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i Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano Switzerland 
j Cellular and Molecular Cardiology, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland 
k Center for Molecular Cardiology, Zurich, Switzerland 
l Gastroenterology and Hepatology, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland 
m Department of Health Sciences and Technology (D-HEST) ETH Zurich, Zurich, CH, Switzerland 
n Department of Environmental Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China 
o Department of Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, People’s Republic of China   

A R T I C L E  I N F O   

Handling Editor: Adrian Covaci  

Keywords: 
Biological age 
Endocrine-disrupting chemical 
Phthalate 
Paraben 
AGE-RAGE signaling pathway 

A B S T R A C T   

Introduction: Although previous studies investigated the potential adverse effects of endocrine-disrupting 
chemicals (EDCs) on biological age acceleration and aging-related diseases, the mixed effect of multiple types 
of EDCs on biological age acceleration, including its potential underlying mechanism, remains unclear. 
Methods: Data from the National Health and Nutrition Examination Survey (NHANES) were used to analyze 
biological age measures, including Klemera-Doubal method biological age (KDM-BA), phenotypic age, and ho-
meostatic dysregulation (HD). Weight quantile sum (WQS) regression was performed to screen biological age- 
related EDCs (BA-EDCs) and assess the mixed effect of BA-EDCs on biological age acceleration and aging- 
related disease. Targets of BA-EDCs were obtained from three databases, while heart aging-related genes were 
obtained from the Aging Anno database. Protein–protein interaction (PPI) network and MCODE algorithm were 
applied to identify potential interactions between BA-EDC targets and heart aging-related genes. Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to identify 
related pathways. 
Results: This cross-sectional study included 1,439 participants. A decile increase in BA-EDCs co-exposure was 
associated with 0.31 years and 0.17 years of KDM-BA and phenotypic age acceleration, respectively. The mixed 
effect of BA-EDCs was associated with an increased prevalence of atherosclerotic cardiovascular disease 
(ASCVD). Vitamins C and E demonstrated a significant interaction effect on the association between BA-EDCs and 
KDM-BA acceleration. PPI network and functional enrichment analysis indicated that the AGE-RAGE signaling 
pathway in diabetic complications was significantly enriched. 
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Conclusion: Our results showed that the co-exposure effect of BA-EDCs was associated with biological age ac-
celeration and ASCVD, with the AGE-RAGE signaling pathway being the underlying mechanism. Vitamins C and 
E may also be an actionable target for preventing EDC-induced biological aging.   

1. Introduction 

Aging is a process characterized by time-related deterioration in 
body homeostasis, and it is a major risk factor for the development of 
various diseases, including cardiovascular disease. (Pietri and Stefana-
dis, 2021) Though aging is an inevitable process, there is an incongru-
ence between chronological age and aging rate. (Ferrucci et al., 2018) 
Therefore, the concept of biological age has been introduced to reflect 
the actual state of aging for each individual. (Franceschi et al., 2018) 
Klemera-Doubal method biological age (KDM-BA), phenotypic age, ho-
meostatic dysregulation (HD), epigenetic age, and telomere length are 
very commonly used biological age metrics that can effectively reflect 
the actual status and rate of individual aging, each with its own focus 
and advantages. Specifically, the first three of these biological aging 
metrics have been constructed using clinical biomarkers. For instance, 
KDM-BA corresponds to the chronological age at which the physiology 
of an individual would be approximately normal, (Kwon and Belsky, 
2021) while phenotypic age corresponds to the chronological age at 
which individual mortality risk would be approximately normal in a 
reference population. (Kwon and Belsky, 2021) Furthermore, HD re-
flects individual differences in physiological status from a healthy 
reference. (Kwon and Belsky, 2021) Moreover, epigenetic age has been 
constructed to predict chronological age based on the methylation of 
CpG sites, (Li et al., 2022) while telomere length has been used as a 
biological age measure, especially since it is a well-known hallmark of 
both cellular senescence and organismal aging. (Vaiserman and Kras-
nienkov, 2020) Despite the fact that these two biological aging metrics 
can accurately reflect the state of aging at both cellular and molecular 
levels, their use is less convenient. Previous research studies on aging 
biology revealed that the high prevalence of multimorbidity in older 
people is due to the age-dependent accumulation of cellular and mo-
lecular changes acting to damage the integrity of tissues and organ 
systems throughout the body, giving rise to multiple chronic conditions. 
(López-Otín et al., 2013) Therefore, interventions to slow or reverse the 
accumulation of such alterations could prevent or delay the onset of 
many different diseases, ultimately extending a healthy lifespan. (Ken-
nedy et al., 2014). 

Endocrine-disrupting chemicals (EDCs) are defined as exogenous 
chemicals or mixtures of chemicals interfering with many aspects of the 
hormone action. (Gore, 2016; Gore et al., 2015) To date, EDC accounts 
for approximately 1000 synthesized chemicals. (Gore, 2016) Among 
those chemicals, the most characterized EDC classes are phenol, para-
ben, phthalate, and per- and poly-fluoroalkyl substances (PFAS), which 
can induce adverse effects on glucose homeostasis and diabetes, (Wang 
et al., 2012; Lin et al., 2011; Lang et al., 2008; Shankar and Teppala, 
2011) reproduction, (Bloom et al., 2015; Upson et al., 2013) hormone- 
sensitive cancer, (Hu et al., 2012; Pupo et al., 2012) and cardiovascu-
lar disease. (Gore, 2016; Gore et al., 2015; Lang et al., 2008; Chang et al., 
2021; Melzer et al., 2010; Melzer et al., 2012) The relationship between 
EDCs and aging is still controversial. (Khodasevich et al., 2023; Chaney 
and Wiley, 2023; Curtis et al., 2019) Some studies have suggested a 
negative correlation between EDC exposure and accelerated biological 
aging. Previous studies demonstrated that prenatal phthalate exposure 
and PFAS exposure were negatively associated with epigenetic age or 
biological age acceleration. (Khodasevich et al., 2023; Chaney and 
Wiley, 2023) Recently, Niemiec demonstrated that perfluorodecanoate 
(PFDA) was inversely associated with epigenetic age acceleration in 
umbilical cord blood. (Niemiec et al., 2023) The Harvard Epigenetic 
Birth Cohort showed that telomere length was 20 % shorter among boys 
in the highest quartile of maternal triclosan concentration compared to 

the lowest one. (Michels et al., 2020) However, longer telomere length 
was associated with increased gestational concentrations of mono- 
isobutyl phthalate, and, among boys, with increased concentrations of 
mono-2-ethylhexyl phthalate. (Michels et al., 2020) In addition poly-
brominated biphenyl was found to be positively associated with epige-
netic age acceleration. (Curtis et al., 2019) Besides, bisphenol A (BPA) 
actively participates in accelerated cell aging mechanisms, affecting 
vascular endothelium and promoting cardiovascular diseases. (Moreno- 
Gómez-Toledano et al., 2021; Ribeiro-Varandas et al., 2014)Clarity et al. 
suggested a positive association between PFAS and telomere length in 
female workers. (Clarity et al., 2021) Interestingly, this effect was 
observed to be significantly stronger among firefighters compared to 
office workers. (Clarity et al., 2021) Most studies have attempted to 
explore the effect of either single chemicals or one category of EDCs on 
biological age. In reality, however, the average person is exposed to 
various chemicals simultaneously, possibly fostering interactions among 
these co-administered chemicals. (Zhang et al., 2019) As a result, it is 
essential to explore the mixed effect of EDCs on biological age. Since the 
relationship between EDC mixture exposure and biological age accel-
eration remains elusive, it is necessary to investigate the effect of 
simultaneous exposure to various EDCs on biological aging, and also 
assess the association between biological age-related EDCs (BA-EDCs) 
and aging-related diseases. 

Aging-related diseases, including atherosclerotic cardiovascular 
disease (ASCVD), hypertension, diabetes, and chronic kidney disease 
(CKD), have also been related to exposure to EDCs. Atherosclerosis is 
widely acknowledged as the primary contributor to cardiovascular dis-
ease, the main cause of mortality worldwide, (Libby et al., 2016; Tsao 
et al., 2022) and it is characterized by the build-up of plaque in arterial 
walls, leading to arterial thickening. Mechanisms involved in the aging 
process were also found to be related to the pathogenesis of cardiovas-
cular disease, including oxidative stress, activation of inflammation, and 
metabolic disorder. (Pietri and Stefanadis, 2021) Previous studies sug-
gested that exposure to individual EDCs posed an adverse effect on the 
prognosis of cardiovascular disease and atherosclerosis. (Posnack, 2014; 
Wen et al., 2022; Lind and Lind, 2011) In addition, exposure to phthalate 
was related to elevated blood pressure across various age groups and 
populations. (Trasande and Attina, 2015; Karle et al., 1997; Zhang et al., 
2018) Besides, EDCs exposure has also been considered a risk factor for 
the development of diabetes. (Lin et al., 2011; Shankar and Teppala, 
2011) Priego et al. demonstrated that BPA may have a deleterious effect 
on the kidneys by means of deregulating autophagy flux and redox 
protective mechanisms. (Priego et al., 2021) Epidemiological study also 
suggested that phthalate and BPA are associated with decreased renal 
function. (Kang et al., 2021) As mentioned before, due to the complex 
exposure pattern, high correlation, and complicated interactions of 
chemicals, it is both reasonable and necessary to perform a mixture 
analysis to assess the co-exposure effect of EDCs. However, the mixture 
effect of multiple categories of EDCs on aging-related diseases is poorly 
understood. 

