1 + 2= g (1 - gl)bcmﬂ) : (7.8)
29 < (ut w(l 4 ) (1 + (1 +en)beft]?) < u (1 e iy (14 El)bc|t\5> (7.9)

hold for ¢t € [0, 0] when 6 small enough, then

— 2/c 1— 2/c
inf (u—g(t)*" > inf w1+ umv +(1—e1)be|t]?
te[5(u),0] a?(t) te[5(w),0] u

> u2/e + Q2 (In u)(pﬁ)V(P’Y)_ (7.10)
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Denote X (t) = (X1(t),..., X, (t)) with X;(t) = Xi(t)7 t € [0,0]. By assumption (ii), we have that
a(t)

5 { ((Z dwixi@)) : (Z divgxi@))f} <om { ((Z dmxi@)) . (Z dmxxs)))Q}
4om { ((Z diviXAS)) . (Z divgxi@)))Q}

<4E {Z (Xi(t) —X,»<s>>2} +4E {Z( ~ })? (Xz(s))z}

< Qals =t +Qu Y _ |vi —vj]?

=1
n

<q, (|s—t|a S —vm)
=1

holds for s,t € [0,6] and v, v’ € §;. Thus it follows from [119] [Theorem 8.1], (7.10) and Lemma 7.2.2 that

Lu([(S(u), 9]) <P { sup En: dﬂ)zfz(t) > inf (u_g(s))l/c}

(t,v)€lo(u),0]x8q ;7 S0t 4] o(s)

2(n+1) . (u—g(s)'/*
< a U f e
< Qeu (se[ﬁ?u),e] do(s)

Qs 2041 > Y (

- : 2 e c 1 pBIV(p)
= W exp (5 (7 + Qollnw) )
=0 (P{Z°(0) > u}), u— o0. (1)

Thus by (7.7), (7.11) and the fact that £,([0,d(w)]) > P{Z¢(0) > u} for u positive, we have
Lu([6(w), 0]) = 0 (Lu([0,0(w)])), Lu([0,T]) = 0 (Lu([0,(w)])), u— o0, (7.12)
which combined with (7.6) imply
£4([0,T]) ~ £,([0,6(u)]), u— oo. (7.13)

Now we focus on the asymptotic of £,([0,d(u)]), as u — .
Denote for any A > 0 and some ¢ € (0,1)

Li(uw) = ka2 A, (k+ D)u=2°" )], keN, N(u)= [(mu)%u%*%xﬁ :

Gure(k) = u <1 + @

[(k + D)u~2/ A + (1 4 )be| (k + 1)u2/a*x|ﬂ> ,
1— . .
G (k) =u (1 + wmu*/“ AT + (1 = &)be|u=2/ A|ﬂ> .

Case 1: f* > a*. For u large enough, we have

N(u)—1 2 N(u)
> Lulle(u) = > Ai(w) < Lu([0,6w)]) < Y Lu(Tk(u)), (7.14)
k=0 i=1 k=0
where N
Ar(u) =) Lu(Te(w), T (w),  Ag(u) = > Lo (I (u), Li(u)).

k=0 0<k I<N (u),l>k+2
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In the view of Lemma 7.5.2 and (7.8), we have that for some € € [0,1),

N(w)

k=0

> LuTi(w) < ZIP{ sup || X (¢ *d|\;>9u,_e(k)}

tely u)
N (u)
~ Hal0,a*d7H N Y T P{Z°(0) > Gu,—(k)}
k=0

~  Hal0,a /A2 NP {Z°(0) > u}

X ZQXP< 1_5—6)?11 < |kSu~ ar (1—6—6); u?/¢|kSu~ a¥

)

N (u)
~ Ha[0,a" AV NP{Z°(0) > u} Zexp 1—E—e)f(u5%k5u_%*))
FH, [0, a/*d=2/*\
A

2

(-
]ua***a% /Oooexp((lse)f(t))dt

~ P{Z°(0) > u}

~ ]P’{ZC(O)>u}a1/°‘d72/°‘f]{au%*7ﬁl*/ e T®qt,
0

as u — 00, A — 00, € = 0, € — 0 where f(t) = ‘ l Ige—pey + %HPH{B*:%}. Similarly, we derive that
N(u)—1 ) ) 00
Z Lo(Ii(u) > P{Z°(0) > u} a'/*d=2/*H yua= 7" / e fOdt, u— oo, A = oc.
k=0 0
Moreover,
N(u)
Ay(u) < (Lulli(u) + Lu(Tks1(w) = Lulp(w) U Tetr(u))
k=0
N(u)
< <]P’{ sup || X (¢) = d”; > 9u5(k)} —HP’{ sup || X (t) d”; > 9us(k)}
k=0 tel(u) telpy1(u)
—P sup ||Y(t) * d||; > §u,—e(k)
te((Ix (W) Uk 41 (w)))
N(u) N
< (QU{Q[O,al/"‘d*Q/“A] - ﬂ{a[o,zal/ad*/ax]) 3 IP’{ZC(O) > 9u,_5(k)}
k=0
2Ho[0,a'/*d=2/*\] — Ho[0,2a/*d =2/ \] [
~ [0,a ]A 0, 24 ]/ exp (—(1 — & — ) f(t)) dt
0

where §u,,€(k)

A2 (U)

IN

IN

IN

IN

xus " P{Z°(0) > u}

o(u%_ﬁ%P{Zc(O) >u}), u — 00, A = 00, = 0,e = 0,

=min(Gy,_(k), Su,—c(k+1)). By Lemma 7.5.3, we have

S o{ i X0l 5. sy [K0) a2 5.0
) 1> k42 tEn (u)

0<k,I<N(u),l> tely (u)

(u)
Z Z IP{ sup HX * dH; > Gy,—e(k), sup Hf(t) * dH; > Su,_g(k)}

0<k<N(u) 1=2 telx(u) tE€ 41 (w)

N (u) Joe)
7 (Z P{Z¢(0) > 9u,_s(k)}) > exp (—(10)/8)
k=0 =1

QsP{Z°(0 )>u}ua B*)\Zexp )*/8)

1=1
0<IP’{ZC(0) > u}u%7%>, u — 00, A — 00.
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(7.15)

(7.16)

(7.17)

(7.18)
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Combing (7.15)-(7.18) with (7.14), we obtain

2

L£,([0,5(w)]) ~P{Z°(0) > u} al/od=2/ g v B /OO e fOdt, u— . (7.19)
0

Case 2: * = o*. We consider that for u large enough,

N(u)

Lu(To(w)) < Lu((0,6(w)]) < Y Lullk(w). (7.20)
k=0

Using (7.28) of Lemma 7.5.2 with u replaced by u!/¢ and (7.9), we have that

Lo(lo(u) = IP’{ sup (ZC(m—W*) +g(tu-2/a*)) > u}
te[0,A]
| X (tu=2/7) « dHC

> sup

tef0,A] 1+ w(H_E) [tu—2/o" (14 &)bcltu

HX tu72/°‘ *d” 1e

> >
Z PSR T ((retoueazf) "
~ sup exp 2B (t)—%|t|“—(1+5+e)f(t) P{Z°(0) > u}

te[o Al d d
~ OOOIP’{ZC()>u},u—>oo,5—>0,e—>0,)\—>oo. (7.21)

Similarly,

Lu(To(u)) <P . 5 [0,00)P{Z(0) > u}, u— 00, A — o0. (7.22)

Moreover, by Lemma 7.5.2,

N (u) N (u) .
ZLU(Ik(u)) < Z]P’{ sup || X (¢) * d||p > Su,_g(lﬂ)}
k=1

tely (u)
N(u)
~ Hal0,ad7H N Y T P{Z°(0) > Gu, ()}
k=1
N (u)
< Ho 0,0t/ d™ NP {Z9(0) > u} Z exp (—(1—e—¢€)f (kM)
< H[0,at/@d= NP {Z(0) >u}Zexp —Qg (kX))

~ QioP{Z°(0) > u} Aexp (—@11)\’\//\6)
= o(P{Z°0) > u}), u— 00, A = . (7.23)

Inserting (7.21), (7.22), and (7.23) into (7.20), we have
£,([0,0(w)]) ~ Ti’d% [0,00)P{Z°(0) > u},u — co. (7.24)
Case 3: §* < a*. Obviously,
L,([0,5(u)]) > P{Z°(0) > u} . (7.25)

For any e5 € (0,1), [0,6(u)] C [0,u=2/*" 5] when u large enough. By Lemma 7.5.2 and the fact that SUPyseo,6(u)] 9(t) <

0, we obtain

L.([0,0(u)]) < ]P’{ sup (| X (t) * d||;7 > u}

te[0,u—2/"g;5)
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~ Hal0, 0/ d2 )P {Z°(0) > u}
~ P{Z°(0) > u}, u— oco,e9 — 0.

Together with (7.25), we get
L,([0,6(w)]) ~P{Z°(0) > u}, u— oco.

Consequently, we have the results according to (7.13), (7.19), (7.24) and (7.26).
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(7.26)

For tg € (0,T) and to = T, we just need to replace [0, d(u)] as [to—0(u), to+d(u)] and [T'—d(u), T|. Thus we complete

the proof.
PROOF OF THEOREM 7.3.2 For any 6 > 0 and A > 0, set o = ac

I.(0) = [k, (k + 1)0], ap =a(kd), keN, N(b)= {

JE () = [ka SN KO+ (1 + 1)u*2/a*x} . M(u)

Il
—
D
<
> 2
Q
*
[

We have
N(@O)—1 [ M(u)—1 4 N(0) N(0) [ M(u)

> D Kl @) | =Y Ailw) <KL ([0,T)) < Y Ku(lk(6)) < > Kl W) |

k=0 =0 i=1 k=0 k=0 =0
where

.Al(’U/) = Z g{u(‘]lk?)‘]l]?)a 1= 17273a47
(k}l,ll,kz,ZQ)E[;i

with

L1 ={0<ki=ky <N@)—1,0<l+1=1 < M(u)— 1},
Lo={0<ki+1=ky <N(©O) —1,I; = M(u),l =0},
L3={0<ki+1<ky<N(O)—1,0<Iy,ly < M(u)— 1},

Li={0<k <ky <NO) —Lky—k <1,0<1y,ly < M(u)—1}\ (£1 U L).

By Lemma 7.5.2

N(6) [M(u) N(6) [ M(u) ) )
Ko (JF () = Z Z IP’{ sup Z°(kO + lu= N+ u=?t) > u}
k=0 \ 1=0 k=0 \ 1=0 t€[0,A]
N(O) [ M(u) )
< > (ak + o) wd™ Y “HLAP{Z9(0) > u}
k=0 \ 1=0

N(6)
~ (ar + Em?)é d=2/*Hou2/ P {2°(0) > u}

T
~ / (a())Y*dtu® " d=2/*H P {Z°(0) > u}, u— 00, X — o0, 6 — 0.
0

Similarly,

S
=

E

Y%

T
/ (a(8)) M/ “dtu2/™ d-2/2H P {Z°(0) > u} , 1 — 00, A — 00, 0 — 0.
0

N(8)—1
> 2 Xl
k=0

O
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Further, by Lemma 7.5.2

.Al (’LL) = Z

k=0
N()—-1

~ (&ca[o (ar + c0) = d~ YN + Ha 0, (ag, + 29) & d~/N] — H,[0, 2ay, — eg) v d™ 1/“)\])
k=0

(Ku(Jlk(u)) + :KU(Jl]fH(u)) - fKu(Jlk(u) U Jllil(u)))

N(#)—1 [M(u)—1
1=

Bl

M(u)—1
X Z IP’{ZC(O)>u})

=0

IN

N(8)-1
Q: ( Z ((ak + 69)é — (ar — Eg)é) 9) u¥P{Z°(t) > u}

k=0

= 0(u2/a*P{ZC(t)>u}),u—>oo, A — 00,0 = 0.

Similarly, by Lemma 7.5.2

N(§)—1
Aa(u) = Z Ko (g )1 (), I ()
(9) 1
< Z P{ sup Z°((k+1)0 —u2*t) >u, sup Z°((k+1)0+u"2t)>u
k=0 t€[0,2)] t€[0,2)]
N(§)—1
= D |PQ osup Z9((k+1)0—u ) >up+ PR osup Z9((k+1)0+u ) > u
k=0 t€[0,2] t€[0,2)]
—P { sup  Z¢((k+1)0 —u™2/7t) > u})
te[—2X,2)]
N(§)—1
~ Z ((2% [0, 2(ak+1 +59) wd O = Hal—2(ar — 60) sd7VeN, 2(ay — 59) ad” 1/0‘)\])
k=0
M(u)—
X Z IP{ZC > u}
N(6)—
< Q@ Z (ak“rfe %—(ak—@)i)e uz/o‘*P{ZC(O) >u}
k=0
_ < 2/04*]P> c
= olu {Z°(0) > u}), u— 00, A— 00,0—0.
For any 6 > 0

E{X,()X,(s)} = r(s,t) < 1 6(6)

for (s,t) € Jlkl1 (u) x Jl]? (u), (J1, k1, J2, ko) € L3 where §(0) > 0 is related to . Then by Lemma 7.5.1

2(u)% — Q3

As(u) < N(0)M(u)2¥ (W)
< Zu2/a M
S d\/A—5(0)

= ofu¥* ¢0) >u U — 00, A — 00,0 — 0.
(w/*"P{2°(0) > u}) . A 00,00

where Qg3 is a large constant. Finally by Lemma 7.5.3 for u large enough and 6 small enough

N(0)—1 [2M(u)2M (u)

Asw) <Y Z Z K (JF(u), Ty (u))

k=0
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N(0)—12M (u) 00 0
c 5.\«
< Z Z P{Z°(0) > u} (ZQ4exp <—8|z)\| ))
i=1
< Qogu B (Z0) > u) (Z exp (-2 |M|a)>
= o (UQ/O‘*]P’{ZC(O) > u}) , U — 00, A — 00,0 — 0.
Thus the claim follows. O

PROOF OF THEOREM 7.3.3 Through this proof, denote £, (A1) and £,(A1, As) the same as in the proof of Theorem
7.3.1.

When ¢ € (0,2), in the proof of Theorem 7.3.1, if we take §* = QQL_Z and f(t) = %, then all argumentations still
hold and the results follow.

When ¢ = 2, for any constant 6 > 0, we define

I = k0, (k+1)0], k €N, N(0) = EJ :

and
My (k) = sup g(t), Ma(k) = inf g(t).
tely, tely
Then
N(0)—1 2
> L) =) A
k=0 j=1
where
N(6) N(0)
Z Lo(di, Tey1), Z Lullk, 1
j>k}+1
and by Theorem 7.3.2
N(9)
L.(00,T]) < Z oner
k=0
N(9)
< Pqsup Z°(t) > u— M kz}
> {sup 2 0
N(9) ) )
~ Z (a(k0))= (u— My (k)™ d=2/*H 0P {Z°(0) > u — M, (k)}
k=0
1 N 1 My(k)
~ uwd P {Z(0) > u}0 Y (a(k6))we 22
k=0
~ uwd 2 «P{Z°(0) >u}/ 1/°‘ezilt2)dt,u—>oo,0—>0.
Similarly,
N(§)—1 N(8)—1
Yo Lull) = > IP’{such(t) >u—M2(k)}
k=0 k=0 el

~ und 2 H P {Z°(0) >u}/ 1/0‘62d2dt u — o0, 6 — 0.
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Further, we have

N(9)

Ay Y Culli) + Lulis1) = Lu(Ix U L))

IN

(]

N(O) B N
(P{sup Z(t) > u — Ml(k:)} +IP’{ sup Z°(t) > u — Ml(k)}

k=0 tely tEl 41
—]P’{ sup  Z°(t) > u— Mﬂk)})
tEIkUI)H,l
N 1 M (k)
~ 3 ((a(k&))l/“ + (a((k + 1))V — 2(a(kt9))1/“> utd=2/H e 7 P {Z(0) > u}
k=0

= 0<u1/0‘IP’{ZC(O) >u}>, u— 00, 0 =0,

where M (k) = max(M; (k), My (k + 1)).
Then for g, = sup;¢jo,779(t) by Lemma 7.5.1

N(0)
Ay < Z P < sup Z(t) > u — gm,sup Z°(t) > v — gm

P tely, tel;
j>k+1
N(6)

< > 20 <2(“ —gm)'/° = @1>

I d+/4 —6(0)
j>k+1

= o(P{Z°(0) > u}), u— 00,0 — 0.
Thus, we have
T 9(t) 1
£.([0,T]) ~/ (a(8))/ e 52 dtF,d~2/"u P {Z°(0) > u} , u — 0o,
0

When ¢ € (2,00), set My = inf;cjo ) g(t) and Mz = sup,c(o 1 g(t). Since g(t) is a continuous function, we have
—00 < My < My < oo. Further, since when ¢ € (2, 00),

P{Z°(0) > u+ Q2} ~P{Z°(0) > u}

holds for any Q3 > 0. Hence, by Theorem 7.3.2

L£,(0,7]) > ]P’{ sup Zc(t)>u—M1}
t€[0,T]

T
~ / (a(t)) % dtd—3 HouP P {Z°(0) > u— My}
0
T 1 2 2
~ / (a(t))~dtd” > Hou=P{Z°(0) > u},u — oo,
0
and

T
£,([0,T)) < IP{ sup Z°(t) > u — Mg} ~ / (a(t)) = dtd™ = HouneP{Z°(0) > u} ,u — oo.
te[0,7) 0

The result follows. O

7.5 Some technical results

In this section, we give several lemmas which are used in the proofs of the theorems.
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Lemma 7.5.1. let X(t) = (X1(t)...,Xn(¢)), t € [0,T],n > 1 be an centered R™-valued vector process with indepen-
dent marginals, which have continuous samples, unit variances and correlation functions satisfying (2.18). Then for

0 <ty <ty <tz <oo andu large enough

P¢ sup Z°(t) >u, sup Z(t) >up, <2V (WC_D)
te[0,t1] 7te[tg,t?,] o dvi=35 )’

where D, 6§ are some constant.

