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Promoter architecture of mouse olfactory
receptor genes
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Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory re-
ceptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of
a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of
a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR
loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE.
nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the
expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors
for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1),
and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene
Olfr160 (M72) can drive OSN-specific expression in transgenic mice.

[Supplemental material is available for this article.]

In rodents, olfaction initiates mainly in the main olfactory epi-

thelium (MOE). The recognition of volatile odorants occurs on the

surface of the cilia of olfactory sensory neurons (OSNs), where

olfactory receptors (ORs) are located. The extraordinary chemical

diversity of olfactory ligands is matched in the mouse genome

by a repertoire of more than 1100 intact OR genes encoding for

G-protein-coupled receptors (GPCRs) (Buck and Axel 1991; Zhang

et al. 2007). ORs can be phylogenetically categorized into two

classes: Class I receptors, which have counterparts in the whole

vertebrate lineage, and Class II receptors, which are specific for

tetrapods (Glusman et al. 2001; Nei et al. 2008).

Each mature OSN in the MOE is thought to express only one

allele of a single OR gene—monoallelic and monogenic expres-

sion, respectively. The population of OSNs that express a given OR

is relatively small and can differ over two orders of magnitude (Nei

et al. 2008). A given OR gene is expressed in a mosaic or punctate

pattern of OSNs within a characteristic zone of the MOE. Axons of

OSNs that express the same OR gene coalesce into one or a few

glomeruli of the olfactory bulb (OB).

The transcriptional mechanisms that underlie this extraor-

dinary restriction in gene expression remain unclear.

While some mammalian OR promoters have been reported to

feature a conserved TATA-box (Bulger et al. 2000), others have been

described as TATA-less (Sosinsky et al. 2000). They feature two well-

established cis-regulatory elements: EBF1 (also known as OLF1) sites

(EBF-like sites), which have been identified in the promoters of

a few OR genes and also in several other OSN-specific genes, and

homeodomain binding sites (HD sites), which are located in the

proximity of the EBF-like sites. These two TF binding site motifs

have been implicated experimentally in OR genes’ expression by

site-directed mutagenesis in vivo (Rothman et al. 2005). The HD

site in the promoter region of Olfr151 (M71) can be bound by

LHX2, a LIM-homeobox protein that is required for the expression

of Class II OR genes and/or the maturation of OSNs that express this

class of receptors (Hirota and Mombaerts 2004; Kolterud et al. 2004;

Hirota et al. 2007).

Historically, the major limitation to the understanding of tran-

scriptional regulation for OR genes has been the lack of a proper

characterization of OR promoters and transcription start sites (TSSs).
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For most OR genes, only the predicted coding sequence had been

annotated in the genome (Zhang and Firestein 2002), calling for the

identification of the TSSs throughout the OR gene repertoire. In-

deed, a custom tiling microarray data set has recently been used to

study the structure of promoters for 86% of mouse OR intact genes

(Clowney et al. 2011). This approach is based on a custom platform

exclusively focused on the olfactory genome and relies on probes

generated by RLM-RACE using degenerated primers specific for OR

transcripts. Although effective for locating OR 59 UTRs, such an idea-

tailored platform lacks single-nucleotide resolutions, and its design

excludes information about antisense transcription, noncoding

RNAs, and non-OR genes networks in the MOE, each of these ele-

ments being potentially critical for the formulation of comprehen-

sive models for monoallelic and monogenic expression of OR genes.

We have previously developed the cap analysis gene expres-

sion (CAGE) technology for the systematic study of transcription

starting sites (TSSs) in eukaryotic cells and tissues (Carninci 2009).

CAGE is based on sequencing the 59 ends of mRNAs, of which the

integrity is inferred by the presence of their cap. The sequences—

which we refer here to as ‘‘tags’’—are sufficiently long to be aligned

in most cases at a single position of the genome. The first position

of such an alignment identifies a base pair where transcription is

initiated; we refer to it as a TSS in the sense of the sequence

ontology’s term SO:0000315. Furthermore, counting the number

of times a given tag is represented in a library gives an estimate of

the expression level of the corresponding transcript. CAGE has

enabled us to map the transcription factor binding sites (TFBSs) in

promoters (SO:0000167) (Carninci et al. 2006) and to identify long

interspersed nuclear elements (LINEs) as a source of alternative

promoters for protein-coding genes (Faulkner et al. 2009). To ex-

pand this approach to tiny amounts of ex vivo tissue, we have

recently developed nanoCAGE, a technology that miniaturizes the

requirement of CAGE for starting RNA quantity to the nanogram

range and that can also be applied to RNA obtained from fixed

tissues (Plessy et al. 2010).

Here, we have applied nanoCAGE technology to characterize

extensively the transcriptome and the active promoters of the

mouse MOE, and to elucidate the 59 structure of the OR genes. We

isolated the MOE by laser capture microdissection (LCM) from fixed

histological sections of C57BL/6J mice. Using deep sequencing, we

collected ;53 million sequence tags and aligned 78% of these to

unique sites in the mouse genome. We grouped these tags to identify

TSSs and promoters and to quantify the expression of 955 (87.5% of

1092) OR genes and sense and antisense transcripts in the MOE.

Bioinformatic analysis of genomic regions centered on promoters of

OR genes yielded a map of TFBSs enrichment, and in vivo experi-

mental validation revealed transcription factors and new candidate

regulatory elements that may be involved in OR gene regulation.

Results

The transcriptional landscape of the mouse MOE

Using zinc-fix as an optimal fixative for both tissue morphology

and RNA integrity preservation, adjacent histological cryosections

were prepared from the MOE of C57BL/6J mice at 12 or 20–22 d

postnatally. The MOE was isolated by LCM from these sections

(Supplemental Fig. S1). After RNA purification, two independent

nanoCAGE libraries were synthesized. The reaction was random-

primed in order to target also noncoding, nonpolyadenylated

RNAs [poly(A)�], and long, partially degraded RNAs. After cDNA

amplification, 25-base tags were sequenced on an Illumina GA

sequencer. A total of 53,158,862 tags were obtained, of which

41,399,873 (78%) could be aligned to the mouse genome.

The aligned tags were then associated to the transcript models

from the reference sequence collection (RefSeq; http://www.ncbi.

nlm.nih.gov/RefSeq/) and from the FANTOM3 full-length non-

coding RNAs data set (Carninci et al. 2005). Conservatively, we

counted a tag as evidence for the expression of a given transcript if

it aligned to its 59 UTR or to its proximal promoter, which we define

as the region up to �500 bases upstream of the 59 end of the

transcript. The expression value of tags that can align to multiple

loci was distributed between them according to the weighting

strategy of Faulkner et al. (2008) (see Methods) and then normalized

by dividing the tag counts by the total number of tags, resulting in

values expressed in tags per million (tpm).

