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abstract: Animals often face complex and changing food envi-
ronments. While such environments are challenging, an animal
should make an association between a food type and its properties
(such as the presence of a nutrient or toxin). We use information
theory concepts, such as mutual information, to establish a theory
for the development of these associations. In this theory, associations
are assumed to maximize the mutual information between foods and
their consequences. We show that associations are invariably imper-
fect. An association’s accuracy increases with the length of a feeding
session and the relative frequency of a food type but decreases as
time delay between consumption and postingestive consequence in-
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creases. Surprisingly, the accuracy of an association is independent
of the number of additional food types in the environment. The rate
of information transfer between novel foods and a forager depends
on the forager’s diet. In light of this theory, an animal’s diet may
have two competing goals: first, the provision of an appropriate
balance of nutrients, and second, the ability to quickly and accurately
learn the properties of novel foods. We discuss the ecological and
behavioral implications of making associational errors and contrast
the timescale and mechanisms of our theory with those of existing
theory.

Keywords: diet selection, postingestive feedback, mutual information.

Diet choice underpins the ecological relationships between
an animal and its food resources. Ecological theory inter-
prets this diet choice as an adaptive behavior, where se-
lective forces shape the food types that an animal includes
in its diet in order to maximize its fitness (Stephens and
Krebs 1986; Houston and McNamara 1999). The extensive
literature on the adaptive theory of diet selection makes
one common assumption, that an animal associates a food
type with its fitness consequences (e.g., energy density,
nutrient content, toxin concentration; Schoener 1971; Pul-
liam 1974; Westoby 1974; Stephens and Krebs 1986; Farns-
worth and Illius 1998). For this association to be made,
the food must inform the animal about its properties, the
animal must make a choice between foods that differ in
these properties, and the animal must relate these prop-
erties to their fitness consequences. Although some theory
has looked at the value of foraging information (Stephens
1989), theories have not considered how this information
is established and whether it is likely to be maintained in
a world where both foods (van Marken Lichtenbelt 1993;
Bautista et al. 1998; Provenza et al. 2003) and animal states
(Houston 1993; Newman et al. 1995; Kyriazakis et al. 1999;
Villalba and Provenza 1999) vary over time.

Experimental studies across a range of animal species
(e.g., ruminants [Provenza 1995; Behmer et al. 2002], rats
[Garcia and Kimeldorf 1960; Garcia and Hankins 1977],
chickens [Covasa and Forbes 1994], coyotes and wolves
[Gustavson et al. 1976], and cephalopods [Gelperin 1975;
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Figure 1: Representation of the situation faced by an animal that has to
associate two food types with their consequences. Food types 1 and 2
are associated with consequences c1 and c2, respectively. Consequence c1

has no delay in its effects ( ), while consequence c2 is delayed fromt p 0d

the time of ingestion by . This time delay complicates the asso-t p 2d

ciation between the time series of food types and their consequences.

Susswein et al. 1986; Darmaillacq et al. 2004]) show that
animals can associate a food type with its postingestive
consequence and develop a diet preference in accordance
with a beneficial or detrimental postingestive consequence.
This ability is remarkable because the conditioned stimulus
(e.g., the taste of a food) and the unconditioned stimulus
(the postingestive consequence) can be separated by many
minutes or hours (Garcia et al. 1966; Westoby 1974; Forbes
1999; Arsenos et al. 2000). In contrast, the conditioned
and unconditioned stimuli for most other learned asso-
ciations occur within seconds of one another (e.g., Pavlov
1927; Carlson 1994). This ability to learn from a delayed
reinforcement is important because a temporal delay al-
ways exists between the orosensory experience and the
postingestive consequence of a food (Provenza 1995; Scla-
fani 1995).

The observed ability of animals to learn from post-
ingestive consequences has become a cornerstone in our
understanding of the mechanisms of diet selection (Prov-
enza 1995). However, experiments that demonstrate con-
ditioned food aversion and preference generally establish
the aversion with a single food type (e.g., Provenza et al.
1994; Villalba et al. 1999). This is very different from the
feeding environment faced by wild animals, which live in
a world with a complex mix of different food types. Free-
ranging animals can consume a variety of food types in
one feeding session, which requires simultaneously de-
veloping associations between several food types and their
postingestive consequences. It is suggested that several
foods, all with different nutrient concentrations, ingested
in short succession will decrease the probability of correct
association (van Wieren 1996). This view is supported by
experimental evidence that demonstrates that herbivores
can be compromised in their ability to develop associations
when several food types are available simultaneously
(Duncan and Young 2002). It seems that an animal’s ability
to establish an accurate association between a food type
and its postingestive consequences is limited and depends
on the feeding environment and perhaps the animal’s feed-
ing behavior (e.g., the frequency of inclusion of new foods
in the diet). If diet selection in the real world presents the
animal with too many novel foods for it to make reliable
associations, then any extrapolation from simple experi-
mental conditions that deal with one or two stimuli may
be unwarranted.