Although the relationship between EDC exposure and accelerated 
biological aging, as well as age-related diseases, has been confirmed in 
many studies, the underlying mechanisms remain unclear. Exploring the 
potential mechanisms and pathways linking EDC-induced accelerated 
biological aging and age-related diseases can help identify intervention 
targets, which hold significantly positive public health implications for 
preventing or mitigating the adverse effects of EDCs. 

Due to the negative effect of EDCs, it is urgent to explore possible 
interventions mitigating induced adverse health effects. Vitamins may 
serve as actionable prevention targets. For instance, vitamins C and E are 
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powerful antioxidants that mediate several beneficial effects on redox 
oxidative and mitochondrial pathways. (Padayatty et al., 2003; Naidu, 
2003; Napolitano et al., 2019) Accumulating evidence indicates a 
rescuing role of vitamin C in premature aging, (Monacelli et al., 2017) 
while supplementation of vitamin C appears to mediate oxidative stress, 
telomere attrition, and excessive secretion of inflammatory factors, 
extending lifespan. (Monacelli et al., 2017) Interestingly, vitamin C was 

also found to positively modulate inflammaging and immunose-
nescence, two hallmarks of biological aging. (Monacelli et al., 2017) 
Moreover, it has been shown to epigenetically regulate genome integrity 
and stability, indicating a key role of targeted nutrition in healthy aging. 
(Monacelli et al., 2017) According to Zingg et al., treatment with vitamin 
E analogs may counteract CD-36 mediating inflammatory, senescent, 
and atherosclerotic events in monocytes and macrophages. (Zingg et al., 

Fig. 1. Flowchart of our study. A) Inclusion and exclusion criteria of the study population in this cross-sectional study. B) Workflow of the network and functional 
enrichment analysis. 
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2022) Besides, vitamin E was suggested as an intervention for improving 
age-associated immune function. (Wu and Meydani, 2014) Therefore, 
both vitamins C and E may be a potential target for preventing biological 
aging. 

Given their effect on biological age acceleration and aging-related 
disease, (Lang et al., 2008; Melzer et al., 2010; Melzer et al., 2012; 
Khodasevich et al., 2023; Chaney and Wiley, 2023; Curtis et al., 2019; 
Niemiec et al., 2023; Michels et al., 2020; Moreno-Gómez-Toledano 
et al., 2021; Ribeiro-Varandas et al., 2014; Clarity et al., 2021; Zhang 
et al., 2019; Posnack, 2014; Wen et al., 2022; Lind and Lind, 2011; 
Trasande and Attina, 2015; Karle et al., 1997; Zhang et al., 2018; Priego 
et al., 2021; Kang et al., 2021; Campisi et al., 2023; Oluwayiose et al., 
2022; Rattan et al., 2022; Zhang et al., 2022; Moreno-Gomez-Toledano, 
2022) we hypothesized that EDCs mixture exposure may disrupt meta-
bolic process and lead to metabolic disorder, which accelerates biolog-
ical age, and therefore promotes the development of aging-related 
diseases, including ASCVD, hypertension, diabetes, and CKD. To address 
this hypothesis, we combined epidemiological evidence with bio-
informatic analysis to identify potential mechanisms of BA-EDCs- 
induced aging-related diseases and actionable targets for BA-EDCs- 
induced biological aging. 

First, weighted quantile sum (WQS) regression was performed to 
screen EDCs that have non-negligible contribution to biological age 
acceleration, these EDCs were considered as biological age-related EDCs 
(BA-EDC). Further, we investigated both individual and mixed effects of 
BA-EDCs on biological age acceleration and aging-related diseases. 
Consequently, we tried to identify vitamins that could mitigate the 
adverse effects of BA-EDCs. Last, but not least, network pharmacology 
analysis methods were applied to explore potential mechanisms of BA- 
EDCs and aging-related diseases associated to BA-EDCs exposure. 

2. Materials and methods 

2.1. Study population, EDC targets, and heart aging-related genes 

NHANES is a nationally representative survey of the non- 
institutionalized US population that is continuously conducted every 
other year by the Centers for Disease Control and Prevention (CDC). The 
study protocol was approved by the Institutional Review Board of the 
National Center for Health Statistics, and consent in written form was 
obtained from all participants (https://www.cdc.gov/nchs/nhanes/i 
rba98.htm). A more detailed description of NHANES is available at the 
following address: https://www.cdc.gov/nchs/nhanes/about_nhanes. 
htm. 

In this study, we used the 2011–12 cycle of the NHANES data, since 
this is the only cycle measuring four types of endocrine-disrupting 
chemicals, namely phenols, parabens, phthalates, and poly-fluoroalkyl 
chemicals. To ensure consistency with the use of the BioAge R pack-
age, this study was limited to adults aged 20–90 years. After excluding 
participants without data on endocrine-disrupting chemicals or biolog-
ical markers for calculating their biological age, 1,439 participants were 
finally included in this study (Fig. 1A). 

We used the Comparative Toxicogenomics Database (CTD) 
(https://ctdbase.org/), Swiss Target Prediction (https://swisstargetp 
rediction.ch/), and TargetNet (https://targetnet.scbdd.com/ho 
me/index/) to collect prediction targets for EDCs. These targets were 
obtained by intersecting targets from all three databases. Transcription 
or translation of these targets was regulated by EDCs, and was predicted 
to interact with EDCs. Aging-related differentially expressed genes were 
acquired from the AgeAnno (https://relab.xidian.edu.cn/AgeAnno/#/), 
a knowledge base of single-cell annotation of aging in humans, aiming to 
provide comprehensive characterizations for aging-related genes across 
diverse tissue-cell types by using single-cell RNA and ATAC sequencing 
data. Also, we limited the tissue to heart tissue in order to obtain the 
heart aging-related genes. Then, the BA-mixture target genes and heart 
aging-related genes were merged for further analysis (Fig. 1B). 

2.2. Definition of ASCVD, CKD, diabetes, and hypertension 

ASCVD was diagnosed based on the questionnaire data obtained 
from NHANES. According to the 2013 ACC/AHA Guideline on the 
Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovas-
cular Risk in Adults, ASCVD was defined as having at least one diagnosis 
of coronary heart disease, angina, heart attack, and stroke. (Stone et al., 
2013) Individuals told by a physician or other health professional they 
have the above disease was diagnosed with this disease, according to the 
answer to the question MCQ160c, MCQ160d, MCQ160e, MCQ160f in 
NHANES. Diabetes was diagnosed by self-report, or glycosylated he-
moglobin (HbA1c) > 6.5 %, fasting glucose >= 7.0 mmol/L, or random 
blood glucose >=11.1 mmol/L, or two-hour oral glucose tolerance test 
blood glucose >=11.1 mmol/L, or using diabetes medication or insulin. 
The estimated glomerular filtration rate (eGFR) scores were calculated 
using the Chronic Kidney Disease Epidemiology Collaboration algo-
rithm, (Levey et al., 2009) and urine albumin-to-creatinine (ACR) ≥ 30 
mg/g and/or eGFR < 60 mL/min/ 1.73 m (Ferrucci et al., 2018) were 
used to diagnose CKD. (KDIGO, 2021) Hypertension was diagnosed by 
self-report, or use of the anti-hypertension medication, or systolic blood 
pressure > 140 mmHg, or diastolic blood pressure > 90 mmHg. 

2.3. Measurements of endocrine-disrupting chemicals 

Urinary concentrations of environmental phenols, parabens, phtha-
lates, and serum concentration of poly-fluoroalkyl chemicals were 
measured in a randomly selected one-third subset of NHANES partici-
pants. In our study, chemicals were included based on the metabolite’s 
detectable frequencies ≥ 50 %. The finally analyzed chemicals were 
three phenols (bisphenol A (ng/mL), benzophenone-3 (ng/mL), triclo-
san (ng/mL)), three parabens (ethyl paraben (ng/mL), methyl paraben 
(ng/mL), propyl paraben (ng/mL)), 13 phthalates (mono-n-butyl 
phthalate (ng/mL), mono-ethyl phthalate (ng/mL), mono-(2-ethyl)- 
hexyl phthalate (ng/mL), mono-isonoyl phthalate (ng/mL), mono- 
benzyl phthalate (ng/mL), mono-n-methyl phthalate (ng/mL), mono- 
(3-carboxypropyl) phthalate (ng/mL), mono(2-ethyl-5-hydroxyhexyl) 
phthalate (ng/mL), mono-(2-ethyl-5-oxohexyl) phthalate (ng/mL), 
mono-isobutyl phthalate (ng/mL), mono-2-ethyl-5-carboxypentyl 
phthalate (ng/mL), mono(carboxynonyl) phthalate (ng/mL), mono 
(carboxyoctyl) phthalate) (ng/mL), and seven polyfluoroakyl chemicals 
(perfluorooctanoic acid (ng/mL), perfluorooctane sulfonic acid (ng/ 
mL), perfluorohexane sulfonic acid (ng/mL), 2-(N-Methyl-per-
fluorooctane sulfonamido) acetic acid (ng/mL), perfluorodecanoic acid 
(ng/mL), perfluorononanoic acid (ng/mL), perfluoroundecanoic acid 
(ng/mL)). The urinary concentrations of BPA, BP-3, triclosan, and of the 
four parabens were measured by online solid phase extraction (SPE) 
coupled to HPLC and tandem mass spectrometry (HPLC-MS/MS). 
Phthalates concentration was measured by high-performance liquid 
chromatography-electrospray ionization-tandem mass spectrometry 
(HPLC-ESI-MS/MS). Online solid phase extraction coupled to high- 
performance liquid chromatography-turbo ionspray ionization-tandem 
mass spectrometry (online SPE-HPLC-TIS-MS/MS) was used to quanti-
tatively measure serum polyfluoroakyl chemicals. The concentrations 
below the lower limit of detection (LLOD) were assigned a value equal to 
the LLOD/√2, as recommended by NHANES. The concentrations of 
chemicals measured in urine samples were all corrected by urinary 
creatinine for further analysis, and the chemical concentration was Ln- 
transformed for further analysis. 