PROOF OF LEMMA 7.5.1 By (2.18) and the continuity of r(t), for some ¢ > 0 we have
0
E{X;(t)Xi(s)} =r(s,t) <1— 3 i=1,2,...,n,

holds for any (s,t) € [0,¢1] x [t2,t3]. Set ?(t,v,s,'w) = Y Xi(t)div; + > i) Xi(s)djw; where v,w € 8§, with

8, ={veR":||v||, = 1}. Since Y (t,v, s, w) is a center Gaussian fields, we have further
var (?(t,v, s,w)) = Z(v? + w2 + 2r(s, t)v;w;)d?
i=1

n

< 2d2+2rst Zv —|—w
i=1

= 2d* +2d°r(s,t)

< d*(4-9),

for any (t,v,s,w) € [0,t1] x 8§ X [t2, t3] x 8§¢. By Borell inequality,

P< sup Z°(t) >u, sup Z°(t) >u = P< sup Z(t) > utc, sup Z(t) > ut/e
t€[0,t1] tE€[ta,ts] te[0,t1] t€(ta,ts]
< P sup f’(t,v,s,w) > 2yl/¢
(t,v,5,w)€E[0,t1] X 8¢ X [t2,t3] X 84
ul/e — D
< U ——— ),
< 2 (%)
where D is some constant such that
~ 1
P sup Y(t,v,s,w) >Dp» < =
(t,0,5,0)€[0,t1] X S ¢ X [t2,t5] X S 2’
hence the claim follows. O

Lemma 7.5.2. let X(t) = (X1(t)...,Xn(t)), t € R,n > 1 be an centered R™-valued vector process with independent
marginals, which have continuous samples, unit variances and correlation functions satisfying (2.17). Set a :=

a(ty), to € R, and K,, a family of countable index sets and uy, satisfying that

lim sup ‘% - 1‘ —0. (7.27)
U= ke K,

If f(t) is a nonnegative continuous function with f(0) = 0, f(t) > 0,t # 0 and d is the same as in (7.2), then we have

that for some constants Sy, S2 > 0 and max(Sy, S2) > 0

Z(u=2/ % + ) LI
P LY sy ~PE =51, S]P{Z(to) > — 7.28
{te[fg?&] L+u=2f(t) aaa=2 (=80 SF {Zll0) >}, u = 0o, (728)

and

zf 2a . 1
P ad- 2[ S1,85] = {exp ( sup ﬁBa(t) o |t| - = (t)) } .

te[—S1,82]
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If limy,_, o supkeKu\ku_Q/o‘| < 6 for some small enough 0 > 0, we have for some constant S > 0

P {supte[_shsz] Z(u=a (t+ kS) + to) > uk}
P{Z(to) > ux}
Haol—(a+e0)d™2 Sy, (a +e9)/*d2/* 5], (7.29)

Haol—(a —ep)d=8), (a — g)/*d™Y8,y] < ulgr;o Viek,

IN

where eg — 0, as 6§ — 0.
Specially, if 0 = 0, we have

P{supte[_sl,sﬂ Z(u"a (t+kS) + to) > uk}

1 2 1 2
li — K, —ard S, avd 25, =0, 7.30
e P{Z(to) > ur} [~a La 2] (7.30)
and
Hol—a'/*d=2/*Sy,a'*d=2/*S,] = E{ exp sup V2B, (t) — |t | .
te[—al/ad—2/a 8y at/xd—2/aG,)

PROOF OF LEMMA 7.5.2 Step 1: First we give the proof of (7.28). When p = 1, set W = {w = (w1, ,wy) : w; =
+1, i=1,---,n}. Then we have

Z(u=2/t + ¢
P{ - <+>>}

te[—S51,82] L+u2f(t)

o { Sl Xaw 4 t0)] u}

sup —
t€[—S1,50] L+u2f(t)

Poowidi X (w2t +t
— Z IP’{ sup 2 WidiXi(u +to) >u}
te|

o — 51,85 1+u=2f(t)

{ Z?:l wdeXl (u*2/°‘t =+ t()) Z?:l wgdiXi(ufz/as —+ t()) }
— P >u
w,w’' eW

sup — >u, sup —
te[—51,Ss] L+u2f(t) s€[—S51,50] 1+u=2f(s)

wHw’

g X (2
:mm{ S0 diXo(u t+t0)>u}

sup —
te[—S1,80] L+u=2f(t)

{ Z;L:l w,-diXi (u72/o‘t =+ to) Z?:l w;diXi(u72/aS + to) }
— P >up.
w,w’' eEW

sup — > u, sup —
te[—Sl,SQ] 1 + U Qf(t) 86[—51752] 1 + u Qf(s)

wHw’

By [12] [Lemma 4.1], we have

sup

PRy
ppf wp DhXOirw
tE[—Sl,SQ] 1 + U f(t)

DodiXi(um ot
= 2"P sup 2’21 : 1(?2 +to) >u
te[—ShSz] 1 + u f(t)

n 2 VY2 x (et ot
— 9P sup (szl z) _12(U 0) > u
te[fsl,sﬂ 1 + U f(t)

~ il g o (%)

a,ad=2

L70)

a,ad=2

~ P [—Sl, SQ]IP){Z(tO) > u}, U — 0.

Since for any w # w'’

VE: E (Z widi X (u™> "+ to) + > wid; X;(u™> s + t0)>
=1

=1

2 Z d? +2 Z wwid?r(u= %t + to,u" s + to)
i=1 i=1
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< 4zn:d?:4d2,

i=1

then by Borell inequality, we have

sup > u, sup

P S widi X (w20t + ) S widi X (um s + 1) ~u
te[fsl,SQ] 1 + u_2f<t) 86[751,32] 1 + U/_2f(8)

S P { sup <Z w,-diXi(ufwo‘t + to) + Z w;diX,-(u72/as + to)) > QU}
i=1

(t,8)€[—S51,82]%[51,52] \ 51
(2u — Q)?
=o(P{Z(to) > u}), u— oc.

Then (7.28) with p =1 is follow.
When p € (1,00], set Y(t,v) =Y 1, d;iv; X;(t), (t,v) € R x 8, which is a centered Gaussian field.
Then we have

Z(u=2ot 4+t Y (u=2/t + ¢
P sup wf;o) S>up =P sup (u 7;— 0,9) >up.
te[-81,8,) 1Hu2f(t) (tw)€[-S1,55)x8, LH+u2f(t)

Set Sg = {’U €8, d? =" d?e? < 5},5 > 0. Next we prove that as u — oo

1=1""1 "1

Y (u=2/t +t Y (u=2/t +t
P sup (u _; 0,%) >up~P sup (u _;r 0,v) >up.
(tw)e[—51,5]x8, L tu 2f(t) (tw)el—S1,8)xss 1+ u2f(t)

Since

Y(u 2ot +t
P sup (u _2+ 0,9) >up >PJ sup YV(tg,v) >up =P{Z(ty) > u},
(tw)e[-S1,8)xss 1+ u?f(t) vess

we just need to show as u — oo

] Y (w2 + ty,v) B
]P’{( sup 1—|—u*2f(t0) >u}—0(]P’{Z(tO)>u}).

t,v)€[—51,52]x(84\83)

In fact, since

sup var(Y (u=?/t + tg,v)) = sup Z d?v? | < d? -,
(t,v) €[~ S1,52] X (8,\87) ve(8,\88) \ =7
by Borell inequality, we have
Y(u?/t+t
P sup (u 7:— 0,) >up, < P sup Y (u=Y% + to,v) > u
(tw)e[-51,8:]x(8\88) 1+ u"?f(t) (t0)€[—S1,55] X (84\89)
<

(u—Qy)°
P (‘ 2(d2 —0) )

= o(P{Z(ty) > u}), u— oo,

where Q; :=E {SUP(t,v)e[fsl,sz]x(sq\sg) Y (u=2/%t + to, v)} < 00.

When p € (1,2) U (2,00], by Lemma 7.2.1, we know o3 (t,v) := var (%W) attains the maximum over
[—S1, S2] x 8, at several discrete points, so we can choose ¢ small enough such that Dj = [-S57, Sa] x Sg(i) with Sg(i)

the union of non-overlapping compact neighborhoods of vi, v’ or z in Lemma 7.2.1. Then as mentioned in [119] or



108 Extremes of LP-Norm of Vector-Valued Gaussian Processes with Trend

[71][Lemma 2.1]

Y (u=2/t + ¢ Y(u2/ot +¢t
P sup (u _2+ oY ZIP sup (u _2+ 0,) >up, uU—> 00, (7.31)
(tw)€[-S1,5]x8, LH+u2f(t) (twyeps  L+HuT?f(1)

where M is the number of the maximum point of o3 (¢, v).
Case 1) p € (1,2) and M = 2™. Tt is enough to find the asymptotics of single term in (7.31), for instance, for a point
(0,2), 2 = (d;/d)*/772. In a neighborhood 8](1) of z, we have

n—1 1/a
vy, = (1 - Z vf) ;
i=1

—2/a
hence the fields W{Tw can be represented as

—2/et 4 ) — e X (u=2/%t +tg)
Yu_Q/O‘t+t,v E v;d 1—0-1- 1—§ v? dnn—0,1~7= V1, ,Un—-1),
1( 0 1+U_2f() g % 1+U_2f(t) ( 1 1)

which is defined in [~ S}, S5] x 83(1) where

n—1 1/a
Sg(l)z v: v, v, (1—21}?) 682(1) ,
i=1

is a small neighborhood of Z = (21, -+, zp—1). On [—S7, S2] X gg(l), the variance

_ 2/q
_ 1 _ n—1
a%(t,’u) = WU%('D) = (]_-|-u—2f Zd2vz+d2 (1—;1}3)

of Y1(u=%/%t 4 to, ) attains its maximum d? at (0,Z) where Z is a interior point of a set gg(l). We can write the

following Taylor expansion for oy (t,v)

d q—2

=ik @—2A@ - 2T +o(|5 — 212),7 — 2, u— o0,

O’1(t7’17) =

where A = (X\; ;)i j=1,... n—1 is a non-negative define matrix with elements

_ _ 2/q
B 82 n—1 n—1 o
Aij =—(2(¢—2)) 181}01}» dev?—i—di (1—21}? lg=2,4,7=1,--- ,n—1
YU =1 i=1

We have the following expansion for the correlation function r1(t,9,s,v’) of Y;(u=%/%t 4 to, D)

r(t,0,50)=1-u"2at —s)* — =@ —0)A@ - 0T + oo —0'|?), U,0 — Z,u — oo.

2d

There exists a non-singular matrix @ such that QAQ7T is diagonal, and set the diagonal is (c1,--- ,¢,_1). Then
_9 n—1
o1(t,Q0) = d — du2f(t) — L= > (v —z)? +o(|o - 27),8 — 2, u— oo,
2d P

and

1 n—1 _ _ o B
2 ci(vi — z)? 4+ o(|v — 2?),0,9" = Z,u — 0.

i=1

r(t,Qv,s,Qv") =1 —u 2a(t — 5)* —

Then set Ya(u=2/%t 4 to, ) = Y1 (u=?/%t + to, Qv), defined on a set [—S7, So] x (Q’lgg(l)). We know that the point
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Qz is a interior point of Q_lgg(l). Then the proof follows by similar arguments as in the proof of [119] [Theorem
8.2]. Consequently, we get

Y(u=?/t 4+t _
IP’{ sup (u _2+ 0,%) > u} =P sup Yao(u™ 2/t + o, ®) > u
(twept  LHuT?f(t) (t0)€[—51.52] x(Q185(1))

~ d2 f(t) (g— 2)t E
:Paad 2 Sl’ <1_[:]J )>\P(d>
= T“ﬂ el [—S1, S5](2 — p)t—™ /2@ (3) , U — 00,

a,ad—2

where we use the fact in [98] that

_o)? 1
?g,ll 2 (—00,00) = 1+q—2 :(2_27)71/2,
and
Y (u=?/t + to,v) L f(t) 1 u
P sup L >y~ 2P Sy, 95](2 — p)! ”)/2\11(7)7 u — 0o.
{(t,’u)e[sl,sz]XSq 1 +U_2f(t) a,ad~ 2[ 1 2]( ) d

Case 2) p € (2,00] and M = 2m. Again we need to find the asymptotics of single term in (7.31), to wish namely for a

-2/
maximum point (0,v}), v} = (1,0,---,0) of variance o (t,v). hence the fields Y(?TW can be represented as

n

/a
_ _ X;i(u=2/t + tg) Xy (w2t +tg) -
2/ 72:"—0 E’ e S VD SO
Yl(u t+t0,’l}) - s vtd’t 1 +u_2f ( |vz| ) dl 1 +U_2f(t) , V= (UQa avn)v

which is defined in [—S7, Sa] X gg(l) where

n 1/q
SM1)=4v: <1—Z|vi|q> Jv2, v, | €85(1) 0
=2

is a small neighborhood of 0 := (0,--- ,0) € R*"!. On [-S, S5] x gg(l), the variance

n 2/q
204 ) .— L 2(5Y . 2 |9

of Y1 (u=%/t + ty, ) attains its maximum 1 at (0,0) where 0 is a interior point of a set gg(l). We can write the

following Taylor expansion for oy (¢, )

o1(t,v) =1 —u"2f(t) Z|vz|q—|—o (Z |vl|q> 0 — 0, u— 00,

and the following expansion for the correlation function (¢, 9, s, ?’) of Y3 (u=2/%t + to, D)

n

- 1 n o
ri(t,v,s,0) =1—u2a(t —s)* — §de(vl —v)? 4o (Zd?(vl — 112)2) , 0,0 — 0,u — oo.
: i—2

Then the proof again follows by similar arguments as in the proof of [119] [Theorem 8.2]. Consequently, we get

Y (u=2/%t + ¢ _
]P’{ sup (u _2+ 0,%) > u} =P sup Yi(u=Y% + t0,%) > u
twyep:  LHu2f(t) (t,5) €[~ 51,85 x (33 (1))

~ Tﬁgf) [—51, S2]¥ (u),
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and

Y (u=?/%t + tg,v)
P sup L >y~ 2m‘Pf -8y, 8 , U — 00.
{(t,v)E[Sl,Sg]XSq L+u=2f(t) @ (=51 ST (w)

Case 3) p = 2. By Lemma 7.2.1, we know that o%(t,v) attains its maximum (equal to 1) over [—S7, S2] x 8, only at

points on {(0,v),v € 84,v; =0,m + 1 < i <n}. The fields Y(u /0 tho )

T again can be represented as

2/ U / t+t0 1/q Xl(U72/at+t0) ~
Yl('u t+t0,'v ZU»L ZW ZU leu—_Qf(t),’U = ('02;~.. 7’()“),

which is defined in [-5}, S5] x 8, where

On [-57, 53] x gq, the variance

w2/
2 D) = ;02 V)= ———— ; o vf
1Y) = A ) U=+u—2f E:‘i 4dr”(l 2 l)

of Y1 (u=%/“t + ty,v) attains its maximum 1 at {(O, V), € gq,vi =0m+1<i< n} Furthermore, following the
arguments as in [126] we conclude that o, (t,v) and the correlation function 7 (t,v,s,v) of Yi(u=%/®t 4 to,v) have

the following asymptotic expansions:

n n

N 1— a2 1— a2 L
o1(t,0) =1 —u"2f(t) — Z 5 2|vi|2—|—o< Z 5 Z|vi|2+u2>,v—>0, u — 00,

1=m-+1 1=m-+1

and the following expansion for the correlation function r1(t,9,s,v’) of Y;(u=2/%t 4 to,v)

ri(t,0,80)=1—u"2a(t —s)* Zd2 -)2+0<Zd?(vi—v§)2+u_2>717,17’—>6,u—>oo.
i=2

Then the proof follows by similar arguments as in the proof of [107] [Theorem 6.1] with the case u = v. Consequently,

we get

Y(u¥ot+t ~
IP’{ sup (u _2+ 0,%) > u} = IP’{ sup Yi(u™2/% + g, D) > u}
(tw)€[-S1,8]x8, 1Tu ft) (t,8)€[—S51,52]% (S4)

VAt yms [
F(m/2) ( 1]

2

PIO[-S;, So] (1d§)é> U (u).