In this article, we develop a theory that describes how
food properties and foraging behavior can affect the ac-
curacy of an association between a food type and its post-
ingestive consequence. These associations have ecological
and behavioral implications because they describe how
much of an animal’s diet is founded not on the true prop-
erties of a food but on an erroneous association with other
properties in the feeding environment. The theory predicts

the important factors governing these associations (e.g.,
food and environmental properties and foraging behav-
ior), which can in turn suggest mechanisms of prey ag-
gregation, frequency-dependent selection, foraging behav-
ior, and the evolution of prey defense mechanisms. Our
theoretical framework also suggests a new hypothesis for
an animal’s diet selection when confronted with novel food
types for which the postingestive consequences are un-
known. We emphasize that our study ignores the long-
term fitness implications of the postingestive consequences
so that it can isolate the important processes for making
an association. Inclusion of long-term fitness conse-
quences is not expected to change the process of associ-
ation and is discussed later on. Our theory, therefore, rad-
ically differs from classical theories of diet selection
because it is wholly concerned with the accuracy of food
type associations rather than the fitness consequences of
a food type. Both processes are expected to play a role in
explaining diet because both accurate association of food
types and their fitness consequences are important aspects
of a forager’s diet selection.

Methods

Specifying the Problem

We start by analyzing a diet that contains two food types
and then generalize these results to n food types. The
problem of associating n food types with their respective
postingestive consequences, c1, … , cn, can be formulated
in terms of an association between two time series (fig.
1); one time series is the list of food types that have been
ingested, and the other time series is the list of postinges-
tive consequences (these consequences can be beneficial
or detrimental to an animal). The time series are divided
into feeding sessions. Each session is one time step in
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Figure 2: One possible model for the uncertainty involved in trying to
associate a food type with its postingestive consequence. In this example,
the consequence c2 is estimated to have a time delay of . Givent̂ p 3d

this time delay estimate, all food types consumed for three time units
before the present are considered as possible sources of the present con-
sequence (shaded region in the food time series). Using this time delay
estimate, an animal would estimate that c2 has a 75% probability of being
associated with food type 2. This corresponds to andL p t � 1 p 42 d

.u p 0.752

length, and during each session only one food type is
consumed. The action of not eating can be incorporated
into this formalism as an additional “phantom” food type
with its own consequence (the consequence of not eating
is to experience no postingestive signal). If the postinges-
tive consequences are all experienced very soon after in-
gestion, then it is straightforward to associate them with
each food type. However, if postingestive consequences
are delayed, as is often the case (Provenza 1995; Sclafani
1995), then establishing associations is more complicated
because a time delay requires a memory of the past and
increases the likelihood of interactions with other sensory
and postingestive signals. Our formulation of the problem
has two important assumptions: first, given a food time
series, an animal’s diet selection attempts to maximize the
amount of information about the postingestive conse-
quences; and second, older information is remembered
with decreasing resolution.

The first assumption amounts to a behavior where the
distinction between food types (i.e., the difference between
their estimated consequences) is maximized. This distinc-
tion is equivalent to the information transfer between the
time series of food types and the time series of conse-
quences and can be quantified by drawing on concepts
developed in information theory (Weaver and Shannon
1949; Wells 1999). The transfer of information between
two time series is formally defined by their mutual infor-
mation, I. Mutual information is the answer to the ques-
tion, “Given a single measurement from one process, how
much information on average can this measurement pre-
dict about a second process?” The mutual information
between one time series of n food types and another of n
postingestive consequences is defined as

n

I { Q I(i) (1)� i
ip1

n
pijI(i) { p log , (2)� ij 2 ( )Pjp1 j

where I(i) is the partial mutual information of conse-
quence ci, pij is an animal’s perceived probability that food
type j is associated with postingestive consequence ci (pij

is also known as the forward transmission probability), Pj

is the relative frequency of food type j in the food time
series, and Qi is the relative frequency of postingestive
consequence ci. The mutual information has a minimum

, corresponding to complete uncertainty ( ),I p 0 p p Pij ij

and a maximum of , corresponding to the maxi-log (n)2

mum information content of the food time series. In all
practical applications, the maximum mutual information
will not be attained. A related application of mutual in-

formation has been suggested in the context of finding
time delays in time series data (Fraser and Swinney 1986).

As feeding information is recalled from further in the
past, the uncertainty of the information increases (Weber’s
law would suggest that the uncertainty is proportional to
the time delay [Bateson and Kacelnik 1998], although re-
cent evidence suggests that time perception has a nonlinear
component [Crystal 2001]). This uncertainty can be re-
alized in many different forms. One possible form is shown
in figure 2, where the estimated time delay of a conse-
quence is , and all food types from the present back tot̂d

are included as possible sources of the present conse-t̂d

quence. The system in figure 2 associates a time delay with
each consequence. An alternative and equivalent repre-
sentation would be to associate the time delays with the
different food types. The important mechanism is that
there is an uncertainty in associating a food type with its
consequence, and this uncertainty becomes increasingly
important as the delay in the postingestive consequence
increases.