Our previous analysis with CAGE has shown that promoters

can vary in shape, with some genes having a strong preference for

one particular base pair for transcription initiation, and others

using a broad collection of TSSs within a region of approximately

100 bases. In both cases, we clustered TSSs together when they map

within 20 bases from each other, because this distance has been

found effective to group together TSSs that belong to the same

promoter. The TSS with the highest tag count in these clusters is

chosen as the major TSS (SO:0001238) of the promoter (Carninci

et al. 2006).

Twenty-six percent of the tags aligned within 200 bases of the

59 end of a transcript (Fig. 1A,B). Fifty-two percent of the tags are

associated with coding transcripts, and 19% with noncoding

transcripts. Interestingly, as many as 13% of the tags are associated

with the opposite strand of known transcripts (Fig. 1C), confirm-

ing that divergent transcription is a common phenomenon in

mammalian promoters (Engström et al. 2006). Ten percent of the

tags are mapped over the proximal promoter of coding and non-

coding RNAs (6.7% and 3.3%, respectively). Furthermore, 10.7%,

11.2%, and 12.2% are found, respectively, in the 59 UTRs, coding

sequence, and 39 UTRs of coding gene models (Fig. 1C). Twelve

percent of the tags aligning to the genome are not associated with

any transcript and may represent the TSSs of genes that have yet

to be characterized. In addition, we noted that 10% of the tags

mapped to repeat elements, a fraction that corresponds to the

proportion observed in mouse brain tissues (Faulkner et al. 2009),

with a predominance of SINEs (1.8%), LINEs (1.7%), simple repeats

(1.2%), and LTR families of repeats (1%).

Comprehensive map of mouse OR promoters

The absence of a genome-wide definition of TSSs for OR genes is

a great obstacle to the identification of transcription factors (TFs) that

may be involved in the regulation of their expression. Therefore, we

analyzed the nanoCAGE tags that map to the putative promoter-

containing regions of OR genes. Of these, 606,260 tags (1.5% of the

MOE transcriptome) are located in evolutionarily conserved clus-

ters of OR genes (CLICs) (Supplemental Table S1; Aloni et al. 2006).

These tags are aggregated in 26,452 individual TSSs.

In contrast with the broad promoter shape of widely expressed

transcripts, 88.5% of OR promoters are of a sharp type with only

a single dominant TSS position, a known feature of tissue-restricted

transcripts (Carninci et al. 2006). Moreover, 21% of OR promoters

have a canonical TATA-box (Ponjavic et al. 2006). Inspection of the

limited number of previously cloned OR 59 UTRs (Lane et al. 2002;

Michaloski et al. 2006) reveals that they are conserved in ortho-

logous loci in the rat and often in the dog genome. Using sequence

conservation and expression level for selection, and after removing
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tags corresponding to expressed repeat elements in order to avoid

accidental assignment of a non-OR promoter to an OR gene, we

assigned one cluster of nanoCAGE TSSs as the promoter for 955

(87.5% of 1092) mouse OR genes with an intact open reading

frame (Supplemental Table S2).

The normalized expression levels of the 955 OR promoters were

distributed between 0.02 and 142.2 tpm (first quartile: 0.70; median

2.17; third quartile: 5.05). The alignment of 87% of the tags to OR

promoters was unique. Accordingly, the OR expression profiles

obtained with or without including the tags aligning in multiple loci

were almost identical (Pearson coefficient: 0.998). The expression

level of each OR promoter is available in the Supplemental Material.

Most of OR promoters are several thousand bases away from

the closest annotated 59 boundary of OR transcript models, which

in most cases is merely the start of the

coding sequence, in agreement with ob-

servations that OR genes typically have

a noncoding first exon (Lane et al. 2002;

Michaloski et al. 2006). The median dis-

tance between the transcription and

translation start sites is 3125 bases (first

quartile: 1926; third quartile: 4890).

The most comprehensive OR TSS

analysis before we started our study con-

sisted of a 59-PCR-based analysis of 198

mouse OR genes (Michaloski et al. 2006).

We assigned these 59-RACE products to

OR genes. Eighty-eight percent had a pro-

moter determined by nanoCAGE. Since 59

RACE also has a single-nucleotide resolu-

tion, we compared the relative position

between each RACE EST and their cor-

responding nanoCAGE major TSS. The

median distance was 26 bases. In addition,

we also validated the 59 ends of transcripts

for Olfr2 (MOR103-15), Olfr329 (MOR275-

6P), and Olfr1215 (MOR233-13) with RACE

and capillary sequencing. Lastly, we com-

pared our TSS with the ones defined by

hybridization of RLM-RACE-PCR products

on tilling arrays by Clowney et al. (2011)

and found that their median directed

distance was of �69 nt (Supplemental Fig.

S2). This systematic shift might be intro-

duced at the step where the hybridization

signal of the tiling arrays is transformed into

transcript boundaries, because this involves

determining detection thresholds.

Together our OR promoters com-

prised 20% of the tags mapping onto

evolutionarily conserved clusters of OR

genes (CLICs) (Aloni et al. 2006). Twenty-

one percent of the tags in CLICs were as-

sociated to non-OR RefSeq transcripts.

While 45% of the tags mapping to CLICs

aligned in intergenic regions, defined by

RefSeq complemented with our OR pro-

moters, we note that six out of the 10 most

expressed intergenic loci in CLICs were

supported by FANTOM3 CAGE tags or

mouse mRNAs deposited in GenBank,

suggesting that CLICs contain more non-

OR genes than previously reported. Seven percent of the tags

mapped to OR CDS, and 4% between the OR promoters and

translation start site, revealing potential alternative transcriptional

start sites for 662 of the 955 OR genes for which we assigned a pro-

moter. Expressed LINE, LTR, and satellite repeats (but not SINE or

simple repeats families) were significantly over-represented in

CLICs (Fisher test P-value < 10�10; see Methods for details). More

than 88% of them were located in intergenic regions.

39 UTR and antisense transcripts at OR gene loci

In addition to the TSSs for protein-coding OR transcripts, we iden-

tified at OR gene loci a large number of TSSs previously unchar-

acterized. Former reports showed the prevalence of 39 transcripts

Figure 1. MOE transcription start sites recapitulate known transcript initiation and reveal the extent
of noncoding transcripts. (A) The distribution of distances between nanoCAGE TSSs and the closest
documented 59 end of a transcript (RefSeq model or full-length noncoding FANTOM3 RNA). The
number of CAGE tags is represented on different logarithmic scales for sense and antisense directions.
The areas within 200 bp or 1000 bp are shaded in, respectively, darker or lighter shades of red (for TSS
located on the same strand), or green (for TSS located on the opposite strand). (B) Proportion of TSSs
located <200 bp (dark color), <1000 bp (light color), or >1000 bp (white) from RefSeq or FANTOM3
noncoding RNA transcripts, on the sense (red) or antisense (green) strand, both of which correspond to
the distribution plotted in panel A. The white area completing the histograms depicts the remaining
proportion of nanoCAGE TSS distant of >1000 bp from those documented transcripts’ 59 ends. (C )
Histogram depicting the proportion of tags aligned to the proximal promoter of transcript models
(defined as the region spanning from the 59 end to 500 bp upstream), the 59 UTR, the coding sequence
(CDS), the 39 UTR (in decreasing purple colors), the proximal promoter of FANTOM3 noncoding RNA
(in orange), and the FANTOM3 noncoding RNA (in light orange). The upper part of the bar plot shows
TSSs located on the same strand as the annotation, while the lower part depicts TSSs located on the
opposite strand. (Gray bar) The percentage of TSSs that do not colocalize with any of those annotations.
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comprising only part of the 39 UTR of coding loci (Carninci et al.