1=m-+1

Step 2: Next we proceed to the proof of (7.29). Setting a,, = (a(ku=2/*S + t))'/*, then for any k € K, with
im0 SUPje g, [ku™?/%| < 0 and t € [—S1, S5] when u large enough

(a—e0)/* < aup < (a+ep)t/®
holds for some ¢4 € (0,a).

Then we have

P sup  Z(u"w(t+kS)+to) >upy = P sup Z(ufg(a;}gtJrkS)tho) > uy,
te[fsl,SQ] t€[7a1L)k51,a,‘,7kSQ] ’

IN

P sup Z(u= = (a, Lt + kS) +to) > uk
te[—(at+ep) L/ Sy, (ateg)t/*Ss] ’
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= I (u)
and
P sup  Z(uTa(t+kS)+t) >upy > P sup Z(ufg(a;}ct—kkS)—i—to) > U
t€[~51,55] te[—(a—eg)L/®S1,(a—ep)1/*Ss] ’
= I (w).

We notice that by assumption (iv)

Cov(X (™= (ag jt + kS) +to), X (u”5kS +t0)) ~ 1—a(u"skS + to)lu” = ay jt[*

= 1—u 2|, u— .

For IT* (u) and II~ (u), when p = 1, (7.29) follows with the same arguments as in Step 1.
When p € (1,00], for I (u) and 11~ (u) we use the similar arguments as in in Step 1 with Yl(u_Q/"‘(a;}ct +kS)+
to,0) = Y (u=?*(ay 1t + kS) + to, 0).
When p € (1,2),
n—1

. -2 o~ o~ ~
al(t,Qv):dfqW ci(vifzi)2+o(|vfz|2),v%z,
i=1

and

n—1
r(t,QU,s,QV) =1 —u 2(t —5)* — 24 ci(vi—z) +o (o -2 +u?),0,0 = Z,u— oo.

i=1

When p € (2, 0],

_ 1 — " -
Ul(tvv)1QZ|vi|q+0<Z|vi|q>av4)07
i=2 i=2

and
SO 1 < i o
r(t,0,80)=1—-u"2(t—s)* - §Zd?(vi —v))?+o (de(v, —v})? —|—u_2> , 0,0 — 0,u — oo.
i=2 i=2
When p = 2,
. L R LA QY -
aen=1- 3 5o 3 M) oo
i=m+1 i=m+1
and

S 1 — i L
r(t,0,80)=1—-u"2(t—s)* - 3 de(vi —u)?+o <Z d?(v; — v})? —|—u2> , 0,07 — 0,u — 0.
i=2 ;

We get that as u — oo

=

+

S
2

Haol—-S1(a+e9)/*d™2/2 Syla+ )/ *d" P {Z (L)) > ur},
Hol—S1(a —eg)/*d= Sy(a — eg)/*d~2 P {Z(to)) > up} .

=
S
2

Thus (7.29) follows.
Further, if letting 6 — 0 in (7.29), we get (7.30).
O

Lemma 7.5.3. Assume that Gaussian vector process X (t) with independent marginals which have unit variances,
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correlation functions r(t) is the same as in Lemma 7.5.2. Further, set K, a family of countable index sets and ug
satisfying (7.27). Let eo be such that for all s,t € [ty — €0, to + €0),

gu —s* <1 —r(s,t) < 2alt — s[*.

Then we can find a constant C such that for all S > 0 and T — T, > S,

P 3
lim SUPy 00 SUP {Al(uk)’AQ (uk)}

a
<C ——|Ty —T7 — S|¢
keK, P{Z(t0)>uk} - exp( 8| 2 ! | )’

where A;(ux) = {Supyeir, 1, 49) Z(u=?/*(t + kS) +to) > ux}, i = 1,2, and

lim sup |u~? kS| < eo.
U0 keK,

PrOOF OF LEMMA 7.5.3 Through this proof, C;,i € N are some positive constant.
When p =1, set W= {w = (w1, ,wy) : w; = %1, i =1,--- ,n}. We have by [60][Theorem 3.1] for u large enough

P{As(ur), Aa(ur)}

=P sup Z|diXi(u*2/o‘(t +kS) +1to)] > ug, sup Z\diXi(ufz/o‘(s +ES) +to)| > ug
tG[Tl,TlJrS] i=1 SE[TQ,T2+S] i=1

n

< Z ]P’{ sup Z widiXi(u_Q/o‘(t +kS)+t9) > uk, sup

widiXi(u_z/a(S + kS) +1to) > ug
wew te[Ty,T1+S] i=1 s€[T2,Ta+S] i=1

=2"P sup Z diX; ("%t + kS) +to) > up,  sup Z diX; (w5 + kS) +to) > up
tE[Tl,T1+S] i=1 SE[TQ,TZJFS} i=1

n 1/2 n 1/2
=2"P sup de X1 (w2t 4+ kS) +to) > ug,  sup de X1 (w2 (s + kS) + to) > up
te[Tl,TlJrS] i=1 SE[TQ,TQJrS] i=1

a
< Cy exp <_§|T2 -1 — S|a) P{Z(to) > uk} .

When p € (1,00], set Y, (t,v) = >0 divi Xi(u™2/*" (t + kS) + to), (t,v) € R x 8, which is a centered Gaussian field
and 8) = {v e, :d* = Y1 | div? <4},0 > 0.

1=1""1 "1

Below for A;, Ay C R*1, denote
yu(AhAQ) =P sup Yu(tav) > Ug, Sup Yu(t7v) > Uk o -
(t,v)EA (t,v)EAL
We have
P{Al(uk)a‘AQ(uk)} yu([Tlle + S] X ng [T27T2 + S] X 82)7

P{A1(ur), A2(ur)} < Yul[T1, T2+ 8] x 82, [To, T + 5] x 82) + Yu ([T1, Ty + S] x 83, [T2, Tz + S] x (84 \ 89))
+Yu([T1, Ty + S] x (84 \ 82), [T2, T + S] x 89),

v

A

and

Yul([T1, Ty + 8] x 8, [T, To + 5] x (8, \ 82))

IN

P sup Yu(t,v) > ug
(t,v)€[T2, T2 +S]x (84\8%)

(up — C1)*
P ( 2(d2 — o) )

= o(P{Z(to) > w}),

IN
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as u — oo where the last second inequality follows from Borell inequality and the fact that
sup var(Y,(t,v)) = sup Zd?vf <d* -4
(t,0)€[T2, T2 +5]x(84\83) vE(84\8%) \;—1

Similarly, we have
Yul[T1, Ty + S] x (84 \ 82), [T, To + 5] x 82) = 0 (P{Z(to) > u}), u— oc.
Then we just need to focus on
M(u) := Yo [Ty, Ty + S] x 83, [Ta, To + 5] x 87).
We split Sg into sets of small diameters {98;,0 < i < N*}, where
N* =1{08;} < 0.
Further, we see that II(u) < IT; (u) + Ha(u) with

M(u)= Y Yu([T1, T2 + 8] x 88;, [To, Ta + 5] x 98)),
0<i,I<N*
98;M08;=0

HQ(U/): Z %u([TIaTl'i_S] X88i7[T27T2+S] X881)7
0<,I<N*
Bsmasl;é@
where 98; N 08, # () means 08;, 88, are identical or adjacent, and 98; N AS; = () means 98;, S, are neither identical
nor adjacent. Denote the distance of two set A, B € R" as

p(A,B) = inf

se il =yl

if 88; N 08; = (), then there exists some small positive constant py (independent of 4,1) such that p(98;,988;) > po.

Next we estimate II; (u). For any u >0

Iy (u) <P sup Zy(t,v,s,w) > 2uy p,
(,5)E€[T1,T1 +S]x [Ts,T2+5]
veEDS;, weDS;
where Z,(t,v,s,w) =Y, (t,v) + Yy (s,w), t,s > 0,v,w € R™.
When w is sufficiently large for (¢,s) € [Th,T1 + S] x [Tz, T> + S],v € 98; C [-2,2]",w € 98; C [—2,2]", with
p(08;,08;) > po we have

n

Var(Z,(t,v,s,w)) < Z(v? + w? 4 2vw;)d?
i=1
S 4d2 -2 Z(’Ul — ’Ujl)2dl2
i=1
= 4d* —2d2po
S d2(4 - 60)7

for some &g > 0. Therefore, it follows from the Borell inequality that

(2uy — C3)?

H1 (U) S CQN* exp <—M

> = o(P{Z(to) > ur}), u— oo,
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with

Cs=E sup Zy(t,v,8,w) p < o0.
(t,8)€[T1,T1+S])x[T2,T2+5S]
(v,w)e[-2,2]%n
Now we consider II3(u). Similar to the argumentation as in Stepl of the proof of Lemma 7.5.2. we set )N/u(t, v) =
Y, (t,Q0) and Z,(t,9, s, W) = Y, (t,0) + Yy (s, w) with ¥, w € R"L. Since for (t,s) € [T1,Ty + 5] x [To,To + 5], v €
[—-2,2]" Y w € [-2,2]""!, we have

2d* < Var(Zy(t,v,5,®)) < Y (07 +w}+2r(u 2t +kS) +to,u” /(s + kS) + to)viw;)d?
1=1

< 2d* +2 (1 — %u_2|t — S|O‘) zn:viwidf
< 4d* — d*au?|t — s|* -
< 4d* — dau?|Ty, — Ty — S|*.
Set
Zult, 5, s, @) — Zu(t, 3,5, @)

Var(Z,(t,v,s,w))

Borrowing the arguments of the proof in [119] [Lemma 6.3] we show that
E { (Zu(u B,5,W) — Zu(t', 0,5, E))} <4 (E {(ffu(t, 3) — Yo (t, &))2} +E {(Yu(s, @) — Yo (s, w’))2}> .
Moreover, since when p € (1, 2),
r(t,Qu,s,QV) =1—u2a(t —s)* — =Y ci(vi—z)> +o(|o -2 +u?),0,0 = Z,u — oo.
When p € (2, 00),
r(t,0,50) =1—u"2a(t —s)* — 1zn:dz(vi —v))*+o idg(vi — )2 +u"?) 0,0 = 0,u — .
sy Uy oy 2 : i 7 : i 7 s Uy )
When p = 2,
_ _ 3 N 1 n n B s _
ri(t,0,80)=1—-u"2a(t —s)* — §de(vz —v))? 4o <de(vl —u)? 4 u 2) , 0,7 — 0,u — oo.
Then we have
E {(Yu(t, ) — Ya(t, 17/))2} < ddPau2Jt — ] + 23 (v — v,
i=2
Therefore

E { (Zu(t,f), s, W) — Zy(t', v, s’,'{uv’))} < 16d%au2|t — t'|* + 16d%au"?|s — &'|* + 82(1},» —ul)? + 82(11}1 —w})?.

i=2 =2

Set ((t,s,v,w),t,s > 0,v,w € R"! is a stationary Gaussian field with unit variance and correlation function

re(t, 8,0, w) = exp (—deata — 9d%as® — 521}? - 52111?) .
i=2 i=2
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Then
Mh(u) < P sup Zu(t,ﬁ,s,ﬁ) > 2uy,

(t,S)G[Tl,TlJrS]X[TQ,TQ"PS}

TEQ I8, weQR 18,
-2/« -2/, ~ 2Uk
< P sup C(u t,u S, 0, W) >

(t,8)E[T1,T1+S)X [T, T2 +5] VAd? — d2au2|Ty — Ty — S|»

vEQ 18, weQ 18,

Then following the similar argumentation as in [82], we have
M—2 up _a o
o(u) < Cauy’ “exp | —z5 — <|To —T1 — S|
where M = 0 when p € (1,2) U (2,00] and M = m when p = 2. Thus we have
. IIo(u) a
limsup —— 2 < Cyexp (~ 5|7~ Ty — 5°) .
MU o) > ]~ P /o= T =S|
Thus we complete the proof.
Proof of Eaxmple 7.3.1: We notice that B, (t) attain its maximum over [0,1] at ¢t = 1 and
o 1
o(t)y~1— 5(1 —t), r(s,t)~1- §\s—t|a, s, t1 1.

For g(t) = —(1 —t)'/2, t € [0,1], by Theorem 7.3.1 with ¢ = 1 we get the results.
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Chapter 8

Drawdown and Drawup for Fractional

Brownian Motion with Trend!

8.1 Introduction and Preliminaries

Drawdown, defined as the distance of present value away from its historical running maximum, is an important
indicator of downside risks in financial risk management. For instance, the drawdown and the maximum drawdown
have been customarily used as risk measures in finance where they measure the current drop of a stock price, an index
or the value of a portfolio from its running maximum; see, e.g., [75, 138]. Instead of Value-at-Risk, the Maximum
Drawdown-at-Risk has been proposed to capture the cumulative losses; see [94]. Moreover, maximum drawdown
and maximum drawup also appear in the portfolio sensitivities of underlying asset; see [127]. They can also be
deployed in the context of portfolio optimization as constrains; see, e.g.,[25, 97]. Drawdown processes also appear
in other applications, such as applied probability and queueing theory; see, e.g., [111, 39, 14, 101]. Complementary,
drawup, the dual of drawdown, which is the distance of current value from its historical running minimum, has been

encountered in many financial applications; see, e.g., [128, 138].

In the literature, e.g., [67, 135], the stock price S can be modeled by the so-called geometric fractional Brownian

motion, i.e.,
L 5on
Sy = Soexp | ut +oBpu(t) — 50 t , (8.1)

where 0 > 0, € R and By is a fractional Brownian motion (fBm) with index H € (0,1) and covariance function
satisfying
||PH A tRH — |5 — 12

Cov(Bpu(s), Bu(t)) 5

,8,t > 0.

Note that S; is reduced to geometric Brownian motion if H = 1/2 which has massive applications in Finance. To
facilitate our analysis, we shall work with the log-prices. This motivates us to consider the drawdown and drawup for
fBm with trend. Let X; = o By (t) — %U2t2H + put, p € R. For simplicity, we assume that ¢ = 1. The drawdown and

drawup processes of X are defined, respectively, by
Dy =X, - Xy, U=X,-X,

where X; = Supg<s<¢ Xs and X; = info<s<; X,. For some fixed T' € (0, 00), we are interested in, for any u > 0,

IP’{ sup D; > u} and P{ sup U; > u}. (8.2)
0<t<T 0<t<T

Notice that the maximum of drawdown over [0,7] has the interpretation as the largest log-loss up to time T and

IThis chapter is based on L. Bar anp P. Liu, (2018): DRAWDOWN AND DRAWUP FOR FRACTIONAL BROWNIAN MOTION WITH TREND,
published in the Journal of Theoretical Probability, to appear.
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accordingly, the maximum of drawup can be viewed as the largest log-return; see e.g., [14]. Additionally, for H = %,
in context of queueing theory, D; is the transient queue length process starting at 0 and the corresponding probability
in (8.2) represents the overload probability over [0,T1]; see, e.g., [L11, 39].

Note that for the special case H = 1/2, the exact expressions of (8.2) were obtained in [66, 109]; see also [131]
concerning the joint distribution of maximum drawdown and maximum drawup up to an independent exponential
time. Due to the fact that fBm is neither a semi-martingale nor a Markov process, the exact expressions for H # %
are not available in literature. Hence in this paper we focus on the asymptotics of (8.2) as u — cc.

It is worthwhile to mention that infinite series representation of (8.2) in [66, 109] for H = % is quite complicated. In
contrast, we get concise asymptotics for H = 1/2 in this paper. Theorems 8.2.1 and 8.2.2 in section 2 shows that, for

H:%,asu—M)o,

u+(§T—u)}

_ 17
]P’{ sup Dt>u}~4IP’{Bl/2(l)> 1”(”2)} IP’{ sup Ut>u} ~4]P’{B1/2(1)> =

0<t<T vT 0<t<T
The technique used in this paper is uniform double-sum method in [60], which is the development of the so-called
double-sum method widely applied in extreme value theory of Gaussian processes and random fields; see, e.g., [119].
As it is shown in Theorem 8.2.1 in section 2, the special trend renders the asymptotics for drawdown quite different
from those of non-centered Gaussian random fields related to fBm in literature (see, e.g., [120, 84, 52, 45]), leading
to new scenarios of asymptotics according to the value of H.
Our results can be applied to calculate the Maximum Drawdown-at-Risk and the probability of stock market crashes
and rallies for (8.1); see [94] and [75].
In this chapter, in order to unity the definition of fBm, we redefine the Pickands constant, which is

1
My = lim —3p(0,0))  with Hp([a,b]) = E{ sup eﬁBH“)lf”} , a<b.

—o0 b te(a,b]

Further, Piterbarg constant is given by, for v > 0,

v o= lim P ([0,b]) with P%([0,0]) = ]E{ sup eﬁBH“)(”")tl”}, b> 0.
b—oo t€[0,b]

We can refer to [119, 1, 47, 90, 63, 44] for the definition, properties and extensions of Pickands and Piterbarg constants,
to [55, 65, 64, 13, 77] for the bounds and simulations of Pickands and Piterbarg constants. In particular, by [55], we
have that

” 1
:Pl/2:]‘+;’ v > 0. (83)

The organization of paper is as follows. In section 2, the main results are displayed. Section 3 is devoted to the proofs
of main theorems in section 2. Proofs of lemmas in section 3 is postponed in Appendix A, followed by some useful

lemmas in Appendix B.