While this approach assumes that a forager can make
use of past information, it is difficult to relate this to a
forager’s cognitive ability because the use of past infor-
mation does not require a high level of cognition. Our
approach could apply to a range of foragers with varying
cognitive abilities.

Describing the Food Time Series

For the purposes of this article, the food time series is
described as a Markov chain (Grimmett and Stirzaker
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1992). In general this need not be the case, but a Markov
chain enables us to explicitly calculate the probabilities
required in equations (1) and (2) while incorporating au-
tocorrelation into the time series (it is a first-order au-
toregressive process). The probability that an animal
switches food types and starts feeding on a new food type
depends on its preferences for each food type and on the
food type on which it is currently feeding. Increasing au-
tocorrelation within the time series corresponds to longer
series of feeding sessions on any one food type.

Two Food Types. We start by developing the Markov chain
model for two food types, labeled 1 and 2, that have post-
ingestive consequences c1 and c2 (figs. 1, 2). The probability
that an animal’s present feeding session is on food type 1
is given by P1 (if an animal has no preference for any food
type, then P1 is the frequency of food type 1 in the en-
vironment). Given that an animal is eating food type 1,
the probability that it feeds on the same food type in the
next feeding session is a1. This conditional parameter de-
fines the amount of serial autocorrelation in the animal’s
feeding time series for food type 1. If , then feed-a p 0.51

ing is random; if , then feeding on food type 1 isa 1 0.51

clustered; and if , then feeding on food type 1 isa ! 0.51

dispersed. The parameters P1 and a1 can be used to gen-
erate a time series of food types, and the properties of this
time series can be used to calculate expected values for pij

in equation (1).
Of particular interest to our analysis are the probabilities

that food type 1 and food type 2 occur in the time series,
given that food type 1 occurred t time steps ago (repre-
sented as p11[t] and p21[t], respectively), because these
probabilities are required in the calculation of mutual in-
formation (eq. [1]). These probabilities can be calculated
as

t( )p (t) p 1 � p (t) p P � 1 � P D , (3)11 21 1 1

where

D p a � a � 1 (4)1 2

describes the overall autocorrelation in the time series for
both food types. The autocorrelation parameter ranges
from strong negative autocorrelation when D p �1
( ) to strong positive autocorrelation whena p a p 01 2

( ). The probabilities p11(t) and p21(t)D p 1 a p a p 11 2

lie in the range from 0 to 1. Putting these ranges into
equation (3) then shows that for certain values of D, the
value of P1 cannot be arbitrarily small. This is a conse-
quence of the Markov chain model because transitions
from food type 2 to food type 1 impose a minimum fre-
quency for P1.

Given that food type 2 occurred t time steps ago, the
equivalent of equation (3) is

t( )p (t) p 1 � p (t) p P � 1 � P D . (5)22 12 2 2

The covariance matrix for the presence of food type 1 (and
food type 2), given that food type i occurred t and time′t
steps ago (where ), can also be calculated as′t ≥ t

′′ ′ t �tj (t, t ) p j (t, t ) p p (t)p (t)D . (6)1i 2i 1i 2i

The variance in occurrence of food type 1, given that food
type i occurred t time steps ago, is j1i(t, t).

Many Food Types. The model for two food types described
above can be extended to look at n food types. The Markov
chain for n food types can be described by

six (t � 1) p a x (t) � (1 � a )x (t), (7)�i i i j j1 � sj(i j

where xi(t) is the probability that an animal feeds on food
type i at time t, and si is the selective preference for food
type i, such that . Equation (7) gives the prob-

n� s p 1iip1

ability of occurrence of food type i as P ∝ (1 � s )/(1 �i i

. More complicated models for n food types are possible,a )i
and these would allow for more general transition prob-
abilities between food types, but these details go beyond
the scope of this article.

Focusing on food type 1, we can rewrite equation (7)
as a two-food-type Markov chain:

[ ]x (t � 1) p a x (t) � 1 � a (t) x (t), (8a)1 1 1 0 0

x (t � 1) p a (t)x (t) � (1 � a )x (t), (8b)0 0 0 1 1

where x0(t) is the probability that an animal does not feed
on food type 1 at time t, and a0(t) is the conditional
probability that an animal continues not to feed on food
type 1. The variables x0(t) and a0(t) can be expressed as

x (t) { x (t) p 1 � x (t), (9a)�0 i 1
i(1

x (t) 1 � ai i
a (t) p 1 � s . (9b)�0 1 x (t) 1 � si(1 0 i

The equilibrium properties of the Markov chain for n food
types can then be calculated by substituting Pi for xi(t) in
equation (9). Equation (9b) also allows the autocorrelation
parameter D (eq. [4]) to be rewritten from the perspective
of food type 1 as
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D p a � a (t) � 1. (10)1 0

Equations (9) and (10) allow the original two-food-type
model to be extended so that time series with n food types
can be generated with specific values for Pi and the au-
tocorrelation parameter D (see below). Furthermore, if
a0(t) is time independent, then all the analytical results
from the two-food model can be applied to models with
n food types. This will be the case when (1 � a )/(1 � s )j j

is constant for all but food type 1 (i.e., Pi is constant for
all but food type 1). In general, a0(t) is time dependent,
and the relationship between the time evolution of the n-
food-type model and the two-food-type model is more
complicated. For this more general case we have not found
analytical solutions analogous to equations (3)–(6).