2006; Affymetrix/Cold Spring Harbor Laboratory ENCODE Tran-

scriptome Project 2009). In line with these results, we found TSSs

directly 39 to the coding sequence of OR genes. Examples are shown

for an OR gene cluster on chromosome 7 (Fig. 2). Furthermore, we

discovered antisense transcripts in 505 OR loci; 276 of these overlap

with the coding sequence. The distribution of antisense transcripts

is similar across Class I and II OR genes. We validated by random-

primed 39 Deep-RACE the presence of antisense transcripts at

Olfr49 (MOR118-1), Olfr522 (MOR103-5), and Olfr702 (MOR260-4)

loci, which we chose for their high expression. Strong sequence

conservation prevented the investigation of several other loci.

Predicted transcriptional control of OR genes

We next used the 955 OR promoters to identify cis-regulatory el-

ements and TFs that may control OR gene transcription. We ana-

lyzed the TFBSs contained in genomic sequence in the regions

from �300 (upstream) to +100 (downstream) of the major TSS.

This interval maximizes the signal/background ratio in identifying

TFBSs (Suzuki et al. 2009). We compared these OR promoters with

two reference sets of promoters for ;3000 non-OR genes that are

expressed in the MOE or in the FANTOM3 CAGE libraries and that

present the same general class of sharp promoters without CpG is-

lands (Carninci et al. 2006). To detect over-representation of known

TF binding site motifs, we used our in-house statistical software tools

along with positional weight matrices (PWMs) from the JASPAR

(Portales-Casamar et al. 2010) and TRANSFAC Public (Matys et al.

2003) databases, which altogether identify TF binding motifs. We

also generated a PWM for EBF1 from 26 experimentally validated

binding sites collected from the literature (Supplemental Table S3).

Our results reveal in OR promoters an over-representation of TF

binding site motifs that are bound by homeodomain proteins (NKX

family, FOX family), SOX family proteins, EBF proteins, the MADS-

box protein MEF2A, and the TATA-binding protein TBP (Fig. 3;

Table 1: Supplemental Table S4; results are summarized in Fig. 3A).

For a de novo discovery of motifs, we used MEME (http://

meme.sdsc.edu/) and Amadeus (http://acgt.cs.tau.ac.il/amadeus/)

with a general set of sharp, non-CpG promoters as reference. We

then compared the motifs with JASPAR and TRANSFAC public

databases using STAMP (http://www.benoslab.pitt.edu/stamp/).

While MEME uncovers only the EBF1 binding site with high

confidence, Amadeus predicts additional motifs similar to those

for HOX and FOX. The over-representation of FOX, HOX, and

EBF1 TF binding site motifs in OR gene promoters is thus con-

firmed by independent computational approaches.

By exploring the PWMs according to the fold increase of their

frequency in OR promoters compared with reference sets, we no-

ticed a strong enrichment in OR promoters for the PWM of POU

(OCT) (94%–18% vs. 30%–2%), MEF2A (62%–20% vs. 14%–4%),

and TBP (85% vs. 30%) (Table 1). NanoCAGE data confirm the

expression of Pou2f1, Pou6f1, Mef2a, and Tbp in the MOE (Table 1).

We also found binding motifs for TFs whose related gene expres-

sion as tags in the nanoCAGE libraries was not detected (Supple-

mental Table S4); among these cases, the LHX3 TF binding site

motif is present in as many as 88% of the OR promoters and only in

15% of the FANTOM3 reference promoter set. Although we could

not detect Lhx3 expression in the MOE, we confirm the expression

of Lhx2, a related gene. LHX2 and LHX3 have been shown to bind

the same probe by electromobility shift assay (Roberson et al. 1994;

Bach et al. 1995), and LHX2 is essential for OSNs identity (Hirota

and Mombaerts 2004; Kolterud et al. 2004; Hirota et al. 2007).

Sharp promoters without CpG islands, which we have here

shown to prevail in OR genes, are often bound by TFs within

a constrained spacing range relative to the TSS (Roider et al. 2009).

To determine the spatial preferences of the over-represented TF

binding site motifs, we plotted the distribution of the corre-

sponding TF binding site motifs in the region relative to the major

TSS (Fig. 3B–E). Several of the over-represented TF binding site

motifs exhibit a strong spatial preference (Table 1), the strongest

signal coming from EBF1 (Fig. 3B) between 50 and 150 bp upstream

of the major TSS, followed by the very precise TATA-box (TBP) signal

at the expected spacing of�33 to�29 (Fig. 3C), and the enrichment

of homeobox core TF binding site motifs peaking at 100–150 bp

upstream of the major TSS (Fig. 3A). This distribution confirms the

previous identification of putative HD and EBF binding sites in the

promoters of several OR genes (Vassalli et al. 2002). For TBP (Fig.

3C) and MEF2A, we identified additional potential binding sites

downstream from the major TSS. An enrichment of the PWMs of

IKZF1 (also known as IKAROS) was also detected (Fig. 3D).

Class I and Class II OR genes belong to distinct phylogenetic

categories, and it has been previously suggested that their tran-

scription may be controlled by differing regulatory elements (Hirota

et al. 2007); we therefore carried out a systematic comparison of

promoters for Class I versus II OR genes. The promoter and coding

sequence of Class I receptors show a tendency to be more conserved

(p < 0.05, one-tailed Wilcoxon test). Class II OR promoters have an

increased frequency of HOX and FOX TF binding site motifs with

special preference for LHX3 (p = 9.9 3 10�4, Fisher’s exact test, two-

tailed). They are also more frequent in the conserved noncoding

elements between the OR genes (p = 4.0 3 10�5). We found a similar

over-representation in Class II OR promoters for a LHX2 PWM

obtained from the UniProbe database, and a binding sequence

consensus (ymATTAnnTAATkr) derived from the weblogo (Hu et al.

2009) after dimerization (Roberson et al. 1994) (p = 1.0 3 10�4). We

did not find over-represented TFBS for Class I OR promoters.

AACTTTTTAATGA is a sequence conserved within the H ele-

ment and the P sequence, two regulatory regions that control OR

genes’ expression (Fuss et al. 2007; Bozza et al. 2009). To assess the

potential involvement of this particular sequence in OR genes

regulation, we examined its conservation in OR promoters allow-

ing up to four mismatches, and we found it to be over-represented

around �150 bp with respect to the major TSS, a positional pref-

erence similar to HOX TF binding site motifs.

