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ABSTRACT 
 

Coevolution is an important component of the evolutionary biology and describes the 

reciprocal changes that occur between biological entities as they depend on each other. It is 

one of the mechanisms driving biodiversity when interactions occur between organisms, and, 

at the molecular level, it can reveal information about the function and structure of a protein. 

These coordinated changes between sites along sequences tend to occur to improve or maintain 

functional and structural interactions, or because of evolutionary processes like compensatory 

mutations and epistasis. Because of the high throughput sequencing revolution, it is now 

possible to examine the available genomic databases - encompassing thousands of proteins - to 

detect coevolution and improve the insights of the genomic data. Nevertheless, current methods 

inferring coevolution have some limitations and they require large computing time to analyze 

the data. In my thesis, I used the power of machine learning techniques to infer coevolution in 

large databases in an easy and fast way. First, I investigated the limitations of the current 

methods inferring coevolution by testing the effect of the level of divergence on their 

performance to detect pairs of coevolving sites, comparing their key properties and downsides. 

Secondly, I developed a machine learning model based on Convolutional Neural Networks 

(CNN) to detect the signature of coevolution while accounting for the evolutionary history of 

the sequences. Finally, I provided a user-friendly pipeline to run the model and infer 

coevolution in any given alignment with its phylogenetic tree. I simulated genomic data based 

on a large genomic database to train the CNN. I used the model trained on a subset of the bony 

vertebrate Selectome dataset to detect signature of coevolution in 217 proteins. 

Overall, my work provides a novel approach based on machine learning techniques to 

better detect and understand the signature of coevolution, opening the door to investigate other 

compelling machine learning approaches to take advantage of the large genomic data that is 

becoming available nowadays. 
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RÉSUMÉ 
 

La coévolution est une composante importante de la théorie de l'évolution et décrit les 

changements réciproques qui se produisent entre les entités biologiques lorsqu'elles dépendent 

les unes des autres. C'est l'un des mécanismes moteur de la biodiversité lorsque des organismes 

interagissent entre eux. A plus fine échelle, au niveau moléculaire, la coévolution peut révéler 

des informations sur la fonction et la structure des protéines. Ainsi, des changements entre 

différents sites d’une séquence qui ont tendance à se produire de manière coordonnée sont la 

trace de coévolution, permettant d’améliorer ou maintenir les interactions fonctionnelles et 

structurelles. Grâce à la révolution du séquençage à haut débit, il est désormais possible 

d’exploiter les bases de données génomiques disponibles, couvrant des milliers de gènes et de 

protéines afin de détecter les signatures de la coévolution. Cependant, les méthodes actuelles 

qui infèrent la coévolution ont certaines limites et prennent trop de temps pour analyser les 

données. Par conséquent, dans cette thèse, j'exploite la puissance des techniques 

d'apprentissage automatique utilisant des réseaux de neurones convolutifs (CNN) pour inférer 

la coévolution de manière simple et rapide sur des bases de données génomiques à large échelle. 

Dans un premier temps, j'ai étudié les limites des méthodes d'inférence de coévolution actuelles 

(plmDCA, CoMap et Coev) en fonction du niveau de divergence, en comparant leurs avantages 

et leurs inconvénients respectifs. Deuxièmement, j'ai développé un modèle d'apprentissage 

automatique basé sur des CNN pour détecter la signature de la coévolution au sein d’une 

protéine en exploitant le signal laissé par l'évolution sur des sites qui ont des changements 

coordonnés. Enfin, j'ai développé un pipeline facile à utiliser pour exécuter le modèle et 

détecter de la coévolution à partir d’un alignement donné et de son arbre phylogénétique. J'ai 

simulé des données génomiques basées sur l'ensemble de données bony vertebrate Selectome 

et je les ai utilisées pour entraîner le CNN. Après avoir entraîné le modèle, je l'ai testé sur le 

jeu de données réel bony vertebrate Selectome, détectant 217 protéines sous signature d’une 

coévolution. 

Dans l'ensemble, mon travail fournit une approche puissante basée sur des techniques 

d'apprentissage automatique pour mieux détecter et comprendre la signature de la coévolution, 

ouvrant la porte à d'autres approches d'apprentissage automatique utilisables sur des données 

génomiques afin de répondre à des questions de biologie évolutive. 
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“Nothing in biology makes sense  
except in the light of evolution.”  

Theodosius Dobzhansky  
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GENERAL INTRODUCTION 
 

One hundred and sixty years ago, Charles Darwin (Darwin, 1859) proposed the theory 

of evolution through natural selection, and although it is now a central paradigm for biological 

research (Koonin & Wolf, 2012; Davydov et al., 2015) the exact mechanisms surrounding the 

core of the theory as well as the relationship between organisms are still at the focus of intensive 

research worldwide. 

Organisms are related to each other within what biologists call the Tree of Life (Hug et 

al., 2016), a metaphor to express the evolutionary relationships existing between living beings. 

Each entity of these living beings are species that originated from the same common ancestor. 

Although species that originate from the same common ancestor are often represented as 

independent evolutionary entities (Fontaneto et al., 2007), it is known that interactions between 

species do occur through evolution (Poisot et al., 2015). Coevolution, the evolutionary process 

subtending these interactions, is an essential component of evolutionary theory and describes 

the reciprocal evolutionary changes that occur between pairs of organisms or biomolecules as 

they depend on one another (Yip et al., 2008). 

The concept of coevolution was briefly described at the species level for the first time 

by Charles Darwin in The Origin of Species (Darwin, 1859). He demonstrated this idea in detail 

in Fertilization of Orchids (Darwin, 1877) when studying the process of pollination in orchids 

where he observed that the length of the pollinator's proboscis was related to the size of the 

orchid’s corolla (Fig-1). This suggests that the evolution of orchid flower traits is strongly 

linked with the evolution of the pollinator’s proboscis and that they are adapted to one another. 

Coevolution has been highly studied since then (Ehrlich & Raven, 1964), particularly in 

biological systems involving host-parasite interactions, where the parasites exploit the host to 

grow, reproduce and spread while providing benefits to the host to evolve (for example in the 

case of Drosophila and the fungal toxins (Trienens & Rohlfs, 2011)). These interactions 

between parasites and their host species induce high selective constraints, meaning that a 

change happening in one species will quickly trigger the change in the other species, allowing 

the relationship to be maintained and species to survive ( Woolhouse et al., 2002; Papkou et 

al., 2016). 
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Coevolution is one of many mechanisms driving the biodiversity of living organisms 

(Laine 2009). However, this process does not only apply to interactions between entire 

organisms but can also explain, at the cellular level, how biomolecules interact with each other. 

At the molecular level, coevolution between parts of a molecule can reveal important 

information about the function and structure of a protein (Carmona et al., 2015). As a result, at 

the molecular scale, DNA (Deoxyribonucleic acid) sequences are of the utmost importance to 

studying signals of coevolution. 

 

Coevolution at the molecular level 

DNA is a polymer consisting of two-nucleotide chains that carry the genetic 

information to develop, live and reproduce living organisms and viruses (Tropp, 2012). Every 

living organism contains thousands of genes in its genome: long sequences of nucleotides that 

are transcribed into sequences of amino acids to create proteins. Each protein has a structure 

which allows it to interact with other proteins or other molecules enabling its function within 

an organism. Through time sequences may change and coordinated changes tend to occur 

between pairs of sites within a sequence to improve or to maintain the function or structure of 

proteins (Fares & Travers, 2006). Due to the conserved function or structure of a protein, 

mutations do not happen randomly and are an indication of the evolutionary constraints acting 

on a protein. Coevolution at the molecular level can be observed along a sequence when the 

modification of one site (nucleotide when referring to genes or amino acids when referring to 

proteins) will trigger the modification of another site (Yip et al., 2008). 

  

________________________ 
1 https://smithsoniangardens.wordpress.com/2015/12/18/on-display-highlights-from-the-smithsonian-
gardens-orchid-collection/ 

Fig-1 Source: Smithsonian Gardens1. In the left: The orchid Angraecum sesquipedale var. angustifolium. In the middle: an 
illustration of a hawk moth interacting with the orchid by Emily Damstra. In the left: a moth with extended probiscis 
© kqedquest. 
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Coevolution can occur between a pair of sites within a molecule. For example, if two 

sites are in contact in the 3-dimensional structure of the protein, structural constraints will occur 

between these pairs to maintain the correct folding of the protein. This implies that any 

mutation perturbing the 3D structure will be limited and if a mutation does occur, it will need 

to be compensated to recreate the correct 3D structure (Ivankov et al., 2014). This 

compensation is another coevolutionary process. Additionally, if the coevolving pairs are in an 

active part of the protein, which is involved in the expression of a specific function, they will 

also be under a functional constraint, and any change will need to be compensated to maintain 

the function of the protein, which will lead to another level of coevolution. Likewise, 

coevolutionary events occurring within a single protein may also be observed between pairs of 

proteins interacting with one another. For instance, in allosteric communication, a change of 

an essential site will affect the protein-protein interaction, and the other protein will be driven 

to adapt to maintain efficient communication (Baussand & Carbone, 2009). However, 

regardless of the underlying mechanisms involved, the initial task to understand the role played 

by coevolution in shaping protein sequences is to be able to detect which signals to extract 

from the genomic or protein data to correctly infer coevolving pairs of sites. 

There are several methods available in the literature to detect coevolution between pairs 

of sites at the molecular level. The most popular methods rely on the idea that the structural 

constraints imposed by the protein 3D structure lead to the covariance between the patterns of 

amino acid frequencies found in the columns of the multiple sequence alignments (MSA) (Chiu 

& Kolodziejczak, 1991; Weigt et al., 2009; Jones et al., 2012). Therefore, these methods take 

into account MSAs of homologous DNA or amino acid sequences and look at the covariation 

of the frequency patterns of amino acids or nucleotides found in any two columns of the MSA. 

Structural methods like mutual information (MI) estimate the distance between the two 

probability distributions of amino acids at two different sites in the MSA (Chiu & 

Kolodziejczak, 1991; Burger & Van Nimwegen, 2010). Direct coupling analysis (DCA) and 

protein sparse inverse co-variance (PSICOV) have improved over MI and removed indirect 

associations between sites by inverting a site-site covariance matrix (Weigt et al., 2009; Jones 

et al., 2012). Due to the computational demands of these methods, methods are improving their 

performance by making use of pseudo-likelihood estimation, like plmDCA (Ekeberg et al., 

2014) or the very similar Gremlin (Kamisetty et al., 2013). Furthermore, other methods such 

as metaPSICOV (Jones et al., 2015), start to take advantage of machine learning techniques by 

combining the coevolving pairs resulting from other methods to obtain more accurate 

predictions of true coevolution pairs of sites. 
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Detecting covariance between sites with the methods outlined above has been used to 

help predict protein structure (Kamisetty et al., 2013; Hopf et al., 2015; Zerihun & Schug, 

2018; Senior et al., 2019). However, sequences do not evolve independently, there are 

evolutionary relationships between them which can lead to covariances between sites. This can 

create patterns in the MSA that are similar to structural constraints (Qin & Colwell, 2018) and 

bias the prediction of coevolution (Horta1 & Weigt, 2021). Therefore, several approaches have 

been attempted to correct this effect of phylogenetic correlations and thus improve the 

inference of coevolving sites (Qin & Colwell, 2018). Some of these methods re-weight 

sequences according to their similarities measured by Hamming distances (Marks et al., 2011), 

through row-column weighting (Gouveia-Oliveira & Pedersen, 2007), or by correcting the 

coevolving sites score with Average Product correction (APC) (Dunn et al., 2008). Although 

these methods have improved the inference of coevolving sites, they only remove or correct 

the inherent evolutionary signal present in the sequences. The evolutionary history that affects 

the similarities between the sequences (Caporaso et al., 2008; Dib et al., 2014; Dutheil, 2012; 

Marmier et al., 2019; Yeang & Haussler, 2007) can also reflect the interplay of mechanisms 

that lead to coevolution between sites. As a result, several methods taking into account 

phylogeny have been proposed in recent years. 

In the literature, several authors have proposed statistical and combinatorial methods 

based on phylogenetic profiles (Dutheil et al., 2005; Baussand & Carbone, 2009; Dib et al., 

2014) to infer coevolving sites. While the methods described above see the phylogeny as a 

noisy signal that may be removed, these methods rely on the idea that coevolving pairs of sites 

evolve in a co-dependent manner, and that there is an evolutionary pressure forcing coevolving 

changes to occur on the same branches of a phylogenetic tree. One way to incorporate 

phylogeny is based on reconstructing the ancestral state of each site to map the changes events 

onto the phylogenetic tree (CoMap, Dutheil et al., 2005). Another method, Coev, uses a 

Markov model to study the process of evolution along a phylogenetic tree for any pair of sites 

based on a substitution matrix describing the transitions between positions, along the branches 

(Dib et al., 2014; Meyer et al., 2019; Yamada et al., 2019). These methods detect that two sites 

are under coevolution when they change in a coordinated way during their evolution.  

Taking into account the phylogenetic tree when inferring coevolution, reveals essential 

information such as selective pressure or evolutionary constraints acting on a pair of sites, 

which can explain how and why they are coevolving. Looking at these coordinated changes 

between a pair of sites through their phylogeny, it is possible to decipher if it is a random 

change or if evolutionary constraints or selective pressure are forcing this change to occur. 
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Moreover, it is possible to estimate the site-specific substitution rate which improves the 

prediction of coevolving pairs of sites (Dutheil, 2012). Furthermore, studies are showing that 

high divergence is needed to better estimate the sites under coevolution (Dutheil, 2012). This 

effect is because the low divergence in the phylogenetic tree will induce a smaller number of 

mutations and will possibly reduce the amount of information contained in the MSA. Besides, 

with low divergence, a random change at two different sites can be over-represented in the 

MSA if it happens near the root of the tree, as is shown in (Dutheil, 2012). While structural 

methods try to overcome this problem by having large numbers of sequences in the alignment, 

it is not always possible and it will depend on the protein family under study, e.g. in (Dib et al., 

2018). However, one of the drawbacks of the methods using the phylogenetic tree to infer 

coevolution, is that they usually require more computing time than the structural methods 

(Meyer, Dib, & Salamin, 2019). 