8.2 Main Results

In this section, we present our main results concerning the asymptotics of (8.2) as u — co. In contrast to the infinite
series representation in [66, 109], the asymptotic expressions in the following theorems are quite concise, which allows
us to readily understand the asymptotic behavior of the probability that maximum drawdown ( maximum drawup)

exceeds a threshold over finite-time horizon. Then we have the following results.

Theorem 8.2.1. Assume that 0 < T < co.

If H > 1/2, then
u—|—,uT—1T2H>
P osup Dy >up~W( ——02 2.
{OStET t } ( T
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If H=1/2, then

u+uT;T2H)
P< sup Di>up ~40 | ——m—=—— .
{OStET ' } ( ™

If1/4 < H < 1/2, then

2
P{ sup D; > ’U,} ~ (H—12—ﬁT2H—1j_CH) u%—él‘ll (

u+ pT — §T2H>
0<t<T .

TH

If H=1/4, then

[e) 1 H
)2 71 / e*w*T%w%d:cu‘l\Il <u il - ETQ ) .
0

]P’{sup Dt>u}~(9{ =

0<t<T

NG

If0 < H < 1/4, then

a1 _ 1 3 _ UJr,uT*lTQH
P D ~ H Y2 e 2 H2D () (K urE 20— 2T )
{sm, Do) o 1) 7

Theorem 8.2.2. Assume that 0 < T < co.

If H > 1/2, then
u—,uT—i—%TQH)
PS sup Uy >up~ V0| ——=— | .
{0<th ! } < TH

If H=1/2, then

u—uT—i—%TQH)
P sup Uy>up ~40 (| ————=—— ).
{0<th ' } ( ™

If0 < H < 1/2, then

1 1, aH s 2 2 _4 _ou— (T —s) + (T — $2H)
]P’{OittlETUt>u} 27E 2T FEGE) (Hp) un \P(0<1r51£T L .

Remark. i) In the extremes of Gaussian processes and random fields associated with fBm for finite-time horizon,
e.g.,[120, 84, 52, 45|, we usually have three different types of asymptotics according to H: H > 1/2, H = 1/2 and
H < 1/2. However, Theorem 8.2.1 gives more types of asymptotics due to the complexity of the trend that is the
combination of linear function (ut) and power function (—3[¢|2"). As we can see from the proof of Theorem 8.2.1,
for 1/4 < H < 1/2 only the linear trend contribute to the power part of the asymptotics; for H = 1/4, both linear
trend and power trend affect the power part; whereas, for 0 < H < 1/4, the power trend has the major influence on
the power part of the asymptotics. However, this phenomena does not appear in Theorem 8.2.2, where both of linear
trend and power trend contribute to the power part of the asymptotics for 0 < H < 1/2.

ii) We here interpret that the analysis of drawdown and drawup for the case T' = oo is meaningless. Let T' = co and
B g = —Bp. Then

sw D = s (Bals) ~ Bult) + 57— 2 (e - 5))
0<t<o0 0<s<t<00 2
= sup (EH(t) — Bu(s) + %(tQH — 21y — pu(t — s))
0<s<t<0
> s (Bult) - Buls) — (lul + 1)t - 9))
0<s<t<oo
= sup Q(s),

where
Q(s) = sup (Bua(t) = Bua(s) = (Jul + 1)t — 5)) -

t>s
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Corollary 1 in [36, 100] shows that for H € (0, 1)

lim sup L‘S)l =C>0 a.s..
s—00 (log 5) 2(1-H)

Therefore we have that for H € (0,1)

sup D; >supQ(s) =0 a.s..
0<t<o0 s>0

Note that for ¢ > s > 1 and H € (0,1/2], there exists C; > 0 such that
2 2 < Oy (t — s).

Hence we can analogously show that for H € (0,1/2]

1
sup Uy = sup (BH(t) — B (s) — §(t2H — 21 4 p(t — s))
0<t<oo 0<s<t<oo
> sup (Bu(t)— Bp(s) — Ca(t —s)) =00 a.s.,
1<s<t <00

where C5 is a positive constant. We conjecture that for H > 1/2,

sup Uy = a.s.
0<t<o0

also holds, which needs more technical analysis similarly to [36, 100].

8.3 Proofs

In this section we give the proof of Theorems 8.2.1-8.2.2. In order to prove the aforementioned theorems, we first
present several lemmas related to the local behaviors of variance and correlation functions of the underlying Gaussian
random fields. In rest of the paper, denote by Q,Q;,i = 1,2,... some positive constants that may differ from line to
line. Moreover,

flu, S €) ~h(u), u—o00,e—0,5— o0,

means that

lim Tim lim 2229 _
S—00 e—0u—o0 h(u)
Let
+ |t — s
o (s,t) = 0<s<t<T.

wF plt—s) £ H(2H — 2’

Lemma 8.3.1. Foru sufficiently large (0,T) = arg SUPg<s<t<T Tuy (s,t) is unique and for any 6, > 0 and limy 0 §y, =

0

o, (st)
o4 (0,T)

|
e

lim sup
U=00 (5 1Y€[0,00] X [T—0u,T] w + %s + ism

Lemma 8.3.2. i) For H > % and u sufficiently large (0,T) = arg SUPg<s<t<7 0ot (,1) is unique and for any 6, > 0

and limy,_,o0 0, =0
of (s,t)
oa (0,T)

-1 =0.

lim sup —
u=00 (5 1) e[0,8,)x [T—8,,7] | FE=1 4 H g

it) For 0 < H < 3 and u sufficiently large (s, T) = argsupg<,ci<q o4 (s,t) is unique and s, ~ 5wy~ T
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Moreover, for any d, > 0 and limy,_, o, 6, =0

1_ ai'(s,t)

+ (e
lim sup D) HU(’IE‘E)T) -1/ =0.
U0 (5 YE[0,50 400 X [T —54,T) 7 + Ty (5 — 54)?

Lemma 8.3.3. For any 0, > 0 and limy_,o, 0, =0

1—Corr (Bu(t) — Bu(s), Bu(t') — Bu(s'))
‘S*S/|2H+|t7t’|2H
2T2H

—1/=0.

lim sup
U00 (5,t),(s ') €[0,8,] X [T =84, T]

PROOF OF THEOREM 8.2.1 Observe that

IP’{ sup Dt>u} = IP’{ sup (XS—Xt)>u}

0<t<T (s,t)eA

_ P{<Sup (BH(S)BH(t)W(S“1(82Ht2H)>>u}

s,t)eEA 2

= P{(sup Zu(S,t)>m(u)}7

s,t)EA

where

B (s) — Bu(t) m(u), m(u):#7 A={(s,t):0<s<t<T}

Zu(s,t) =
u(s1) u+ p(t —s) 4 5 (s — ¢2H)

Thus we have that

(s,t)EE, s,t)EA\E,

P {(sst;lepE Zy(s,t) > m(u)} < P {OzlgTDt > u}
< P{ sup  Z,(s,t) > m(u)} +P {( sup  Zy(s,t) > m(u)} , (8.4)

where E, = [0, (Inm(u))?/m?(u)] x [T — (Inm(u))?/m?(u), T]. In light of Lemma 8.3.1, it follows that for u sufficiently

large, /Var (Z,(s,t)) = % attains its maximum over 0 < s < ¢t < T at unique point (0,7) and there exists a

positive constant ) such that

1nm(u))2_

sup Var (Z,(s,t)) <1-Q ( ()

(s,t)EA\E,,

Moreover,
E((Zu(s,t) = Zu(s 1)) < Q1 (s — P + [t = s'*),  (s,0), (s, ) € A,

with @1 a positive constant. Hence by Piterbarg Theorem (Theorem 8.1 in [119]), we have for u sufficiently large

P {( tsup Zy(s,t) > m(u)} < Qo(m(u) 7w (8.5)

YEA\E.,

Next we analyze P {SUP(s,t)eEu Zy(s,t) > u} Let

T
&
=

Il
=)
=

=}

3
—~
E
NS
~

3
[ V)
—~

S
~—
4

S
~—
=
[ V)

A(u) = 278 T (m(u)) "7,
Then rewrite

(s,t)EE, (s,t)EEu1

P{ sup  Z,(s,t) > u} = IP’{ sup  Zy,(A(w)s, T — Au)t) > u} .
H

:landO<H<i.

We distinguish between H > 1, H=1 1< g <1 i
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Case H > % In order to apply Lemma 8.4.1 in Appendix, we need to check conditions. By Lemmas 8.3.1 and 8.3.3,

we have

1—/Var(Z,(A(u)s, T — A(u)t))
Au) (£t + Ls)

lim  sup
U (s,t)€Bu 1

=0, (8.6)

Sl

1—Corr (Z,(A(u)s, T — A(u)t), Zy(A(w)s', T — A(u)t"))
|S _ S/|2H + |t _ t/|2H

lim sup m?(u)

U0 (5,t), (s, ') € Bu 1

—1]=o. (8.7)

These imply that (8.26) and (8.27) hold. Following the notation in Lemma 8.4.1, we have that Using the fact that

H
Jp— ] 2* = ) —
v; uli)ngo(m(u)) TA(u) 00,7 =1,2.

Noting that (0,0) € E, 1 and by case iii) in Lemma 8.4.1 in Appendix, we have

]P’{ sup  Zy(A(w)s, T — A(u)t) > m(u)} ~ U(m(u)),

(s,t)€EEu1

which together with (8.4) and (8.5) establishes the claim.

Case H = %. Note that (8.6) and (8.7) still hold for H = 1. Following the notation in Lemma 8.4.1, we have for
i=1,2,

. o H 1 . . . 2 2

v; = lim (m(u))*=A(w) =22 H =1, lim a;(u) =0, lim b;(u) = lim (Inm(u))*/(m*(u)A(u)) = co.

UuU—00 T U—00 UuU—00 U— 00
Thus by case ii) in Lemma 8.4.1 in Appendix, we have
2
]P’{ sup  Zyu(A(u)s, T — A(u)t) > m(u)} ~ (Tiﬂ) U (m(u)),
(sat)eEu,l

which combined with (8.4), (8.5) and (8.3) establishes the claim.
Case + < H < i. Let

oy = kS, (k+1)S] x [IS, (1 + 1)S], k,1 > 0, N(u) = [ (Inm(u))? ] )

m?(u)A(u)S
Al(u) = {(kal7klvl/) :0 < kvlyklvl, < N(u) + 17Ik,l mIk’,l’ 7é (Da (k7l) 7é (klal,)}7
AQ(U) = {(k,l, k/,ll) : 0 < k,l,kl,l/ < N('LL) + 1,]]9’[ n Ik’,l’ = @}

Bonferroni inequality gives that

Y7 (u) = ¥¥1(u) — X¥5(u) < IP’{ sup  Zy(A(u)s, T — A(u)t) > m(u)} < 2 (u), (8.8)

(svt)eEu,l

N(u)£1
S (u) > IE”{ sup  Zu(A(u)s, T — A(u)t) > m(u)} :

k,1=0 (s,t)elk,

Y3 (u) Z IP’{ sup  Zy(A(u)s, T — A(uw)t) > m(u), sup Zy,(A(u)s, T — A(u)t) > m(u)} ,i=1,2.

(k1K' 1) EA; (CRIISI N (,6)€Lp 11

Upper or Lower bounds for Y% (u). By Lemma 8.3.1, we have

1—/Var(Z,(A(u)s, T — A(u)t))

Aw)Et 4 A(u)H s 4 BUDT 21

lim  sup -1

U0 (s,t)EFy 1

=0. (8.9)
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Thus for any 0 < e < 1, let

’ﬂ\m

miit) =m(w (1+ 02 (Mg (15 + A (s + ST e s2) ).

Moreover, denote by
ZU(A( )(kS +35), T — A(u)(IS + 1))

Zu k1 (8,t) = .
VVar (Z,(A(u)(kS + 5), T — A(u) (IS + 1))
Then we have
N(u)+1
E+(u) < P sup Zu,k,l(S,t) > m;;(u)},
k,1=0 (s,)€[0,5]?
N(u)—1
X (u) > P sup  Zy (s, t) > mﬁ(u)}
k,1=0 (s,t)€[0,5]2 ,

Note that (8.7) implies that

21— Corr (Zua(s,0), Zupa(s', V)
|s — o/[2H + [t — t/|2H

lim sup
U0 (5 4)€[0,5]2

- 1‘ =0. (8.10)

Thus by Lemma 8.4.2, we have that

P {Sup(s,t)e[075]2 u,k l(Sa t) > mlf,;(u)}
lim sup

U0 0<k 1< N (u)+1 \Ij(mkii( ) — (Hg(]0,9)))% =0.

This implies that

N(u)+1
Stw) < (Ha(0,8)* D U(myj(u
k,l=0
N g m2 (u)A(w) 2 (1—1)S+m? (u) A(u) & (k—1)S+m?2 (u) ST (o 1y2H g2H
< (Hu((0,9)T(m(uw) D e
k,l=0
2
_ (‘%H(E’S])) W(m(u)O (1, S, €). (8.11)
and
N(u)—1
() > (Fu((0,5)7 Y U(mf(w)
k,i=0
> (3u((0 S}))gxll(m(u))N%):H 7(1+e)(m%u)A(u)%(l+1)S+m2(u)A(u)%(k+1)3+m2(u)%(/ﬁrlfﬁrsrz’q)
= H )
k,1=0
i 2
- (H(g)s])> T(m(u))O% (u, S, €). (8.12)
Next we analyze ©F(u, S, €). Note that
2H 4H
sup mz(u) (A(u)) |k—1|2H5'2HgQ(m(u))2_4H(lnm(u)) SQu1—4H(1nu)4H_>0.
0<K<N (u)+1 2u u

Hence, setting

v(u,€) = (1 — e)m?(u)A(u)

el

: (8.13)
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it follows that

N (u)+1
@7(7.14,5',6) < 52 Z ef(v(u,e)(lfl)SJrU(u,e)(lcfl)S)
% l=0
N(u)+1 N(u)+1
= ('u(u,e))_2 Z e_”(“’e)(l_l)sv(u,e)S e_”(“’e)(k_l)sv(u,e)S
1=0 k=0

IN

(v(u,€))”? (/OOO etdt)2

T\° , 2
~  (m*(u)Au)~? (H) = (H_12_WT2H_1) uf ™t u— 00,6 0,8 — oo, (8.14)

which together with the fact that

(o, S
e,
leads to
2
Y(u) < (H_12_%T2H_19{H> u%_‘l\If(m(u)), u — 00. (8.15)

Similarly, we can show that
0" (u, S, €) > (H7127ﬁT2H71>2u%74, u — 00,6 — 0,5 — oo.
Hence
¥ (u) > (H—lz—ﬁTQH—lﬂ{H)zu%—‘*\lf(m(u)), U — 00. (8.16)

Upper bounds of X¥;(u),i = 1,2. For (k,I,k',l') € Ay, without loss of generality, we assume that ¥’ = k + 1. Then
denote by

10, = [(k+1)8,(k+1)S + VS| x IS, (' + 1)S], I, = [(k+1)S + VS, (k+2)8,] x [I'S, (I' + 1)S].