It has been speculated that locus control regions or long-range

regulatory elements have a general role in regulating OR gene ex-

Figure 2. Promoters of olfactory receptor genes. In this example of
a region of chromosome 7, which is symbolized as the horizontal axis, the
transcription start sites have been plotted as vertical bars proportional to
the number of nanoCAGE tags aligned, normalized in tags per million
(TPM). Activity is displayed upward for the forward strand and downward
for the reverse strand. (Blue boxes) The positions of the OR transcript
models, with their names following the Olfr convention. Note that the
transcript models contain only the predicted coding sequence of the ORs
and lack the 59 and 39 UTRs. Sequence conservation and expression fil-
tering identified the three largest peaks as promoters of their downstream
OR gene model. (Yellow) The revised gene models.

Olfactory receptors promotome
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pression (Lane et al. 2002). Consequently, we assessed the presence

of conserved regions in noncoding elements found up to 50 kb

from OR transcript 59 ends. We found that noncoding elements

around Class I genes have deeper conservation than around Class

II genes (p < 2.2 3 10�16, one-tailed Wilcoxon test), reflecting per-

haps their grouping in a single cluster on chromosome 7. In addi-

tion, we noticed that Class I genes are more likely than Class II genes

to have a conserved noncoding element nearby (92% vs. 84%,

respectively; p = 0.020, one-tailed Fisher’s exact test). Comparison

of TFBSs content around these elements in Class I and II OR genes

shows over-representation of HOX TF binding site motifs in con-

served elements at Class II loci, consistent with promoter analysis.

In vivo interaction of EBF, TBP, and MEF2A TFs
with OR promoters

We assayed the physical association of three TFs to promoter re-

gions of OR genes in vivo by chromatin immunoprecipitation

followed by quantitative PCR (ChIP-

qPCR). The OR genes were selected for

their high expression levels according to

nanoCAGE data. EBF-binding motifs are

strongly enriched in our analysis; by using

an anti-pan EBF antibody, we confirmed

EBF immunoreactivity in the nucleus of

OSNs (Fig. 4A). Chromatin from MOE of

mice at postnatal days 22–30 was purified

and immunoprecipitated with specific

or control (IgG) antibodies. We quanti-

fied bound genomic DNA by qPCR

using primers for the promoter regions

of Olfr110 (MOR249-2) and Olfr794

(MOR114-11), both containing a putative

EBF binding site. Figure 4B shows that EBF

binds in vivo the predicted OR promoter

regions. We also tested two additional TFs

that have not been implicated previously

in the regulation of OR gene expression,

TBP and MEF2A, which were selected for

their high expression level according to

nanoCAGE data and for the availability of

specific antibodies. We confirmed their

nuclear localization in the OSNs by im-

munohistochemistry (Fig. 4A). TBP is ex-

pressed across all layers of the MOE, while

MEF2A expression is more restricted to

cells in basal layer. We confirmed by ChIP-

qPCR the physical association of TBP and

MEF2A with chromatin regions upstream

of Olfr279 (MOR122-1), Olfr683 (MOR40-

1), and Olfr1106 (MOR172-6) (Fig. 4B). We

used sequences from the Hist2h promoter

as a positive control for TBP ChIP. These

data strongly suggest that EBF, TBP, and

MEF2 are associated with assayed OR gene

promoters in the mouse MOE.

Validation of an OR promoter
in transgenic mice

To test if sequences defining an OR pro-

moter identified by nanoCAGE are suffi-

cient for its expression, we generated transgenic mice expressing

a LacZ reporter under the control of sequences flanking the major

TSS of an OR gene (Vassalli et al. 2011), which did not include any

OR coding sequence (Serizawa et al. 2003). We used a genomic

fragment from the Olfr160 (M72) locus that consists of 143 bp

upstream of the Olfr160 major TSS and the first 154 bp of the

noncoding exon of Olfr160, and named this construct Tg-

M72(V4)-LacZpA (Fig. 5A–C; Vassalli et al. 2011). This 298-bp

segment contains a sharp promoter (Fig. 5A) and multiple EBF1

and MEF2A binding sites both upstream of and downstream from

the TSS as defined by nanoCAGE (Fig. 5B). Nine out of 12 trans-

genic lines and 5/5 transgenic founders showed expression in the

turbinates. An X-gal-stained whole mount of a mouse from line 7 is

shown in Figure 5C. Reporter expression is somewhat ventralized

relative to the normal pattern of Olfr160 transcript localization.

Thus, a 298-bp sequence centered on the major TSS of Olfr160 and

containing binding sites for EBF and MEF2A is able to generate

promoter activity in the OSNs of transgenic mice.

Figure 3. Transcription factor binding profile over OR promoters. (A) Summary of positional prefer-
ences for TFBS in relation to the major TSS. (B–E) TF binding site motif profiles in OR (red) versus reference
set of promoters (black). (Gray lines) 99.99% confidence intervals around the mean TFBS positional
preference profile for the background set used. (Vertical green lines) The position of the major TSS.
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Discussion
With the combination of LCM and nanoCAGE, we have provided

a comprehensive identification of TSSs and promoters in the

mouse MOE. The use of LCM allowed us to harvest the target tissue

minimizing contamination by neighboring non-olfactory tissues.

The newly developed nanoCAGE technology was instrumental to

describe the 59 ends of transcripts from small, fixed, ex vivo sam-

ples for both poly(A)+ and poly(A)� transcripts. Deep sequencing

enabled us to collect information on expressed promoters at un-

precedented depth, as confirmed by the detection of OR genes that

are expressed in <1% of cells. We have thus determined the pro-

moter architecture of 87.5% of the mouse OR genes, and we have

provided a thorough characterization of the transcriptional land-

scape of OR loci.

The architecture of OR promoters

We have associated TSSs to 955 mouse OR genes, thereby defining

a comprehensive picture of their promoter map at a single-base

resolution. In contrast with the archetype of >75% of mammalian

promoters, OR genes have sharp promoters exhibiting a dominant

TSS. One of the most relevant features of sharp promoters is the

spatially constrained distribution of cis-regulatory elements. They

often contain a well-defined TATA-box (Ponjavic et al. 2006) but

no CpG island. In contrast, ;90% of promoters that overlap a CpG

island lack a TATA-box. Exceptions to this general rule are tissue-

restricted transcripts in the brain that tend to be controlled by CpG

island-overlapping, broad promoters (Gustincich et al. 2006).

Broad promoters control genes that are typically expressed more

widely, including nearly all so-called housekeeping genes (Carninci

et al. 2006). In contrast with some other works (Glusman et al. 2000;

Sosinsky et al. 2000; Clowney et al. 2011) and in line with the

comparative analysis of Bulger et al. (2000), we found a well-defined

TATA-box in 21% of both Class I and

Class II OR genes at a higher frequency if

compared with other sharp promoters.