 

 

Machine learning 

The exponential growth of sequenced genomes facilitates the determination of which 

proteins coevolve, leading to the investigation of patterns explaining the evolutionary process 

of coevolution. The methods currently available are often limited by the number of sequences 

required to increase prediction accuracy and by the length of time needed to run the analysis. 

The availability of databases with thousands of proteins (Moretti et al., 2014; Mistry et al., 

2021),  gives us the possibility to have a tool to analyze and study coevolution in a scalable and 

efficient way.  

The emergence of high-throughput genomics has exploited artificial intelligence 

techniques such as machine learning algorithms (Pezoulas et al., 2021), which have proven to 

be a powerful tool in this era of big data analysis in many fields such as in physics, by 

calculating all the variables needed to describe physical actions (swing of a double pendulum 

or the flicker of a flame) by analyzing videos (Z.-K. Liu et al., 2022); in language recognition, 

by allowing the communication between signers and non-signers through a smart glove in a 

VR space (Wen et al., 2021); and in medicine, by detecting tongue cancer using endoscopic 

images (Heo et al., 2022). Machine learning algorithms create a mathematical model based on 

a known dataset that is used to train a model to make predictions about the data without being 

specifically programmed for it (Bishop & Nasrabadi, 2006). These methods are helpful when 

the dataset to analyze is too large and/or complex for standard methods. There are mainly four 
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Fig-2 Diagram artificial intelligence sub-fields 

types of machine learning: supervised, unsupervised, semi-supervised learning and 

reinforcement learning (Fig-2). Supervised machine learning methods train a model to fit a 

labeled dataset, where the true label of each dataset is known (for example: Decision Trees, 

Linear Regression, Neural Networks). In contrast, unsupervised machine learning methods are 

used when the data is unlabeled and the model learns to group the data based on detected similar 

patterns (for example: K-means clustering). Semi-supervised machine learning methods 

combine these two approaches, and the model is free to explore the patterns in the data. In 

reinforcement learning, the model takes a sequence of decisions to achieve a goal (such as 

finding the optimal path to exit a maze (Yu et al., 2019), and it will learn how to succeed based 

on reward or punishment depending on the action taken (for example: Q-Learning, Deep 

Adversarial Networks).  

 

 

 

 

 

 

 

 

 

 

 

Deep Learning is a subset of machine learning based on multiple layers of Artificial 

Neural Networks. One of its popular algorithms is Recurrent Neural Networks (RNNs), a type 

of Artificial Neural Network that contains feedback loops allowing it to store information 

within the network (Goodfellow et al., 2016). Its architecture can be seen as a graph with 

directed cycles in memory, allowing it to learn information related to the past. RNNs are trained 

to recognize the sequential characteristics of data and they are very effective for speech 

processing, Natural Language Processing (Lavanya & Sasikala, 2021), and time series 

prediction (Che et al., 2018). However, one of the most popular Deep Learning methods is 

Convolutional Neural Networks (CNNs), which are also a type of Artificial Neural Network 

where the “neurons” correspond to receptive fields very similar to the real neurons of the visual 

cortex of a biological brain (Goodfellow et al., 2016). CNNs are trained with bidimensional 

matrices (usually an image), and they are very effective in artificial vision problems. They 
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typically have three main layers: a convolutional layer in which features/patterns are extracted 

from input data, a pooling layer to reduce the size of the data while preserving the critical 

features, and a fully connected layer where all the outputs from the previous layer are 

connected, and an output/prediction is provided. CNNs have proven to be a powerful 

methodology for detecting patterns and classifying them accordingly. Even though it started as 

a method to classify images (Lecun et al., 1998; Krizhevsky et al., 2012), it has been expanding 

its applications to other non-image problems (Abdel-Hamid et al., 2014; Zhang & LeCun, 

2015). CNNs are however always used in situations where the data is translation invariant, the 

data has spatial features and it is possible for the network to ignore positional shifts or the 

translation of the target, and its detection is key for the prediction/classification of the data 

(Goodfellow et al., 2016). Nevertheless, neural networks in general, have always been 

considered a “black box”: it is not possible to understand the parameters learned by the 

network. Nonetheless, studies are trying to better understand the most important parts of the 

network by applying gradients to explain the decision/output. Some of them are guided back-

propagation (Springenberg et al., 2015.), deconvolutional networks (Zeiler et al., 2010), grad-

CAM (Selvaraju et al., 2017) or guided grad-CAM (Selvaraju et al., 2017). Contributions of 

these studies better facilitate the visualization of feature layers and the better understanding of 

the classification decision (Zeiler & Fergus, 2014; Sheu, 2020).  

Deep learning methods have thus proven their potential in biology and are accelerating 

the research and innovation in many areas: estimating species extinction risk (Zizka et al., 

2022), identifying diseases (J. Liu et al., 2021), classifying metagenomes (Manning et al., 

2019), inferring hybridization between organisms (Blischak et al., 2021), or the incredible 

advance predicting the structure of proteins with AlphaFold (Jumper et al., 2021). Nowadays, 

predicting the structure of proteins is a hot topic, where the number of new methods using deep 

learning to infer pairs of amino-acid sites in contact has increased. For example, the use of the 

popular CNN (RaptorX, DeepMetaPSICOV, Filter-DCA; Källberg et al., 2012; Kandathil et 

al., 2019; Muscat et al., 2020). Nevertheless, all of them take as input-features some measures 

of coevolution between sites, without taking into account the phylogeny, and these sites may 

not be close in the 3D structure, biasing their 3D structure prediction (Mehari B. Zerihun & 

Schug, 2017). However, in molecular evolution, there have not been many advances in the use 

of these powerful methods. CNNs have been used to build phylogenetic trees by inferring 

quartets from sequence data (Zou et al., 2020), but there has been no attempt to use the pattern 

recognition of CNN to learn about the processes driving molecular evolution.  
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The objectives of this thesis 

 On a broad scale, the main goal of my thesis was to propose meaningful ways to sort 

and interpret biologically the signature of coevolution based on machine learning techniques 

while taking into account the evolutionary constraints. After considering the limitations of the 

current methods available to infer coevolution, I simulated a dataset variable enough to train 

my machine learning model. First, I transformed the genomic data into a 2D matrix. Then, by 

using Convolutional Neural Networks, I was able to detect the signature pattern of coevolution 

in a controlled simulated dataset. 

In Chapter 1 I aimed to understand the differences between methods inferring 

coevolution and how divergence affects their predictions. By simulating datasets (amino acid 

MSAs and their phylogenetic trees) under different levels of divergence, I benchmarked the 

following methods: plmDCA, CoMap and Coev. I found that plmDCA is outstanding 

compared to CoMap and Coev. 

In Chapter 2, I developed a new method to infer coevolution, taking into account the 

phylogeny, based on Convolutional Neural Networks (CNNs). First, I studied how to transform 

the information of MSAs and their phylogenetic tree into a type of data suitable and useful to 

learn the signature pattern of coevolution. Second, I implemented a new method based on 

convolutional neural networks to predict coevolution considering the phylogeny. Finally, I 

simulated several datasets varying the divergence and the number of species to test our method. 

I achieved 90% of accuracy when applying the CNN to infer coevolution. 

In Chapter 3, I described the implementation of the method described in Chapter 2, 

Coev-Asymmetric-CNN. I provided a pipeline for the user to execute the method and I showed 

how to transform the data to input it into the model. Moreover, I tested Coev-Asymmetric-

CNN on the bony vertebrates Selectome database. I evaluated its performance by varying the 

size of the training dataset. Furthermore, I identified 217 proteins under coevolution. Finally, I 

shed light on the limitations of this method and raised awareness to better understand the data 

when inferring coevolution. 

Finally, annexes 1 and 2 contain additional projects that I set up during my thesis and 

on which I worked alongside two Master’s students under my supervision. 

Annex 1: Master First-step project, Karim Saied. “Data extraction and machine 

learning in features involved in coevolution” (2017) 

Annex 2: Master First-step project, Léonard Jequier (2018). “Automatically classifying 

clownfish pictures datasets at the species level” 
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Chapter 1 
 

 

 

Benchmarking methods to infer sites under 

coevolution 

        “All models are wrong,  
but some are useful.”  

George E. P. Box  
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Benchmarking methods to infer sites under coevolution 
 

ABSTRACT 
 

Identifying the mechanisms behind the process of coevolution is still an important 

question in molecular evolution. At the molecular level, coevolution can be detected when a 

modification at one site along the sequence triggers the modification at another site. In this 

context, coevolution can reveal important information about the function and structure of a 

protein, as these coordinated changes tend to occur to improve or maintain functional and 

structural interactions. Various methods have been proposed to predict coevolving pairs of 

sites. Most only consider coevolution as a measure of distance between amino acids. From a 

multiple sequence alignment (MSA) containing large numbers of sequences, they extract a 

measure of the correlation between sites to predict those that are close to each other in the 

protein 3D structure. They often use corrections and weight the sequences to reduce the impact 

of the phylogenetic relationships. Another type of methods aims at inferring the evolutionary 

constraints between pairs of sites (amino acids or nucleotides) using both a MSA and a 

phylogenetic tree to identify pairs of sites under coevolution. In this article, we focus on how 

to identify the pattern of molecular coevolution based on the role of evolutionary divergence. 

Using simulations, we evolve amino-acid sequences containing pairs of sites coevolving along 

phylogenetic trees. We then characterize the ability of each method to correctly detect 

coevolving sites under varying levels of sequence divergence and phylogenetic signals. Our 

study shows that divergence is important and has an impact on the way these methods infer 

coevolving pairs, and thus, it should be taken into consideration when predicting coevolution. 
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1. INTRODUCTION 
 

Reciprocal evolutionary changes that occur between biological entities as they depend 

on each other are an important component of evolutionary biology (Yeang & Haussler, 2007). 

This biological process, called coevolution, can take place at the scale of molecules and the 

identification of coordinated changes between residues of a protein can reveal important 

information about the functional, structural and evolutionary constraints acting on them. 

Structural constraints occur when amino acids are in contact in the 3D structure of the protein 

and their proximity helps to maintain the protein folding (Carmona et al., 2015). Functional 

constraints occur when sites are implicated in a protein active site or are part of the interaction 

with other proteins (Yeang & Haussler, 2007). Finally, evolutionary constraints may come 

from other mechanisms to maintain the protein function through evolutionary time scales, such 

as epistasis or compensatory mutations (Dutheil et al., 2010). However, regardless of the 

underlying mechanisms involved, the initial task to understand the role played by coevolution 

in shaping protein sequences is to be able to correctly detect coevolving pairs of sites. 

A variety of methods are available to infer coevolution between pairs of sites along a 

protein. The most popular methods are those looking at the covariation of the frequency 

patterns of amino-acids between sites using a local or global statistical model (e.g. maximum 

entropy). They all assume independence between protein sequences. One of the first measures 

to be proposed was mutual information (MI), which estimates the distance between the two 

probability distributions of amino acids at two different sites in a multiple sequence alignment 

(MSA; Chiu & Kolodziejczak, 1991; Burger & Van Nimwegen, 2010). However, MI can be 

biased by indirect associations between sites. Other methods, such as the most widely used 

direct coupling analysis (DCA) (Weigt et al., 2009) and protein sparse inverse covariance 

(PSICOV) (Jones et al., 2012), have been developed to remove these indirect effects. 

Estimating coevolution on a large MSA is computationally intensive and these methods have 

been improved using pseudo-likelihood estimation, like plmDCA (Ekeberg et al., 2014) or the 

very similar Gremlin (Kamisetty et al., 2013). Furthermore, methods, such as metaPSICOV 

(Jones et al., 2015), start to take advantages of machine learning techniques by combining 

results from other methods to obtain more accurate predictions of coevolution. Although 

methods based on deep learning algorithms are actively being developed, the scores provided 

by plmDCA is still a core feature added to most models.  
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The biochemical constraints imposed to maintain the interactions between sites in close 

proximity lead to covariance between the patterns of amino acid frequencies found in the 

columns of the MSA (Qin & Colwell, 2018). Detecting covariance between sites with the 

methods outlined above has therefore been used to help predicting amino acids in contact 

(Morcos et al., 2011; De Juan et al., 2013; Ekeberg et al., 2014; Zerihun & Schug, 2018), 

protein structure (Hopf et al., 2015; Kamisetty et al., 2013; Senior et al., 2019; Zerihun & 

Schug, 2018) and interfaces between proteins (Ackerman et al., 2012; Uguzzoni et al., 2017), 

or to identify interactions with other proteins (Malinverni et al., 2017). 

However, protein sequences do not evolve independently and this will affect the 

similarities that we observe between sequences ( Yeang & Haussler, 2007; Caporaso et al., 

2008; Dutheil, 2012; Dib et al., 2014; Marmier et al., 2019). Evolutionary relationships 

between the sequences can create patterns in the MSA that are similar to structural constraints 

(Qin & Colwell, 2018) and bias the prediction of coevolution if the phylogenetic tree is not 

accounted for (Horta1 & Weigt, 2021). Structural methods assume that evolutionary and 

structural processes are independent. Corrections have been introduced to remove the effect of 

evolution with the goal of improving the predictions of coevolving sites (Qin & Colwell, 2018). 

Sequences are weighted according to their similarities measured by Hamming distances and 

the scores of pairs of sites are corrected with Average-Product Correction (APC) (Dunn et al., 

2008). Still, the goal of these improvements is to remove or correct for the inherent 

evolutionary signal present in the data, which is due to the phylogenetic relationships between 

sequences. 

Another approach is to account for this phylogenetic signal while estimating 

coevolution. In recent years, several phylogenetic methods have been proposed to estimate 

coevolving sites in a MSA. In all these methods, the protein structure is not considered at all. 

The relevant information used is the identity of the amino-acids or nucleotides and the way 

they changed through the branches of the phylogenetic tree (but see Dutheil, 2012). Several 

authors have proposed statistical and combinatorial methods based on phylogenetic profiles 

(Dutheil & Galtier, 2007; Baussand & Carbone, 2009; Dib et al., 2014) to infer coevolving 

sites. They rely on the idea that coevolving pairs of sites evolve in a co-dependent manner, 

which means that coevolving changes will occur on the same branches of a phylogenetic tree. 