Hence, for (k,1, k', l') € Ay,

P< sup  Zy(A(w)s, T — A(u)t) > m(u), sup Z,(A(u)s,T — A(u)t) > m(u)
(s,t)E€Ix 1 (S,t)le/,l/

<P sup Zu(Aw)s, T —A(u)t) > mp (u), sup  Z,(A(uw)s, T — A(u)t) > my 5, (u)
(s,t)€lk,1 ’ (s.t)er, 7

+P sup  Zu(A(u)s, T — A(u)t) > myS(u) o,
(s,t)er®

K/

where

Zu(A(u)s, T — A(u)t) .
VVar(Z,(A(u)s, T — A(u)t))

Zy(A(u)s, T — A(u)t) =

Noting that (8.10) holds and

P sup  Zu(A(uw)s, T — A(u)t) > my o (u) o = IP’{ sup Zu gy (8,8) > mpSy (u)} )

(S’t)ell(;,)l’ (S,t)E[O,\/g}X[O,S]

by Lemma 8.4.2 in Appendix, we have that

+e
: F {Sup(S,t)G[O,\/E]X[Oﬁ] Zupr(3,1) > mkvl(“)}
lim sup

U=00 (<t 1P <N (u)+1 (my, ()

— Hy ([0, VS)Hx([0,8]))| = 0.
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Using also the fact that I;; has at most 8 neighborhoods and

0a(0VS) o Ha(0VED) Ly
A . L

in light of (8.11) and (8.14), we have

Yo P sup Zu(Au)s, T — A(u)t) > mpS, (u)
(b Lk e | (sDEl,
N(u)+1
<8 Y Hyu ([0, VS)H([0, S (my 5 (u))
k' 17=0
< g2, VS5)) 3¢([0, 5)
- S S
=o0 (u%lelll(m(u))) , U — 00,8 = 00. (8.17)

2
(12221 ) uh ()

Lemma 8.3.3 shows that for u sufficiently large and (s,t), (s',t') € Ey1
Corr (Zu(A(u)s, T — A(u)t), Z,(A(uw)s', T — A(u)t’)) >0

and

o1 = Corr (Z,(A(u)s, T — A(u)t), Zu(A(w)s', T — A(u)t'))

—1|=0.
|S _ S/|2H + |t _ t/|2H

lim sup
U—00 (8,t)£(s",t"),(s,t),(s" ,t')EEL 1

(m(u))

Hence by Lemma 8.4.3 in Appendix, there exists constants C, €, > 0 such that for (k,I,k’,l') € A; and u sufficiently

large

P sup  Zu(A(u)s, T — A(u)t) > my(u), sup  Zu(A(u)s, T — A(u)t) > my . (u)

(s8,t)EIk 1 (S7t)611(5?1/

H
<este S W (g ()

and for (k,I,k',l') € As and u sufficiently large

PS sup  Zyu(A(w)s, T — A(u)t) > m; 5(u), sup  Zu(A(u)s, T — A(u)t) > my, 5 (u)
(s:t) €1kt ’ (S,t)EIk/,l/ ’
712 712 H
< 6346761(“6716 |[“+]1=1"]%) 2 SH\I/ (mlzik' l’(u)> ; (818)
where
ml;j,k’,l’(u) = min(mﬁ(@t% mljl/(u))-

Consequently, noting that Ij; has at most 8 neighborhoods and in light of (8.11) and (8.14)

Z P sup  Zu(A(u)s, T — Au)t) > myj(u), sup Zu(A(u)s, T — Au)t) > my e (w)

(kLK ") EAL (CRS (s;)er?,
H
< Z 6546—615 2 )\ (m;j’k,,l,(u))
(koL k' 1) EAL
H
< Z RSl €152 (\I/ (mﬁ(u)) +0 (m,:fl,(u)))
(koL k' 1)) EA,
N(u)+1 "
< Z 16CS%e=C15 % @ (mﬁ(u))
k,1=0

< QSQe_els%u%_4\I/(m(u)) =o0 (u%_4‘1'(m(u))> ,  u— 00,58 — oo.
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Therefore, we can conclude that

X¥i(u)=o0 (u%_‘llll(m(u))) , u— 00,58 — o0. (8.19)

Moreover, by (8.18) and (8.11)-(8.14)

Yo (u) < Z P sup  Zyu(A(u)s, T — A(u)t) > mp S(v), sup Zy(Au)s, T — A(u)t) > my (u)
(kL 1) ehs  \(8DEDk ’ (s,)EDr ,

4 —Cy(|kh—k PI=|?) T SH _
< Z CSte Crk=kKP+I=1) U (my g g (w)

(kLK 1) €A
N(u)+1 . o H
< Z U (mlzj(u)> 2054 Z e C1(lk=K'[+1=U']")2 8
k,1=0 k1 >0,k 10
N(u)+1
< Y @ste @S (mgf(w)
k,l=0
< QSQe_leHu%_‘l\I/(m(u)) =0 (u%_‘l\If(m(u))) ,  u— 00,5 — oo. (8.20)

Inserting (8.15)-(8.16) and (8.19)-(8.20) into (8.8), we derive that

1 2 2
]P’{ sup  Zy(A(u)s, T — A(u)t) > m(u)} ~ (H*12*WT2H*15J{H) w4 (m(u)), u— oo,
(s,t)EEw 1

which together with (8.4) and (8.5) establishes the claim.
Case H = 1. Note that (8.8)-(8.12) still hold for H = . We next focus on ©F(u, S, €). Recalling that

H

v(u,e) = (1 — e)mQ(u)A(u)?,

it follows that

N(u)+1 2 (A(u)2H 2H o2H
—( v(u,e)(I—1)SHv(u,e)(k—1)S+m~ (u) —52—(k—1 S
@,(u7576)25226(<>(>+<>< )sem? () SR (o122 )
k,1=0
N(u)+1 N(u)+1 2, (A)2H 2H q2H
— | v(u,e)(k—1)S+(1—e)m~(u) *—5—(k—1 S
_ Z e~ v(w(l-1)S g Z . (( J(E=1)S+(1—e)m*(u) *=57— (k—1) )S
1=0 k=0
The first sum satisfies
N(u)+1 N(u)+1
Z e -1)Sg  _ (U(u,e))’l Z e—v(ux)(l—l)SU(u,e)S
1=0 =0
) H -1
< (U(u,e))_l/ e tdt ~ <m2(u)A(u)T) , u—00,e—0. (8.21)
0

For the second one

N(wit1 — v(u,e)(k— —e)m?(u @) o gyemgen
o (<,><k 1)S+(1—eym?(u) LN (o_1y2rr g )S

k=0

N(u)+1

— ) Y e
k=0

1 1 1 1 2H
fv<u,e><k71>s+(“*””” e “"'(“”H“‘)v(u,e)(k—l)s)
v(u,€)S.

Note that for H = %,
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Thus
N(w)+1 ol.e) (ke COvm2(w) A vom gan
S (0t a-gme e G s )
k=0
H\ ' [ 1
~ (M) A(u) = e mTIVEdr w— 00, — 0.
T 0
Consequently,
H\ 7 [ 1
O (u,S,e) < <m2(u)A(u)T> / e TIVode, u— 00,e— 0.
0
Similarly,

—92 00 .
0% (u, S, ¢€) > <m2(u)A(u);I> / e TIVE e u— 00,e — 0.

In light of (8.11) and (8.12), we have that

2 -2
H 00 s
Y () < (%HGO’S])) <m2(u)A(u)> / e TV el (m(u))
S T 0
1 2 [ 1 2
< (H_12_WT2H_15HH)/ e_z_T‘l‘/Edmuﬁ_AL\If(m(U)), u— 00,5 — 00,
0
1 2 [ 1 2
Y h(u) > (H_12_WT2H_13-CH)/ e T TIVEQeu T (m(u)),  u— 00, S = oo.
0

The negligibility of ¥%;(u),i = 1,2 holds due to the fact that (8.17)-(8.20) are also valid for H = 1. Therefore we

have

2 [ 1
IP’{ sup  Zy(A(u)s, T — A(u)t) > m(u)} ~ (H_12_ﬁT2H_1‘}CH> / e T4 ﬁdmu%_4\ll(m(u)), u — 00,
(s,t)EEy 1 0

which combined with (8.4) and (8.5) establishes the claim.
Case 0 < H < ;. For 0 < H < 1, (8.8)-(8.12) are satisfied. In order to get the upper or lower bounds of X% (u), it
suffices to analyze ©%(u, S, ¢). Denote by

V' (u,€) = (1 — €)77 2727 4™ 27 (m(u)) # A(u),

it follows that

O (w5 = & N(Eu):ﬂe_(l_e) <M2(um(“)¥”‘”S“”z(“)ﬁ(u)%<k—1)5+m2(u)%(z€_1)msm>
k,l=0
N(u)+1 N(u)+1
= Z e~ v(we(-1)S g Z e*(v(u,e)(kfl)sur(v/(u’é)(kil)s)zH)S,
=0 k=0

where v(u, €) is defined in (8.13). The first sum satisfies (8.21) with 0 < H < 1/4. For the second sum
N (u)+1 -
Z e—(v(u,e)(k—1)S+(v/(u,e)(k—1)5’) )g
k=0
N(u)+1 -
_ (U/(% 6))—1 Z e—’y(u)'u'(u7e)(k—l)S-‘r(v/(u,e)(k—l)S) U/(% e)S,
k=0

where
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Thus
N(u)+1 -

Z e—(u(u,e)(k—1)s+(u’(u,e)(k—1)s) )g

k=0

~ (V' (u, e))*l/ e dy

0
1 1L

~T ﬁ+1 T uza, u— o00,e — 0.

Consequently,
1 1
0 (u,S,e) < H '27zmT?H=21 (2H + 1) w2y 00,€ — 0.

Similarly,

1
Ot (u,S,€) > H 12 zmT?H-2p (QH + 1) w2 4= 00,€ — 0.

In light of (8.11) and (8.12), we have that, as u — 00, S — oo,

1 1 3
S() < H-la~srH-2r (2H+1) (3)? w20 (m(w),

St(w) > H'27wmr?H-?r (22 + 1) (Hp)? w20 (m(w)).

Following line by line the same as (8.17)-(8.20), we can show that for ¢ = 1,2
¥¥i(u)=o0 (u%”\IJ(m(u)» , u— 00,5 — 0.

Therefore, we conclude that

1 1 3
IP’{ sup  Zy(A(w)s, T — A(u)t) > m(u)} ~ H™ 127 zm?H2p <2H + 1) (Hp)? wzr ~2U(m(u)), u— oo,
(s,t)EEL 1

which establishes the claim with aid of (8.4) and (8.5). This completes the proof. O

PROOF OF THEOREM 8.2.2 We distinguish between H > % and H < %
Case H > % We have that

]P’{ sup Ut>u} = IP’{ sup (Xth)>U}
(

0<t<T s,t)EA

= P{ sup (Bp(t) — Bu(s) — %(t”f — M)+t —s)) > u}
(s,t)EA

= ]P’{( sup Z,1(s,t) > ml(u)} ;

s,t)EA
where

BH(t) — BH(S)

Zy b)) =
1s:1) ufp(tfs)Jr%(tZHfszH)
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Furthermore,

IP’{ sup Zu71(s,t)>m1(u)} S]P’{ sup Ut>u}

(s,t)EEw,2 0<t<T

< ]P’{ sup  Zy,1(s,t) > ml(u)} + ]P’{ sup  Zy1(s,t) > ml(u)} , (8.22)

(s,t)EEy 2 (s,t)EA\Eu 2

where
By = [0,(Inmy(u))?/(ma(w)?] x [T = (nmy (w))?/(my (u))?, T).

In light of Lemma 8.3.2, it follows that for u sufficiently large

(s,t)EA\Ey,2

Moreover, direct calculation shows that
E {(Zu71(57t) - Zu,l(sl7t/))2} < Q1(|t - t/|2H + ‘S - S,|2H)7 (Svt)7 (Sla t/) €A

Using Piterbarg Theorem (Theorem 8.1 in [119]), we have for u sufficiently large

Pl sup Zualsit) > mau) b < @olma(u)Fu | — @ (5.23)
(s,t)€EA\E, 2 1-Q <1ﬂm1(u))
m(u)
Next we focus on P {sup(s’t)eEm2 Zya(s,t) > ml(u)}. Lemmas 8.3.1 and 8.3.3 lead to
1—\/‘/ Zu ,t . 1_ Zu ) 7Zu lvl
lim  sup ar(Zu.1(5,t)) —1/=0, lim sup Corr (Zu1(5,1), Zua(s',1')) —1| =0,

|s—s'|2H +[t—t/|2H
2T2H

U0 (5,t)EEy 2 w + %s U0 (5,t) (8"t )EEu 2

which coincide with the local variance and correlation behavior of Z,(s,t) in proof of Theorem 8.2.1 for case H > %

Similarly as in proof of Theorem 8.2.1, we derive that for H > %

P sup  Zy1(s,t) >mi(u) p ~ ¥ (mi(w)), u— o0;
(S,t)Gsz

and for H = %

2
IP’{ sup  Zy1(s,t) > ml(u)} ~ (Tiﬂ) U (my(w)), u— o0.
(8,t)EEy 2

Inserting the above asymptotics and (8.23), (8.3) in (8.22), we establish the claim.
Case 0 < H < . Observe that

0<t<T s,t)EA

IP’{ sup Ut>u} = IP’{ sup (XtXS)>u}
(

= P{ sup (Br(t) — Bu(s) - %(t”f —s2) 4t — 5)) > u}
(s,t)EA

= ]P’{(sup Zu72(3,t)>m2(u)},

s,t)EA
where

BH(t) — BH(S)

Zu 1) =
,2(8 ) uflu(tfs)ﬁ*%(tQH*SZH)m
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Thus we have

IP’{ sup  Zy2(s,t) >m2(u)} S]P’{ sup Ut>u}

(s,t)EEu,3 0<t<T

<P sup  Zyo(s,t) > ma(u) p + P sup  Zyo(s,t) > ma(u) p, (8.24)
(s,t)EEw 3 (s,t)EA\E, 3

where
Eu3 =10,y + (Inma(u))/ma(u)] x [T — (lnmg(u))z/(mg(u))z,T].

In light of Lemma 8.3.2, it follows that for u sufficiently large

sup Var(Z,2(s,t)) <1-Q3 ( ma(u)

(s,t)EA\Ey, 3

and direct calculation shows that
E ((Zu,2(57t) - Zu,2(5/7t/))2) < Q4(|t - t/|2H + |S - sl|2H)a (Svt)7 (Slat/) €A

By Piterbarg Theorem, we have for u sufficiently large

ma(u)

1-q (e’

P {( t)SUP Zyo(s,t) > mg(u)} < Qs(ma(u)) 70 (8.25)

EA\E, 3

Next we consider P {SUP(s,t)eEu,g Zy2(s,t) > mg(u)}. Rewrite
P sup  Zy2(s,t) > ma(u) p =P sup  Zyo(sy + A1(u)s, T — Ay (u)t) > ma(u)
(S,t)EEu,g (S,t)EEuA

where

1 1

By = [=su/D1(u), (Inma(w))/(ma(u)Ar (u)] x [0, (tnma(u))?/((ma(u)*Ar ()], Ai(u) = 277 T (my(u)) "7,

and s, is defined in Lemma 8.3.2. Lemmas 8.3.2 and 8.3.3 lead to

. 1-— \/Var(Z%g(su + Ar(uw)s, T — Aq(u)t)) B
e 4 HO-—H) 242 4 H —1=0
(s,t)EEY 4 2T2 (Al(u)) s<+ TAl(u)t
and
lim sup (ma(u))? 1—Corr (Zy2(sy + A1(uw)s, T —/?;{(u)t)), Z:L;;([su +A1(w)s, T — A (u)t) o
YT (5,0), (st € Bua |s — s'|2H + |t — /]

Next we check the conditions of Lemma 8.4.1 in Appendix. Following the same notation as in Lemma 8.4.1, we have
that

v = uh_{go(mQ(U)F%Al(U) = QﬁHuli_}H;o(mg(u))z_% =0, = ull_}ngo(mz(u))2H(;;2H) (A1 (u)? =0,
H(1—-H)

yrz = i ma(u)\/ —om—

. H
Por =0, oo = lim (o)) A () (b ()2 (1 () () = oo.
Moreover, by Lemma 8.3.2, s,, ~ T2~ 1712H, which implies that

. H(1-H . 1
yra=— lim ma(u) %Aﬂu)su/Aﬂu) = —Q lim u' T =0,
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Thus by case i) in Lemma 8.4.1, we have that

IP’{ sup  Zy2(sy +A1(u)s, T — Al())>m2(u)}

9 t)EEu 4
- ﬁ [ [ e rastma) S e
—7—5 3H [ * _3
2 Y (H—l) () w30 (ma(u)).
Inserting the above asymptotics and (8.25) into (8.24) establishes the claim. This completes the proof. O

8.4 Appendix

8.4.1 Appendix A

This subsection is devoted to the proofs of Lemma 8.3.1-8.3.2.