Most of the other OR genes display a

weaker TATA-like motif at the expected

position. To exclude that the difference

for the detection of the TATA-box stems

from the bioinformatics rather than

from molecular biology, we searched in

Clowney et al.’s OR promoters for TBP,

LHX3, EBF1, and IKZF1 PWMs following

our approach and confirmed the absence

of a clear TBP signal in their data (Sup-

plemental Fig. S3). This could be the

consequence of sequence biases caused

by the use of hybridization in the tiling

arrays method, or more generally its lack

of single-nucleotide resolution. OR pro-

moters have therefore characteristics of

non–nervous tissue–restricted genes. In

the brain, the list of tissue-restricted

genes that have TATA-box, non-CpG is-

land sharp promoters includes retina-

specific genes such as opsins, retbindin,

and retinal S-antigen. Resemblances in

the transcriptional control of those genes

may be due to a similar role as sensory

transduction elements with an early or-

igin in evolutionary history, thus sharing the more ancient type

of tissue-restricted regulation that is based on sharp, TATA-boxed

promoters.

Transcriptional regulation of OR expression

Our large-scale approach offers the opportunity to predict the TFs

that are involved in the transcription of OR genes in the MOE. We

identified EBF1 and IKZF1/IKAROS TF binding site motifs in the

EBF binding site region, as well as HOX and FOX TF binding site

motifs in the HD binding site. A new binding site region was de-

fined close to the major TSS, containing a TF binding site motif for

the MADS-box protein MEF2A, identifying a new potential control

site for OR gene regulation.

The identification of EBF1 confirms the validity of our ap-

proach: EBF1 has been the first TF to be implicated in the regula-

tion of the OSN-specific genes G(olf) (Gnal), adenylyl cyclase III

(Adcy3), the olfactory-specific subunit A2 of the cyclic nucleotide-

gated ion channel (Cnga2), and Gg8 (Gng8) (Travis et al. 1993;

Wang et al. 1993, 1997). The DNA binding site for EBF1 shares its

consensus sequence with two other family members, EBF2 and

EBF3, and it shows a strong spatial preference for positioning be-

tween 50 and 150 bp upstream of the major TSS, which also occurs

in the reference set of 3000 promoters for non-OR genes in the

MOE. Such a widespread and precise positioning in all sharp, CpG-

less promoters argues for a more general function of the EBF1,

EBF2, and EBF3 proteins in regulating the transcription of adult

tissue–restricted genes than in the control of OR gene expression

per se. Putative binding sites for the zinc finger transcription factor

IKZF1/IKAROS are known to be conserved between the mouse and

human P3 and P4 promoter regions (Lane et al. 2001). We observed

that for EBF1 and IKZF1/IKAROS, the distance between TF binding

site motif peaks and the major TSSs of OR genes is very similar

despite their unrelated binding profiles (Fig. 3D). Interestingly,

Table 1. TFBS analysis of the MOE

Symbol Profile ID % OR % MOE % F3
MOE

P-value
F3

P-value Expression
Profile

info

EBF1 M00EBF1 87 73 82 8.47 3 10�67 1.23 3 10�107 166.12 11.6
FOXL1 MA0033 99 94 60 1.17 3 10�38 2.16 3 10�044 — 6.1
NOBOX MA0125 97 80 51 1.46 3 10�24 4.48 3 10�023 0.46 9.6
PDX1 MA0132 99 95 69 1.98 3 10�24 3.76 3 10�043 — 9
PRRX2 MA0075 99 89 54 6.36 3 10�24 1.72 3 10�035 — 9.1
TBP M00216 85 61 30 5.11 3 10�23 2.34 3 10�041 22.39 13.1
POU2F1 M00137 97 82 44 3.01 3 10�17 6.36 3 10�024 0.87 6.9
NKX2-5 M00241 90 68 31 8.91 3 10�17 6.66 3 10�021 — 12.2
SOX5 M00042 92 76 32 1.89 3 10�16 3.48 3 10�020 0.12 11.1
NKX6-2 M00489 97 80 37 3.95 3 10�14 3.43 3 10�027 — 10.1
MEF2A M00405 62 40 16 3.76 3 10�13 2.50 3 10�018 1.21 15.1
POU6F1 M00465 53 29 6 6.30 3 10�07 2.89 3 10�008 1.12 15.3
IKZF1 M00086 49 40 31 1.69 3 10�05 8.65 3 10�019 3.61 11.9
LHX3 MA0134 88 54 15 1.75 3 10�08 4.87 3 10�017 — 12.9

All over-representations of the number of TFBS hits in the OR promoter set compared with reference
sets, and the number of promoters containing a hit compared with the reference promoters are sta-
tistically significant (p = 0.0001). The % OR, % MOE, and % F3 columns contain the percentage of
sequences having that TFBS hit in the OR promoter set, and the MOE and FANTOM3 reference sets,
respectively. The OR P-value and F3 P-value columns indicate the minimum positional-preference P-values
for the TFBS, where positional preference is most significant compared with the MOE or FANTOM3 ref-
erence set, respectively. The Expression column indicates expression for the corresponding TF gene, in tags
per million (tpm). The Profile info column displays the information content of the position weight matrices
used. The upper part of the table shows the TFs that display the strongest positional enrichment, and the
lower part (below the second line) contains other TFs that are discussed in this article. This table was
consolidated by eliminating redundant matrices in TRANSFAC and JASPAR.
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EBF1 has also a prominent function in defining the transcriptional

profile of lymphocyte progenitors (Nutt and Kee 2007).

The association of HOX and FOX TF binding site motifs has

been strengthened by the strict conservation of distances between

their binding sites and the major TSSs of the OR genes they control.

Interestingly, their mapping coincides with the well-characterized

HD binding site in the OR promoter region. Among them, PWMs

of POU (OCT) genes were strongly enriched (Table 1; Supplemental

Table S4). Importantly, our nanoCAGE libraries provided evidence

for expression of transcripts corresponding to enriched TFBS, in-

cluding Pou6f1, Foxa2, and Foxg1. Using the in situ hybridization

expression pattern database Eurexpress (http://www.eurexpress.

org), we confirmed that their expression is not restricted to the

sustentacular cells that were included in our microdissection

(Supplemental Fig. S1). Due to the similarity of their binding pro-

files, it is difficult to ascertain which Fox gene product binds OR

promoters. Two possible candidates are FOXA2, which has been

detected in both adult (Besnard et al. 2004) and embryonic (http://

www.eurexpress.org) MOE, and FOXG1, which is essential for the

production of mature OSNs in a cell-autonomous fashion (Duggan

et al. 2008).

We also found TF binding site motifs for TFs that do not seem

to be expressed in the MOE (Supplemental Table S4), such as LHX3,

which shows strong prevalence in OR promoters; we hypothesize

that this motif can be bound by the related protein LHX2, which

can be expected to have a similar binding site. This hypothesis is

corroborated by the presence of an LHX3 binding site motif in 54%

of the MOE reference promoter set, but only 15% of the FANTOM3

reference set. Furthermore, LHX3 TF binding site motifs are over-

represented in the promoters of Class II OR genes, providing a

molecular basis for the selective loss of this receptor class in Lhx2

knockout mice (Hirota et al. 2007).

