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Abstract. We generalize and sharpen results of Burkard and Fincke concerning the
asymptotic behaviour of a certain class of combinatorial optimization problems with
bottleneck objective function. In this way several open questions are answered.

1. Introduction

Let us consider a family (Pn), n ∈ N of combinatorial optimization problems defined on
finite ground sets En. For each n ∈ N, the feasible solutions of problem Pn are defined by
a non-empty class Sn of subsets of En. A feasible solution S is therefore a subset of En.
Let |Sn| denote the cardinality of Sn and |S| the number of elements e ∈ En belonging to
S. Let furthermore fn : En → R+ be a weight function. The bottleneck problem is now
to find

(1) Fn,min = min
S∈Sn

max
e∈S

fn(e).

We will consider this class of generalized combinatorial optimization problems in a prob-
abilistic framework, i.e. the weights fn(e) are assumed to be random variables on some
arbitrarily large finite interval [0,M ] (problems of the form F ∗

n = maxS∈Sn mine∈S fn(e)
can be treated similarly and will not be mentioned in the sequel). Throughout the paper
we will assume that |S| = sn for each S ∈ Sn (i.e. every feasible solution of Pn has the
same cardinality sn) and limn→∞ sn = ∞, limn→∞ |Sn| = ∞. Let (T) denote the class
of optimization problems for which the relative difference between the worst and the best
objective function value tends to zero with probability tending to one as the problem size
n approaches infinity. In such a case every feasible solution is asymptotically optimal and
the problem of finding the optimal solution becomes in some sense trivial for large in-
stances. In particular, for optimization problems of class (T), simple heuristics will incline
to give good solutions for high-dimensional problems (note that some of the elements of
(T) are known to be NP-hard!).
There are many combinatorial problems that belong to class (T) (such as the quadratic
bottleneck assignment problem (QBAP) (cf. Section 3), location problems on graphs and
network flow problems (see e.g. [4, 8])). The linear bottleneck assignment problem is not
an element of (T) (cf. [6]). Burkard and Fincke [4] have shown the remarkable result
that under mild probabilistic assumptions on the random variables, bottleneck problems
of type (1) belong to (T) if

(2)
log |Sn|

sn
= o(1)
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holds (see also [8]). As a by-product of this note it is shown in Remark 1 that criterion (2)
is sharp in the sense that no weaker version of (2) can serve as a sufficient condition for
a bottleneck problem to be an element of (T), which answers an old corresponding question.

In order to apply the property of asymptotic optimality of any greedy solution in practice,
it is of course important to know the rate of convergence of the relative error. In [3],
Burkard and Fincke have derived a bound on the convergence rate of the relative difference
between the best and the worst feasible solution for the QBAP. In Section 2 we sharpen
and generalize their approach and derive rather tight upper bounds on the convergence
rate for arbitrary bottleneck problems and arbitrary bounded distributions for the random
variables fn(e). As a by-product, their bound for the QBAP can be improved.

Given some rather weak combinatorial and probabilistic assumptions, condition (2) is also
known to be a (sharp) sufficient condition for optimization problems with sum objective
function to belong to (T) (cf. [4, 5, 7]). For a recent thermo-dynamic approach to this
phenomenon, we refer to [1].

2. Main Result

Theorem 1. Let fn(e) for all e ∈ En and n ∈ N be identically distributed random variables
in [0,M] and assume that fn(e), e ∈ S are independent for every fixed feasible solution
S ∈ Sn, n ∈ N. Let furthermore

(3) log |Sn|+ sn logP
(

fn(e) ≤ M

1 + g(n)

)
−→ −∞ as n →∞

for some positive function g(n). Then

(4) P
(

Fn,max − Fn,min

Fn,min
≤ g(n)

)
= 1− o(1),

where Fn,max = max
S∈Sn

max
e∈S

fn(e) is the worst possible solution of Pn.

If furthermore

(5)
∞∑

n=1

|Sn|
(
P(fn(e) ≤ M

1 + g(n)
)
)sn

< ∞,

then Fn,max−Fn,min

Fn,min
≤ g(n) holds almost surely, or equivalently

(6) P
(

Fn,max − Fn,min

Fn,min
> g(n) infinitely often

)
= 0.

Proof. It suffices to show that

P
(

Fn,min ≤ Fn,max

1 + g(n)

)
= o(1).

Since Fn,max ≤ M , we have
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P
(

Fn,min ≤ Fn,max

1 + g(n)

)
≤ P

(
Fn,min ≤ M

1 + g(n)

)

= P
(
∃S ∈ Sn : max

e∈S
fn(e) ≤ M

1 + g(n)

)

≤ |Sn|
(
P(fn(e) ≤ M

1 + g(n)
)
)sn

(7)

= exp
(

log |Sn|+ sn logP
(

fn(e) ≤ M

1 + g(n)

))
,

and assertion (4) follows from (3).
Since the Borel-Cantelli lemma (see e.g. [2]) ensures P(An infinitely often) = 0 for arbi-
trary events An given that

∑
n P(An) converges, (6) finally follows from (5) and (7). 2

An obvious necessary requirement on the distribution of fn(e) for (3) to hold is that
P(fn(e) ≤ M

1+g(n)) < 1 for finite n.