ProoOF OF LEMMA 8.3.1 Note that for any § > 0 and u sufficiently large, the maximum of o, (s,t) over 0 < s <t <T
is only obtained in [0, d] x [T'— 6, T]. Next we consider the variance function o, (s,t) over [0,0] x [T — 4§, T]. It follows
that

o, (s,1) _ [t —s|H u+ pl — %TQH
on (0,7) w4 p(t —s) — (20 — s2H) TH
[t—s|*
_ _ TH
= wtil—s)— LA )
u+;J,T7%T2H

— |7 U — ) — 1(2H _ g2H
_ <1|tTH| >(1+0(1))+< +”(Z+:T_2§T2H )1) (1+o(1))

—u(T —t+s)+ 5(QHT* YT — t) + s*H)

H
= —=(T-t 1 1
(T~ t+8)(1+0(1) + e

T

<];(T —t)+ %S-i- 21u82H> (14 a(d,u)), (s,t)€10,8] x [T —4,T],

(1+0(1))

as § sufficiently small and u sufficiently large, where lims_.0 y— o0 a(d, w) = 0. The fact that

H H 1
(T —t)+ s+ —s2H

0
T T 2u -

for (s,t) € ([0,d] x [T —6,T])\ {(0,T)} implies that the maximum point of o, (s,t) over 0 < s < ¢ < T is unique and
is (0,7). This completes the proof. O
PROOF OF LEMMA 8.3.2 For any 6 > 0 and u sufficiently large, the maximum of o, (s,¢) over 0 < s <t < T is only
obtained in [0,6] x [T' — §,T]. Next we focus on o/ (s,t) over [0,8] x [T'— 4,T]. For § > 0 sufficiently small and u
sufficiently large,

_ai(st) _ 4 [t — s|H uw— pT + $T%1
au (0,7) u— p(t —s) + (120 — s2H) TH
lt—s]
_ _ TH
B u—p(t—s)+ 1 (¢2H —2H)
u— p,TJrlT?H
) w—plt = 5) + L7 - M)
= (1- (I1+0(1)) + —1)(14+0(1))
< u— T + %TQH
H w(T —t+s)— 2HT* 1T —t) + s*H)
= = (T—t+s)(1+0(1)+ 14 o0(1
Lt 45)1+ o) T (1 +0(1)

<§{ ) 1+ a1(0,u)) — %sﬂ{(l +az(6,u)), (s,t)€10,8] x [T —46,T],
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where lims_,0 y—00 @;(0,u) =0, =1,2. If H > %, then

of(s,t)  (H H
1- m = (T(Tt) + Ts> (14 a1(0,u)), (s,t) €][0,0] x [T —46,T],

which implies that the maximum point of o (s,t) is obtained at (0,7) and is unique. For 0 < H < %,

ol (s, T H 1
1-— (#50,13 = ?5(1 +ay(d,u)) — %SQH(]. + as(d,u))
_ %S2H <81—2H(1 +ay(6,u)) — i(l + as(0, u))) <0,

as s < (%) L (2u)~ 727 . This implies that the maximum of ot (s,T) over [0,T] is attained over (0, 4)

for 0 > 0 sufficiently small and u sufficiently large. We denote this point by s,. Using the fact that
9o (50, T) _ —H(T —5)" " (u— T — su) + 5(T*7 — s37)) — (T — 5) " (n — Hsp' )

= == 0
z (= (T = s0) 3T = )2 |

we have that

1
u 1 4 w(l—H) 1 w(l—H) 21 1
= | — ,TQH 1 LA —— g2 P 7 ~ T1-—2H 1—2H |
Su (T + 5 + 17 + o7 Su T v u

Next we show that the maximizer of o;f (s,t) is (sy,T) for 0 < H < % and u sufficiently large. Observe that

ou(s,t) b (s,T)—of(su,T) | 0f(s,T) —0ai(s)

1— —
o (5u,T) od (54, T) o (5u,T)

Direct calculation gives that, as u — oo,

TH
+ T ~
Uu (S’UM ) u I
10%} (s4,T) H(H —1)TH~2
+ _+ _ - u us _ 2 ~ _ 2
Oy, (S7T) Oy (S’U«7T) 2 628 (S SU) (1 +0(1)) 2 (S Su) ’
+ H—-1
i) ot = 22D ooy~ Ty, o
u
Thus we have
ol (s,t) _ H(1-H) 9 H
1—01_1_(%771) = 7% (s — s4) (1+0(1))+?(T—t)(1+0(1)), u— 00,|s — sy|,T —t — 0.

The above local behavior implies that the maximizer of o, (s,t) is (sy,T') for u large and is unique. This completes
the proof. O

PROOF OF LEMMA 8.3.3 Let oy (s,t) := \/var(Bp (t) — B (s)). Observe that

UH(s7t) = |t - S|Ha
and

1 —Corr(By(t) — Bu(s), Bu(t') — Bu(s))
_E{(Bu(t) - Bu(s)) — (Bu(t') — Bu(s"))*} — (ou(s,t) —on(s't))?
20y (s, t)op (s, t)
E{((Bu(t) — Bu(t)) — (Bu(s) — Bu(s)))*} — (|t — s|" —|t' — &'|")?
2/t — s|H|t/ — s'|H
_ [t —t/2H 4 |s— s'|2H 4 (|t — s|2H 4 |¢/ — &'|2H — |t — s/|2H — |t/ — s|2H) — (|t — s|H — |t/ — &/|H)2
2t — s|H|t — s'|H '
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Using Taylor formula, we have that for (s,t) € [0,0,] X [T — dy, T], with lim, o 6, = 0 and u sufficiently large

|t— s|2H _ |t— s/|2H _ (|t/ _ S‘ZH _ |t/ _ S/|2H) 2H(‘91 _ S|2H_1 _ |91 _ s/|2H—1)(t_t/)
2H(2H —1)(0; — 02)* 1 2(s — s')(t — 1),

(HO5(t —t' — s+ 5'))?,

(It = sl = |t' = '|7)?
where 6 € (t,t'), 02 € (s,8') and 03 € (t — s,t' — s’). Moreover,

lim lim ||t —s|" —T"| = 0.
U—00 5,t€[0,6,, )X [T —84,T)

Consequently, for lim, . d, =0

1 — Corr (By(t) — Bu(s), Bu(t') — By (s'))
|s—s'|2H +[t—t/|2H
oT2H

—1/=0.

lim sup
W0 (5,8),(5",t')€[0,8u] X [T — 64, T

8.4.2 Appendix B

In this subsection we present some useful results derived in [60]. First we give an accommodated to our needs version
of Theorem 3.2 in [60]. Let Xy(s,?), (s,t) € [[;=; olai(u), bi(u)] with 0 € [],_; 5[ai(u),bi(u)], be a family of centered

continuous Gaussian random fields with variance function o,,(s,t) satisfying,

1-— t
0,4(0,0) = 1,and lim sup #(S;Bz —1/=0 (8.26)
U700 (5,)£(0,0),(s,) €Ty plas(w)ba(w)] | L0 4 1022

Iai(lw\ﬂl + +1bs (w)|72

with £; > 0,7 = 1,2, lim, 00 gi(u) = 00,7 = 1,2, lim,,_, 00 = 0,7 = 1,2, and correlation function

gi(u gz2(u
satisfying
1-C X t), Xu(s',t'
lim sup n?(u) orr - Z(S’ ) %(5’ ) _ 1| =0, (8.27)
W00 (5,8, (8"t ) E[Tiq plai (u),bi(w)],(s,t)#(s ') |s — s'|* + |t —t/|

with a € (0,2] and lim,,_,oc n(u) = .

We suppose that lim,_, "2(“)) =v; €[0,00],1 =1,2.

Lemma 8.4.1. Let X,(s,1), (s,t) € [[;=; olai(u), bi(u)] with0 € [[;,_; ylai(u), bi(uw)] be a family of centered continuous
Gaussian random fields satisfying (8.26) and (8.27).
i) Ifv; =0,i=1,2 and for i =1,2,

g (O @) e () (@20 £ 8 )

B R YL @) 7P A g

with —oo < y;1 < y;2 < 00, then

2

: [ dl_T (2™ s

i1

P sup Xu(s,t) >n(u) p ~ (Hay2)
(5,t)€lTi—y ola: (w),bi(u)]

ii) If v; € (0,00) and further lim, oo a;(u) = a; € [—00, 0], limy 00 bi(u) = b; € [0, 0], then

2

P {( per P Xu(s,t) > n(u)} ~ [ 2005 (las bi]) ¥ (n(w)),

€lli—y 2lai(u),bi(u)] =1

where

Pron(ai b)) = E {t w eﬁBam(t)—tla—wltI“} € (0,00), i=1,2.
€lai,04
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iii) If v; = 00,1 = 1,2, then

P sup Xu(s,t) >n(u) p ~ ¥(n(u)).
(s,;)€lT;=1,2[ai(u),bi(u)]

Next we give a simpler version of Proposition 2.2 in [60]. Denote by A(u) a series of index sets depending on u and
by [a1,a2] X [b1,b2] a rectangle with a1 < ag and by < be. Let X, 1 1(s,1),(s,t) € [a1,az2] X [b1,b2], (k,1) € A(u) be
a family of two-dimensional continuous Gaussian random fields with mean 0 and variance function 1. There exists
ng,1(u), (k,1) € A(u) satistying

nk’l(u)

lim su
D nk/l/(u)

U0 (K, 1), (K, 1 ) €A (u)

- 1‘ =0, lim inf ng; = o0, (8.28)
u—00 (k,l)eA(u)

such that the correlation function satisfies

. 2 1—Corr (Xu,k,l(57 t), Xu,k7l(8/7 t’))
lim  sup sup -
|5 _ S/|a1 + |t _ t/|a2

U0 (k1 EA(u) (5,6)A(s",t),(5,1),(s' /) E[ar,a2) X [b1,b2]

(ng,1(u))

(8.29)

where «; € (0,2],i =1,2.
Then Proposition 2.2 in [60] leads to the following result.

Lemma 8.4.2. Let X, .i(s,t),(s,t) € E, (k,1) € A(u) be a family of centered two-dimensional continuous Gaussian
random fields with variance function 1. Assume further that (8.28)-(8.29) hold. Then

I P {5000 rclo v ) Xura(s:t) > nea(u) 3y ([ar, az))Fay (b1, ba])| = 0

1m sup — o1 (lay,a oy , —

4S9 (A u) W (g1 () S

Finally, we display a lemma concerning the uniform double maximum, a simpler version of Corollary 3.2 in [60]. Let
E, be a family of non-empty compact subset of R? and A; C [0,S5]?,i = 1,2 be two non-empty compact subsets of
R?. Denote by Ag(u) = {(k1,l1,ko,12) ¢ (kiyl;) + A; C Ey,i = 1,2}. Let n(u) and ny, 4, (u), (ki, ;) + A; C E, be a

family of positive functions such that

lim sup
U0 (ki li)+AiE€EE,

— s 1’ =0,i=1,2, lim n(u) = cc. (8.30)
uU—r 00
Lemma 8.4.3. Let X, (s,t),(s,t) € E, be a family of centered Gaussian random variance 1 and correlation function

satisfying

51— Corr(Xy(s,t), Xu(s',t'))

—1l=o0
|s — s'|@1 4 |t — t/|*2

lim sup
U0 (s,0)#(s" 1), (s,8), (" ¢ ) EE

Moreover, there exists 6 > 0 such that for u large enough
Corr(Xy(s,t), Xo(s', 1)) > 6 —1,(s,t),(s',t') € E,,.
If further (8.30) is satisfied, then there exits C > 0,Cy > 0 such that for all u large

P {SUP(s,t)E(kl,ll)+A1 Xu(8,8) > My 1y (W) SUD (g 1) € (g 1)+ A Xu (S5 1) > Ny 1, (U)} <o
sup , <€,
(k1,l1,ka,02)EAo (), A; C[0,5]2,A; £0,i=1,2 e—el(F((k'l,h)+A17(k2,l2)+A2))% min(ay,ag) S4\P<nk17l1 s (u))

where

F(A’ B) = seziélr,ltfeB ||S - tHa Nyl k2l (u) = min(nkhh (u)vnkz,b (u))v

and € and Cy are independent of u and S.



Chapter 9

On Generalised Piterbarg Constants.!

9.1 Introduction

Let X (t),t > 0 be a centered Gaussian process with continuous sample paths and unit variance. Pickands’ theorem
(see [117, 17, 18, 119, 121, 118]) shows that for any 6 > 0,7 > 0 (set 6Z = R if § = 0),

P sup X(t)>up ~THasu?P{X(0)>u}, u— oo (9.1)
teu—2/2§ZN[0,T)

is valid, provided that the correlation r satisfies the Pickands condition
1—r(t) ~|t|*ae(0,2], t—0, r(t)<1, Vt>D0. (9.2)

Here the Pickands constant 3, s is given by the following limit

Ha,s = lim T_llE{ sup eW(t)} € (0,00), W(t) = V2Bu(t) — [t|*, (9.3)
T—oo tesZn[0,T)

where {B,(t),t > 0} is a standard fractional Brownian motion with Hurst index a/2 € (0, 1], i.e., a mean zero Gaussian
process with continuous sample paths and covariance function Cov(Bq(s), Ba(t)) = & ([t|* + [s|* — |t — s|a) , 8,0 > 0.
In the current literature, the only known values of J, s are for o = 1,2 if § = 0. Numerous papers have investigated
the problem of calculation of Pickands constants, with particular focus on the case of § = 0; see for instance [134, 89,
80, 55, 48, 70, 35, 76, 70, 77, 64, 44].

Let us consider a non-stationary centered Gaussian process Y (t) = (1 — t*)X(¢),¢ € [0,1]. In view of Piterbarg’s
theorem (see [119, 121]) we have that under (9.2) and for 6 =0

IP{ sup Y (¢t) > u} ~ ‘.PZDIP’ {X(0) >u}, u— oo, (9.4)
te(0,1]

with h(t) = t*, where for any § > 0

P o= lim E sup VRO L (0, 00). (9.5)
’ T—o0 tesZN|[0,T]

is the so-called Piterbarg constant; see also [88] for expressions analogous to (9.5) in the context of Pickands constants.
Due to the fact that Tz(g) = e*h(o)iPZ(g)_h(O), in the following analysis we focus only on the case that h(0) = 0.

So far in the literature only the case § = 0 has been considered. In particular, by [38], we have

1
PR =1+ =,
1,0 + R

1This chapter is based on L. Ba1, K. DgBicki, E. HasHoRrvAa, aNnD L. Luo (2018): ON GENERALISED PITERBARG CONSTANTS,
published in the Methodology and Computing in Applied Probability, Volume 20, 137-164.
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1 1
e | 1+—= 1.
Boo= g (11t 5

Besides the case h(t) = Rt®, Piterbarg constants have been introduced also for h(t) = Rt®/?; see [82].

In this contribution we show that for a general class of functions A and § > 0 constants in; s appear naturally in

whereas in view of [98]

the tail asymptotics of extremes of nonhomogeneous Gaussian processes (see Theorem 9.2.1) and provide regularity
conditions for h that guarantee finiteness of ng, s- Then we investigate Tg, s- As summarized in the following result
and shown in Section 4, for particular functions h one can derive the exact value of ?g’o. Hereafter ®(-) denotes the

distribution function of an N(0,1) random variable and I'(-) stands for the Euler Gamma function.
Proposition 9.1.1. We have

i) ?Qg = ﬁexp (7%2) + @ (%);

i) PEY = L+ Lexp (25 RY) Jo% oxp (S RA2 — RE%) de;

i) PEY =+ g7t o (k) o™ o0 (i + e = i ) e

iv) for h(t) = —t> + Rt* A € (2,00), R > 0

1
dx + —.

V2 a x2>
2

1 o0 1
Ppho— RT>(\—1 s
2,0 \/ﬁ~/0 exp< A( )( A )A 9

For the case of § > 0, general a€ (0, 2] or more general h is too difficult to derive (PZ, s explicitly. Therefore, in Section
2 we shall focus on upper and lower estimates for fPZ’ s+ Interestingly, we have the following relation between (PZ’ s and

Pickands constant:

Proposition 9.1.2. We have
PS> (eAR) Y H, 5, Y ae (0,2, R>0. (9.6)

Brief organisation of the rest of the paper. We present our main results in Section 2 followed then by the proofs in
Section 3. In Section 4 we display the proofs of Propositions 9.1.1 and 9.1.2. Section 5 gives additional bounds for

?533* and includes several illustrative graphs on the bounds of generalised Piterbarg constants.

9.2 Main Results

In this section we are concerned with two questions: Q1) what are the basic properties of generalised Piterbarg
constants 9327 s5» and Q2) do these constants appear in some asymptotic settings in analogy with the corresponding

generalised Pickands constants?

We begin with demonstration that generalised Piterbarg constants appear in the context of extreme values of non-

stationary Gaussian processes. We recall that following our notation §Z = R if § = 0.

Theorem 9.2.1. Let {X(t),t > 0} be a centered stationary Gaussian process with continuous trajectories, unit
variance and correlation function r(-) satisfying (9.2). Suppose that h is a continuous function such that h(0) = 0

and

lim@—oo lim@—o

- - (9.7)
t—oo t€l t—oo (€2
f0T80m€62>61>0, Foranyézo as u — 00
X(1) .
P — =2 Sy~ Ph PLX(0) > ul, s
{tesz%)u) 1+ u—2h(u2/ot) u} 0, sP{X(0) > u} (9.8)

where 0 < ?Zﬁ < o0 and Alu) = u_Q/a{(SZ N[0, Ny}, provided that lim,,_,o N, = 00 and N, = o(u®) with ¢ > 0
such that ceo < 2.
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Next we investigate properties of generalised Piterbarg constants T’;y s+ It turns out that the finiteness of fPZ’ s in the

case that 0 > 0 is established under weaker conditions on the function h compared to the case § = 0. In the following

proposition we present upper and lower bounds for TPZ’ s for some general h, which in particular, provides a sufficient

condition for finiteness of P! ;.

Theorem 9.2.2. Let h be an increasing continuous function such that lim,_ .o h(z)

Inx
i) If 6 € (0,00), then
a8 =

1 oo
Pph 5 < e MO 4 +g/ e M) dr < 0.
0

i) If 6 > 4= T(L + 1), then

1) If § =0, then

1 o0
Pph > —/ e M@ qg.
.0 = J1/a+1] (é + 1) 22/0+10 (L 41)

=1le (1,

In the case when h(t) = Rt* more precise upper and lower bounds are available as displayed by the next result, see

also Appendix.