We also show that approximately half of the expressed OR

loci contain antisense transcripts, with the majority of them located

within the coding regions. It will be interesting to test whether

antisense and other noncoding RNAs originate in chromatin re-

gions that are involved in yet-unknown three-dimensional struc-

tures that may play a role in the monoallelic and monogenic ex-

pression of OR genes. Indeed, molecular players of chromatin

assembly and remodeling have been shown to be enriched in OSNs

(Sammeta et al. 2007). An additional highly represented class of

promoters or at least capped 59 ends of RNAs is located in the 39

UTR of OR genes. It is still unclear whether they drive the expres-

sion of small noncoding RNAs or of unknown transcripts that may

further contribute to the transcriptional regulation of OR genes, for

example, acting as a sponge to compete for microRNA target sites

(Tay et al. 2011).

In vivo activity of an OR promoter transgene

Experimental analysis of OR gene regulation has been confined to

a few OR genes, by applying transgenic mouse technology to

identify fragments of OR loci that reproduce some or all of the

features of OR gene expression. Transgenes of ;9 kb for Olfr151

and Olfr16 (Vassalli et al. 2002; Rothman et al. 2005) and 10.5 kb

for Olfr157 (MOR262-12) (Zhang et al. 2007) are the smallest ge-

nomic fragments (minigenes) that closely reproduce the features of

endogenous OR genes. For the Olfr151 minigene, a 161-bp region

Figure 4. EBF, TBP, and MEF2A proteins are expressed in the MOE and physically associate with the promoters of Olfr110, Olfr279, Olfr683, Olfr794, or
Olfr1106 in vivo. (A) Immunohistochemistry of MOE from mice at postnatal day 21, with anti-EBF, anti-TBP, and anti-MEF2A antibodies (green). Nuclei
were visualized with DAPI (blue). Scale bars, 30 mm (top row), 60 mm (center and bottom row). (B) ChIP assays were performed on MOE from mice at 22–30
d postnatally. Chromatin was immunoprecipitated with anti-EBF, anti-TBP, and anti-MEF2A antibodies. Normal rabbit IgGs were used as negative control.
Enrichment of promoter sequences in the immunoprecipitates was determined by qPCR, using specific primers. The relative abundance of target DNA was
expressed as percentage of total input chromatin. Data were obtained from two independent experiments. Statistical analysis: p < 0.05 in all cases.
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upstream of the major TSS is required for transgene expression

(Rothman et al. 2005). Olfr16 transgene expression is dependent

on a 405-bp region upstream of the TSS, which consists of a 257-bp

fragment of a LINE-1 followed by 148 bp of unique sequence.

Conserved sequence TF binding site motifs were indeed identified

in the regions upstream of the TSS including a putative HD and an

EBF-binding site. By site-directed mutagenesis, these TF binding

site motifs were then shown to be important in vivo for OR gene

expression (Rothman et al. 2005). Conversely, analysis of Ebf2 and

Ebf3 knockout mice revealed marked defects in the projection of

OSN axons to the dorsal part of the olfactory bulb (Wang et al.

2004). Mice with a knockout mutation in the homeobox-con-

taining gene Emx2 show defects in OSN maturation and altered OE

structure (McIntyre et al. 2008). Furthermore, LHX2 interacts with

a HD binding site in the Olfr16 promoter and is required for ex-

pression of Class II OR genes but not for Class I OR genes and/or

the maturation of the corresponding OSNs (Hirota and Mombaerts

2004; Kolterud et al. 2004; Hirota et al. 2007).

Here we show that mosaic, OSN-specific expression can be

conveyed to the taulacZ reporter by a very small genomic segment

from the Olfr160 locus flanking the major TSS and containing the

binding sites that we have identified. The taulacZ reporter itself is

completely inactive in the absence of a functional promoter

(Rothman et al. 2005). Unlike most other published OR transgenes

such as the minigenes (Vassalli et al. 2002; Rothman et al. 2005;

Zhang et al. 2007), this transgene does not contain an OR coding

sequence. Accordingly, stained axons do not coalesce into a few

glomeruli but project diffusely over the olfactory bulb, presumably

reflecting the expression of a wide variety of endogenous ORs by

the transgene-expressing OSNs (Vassalli et al. 2011). Within the

298 bp of the Tg-M72(V4)-LacZpA promoter transgene, one HD

binding site and several EBF and MEF2A binding sites are present just

upstream of the major TSS, suggesting that these sequences are suf-

ficient for OSN-specific expression of the reporter gene. Although

the Olfr160 promoter transgene resembles the endogenous spatial

expression pattern, expression extends to the ventral MOE. Such

deviations from the endogenous expression pattern have also been

reported with larger transgenes (Vassalli et al. 2002; Rothman et al.

2005), suggesting that the full control region may contain additional

sequences that have a negative regulatory role across the MOE.

The widespread resemblance between all OR gene promoters,

their ability to drive broad expression in the MOE with minimal

sequences around the major TSS, and the absence of TF binding

site motifs specific for spatial or phylogenetic subsets of OR genes

suggest that the other key parts responsible for monoallelic and

monogenic expression mechanisms are to be searched for out-

side the core promoter. Cis-acting enhancers like the H element

(Serizawa et al. 2003) are natural candidates. Indeed, our TF bind-

ing site motif analysis of the evolutionarily conserved regions

upstream of the OR gene promoters underlined HD TF binding site

motifs similar to those of the H element. However, we did not find

features in the upstream conserved elements that correlate with

spatial or phylogenetic subsets of OR genes and that would have

suggested a determinant role for such enhancers in the choice of

a single olfactory receptor. Accordingly, deletion of the H element

only affects its local OR gene cluster (Fuss et al. 2007).

Among the other mechanisms that can globally control gene

expression, epigenetic modifications of the DNA or the chromatin

Figure 5. Transgenic reporter assay of the promoter activity of sequences flanking a nanoCAGE TSS. (A) Schematic depiction of the locus of Olfr160
(M72) on mouse chromosome 9. (Red) OLFR160 coding sequence; (blue) Olfr160 transgenic promoter; (purple) nanoCAGE tags; (black) ESTs. (B) Position
weight matrix (PWM) scanning of the promoter sequences with matrices for EBF1 (green) and MEF2A (blue). Highlighted are the regions where the signal is
above a 0.8 score threshold. (C ) Whole mount of a mouse from transgenic line 7 shows X-gal-labeled cells predominantly in the middle domain of the MOE
(black arrows). Labeled axons spread over a large domain in the middle aspect of the medial half-olfactory bulb, a probable consequence of the absence of
an intact OR CDS in the transgene. The dotted gray line follows the shape of the cribiform plate separating the MOE from the olfactory bulb (OB).
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may be a good complement, for instance, to select a single locus in

which interaction between a shared enhancer and the stereotyped

OR core promoters would then trigger the selection of a single OR

gene. Interestingly, nanoCAGE tags strongly indicate the presence

of noncoding transcripts, which are observed in other epigenetic

systems of monoallelic expression (Yang and Kuroda 2007). Fur-

ther experiments are needed to investigate the role of these novel

promoters and transcripts. In particular, it will be very important to

analyze them in the context of single cells, where it can be seen if

they are active in the same locus as the selected OR, or in a different

locus or OR cluster.