2.4. Measurement of dietary vitamins 

Dietary data regarding vitamins intake were obtained via a precise 
list of all foods consumed by an individual within 24 h prior to exami-
nation. The 24-h recall method is most often used to determine dietary 
intake in large-scale surveys. The previous 24 h dietary information this 
study used was from a 24 h dietary recall interview collected in person in 
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the MEC. NHANES participants were asked whether they used any di-
etary supplements in the past 30 days during an in-house interview, and 
those who responded positively were asked about the product name, 
frequency, duration, and serving form. For each vitamin, the daily dose 
was calculated by combining intake frequency with product informa-
tion, such as its ingredients, amount of ingredients per serving, and 
ingredient unit. Vitamin intake from each product was summed to es-
timate the total daily dose of each supplemental nutrient for each in-
dividual. (Chen et al., 2019). 

2.5. Covariates 

Covariates were selected based on previous research studies, (Cha-
ney and Wiley, 2023; Zhang et al., 2019; Kresovich et al., 2021) and the 
variance inflation factor (VIF) of each covariate was calculated; subse-
quently, covariates with VIF < 5 were selected. The selected covariates 
were age, gender, race (Mexican American, other Hispanic, Non- 
Hispanic White, Non-Hispanic Black, other race), and education (less 
than 9th grade, 9–11th grade, High school graduate/GED or equivalent, 
college or AA degree, college graduate or above). In addition, the 
poverty to income ratio was obtained from the demographic file of the 
NHANES 2011–12 cycle. Body mass index (BMI) was calculated using 
height and weight data. Individuals smoking more than 100 cigarettes or 
those who smoked daily or at some days were identified as smokers. 
With respect to the alcohol user status, individuals who had < 12 drinks 
in lifetime were categorized as non-alcohol user, while individuals who 
had at least 12 drinks in one year and did not drink last year, or did not 
drink last year but drank at least 12 times in their lifetime were cate-
gorized as former alcohol users. Individual were defined as current 
heavy alcohol users when they had at least three drinks on a daily basis 
for females and four drinks per day for males, or were binge drinking 
five or more days per month. In contrast, individuals were defined as 
moderate alcohol users when they had at least two drinks and three 
drinks per day for females and males, respectively, or were binge 
drinking two or more days per month. Individuals drinking during the 
last year but who did not meet the standard described above were 
defined as mild current alcohol users. (Rattan et al., 2022). 

2.6. Biological age measures 

KDM-BA was validated to be an effective algorithm for assessing 
biological age by using blood-chemistry-derived measures. (Klemera 
and Doubal, 2006) An individual’s KDM biological age prediction cor-
responds to the chronological age at which his/her physiology would be 
approximately normal. 

KDM-BA is derived from a series of regressions of individual bio-
markers on chronological age in a reference population. The equation 
takes information from an n number of regression lines of chronological 
age regressed on n biomarkers, according to the following formula: 

KDM − BA =

∑n
i=1(xi − qi)

ki
s2

i
+ CA

s2
BA

∑n
i=1(

ki
si
)

2
+ 1

s2
BA  

where x is the value of the biomarker i measured for an individual. For 
each biomarker i, k, q, and s represent the regression intercept, slope, 
and root mean squared error, respectively. sBA is a scaling factor equal 
to the square root of the variance in chronological age explained by the 
biomarker set in the reference sample, while CA refers to the chrono-
logical age. In the BioAge package, the reference sample is NHANES III 
nonpregnant participants aged 30–75 years. Algorithm parameters were 
estimated separately for males and women. In our study, we used ten 
biomarkers based on previous studies, namely systolic blood pressure 
(SBP), albumin, alkaline phosphatase (ALP), blood urea nitrogen (BUN), 
creatinine, glycated hemoglobin (HbA1c), total cholesterol, lymphocyte 
percentage, white blood cell counts (WBC), and mean cell volume 

(MCV). We did not use force expiratory volume in one second (FEV1) 
and C-reactive protein since they were not measured in the 2011–12 
cycle. However, we did perform a validation analysis to demonstrate 
that the selected set of biomarkers was comparable to Levine’s study. 
(Levine, 2013) 

Phenotypic age uses a multivariate analysis of mortality hazards 
based on a reference population to calculate an individual’s phenotypic 
age. (Levine, 2013) Specifically, this measure uses an algorithm based 
on the parametrization of two Gompertz proportional hazard models, 
where the first model uses the ten biomarkers mentioned above and 
chronological age, while the second model uses only chronological age. 
(Levine, 2013) We used NHANES III as the reference population, and the 
individual’s resulting phenotypic age reflected the chronological age of 
an individual having the same mortality risk in the reference population, 
in accordance with protocols published in previous studies. (Kwon and 
Belsky, 2021). 

The resulting final equation for calculating phenotypic age Is as 
followed: 

Phenotypicage =
Ln[− 0.00553*Ln(− 1.51714*exp(xb)

0.0076927 )]

0.09165  

where xb = − 19.907–––0.0336*Albumin + 0.0095*Creatinine +
0.1953 × Glucose-0.0120 × Lymphocyte Percent + 0.0268 × Mean Cell 
Volume + 0.3306 × Red Cell Distribution Width + 0.00188 × Alkaline 
Phosphatase + 0.0554 × White Blood Cell Count + 0.0804 × Chrono-
logical Age. Biological aging was defined as the value of biological age 
that is greater than chronological age, and biological age acceleration 
was calculated as the difference between biological age estimation and 
chronological age. (Kwon and Belsky, 2021) 

Homeostatic dysregulation (HD) was computed as the Mahalanobis 
distance based on a set of biomarkers related to a “healthy” reference, 
which does not include information on chronological age, and the in-
dividual’s HD value quantifies how different their physiology is from 
this “healthy” reference sample. Here, the “healthy” reference sample 
was defined as NHANES III nonpregnant participants aged 20–30 years 
for whom all selected biomarkers fall within the clinically normal range. 
Since HD in our sample had skewed distribution, it was log-transformed 
for further analysis. (Kwon and Belsky, 2021). 

The construction of KDM biological age, phenotypic age, and HD was 
performed using the R package BioAge (https://github.com/dayoonkwo 
n/BioAge). 

2.7. Selection of biological age acceleration-related EDCs (BA-EDCs) 

The present study employed WQS regression to estimate the empir-
ical weights for a weighted sum of concentrations that were most 
associated with health outcomes. (Carrico et al., 2015) This approach 
took all the measured chemicals into consideration, and chemicals 
included in this model were constrained to have the same effect direc-
tion for KDM biological age acceleration. By grouping different BA-EDCs 
into deciles, the WQS regression model calculated a weighted linear 
index that represented the overall body burden of all chemicals. The 
weight assigned to each chemical reflected its contribution to the WQS 
index. And weight of each particular chemicals were used to identify the 
predominant EDC exposure associated with biological age acceleration. 
(Carrico et al., 2015) EDCs with non-negligible weight, i.e., weights 
exceeding a selection threshold parameter of 0.038, were selected as 
biological age acceleration-related EDCs for further analysis. (Caporale 
et al., 2022). 

2.8. Construction of the Protein-Protein interaction (PPI) network and 
MCODE module network 

The combined genes obtained above were uploaded to the STRING 
11.5 database (https://cn.string-db.org/), to identify their interactions 
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and construct the PPI network. (Szklarczyk et al., 2019) PPI is a 
comprehensive representation of protein interactions obtained by inte-
grating multiple sources of experimental data, literature annotations, 
and computational predictions. (von Mering et al., 2003) These in-
teractions encompass both direct physical interactions, such as the for-
mation of protein complexes, and indirect functional associations, where 
proteins participate in the same biological processes. (von Mering et al., 
2003) The list of genes is mapped to their corresponding protein prod-
ucts and added to the PPI network, and they are subsequently connected 
to the existing network based on their interactions with other proteins. 
This integration allows the identification of potential interacting part-
ners for all genes of interest. The organism was limited to “Homo sapi-
ens,” and an interaction score with medium confidence (0.400) was set 
to analyze the protein–protein interaction. 

Proteins with similar functions typically aggregate together to 
represent functional molecular biological units. Therefore, we can pre-
dict the exact protein function by using an algorithm to analyze the 
network containing proteins with known and unknown functions. (Altaf- 
Ul-Amin et al., 2006) Thus, we used MCODE, a plug-in of Cytoscape 
3.9.1 to identify the density region of interaction in the PPI network, 
which was not affected by high false positives due to high flux 
technology. 