Simulating Food Time Series. Feeding time series are gen-
erated using equation (7) by defining Pi, si, and D. These
parameters specify all the conditional probabilities ai and
allow food type frequency and autocorrelation to be con-
trolled (for two food types, si is not specified because there
is no choice when selecting a new food type). Increasing
the number of food types above two requires that the
frequencies and selective preferences of the additional food
types be adjusted to account for the changing number of
food types, while P1 and D are kept constant.

We have two approaches for specifying food type fre-
quency as a function of the number of food types. For
both approaches, the frequency of food type 1 is always
constant. In the first approach, the frequency of the re-
maining food types are . In this ap-P p (1 � P)/(n � 1)j 1

proach, a0(t) is time invariant, and all the analytical results
for two food types can be applied. In the second approach,
Pj is allocated using a broken-stick model. So the unal-
located portion of the time series is split in half (other
ratios can be used), giving , except forj�1P p (1 � P)0.5j 1

the last food type, whose frequency is P p (1 �n

.n�2P)0.51

We also look at two approaches of specifying si. In the
first approach, si is a constant for all food types. This
assumes that an animal picks one of the possible n � 1
food types at random. Food type preferences are then re-
flected through the length of time an animal spends feed-
ing on a food type. In the second approach, we let s pi

, so that an animal selects a food type according to itsPi

frequency in the food time series. In this approach, food
type preferences are reflected through the initial selection
of the foods as well as the length of time an animal spends
feeding on a food type. These two approaches for assigning
si are considered only when frequencies are assigned using
the broken-stick approach above because the results are
not affected by si when frequencies are equal, P p (1 �j

.P)/(1 � n)1

Associating Postingestive Consequences with Food Types

The probability pij of making an association between a
food type and a postingestive consequence is required for
the calculation of mutual information (eqq. [1], [2]).
There are a number of ways of interpreting the probability
of a correct association, pii. The simplest considers asso-
ciations as being either perfect or imperfect, so that in a
population of animals, pii is the proportion of animals that
make a perfect association of food type i with consequence
ci. A second interpretation allows associations to be par-
tially correct, so that an animal can consider a food type’s
consequence to be a mixture of the consequences being
experienced. In this interpretation, pii is the component
of the estimated consequence that is correct. For all in-
terpretations, the probability of making an incorrect as-
sociation for food type i is . So pij (where ) is1 � p i ( jii

the probability that an animal incorrectly associates food
type i with consequence cj.

To estimate pij, consider an animal that is experiencing
the postingestive consequence c1. The animal associates
this postingestive consequence with a section of the feeding
time series, which has a length L1. There are several plau-
sible mechanisms underlying such an association. For ex-
ample, the animal may have some estimate of the time
delay on c1, in which case L1 would represent the uncer-
tainty in remembering the food intake time series after
this time delay (memory in this case need not be conscious
because conditioned food aversions can be subconscious).
Figure 2 shows this scenario, where the uncertainty covers
all food types from the present back to the beginning of
the estimated time delay (in this case, ).t p 3d

Given the model shown in figure 2, mutual information
can be estimated directly from the data by a range of
methods (e.g., Paninski 2003). However, using equations
(3)–(6), we can also derive analytical equations for the
mutual information in our model. We consider the case
where the true feeding event giving rise to c1 is captured
within the section L1 (it can be shown that mutual infor-
mation always decreases if this is not the case). Based on
the presence of the postingestive consequence c1 and L1,
the expected probability that food type 1 is associated with
c1 can be calculated from equation (3) as

(L �1)u (L �1)(1�u )1 1 1 1p (t) p (t)11 11
p p � , (11)� �11 L Ltp0 tp01 1

which can be rewritten using equation (3) as

p p 1 � p p P � (1 � P)A(L , u ), (12a)11 21 1 1 1 1

where A(L1, u1) is given by
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Figure 3: Mutual information in associating two food types with their
postingestive consequences (eq. [1]) for a range of estimated time delays,

and . The frequency of food type 1 is ; the time delays forˆ ˆt t P p 0.7d1 d2 1

c1 and c2 are and , respectively. The maximum mutualt p 20 t p 10d1 d2

information occurs at time delay estimates of and forˆ ˆt p 26 t p 13d1 d2

c1 and c2, respectively (cross). The autocorrelation in the feeding time
series is .D p 0.9