For example, CoMap maps the substitution events onto the phylogenetic tree to fully 

incorporate the evolutionary history of each site (Priya & Shanker, 2021). Other methods, like 

Coev (Dib et al., 2014), use a Markov model to study the process of evolution along a 

phylogenetic tree for any pair of sites by inferring through maximum likelihood the substitution 
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matrix that describes the transitions between positions, along the branches, that occur in a 

coordinated way during sequence evolution (Meyer, Dib, & Salamin, 2019; Yamada et al., 

2019). One of the downsides of these methods is that they usually require more computing time 

than the structural methods. 

More importantly, evolutionary processes can reflect the interplay of mechanisms that 

lead to coevolution between sites. For instance, divergence, which describes the evolutionary 

rates of a protein family and is defined as the average substitution rate at a given site, can play 

an important role because of its impact on the substitutions that are expected to occur within a 

MSA. 

It was indeed shown (Dutheil, 2012) that low sequence divergence will reduce 

significantly the amount of information contained in the MSA to estimate coevolution. 

Moreover, with low divergence, random substitution occurring at two different sites can be 

over-represented in the MSA if it happened near the root of the phylogenetic tree (Dutheil, 

2012). The impact of divergence could be more acute when large number of sequences are 

required to statistically show a signal of coevolution. This is the case for most structural 

methods that require large MSAs to improve the estimation of the frequencies of each amino-

acid pair. However, increasing sequence numbers can sometimes only be achieved by adding 

sequences that are evolutionarily very similar depending on the protein family under study. For 

instance, the study of coevolution in the protein family MHC-I (Dib et al., 2018) was done with 

both a high number of human MHC-I sequences, but it was complemented with available 

mammalian sequences that increased the statistical power to detect sites under coevolution due 

to the higher variability of the latter dataset. 

There is a need to compare and better understand the performance of the different 

methods to predict sites under coevolution. Some studies have used synthetic data, based on 

simulations of sequence evolution, to assess the accuracy of DCA in detecting coevolution not 

necessarily constrained by protein structure (Marmier et al., 2019). However, there has been 

no study analyzing in detail the effect of divergence on the accuracy of predicting pairs of sites 

as coevolving. We therefore have little knowledge about the behaviour of the different types 

of methods (i.e. structural vs phylogenetic) to analyse data with variable amount of sequence 

divergence and whether this factor will play a role in our ability to detect patterns of 

coevolution. Here, we compare three methods based on these two different approaches: Direct 

Coupling Analysis (DCA), which is the most widely used approach to predict structural 

dependencies, using the plmDCA software (Ekeberg et al., 2014), CoMap, which estimates the 

correlated evolution across branches of a phylogenetic tree between pairs of sites, and Coev, 
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which models the evolution along a phylogenetic tree of coevolving pairs of sites. We used 

simulations to evolve amino-acid sequences along phylogenetic trees representing varying 

levels of evolutionary divergence (Dib et al., 2014) and we assessed the ability of each method 

to correctly detect coevolving sites under varying levels of sequence divergence and different 

tree topologies. 

 

2. METHODS 
 

2.1. Simulated data 

2.1.1. Creating phylogenetic trees 

We simulated two sets of phylogenetic trees with either 100 and 500 leaves, which we 

will refer to in this work as species. For each tree size, we varied the topologies by creating, in 

each simulation, 10 random phylogenetic trees using the R function pbtree from the phytools 

library (Revell, 2012). The birth and death parameters were set to 1 and 0, respectively. The 

trees were all binary, rooted and ultrametric. 

Our main objective was to investigate the effect of sequence divergence on the ability 

to detect pairs of sites under coevolution. We selected six levels of divergence (0.005, 0.01, 

0.02, 0.04, 0.08 and 0.16) that corresponded to the expected number of amino-acid substitutions 

on the branches of the phylogenetic trees (i.e., total sum of branch lengths divided by number 

of branches in the tree). These values were selected to cover scales of divergence observed in 

real phylogenetic trees inferred from amino acids. Such datasets typically present divergences 

between 0.006 and 0.15 substitutions per branch on average based on the data for bony 

vertebrates available in the Selectome database ((Moretti et al., 2014); more details in Suppl. 

Data 6.1. Calculating average branch length; Supp.Fig-1.1). We extended these values towards 

low and high amount of evolutionary changes to investigate more extreme cases of sequence 

divergence in our simulations. We modified the branch lengths of the ultrametric trees created 

by the function pbtree by drawing random values from an exponential distribution with a scale 

value given by the six levels of divergence described above (i.e., For a scale 𝛽, the mean of the 

distribution is 1 𝛽⁄ ) and assigned branch lengths to each edge of the simulated trees. 

For the larger phylogenetic trees (500 species), we investigated the effect of varying 

amounts of phylogenetic signal by transforming each simulated tree using Pagel's tree 

transformation (Blomberg et al., 2003; M. Pagel, 1999) as implemented in the rescale function 

from the R library geiger (Pennell et al., 2014). The parameter 𝜆 defines the scaling factor 
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applied to the internal branches of the tree to down-weight the covariance structure 

corresponding to the phylogenetic tree and therefore reduces the phylogenetic signal. We 

scaled the branches of the trees with 𝜆 ∈ {0,0.3,0.6,0.8, 1}. If 𝜆 = 1, the phylogenetic trees were 

identical to the ones simulated, while 𝜆 = 0 lead to phylogenetic trees corresponding to a star 

phylogeny with species being fully independent from each other (and thus giving a covariance 

of 0 between the species). 

 

2.1.2. Simulating multiple sequence alignments 

We used each simulated phylogenetic tree (scaled and/or transformed) to create a MSA 

of 100 amino acids in length. We simulated two different parts to create each MSA: i) a set of 

80 independent sites that evolved under standard models of amino acid substitutions; ii) a set 

of 10 pairs of sites that evolved under a model of coevolution. 

For the 80 independent sites, we use two models. First, we used the LG model of 

evolution (Le & Gascuel, 2008) to simulate the sequences of amino acids (hereafter referred to 

as LG simulations). We used a homogeneous matrix of rate transition with all substitutions 

being identical and we assumed that each amino acid had the same equilibrium frequency but 

included a Gamma distribution (alpha = 2) to represent the variation in the rate of evolution of 

each site. Second, we simulated independent sites evolving according to the CAT model  

(Lartillot & Philippe, 2004, 2006; Lartillot et al., 2007; Quang et al., 2008). The CAT model 

creates classes of independent sites that evolved according to different equilibrium frequencies 

therefore creating patterns of amino acid frequencies across the alignment without any 

structural constraints. For the CAT model, the sites of the MSA were grouped in 20 classes1 

that had different equilibrium frequencies derived from available empirical datasets (Quang et 

al., 2008) . 

We combined the 80 independent sites with 10 pairs of coevolving sites that were 

created by using the Coev model of evolution (Dib et al., 2014). The goal was to create true 

pairs of coevolving sites that are derived from evolutionary mechanisms and have no structural 

constraints associated. Each pair was created by drawing at random a coevolution profile and 

setting the d and s parameters that govern the rate of change in the coevolution model to 100 

and 1, respectively (see Dib et al., 2014, for details about the model). The d parameter is the 

rate of transition of one amino-acid that will allow a pair of amino-acid that are not in the 

coevolving profile to move to a pair that is in the coevolving profile, while the s parameter is 

 
1 https://github.com/nsalamin/rocio/blob/master/scripts/simulator/README.md 
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the reverse transition. There are two additional parameters driving the substitution of single 

amino acids within each profile, and we set these to 1. 

The simulations were done using a custom R script written by us and available at 

https://github.com/nsalamin/rocio. 

 

2.2. Inferring coevolution 

2.2.1. plmDCA 

The algorithm plmDCA was used as implemented in the MATLAB version described 

in (Ekeberg et al., 2014). It is implemented with a weight parameter 𝓌 = 1 − 	𝑝, 𝑝 being the 

Hamming distance between two sequences of a MSA below which they are assumed to be 

similar. For the small dataset with 100 species, we used the default parameter 𝓌 = 0.2 (p = 

0.8). For the larger dataset with 500 species, we tested the effect of the reweighting by using 

the default parameter 𝓌 = 0.2 against no reweighting with 𝓌 = 0 (𝑝 = 1). We also slightly 

modified the MATLAB code to output the scores before and after the APC correction. When 

not specified, the plmDCA scores are shown with APC correction and with the reweighting 

factor 𝓌 = 0.2. 

 

2.2.2. CoMap 

We used CoMap v1.5.2 (Dutheil et al., 2005) to estimate the pairs of coevolving sites 

while accounting for the phylogenetic tree underlying their evolution. CoMap uses an 

independent model of evolution to map the substitutions occurring at each site on the branches 

of a phylogenetic tree. The vectors of substitutions rates (one value per branch of the tree) for 

each site are then compared in a pairwise analysis using a Pearson correlation. We used the LG 

model to estimate substitutions and added a Gamma distribution to account for rate variation 

between sites. We optimized the branch lengths and the model parameters using the full-

derivatives algorithm and we used the marginal reconstruction of ancestral states as 

implemented in CoMap. We tested for coevolution between each pair of sites using the Pearson 

correlation and we used the significance level with a threshold of 0.05 to assess if a pair of sites 

was coevolving (𝑝-value ≤ 0.05) or not (𝑝-value > 0.05). 

The 𝑝-value estimated by CoMap is based on a randomization procedure to take into 

account the rate of evolution of the sites of the MSA (see Dutheil et al., 2005 for details). The 

number of categories used to estimate the significance threshold for a given rate of evolution 

is fixed and can lead to sites falling in categories with very few randomized values. This can 
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bias the 𝑝-value estimation and we modified the approach to solve this issue by adding either 

a parametric distribution of rates or by ensuring that the bin size for each category was large 

enough to include enough randomized patterns. The R script to perform the estimation of the 

new 𝑝-values for CoMap is available at https://github.com/nsalamin/rocio. In all our results, 

we used the new procedure to obtain the 𝑝-values rather than the default one returned by 

CoMap. 

 

2.2.3. Coev 

We finally used Coev (Dib et al., 2014), another phylogenetic method, to estimate the 

pairs of coevolving sites in the simulated datasets. The Coev method was used to simulate the 

data and we would expect a perfect match between the simulations and the estimations done. 

As with the previous methods, we performed pairwise analysis between each site of the 

alignment and we did not remove the constant sites. We used the maximum likelihood 

implementation of Coev and the rate of transition from one profile to another, parameters d and 

s, were estimated during the maximum likelihood optimization. The parameters r1 and r2 were 

set to 1.  

The coevolving score between two sites was calculated using the Akaike information 

(DAIC =  AICindependent model - AICCoev) as indicated in Dib et al., 2014. Higher DAIC values 

indicated that the signal of coevolution was stronger between the pair of sites tested than the 

null model of no coevolution. However, DAIC values can be biased in this specific model 

comparison and evidence for a coevolution should also be associated with a small 𝑠 𝑑⁄  ratio 

(see Dib et al., 2014, for details). 

 

2.3. Assessing the performance of the methods 
The performance of each method was measured using precision and recall (PR) curves. 

We used this approach because our simulations are highly imbalanced with far more pairs of 

sites evolving under the independent model than pairs under coevolution (for a simulation with 

100 bp with 80 independent sites and 20 coevolving ones, we had 4,940 pairwise comparisons 

that were true negatives versus 20 that were true positives). For plmDCA, we used the score to 

rank each pair of sites, while for CoMap, we combined the correlation coefficient and the 𝑝-

value to rank each pair of sites. Finally, for Coev, we used both the DAIC value and the ratio 

of the parameters s and d to rank the pairs of sites. For each divergence levels simulated, we 

estimated the numbers of true positives (TP; coevolving pairs with a score higher than the 



  
 

29 

threshold), false negative (FN; coevolving pairs with a score lower than the threshold), true 

negatives (TN; non-coevolving pairs with a score lower than the threshold) and false positive 

(FP; non-coevolving pairs with a score higher than the threshold). It allowed us to calculate 

the precision as P = TP/(TP + FP) and Recall as R = TP/(TP + FN)  for each simulations that 

we averaged to obtain the mean PR curve for each level of divergence as well as the mean area 

under the PR curve (AUC; AUC = 1 means a perfect predictor, and AUC < 0.5 means a worse 

than random predictor). Finally, we also calculated the F1 score, estimated as 2 * ((P * R)/(P 

+ R)), which is the harmonic average of the precision and recall, for each threshold value at 

each divergence level (the F1 = 1 means a perfect predictor, and F1 = 0 means a bad predictor). 

All analyses were done using custom scripts written in R and python. The scripts are available 

at https://github.com/nsalamin/rocio. 

 

3. RESULTS 
 

We tested the performance of several methods to infer coevolving pairs of sites along 

a MSA. Our goal was to investigate the ability of structural and phylogenetic methods to 

estimate coevolution due to a pure evolutionary process and to assess the effect of varying 

levels of sequence divergence on their performance. We used simulated datasets to benchmark 

the different methods and provide an estimate of true and false positives rates. This allowed us 

to characterize the properties of the methods compared. We report here the results first for the 

three different methods on the smaller data size containing 100 sequences and then for 

plmDCA for the larger dataset of 500 sequences. 

 

3.1. Accuracy of methods on the 100 sequences dataset 
We used plmDCA to estimate the score of coevolution for each simulated pair of sites. 

We showed in Fig-1.1 the different scores obtained by this method for coevolving and non-

coevolving pairs of sites when the true negative pairs were simulated with the LG model and 

the true positive pairs with the Coev model. At all levels of divergence, the mean score of 

coevolving or non-coevolving pairs remained very similar, but the variance was much larger 

at low divergence than at higher divergence levels. This led to a larger overlap between the 

scores of the two types of pairs of sites at lower divergence. The overlap was evident with 

divergence levels of 0.005, 0.01, and 0.02 (Fig-1.1), where it was not possible to differentiate 
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Fig-1.1 Boxplots of the scores obtained by plmDCA for the true coevolving (in blue) and true non-coevolving (in red) pairs of 
sites at different levels of divergence with the simulations done with the LG model. 

coevolving pairs from the others. The difference between the two distributions of scores 

increased with increasing divergence (levels of 0.04, 0.08 and 0.16; Fig-1.1) until a full 

disconnection occurred at the most extreme level of divergence (Fig-1.1). This pattern was 

similar for the simulations done with the CAT model to create the independent pairs of sites 

(Supp.Fig-1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PR curves and F1 scores for plmDCA are shown in Fig-1.2. For the simulations 

under the independent model LG, the performance to classify coevolving and non-coevolving 

pairs of sites was very high, but with a slight decrease in performance with lower levels of 

divergence (Fig-1.2). The AUC was nevertheless high at all levels of divergence and ranged 

from 0.95 for a mean branch length of 0.005 to 0.99 for the higher levels (Table-1.1). The 

pattern was very similar with the simulations done with the CAT model to create independent 

sites (Table-1.1), although the AUC values were slightly lower than for the LG model. 