2.9. Functional enrichment analysis 

Functional enrichment analysis, including Gene Ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) anal-
ysis, is a computational approach used to gain insights into the biolog-
ical functions, pathways, and processes associated with a set of genes or 
proteins. (Chen et al., 2017) Specifically, GO enrichment analysis cate-
gorizes genes or proteins into functional groups based on their molecular 
function, biological process, and cellular component. It provides a 
standardized vocabulary to describe gene functions, and it allows re-
searchers to comprehend the functional landscape of a given set of genes 
or proteins. (Gene Ontology Consortium: going forward, 2015) KEGG 
enrichment analysis focuses on the biological pathways and networks in 
which genes or proteins are involved, and it provides information 
regarding potential interactions and relationships between genes and 
their involvement in specific biological processes, diseases, or signaling 
pathways. (Kanehisa et al., 2016) Functional enrichment analysis (GO 
and KEGG enrichment analysis) complements PPI analysis by providing 
a deeper understanding of the biological functions, pathways, and pro-
cesses associated with the genes or proteins of interest. Consequently, 
this approach expands the scope of our analysis beyond physical in-
teractions, and also helps researchers gain novel insights into the func-
tional significance and implications of their findings. The R package 
ClusterProfiler was used to perform GO enrichment analysis and KEGG 
analysis in the R software. 

2.10. Statistical analysis 

In the descriptive analysis, chi-square tests were performed to 
compare categorical variables. Continuous variables were expressed as 
mean and standard deviation (SD) when normally distributed or median 
and interquartile range (IQR) when skewed. The One-Way ANOVA and 
Kruskal-Wallis test were used for comparison, as appropriate. 

Three statistical models, including generalized linear regression 
model, WQS regression, and Bayesian kernel machine regression 
(BKMR) were performed to evaluate the individual or mixed effect of 
BA-EDCs on biological age acceleration and aging-related diseases. 

2.11. Generalized linear regression model 

First, we used multivariable generalized linear regression model to 
examine the association between individual BA-EDCs and biological age 
acceleration or aging-related disease, including diabetes, hypertension, 

ASCVD, and CKD. The models were adjusted for age, gender, race, ed-
ucation, poverty ratio income, BMI, smoke status, and alcohol use status. 

2.11.1. WQS regression 
To evaluate the effects of mixed exposure of selected EDCs and 

biological age acceleration, WQS regression model was applied. WQS 
was a weighted quartile sum approach in conjunction with either linear 
(continuous outcomes) or logistic (binary outcomes) regression. (Car-
rico et al., 2015) By grouping different BA-EDCs into deciles, the WQS 
regression model calculated a weighted linear index that represented the 
overall body burden of all BA-EDCs. The weight assigned to each 
chemical reflected its contribution to the WQS index. 

2.11.2. The Bayesian kernel machine regression (BKMR) model 
The Bayesian kernel machine regression (BKMR) was performed to 

evaluate the joint effect of BA-EDCs exposure on biological age accel-
eration. (Bobb et al., 2015) The cumulative effects of the mixtures were 
assessed by estimating the expected change in biological age accelera-
tion associated with concurrent changes in all of the components of the 
mixture from their median levels. We fitted separate BKMR models for 
all metrics of biological age acceleration outcomes based on the model 
below: 

Yi = h(PFNAi, MCPPi, BPAi, MEPi, MMPi, MeFOSSAi) + βzi + ei. 
where h() was the exposure–response function based on nonlinearity 

and/or interaction among the mixture components, Zi, and β repre-
sented covariates and their coefficients, respectively. 

2.11.3. Sensitivity analysis 
Since age, race, BMI, and education level are linked to human 

chemical exposure and adverse health outcomes, propensity score 
matching (PSM) was applied in our sensitivity analysis to balance dif-
ferences in these factors between KDM biological aging groups and non- 
biological aging groups. (Kane et al., 2020) By calculating the pro-
pensity score of samples, the method of nearest neighbor matching was 
used for 1:1 matching using a caliper width of 0.2. A standardized mean 
difference (SMD) was used to examine the PSM degree, and the associ-
ation of BA-mixture and KDM biological age acceleration was evaluated 
using the WQS regression model. 

The likelihood ratio test was used to assess the interaction effect of 
dietary and supplementary vitamins. The level of statistical significance 
was set at p < 0.05. For GO and KEGG analyses, a q value < 0.05 was 
considered statistically significant. Statistical analysis was performed 
using R software, EmpowerStats software (https://www.empowerstats. 
com), and FreeStatistic software. (Yang et al., 2021) WQS regression was 
performed using the R package gWQS, BKMR was performed using the R 
package bkmr, and PSM was performed using the R package Matchit. 

2.12. Role of the funding source 

The funders of the study had no role in the study design, data 
collection, data analysis, data interpretation, or writing of the report. 

3. Results 

3.1. Population characteristics 

Among all recruited participants, only 1,439 participants success-
fully passed all the filters. The characteristics of participants categorized 
by tertile of KDM biological age acceleration are presented in Table 1. It 
is shown that individuals with higher KDM biological age acceleration 
tended to be males, while participants with higher KDM biological age 
acceleration were more likely to be younger and well-educated. Par-
ticipants in tertile 3 of KDM biological age acceleration had higher levels 
of BMI, alkaline phosphatase, total cholesterol, Hba1c, creatinine, SBP, 
BUN, and WBC, compared with tertile 1, as opposed to their lymphocyte 
percentages and poverty income ratio which were lower. Participants 
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suffering from diabetes, hypertension, and CKD were more likely to have 
KDM biological age acceleration. 

Biological aging participants in tertile 3 of KDM biological age ac-
celeration had higher levels of BPA, MnBP, MEP, MHHP, MiNP, MBzP, 
MMP, MCPP, MEHHP, MEOHP, MiBP, MECPP, MCNP, and MCOP 
compared to tertile 1 (Table 2). 

Table S1 demonstrates the characteristics of the study sample. Our 
results revealed that smokers and alcohol drinkers were more likely to 
have ASCVD. Besides, people with ASCVD were more likely to be older, 
males, and have lower family PIR and poorer education levels. People 
with diabetes, hypertension, CKD, or hyperlipidemia were more likely to 
have ASCVD. Albumin, total cholesterol, and lymphocyte percentage 
were lower in participants with ASCVD, as opposed to Hba1c, SBP, BUN, 
and MCV which were higher. Table S2 exhibits that participants with 
ASCVD had higher levels of MnBP, PFOA, PFHxS, PFOS, MeFOSAA, 
PFDA, PFNA, and PFUA. 

3.2. Validation analysis of KDM biological aging measures 

In this study, certain biomarkers were found to differ from the 
original set of biomarkers used by Levine (Levine, 2013) for calculating 
KDM biological age. These differences included the exclusion of C- 
reactive protein, forced expiratory volume, FEV1, and cytomegalovirus 
optical density, which were not measured in the NHANES 2011–12 
cycle. Additionally, the present study introduced additional parameters 
such as the inclusion of lymphocyte percentage, mean cell volume, and 
WBC count, which were previously utilized for measuring KDM bio-
logical age. (Kwon and Belsky, 2021; Mian et al., 2022) Since the bio-
markers used to calculate KDM biological age in our study were not 
completely consistent with those stated in the Levine’s study (Levine, 
2013); a validation analysis was conducted to establish that the calcu-
lated KDM biological age was comparable to the original version pub-
lished by Levine et al. 

Consequently, 36,562 participants with available blood test data in 
all NHANES cycles were used to perform this validation analysis. 
Figure S1 exhibits that our modified versions of KDM biological age 
measures showed similar associations with respect to functional test 
performance, subjective ratings of health, mortality, and socioeconomic 
status as the original version published by Levine. Therefore, our find-
ings suggest that our KDM biological aging measures were reasonable 
and comparable to the ones presented in the Levine’s version. 

Table 1 
Characteristics of the study population by categories of KDM biological age 
acceleration tertile.  