1 D
u (L �1) (L �1)(1�u )i i i iA(L , u ) p 1 � 2 � D � D[ ]i i { }L (1 � D)i

(12b)

and ui is defined as the proportional distance along the
time series section where the true feeding event associated
with ci occurs. The quantity A(Li, ui) takes a value between
0 and 1 and describes the deviation from randomness in
the association of consequence ci. If , thenA(L , u ) p 0i i

the association is random (i.e., ), while ifp p Pii i

, then and there is complete certaintyA(L , u ) p 1 p p 1i i ii

in associating ci with food type i. The equivalent equation
for c2 can be obtained from equation (5) as

p p 1 � p p P � (1 � P )A(L , u ). (12c)22 12 2 2 2 2

The mutual information of an association between food
types and postingestive consequences can now be calcu-
lated by substituting equation (12) into equation (2). Fig-
ure 3 shows an example of the mutual information for
two food types over a range of estimated time delays. In
figure 3, the animal’s best estimates of the time delays for
the two food types occur at the points of maximum mutual
information (i.e., and ).ˆ ˆt p 26 t p 13d1 d2

The variance of the mutual information can also be
calculated from the variance about the expectations in
equation (12). Using equations (6) and (11), we can find
the variance in pij as

( ) ( )Var p p Var p1i 2i

V (L � 1)u � V (L � 1)(1 � u )[ ] [ ]i i i i i i

p , (13a)
2Li

where

s

′V(s) p j (t, t ), (13b)�i ii′t, t p0

from which the variance in the mutual information can
be calculated as

2
p Pi1 22( ) ( )Var I p 2Q log Var p . (14)� i 2 ii( )p Pip1 i2 1

The analysis can be simplified if the partial mutual in-
formation of a food type (eq. [2]) is independent of the
associations of the other postingestive consequences (i.e.,
if the values of [Li, ui] for each consequence are indepen-
dent of each other). If this is the case, then the maximum
partial mutual information for consequence ci is given by

the value of pii that is furthest from random (randomness
is , where n is the number of food types). Thisp p 1/nii

simplifies the analysis because equation (12) need not be
substituted into equation (2).

For any one postingestive consequence, the parameters
Li and ui are not independent because both are determined
by the estimated time delay for the consequence, . Fort̂di

example, in figure 2 the length of a portion of time series
is given by the estimated time delay, making ˆL p t �1 d1

and , where td1 and are the actualˆ ˆ1 u p (t � t )/L t1 d1 d1 1 d1

and estimated time delays for c1. Other relationships could
be constructed; for example, L1 could be proportional to
the estimated time delay and centered on this time delay.

Using this formalism, we now investigate how the prob-
ability of a correct association depends on the time delay
of a food’s consequence, the relative frequency of a food
type, the number of food types in the diet, and the length
of a feeding session (i.e., the autocorrelation).

Results

Relative Frequency of Food Types

The relative frequency of a food type in the feeding time
series is the only parameter that causes an interaction be-
tween different food types because an increase in the fre-
quency of one food type requires a decrease in the fre-
quency of another. The probability of a correct association
between a food type and its consequence generally de-
creases with the relative frequency of a food type. However,
the relative frequency of a food type has a threshold value
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Figure 4: Best-estimated probability of making a correct association (a)
and mutual information (b) as functions of the frequency of food type
1 in the feeding time series P1 (calculated from 20 time series, each 10,000
feeding sessions long). The faint solid line without error bars in a shows
a random association (i.e., probability of association is equal to frequency
of occurrence). Solid and dashed lines denote postingestive consequences
with a time delay of , with and , respectively,t p 20 D p 0.95 D p 0.5d1

while the dotted line denotes and . The second food typet p 5 D p 0.5d1

has a postingestive consequence with and identical autocorre-t p 1d2

lation. Error bars represent 35% and 65% quantiles.

that separates two behaviors of the median probability of
association (fig. 4a). Above the threshold frequency, the
median probability of correct association is close to unity
and weakly dependent on frequency, while the confidence
intervals around the median decrease with increasing fre-
quency. In contrast, below the threshold frequency, the
median probability of association decreases with frequency
(associated with decreases of A[Li, ui] in eq. [12]), while
the confidence intervals are relatively independent of fre-
quency. This threshold frequency decreases as the auto-
correlation in the feeding time series increases or the time
delay associated with a postingestive consequence de-
creases (fig. 4a). The effect of autocorrelation is under-
stood by considering a fixed length of time series. Increas-
ing autocorrelation decreases the number of food types in
this length of time series, which increases the probability
of a correct association (i.e., makes associations less ran-
dom). Reducing time delay also reduces the number of
food types, but it does this by reducing length of time
series used to make an estimate. The interaction between
the median and its confidence intervals (fig. 4a) gives a
mean probability of an association that is a linear function
of food type frequency, with no threshold behavior (eq.
[12]).

The amount of transmitted information is best quan-
tified by the mutual information (fig. 4b). The maximum
mutual information is a well-known quantity in com-
munication theory known as the capacity of the com-
munication channel. The food type frequency that achieves
this capacity depends on the time delays associated with
all postingestive consequences and the autocorrelation in
the feeding time series. In figure 4b, the maximum mutual
information occurs when food type 1 has a frequency of

in an animal’s feeding time series. If this frequencyP ≈ 0.61

is increased, information about food type 2 is lost, while
if this frequency is decreased, information about food type
1 is lost. The capacity of the communication channel at

provides a balance between these two processesP ≈ 0.61

where the flow of total information about the whole system
is maximized. The mutual information can also be par-
titioned into the partial information for each food type
(eq. 2), which quantifies the information transfer about
any one food type.