Theorem 9.2.3. Suppose that h(t) = Rt*.
i) If0< A< a<l1, then

h Q1 N/a R\ a—1)yN*(14+R2yM 1
oo 21 y%(myl foehi/oamnyintinay ))
and in particular TZ,O >1+ Tl% forA=a <1.

i) If A\ > a>1, then

. (67 N a a— Ao
Pho < min ((1 + ﬁyl A ) el e=1)y )

andfPZ,ogl—ﬁ—%for)\:azl,

Remarks 9.2.1. In the [44] the generalised Pickands constants are discussed. These constants are defined by

. _
Heo o= lim —E{ sup VO
w.é T—oco T {teJZﬂ[O,T]

with W(t), t € R a stochastic process which determines an appropriately defined stationary Brown-Resnick process.

For a large class of Brown-Resnick stationary processes, we have W(t) = X(t)—02(t)/2,t € R where X is a centered

Gaussian process with continuous sample paths, stationary increments, X (0) = 0 and variance function o2(t),t € R,

see e.g., [96, 95].

The main challenge when dealing with Hy; ; is to show that it is positive. In contrast, for generalised Piterbarg

constants the main challenge is to show that they are finite.

Some extensions of the above results are possible by replacing W (¢) with a stochastic process W(t), which determines

the corresponding Brown-Resnick stationary process, and thus redefining the Piterbarg constant as

P = lim E sup RUORIOR
w.s {tE(SZﬁ[O,T]
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9.3 Proofs

PROOF OF THEOREM 9.2.2 The proof is similar to that of Proposition 3.2 in [57].
i) Since for any i € Z

E {exp(\/iBa(&') - (51-)&)} =1 (9.9)

we obtain

IN

N
Z E {eﬁBa (81)—(59)™ —h(51) }

1=0
N
Z o~ (61)
=0

< e hO) 4 1/ e MP) gy < 0,
5 Jo

E { sup e\/iBa(M)f(zSi)‘”fh(&i) }

i€{0,1,-- N}

where the last inequality follows by the assumption lim,_, }fl(lzx) =1le (1,00

ii) From (9.9) and the fact that for any ¢,k € N such that k > 4

E {exp (ﬂ(Ba(&) + B, (8k)) — (6)* — (5k)a> } _ e

2

by Bonferroni’s inequality

]E{ sup e\/§Ba(6i)—(6i)"‘—h(6i)}
i€{0,1,--,N}
_ / P {Fic(01,0 3y V2Ba(8i) — (50) — h(5i) > s} ds
R
N
> Z/ S}P’{\fB (87) — (6) — h(3i) > 5} ds
=0
N
Z / {\@Ba(éi) — (81)® — h(81) > 5,V2Ba(6k) — (6k)® — h(5k) > s} ds

Z
/]RSP{fB( §) — (80)° —h(éi)>s}ds

N—-1 N
Z > / {\@(Ba(ai) + Ba(6k)) — (86i)* — (k)™ — h(8i) — h(Sk) > 23} ds
1=0 k=i+1
N
ZE{exp (V2B (61) — (81)* — h(&))}
1=0
Nz:l i ]E{ f(Ba<6i)+Ba(61«))—(521‘)“—(M)‘*—h(si)—h(ék)}
1=0 k=i+1
:zN:e 62) Z Z 5("(k 7)‘* h,(éi)-}z—h(ék)
1=0 1=0 k=i+1
N N
ZZ@ hw)—( e~ 51)) Ze i (9.10)
1=0 1=0

where in (9.10) we set j = k — ¢ and use the fact that h(t) is an increasing function. Further, letting N — oo, we get

the lower bound.
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iii) For any ¢ € (0,00), we have

Pho>Phs>

In order to optimize the above, we note that % (1 — %4§F (é + 1)) attains its maximum at 6* = 21T (é + 1)

which is equal to implying

1 oo
:Ph —/ 7h(13)d
@0 = g1/atip (L +1) 22/ 41T (1 41) e

establishing the proof. O

PROOF OF THEOREM 9.2.3 We define next
V2

2
g(t) = gt + 7Rt%, t>0

and put K, (t) = ¢'(y)t + g(y) — ¢’'(y)y for the tangent function to g at y (y > 0). i) Since g(t) is concave for 0 < A <
a < 1, then K,/ (t) > g(t) for any y > 0. Using a geometric approach as in [46], we have (set Z(t) = V2B, (t)—t*— Rt*)

T(Iftg = E{ sup &Z®
’ te[0,00)
= / e"PS sup Z(t) > x pdx
—o0 te[0,00)

/ zIP’{ sup Z(t)>x}dm
te[0,00)

> 14 [ { sup (\@B(to‘) e RtA) > :c} dw (9.11)
0 te[0,00)

= T - ﬁx x

= 1+/0 e P{tes[g];;o)(B(t) g(t) > 5 }d
00 . \/>

> 1+/0 e P{tes[g]zo)(B(t)—Ky(t)) > 2x}dm

= 1 —|—/O { sup (B(t) — ¢'()t) > g(y) — ¢’ (y)y + x} i

= / e” exp ( g’ (y) (9(1/) -J Wy + ?1’)) da

_ 6—29 W (9(y)—g" (v)y)
G 29 (y) -
_ 1+%y1_x/a83(x/a—1)y*/“(1+R§y”°‘*1)’ (9.12)

where (9.11) follows by Slepian inequality (see e.g., [1] and note in passing that a remarkable extension of this

inequality for stable processes is obtained in [133]) and the fact that for any a € (0, 1]
Cov(B(tY), B(s“)) > Cov(Bu(t), Ba(s)).
Then for A = a, f]’gfg >1+ 4 =P, and for A < o we have

(t) >1 _ @ 1-xa, R(\/a—1)yM“(1+Rr/ay*/ ")
Dot = 1+ maxm(y), mly) = pry' % ’

where we used here that (9.12) holds for all y > 0.
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ii) Since g is convex for A > a > 1, we have that K, (t) < g(¢) for any y > 0. Using the same reasoning as i), we have

?fjtg =1 +/ e*Pq sup Z(t) >z pdx
’ 0 te[0,00)
< 1+/16WD sup (V2B(t) —t* — Rt®) >z p dx (9.13)
0 te(0,00)
= 1+/ e"P< sup (B(t) —g(t)) > ix dz
0 te[0,00) 2
00 " \[
< 14 e*P< sup (B(t) — Ky(t)) > —z ydz
0 te[0,00) 2
o 2
= 1+/)€W{ sup (B(t) —g'()t) > 9(y) — g'(y)y + }M
0 te[0,00)
V2(g' (W)y—9(1)) 00 V2
=1+/‘ &m+/ e’exp ( —29'(y) | 9(w) —9g' Wy + S | | dz
0 V2(g'(W)y—9(¥)) 2
— V206 Wy—9(w) 4 ;6—29’(y)(g(y)—g’(y)y)—ﬂ(\/ig’(y)—l)(g/(y)y—g(y))
V2¢'(y) — 1
_ Meﬁ(g’(y)y—g(y))
V2g'(y) =1
(e A
- (1 444,14A/a) R(\/a=1)y 14
(1+ 5 )e , (9.14)
where (9.13) follows by Slepian inequality and the fact that
Cov(B(t*), B(s%)) < Cov(B4(t), Ba(s))
for a > 1. Then for A = a, Tg’tg <1+ 4 =Pf%, and for A > o we have
h(t . « “MNa — Ao
fPerO) < min (), fly)= (1 + ﬁyl M )eR(’\/ Dy,
where we used that (9.14) holds for all y > 0. O

For notational simplicity we shall denote in the following

where h is a continuous function, K is a compact set and § > 0. Analogously, let

U’g’é(K) = ]E{ sup eW(t)_h(t)} ,

tedZNK

Has(K) = E{ sup eW(t)} .

teSZNK

It is straightforward that P% ;(K), Ha,s(K) € (0,00).

The next result is crucial for the proof of Theorem 9.2.1. Tt slightly extends Theorem 2.1 in [60] for the case that the

functional is the supremum.

Theorem 9.3.1. Let {£(t),t € R} be a zero-mean stationary Gaussian process with continuous sample paths, unit

variance and correlation function r(-) satisfying (9.2). Let h(t) be a continuous function with h(0) =0 and S,,u >0

be some countable index set parameterised by w. If My (u),k € Sy,u > 0 is such that

My (u)

u

lim sup
U= keSS,

e

then for b ={0,1} and any compact set K 5 0, we have

2 72/0%
lim sup \/2ka(u)eMk(“)/2P{sup fu )

U= kS,

tex 1+ bu=2h(t)

(9.15)

>Mﬂm}—mﬁKﬂ:Q
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with

Ph (K fb=1
Ry (K) = E{ sup eW<t>bh<t>} _ ) PaolK) Z_f ;
tenk HaolK) ifb=0.

PROOF OF THEOREM 9.3.1 The proof following the same ideas as in Lemma 6.4.1. In fact here is a special one

dimensional case of Lemma 6.4.1 with A = 2/a. O

PROOF OF THEOREM 9.2.1 Below S,Q;,i > 1 are positive constants. Set o, (t) = (1 + h(u*“t)u=2)~" and recall
Au) = u=2*Z N[0, N,]}.

Further for v > 0 we define

m(u) = ]P’{ sup X (t)oy(t) > u} ,

teA(u)

Ii(u) = [kS, (k +1)S]u™%*, keN,

¥ = |2 o

Then for all u large In(u) C A(u) C UN(U) Iy (u). First, note that for any S; > 0 and u large enough

m(u) > P sup X))oy (t) >up, (9.16)
te[0,u—2/>S11NA(u)
N(u)
m(u) <P sup  X(H)ou(t) >up+ > P sup X(Hou(t) >up. (9.17)
telo(u)NA(u) 1 tel(u)
Using Theorem 9.3.1, we obtain for u large enough
P sup X(t)ou(t) > u P sup X (/1) >u
Oy = -
te[0,u=2/251]NA(w) tef0,51)nsz 1 +u=2h(t)
~ E sup eV2Ba(t)=[t|* —h(t) W (u)
t€[0,51]NdZ

= Pos([0.51])¥(u), u— oo,
and similarly as u — oo,

X( —2/O¢t) N
P sup X(t)ou(t) >u,p, =P sup - > U ~ P 500, S])¥(u). 9.18
{tefo(u)rm(u) (el } {te[o sinoz 1 +u=?h(t) (0. 5)¥(w) (9.18)

By (9.7), we have for all S large t < h(t) < t2,¢ € [S, 00). Further for all u large

telk(u

ZIP{ sup X(t)o ()>“} = Zp{tes}ipu)wf(l()lﬂ/“t)>u}

()
< ZIP’{ sup X(t)>9u(k)}
1 telo(u)
()
= Z P{ sup X(u=2/%t) > Gu(k) 5,
1 t€[0,5]

where G, (k) = u(1+u=2 infer, () h(u?/“s)), k € N. We have that

inf Gu(k)

1<k<N(u) U
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w(k
sup Su(k) < 14u? sup inf h(uQ/O‘S)
1<k<SN(u) U 1<k<N(u) $€Tk (v)
= 1+u? sup inf h(s)
1<k<N(u) $€EKS,(k+1)5]
< 14u? sup  s%
s€[S,N,+25]
< 1THu3(Ny+29)2 =1, u— 0.

= 0, and thus we can apply Theorem 9.3.1 which yields

Consequently, limy, o0 SUP << N (w)

N(u) N(u) 2
Z IP’{ sup X (t)oy(t) > u} < E{ sup eW(t)} ; m exp (— 9“2(k)) (14 0(1)),u — .

=1 tel (u) te0,S]

Further G2 (k) > u? + 2 (infye g, (o) R(u?/*s)) , and

N(w) N(u)
— inf h(u¥® = “enai "
;exp< selIri(u) (u 8)> k=1 eXP( Se[kslvr(lk“)sl (8)>
< e — lnf 561
= ; Xp( se[kS,(k-i-l)S]' | >
< ZeXp —|kS|)
< Qle_QQSl-

Hence for u sufficiently large

IN

N(u) 1 2 N(u)
ZIP’{ sup X (t)o ()>u} Ha0([0,5]) e~ T Zexp( inf h(u 2/a|s|)>

tel, (u) 27U Pt s€I, (u)

Q1Ha,0W(u)Se™ B (9.19)

IN

Inserting (9.18), (9.19) into (9.17) yields

lim sup ) Pr ([0, 8]) + Q1 Ha0Se~ 25" < oo,
U— 00 \I/(’LL) ’

and by (9.16), we have

lim inf m(w) >
u—oo W(u)

Pk 5(10,81]) >0

Letting S; — oo, S — oo we conclude that ‘PZ’(; € (0,00) and 7(u) ~ Tg}é\II(u).

Hence the proof is complete.

9.4 Appendix
9.4.1 Proof of Proposition 9.1.1

i) For ¢ an N(0,1) random variable and any T > 0, we have

TP%[O,T] = E { sup exp (\@t( —t? - Rt)}

t€[0,T]

= E{exp<(\fc4 R) )'O \/§C2R§T}P{O<\/542R§T}
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+E {exp(())‘\@g_R < O}P{\/ECZ_R < O}
+E {exp(\/icT—RT—TQ)‘\@CQ_R > T}]P’{\@CQ_R > T}

= L+ L+ 1

Letting T' — oo, we obtain

lim I e (vV2x — R)? z? 1 d 1 R?
im = xp| ——— |exp| ——= | —=dr = —=exp | ——
7o ! P 4 PN ) e T AR TP\ T )

R
V2
. R
pm I = @ ﬁ>
) ) e—RT .’E2
Jim Iy = lim e mexp<‘2)d‘”—°-

Hence the claim follows.

ii) First we note that the solution of equation v/2¢ —2t — 2 SRt 3 =0fort €[0,T)ist = f(—i— 33 R?— R %RQ + ?C

Define next

Since 0 < ¢ < T, then 0 < ¢ < v/2 (T n gRﬁ) implying that
P [0.7]
= E{exp(F(g,R)) ‘0 <¢<V2AT+ iR\/T)}IP’{O <¢<V2AT+ ZR\/:F)} +P{{<0}
+E {exp (\/§CT T2 RT%) ‘g > V2T + iR\/:F)} P {g > V2T + ZR\/T)}

= Il —|— 12 —|— 13.
Further, we have
1 27 o 9

lim ;, = — —-—R? — R%t* — Rt3 ) dt?
Toeo ! ﬁeXp( 1024 ¢ )/0 P (16R R ’

1
lim IQ = -,
T—o0 2

3 —/2T)?

lim I3 = lim —e 17 exp —w dx =0,
T—o0 T—o00 /2 ﬂ(T—&-%Rﬁ) 2

which establishes the claim.

iii) The function f(t) = V2t — t? — Rt attains its maximum at t* = 7%\;%, with

. 2 V20 2V/1+3V2RC 2(V/2+ 6V2R¢
CCR =)= —m 3 ¥ orme T 9R '

Since 0 < ¢t < T, then we can consider 0 < { < @ + V2T hence for any T > 0
P55 10,7]

- E {exp(G(C,R)) ‘o << R 3fRT2

+E{exp (vare -2 - rro)|¢ > V2R +\/§T}JP’{C > SR +\/§T}

+fT}P{0<<< 3fRT2+\[T}+IP{CSO}

2
=: Il +Ig—|—]3
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Since further Letting now T' — oo, we have

lim I 1 1 /°° 4 N 2t3 t2 pE
1m = ex ex — —
7o 6rym P\10sm2) J, TP\ 36mz T 27RZ T 18R2) "
1
lim IQ = =,
T— o0 2
1 2
lim Is = lim e~ RT? exp (_w) dx
T—00 T—oo /271 8VIRT? 2
= O,

which completes the proof.

iv) Let ¢ be an N(0,1) random variable. Suppose for a while that 0 < ¢ < ?T’\_l)\R. Then for A\ € (2,00) the
A
=1

-
function f(t) = v/2(t— Rt attains its maximum at point ¢* = (‘(—%) ™ and f(t*) = RT= (A—1) (@) ! implying

V2

1 2 A1
Pyo[0,T] = Eqexp | RT>(A—1) (‘G) ‘0<C§7T’\‘1)\R

xP {o <(< ?THAR} +P{¢ <0}

+E {exp (x/iTC - RTA) ’C > \fTHAR} P {g > ?THAR}

V2pA-1yp ﬁ 2
1 2
= —/2 exp Rﬁ()\—l) Q B
V21 Jo A 2
1 1 o0 x?
4o+ — ex —+T2—RTA> da
2 \/ﬂ/\fTA—l,\R—\/ET p( 2

V2pA-1yp =1 2

1 2 1 2z T
= — R0 -1 XE) I )4
Tw/o exp ( )( \ ) 5 | 4z

+1 + L exp (T? — RT?) (1 ) (fTHAR — \/§T>> )

2 Vor
Since
M% /OOo exp (RIIA()\ - 1)(@)ﬁ - 5”;) dzx
is finite and limp_, o exp (T2 — RTA) =0, then
Jim_P}0[0.7] = V%/Owexp (Rllx(A— 1)(*/3”7)% _ ””;) dr + %
Hence the proof is complete. O

9.4.2 Proof of Proposition 9.1.2

The proof is similar to that of Proposition 3.4 in [57], therefore we give only main steps of argumentation. For all

T > 0, we have

Tgf; > Tg,t;([o»T]) = E{ sup eW(t)Rt’\}
t€82n[0,T)

E sup eW(t)fRT*
t€82N|[0,T]

Has([0,T])e BT

%
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Consequently,
T};{t; > sup }Ca,é([&T])Te—RT*)
’ >0 T
. Has([0,T7) —RT

> )

2 T T

> Mo ssupTe 17,

T>0

where the last inequality follows from the subadditivity of H, s([0,T7]).
Since sup,q ze B = (eAR)™% the proof follows easily. O

9.5 Appendix: Bounds for (ng; and Graphical illustrations

This section is dedicated to the special case when o = 2, § = 0, and h(t) = Rt*. Although it does not seem possible

to have tractable formulas for Tﬂ;, nonetheless we derive several upper and lower bounds for ?gjf;.