Methods

Preparation of samples for LCM
C57BL/6J mice were sacrificed by intraperitoneal injection of
pentobarbital, 300 mg/kg body weight. After decapitation, the skin
and the jaw were removed from the heads, and the samples were
left overnight in 13 ZincFix fixative (BD Biosciences) diluted
in DEPC-treated water. After a 4-h cryoprotection step in a 30%
sucrose/13 ZincFix solution, heads were included in Frozen sec-
tion medium Neg-50 (Richard Allan Scientific) and left for 15 min
on dry ice. Frozen blocks were brought into a cryostat (Microm
International) and left for 60 min at�21°C. Serial coronal sections
of mouse heads (16 mm) were cut with a clean blade, transferred on
PEN-coated P.A.L.M. MembraneSlides (P.A.L.M. Microlaser Tech-
nologies), and immediately stored at �80°C. Before usage, the
slides were brought to room temperature and air-dried for 2 min.
For 100 individual serial coronal sections in total encompassing all
of its four zones, the MOE was morphologically identified, marked,
microdissected, and catapulted with a Zeiss P.A.L.M. LCM micro-
scope (Carl Zeiss Inc.) in P.A.L.M. tubes with adhesive caps. After
the harvest, 10 mL of lysis buffer (Stratagene) was added in each
cap; the samples were left for 10 min at room temperature,
centrifuged at 6000g for 10 min, and stored at �80°C. RNA from
the pooled samples was extracted and purified with the Absolutely
RNA Microprep Kit (Stratagene), and 2.4 mg was recovered.

nanoCAGE

nanoCAGE libraries were prepared as described (Plessy et al. 2010).
In brief, total RNA was concentrated by centrifugal evaporation at
room temperature in the presence of trehalose, sorbitol, the tem-
plate switching (TS) oligonucleotides, and the random (N15) or
polythymine (dT18) reverse-transcription primers. All oligonu-
cleotides are listed in Supplemental Table S5 with their sequence.
cDNA was synthesized with SuperScript II and amplified by semi-
suppressive PCR14 with Ex Taq (TaKaRa) with the forward (FSS) and
reverse (RSS) primers, following the program 5 min at 95°C, n 3 (10
sec at 95°C, 15 sec at 65°C, 2 min at 68°C), where n was determined
according to the concentration of each cDNA preparation. Tags
were cleaved with EcoP15I, purified through the Microcon YM-100
membranes (Millipore), and then concentrated on Microcon YM-10.
Bar codes were introduced by ligation with a DNA duplex adaptor
made by annealing two oligonucleotides (L1 and L2, where the
nucleotides labeled as NN are the bar code) (Supplemental Table
S5). The resulting tags were amplified by PCR with Ex Taq (TaKaRa)
using the FT and RT primers, with the program 5 min at 95°C, n 3

(10 sec at 95°C, 10 sec at 68°C), where n was determined according
the concentration of each ligation reaction, and purified on an 8%
polyacrylamide gel. Samples were sequenced using the Illumina GA
sequencer. The read length was 36 bases, and the average tag length
was 25 bases after extraction (we observed small fluctuations in the
distance between cleavage site and binding site for EcoP15I).

Tags were mapped to mouse genome version mm9 (NCBI
build 37) using the Vmatch program (http://www.vmatch.de),
with a minimum match length of 21 bases and a maximum of
one error. Tags mapping the mouse ribosomal DNA sequence
were eliminated. The ‘‘best’’ match for each tag was then calcu-
lated as the alignment with the highest Vmatch score. Tags
mapping to more than 10 genomic loci at the best match level
were then removed. MuMRescueLite (http://genome.gsc.riken.
jp/osc/english/dataresource/) was then run on each library sep-
arately with a window size of 200 bp, producing weighted values for
multi-mapping tags occurring within 100 bp of a single map tag on
the genome.

Preparation of mouse OE RNA for 59- and 39-RACE validation
and RT-PCR

Adult wild-type C57BL/6J mice were sacrificed by carbon dioxide
inhalation. The MOE was dissected from the heads and rapidly
snap-frozen in liquid nitrogen. Total RNA was extracted with TRIzol
reagent (Invitrogen). The RNA sample was treated with DNase
(Ambion) for 1 h at 37°C, cleaned with an RNAeasy Kit (QIAGEN),
and aliquoted in RNase free LowBind tubes (Eppendorf). 59-RACE-
ready cDNA was synthesized with a GeneRacer Kit (Invitrogen).

39-Deep-RACE PCR was performed using the Illumina Genome
Analyzer II. In brief, 1 mg of total RNA was reverse-transcribed as for
a nanoCAGE library, except for the reverse-transcription primer
RRT, and the cDNAs were amplified by semi-suppressive PCR with
the FSS and RR primers, to ensure that only capped molecules were
analyzed. Nested RACE-PCR was then conduced with gene-specific
forward primers designed with scripts available upon request, and 39

RACE primers; for the outer nested PCR, the ORP reverse prime and
gene-specific forward primers. The inner PCR was done with the IRP
reverse primer and gene-specific primers, in which CAAGCAGAA
GACGGCATACGA is a tail to accommodate sequencing on the
Genome Analyzer II (Illumina) with the DS primer.

For RT-PCR, first-strand cDNA was synthesized using the
SuperScript II enzyme (Invitrogen) in 50-mL reactions for 2 h at
42°C. PCR was performed by adding 1 mL of first-strand reaction to
a mix containing 5 U of Ex Taq DNA polymerase, 103 buffer,
dNTPs mix 2.5 mM each (all reagents from TaKaRa, Japan), 50
pmol forward and reverse primers, and nuclease-free water to a fi-
nal volume of 50 mL. Forward exon-spanning primers were used to
avoid unwanted amplification of residual genomic DNA.

Mapping tag clusters to OR genes

We extracted conserved blocks from the MULTIZ alignment track
in the UCSC Mouse Genome Browser (mm9). We clustered con-
served blocks of mouse–rat, mouse–human, and mouse–dog to-
gether, if they were at most 4000 bp apart. These conserved block
clusters were attributed to RefSeq OR transcript models. For each
OR, we selected the conserved block clusters between 100 bp
downstream from the model’s 59 end (corresponding in most cases
to the start of the coding sequence), and the 39 end of the directly
upstream RefSeq on the same strand, extended by 500 bp in order to
make sure that transcription arising from within the upstream
gene’s 39 UTR (Carninci et al. 2006) would not be falsely included.
We also limited the span of the upstream region to 15 kb in case the
conserved block cluster was longer and no upstream RefSeq tran-
scripts were to constrain its boundary. We only accounted for re-
gions within those boundaries that did not correspond to repeats
obtained from the RepeatMasker track in the UCSC Mouse Genome
Browser (mm9). We then associated the tag cluster with the highest
expression level within this region to the corresponding down-
stream OR gene.
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Detection of conserved regions and elements

For the identification of conserved noncoding regions in the
neighborhood of OR genes, we used Phastcons conserved elements
for 20 placental mammals with the mouse mm9 assembly as ref-
erence, available from the UCSC Table Browser (http://genome.
ucsc.edu/cgi-bin/hgTables) as the table ‘‘Mammal El (phastCons
Elements30wayPlacental)’’ in the ‘‘Conservation track’’ of the
‘‘Comparative Genomics’’ group. We have retained Phastcons con-
served elements if they do not overlap with any of the following:
mouse ESTs, mRNA exons, RefSeq exons, exons of other species
genes mapping to the mouse genome, and CAGE tag clusters. We
used the same algorithm for the analysis on CNEs, with as a back-
ground 3000 randomly chosen CNEs that are not nearby OR genes.
Only CNEs larger than 10 bp were considered.