Variables Total (n 
= 1439) 

Tertile 1 
(n =
480) 

Tertile 2 
(n =
479) 

Tertile 3 
(480) 

P-value 

Gender, n (%)      0.003 
Male 742 

(51.6) 
220 
(45.8) 

272 
(56.8) 

250 
(52.1)  

Female 697 
(48.4) 

260 
(54.2) 

207 
(43.2) 

230 
(47.9)  

Age (Years), Mean ±
SD 

47.8 ±
17.6 

56.3 ±
15.7 

44.2 ±
16.0 

42.8 ±
18.0  

< 0.001 

Race, n (%)      < 0.001 
Mexican American 134 

(9.3) 
33 (6.9) 53 

(11.1) 
48 (10)  

Other Hispanic 159 
(11.0) 

56 
(11.7) 

50 
(10.4) 

53 (11)  

Non-Hispanic White 546 
(37.9) 

194 
(40.4) 

193 
(40.3) 

159 
(33.1)  

Non-Hispanic Black 346 
(24.0) 

98 
(20.4) 

94 
(19.6) 

154 
(32.1)  

Other Race 254 
(17.7) 

99 
(20.6) 

89 
(18.6) 

66 
(13.8)  

Education, n (%)      0.016 
Less than 9th grade 140 

(9.7) 
50 
(10.4) 

44 (9.2) 46 (9.6)  

9-11th grade 183 
(12.7) 

63 
(13.1) 

60 
(12.5) 

60 
(12.5)  

High school 
graduate/GED or 
equivalent 

285 
(19.8) 

89 
(18.5) 

90 
(18.8) 

106 
(22.1)  

Some college or AA 
degree 

434 
(30.2) 

125 (26) 144 
(30.1) 

165 
(34.4)  

College graduate or 
above 

396 
(27.5) 

153 
(31.9) 

141 
(29.4) 

102 
(21.3)  

Poverty income 
ratio, Mean ± SD 

2.5 ±
1.7 

2.7 ±
1.6 

2.5 ±
1.7 

2.4 ±
1.7  

0.012 

BMI, Mean ± SD 28.8 ±
6.9 

27.2 ±
5.6 

28.7 ±
6.8 

30.5 ±
7.8  

< 0.001 

Alcohol use status, n 
(%)      

< 0.001 

Never 194 
(14.8) 

82 
(18.9) 

51 
(11.8) 

61 
(13.7)  

Former 219 
(16.7) 

78 (18) 75 
(17.4) 

66 
(14.9)  

Current mild user 441 
(33.7) 

157 
(36.3) 

150 
(34.7) 

134 
(30.2)  

Current moderate 
user 

194 
(14.8) 

59 
(13.6) 

65 (15) 70 
(15.8)  

Current heavy user 261 
(19.9) 

57 
(13.2) 

91 
(21.1) 

113 
(25.5)  

Smoke status, n (%)      0.915 
No 836 

(58.1) 
279 
(58.1) 

275 
(57.4) 

282 
(58.8)  

Yes 603 
(41.9) 

201 
(41.9) 

204 
(42.6) 

198 
(41.2)  

Albumin (g/dL), 
Mean ± SD 

4.3 ±
0.3 

4.3 ±
0.3 

4.3 ±
0.3 

4.2 ±
0.3  

< 0.001 

Alkaline phosphatase 
(u/L), Mean ± SD 

65.9 ±
20.7 

62.4 ±
18.4 

64.6 ±
18.8 

70.7 ±
23.7  

< 0.001 

Total cholesterol 
(mg/dL), Mean ±
SD 

193.2 ±
40.1 

186.4 ±
35.8 

191.2 ±
37.9 

202.1 ±
44.6  

< 0.001 

HbA1c (%), Mean ±
SD 

5.7 ±
0.9 

5.6 ±
0.6 

5.6 ±
0.7 

5.9 ±
1.2  

< 0.001 

Creatinine (mg/dL), 
Mean ± SD 

0.9 ±
0.3 

0.8 ±
0.2 

0.9 ±
0.2 

1.0 ±
0.3  

< 0.001 

SBP (mmHg), Mean 
± SD 

122.5 ±
17.4 

117.3 ±
14.4 

120.2 ±
14.5 

130.1 ±
20.1  

< 0.001 

BUN (mg/dL), Mean 
± SD 

12.7 ±
4.8 

11.6 ±
3.7 

12.4 ±
4.3 

14.1 ±
5.9  

< 0.001 

Lymphocyte percent 
(%), Mean ± SD 

30.9 ±
8.7 

31.8 ±
9.1 

31.1 ±
8.3 

29.8 ±
8.7  

0.002 

MCV (fl), Mean ± SD 89.5 ±
5.7 

89.4 ±
6.3 

89.7 ±
5.5 

89.5 ±
5.2  

0.742  

Table 1 (continued ) 

Variables Total (n 
= 1439) 

Tertile 1 
(n =
480) 

Tertile 2 
(n =
479) 

Tertile 3 
(480) 

P-value 

WBC (103/uL), Mean 
± SD 

6.9 ±
2.0 

6.3 ±
1.6 

7.0 ±
2.0 

7.3 ±
2.1  

< 0.001 

Diabetes mellitus, n 
(%)      

0.02 

No 1159 
(81.4) 

390 
(81.8) 

400 
(84.7) 

369 
(77.7)  

Yes 265 
(18.6) 

87 
(18.2) 

72 
(15.3) 

106 
(22.3)  

Hypertension, n (%)      < 0.001 
No 860 

(59.8) 
298 
(62.1) 

311 
(64.9) 

251 
(52.3)  

Yes 579 
(40.2) 

182 
(37.9) 

168 
(35.1) 

229 
(47.7)  

CKD, n (%)      < 0.001 
No 1210 

(84.1) 
422 
(87.9) 

430 
(89.8) 

358 
(74.7)  

Yes 228 
(15.9) 

58 
(12.1) 

49 
(10.2) 

121 
(25.3)  

Abbreviation: ASCVD: Atherosclerotic cardiovascular disease; Hba1c:Glycosy-
lated hemoglobin; SBP: Systolic blood pressure; BUN: Blood urea nitrogen; MCV: 
Mean cell volume; WBC: White blood cell; CKD: Chronic kidney disease. 
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3.3. Selection of BA-EDCs 

WQS regression was used to identify EDCs with a non-negligible 
contribution to KDM biological age acceleration. Fig. 2 shows the 
mean weight of each EDCs contributing to KDM biological age accel-
eration. EDCs with a mean weight over the threshold parameter (0.038) 
were selected as BA-EDCs for further analysis. The detailed weight of 
each EDCs is summarized in Table S3. The highest weighted BA-EDCs 
was PFNA, followed by MCPP, BPA, MMP, MEP, and MeFOSAA. 

3.4. Individual and mixed effects of BA-EDCs on biological age 
acceleration 

As shown in Fig. 3A, our multivariable linear regression analysis 
revealed that only MCPP was significantly associated with KDM bio-
logical age acceleration. Specifically, each unit increased in MCPP was 
associated with 0.287 years of KDM biological age acceleration (β: 0.287 
95 %CI: 0.045 ~ 0.529, p = 0.020). To assess the mixed effect of BA- 
EDCs on KDM biological age acceleration, WQS regression was per-
formed. After adjusting for confounders, the WQS indices were signifi-
cantly associated with KDM biological age acceleration (Fig. 3B). A 
decile increase in the WQS index, was found to correspond to a KDM 
biological age acceleration of 0.31 years (β: 0.31, 95 % CI: 0.08 ~ 0.53, 
p = 0.008), which is attributable to the contribution of PFNA (35.9 %), 
MCPP (29.1 %), BPA (20.9 %), MMP (8.1 %), MEP (5.7 %), and 
MeFOSAA (0.3 %), as shown in Fig. 3B. 

Furthermore, Fig. 3D. demonstrates that BPA was positively associ-
ated with phenotypic age acceleration (β: 0.310, 95 %CI: 0.012 ~ 0.608, 
p = 0.042), while PFNA was negatively associated (β: − 0.452, 95 % CI: 
− 0.850 ~ -0.053, p = 0.026). In WQS regression model, co-exposure of 
BA-EDCs associated with phenotypic age acceleration (β:0.17, 95 CI%: 
0.01 ~ 0.34, p = 0.038) (Fig. 3E). Either individual and mixed effect of 
BA-EDCs on HD was not significant (Fig. 3G, Fig. 3H, and Fig. 3I). 

In BKMR analysis, the latent continuous outcome of KDM biological 
age acceleration showed significant increase when all the chemicals 
were at their 55th percentile or above, compared to their 50th percen-
tile, indicating a positive, significant association between the overall 
effect of BA-EDCs and KDM biological age acceleration (Fig. 3C). 
Although no statistically significant association was found in the 
phenotypic age acceleration model, there was an increasing trend 

Table 2 
Concentration of endocrine disrupting chemicals by categories of tertile of KDM 
biological age acceleration.  

Chemicals Total (n 
= 1439) 

Tertile 1 
(n = 480) 

Tertile 2 
(n = 479) 

Tertile 3 (n =
480) 

P 

Phenols 
BPA (ng/mL), 

Median 
(IQR) 

1.4 (0.7, 
2.8) 

1.2 (0.6, 
2.4) 

1.5 (0.7, 
2.8) 

1.6 (0.9,3.1) <

0.001 

BP3 (ng/mL), 
Median 
(IQR) 

14.1 
(3.8, 
67.8) 

12.1 
(3.5, 
56.8) 

16.3 
(4.4, 
71.6) 

14.1 
(3.6,64.8) 

0.298 

TCS (ng/mL), 
Median 
(IQR) 

7.4 (1.6, 
45.0) 

7.3 (1.6, 
58.7) 

7.3 (1.6, 
33.5) 

7.5 (1.6,51.8) 0.980 

Parabens 
EP (ng/mL), 

Median 
(IQR) 

0.7 (0.7, 
6.4) 

0.7 (0.7, 
7.0) 

0.7 (0.7, 
5.8) 

0.7 (0.7,6.1) 0.592 

MP (ng/mL), 
Median 
(IQR) 

58.1 
(11.9, 
216.5) 

62.5 
(13.4, 
229.5) 

42.2 
(9.9, 
179.0) 

69.2 
(13.4,24.1) 

0.008 

PrP (ng/mL), 
Median 
(IQR) 

7.7 (1.1, 
41.7) 

9.9 (1.4, 
48.2) 

4.5 (0.8, 
32.8) 

9.1 (1.3,43.5) 0.006 

Phalates 
MnBP (ng/ 

mL), Median 
(IQR) 

9.7 (3.9, 
20.5) 