Theorem 9.5.1. i) For all A € (0,1) and R >0

Rt 5 o (LR R [ V2 (B 1 _r_p
‘PQ,O > (\/5 +e > R 73 Rﬁe
i) For all A € (1,2) and R > 0
R 1 (1+ R)A
Rt > 2 A(z) - —-R _ _
PR > @/o eA)dz 45 +e [q» (vV2R) <I>< 7 \/i)]

—&-\/% [1-o(V2RO+R)|,

PR L, [1+R |, (VEA+R) +VR) 1
20 2 R

V2 2
where A(x) = ((1 + R)/\)ﬁ (1 — %) (\@I)ﬁ -z,
ii1) For all A € (2,00) and R >0

n LI JOREY NV ES )

Ry/m

IN

oo 1, [T+R I\ e[ (QHRA S\
N o (V2RO + ) 3) e e (g V2] - @ (V2R)
L [ aw
+— e\ dx,
V2 %
P 1 1+R BA-=2 A A1
PHE < §+,/T[1-@(22<A—2>AH(A—1)A—2 R(1+R))]

1 (1+R)2%Aﬁ(/\fl)% i)
+— e\ dx.
\/2%/0

PROOF OF THEOREM 9.5.1: Recall that

PR ([0,T]) = E { sup eﬂBz(o—t?—Rt*} S P, T 0.
te[0,T]

For any u > 0,7 > 1 and ¢ an N(0,1) random variable, we have that sup,c( 1 (\/532 (t) —t? — Rt’\) has the same

distribution as

sup (\/§Ct — 12— Rt’\) = max ( sup (\/igt — 12— RtA), sup (\@Ct 12— Rtk)> .

te[0,T] te[0,1] te[1,T)
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HDIfO0O<A<1landT > 1, then

sup (\/5(75 —t? - Rt’\) > max < sup (\/§Ct —t— Rt’\), sup (\/igt —t? - Rt)) .

t€[0,T] teo,1] te[1,T)

For m(t) = v/2(t —t — Rt*, we have m/(t) = v/2( — ARt*~! — 1 = 0. Hence m(t) decreases in (—oo, ;] and increases
in (t1,00) with

o (V2T

T RA

It follows that h(t) = v/2(t — t?> — Rt has a unique maximizer t, = @ on [0,T]. Further, for T > 1

te(0,1] te[1,T]

max < sup <\/§§t —t— Rt)‘>, sup (\@Ct —t? - Rt))

1+R
0, lfCG ’ﬂ]a\f
14 2
V2¢ - (1+R), if ¢ € (2, V2 + PR,

/\/\/\/-\

| e if ¢ € (V4 LR VAT + §))
V2T — RT -T2, if (e (V2T + £),00)

implying that for any 7" > 1

] \/§Ct7t7Rt”\) »SUP4 g1, 7] (\/ictfﬁth))

max | Sup;¢(o,1 (
?Rtk([O,T]) > Eqe ( : =:In1 + o + Iz + 14,

where

Iy = E{exp(O);<< HR} =<I>(1+R>7

I, = E{exp(ﬁ(—(1+R)) 1+ i C<\f+fR}

V2+2R 9
_ (z - V2) .
= \/ﬁ/ Rexp(— 5 )dm—eR
Ly = E{ex (o R R)>;\/§+‘f3<<sﬂ(:r+§>}
_ 1= [ ~(&+R) _e—(T-&-%)R}
NG ’
114 = E {exp(\@CT — RT — Tz); \/§(T + g) < C}

1 /oo ( 1 2 —RT
= — exp | —=(z —V2T)> = RT | dz = e 1-®
V2m Jar+ ) 3 ) 2

Therefore, for any 0 < A <1 and T > 1, we get

S
=y
N——
N——

PES([0,7)) > @(1;;>+e3

o (1o (21))

Letting T' — oo establishes the proof.
i) If 1 < A< 2and T > 1, then we make use of the following bounds

t€[0,T) te(0,1] te(1,T)

sup (ﬁgt —t? - Rt’\) > max ( sup (ﬁgt —th — Rt’\), sup (\/ict —t2 - Rt2)> ,
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te[0,T]

First, we calculate the lower bound of 3’;

V20t —t* — Rt g(t) = V2(t — 17

Set f(t) =

£ =

then f'(t3) = ¢'(t4) = 0 for t3 = {ﬁ}ﬁandu:

sup (\/§(jt —t? - Rt’\) < max ( sup (\/ﬁgt —t? - Rt2), sup (\/5(1& —t? - Rt)> .

te[0,1] te[1,T]

P for1<A<2 R>0.
— Rt2. Since

V20— X1+ R =0, ¢'(t)=vV2—-2(1+R)t=

V2
d+R)x 2(1+§%)’

147

respectively. Moreover, f(t) increases in (—oo,t3] and

decreases in (t3,00), implying that ¢3 is the unique maximizer of f(-) over R. Similarly, ¢4 is the unique maximizer of

g(-) over R. Hence

sup f(t) =1 D(Q),
te0,1] \/EC—

where D(() :=

sup g(t) =

te[1,T)

Further, for T > 1

[(1+ RN (1

0, if ¢ € (—o0,0],
: (1+R)A
if ¢ € (0,=7%~],

ife ((H\r/g)/\,oo),

(1+ R),

%) [\/5{]ﬁ and

if ¢ € (—00,v2(1+ R)],
if ¢ € (V2(1+4 R),v2(1 + R)T),
if ¢ € (V2(1 + R)T,00).

V20 - (1+R),

2(1+R)’

V2T — (1+ R)T?,

max [ sup (x/i(t P Rtk), sup (\fzgt 42 Rm))

Consequently,

PE([0,T]) >

where

te[0,1] te(1,T]

0, if ¢ € (—o0,0],

D(Q), if ¢ € (0, L2,

V2~ (1+R), if ¢ € (L5222 V2(1 + R)],
TR ifCG(\f( R),V2(1+ R)T],
V20T —T? — RT?, if ¢ € (vV2(1+ R)T, ).

E {exp (max < sup (\@Ct —th — R1€)‘>7 sup (\@Ct —t? - Rt2)>> }
te[0,1] te(1,T)

Iz1 + Iog + Iog + T4 + Ios,

Iy = E{exp(0);( <0} =
L, — ]E{eD“);0<<<<1T/§)’\}:\/12? 0(1?}? A g,
Ly = {expfg 1+R));(1+\/§)>\<C§ﬂ(1+R)}
_ \T R/ﬂf};ﬂefdx:ef* {cb (\/51%) —<I>((1 ;?A —ﬁﬂ
Ly = { <1+R>\T(1+R)<<<\T( )T}
- f¢ij2p<<ﬁmﬁﬁx
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B /R+1

E {exp(\ch — T2~ RT?);¢ > V2(1 + R)T}

1+ R)T)

It follows that for 7" > 1

PR ([0,T]) >

27r

—i—\/% {cp ( 2R(1 +R)T)

Hence the lower bound is obtained by letting T' — oo.
Similarly, we obtain for any 7' > 1

( 2R(1 + R))} :

L _Rre /OO ( L 2 —RT?
— exp (—=(z —V2T)? ) dz =e 1-@
V2w VI(1+R)T 2( [

eA®) da + ; +e R {(I) (\@R) c1><

—c1>( 2R(1+R))] +e

(1+ R)A

On generalised Piterbarg constants

(vV2rr)].

o (v2rr)|.

max < sup (\/§Ct —t? - RtQ), sup (\/5(15 —t? - Rt))
t€[0,1] te[1,T]

0, if ¢ € (—00,0],

B 2(1CjR)7 lfC c (0 1+R+\/1+7R]

o (\/§§4—R)2’ if C c (1+R+m f 2T + )]
V20T —T? — RT, if ¢ € (vV2(T +

implying that

P (0,7]) <
=: I3y + Izp + I33 + I34,

where

I3y = E{exp(0);¢ <0},
2
= e (g0 <o A

) OO),

E { max (SuPte[o,l] (\@tht'l-’,l’:x{ﬂ)7 SUP (1,7 (\/igtft?,Rt>> }
(&

_ 1\/1TR/W” ﬁd_wTR
= o r exp 5 T = I

1+R+V1+R
V2

I3z = E{GXP<(\@<4_R)2>§

!

<<sf2<T+§>}

VRO TR +\/R> - 1]

NG 2

2T R2
= / +3) e ,iR + R72 de = £° [ - &(1+R+VIFR) _ efR(TJr%)}
\/ﬂ 1+R+\/7 4 Rf ,

I3y =

E{exp(\@CT—TQ—RT);\[(T—F )<C}

1 /°° ( )
= — exp ( V22T — T
V2T ST+ E)

e~ BT oo 22 BT
= o7 Jup exp (—2> dr =e

2
—RT—Z) dz
1_¢<Rf>

VRO +R)+VR
V2

Hence, we get

1 1+R
stV R |®

PN ([0,7]) <

1

2

|
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™

RV3
1“1’<2>

The proof is established by letting T' — oc.
iii) If A > 2 and T > 1, then we shall use the following bounds

te(0,T] te[0,1] te[l,T

te[0,T] t€[0,1] te[1,T)

It is straightforward to check that

sup (\/igt —t? - Rt’\) < max ( sup (\/igt —t* — Rt)‘), sup (\/Egt —t? — Rt?

sup (\/§Ct—t2—Rt>‘) > m X(sup (\f(t—tz ), sup](\fCt—tA Rtk)>,

)

where we put D(¢) :=

where

Iy

I3

I44

Iy

max ( sup (\/iCt Rt2), sup (\/i(f —tr — Rt)‘>>

tef0.1] te[1.7]
0, if ¢ € (—00,0],
S if ¢ € (0,v2(1+ R)],

={ V2 - (1+R), if ¢ € (V2(1+ R), SE22],
D(Q), if e (LR (A,
VAT — T - RT*, if ¢ € (AT o),

V2

[(1+ R))\]ﬁ (1-1%) [\/i{]ﬁ Consequently,

2 2 A A
PR ([0,7]) > E{(”(“ R R LR )>}

=: Iy + Lyo + Ius + Isg + Iys,

= E{exp(0):¢ <0} =5,
= E{exp <2(1ij> 0< (< x/§(1+R)}

_ \/%/ Ve <2(f—i2}2))dxﬁ<¢( 2R(1+R));),

— B{on(VE - (1+ R VAL+ B) < ¢ < U2
(1+R)A

_ 1 R VO x R 2
- ~R % R R A PY (R LA B
- et o (R e) e (V)]
_ D¢ 1+R <<§(1+]~3§T’\1}7
= [Eqexp( \[CT T — RTA);C>(1+R\}§TH}
_ o1 =T —RT* o e (_1($_\/§T)2> dx

\/T [1+R)\>§T 2

= I*-T'-RT’ [1 ) <(1 H%TA1 - \@Tﬂ .

149
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It follows that

PR ((0,T)) > %+ \/? <q> ( 2R(1 +R)) - ;) e R {cp (“*\/?A - \/Q) - (\/iR)}

(1+RrR)AT* 1

1 vz 1 TA-1
+— eA@) gy 4 T =T—RT* [1 - (( + R)A — \/iT)] )
Vo athx V2

\

Hence the lower bound is derived by letting T — oc.
Next, we get that

max ( sup (\@Ct i Rt*)7 sup (ﬁct - Rt2)>

te[0,1] te[1,T)
0, if ¢ € (—o0,0],
) D(9), if ¢ € (0, BJ,
) i if ¢ € (B,v2(1+ R)T),
V2(T —T? — RT?, if ¢ € (V2(1 + R)T, o),

D(Q) = (1 + RN ™ (1—><f<> Bim (14 REBads (- it

Consequently,

N max (SuPte[OJ] (\/ﬁg‘t_tk_Rt*» SUPse1, 7] (\/5{15—9_1%2))
P ([0,T]) <ESe =: Is1 + Iz + Is3 + Isa,

where
1
I = E{esp(0)i¢<0} =3,
Iy = { D(©), o<<<B}
¢ NG
Iss = E —— |;B <V2(1+R)T
: {e"p< Trm) B <A T
RIYES [ VARGRT (-2)
= 1 exp | —— | dx
\/ 22(>\ 2) 22— >\ )>\72 R(1+R) 2
1 3A—2 A—1
- \/%R [@ ( 2R(1 + R)T) ) (2ﬁAﬁ(A )3 RO R))] :
Iy = E {exp(\@cT T2~ RT?);¢ > V2(1 + R)T}
2 o0 2 2
= ! e BT / exp T ) g =BT [1 - (\/iRT)} .
2w VZRT 2
Hence
A 1 1 3x-2 A—1
PE(0.T) < 5+ M%R [cp ( 2R(1 + R)T) ) (2mxﬁ(x )3 RO R))}
1 [P, >
1 (2) ~RT* [ _
—I—m/o e\ dx + e [1 <I>(\/§RT>}
and thus the proof follows by letting T' — oc. O

We conclude this section with some graphical illustrations of bounds obtained in Proposition 9.2.2 and Proposition
9.2.3.



Appendix: Bounds for (Pé%A and Graphical illustrations 151

14}
12}

101

#3/2

Pio P20

In Fig.(a) we plot a lower bound of ngTO for A € (0,1] according to the case 6 = 0, Proposition 9.2.2 ii). The exact

values of P4 , ‘.]333762 are taken from Proposition 9.1.1 i), ii). It follows that ngﬁo tends to infinity when A tends to zero.

| — — upper bound of P}, | ~ — upper bound of P

; L |
lower bound of P}, 9 ‘

lower bound of P_ﬁ;

10»3 1 ] "
— — upper bound of P,’is “‘ — — upper bound of i
o lower bound of PL'\,, o “u lower bound of Py
|
8r 8r 1
|
7 s |
I
(1
6L 6r \‘\
|
5 5 “ |
|1
K
4r 4 |
‘\ \
L L |
3 3 \ ;
\ v
2r 2r \
\
\
1r 1F N
0 I | I I Ly 0 I I el e e F T e >
0 0.1 0.7 0.8 0.9 1 0 0.1 02 03 04 05 0.6 0.7 08 09 1

In Fig.(d) and Fig.(e) we give the upper and lower bounds of fP’f5 and T’fs, respectively.
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30A 5£

1, (Mo

251

20

15+

101

o 01 02 03 04 05 06 07 08 09 1 12 3 4 5 6 71 8
Ma Ma
®) (2)

Let
= X =N a <A/a—1)y”“(1+A/awa*1))
fi(A/a) 1+r;1§3<(Ay e

and
f2(Aa) = min ((1+ %y—k/a) (a- Y,

In Fig.(f) we give a lower bound of fPf;,O according to Proposition 9.2.3 i) and exact value of P{ ; for 0 <A <a < 1.
The lower bound of fPf):O tends to infinity when A\/a goes to 0 and is decreasing when A/« goes to 1. In Fig.(g) we
give an upper bound of ngfO according to Proposition 9.2.3 ii) and exact value of Téﬁo, fP’;:O for A > a > 1. The upper

AL .
bound of P!, is increasing when A/« becomes large.

14A
W)
12+ f)\
— )
10+
o
o
o
20 - — _ _ _ _ _ S,
0 0.1 0.6 0.7 0.8 0.9 1

In Fig.(h) we compare f3(A) = 1+max;>o (%yl_’\@(’\_l)yk(“)‘ykl)) which is the lower bound of fPtl?O from Proposition
9.2.3 i) and f4(\) = & [¢° e~ dx which is the lower bound of U’tﬁo from Proposition 9.2.2 iii). The lower bound
given by Proposition 9.2.3 i) is more precise, while Proposition 9.2.2 iii) holds for general h. Both lower bounds go

to infinity when A goes to 0 and are decreasing when A goes to 1.
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