Over-representation of repeat element family in evolutionarily
conserved clusters of OR genes

Repeat elements mapping to the mm9 genome were downloaded
from UCSC, and summed expression of members of all repeat
families located on or outside evolutionarily conserved clusters of
OR genes was gathered. One-tailed Fisher tests were used to cal-
culate the potential overexpression of specific repeat families in
CLiC compared with that on the entire genome. Specifically, the
2 3 2 contingency table built to accept or reject the hypothesis
that specific repeat families were over-represented in CliCs was
composed of (1:1) count of tags overlapping of repeat of family
X in CLiCs, (1:2) count of tags overlapping of repeat of family X not
in CLiCs, (2:1) count of tags overlapping any nonfamily X repeats
in CLiCs, and (2:2) count of tags overlapping any nonfamily X
repeats not in CLiCs.

TFBS over-representation analysis

We compared the normalized total number of TFBS profile hits in
OR gene promoters to those of our reference set and obtained
significantly over-represented TFBSs in OR gene promoters. The
significance of the obtained over-represented TFBS was assessed by
performing a similar computation on 10,000 independent random
resamplings of promoters among all promoters, OR promoters,
and non-OR sharp promoters, and counting the number of sets
with equal or higher value to the original total hit count divided by
10,000, thus obtaining an estimate of the P-value for each TF
binding site motif:OR promoter association. We also assessed the
significance of the number of sequences in the target promoter set
having a given TF binding site motif using random sampling with
replacement, counting the number of random sets that had a
higher or equal number of sequences containing that TFBS hit,
and calculated the P-value by dividing it by the total number of
random sets. We retained as significantly over-represented, OR
promoter TF binding site motif associations for which both
P-values were <0.005.

TFBS positional-preference analysis

We computed positional-preference profiles for OR gene pro-
moters. We computed similar profiles for 1000 sets, of a size similar
to the set of OR promoters, randomly sampled from the union of
all OR promoters and 3000 sharp, CpG-less promoters. Assuming
that for each position positional-preference scores are distributed
normally, we calculated the mean and 99.99% confidence interval
values. Comparing them to scores obtained with OR promoters
using Z-score, we calculated the P-value associated with the over-
representation of a TF binding site motif at each position.

We finally ranked all of the TFBS positional-preference pro-
files according to their lowest P-value, requiring that the profile
local minima not overlap with a TATA-box region since genuine
TATA motifs can be confounded with AT-rich parts of some TFBS,
and selected the top 30 profiles.

Chromatin immunoprecipitation (ChIP)

The MOE was dissected from C57BL6/J mice at postnatal day 22–
30. Six to seven mice were used for the preparation of chromatin.
Tissues were minced on ice in 10 mL of DMEM. For cross-linking,
formaldehyde was added directly to the culture medium to a final
concentration of 1% and incubated for 15 min at room tempera-
ture. The reaction was stopped with 0.125 M glycine for 5 min.
Tissues were collected by a brief spin, washed with PBS, and ho-
mogenized in PBS supplemented with protease inhibitors (Roche)
using a Dounce homogenizer with a loose pestle. Solitary cells were
filtered through a cell strainer (BD Falcon) and collected by spin-
ning at 2000g for 5 min. The cell pellet was resuspended in 50 mL
of LB1 buffer supplemented with protease inhibitors (50 mM
HEPES-KOH at pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol,
0.5% NP-40, 0.25% Triton X-100) and incubated for 10 min at 4°C
with rocking. Cells were then collected by centrifugation at 1350g
for 5 min and incubated with 5 mL of LB2 buffer with protease in-
hibitors (10 mM Tris-HCl at pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5
mM EGTA) for an additional 10 min. Isolated nuclei were recovered
by centrifuge at 1350g for 5 min at 4°C and then resuspended in 2.5
mL of immunoprecipitation buffer LB3 plus anti-protease cocktail
(10 mM Tris-HCl at pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM
EGTA, 0.5% Na-deoxycholate, 0.5% N-lauroylsarcosine). About
200 mg glass beads (Sigma, G-1277) were added, and nuclei were
sonicated on ice (12 cycles at 50% maximum power for 30 sec each
plus 30 sec on ice; Soniprep 150 MSE, Sanyo). Fragmented chro-
matin (genomic fragments with a bulk size of 200–1000 bp) was
separated from intact nuclei and cellular debris by centrifugation
at 20,000g for 15 min at 4°C. An aliquot of lysate (500 mL) was then
diluted in LB3 buffer supplemented with 1% Triton X-100 and
protease inhibitors to a final volume of 2 mL per IP (equivalent to
35–50 mg of DNA from ;60 mg of tissue). Chromatin immunopre-
cipitation was performed with magnetic beads (Dynabeads; Invi-
trogen) following the protocol as described (Schmidt et al. 2009). For
each ChIP, 2 mg of antibody was used. Anti-EBF (sc-33552), anti-TBP
(sc-204X), and anti-MEF2A (sc-313X) were from Santa Cruz. ChIP-
grade control rabbit IgG was from Cell Signaling (#2729).

qPCR was performed using SYBR Green PCR Master Mix and
an iCycler IQ Real-Time PCR System (Bio-Rad). Enrichment of
chromatin binding was calculated relative to total input, as de-
scribed previously (Frank et al. 2001).

Transgenic mice

The transgenic construct Tg- M72(V4)-LacZpA (Vassalli et al. 2011)
is publicly available as plasmid 15607 from Addgene. Founders were
bred with C57BL/6J mice to transmit the transgene through the
germline. Line 7 has been cryopreserved as sperm at The Jackson
Laboratory (Bar Harbor, Maine, USA), and is publicly available
as stock number 7974, official strain name B6;CBA-Tg(Olfr160-
taulacZ)V4-7Mom/MomJ.

Data access
nanoCAGE and Deep-RACE sequences have been submitted to the
DNA DataBank of Japan Sequence Read Archive (DRA) under ac-
cession numbers SRP000696 and DRA000474. A bibliographic
survey of EBF1 binding sites was deposited in the JASPAR database,
accession number MA0154.1.
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