Remark 1: If we choose g(n) = ε, then Theorem 1 can be used to determine whether a
given bottleneck problem belongs to (T), which is equivalent to the fact that (4) holds for
every ε > 0 (cf. [4]). Since M is the supremum of fn(e) for all n ∈ N, e ∈ En, the constant
P(fn(e) ≤ M

1+ε) gets arbitrarily close to 1 for small ε > 0. Hence (2) is a necessary and
sufficient condition for (3) to hold for arbitrary ε > 0. However, Theorem 1 relies on the
generous estimate (7) and one might wonder whether a weaker condition than (2) could
suffice to imply (4). The following counterexample shows that this is not possible:
Let En = {1, 2, . . . , n2n} and partition En into 2n blocks of length n. These disjoint
blocks are the feasible solutions S ∈ Sn. Let the weights fn(e), e ∈ En be independent
random variables with uniform distribution over [0,1]. We have |Sn| = 2n, sn = n and thus
log |Sn|

sn
= log 2, a constant. But P(Fn,max ≥ x) = 1 − xn2n

= 1 − o(1) for each x ∈ (0, 1)
and P(Fn,min ≤ x) = 1 − (1 − xn)2

n
= 1 − o(1) for each x ∈ (0, 1), from which it follows

that this bottleneck problem does not belong to the class (T). Hence, the combinatorial
condition (2) can not be improved.

3. Application of Theorem 1

The main purpose of Theorem 1 is to provide a satisfying bound g(n) = o(1) for the
convergence rate of the relative difference between the worst and the optimal solution for
any bottleneck optimization problem in (T). By virtue of (3), the best possible bound
that can be achieved by relying on the estimate (7) can be determined. Qualitatively, the
faster the growth of sn, the stronger the convergence rate that can be guaranteed. For
instance, if we assume that the random variables fn(e) are uniformly distributed on [0,1],
condition (3) reduces to

log |Sn| − sn log(1 + g(n)) −→ −∞ as n →∞.

Example: Let us consider the quadratic bottleneck assignment problem (QBAP) defined
by

FQ
n,min = min

ϕ∈Sn

max
1≤i,j≤n

aijbϕ(i)ϕ(j),
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where Sn is the set of all permutations of {1, . . . , n} and A = (aij) and B = (Bij) are two
n×n matrices. This problem is NP-hard, but it belongs to (T), since |Sn| = n! and sn = n2

and thus (2) holds. Under the assumption that for n ∈ N, aij , bkl, i, j, k, l = 1, . . . , n are
independent uniform [0,1] random variables, Burkard and Fincke [3] have shown that (4)
holds for

(8) g1(n) =
1√

n
2 log n − 1

.

We can now use our general approach to check whether this bound can be improved.
From the specific structure of the QBAP it follows that the random variables fn(e) are
the product of two independent uniform [0,1]-variates, i.e. P(fn(e) ≤ x) = x(1 − log x)
(0 ≤ x ≤ 1). Thus condition (3) can be rewritten as

log n!− n2 log(1 + g(n)) + n2 log(1 + log(1 + g(n))) −→ −∞ as n →∞.

An asymptotic expansion gives

(9) n log n−n+
log n

2
−n2

(1
2
g2(n)− 5

6
g3(n)+

29
4

g4(n)+O(g5(n))
)
−→ −∞ as n →∞,

from which it follows that the optimal dominating asymptotic order of g(n) is determined

by n2

2 g2(n) = n log n, i.e. g(n) =
√

2 log n
n . Since an asymptotic expansion of (8) gives

g1(n) =

√
2 log n

n
+

2 log n

n
+O

((
2 log n

n

) 3
2

)
,

the dominating asymptotic term of the bound (8) found by Burkard and Fincke is optimal.
However, asymptotic terms of higher order can be considerably improved. A detailed
analysis of (9) gives the bound

g2(n) =

√
2 log n

n

(
1− 1

2 log n
− 1

8(log n)2
+O

( 1
(log n)3

))
,

where the constants in the higher order terms are optimal. Since the asymptotic behaviour
of (9) with g(n) = g2(n) is given by − n

8(log n)2
+O( n

(log n)3
), we can apply the Borel-Cantelli

lemma to obtain the stronger result

Corollary 1. For the QBAP as defined above we have

FQ
n,max − FQ

n,min

FQ
n,min

≤
√

2 log n

n

(
1− 1

2 log n
− 1

8(log n)2

)
almost surely.
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