Number of Food Types

When a0(t) (eq. [9b]) is time independent, all the results
of the two-food-type model can be applied to the many-
food-type scenario. The important conclusion from this
is that the accuracy of an association is independent of
the number of additional food types in an environment.
When a0(t) is time dependent, we use simulations to study
the effect of food type number. These simulations show

that if the relative frequency of a food type is constant,
then the probability of making a correct association is
remarkably independent of the number of food types in
an environment. This was found to be the case irrespective
of whether si was dependent on the relative frequency of
a food type.

The number of food types can affect the accuracy of an
association if changing the number of food types changes
the relative frequency of a food type. Increasing the num-



712 The American Naturalist

Figure 5: Best-estimated probability of making a correct association as
a function of the time delay of a postingestive consequence (calculated
from 20 time series, each 10,000 feeding sessions long). The association
is calculated from the best estimate of the time delay of c1. The frequency
of food type 1 is , its autocorrelation in the feeding time seriesP p 0.31

is , and the time delay of food type 2 is with identicalD p 0.5 t p 10d2

autocorrelation. Error bars represent 35% and 65% quantiles.

Figure 6: Best-estimated probability of making a correct association as
a function of the autocorrelation in the feeding time series (calculated
from 20 time series, each 10,000 feeding sessions long). Solid and dashed
lines denote postingestive effects with time delays of andt p 10d1

, respectively. The frequency of food type 1 is , and thet p 20 P p 0.3d1 1

time delay for consequence of food type 2 is . Error bars representt p 10d2

35% and 65% quantiles.

ber of food types may generally be expected to decrease
the relative frequency of a food type, which in turn will
reduce the accuracy of an association. However, this is
primarily an effect of relative frequency rather than of the
number of food types.

Time Delay of a Postingestive Effect

The optimum time delay estimate for c1 can be seen from
figure 3 to be , which is longer than the actual timet̂ ≈ 26d1

delay selected for this scenario ( ) because the feed-t p 20d1

ing time series is positively autocorrelated ( ). Pos-D p 0.9
itive autocorrelation increases the time delay estimate be-
cause a food type and its postingestive consequence are
more likely to occur in clusters. This means that a more
accurate signal of the true consequences can be gained by
including feeding events on either side of the feeding ses-
sion that gave rise to the present effect.

Figure 5 shows the effect of the time delay for c1 on the
median probability of making a correct association. This
gives the intuitively reasonable result that an increasing
time delay produces a monotonic decline in the expected
probability of making a correct association. For large time
delays, the probability of making a correct association ap-
proaches the relative frequency of the food type (i.e., a
random association). Increasing the time delay of conse-
quence ci increases the length of the time series that is
used to estimate an association, and this can only make

associations more random. The uncertainty around the
median probability of correct association tends to be high-
est when the probability of association is close to 0.5 (eqq.
[6], [13]).

Autocorrelation

Increasing positive autocorrelation in the feeding series
(increasing D) increases the clustering of food types, which
results in longer periods of feeding on the same food type.
Differentiating equation (12b) with respect to D shows that
increasing the autocorrelation in a time series always
makes an association less random, decreasing the uncer-
tainty in an association (fig. 6). Figure 6 also shows that
increasing the autocorrelation widens the confidence in-
tervals around the median (the same can be seen for the
variance from eqq. [6] and [14]).

The effect of the autocorrelation also depends on the
time delay because the time delay affects both Li and ui.
Figure 6 shows that as the time delay of an effect increases,
the impact of autocorrelation decreases. In this sense the
time delay and the autocorrelation are opposing effects.

Discussion

Classical diet selection theory (Stephens and Krebs 1986)
proposes that an animal’s choice of diet is determined by
the properties of the food types in its environment (e.g.,
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handling time, energy, and toxin content). Extending this
concept, we propose that an animal’s diet selection is also
motivated by its ability to accurately associate these prop-
erties with the appropriate food type. Incorrect associa-
tions between food types and their properties will weaken
or possibly reverse the strength of evolutionary selection.
We use mutual information to quantify this association.
The time delays for each postingestive consequence are
estimated by finding the strongest association (i.e., the
maximum mutual information), and from this the prob-
ability that a food type is associated with a postingestive
consequence can be estimated. The results produce the
following testable hypotheses: first, decreasing the time
delay between food ingestion and postingestive conse-
quence increases the accuracy of an association; second,
decreasing the number of consecutive foraging sessions on
one food type reduces the accuracy of an association; third,
decreasing the relative abundance of a food type decreases
the accuracy of correctly associating it with its conse-
quences and increases the probability that the food type
is associated with the consequences from other food types
in the environment; and finally, increasing the number of
food types in a forager’s diet has a very weak effect on the
accuracy of the association of a food type whose relative
abundance in the diet is held constant. The theory also
shows that the rate of learning new food types (i.e., the
rate of information transfer) is maximized when food types
occur with a particular frequency in the diet. During en-
counters with novel foods, this “optimal-learning diet” is
likely to conflict with classical diet selection theory based
on nutrient or energy intake (Belovsky 1981; Stephens and
Krebs 1986).