8.5 (2.9, 
19.4) 

9.2 (3.9, 
19.7) 

11.1 
(4.8,23.4) 

0.005 

MEP (ng/mL), 
Median 
(IQR) 

42.9 
(15.2, 
132.8) 

38.7 
(14.7, 
109.6) 

42.5 
(13.9, 
134.3) 

51.2 
(17.9,162.2) 

0.042 

MHHP (ng/ 
mL), Median 
(IQR) 

1.4 (0.4, 
3.0) 

1.2 (0.3, 
2.4) 

1.4 (0.6, 
3.0) 

1.7 (0.5,3.8) <0.001 

MiNP (ng/mL), 
Median 
(IQR) 

0.7 (0.4, 
2.5) 

0.3 (0.3, 
1.5) 

0.7 (0.3, 
2.3) 

1.0 (0.3,3.4) <

0.001 

MBzP (ng/mL), 
Median 
(IQR) 

4.1 (1.8, 
9.5) 

3.4 (1.4, 
7.5) 

4.4 (1.9, 
9.6) 

4.7 (2.2,10.8) <

0.001 

MMP (ng/mL), 
Median 
(IQR) 

1.0 (0.4, 
2.9) 

0.8 (0.3, 
2.6) 

1.1 (0.3, 
2.7) 

1.2 (0.3,3.6) 0.024 

MCPP (ng/ 
mL), Median 
(IQR) 

2.5 (1.2, 
6.0) 

2.1 (1.0, 
4.7) 

2.5 (1.2, 
6.1) 

3.0 (1.6,7.1) <

0.001 

MEHHP (ng/ 
mL), Median 
(IQR) 

8.1 (4.1, 
15.7) 

7.2 (3.6, 
13.6) 

7.3 (4.1, 
15.6) 

10.0 
(5.2,17.6) 

<

0.001 

MEOHP (ng/ 
mL), Median 
(IQR) 

5.2 (2.8, 
10.1) 

4.7 (2.4, 
8.8) 

4.8 (2.8, 
10.1) 

6.2 (3.3,11.3) <

0.001 

MiBP (ng/mL), 
Median 
(IQR) 

6.8 (3.2, 
13.4) 

6.1 (2.6, 
12.5) 

6.6 (3.3, 
13.3) 

7.5 (4.0,14.1) 0.003 

MECPP (ng/ 
mL), Median 
(IQR) 

13.1 
(6.8, 
24.4) 

12.4 
(6.5, 
22.4) 

12.8 
(6.8, 
24.2) 

14.1 
(7.5,27.4) 

0.032 

MCNP (ng/ 
mL), Median 
(IQR) 

2.1 (1.1, 
4.5) 

2.0 (1.0, 
4.2) 

2.1 (1.1, 
4.2) 

2.5 (1.3,5.1) 0.006 

MCOP (ng/ 
mL), Median 
(IQR) 

16.8 
(6.8, 
46.7) 

13.6 
(5.8, 
39.2) 

16.0 
(7.0, 
45.8) 

21.9 
(9.0,57.6) 

<

0.001 

Per- and polyfluoroalkyl substances 
PFOA (ng/mL), 

Median 
(IQR) 

2.2 (1.5, 
3.1) 

2.2 (1.6, 
3.3) 

2.1 (1.4, 
2.9) 

2.2 (1.5,3.0) 0.007 

PFOS (ng/mL), 
Median 
(IQR) 

7.2 (4.3, 
11.4) 

8.1 (4.7, 
12.9) 

7.2 (4.1, 
11.1) 

6.7 (4.1,10.7) 0.006 

PFHxS (ng/ 
mL), Median 
(IQR) 

1.3 (0.7, 
2.2) 

1.4 (0.7, 
2.3) 

1.3 (0.7, 
2.1) 

1.2 (0.7,2.0) 0.248  

Table 2 (continued ) 

Chemicals Total (n 
= 1439) 

Tertile 1 
(n = 480) 

Tertile 2 
(n = 479) 

Tertile 3 (n =
480) 

P 

MeFOSAA (ng/ 
mL), Median 
(IQR) 

0.1 (0.1, 
0.2) 

0.1 (0.1, 
0.3) 

0.1 (0.1, 
0.2) 

0.1 (0.1,0.2) 0.300 

PFDA (ng/mL), 
Median 
(IQR) 

0.2 (0.1, 
0.4) 

0.2 (0.1, 
0.4) 

0.2 (0.1, 
0.3) 

0.2 (0.1,0.3) 0.006 

PFNA (ng/mL), 
Median 
(IQR) 

0.9 (0.6, 
1.4) 

0.9 (0.6, 
1.5) 

0.9 (0.6, 
1.4) 

0.9 (0.6,1.4) 0.187 

PFUA (ng/mL), 
Median 
(IQR) 

0.1 (0.1, 
0.3) 

0.2 (0.1, 
0.3) 

0.1 (0.1, 
0.2) 

0.1 (0.1,0.2) <0.001 

Abbreviation: BPA:Bisphenol A; BP3:Benzophenone-3; TCS:Triclosan; EP:Ethyl 
paraben; MP:Methyl paraben; PrP:Propyl paraben; MnBP:Mono-n-butyl phtha-
late; MEP:Mono-ethyl phthalate; MHHP:Mono-(2-ethyl)-hexyl phthalate; MiNP: 
Mono-isononyl phthalate; MBzP:Mono-benzyl phthalate; MMP:Mono-n-methyl 
phthalate; MCPP:Mono-(3-carboxypropyl) phthalate; MEHHP:Mono(2ethyl5-
hydroxyhexyl) phthalate; MEOHP:Mono-(2-ethyl-5-oxohexyl) phthalate; MiBP: 
Mono-isobutyl phthalate; MECPP: Mono-2-ethyl-5-carboxypentyl phthalate; 
MCNP:Mono(carboxynonyl) Phthalate; MCOP:Mono(carboxyoctyl) Phthalate; 
PFOA:Perfluorooctanoic acid; PFOS:Perfluorooctane sulfonic acid; PFHxS:Per-
fluorohexane sulfonic acid; MeFOSAA:2-(N-Methyl-perfluorooctane sulfona-
mido) acetic acid; PFDA:Perfluorodecanoic acid; PFNA:Perfluorononanoic acid; 
PFUA:Perfluoroundecanoic acid. 
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(Fig. 3F). However, in the HD model, the increasing trend was not found 
(Fig. 3I). 

3.5. The interaction effect of dietary vitamins C and E on the association 
of BA-mixture and biological aging 

To identify the potential actionable target for KDM biological aging 
prevention, we established an interaction effect test for dietary and 
supplementary vitamin intake. Among individuals who had a dietary 
vitamin C intake of more than 100 mg/day, the co-exposure effect of BA- 
EDCs on KDM biological age acceleration was insignificant. However, 
among individuals whose dietary vitamin C intake levels were less than 
100 mg/d, a decile increase in the WQS index of BA-EDCs was signifi-
cantly associated with 0.476 years of KDM biological age acceleration 
(β: 0.476, 95 % CI: 0.151 ~ 0.800, p = 0.004). The interaction effect of 
vitamin C was significant in the fully adjusted model, indicating that 
vitamin C intake may reduce the risk of KDM biological age acceleration 
(Fig. 4). Similarly, the interaction effect of vitamin E was also observed. 
Among individuals with low dietary vitamin E intake, the mixed effect of 
BA-EDCs on KDM biological age acceleration were significant. A decile 
increase in the WQS index was associated with a KDM biological age 
acceleration of 0.632 years (β: 0.632, 95 %CI: 0.215 ~ 1.048, p =
0.003). For individuals with high dietary vitamin E intake, this rela-
tionship was insignificant. Furthermore, the interaction effect of vitamin 
E was significant in the adjusted model (Fig. 4). The interaction effect of 
the dietary intake of other vitamins is shown in Fig. S2; however, we did 
not find any other actionable preventive targets. We also tried to explore 
the interaction effect of supplementary vitamin C intake (Data on Sup-
plementary vitamin E intake were not collected in the NHANES 2011–12 
cycle) on the relationship of BA-EDCs co-exposure and KDM biological 
age acceleration; although the positive association between BA-EDCs co- 
exposure and KDM biological age acceleration was significant among 
participant with low supplementary vitamins C and B1 intake, however, 
no significant interaction effect was observed. 

3.6. Individual and mixed effect on clinical aging-related diseases 

To explore the impact of BA-EDCs on clinical aging-related diseases. 
we assessed the both individual and mixed effects on ASCVD, diabetes, 
CKD, and hypertension. In the generalized linear regression analysis, 
individual exposure of PFNA and MeFOSSA was significantly positively 
associated with ASCVD. In the fully adjusted model, each unit increase 
in PFNA and MeFOSSA was associated with 73 % (OR: 1.73, 95 % CI: 
1.16 ~ 2.58, p = 0.007) and 28 % (OR:1.28, 95 % CI:1.02 ~ 1.62, p =
0.036) prevalence of ASCVD, respectively (Fig. 5A). Besides, no indi-
vidual effect or mixed effect of BA-EDCs was significantly related to 
diabetes, CKD, and hypertension (Fig. S3). 