We used the F1 score to detect the threshold value that best allowed to distinguish between 

coevolving and non-coevolving pairs. This threshold increased when the levels of divergence 

decreased (Fig-1.2), while the F1 score itself decreased when the level of divergence decreased. 

A F1 score of 1 is achieved with the divergence scales of 0.04, 0.08 and 0.16, which reflect the 

pattern seen in Fig-1.1. We saw a similar pattern for the simulations done under the CAT model 

(see Supp.Fig-1.6). 
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Fig-1.2 The results from the LG model are shown here. The green, orange, purple, pink, dark blue and yellow colors represent 
each level of divergence (mean branch length). a) PR curve for plmDCA scores. The y-axis represents the precision and the 
x-axis represents the recall. b) F1 score plot for plmDCA. The y-axis represents the F1 score and x-axis represents the plmDCA 
scores. Each vertical line shows the plmDCA score threshold to achieve the best balance between precision and recall. 

 

 

 

 

 

 

 

 

 

 

  
 

 

Mean branch length 

 0.005 0.01 0.02 0.04 0.08 0.16 

plmDCA LG 0.961 0.982 0.995 0.995 0.995 0.995 

plmDCA CAT 0.938 0.984 0.993 0.995 0.995 0.995 

Table-1.1 Area Under the Curve for the plmDCA analyses across  
the 6 levels of divergence for the simulations done with the LG and  
CAT models. 
 

We analyzed the same simulated datasets with CoMap, which takes a phylogenetic 

approach to estimate pairs of coevolving sites. We showed in Fig-1.3 the distributions of 

correlation coefficients (after removing constant sites) obtained for coevolving and non-

coevolving pairs. Contrary to plmDCA, the mean correlation changed between levels of 

divergence (increasing for non-coevolving pairs of sites with higher levels of divergence and 

decreasing for coevolving pairs of sites), while the variance stayed more similar, especially for 

the non-coevolving pairs (Fig-1.3). As a consequence, there was not a clear threshold to 

distinguish between coevolving or non-coevolving pairs of sites across all the divergence scales 

tested. Finally, at low divergence scales (0.005 to 0.04; Fig-1.3), some pairs of sites that are 

not coevolving showed a correlation of 1. This was due to the low substitution rates found in 

the sites involved in these pairs, which led to high correlations because all branches have 

similar, albeit low, rates of substitutions. At higher divergence scales, this effect disappeared 

because the probability of non-coevolving sites to change on different branches becomes 

higher, therefore leading to a smaller correlation coefficient than for coevolving pairs (which 

by assumption of the Coev model used to simulate the data must change on the same branches). 

a) b) 
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Fig-1.3 Boxplots of the correlation nscores obtained by CoMap for the true coevolving (in blue) and true non-coevolving (in 
red) pairs of sites at different levels of divergence with the simulations done with the LG model. 

 

 

 

 

 

 

 

 

 

 

 

The performance of using the correlation coefficient provided by CoMap for the 

simulations using the LG model (Fig-1.4) reflected the behavior already seen in Fig-1.3.At low 

divergence scales, we observed low precision, because of a higher number of false positives, 

but the recall was 1 because very few false negatives were found. Increasing the level of 

divergence increased the precision, but with a decreasing recall (Fig-1.4 a). However, the 

ability of this method to correctly predict the coevolving sites increased with higher levels of 

divergence, as shown by the AUC value (Table-1.2). The simulations with the CAT model 

gave similar, albeit slightly better, results (Supp.Fig-1.7; Supp.Table-1.1). 

An advantage of CoMap over plmDCA is that it provides more information about the 

pairs of sites being evaluated than only a score. We combined the correlation coefficient with 

the estimated value of the minimum number of changes expected to occur through the tree for 

each pair of sites (Nmin parameter in CoMap output) and the 𝑝-value of the correlation 

coefficient. When combining both the correlation coefficient and the 𝑝-value, the estimated 

AUC did not improve (Table-1.2 and Supp.Fig-1.3). This is because correlation coefficients 

that are equal to 1 will most often have 𝑝-values smaller than 0.05 (Supp.Fig-1.4) and both 

values provided therefore very similar information. On the other hand, the false positive pairs 

that are associated with correlation coefficients of 1 or close to 1 at low divergence scales (Fig-

1.4 a) are associated with low minimum number of expected substitutions across the 

phylogenetic tree. We removed the pairs of sites that were associated with a Nmin < 1.5 (i.e., 

one or less expected substitutions on these sites across the phylogenetic tree) and found that 

the performance of CoMap drastically improved at low levels of divergence (i.e. 0.005, 0.01, 

0.02 and 0.04) with AUC values higher than 0.93 for all scales (Fig-1.5; Table-1.2). The 
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performance at high levels of divergence (0.08 and 0.16) did not improve given that the value 

of minimum number of changes at these scales is higher (Nmin > 1.5) than at low scales. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mean branch length 

 0.005 0.01 0.02 0.04 0.08 0.16 

Correlation coefficient 0.724 0.83 0.918 0.898 0.938 0.846 

Correlation coefficient  
and 𝒑-value 

0.77 0.825 0.874 0.879 0.936 0.887 

Correlation coefficient 
and Nmin value 

0.936 0.965 0.989 0.97 0.941 0.846 

Correlation coefficient, Nmin 
and 𝒑-value 

0.933 0.959 0.974 0.947 0.939 0.887 

Table-1.2 Area Under the Curve for the CoMap analyses across the 6 levels of  
divergence for the simulations done with the LG model. 

 

 

 

 

 

 

 

 

 

 

 

Fig-1.4  Results from LG model and CoMap are shown here: taking into account only the correlation coefficient and the 
significant pairs of sites. The green, orange, purple, pink, dark blue and yellow colors represent each level of divergence (mean 
branch length). a) PR curve for CoMap correlation coefficient. The y-axis represents the precision and the x-axis represents 
the recall. b) F1 score plot for CoMap correlation coefficients. The y-axis represents the F1 score and x-axis represents the 
CoMap correlation coefficient. Each vertical line shows the CoMap correlation coefficient threshold to achieve the best 
balance between precision and recall. 

Fig-1.5 Results from LG model and CoMap are shown here: taking into account only the correlation coefficient and the 
significant pairs of sites with a Nmin  >  1.5. The green, orange, purple, pink, dark blue and yellow colors represent each level 
of divergence (mean branch length). a) PR curve for CoMap correlation coefficient. The y-axis represents the precision and 
the x-axis represents the recall. b) F1 score plot for CoMap correlation coefficients. The y-axis represents the F1 score and x-
axis represents the CoMap correlation coefficient. Each vertical line shows the CoMap correlation coefficient threshold to 
achieve the best balance between precision and recall. 

a) b) 

a) b) 
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Fig-1.6 Boxplots of the DAIC scores obtained by Coev for the true coevolving (in blue) and true non-coevolving (in red) pairs 
of sites at different levels of divergence with the simulations done with the LG model. 

We analyzed the LG simulated dataset with the Coev model, which takes also a 

phylogenetic approach to estimate pairs of coevolving sites but uses a Markov model of 

evolution to estimate using maximum likelihood the probability that the pairs of sites are 

evolving under coevolution. We show in Fig-1.6 the distributions of DAIC values (after 

removing constant sites) obtained for coevolving and non-coevolving pairs. Contrary to 

plmDCA, but similar to CoMap, the mean correlation varies between levels of divergence, 

while the variance stayed more similar, especially for the non-coevolving pairs (Fig-1.6). As a 

consequence, there was not a clear threshold to distinguish between coevolving or non-

coevolving pairs of sites across all the divergence scales tested. Additionally, we also show in 

Supp.Fig-1.10 the distributions of s/d values to detect pairs of sites under coevolution and we 

found that there was not a clear threshold to distinguish between non-coevolving pairs and the 

coevolving ones. 

 
 

 

 

 

 

 

 

 

 

Similar to CoMap, Coev also provides more information about the pairs of sites than 

only a score. First, we used the DAIC measure to select the best model of evolution and to 

detect pairs of sites under coevolution. We applied this approach to the simulated dataset based 

on the LG model and we found levels of performance that were slightly better with Coev (Fig-

1.7) than with CoMap when only taking into account the significant correlation coefficient. 

Then again, plmDCA performs better in general. Nevertheless, if we look at the AUC 

when using as a score the DAIC value  from Coev (Table-1.3), at high scale (mean branch 

length of 0.16), Coev performs as good as plmDCA and better than CoMap (Table-1.1, Table-

1.2 and Table-1.3).  

Moreover, we also used the s/d ratio measure to select the best model of evolution and 

to detect pairs of sites under coevolution. We also applied it on the LG model (Fig-1.7) and we 

found that Coev is slightly better than CoMap when only taking into account the significant 
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Fig-1.7 Results from LG model and Coev are shown here. The green, orange, purple, pink, dark blue and yellow colors 
represent each level of divergence (mean branch length). a) PR curve for Coev considering the s/d score. The y-axis represents 
the precision and the x-axis represents the recall. b) PR curve for Coev considering the DAIC. The y-axis represents the 
precision and the x-axis represents the recall. 

correlation coefficient, but with high mean branch length its behavior is not good. Looking into 

these results, we saw that the DAIC and the s/d ratio are complementary values. At high 

divergence, we see that the top pairs predicted as coevolving pairs, have the same s/d ratio, 

being not possible to differentiate between true positives and false positives. However, if we 

take into account the top pair of sites based on the s/d ratio and also having the highest DAIC, 

then the top pairs of sites are all true coevolving pairs of sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Mean branch length 

 0.005 0.01 0.02 0.04 0.08 0.16 

Coev with s/d ratio 0.893 0.909 0.934 0.93 0.813 0.562 

Coev with DAIC 0.695 0.752 0.902 0.945 0.986 0.996 

Table-1.3 Area Under the Curve for the Coev analyses across the 6 levels  
of divergence for the simulations done with the LG model. 
 
 

3.2. Accuracy of structural methods with varying levels of phylogenetic 

signal 
We studied the effect that the evolutionary process had on the plmDCA predictions. 

Our goal was to assess whether the corrections for phylogenetic relationships implemented in 

plmDCA was effectively removing covariation due to the evolutionary process. We used larger 

alignments than in the previous simulations to ensure that the statistical properties of the 

a) b) 
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method were met (i.e. it is suggested that 5 times more sequences than sites should be present; 

(Kamisetty et al., 2013)). However, we could not apply CoMap or Coev on these larger 

alignments because either limitations in the memory usage of the software, for the former, or 

due to prohibitive computational costs, for the latter. We first checked that the performances 

observed with the larger dataset containing 500 species were similar to those found on the 

dataset with 100 species. The AUC of the PR curves for each level of divergence showed the 

same decrease with lower levels of divergence (Table-1.4) and the overall AUC for lower 

divergence was lower than for the smaller dataset (Table-1.1). 
 

Mean branch length 

 0.005 0.01 0.02 0.04 0.08 0.16 

plmDCA LG 0.844 0.929 0.968 0.995 1 1 

plmDCA CAT 0.861 0.933 0.976 0.994 0.999 1 

Table-1.4 Area Under the Curve for the plmDCA analyses, for 500  
species, across the 6 levels of divergence for the simulations done  
with the LG and CAT models. 

 
We next looked at the impact of various levels of phylogenetic signal, defined here by 

the parameter 𝜆, which can vary from 0 to 1. We showed in Fig-1.8 the different scores obtained 

by the plmDCA method on coevolving and non-coevolving pairs of sites when the true negative 

pairs were simulated with the LG model and the true positive pairs with the Coev model. When 

𝜆 = 1, we observed the same behavior as with the previous small alignments (see Fig-1.1) 

except that the mean of the coevolving pairs increased with the divergence. When 𝜆 = 0, 

distributions showed much less outliers and the predictions made by plmDCA were almost 

perfect. Independent sequences seemed to help the method correctly detecting the coevolving 

pairs of sites. For each 𝜆 higher than 0, simulations with mean branch length less than 0.04 

tended to overlap more than with mean branch length higher than 0.04. 
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Fig-1.9 AUROC for plmDCA scores to mean branch length. The y-axis is the AUC value and the x-axis is the 𝜆 value. The 
green, orange, purple, pink, light green, yellow and brown colors represent each level of divergence (mean branch length). 
The LG model is shown here. 

Fig-1.8 Boxplots showing the distribution of plmDCA scores for coevolving and non-coevolving pairs according to mean 
branch length. Different 𝜆 are shown from left to right; the value at the top of the plot indicates the value of 𝜆. The LG model 
is shown here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

We quantified the ability for DCA to discriminate between coevolving and non-

coevolving pairs using AUROC according to the mean branch length and 𝜆. In Fig-1.9, we 

observed that for mean branch length higher than 0.04, the AUROC was almost 1 for all 𝜆. For 

mean branch length smaller than 0.04, the AUROC decreased with	𝜆, except for 𝜆 > 0.6, where 

the AUROC increased again but without reaching 1. We confirmed that plmDCA gave high 

AUROC values (in between 0.8 and 1) but that detecting coevolving pairs in low divergence 

alignments with a 𝜆 > 0 is a more difficult task for plmDCA. In Supp.Fig-1.11, we compared 

plmDCA with Mutual Information (MI) and showed that MI was performing better, with a 

AUROC higher than 0.97 for all alignments. Moreover, the results were similar whether the 

simulations were done with the CAT or LG models. 
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We compared different versions of plmDCA scores, depending on the phylogenetic 

corrections used, with and without the sequences weighting, and with and without the APC 

correction. Fig-1.10 shows the AUROC of precision recall for different branch length and 𝜆 = 

1 for different corrections. The AUROC is increasing for all mean branch lengths when the 

APC correction is applied (with the weighting of sequences: pink against orange and without: 

purple against green). However, the AUROC is decreasing for low mean branch length when 

the weighting is applied (with APC: pink against purple, without APC: orange against green). 