In essence, the process of establishing an association
between food types and their postingestive consequences
is a process of communication, and the concepts developed
in communication theory can provide a useful viewpoint
on the problem (Weaver and Shannon 1949; Wells 1999).
Conditioning of any kind involves communication, but
the application of communication theory to conditioning
is still a novel approach (Gallistel 2003). Communication
can be divided into three components: emitting a signal,
transmitting the signal, and receiving the signal. In the
context of food intake and diet selection, each consumed
food type emits a set of chemical signals. Each signal is
transmitted through a series of metabolic pathways before
it eventually elicits a postingestive consequence (the re-
ceived signal). If an animal is to correctly associate a food
type with its consequence, the received signal must be
isolated from the background noise of other ingested food
types. The degree of isolation is quantified by the mutual
information, which measures the information about food
types that is transmitted by the postingestive consequences.
The information transmitted by any one consequence is

given by the partial mutual information (eq. [2]). A
weighted sum over all partial mutual informations gives
the total mutual information (eq. [1]). A natural weighting
is the relative frequency of each consequence, but other
weightings are possible. For example, weightings may re-
flect the different long-term fitness effects of the post-
ingestive consequences.

An animal can modify the mutual information by
changing its feeding behavior (e.g., longer feeding sessions
on a single food type) or by changing the rate at which
the ingested compounds are metabolized (e.g., changing
the nutrient status of an animal). However, for a given
process of communication there is a maximum mutual
information. This maximum depends on the estimated
time delays for each consequence and the frequency of the
food types in the diet. This maximum places an upper
limit on the rate at which associations can be developed.
Furthermore, this maximum is achievable only when food
types have a specific relative frequency in the diet, which
raises the possibility that during the development of di-
etary associations, diet selection preferences are modified
to increase mutual information. The autocorrelation of
the feeding time series may also be modified to match the
spectral properties of the transmission process (i.e., the
metabolic pathway of the various plant compounds) in
order to optimize the performance of the communication
system (Wells 1999).

The idea of a communication process is also clear from
the viewpoint of a prey species. If a prey species is to defend
itself against predation by becoming unpalatable (e.g., by
producing secondary metabolites), then its unpalatable
message must be evident to a predator. Clear communi-
cation between prey and predator is even more important
if unpalatability is costly to the prey species. As for the
predator, the prey species can also modulate the mutual
information. For example, prey spatial distribution can
affect a predator’s feeding patterns, and more immediate
postingestive consequences increase mutual information.
Experiments support this time delay effect because shorter
delays condition for stronger responses (Mackintosh 1983;
Mazur 1994), and with long delays, aversions appear to
be more readily elicited than preferences (evidence in rats
[Revusky and Garcia 1970; Elizalde and Sclafani 1988; Ca-
paldi and Sheffer 1992] and sheep [Burritt and Provenza
1991; Villalba et al. 1999; Arsenos et al. 2000]).

Communication and signaling are important concepts
in other fields of ecology where honesty and mimicry have
become important issues (Endler and Basolo 1998; Schae-
fer et al. 2004). Müllerian mimicry, resulting in plant de-
fense guilds (Atsatt and O’Dowd 1976; Augner 1994),
could be advantageous because a common signal has a
higher probability of correct association, although recent
results show that variation in chemical defenses can in-
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crease the rate of learning in chicks and decrease their rate
of extinction (Skelhorn and Rowe 2005). Batesian mimicry
has also been studied in the context of herbivore defense,
with the conclusion that mimicry of plant defense signals
could be a common strategy (Augner and Bernays 1998).
Batesian mimicry is not necessary for an undefended plant
to gain protection because plants susceptible to herbivory
can gain protection from spatial association with other
plants. Two basic mechanisms have been proposed to ex-
plain such protection (Atsatt and O’Dowd 1976): first, a
patch with repellent plant species reduces the ability of an
herbivore to utilize normal food (repellent-plant hypoth-
esis), and second, an herbivore focuses on a highly pre-
ferred plant, reducing the likelihood of ingesting less pal-
atable plants in a patch (attractant-decoy hypothesis). In
contrast to the attractant-decoy hypothesis, Wahl and Hay
(1995) proposed that less palatable foods may encounter
increased herbivory as a result of the presence of palatable
species (shared-doom hypothesis). In support of the
shared-doom hypothesis, Hjältén et al. (1993) found that
herbivory by hares and voles on low-palatability trees was
increased if neighboring trees had a high palatability. This
may also explain why a toxic plant is more likely to be
eliminated from vegetation by generalist herbivory when
it is rare than when it is abundant (Provenza et al. 2003).
Frequency-dependent foraging has also been reported in
woody species, which suffer more severe browsing when
they are rare (Lundberg and Danell 1990; Augustine et al.
1998; Edenius et al. 2002). It seems that the outcome of
mixing less and more palatable resources does not follow
a general rule but may vary with relative abundance and
distribution, strength of the signal, and the time delay
between ingestion and consequence. Our formulation of
the problem in terms of mutual information makes it pos-
sible to combine these different factors and give an ex-
planation for the situations in which any one of the above
hypotheses is likely to apply.