WQS regression was performed to evaluate the mixed effect of BA- 
EDCs on the aging-related diseases. Co-exposure of BA-EDCs was posi-
tively associated with ASCVD (Fig. 5B). For each decile increase in BA- 
EDCs co-exposure, the prevalence of ASCVD was 25 % higher (OR: 1.25, 
95 % CI: 1.01 ~ 1.54), primarily due to PFNA (40.9 %), MeFOSSA (24.4 
%), MCPP (23.1 %), and MMP (9.7 %) (Fig. 5B). 

3.7. Sensitivity analysis 

After PSM, 750 participants were included in a subsequent sensitivity 
analysis. Compared to unmatched data, the matched covariates between 
biological aging and non-biological aging groups demonstrated smaller 
values of SMD (Fig. S4A). Moreover, the propensity score between these 
two groups tended to be consistent (Fig. S4B). The association of the 
mixed effect of BA-EDCs and KDM biological age acceleration remained 
stable after PSM. A decile increase in the WQS index was significantly 
associated with 0.48 years of KDM biological age acceleration (β: 0.48, 
95 % CI: 0.10 ~ 0.86, p = 0.015) (Fig. S4C). 

3.8. Information on assayed target 

To identify the underlying mechanism responsible for the adverse 
cardiovascular effect of BA-EDCs, we built an interaction network of BA- 
EDCs targets and aging-related genes expressed in the cardiac tissue. As 

Fig. 2. Mean weight of endocrine-disrupting chemicals for biological age acceleration.  
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a result, 449 genes were collected from the Aging Anno database. 
Furthermore, 25,833 BA-EDCs target genes were obtained from the CTD 
database, 273 genes from SwissTargetPrediction, and 485 genes from 
TargetNet. Consequently, 140 intersect BA-EDCs target genes from these 
three databases were considered potential target genes of BA-EDCs. 
Finally, 583 BA-EDCs targets and heart aging-related genes were 
collected by merging heart aging-related genes and BA-EDCs target 
genes, as shown in Fig. 6A and 6B. 

3.9. PPI network and clustering analysis 

We used the STRING database to generate data on the PPI network 
for 583 combined genes of BA-EDCs targets and heart aging-related 
genes. As shown in Fig. 6C, the PPI network had 582 nodes, which 
were interconnected and associated with 6,748 edges. Each node rep-
resented a protein, each edge represented the correlation confidence 
between two targets, and the edge thickness indicated the strength of 
data support. The PPI enrichment p-value was smaller than 1.0e-16, 

Fig. 3. The association of BA-EDCs with biological age acceleration. A) Individual effects of each BA-EDCs on KDM biological age acceleration. B) Mixed effect of BA- 
EDCs on biological age acceleration in WQS model. C) Mixed effect of BA-EDCs on KDM biological age acceleration in BKMR model. D) Individual effects of each BA- 
EDCs on phenotypic age acceleration. E) Mixed effect of BA-EDCs on phenotypic age acceleration in WQS model. F) Mixed effect of BA-EDCs on phenotypic age 
acceleration in BKMR model. G) Individual effects of each BA-EDCs on HD. H) Mixed effect of BA-EDCs on HD in WQS model. I) Mixed effect of BA-EDCs on HD in 
BKMR model. All models were adjusted for age, gender, race, education, poverty income ratio, BMI, smoke status, and alcohol use status. 

Fig. 4. Subgroup analysis of the association of BA-EDCs co-exposure and KDM biological age acceleration stratified by dietary vitamin C and E intake.  
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suggesting that proteins in the PPI network significantly interacted with 
each other. We further used the MCODE algorithm to produce cluster 
networks, and a clustering analysis was then performed. Fig. 6D shows 
the modules with the highest average scores, which may play more 
important roles in PPI networks. The highest score module (32.91) 
contained 45 nodes and 1448 edges, indicating that this module was 
more important in the PPI network. 

3.10. Functional enrichment analyses of intersecting genes of BA- 
mixture target genes and aging-related genes in heart tissue 

As highlighted in Fig. S5A, the biological processes of the BA-EDCs 
targets and heart aging-related genes were mainly involved in 
response to peptides, steroid hormones, muscle system processes, 
regulation of inflammatory responses, and regulation of lipid metabolic 
processes. The cellular component combined various genes involving 
collagen-containing extracellular matrix, vesicle lumen, cytoplasmic 
vesicle lumen, secretory granule lumen, and contractile fiber. Further-
more, the molecular function of the intersecting genes comprised 
extracellular matrix structural constituents, carbonate dehydratase ac-
tivity, amide binding, catecholamine binding, and protease binding. 

In the KEGG enrichment analysis, the combined genes were closely 
associated with pathways, including the AGE-RAGE signaling pathway 
in diabetic complications, IL-17 signaling pathway, and TNF signaling 
pathway, but also lipids, atherosclerosis, nitrogen metabolism, focal 
adhesion, prostate cancer, fluid shear stress and atherosclerosis, viral 
myocarditis, longevity regulating pathway-multiple species, osteoclast 
differentiation, toxoplasmosis, diabetic cardiomyopathy, and legion-
ellosis. The results are shown in Fig. S5B. 

The enrichment analysis of Module 1 is presented in Fig. 6E and 6F. 
The GO analysis for module 1 indicated that the highest scoring module 
was highly correlated with neuron death, smooth muscle cell prolifer-
ation, regulation of smooth muscle cell proliferation, regulation of 
neuron death, and muscle cell proliferation. With respect to cellular 
components, it was associated with the membrane microdomain, 
membrane raft, caveola, plasma membrane raft, and collagen- 
containing extracellular matrix. The related molecular functions of 
module 1 consisted of ubiquitin-like protein ligase binding, ubiquitin 
protein ligase binding, R-SMAD binding, cytokine receptor, binding, 
SMAD binding. As shown in Fig. 3, or findings suggest that the top 4 
most related pathways of the highest score module were lipids and 
atherosclerosis, prostate cancer, the AGE-RAGE signaling pathway in 
diabetic complications, IL-17 signaling pathway, Hepatitis B, colorectal 
cancer, endocrine resistance, fluid shear stress and atherosclerosis, TNF 
signaling pathway, EGFR tyrosine kinase inhibitor resistance, Kaposi 

sarcoma-associated herpesvirus infection, diabetic cardiomyopathy, 
small cell lung cancer, FoxO signaling pathway, and apoptosis. There-
fore, it can be inferred that the enriched AGE-RAGE signaling pathway 
could be a possible underlying mechanism for the association of BA- 
EDCs and ASCVD. 

4. Discussion 

Our findings clearly suggested that co-exposure of BA-EDCs was 
positively correlated with biological aging, and BA-EDCs were signifi-
cantly associated with the increasing prevalence of ASCVD. Network 
and functional enrichment analyses indicated the significant interaction 
between BA-EDCs targets and heart aging-related genes, thereby sug-
gesting that BA-EDCs may also be associated with heart aging-related 
disease via a potential biological mechanism. The most important 
module in this network was significantly associated with the AGE-RAGE 
signaling pathway. The interaction effect test revealed that dietary 
vitamin C may be an actionable target for preventing EDC-induced 
biological aging. 

In accordance with the definition of EDC, exposure to EDC was found 
to impair glucose homeostasis and insulin resistance, which are 
considered to be distinct characteristics of aging. (Gore et al., 2015) 
However, limited studies have laid emphasis on exploring the associa-
tion of EDC exposure with biological age acceleration. Some research 
studies investigated the exposure of either a single EDC or a mixture of 
one category of EDCs. (Khodasevich et al., 2023; Chaney and Wiley, 
2023; Curtis et al., 2019) The Center for the Health Assessment of 
Mothers and Children of Salinas (CHAMACOS) study found that prenatal 
exposure to phthalate accelerated epigenetic age throughout childhood. 
(Khodasevich et al., 2023) Furthermore, Sarah et al. found that poly-
brominated biphenyl was associated with epigenetic age and phenotypic 
age acceleration. (Curtis et al., 2019) In contrast, NHANES 1999–2018 
revealed that exposure to PFAS was negatively associated with biolog-
ical age deceleration in several biological age measures, including 
phenotypic age, and KDM biological age. (Chaney and Wiley, 2023) In 
our study, we also found that individuals exposed to PFNA were nega-
tively associated with phenotypic age acceleration. Since this study 
focused on a single category of EDC exposure, the effect of multiple 
categories exposure of EDCs may be ignored. (Chaney and Wiley, 2023; 
Wen et al., 2022). 