In the supplementary data, results are shown for all λ and for the CAT model as well (see 

Supp.Fig-1.11 and Supp.Fig-1.12) 
 

 

 

 

 

 

 

 

 

 

 

 

 

4. DISCUSSION 
 

In this work, we investigated the effects of sequence divergence on the way methods, 

like plmDCA, CoMap or Coev, predict pairs of sites as coevolving: we highlight the good 

performance of plmDCA independently of the divergence level; we do an extensive evaluation 

of CoMap performance according to different parameters; we evaluate the performance of 

Coev; and we identify the limitations of these methods based on the six divergence levels 

simulated with Coev. 
Similar to previous studies in which controlled synthetic data was generated (Marmier 

et al., 2019), we utilize evolutionary models (LG and CAT) to simulate data only based on 

Fig-1.10 AUROC Precision and Recall according to the mean branch length (logscale) for different versions of plmDCA 
depending on the corrections used. The green curve shows the plmDCA scores with no reweighting and no APC correction. 
Orange is when sequences are weighted according to their Hamming distances. Purple is when the APC correction is applied. 
Finally pink curve shows the plmDCA scores with both weighting and APC correction. a) LG model; b) CAT model. 
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evolutionary constraints and we show that plmDCA is able to infer with good accuracy, overall, 

all the pairs of sites under coevolution as reported in Marmier et al., 2019.  
Amino acids in contact need to keep this interaction to maintain the protein 3D 

structure, which induce correlations in amino acids between homologous sequences. Methods 

like DCA are able to infer these correlations, thus, they are highly used to predict the structure 

of proteins (Muscat et al., 2020). Moreover, these methods remove correlated sites not in 

contact, while the results showed in this study suggest that these pairs are not only associated 

with structural constraints, but they could also still be the signature of genuine coevolving sites 

and should be considered for other studies not structure related.  

Even though we simulate data under the CAT model assuming it would generate a false 

coevolving pattern (due to the pair-site variation equilibrium state frequencies utilized by the 

model) plmDCA is able to still infer the coevolving pairs of sites. Given that we were using a 

high number of site categories, in the future it would be interesting to reduce it and see how 

plmDCA behaves.  

Interestingly, it seems that there is a threshold score based on the divergence level, 

allowing a clear differentiation between pairs with and without coevolution. For low 

divergence (average branch length of 0.005 and 0.01) we show that the threshold score should 

be bigger than 0.5 while for high divergence (average branch length of 0.16, 0.08 and 0.04) the 

threshold score should be above 0.2. For average divergence the threshold score is above 0.4.  

However, even if we can define a threshold at different divergence levels, at low scales 

there is an unavoidable overlap between pairs of sites of different classes. These findings 

support the notion that divergence should be considered to better understand the plmDCA 

predictions. Notwithstanding, given that plmDCA is only given a score to classify the sites, it 

is harder to understand what is happening in these sites. 

When using larger alignments, plmDCA performance slightly decreases, in case of low 

mean branch length. However, the number of samples used and the changes are not significant 

to draw any conclusion. 

We observe that increasing the phylogenetic dependence between sequences (i.e., 

increasing 𝜆) decreased the performance of plmDCA even when the scores were corrected for 

the phylogeny. When there is no dependence between sequences, plmDCA is really accurate 

for all mean branch lengths. This suggests that the low performance of plmDCA on small 

branch length trees is due to the shared history of the sequences that is not well taken into 

account by the corrections. 
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When looking into the effects of the corrections, we realized that the APC has a positive 

effect but that the reweighting gives worst results. More surprisingly, the performance of 

plmDCA with and without phylogenetic corrections is lower than the simplest Mutual 

Information in almost every case (see Supp.Fig-1.11 and Supp.Fig-1.12). The APC correction 

used in plmDCA helps increasing the performance but is not enough to reach MI's good 

performance on our datasets that contain only pairs of coevolving sites. On the contrary, the 

reweighting decreases or does not improve the predictions as already mentioned in 

Hockenberry & Wilke, 2019. Because it downweights similar sequences, it also drastically 

reduces the amount of information of the MSA. This seems to affect the performance, 

especially when similar sequences are not due to an over-representation of one organism but 

are due to the evolutionary process itself.  

We also show that increasing the number of sequences does not help with dealing with 

a reduced amount of information in the MSA, for low divergence cases. 

In all experiments, the results between CAT and LG models are very similar. The type 

of evolutionary model used seems not to matter for creating randomly correlated pairs. 

Contrary to the single output provided by plmDCA, CoMap provides wide information 

about the predicted pairs. Nevertheless, CoMap’s performance is not as good as expected, 

given that it is taking evolutionary constraints into account with the phylogenetic tree as an 

input. 

In line with the results given by plmDCA, we show that divergence has an impact on 

the way CoMap infers coevolution. We find that at low divergence levels, where there are more 

conserved sites, the Pearson correlation score, given by CoMap, is biased by nearly constant 

sites. Whereas past studies have shown that it should not be the case (Dutheil, 2012), we see 

that in pairs of sites where there is one substitution on one branch, CoMap gives a significant 

(𝑝-value < 0.05) and high correlation (correlation ~ 1). We found that it occurred in datasets 

with long basal branches, at low scales, where a single change can happen across several 

independent sites, near the root of the tree, and lead to a false prediction by CoMap (see 

Supp.Fig-1.2 and Dutheil, 2012). 

It is important to note that because CoMap provides the Nmin statistic, it is possible to 

detect these types of substitutions, at long basal branches. With the Nmin statistic, we 

understand better the process behind the prediction and if the number of expected substitutions 

on these sites are small (i.e., one or less) then we can remove the pair of sites, and reduce the 

number of false positives cases. 
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Nevertheless, when the divergence is too high, in case of high mean branch length 

(0.16), the tree branches are long and it is not possible to correct with the Nmin statistic. The 

minimum number of changes is increasing at the same time as the length of the branches 

increase. CoMap get lost with so many possible changes and there is not a clear threshold to 

differentiate between pairs of sites with or without coevolution. 

One approach to avoid falsely interpreting nearly constant sites as coevolving would be 

the use of the Jaccard distance instead of the Pearson correlation. The advantage of the Jaccard 

distance (defined as  

𝐽(𝐴, 𝐵) =
𝑠! ∩ 𝑠"
𝑠! ∪ 𝑠"

 

 

) is that it does not count common patterns due to no change. 

Last but not least, analogous to the results that we see from CoMap and plmDCA, we 

find that divergence has also an impact on Coev's performance.  

Similar to CoMap, Coev also utilize the phylogenetic tree to infer coevolving pairs of 

sites and thus, it provides more statistics to better understand the predicted pairs such as the s/d 

ratio. Therefore, we evaluated Coev taking into account two of its main statistics: the DAIC 

value and the s/d ratio. At low scales (mean branch length of 0.005 and 0.01), Coev cannot 

infer most of the positions under coevolution correctly when considering the DAIC value. 

However, when increasing the average branch length, Coev has as good performance as 

plmDCA. Contrary to the results considering the DAIC value, when evaluating the behavior of 

Coev with the s/d ratio, we appreciate that it has a good performance in most of the mean 

branch length scenarios, except when the mean branch length is high (0.16). We also saw a 

similar behavior with CoMap, where the accuracy of the model starts to drop when the mean 

branch length is too high (0.16). 

However, if we look a bit deeper in the top pairs of sites predicted by Coev (see 

Supp.Table-1.2), when the mean branch length is 0.005 or 0.16, we see that the top 13 pairs of 

sites, with the lowest s/d ratio, have the same s/d ratio, meaning that it is not possible to 

distinguish correctly which are the true coevolving pairs of sites. Therefore, this may be one of 

the reasons why the AUC values are lower (Table-1.3). One approach to avoid this kind of 

situation and being able to correctly select the true coevolving pairs of sites, is to order the top 

values based first on the s/d ratio and secondly on the DAIC highest values. Like this (see 

Supp.Table-1.2), the top values are the true coevolving sites. This new measure, combining the 



  
 

42 

s/d ratio and the DAIC, would avoid the impact of the divergence when predicting coevolving 

pairs of sites as suggested by Dib et al., 2014,. 

In conclusions, Coev and CoMap are methods which provide more information about 

the predicted coevolving pairs of sites. This would improve our knowledge about the 

evolutionary pressures pushing for this process to occur and, moreover, these methods provide 

more measurement to control that the predictions are reliable. Nevertheless, Coev and CoMap 

took longer to run and compare each pair of sites of the full alignment in comparison with 

plmDCA. 

Last but not less, the simulations used in this work create only coevolving pairs, 

omitting triplets or bigger chains of coevolution. Work needs to be done to compare both type 

of coevolution inference with more complex chains of correlations between sites. In particular 

simulating more complex chain is still a research topic. 

 

6. SUPPLEMENTARY DATA 
 

6.1. Calculating average branch length 
We calculated the average tree branch length from a dataset containing more than 15k 

samples. We used the “bony vertebrates” dataset Euteleostomi, from the positive selection 

database Selectome (Proux et al., 2009; Moretti et al., 2014) as it has been used for coevolution 

study in other studies (Meyer, Dib, & Salamin, 2019; Meyer, Dib, Silvestro, et al., 2019). This 

dataset was used under studies to infer coevolution in nucleotides. To calculate the average 

branch length for amino acids, we had to translate the codon-based alignment to amino acid 

base. The tree branch length corresponding to the alignment was re-estimated, using PhyML 

(Guindon et al., 2010), based on the new amino acid alignment. Finally, we selected only the 

samples containing between 50 and 150 species. In Supp.Fig-1.1 we show the average branch 

length distribution for the amino acids, where the percentiles of 0.25 and 0.75 are, respectively: 

0.006 and 0.15. 
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Supp.Fig-1.1 Histogram showing the mean branch length distribution for amino acids in the Euteleostomi dataset 

Supp.Fig-1.2 Changes happening for site 35 and 62 at meanBL scale of 0.005 
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Supp.Fig-1.3 PR Curve from CoMap with the LG model is shown here: taking into account only the correlation coefficient 
and the significant pairs of sites. The green, orange, purple, pink, dark blue and yellow colors represent each level of divergence 
(mean branch length). The y-axis represents the precision and the x-axis represents the recall.  

Supp.Fig-1.4 Relationship between correlation coefficient value (Stat) and PValue when Stat = 1. 

6.2. CoMap LG results 
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Supp.Fig-1.5 Boxplots of the scores obtained by plmDCA for the true coevolving (in blue) and true non-coevolving (in red) 
pairs of sites at different levels of divergence with the simulations done with the CAT model. 

Supp.Fig-1.6 The results from the CAT model are shown here. The green, orange, purple, pink, dark blue and yellow colors 
represent each level of divergence (mean branch length). a) PR curve for plmDCA scores. The y-axis represents the 
precision and the x-axis represents the recall. b) F1 score plot for plmDCA. The y-axis represents the F1 score and x-axis 
represents the plmDCA scores. Each vertical line shows the plmDCA score threshold to achieve the best balance between 
precision and recall. 

 6.2. plmDCA CAT results 
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Supp.Fig-1.7 Boxplots of the correlation scores obtained by CoMap for the true coevolving (in blue) and true non-
coevolving (in red) pairs of sites at different levels of divergence with the simulations done with the CAT model. 

6.3. CoMap CAT results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supp.Fig-1.8 Results from CAT model and CoMap are shown here: taking into account only the correlation coefficient and 
the significant pairs of sites. The green, orange, purple, pink, dark blue and yellow colors represent each level of divergence 
(mean branch length). a) PR curve for CoMap correlation coefficient. The y-axis represents the precision and the x-axis 
represents the recall. b) F1 score plot for CoMap correlation coefficients. The y-axis represents the F1 score and x-axis 
represents the CoMap correlation coefficient. Each vertical line shows the CoMap correlation coefficient threshold to achieve 
the best balance between precision and recall. 

a) b) 
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Supp.Fig-1.10 Boxplots of the s/d scores obtained by Coev for the true coevolving (in blue) and true non-coevolving (in red) 
pairs of sites at different levels of divergence with the simulations done with the LG model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 
 

 
Supp.Table-1.1 Area Under the Curve for the CoMap analyses across the 6 levels of  
divergence for the simulations done with the CAT model. 

 
6.4. Coev LG results  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean branch length 

 0.005 0.01 0.02 0.04 0.08 0.16 

Correlation coefficient 0.758 0.783 0.87 0.93 0.97 0.9 
Correlation coefficient  

and 𝒑-value 0.758 0.783 0.87 0.93 0.97 0.9 

Correlation coefficient 
and Nmin value 0.923 0.982 0.986 0.967 0.974 0.906 

Correlation coefficient, Nmin 
and 𝒑-value 0.923 0.982 0.986 0.967 0.974 0.906 

Supp.Fig-1.9 Results from CAT model and CoMap are shown here: taking into account only the correlation coefficient and 
the significant pairs of sites with a Nmin  >  1.5. The green, orange, purple, pink, dark blue and yellow colors represent each 
level of divergence (mean branch length). a) PR curve for CoMap correlation coefficient. The y-axis represents the precision 
and the x-axis represents the recall. b) F1 score plot for CoMap correlation coefficients. The y-axis represents the F1 score 
and x-axis represents the CoMap correlation coefficient. Each vertical line shows the CoMap correlation coefficient threshold 
to achieve the best balance between precision and recall. 

a) b) 
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Site 1 Site 2 Delta AIC s/d ratio Coev 

15 16 460.79 0.01176 1 

5 6 446.08 0.01176 1 

7 8 440.40 0.01176 1 

17 18 438.66 0.01176 1 

11 12 419.10 0.01176 1 

1 2 418.35 0.01176 1 

3 4 395.47 0.01176 1 

9 10 387.85 0.01176 1 

13 14 253.93 0.01176 1 

19 20 223.35 0.01176 1 

16 17 145.11 0.011765 0 

6 7 113.63 0.011765 0 

2 3 70.34 0.011765 0 

Supp.Table-1.2 Coev results: top 15 values one 
simulation and mean branch length 0.16 

Site 1 Site 2 Delta AIC s/d ratio Coev 

9 10 223.30 0.01176 1 

3 4 207.12 0.01176 1 

7 8 192.17 0.01176 1 

5 6 92.92 0.01176 1 

10 11 82.96 0.01176 0 

15 16 50.65 0.01176 1 

13 14 50.65 0.01176 1 

19 20 34.39 0.01176 1 

1 2 33.53 0.01176 1 

11 12 33.53 0.01176 1 

17 18 11.01 0.011765 1 

34 35 3.83 0.011765 0 

43 44 3.29 0.011765 0 

Supp.Table-1.3 Coev results: top 15 values one 
simulation and mean branch length 0.005 
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Supp.Fig-1.12 AUROC precision recall for different 𝜆 and mean branch length with Coev and CAT. Colors show different 
methods used. MI is the Mutual Information without the APC correction but normalized with the pair entropy. 
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6.5. plmDCA results with 500 species 
 

 

 

 

 

 

 

 

 

 

 

 
Supp.Fig-1.11 AUROC precision recall for different 𝜆 and mean branch length with Coev and LG. Colors show different 
methods used. MI is the Mutual Information without the APC correction but normalized with the pair entropy. 
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Chapter 2 

 

 

 

Supervised Deep Learning to infer coevolution 

under the light of evolution 

 

“Your brain does not manufacture thoughts.  
Your thoughts shape neural networks.”  