Foraging behavior arising from incorrect association
and the resulting selection pressures on the spatial asso-
ciation between food types may be mirrored by the pro-
cesses of short-term apparent competition (Holt 1984;
Holt and Kotler 1987). By considering a patch containing
several food types and a forager whose patch-leaving rule
obeys the marginal-value theorem (Charnov 1976), Holt
and Kotler (1987) described several methods by which
increasing the density of one food type can increase for-
aging on the other food types. This apparent competition
can select for habitat partitioning between food types. One
important difference between the apparent competition of
Holt and Kotler (1987) and the concept of inaccurate as-
sociation lies in the timescale of the processes. Apparent
competition is strongly influenced by the immediate feed-
ing environment that a forager is experiencing. As a con-

sequence, a forager’s food preference can seem to change
suddenly as it moves into a new patch. In contrast, food
associations are based on past foraging history, which im-
plies that a forager’s preference is unlikely to show sudden
changes between consecutive foraging patches.

The timescale over which food associations change de-
pends upon the process of learning, although a study of
learning is beyond the scope of this article. Our results
assume a long memory and give the expected associations
based on all the information within the feeding time series.
Learning allows the estimates of a consequence’s time delay
to be updated by new information (e.g., Bayesian updating
of the information). An important consideration is the rate
at which information is forgotten and the weighting given
to new information. Preliminary results using an exponen-
tially weighted scalar memory require the rate of infor-
mation loss and information gain to be the same. This has
implications for the accuracy of an association because if a
forager with such a memory is to quickly adapt to new
information, it must also quickly forget about existing in-
formation. This results in either a forager whose diet se-
lection is insensitive to new information but whose errors
of association are small or a forager who adapts quickly to
new information but whose errors of association are large
because they are based on a small set of recent data.

Our analysis ignores the long-term fitness consequences
of an association in order to simplify the analysis by dis-
regarding the sign and strength of a postingestive signal.
However, signal strength can be incorporated by extending
the model so that a consequence’s partial mutual infor-
mation is weighted according to its contribution to an
animal’s long-term fitness. This extension is not expected
to change our qualitative results, but the incorporation of
signal strength into our framework would fuse the ideas
on food associations with ideas from classical diet selection
theory. The strength of postingestive consequences is
known to affect diet preferences (du Toit et al. 1991; Ar-
senos and Kyriazakis 1999; Arsenos et al. 2000; Villalba
and Provenza 2000). For example, lambs and goats can
associate the amount of food ingested with the strength
of postingestive consequences (Provenza et al. 1994; Vil-
lalba and Provenza 2000; Duncan et al. 2006). An animal’s
physiological state (e.g., nutrient status) is also likely to
interact with the strength of a postingestive consequence,
modifying its perception of the postingestive consequence.

While the majority of studies on conditioned responses
derive from the psychological literature, the consequences
of associational learning for ecology and evolution are
widely ranging. For example, a stronger association is to be
expected between foods and their negative consequences
compared with their positive consequences. This is because
a food should provide information to the forager about its
negative properties to reduce its consumption, whereas from
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the food’s perspective, its positive properties should remain
unclear to the forager to reduce the chances of the food
becoming preferred. From the forager’s perspective, the de-
gree to which it makes associations between the food and
its properties will depend on the impact of the nutrient or
toxin on its fitness. Clearly, where the impact is high, the
association would be expected to be strong, irrespective of
whether the impact is positive or negative. Therefore, the
selection pressures are in the same direction for the negative
consequences of foods but in opposite directions for the
positive consequences of foods. This may be why foragers
generally respond more strongly to the negative properties
of foods than to the positive ones.

Our analysis demonstrates that various observed diet se-
lection patterns can result from an animal’s inability to
develop an accurate association between the food types in
its diet and their postingestive consequences. The analysis
presents testable hypotheses for the relationship between
diet associations and food properties. The analysis also com-
plements classical diet selection models. Classical models
address the long-term fitness consequences, given perfect
knowledge of associations between the feeding environment
and its consequences, while this work concentrates on the
acquisition of knowledge about the feeding environment.
This analysis emphasizes the important role of communi-
cation between plant and animal in establishing associations
and the applicability of concepts that were initially devel-
oped to analyze human telecommunications. Further work
is required to test these predictions, to embed food type
associations in traditional diet models, and to investigate
the extent to which the processes of communication be-
tween animals and their dietary food types have coevolved.
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