Previous studies indicated that EDCs exposure may contribute to 
atherosclerosis heart disease. (Melzer et al., 2012; Posnack, 2014; Lind 
and Lind, 2011; Wen et al., 2022) In particular, it was suggested that Di 
(2-ethylhexyl) phthalate and its metabolites pose adverse cardiovascular 
effects, including the development of atherosclerosis and coronary heart 

Fig. 5. Individual and mixed effects of BA-EDCs on ASCVD. A) Individual effect of each BA-EDCs on ASCVD assessed by multivariable logistic regressions. B) Mixed 
effect of BA-EDCs on biological age acceleration assessed by WQS regression. All models were adjusted for age, gender, race, education, poverty income ratio, BMI, 
smoke status, and alcohol use status. 
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Fig. 6. A. The intersected potential targets of BA-EDCs from three databases used in the present study. B) The potential targets of BA-EDCs and heart aging-related 
genes from the Aging Anno database. C) The protein–protein interaction network. D) Module 1, the module with the highest average score in the PPI network. Green 
and purple circles represent BA-mixture targets and heart aging-related genes, respectively. E) Bar plot of GO enrichment analysis. F) Bar plot of KEGG enrichment 
analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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disease. (Wen et al., 2022) In a prospective cohort study, urinary 
bisphenol A exposure was found to increase the risk of future coronary 
heart disease in a healthy population. (Melzer et al., 2012) Phthalate 
was also found to have an inverted U shape association with the 
development of atherosclerotic plaques. (Lind and Lind, 2011) At the 
same time, several phthalates and bisphenol A were significantly asso-
ciated with the echogenicity of atherosclerotic plaques. (Lind and Lind, 
2011) A population-based cross-sectional study identified that co- 
exposure to paraben and phenol increased cardiovascular disease risk. 
(Yin et al., 2023) Wen et al. demonstrated that PFAS mixture exposure 
could increase heart disease mortality rates. (Wen et al., 2022) These 
studies clearly support our findings in that EDCs exposure is indeed 
related to an increased risk of developing atherosclerosis and heart 
disease, thereby paving the way to associating co-exposure to more 
types of EDCs with ASCVD. Notably, we examined the mixed effect of 
four types of biological aging-related EDCs, namely phthalate, paraben, 
phenol, and PFAS, since they may be the uncontrolled aging-related risk 
factors for ASCVD. Therefore, we believe that our findings may improve 
our understanding on how adverse cardiovascular effects are associated 
with environmental EDCs exposure. 

In the PPI network analysis, we identified that the enrichment P- 
value of the network was smaller than 1.0e-16, suggesting that BA-EDCs 
targets were significantly interacting with heart aging-related genes. 
Since ASCVD is an aging-related disease, EDCs may contribute to ASCVD 
via the corresponding aging-related process. To gain a further under-
standing of the underlying mechanism associating BA-EDCs and ASCVD, 
we performed GO and KEGG enrichment analysis. Our results demon-
strated that the AGE-RAGE signaling pathway was significantly 
enriched. 

The AGE-RAGE signaling pathway in diabetic complications refers to 
the signaling cascade which involves Advanced Glycation End-products 
(AGEs) and their receptor, i.e., the Receptor for Advanced Glycation 
End-products (RAGE). AGEs are a group of complex compounds pro-
duced by nonenzymatic glycosylation and oxidation of proteins, lipids, 
and nucleic acids, mainly due to aging and certain pathological condi-
tions such as hyperglycemia. (Chaudhuri et al., 2018) These AGEs can 
then interact with RAGE, triggering a series of cellular responses that 
contribute to the development and progression of diabetic complica-
tions, including cardiovascular disease. In diabetes, persistent high 
blood sugar levels can lead to the formation and accumulation of AGEs, 
and thus further activate the AGE-RAGE signaling pathway. Although 
this pathway specifies “diabetic complication,” it may also be activated 
in people without diabetes, because AGEs can be accumulated as a result 
of the aging process or oxidative stress. As mentioned before, EDCs were 
found to disrupt glucose homeostasis, but also increase the risk of dia-
betes; (Gore et al., 2015) therefore, EDCs may trigger the AGE-RAGE 
signaling pathway by inducing chronic hyperglycemia. There is signif-
icant evidence of the effect of AGEs in the aging process and their causal 
influence on organismal aging. (Chaudhuri et al., 2018) A previous 
study presented that a decrease in the accumulation of AGEs by 
Rifampicin could enhance the lifespan of worms via DAF-16/FOXO 
activation. (Golegaonkar et al., 2015) In a previous proteomics 
research, enrichment analysis of 232 age-associated proteins revealed 
that the insulin-like growth factor signaling pathway and AGE and RAGE 
metabolic pathways were two of the most remarkable metabolic path-
ways connected with biological age. (Moaddel et al., 2021). 

To date, a growing number of evidence supports that AGEs play an 
important role in the pathogenesis of cardiovascular disease. AGE-RAGE 
activation may lead to arterial stiffness, atherosclerosis, endothelial 
dysfunction, oxidative stress, mitochondrial dysfunction, etc. (Lee et al., 
2019) AGEs were found to impair endothelial dysfunction by means of 
suppressing endothelial nitric oxide production. (Xu et al., 2003) Upon 
ligand binding, RAGE could activate nuclear factor (NF)-κB, oxidative 
stress, and inflammation through Janus kinase/signal transducers and 
activators of transcription, nicotinamide adenine dinucleotide phos-
phate hydrogen oxidase, and mitogen-activated protein kinases 

pathway. (Chaudhuri et al., 2018) As a result, proinflammatory and 
proatherogenic factors, such as vascular cell adhesion molecule-1 
(VCAM-1), are increasingly produced, possibly further enhancing 
RAGE expression. (Chaudhuri et al., 2018). 

Notably, a recent review showed that the metabolic disorder caused 
by EDC exposure, oxidative stress, inflammatory activation, endothelial 
dysfunction, arterial stiffness, and other pathological processes related 
to the AGE-RAGE pathway was associated with the aging and longevity 
of the cardiovascular system. (Pietri and Stefanadis, 2021). 

Our results also revealed the interaction effect of dietary vitamins C 
and E on the association of BA-EDCs and biological aging, which may 
provide an actionable target for BA-EDCs-induced biological aging 
prevention. Oluwayiose et al. reported that phthalate metabolites and 
their mixture were associated with advanced sperm epigenetic aging. 
(Oluwayiose et al., 2022) Interestingly, vitamins A and C supplemen-
tation was found to attenuate the toxic effects of DEHP on testicular 
functions, morphology, and semen characterization in adult male Wistar 
rats. (Ogunlade et al., 2022) These results support the hypothesis that 
vitamin C may be a potential and actionable target to attenuate BA- 
EDCs-induced biological aging. Considering that biological aging is a 
long-term process, it is necessary to conduct larger-scale prospective 
studies to thoroughly validate the potential therapeutic role of vitamins 
C and E. 

Our study has several advantages. First, to the best of our knowledge, 
the present study provided an innovative assessment of the mixed effect 
of biologically-related EDCs on ASCVD and a novel insight into the role 
of biological aging as a result of EDC exposure and ASCVD. Second, we 
investigated the mixing effect of four categories of EDCs, which better 
reflects the effect of EDCs exposure on biological age acceleration and 
aging-related diseases. Third, we made use of the Aging Anno database 
to further explore the underlying mechanism of the adverse effect of BA- 
EDCs on ASCVD, and finally identify a possible explanation, i.e., BA- 
EDCs may lead to the accumulation of AGEs or activation of the AGE- 
RAGE signaling pathway, thereby promoting the manifestation of 
ASCVD. Most importantly, the present study revealed that dietary vi-
tamins C and E may comprise an actionable approach to prevent BA- 
EDCs-induced biological aging. Lastly, our study also serves as a 
proof-of-concept for integrating single-cell RNA sequencing and envi-
ronmental molecular epidemiology, which will be increasingly impor-
tant as public health and translational science advance toward a 
precision medicine model. 

Our study also has some limitations which must be seriously 
considered. As a cross-sectional study, we could not provide casual ev-
idence on the association between BA-EDCs and ASCVD. Although 
covariates were adjusted, the results may be confounded by some un-
measured confounders. Besides, to assess the mixed exposure of as many 
EDCs as possible, we only included data from the NHANES 2011–12 
cycle. Consequently, our study population was relatively small. In 
addition, the results presented do not account for the oversampling or 
under-sampling of certain groups in the NAHNES design, since it is 
unlikely to consider survey weights and strata in WQS regression. 
Hence, prospective studies with larger samples and repeated analysis in 
other sub-populations are required to confirm our findings. In addition, 
the use of NHANES 2011–12 exposure information may be relatively 
outdated and may not be aligned with the current pattern of EDCs 
exposure. Furthermore, BA-EDCs are mainly non-persistent chemicals, 
such as BPA and phthalates, thus a single urinary measurement may not 
reflect a representative estimate of internal exposure, and the impact of 
more persistent chemicals that bio-accumulate during human lifespan 
may have been ignored. Finally, long-term follow-up research is essen-
tial to assess the potential effects of vitamins C and E in preventing and 
delaying the adverse effects of EDCs. Moreover, cellular experiments 
and animal model studies are bound to provide a deeper understanding 
of how vitamins C and E intervenes in the effects of EDCs on cells and 
organisms. This will subsequently help uncover the potential signaling 
pathways, regulatory factors, or molecular mechanisms through which 
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vitamins C and E exerts their protective effects. 
Taken together, our results demonstrate the positive correlation 

between EDC and a major aging-related disease, ASCVD. However, these 
detrimental effects may be ameliorated by the intake of vitamin C, 
thereby providing a distinct strategy to mitigate aging-related cardiac 
disease. Finally, this could pave the way to the development of novel 
therapeutic approaches based on vitamins or natural compounds. 

5. Conclusion 

In this study, we constructed biological age-related EDCs (BA-EDCs) 
and found a positive association between them and biological age ac-
celeration, including KDM biological age acceleration and phenotypic 
age acceleration. Besides, BA-EDCs were also found to be positively 
associated with ASCVD. Dietary vitamins C and E may be actionable 
targets to prevent BA-EDCs-induced biological aging. Finally, based on 
our PPI and functional enrichment analysis, we can suggest that the 
AGE-RAGE signaling pathway may be the underlying mechanism. 
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