 
Deepak Chopra  
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Supervised Deep Learning to infer coevolution under the 

light of evolution 

 

 
ABSTRACT 

 

 

Coevolution can be seen as a molecular evolutionary process where reciprocal 

evolutionary changes occur between molecules (amino acids or nucleotides) as they depend on 

each other. We transform each site of a given MSA into a vector representing the substitutions 

occurring along each branch of their phylogenetic tree, obtaining a matrix similar to an image 

with its pixels where we can visualize the changes co-occurring between two sites of the MSA 

and detect if sites are coevolving. Due to the advances in machine learning and that 

Convolutional Neural Networks (CNNs) are a popular model used to detect patterns in 

bidimensional matrices (usually for image classification), in this study we introduce a model 

with an architecture based on two 1D-asymmetrical separable convolutions to detect the 

signature of coevolution. The model is trained and tested under different simulated genomic 

datasets varying the levels of divergence and the number of sequences (in total 18000 MSAs 

with their phylogenetic trees), containing 2 distinct labeled classes: is there any signature of 

coevolution or not.  
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1. INTRODUCTION 

 
The use of machine learning techniques is nowadays becoming ubiquitous in many 

areas of science, providing effective solutions to problems that were difficult to tackle in very 

different fields of research. In biology, these techniques have been used for decades to classify, 

predict, or do regression with high dimensional data (e.g., Decision Tree, Random Forest, 

Support Vector Machine). Nevertheless, new approaches like Deep Learning, which have seen 

a surge in their applications in scientific areas such as in physics (Z.-K. Liu et al., 2022), 

language recognition (Wen et al., 2021) or medicine (Heo et al., 2022), have only recently been 

applied to biological problems. The developments have, however, a wide range of applications 

in biology, from estimating species extinction risk (Zizka et al., 2022), identifying diseases (J. 

Liu et al., 2021), classifying metagenomes (Manning et al., 2019), inferring hybridization 

between organisms (Blischak et al., 2021), or predicting the structure of proteins (Jumper et 

al., 2021).  

Deep Learning is a subset of machine learning based on multiple layers of Artificial 

Neural Networks. One of its popular algorithms is Recurrent Neural Networks (RNNs), a type 

of Artificial Neural Network that contains feedback loops allowing to store information within 

the network (Goodfellow et al., 2016). RNNs are trained to recognize the sequential 

characteristics of data and they are very effective for text classification. Its architecture can be 

seen as a graph with directed cycles in memory, allowing to learn information related to the 

past. RNN have been used to predict the mutations of influenza A viruses (Yin et al., 2020) or 

to infer the genome-wide map of per-base recombination rates from polymorphism data 

(Adrion et al., 2019). However, one of the most popular Deep Learning methods is 

Convolutional Neural Networks (CNNs), which are also a type of Artificial Neural Networks. 

They typically have three main layers: a convolutional layer in which features/patterns are 

extracted from input data, a pooling layer to reduce the size of the data while preserving the 

critical features, and a fully connected layer where all the outputs from the previous layer are 

connected, and an output/prediction is provided (Goodfellow et al., 2016). CNNs are trained 

with bidimensional matrices (usually an image), and they are very effective in artificial vision 

problems. They have proved to be a powerful methodology for detecting patterns and 

classifying according to them. Even though it started as a method to classify images ( Lecun et 

al., 1998; Krizhevsky et al., 2012), it has been expanding its applications to other non-image 

problems (Abdel-Hamid et al., 2014; Zhang & LeCun, 2015). CNNs are however always used 
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in situations where the problem is translation invariant, the data has spatial features and its 

detection is key for the prediction/classification of the data (Goodfellow et al., 2016). 

Moreover, it is possible to visualize the feature layers to better understand the data and the 

classification decision (Zeiler & Fergus, 2014). CNNs have been used to predict host phenotype 

from metagenomic data (Reiman et al., 2020) or to calculate the evolutionary distances (Z. Liu 

et al., 2020), outperforming traditional methods. 

The application of deep learning in molecular evolution have so far been limited. CNN 

have been used to build phylogenetic trees by inferring quartets from sequence data (Zou et al., 

2020), but there has been no attempt to use the pattern recognition of CNN to learn about the 

processes driving molecular evolution. In this context, an essential mechanism in molecular 

evolution are the joint substitutions occurring dependently at two amino-acid sites of a protein. 

The detection of such coevolution between sites within molecular sequences can help predict 

amino acids that are in contact in the protein 3D structure (Morcos et al., 2011; Ekeberg et al., 

2012; De Juan et al., 2013), better define the structure of proteins (Kamisetty et al., 2013; Hopf 

et al., 2015; Mehari Bayou Zerihun & Schug, 2018; Senior et al., 2019), identify interfaces 

between proteins (Ackerman et al., 2012; Uguzzoni et al., 2017), or detect interactions with 

other proteins (Malinverni et al., 2017).  

Several methods have been developed to predict sites under coevolution (Dunn et al., 

2008; Ekeberg et al., 2012; Jones et al., 2012; Kamisetty et al., 2013). These methods take a 

multiple sequence alignment (MSA) as an input and predict pairs of sites in contact using a 

statistical model that looks at the covariation of the frequency pattern of amino acids between 

sites. The assumption is that the covariation between sites is due to structural constraints 

maintaining the interactions between sites that are in close proximity in the 3D structure of the 

protein (Qin & Colwell, 2018).  

Recently, there has been an increase in the use of Machine Learning techniques to infer 

pairs of amino-acid sites in contact, but all of them took as input-features some measures of 

coevolution between sites. Restricted Boltzmann machine (Adhikari et al., 2018) or the popular 

CNN (RaptorX, DeepMetaPSICOV, Filter-DCA; Källberg et al., 2012; Kandathil et al., 2019; 

Muscat et al., 2020) are some of these techniques. In the case of Filter-DCA, it uses the 

predicted standard DCA scores as an input for a CNN which utilizes “structural filters”, created 

from the average contact patterns, to predict sites in contact. Even though these methods have 

proven their success, the coevolving sites that they use as an input may not be only close in the 

3D structure and it can bias their 3D structure prediction (Mehari B. Zerihun & Schug, 2017) 

due to all the top pair of sites inferred are not necessary in contact in the 3D structure. Further, 



  
 

59 

the covariance structure used to detect coevolution between sites can also arise from 

evolutionary processes and it is important to account for the underlying phylogenetic tree that 

represents the evolutionary history of the sequence at hand  (Dutheil, 2012; Chapter 1). 

Accounting for phylogenetic relationships to predict coevolution between sites in a 

MSA requires modeling the joint substitution process of two sites along the branches of the 

tree. This is important because the same pattern of amino-acid frequencies in an MSA can be 

explained differently depending on the underlying evolutionary history of the sequences. This 

is shown, for instance, in Fig-2.1. It illustrates that coevolution between a pair of sites predicted 

from a MSA could be due to be a simple random change in the protein sequence when including 

phylogenetic information (Fig-2.1 C left tree) which reduces the validity of interpreting this as 

coevolution (Dutheil, 2012); or if the changes have co-occurred multiple times (Fig-2.1 C right 

tree) through the phylogeny, which increases the validity of interpreting this as coevolution, 

having a stronger signal. One approach to account for the effect of the evolutionary 

relationships, taken by the method implemented in CoMap (Dutheil et al., 2005), is to infer the 

pattern of evolution through the stochastic mapping of the substitution events occurring for 

each site along each branch of the phylogenetic tree. It then uses the correlation between the 

vectors of site changes per branch to estimate coevolution between pairs of sites. Other 

approaches, like Coev (Dib et al., 2014), use Maximum Likelihood estimation of a Markov 

model to study the process of evolution along a phylogenetic tree for any pairs of sites based 

on a substitution matrix that describes the transitions between positions, along the branches, 

that change in a coordinated way during sequence evolution.  

The latter approaches are computationally expensive and can only with difficulty be 

applied to large scale genomic data (Meyer et al. 2019). In contrast, CNN have been applied to 

large scale data and based on the demonstrated advantages of using CNN, in combination with 

the fact that the pattern of coevolution present in our data is translation invariant, we propose 

a novel model, Coev-Asymmetric-CNN, based on a CNN to detect the signal of coevolution in 

an MSA while incorporating the phylogenetic tree associated with the sequences. Our model 

detects a coevolution signal when co-substitutions are happening between at least two different 

sites and does not detect a coevolution signal when there are no co-substitutions patterns. 

Another aspect of Coev-Asymmetric-CNN is that it can highlight the branches where the co-

substitutions are happening, profiting from the activation maps derived from the trained CNN. 

We first describe the model that we developed before using simulated datasets to assess the 

properties of our approach and test its performance. Moreover, we explore which sites are 

under coevolution thanks to the activation maps of the CNN.  
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2. MATERIALS AND METHODS 

 
We first describe the different steps to transform the data, composed of an MSA and a 

phylogenetic tree, into a 2D matrix representing the number of substitutions occurring at each 

site along each branch of the tree. The 2D matrix is then used as an input to the CNN 

architecture. Afterward, we describe the CNN model and the procedure to train our model. 

 

2.1. Representing substitutions in a 2D matrix 
We transform each column of the MSA into a vector representing the substitutions 

occurring along each branch of the phylogenetic tree. This is done by estimating the likelihood 

of the ancestral states at each node of the phylogenetic tree using the R library phangorn 

(Schliep, 2011). We applied a simple substitution model assuming equal probabilities for each 

state and equal substitution rates. The rates were, optimized, but we fixed the length of each 

branch to the value given in input (options bf=NULL, optQ=T, optRate=T, optEdge=F in 

phangorn). This could be modified to fit any type of model of amino-acid evolution. Once the 

ancestral states were estimated, we mapped the changes (or no changes) occurring along each 

branch n (n Î [1, B]) to obtain a vector of length B. This was done for all sites L and the final 

input matrix MLxB (L = sequence length, B = number of branches) had values mi,n that were the 

types of substitutions occurring for site i on branch n (Fig-2.1). For amino acid datasets, which 

contain 20 different states, there are a total of 380 possible substitution types represented by 

the mi,n values and the value 0, which indicates no change (Fig-2.1 A, with the left phylogeny 

in Fig-2.1 C, where there is no signal of coevolution; Fig-2.1 D, with the right phylogeny in 

Fig-2.1 C where there is signal of coevolution).  
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In the event of coevolution due to evolutionary processes, we would expect 

substitutions co-occurring across pairs of sites (co-substitutions) repeatedly along multiple 

branches (Dutheil, 2012; Dib et al., 2014), generating a pattern in the matrix MLxB. Such a 

pattern is visible when two specific substitution types at sites i and j (e.g., in Fig-2.1 right tree, 

substitution S -> P at site i=1 and substitution N-> T at site j=3) appear together in multiple 

branches (e.g., b1, b2, b3 and b4) of the phylogenetic tree. The number of occurrences of these 

co-substitutions is important to detect coevolving pairs of sites because the signal of 

coevolution will be stronger if the number of these occurrences is high. We transformed the 

matrix MLxB into a matrix FLxB by counting the number of times each substitution type occurred 

at the same site. The values fi,n of this F matrix are the number of times the type of change 

encoded in mi,n has occurred for site i through the phylogenetic tree (Fig-2.1 B; Fig-2.1 E) For 

instance, since substitution 1 occurred 4 times at site s1, we substituted every m1,j =1 into f1,j=4. 

The transformation has the advantage of increasing the signal of coevolution in the data. It also 

removes the issue that substitution types are encoded with integer values when they represent, 

in fact, categorical variables. This would bias the CNN model if not accounted for.   

 

2.2. Convolutional Neural Network Model 
We proposed a CNN (hereafter referred to as Coev-Asymmetric-CNN) to learn the 

pattern of coevolution present in the FLxB matrix. This pattern can vary between rows and 

columns depending on the MSA and phylogenetic tree, although the coevolution process will 

create a defined structure linking some rows and columns as described above (Fig-2.1). It is 

essential that the filters used in the CNN do not break this data structure. We therefore 

implemented Coev-Asymmetric-CNN using two 1D convolutional layers, based on the idea of 

spatial separable convolutions (Králik & Ladányi, 2021), sometimes also called asymmetric 

convolutions (S. Y. Lo et al., 2018). The data structure is maintained in spatial separable 

convolutions because the kernel is split across its spatial axes, which are, in our case, the sites 

and branches represented in the rows and columns of the F matrix, respectively. A typical 2D 

kernel K, for instance of size LxB, will then be separated into two smaller kernels C (eqn. 1) 

that can be applied sequentially to the input by convolution (eqn. 2), obtaining the same effect 

than the original 2D kernel KLxB (Králik & Ladányi, 2021). The 2D kernel is obtained by matrix 

multiplication of the two 1D vectors (eqn. 1), but the 1D vectors are applied to the FLxB matrix 

using two convolutions (eqn. 2; we use the symbol * for the convolution). 
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The network learns the filters CLx1 and C1xB, such that: 

 

𝐾#$% =	𝐶#$&	 ×	𝐶&$%    (1) 

 

Given an input matrix FLxB and these two filters, the output of the two convolutions will 

be a scalar s: 

𝐹#$% ∗ 𝐾#$% = (𝐹#$% ∗ 	𝐶#$&	) ∗ 	𝐶&$% = s (2) 

 

The final scalar s that is obtained gives the strength of the signal of coevolution present 

in the data F given the two filters C that were defined. The key is then to let the CNN learn the 

patterns in these filters by providing appropriate training datasets (see below for details). 

In summary, our Coev-Asymmetric-CNN model consisted of one input layer of size 

LxB with a single channel, two asymmetric convolutional layers of size Lx1 and 1xB 

containing each 400 filters and a fully connected layer (Fig-2.2) with two outputs values 

corresponding to a final prediction of coevolution or not. It resulted in a network containing 

32,689 parameters to train (weights and biases). After each convolution layer, we used a ReLU 

nonlinearity activation function (Schmidhuber, 2015). The results from the second convolution 

were then flattened and fed into the fully connected network. We further used a dropout 

(Srivastava et al., 2014) to help reduce overfitting of the CNN and a LogSoftMax activation 

function was applied to the output for class prediction. We did not use pooling in our model 

since co-substitutions occurring across sites at several branches have a positional dependency 

in the F matrix representing the process of coevolution. Pooling would have given the same 

prediction score for any shuffled input matrices, although those would no longer have 

represented the coevolution pattern that we were looking for. Finally, we did not normalize the 

input data, because our FLxB matrix is sparse. Most sites do not change over most branches, 

especially for slowly evolving amino-acid sequences. A normalization step would make the 

values associated with the true substitutions very small and similar to each other rendering the 

signal of coevolution fuzzy and impossible to detect.  

The Coev-Asymmetric-CNN was implemented using Pytorch (Paszke et al., 2019). We 

trained it using an Adam optimizer (Kingma & Ba, 2015), a learning rate of 0.008 and a cross-

entropy loss function. We applied mini-batches of size 64 and the convolution was performed 

with a stride equal to 1 and a padding of 0. The dropout in the fully connected layer was set to 

0.25. 
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Fig-2.2 Example network architecture for Coev-Asymmetric-CNN 

Fig-2.3 Pipeline to rank the sites to get the top most probable sites under coevolution. First we have the input matrix of size 
400x100x298, (the 2D F matrix repeated 400 times), then, we applied the 400 learnt filters of size 1x298 to each dimension 
of our input. After that, we get the activation map of size 400x100x1 (each of the 400 dimensions correspond to one specific 
filter from the previous step). Finally, we average over the 400 activation maps to get the average activation map of size 
100x1. This last output is a vector where the 100 values correspond to the activation value of the 100 sites.  

 

 

 

 

 

 

2.3. Activation maps 
After the CNN has been trained, we can input a F matrix to our CNN to obtain a 

prediction score defining if the MSA contained any signal of coevolution or not. If coevolution 

is detected by the CNN, it is important to get further information about which are the sites that 

may be under coevolution. Thus, we proposed a pipeline to identify the most probable sites to 

be under coevolution given a F input matrix, using the activation maps from the second 

convolutional layer (Fig-2.3). 

First, we repeated the input F matrix as many times as the number of filters used in the 

second convolutional layer. In our case, there were 400 filters in the second convolutional layer 

and the input F matrix was repeated 400 times. At the end, the new input matrix had, in our 

case, a dimension of 400 x 100 x 298. We then applied the second convolutional layer to this 

new input matrix (F matrix repeated 400 times) to obtain the activation maps of size 400 x 100 

x 1. Each of the 400 activation maps (also known as feature maps) correspond to the activation 

of the different sites from the input F matrix. We averaged the 400 activation maps to obtain a 

single final averaged activation map of size 100 x 1. Finally, to identify the sites that were 

responsible for the strong activations and thus the signal of coevolution, we ranked the 100 

sites based on the averaged activation value and selected those with higher values to represent 

the sites more likely to be under coevolution.   
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2.4. Datasets and simulations 
We used simulations to assess the performance of our Coev-Asymmetric-CNN and 

tested its performance while varying the number of sequences and the level of sequence 

divergence. All the datasets that we used to train or test the CNN were fully balanced. Half of 

the samples were simulated with a certain number of pairs of sites coevolving and the other 

half with alignments having only independent sites. The total number of datasets used in each 

case is described below.  

We selected different levels of divergence that were realistic for amino acid sequences 

of protein-coding genes by taking alignments from the Selectome database (Proux et al., 2009). 

We used the Euteleostomi data, containing around 10,000 MSAs and their corresponding 

phylogenetic trees as a representative dataset. We estimated the mean branch lengths (i.e., total 

branch lengths of the maximum likelihood tree divided by the number of branches in the tree) 

for each MSA, which showed a median value of 0.04 and a 95% percentile covering the values 

from 0.009 to 0.12. Based on this data, we defined six levels of divergence, expressed as the 

mean branch lengths in number of expected substitutions, in our simulations (0.005, 0.01, 0.02, 

0.04, 0.08 and 0.16), to perform our simulations. We also explored different sizes of datasets 

by including phylogenetic trees with 150, 100 and 50 sequences, which led to a combination 

of 18 sets of simulations (three tree sizes times six levels of divergence). 

Our simulations started by creating random phylogenetic trees for each tree size (i.e., 

150, 100 and 50 sequences). We accounted for topological variation by creating for each size 

1,000 random phylogenetic trees using the R function pbtree from the phytools library (Revell, 

2012). The birth and death parameters were set to 1 and 0, respectively. The trees were all 

binary, rooted and ultrametric. We transformed the branch lengths of each of these trees by 

drawing random values from an exponential distribution with a scale value given by the six 

levels of divergence described above (i.e., a scale 𝛽, which gave the mean of the exponential 

distribution as 1 𝛽⁄ ). We assigned a new branch length to each edge of the simulated trees 

drawn from this distribution, therefore scaling the trees accordingly. 

We simulated an MSA of 100 amino acids in length on each scaled phylogenetic tree, 

which led to 1,000 pairs of simulated MSA and phylogenetic trees. We used a balanced training 

dataset containing half of the datasets created with some sites of the MSA evolving under 

coevolution and the other half with sites evolving fully under an independent model of 

evolution. For the MSA without coevolution signal, we generated a set of 100 independent 

amino acids that evolved under the standard LG model (Le & Gascuel, 2008). We used a 
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homogeneous matrix of rate transition with all substitutions being identical and we assumed 

that each amino acid had the same equilibrium frequency. We included a Gamma distribution 

to represent the variation in the rate of evolution of each site with an alpha parameter set to 4. 

For the MSA with signal of coevolution, we partitioned the MSA into two parts: i) a set of x 

independent sites that evolved under the LG model as above; ii) a set of y pairs of sites, with y 

varying between samples according to a Poisson distribution with a mean of 4, that evolved 

under a model of coevolution (if the value drawn from the distribution was equal 0, we changed 

it to 1, to always have at least one pair of sites under coevolution). We used the Coev model to 

simulate these y pairs of sites (Dib et al., 2014) and each pair was created by drawing at random 

a coevolution profile and setting the d and s parameters that govern the rate of change in the 

coevolution model to 100 and 1, respectively. Therefore, if we have an alignment with a 

sequence length of 100 amino acids and y=5 pairs under coevolution, we will have x = 100 – 

y * 2 = 90 independent sites evolving under the LG model. All simulated datasets were 

transformed into a frequency matrix FLxB as described above. 

2.4.1. Training and testing datasets 

We assessed the performance of our Coev-Asymmetric-CNN by training and testing it 

on different types of datasets based on the simulations that we described above. We describe 

here the three cases that we investigated. 

 

Case A. We studied the performance of our model to predict MSA under coevolution by first 

looking at the effect of sequence divergence while fixing the number of sequences in the data. 

We studied it under two different scenarios. For each scenario, we used 1,000 datasets that 

were randomly split into 70% for training, 10% for validation and 20% for testing. The input 

order of each training dataset was shuffled to ensure that the matrices were processed randomly 

by the CNN. 

In the first scenario, we used the datasets with 100 sequences and we trained the model 

under six levels of sequence divergence separately (Fig-2.4). Each dataset used in the training 

phase contained 400 MSA with coevolution and 400 MSA without coevolution. We thus 

obtained 6 different trained CNNs, one for each level of sequence divergence. We then 

measured the performance of our approach by applying each of the six CNNs to a testing 

dataset containing 100 MSAs with and 100 MSAs without coevolution simulated under each 

level of divergence. We repeated the same procedure to train CNNs for datasets containing 150 

and 50 sequences. 
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Mean branch length: [ 0.005, 0.01, 0.02, 0.04, 0.08, 0.16] 

Fig-2.4 Shows how the training was done in Case A. First training over 100 sequences for a mean branch length of 0.005. A 
second training over 100 sequences for a mean branch length of 0.01 and so on. *The training data set is going through all the 
different levels of divergence. 

 

 

 

 

 

 

 

 

 

 

 

In the second scenario, we used the datasets with 100 sequences and we trained the 

CNN by mixing the six levels of sequence divergence (Fig-2.4). For each level of divergence, 

datasets included in the training phase contained again 400 MSAs with and 400 MSAs without 

coevolution. In total, the training dataset contained 4,800 samples (MSA and phylogenetic 

trees) and we obtained a single trained CNN. We measured the performance by applying the 

network to a testing dataset containing 600 MSAs with and 600 MSAs without coevolution 

(100 MSAs for each level of divergence). We repeated the same procedure for 150 and 50 

sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

Case B. We then looked at the performance of a CNN trained on datasets of a given size, when 

applied to datasets of either smaller or larger sizes (Fig-2.6). We started by training our CNN 

on datasets composed of 100 sequences under each specific divergence level (400 MSAs used 

Mean branch length: [ 0.005, 0.01, 0.02, 0.04, 0.08, 0.16] 

Fig-2.5 Shows how the training was done in sub-case A, for 100 sequences. Training over 100 sequences mixing all divergence 
levels. Testing over the test dataset for 100 sequences 
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Fig-2.6 Shows how the training was done in Case B. First training with a specific divergences level for 100 sequences and 
tested over 100, 50 and 150 sequences for that divergence level. *The training data set is going through all the different 
divergence levels. 

Fig-2.7 Shows how the training was done in Case C. Training dataset containing all levels of divergence (mean branch length 
of 0.005, 0.01, 0.02, 0.04, 0.08, 0.16) and all number of sequences (50, 100, 150). Testing dataset with all data, differentiating 
between the number of sequences: 50, 100 and 150 sequences and all levels of divergence. 

for training each time) and tested its performance over the same level of divergence for datasets 

of 50 and 150 sequences (100 MSAs used for testing each time). We repeated the same 

procedure for 150 and 50 sequences. 

 

 

 

 

 

 

 

 

 

 

Case C. We trained our CNN by equally mixing all datasets of 150, 100 and 50 sequences at 

all divergence levels (Fig-2.7). The total size of the training datasets was 14,400 MSAs (800 

MSAs for each size and level of divergence, half of them with and half of them without 

coevolution). The total size of the testing datasets was 3,600 MSAs (200 MSAs for each size 

and level of divergence, half of them with coevolution and half of them without coevolution). 

 

 

 

 

 

 

 

 

 

 

 

 

  

In both cases B and C, the input data is not necessarily of the same size as the built 

CNN. In such situations, it is common in applications of CNN to use padding (Hashemi, 2019) 
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Fig-2.8 Padding FLxB matrix. In the case where we have 150 sequences, the F matrix has a size of 100x298. In the case where 
we have 0 sequences, the F matrix has a size of 100x198, and because it is smaller than the biggest matrix, we padded it to 
have the same size, 100x298. In the case where we have 50 sequences, the F matrix has a size of 100x98, and we padded it 
too, to have the same size of the biggest matrix, 100x 298 

to ensure a comparable size between each dataset. We used padding for the Coev-Asymmetric-

CNN by adding zeros values after the last column until the input size of the smaller matrices 

corresponded to the largest one used (here 150 sequences, 298 branches/columns; Fig-2.8). 

 

 Matrix 
Number sequences Sequence length L B 

150 100 100 298 

100 100 100 198 

50 100 100 98 

Table-2.1 Matrix dimension from the F matrices. The final matrix’ size to train the CNN is the  
biggest one, with 150 sequences, a sequence length of 100, and a matrix size of 100x298 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS AND DISCUSSION 

 
We developed a novel approach that used a CNN model to predict coevolution given a 

MSA and its associated phylogenetic tree. This model was implemented using asymmetric 

convolutions, without a pooling layer to maintain the strict spatial features of the data. We 

studied the effect of sequence divergence on the accuracy of the CNN to predict coevolution 

and investigated the ability of the CNN to cope with varying number of sequences. We showed 
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that padding influenced the accuracy of the model, but that the direction of the effect depended 

on the size difference between the training and testing datasets. Our results indicated that our 

CNN could reach a high performance and that its accuracy can increase when the training 

dataset included a variable set of sequence divergence in the samples.  

 

3.1. Case A: effect of sequence divergence 
We assessed the performance of our CNN when the level of sequence divergence 

differed between the training and testing datasets. It has been shown (Chapter 1; (Dib et al., 

2018; Dutheil, 2012)) that sequence divergence can have an effect on the accuracy of methods 

to detect coevolution because it affects the pattern of substitution across the sites of a MSA. 

We examined the behavior of our CNN with datasets containing 100 sequences, but the results 

were similar with the two other data sizes tested (see Supp.Fig-2.6; Supp.Fig-2.7). We trained 

six different CNNs, one for each level of divergence, and we applied each of these CNN on 

testing datasets covering all six levels of divergence (Fig-2.4). We showed that the CNN trained 

on the same level of divergence as the testing dataset reached a high accuracy to predict 

coevolution (Fig-2.9).  

 

 

 

 

 

 

 

 

 

 

 

 

The accuracy went from 0.9 for the CNN trained on a divergence of 0.005 expected 

number of substitutions per site to 1.00 for the CNN trained on 0.16 expected number of 

substitutions per site. Moreover, the intermediate levels of divergence showed an almost linear 

increase in accuracy between these two values (Fig-2.9). However, when a specific CNN was 

applied to testing datasets with either larger or smaller levels of divergence than it was trained 

Fig-2.9 For 100 sequences. The y-axis represents the accuracy of the trained CNN on each tested dataset. The x-axis represents 
the different levels of divergence from 0.005 to 0.16. The blue, orange, green, red, purple and brown colors represent the 
trained CNN for the divergence level of 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16 respectively. Each point corresponds to the 
accuracy of each trained CNN tested under the different levels of divergence. 
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Fig-2.10 Distribution maximum number of occurrences for 100 sequences. The y axis represents the maximum number of 
occurrences per F matrix. The x axis represents the different levels of divergence, from 0.005 to 0.16. At each level of 
divergence there is the distribution of the maximum number of occurrences for each site under coevolution in blue and for 
each site under non coevolution inn orange. 

on, the accuracy dropped sharply. The drop was more extreme with CNN trained on low levels 

of divergence, whereas CNN trained on higher levels of divergence showed more capabilities 

to predict coevolution in a wider range of testing datasets (Fig-2.9). Table-2.2 showed the 

distribution of false positive and false negative predictions obtained for all simulations. 

Although the accuracy to predict coevolution dropped when the level of divergence of the 

trained CNN and testing datasets diverged, the reasons for this decrease was different 

depending on the direction of the difference in levels of divergence. When the CNN was trained 

with a specific level of divergence, applying the CNN on a testing data set with higher level of 

divergence gave more false negatives results, whereas testing data set with lower levels of 

divergence gave more false positives results (Table-2.2). We looked in more details into these 

false negatives and positives cases and calculated, for each matrix FLxB, the highest value fi,j 

found in each matrix. Fig-2.10 showed the distribution of these highest fi,j values for the dataset 

with 100 sequences. We observed a clear distinction in the frequency pattern between 

alignments with or without coevolution signal and the difference between the two types of 

datasets increased with higher levels of divergence (Fig-2.10). This pattern was maintained for 

datasets of 50 or 150 sequences (see Supp.Fig-2.3; Supp.Fig-2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We related this pattern with the number of false positive and negative cases (Table-2.2) 

to explain the different scenarios. For instance, when the CNN was trained with low levels of 

divergence, it was able to learn that the number of changes expected were higher for cases 

where there was coevolution because most sites did not change and the F matrix was mostly 
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filled with zeros (see Supp.Fig-2.3). Consequently, when the CNN was tested on higher level 

of divergence, the input F matrices displayed higher numbers of changes than the training 

datasets. Any change was thus detected as coevolution, leading to many false positive cases 

(Fig-2.9; Table-2.2). In contrast, when the CNN was trained with high levels of divergence, it 

learnt that coevolution was associated with high numbers of changes and that the F matrices 

had more changes than at lower divergence levels. Therefore, when the trained CNN was tested 

on lower levels of divergence, it predicted that there was no coevolution only because the 

number of changes in the input F matrices was low, leading to many false negatives (Fig-2.9; 

Table-2.2). 

As a result, we saw that we overfitted the CNN if we trained it at only one specific level 

of divergence. It was already shown in (J. E. Lo et al., 2021) that a homogeneous training 

dataset may have an impact on the generalization of the model. Thus, including in the training 

dataset all the possible training datasets should improve the performance of the CNN (see 

results below), and better generalize to all possible scenarios (variability in the number of 

sequences and divergence). 

 
 

 

 

 

 

 

 

 

 

  

 

 

 

In the second scenario, we modified the training datasets by incorporating all levels of 

divergence at once to produce a single CNN (Fig-2.5). This increased the size of the training 

dataset and, at the same time, introduced more variability by including the full range of 

divergence levels. Fig-2.11 showed that this approach drastically improved the accuracy of the 

 
 

Mean branch length 

Train under 0.005 0.01 0.02 0.04 0.08 0.16 

0.005 
FP 2 100 100 100 100 100 

FN 17 0 0 0 0 0 

0.01 
FP 9 0 88 100 100 100 

FN 71 17 0 0 0 0 

0.02 
FP 97 66 8 0 0 0 

FN 0 0 0 74 100 100 

0.04 
FP 0 0 0 0 1 98 

FN 100 96 53 4 1 0 

0.08 
FP 0 0 0 0 0 0 

FN 100 100 95 37 12 2 

0.16 
FP 0 0 0 0 0 0 

FN 100 100 90 30 11 5 

Table-2.2 Results Case A: Only for 100 sequences. Number of false positive and  
false negative cases based on the level of divergence. 
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predictions when compared to the six CNN shown in Fig-2.9. However, at the lowest level of 

divergence, represented by a mean branch length of 0.005, the CNN was not able to perform 

very well (accuracy of 0.8; Fig-2.11) and its performance was reduced when compared to a 

CNN trained specifically on the data with this level of divergence. This was again due to an 

increase in the number of false negatives cases (Table-2.3) and it is possible that the number 

of false negatives is related to the level of divergence (Fig-2.10). Even though the CNN was 

trained on mixed levels of divergence, the fi,j value for low level of divergence is not big enough 

to be detected by the CNN. Nevertheless, the single CNN trained on mixed levels of divergence 

reached an accuracy close to 1 for any other levels of divergence, with a clear decrease in the 

number of false negative results (Table-2.3). The single CNN further did not return any false 

positive results, independently of the level of divergence used to simulate the testing datasets. 

This suggests that, in terms of performance, it is advantageous to mix datasets of varying levels 

of divergence. This has already been shown in typical used of CNN (Su et al., 2019; Alzubaidi 

et al., 2021) and is evident in our specific application. We have included all the possible 

variations that the pattern of coevolution may have, depending on the level of divergence, and 

we have increased the size of our training dataset. Such technic of data augmentation may also 

increase the accuracy of the CNN, and further work should be performed to better understand 

its effect. However, compared with the results described before (see Fig-2.9 and Fig-2.11) as 

well as other studies (Su et al., 2019), it seems clear that including all the possible variations 

will have the tendency to avoid overfitting and help to generalize the CNN. Moreover, this 

pattern is also found for the cases with 150 and 50 sequences (see Supp.Fig-2.6; Supp.Fig-2.7).  

 

 

 

 

 

 

 

 

 

 

Fig-2.11 For 100 sequences. The y-axis represents the accuracy of the CNN for case A in the second scenario. The x-axis 
represents the different levels of divergence from 0.005 to 0.16. The blue color represents the trained CNN. Each point 
corresponds to the accuracy of trained CNN tested under the different levels of divergence. 
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3.2. Case B: effect of number of sequences 
We assessed the performance of our CNN when the number of sequences differed 

between the training and testing datasets. This is important as the genomic data that the CNN 

is aimed for will vary regarding the number of sequences in each MSA and the number of sites. 

We examined the behavior of our CNN under 3 different scenarios by simulating datasets with 

either 50, 100 or 150 sequences (Fig-2.12). We trained all six levels of divergence separately 

for each of these number of sequences and we applied each CNN on testing datasets with the 

same level of divergence than the training datasets while varying the number of sequences (Fig-

2.6). We showed that the CNN trained on the same level of divergence for the same number of 

sequences as the testing dataset has a high accuracy to predict coevolution (Fig-2.12). 

However, when a specifically trained CNN was applied to testing datasets under the same level 

of divergence with either larger or smaller number of sequences than it was trained on, the 

accuracy dropped (Fig-2.12). If we looked at the 6 different CNNs trained with 50 sequences, 

the drop in accuracy was more extreme at larger levels of divergence than at low levels of 

divergence where it only slightly decreased. An unexpected pattern was the accuracy found for 

the trained CNN with 50 sequences and a level of sequence divergence of 0.04, which had a 

reduced accuracy for 100 and 150 sequences compared to the other CNN (Fig-2.12 A). We 

trained this CNN a second time and tested it under different datasets randomly selected, but the 

results were similar. The issue could be the size of the training dataset, which was not very 

large (400 samples included), but this would need to be analyzed in more details to fully 

understand this pattern. For the six CNN trained on datasets containing 100 sequences (Fig-

2.12 B), we observed a similar pattern as described above when the testing datasets were 

increased to contain 150 sequences. However, if the number of sequences is smaller in the 

testing than in the training datasets, the accuracy dropped independently of the level of 

divergence. In accordance with these results, we observed that for the 6 CNNs trained with 150 

sequences, the accuracy gradually dropped when decreasing the number of sequences 

irrespective of the level of sequence divergence (Fig-2.12 C). 

 Mean Branch Length 

 0.005 0.01 0.02 0.04 0.08 0.16 

FP 0 0 0 0 0 0 

FN 37 13 5 1 2 2 

Table-2.3 Case A-b Only for 100 sequences. Number of false positive and  
false negative cases based on the level of divergence. 
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These results suggest that the number of sequences used to train the CNN had an impact 

on its performance, although this performance varied depending on the difference in number 

of sequences between the training and testing datasets and the level of divergence. For instance, 

when the CNN was trained with a smaller number of sequences (here 50) and was tested on a 

dataset with larger number of sequences, the accuracy obtained was good (between 0.8 and 

0.9) at low levels of divergence. This can be explained by the fact that, at low levels of 

divergence (in our simulations, a mean branch length lower than 0.02), there are few changes 

occurring through the sites and branches. The F matrices contained therefore mostly zeros 

(Supp.Fig-2.5) and the consequence of padding these matrices to reach the desired larger size 

did not drastically alter the information. The CNN was therefore still able to detect the pattern 

of coevolution. However, at higher levels of divergence, padding introduced areas in the F 

matrices that were very dissimilar to the real part derived from the MSA and phylogenetic trees. 

This mismatch lead to a poor accuracy because it is highly unlikely that many zeros could occur 

at higher levels of divergence. In contrast, when the CNN was trained with datasets containing 

150 sequences, padding the smaller testing datasets completely altered the expected data 

structure even at low divergence levels. The effect was stronger for the smaller datasets with 

50 sequences than for the intermediate one with 100 sequences (Fig-2.11). This is probably 

due to the fact, that even if there were almost no changes at low levels of divergence, there 

were still some changes that may happen throughout the 298 branches. This pattern was not 

available with testing dataset with lower number of sequences because they were padded (Fig-

2.7) leading to an inability of the CNN to recognize the coevolution pattern. Even though 

padding the smaller matrices with zeros should not be an issue for the CNN (Hashemi, 2019), 

we see that because the CNN was not trained including all possible scenarios (50, 100 and 150 

sequences), the CNN is not able to classify correctly the samples with lower number of 

sequences that have been padded. 

 

 

 

 

 

 

 

 

 

Trained with 50 sequences Trained with 100 sequences Trained with 150 sequences 

Fig-2.12 The y-axis represents the accuracy of the trained CNN on each tested dataset. The x-axis represents the different 
number of sequences which it was tested the CNN. The blue, orange, green, red, purple and brown colors represent the testing 
dataset for the mean branch length of 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16 respectively. 
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3.3. Case C: effect of including all levels of divergence and number of 

sequences 
In the last case, we modified the training datasets by incorporating all levels of 

divergence and all number of sequences at once to produce a single CNN (Fig-2.6). This model 

combined the two other cases previously described. The size of the training dataset was also 

increased and it included all the diversity of dataset sizes and levels of divergence. Fig-2.12 

showed the accuracy of this single CNN when testing on datasets with different levels of 

divergence and for each number of sequences. We obtained a similar trend in accuracy 

irrespective of the number of sequences included in the testing datasets. Concerning the level 

of divergence, we again saw a lower accuracy at the lowest level of divergence compared to 

higher levels (Fig-2.12). For instance, the CNN was only able to reach an accuracy of 0.8 for 

the testing dataset that included 100 sequences and a mean branch length of 0.005, although 

this value slightly decreased for 150 and 50 sequences. The accuracy went up to 0.95 when 

increasing the mean branch length to 0.01 before reaching a value of almost 1.0 with increasing 

levels of divergence. When the level of divergence is large enough (0.02 and above), the 

number of sequences in the datasets did not alter the accuracy obtained (Fig-2.13). When we 

looked in more details at what affected the accuracy (Table-2.4), we observed that there was a 

high number of false negatives at low divergences, while, at high divergence, the trained model 

was able to correctly discriminate almost all datasets leading to very few false positives or 

negatives. 

 

 

 

 

 

 

 

 

 
Fig-2.13 Accuracy across the levels of divergence for the testing datasets of 50, 100 and 150 sequences. The y-axis represents 
the accuracy of the trained CNN on each tested dataset. The x-axis represents the different levels of divergence expressed as 
mean branch length. The blue, orange and green colors represent the testing dataset for 50, 100 and 150 sequences respectively. 
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We wanted to better understand the false cases that we have, hence the reasons of these 

results. The pattern of coevolution in our data is accounting for multiple co-changes between 

pair of sites, the more co-changes they are between a pair of sites, stronger the signal of 

coevolution is. Given that we don’t know which pairs of sites are under coevolution from the 

predictions of our Coev-Asymmetric-CNN output, we looked at each site and counted how 

many times a type of change has occurred (fi,j) and per F matrix we take its maximum fi,j. Then, 

we looked at the distribution of the maximum number of changes for the F matrices where 

there is coevolution, and we highlighted where the false negatives cases are (Fig-2.14 left for 

100 sequences). We saw that at levels with medium to high divergence the false negative cases 

tend to be the one where the F matrices have a lower maximum number of occurrences than 

expected at its divergence level. However, at very low levels, there was one false positive case 

for level of divergence of 0.01 and there are 6 cases for level of divergence of 0.005 where the 

maximum number of occurrences are above the average expected at that level of divergence, 

and a deeper study needs to be done. Nevertheless, this pattern is also similar for 150 and 50 

sequences (Supp.Fig-2.10; Supp.Fig-2.11).  

Moreover, we also looked at the distribution of the maximum number of occurrences 

for the F matrices where there is no coevolution, and we highlighted where the false positive 

cases are (Fig-2.14 right for 100 sequences). We see that at level of divergence 0.04, the only 

false positive case is where its F matrix has a higher maximum number of occurrences than 

expected at its divergence level. For level of divergence 0.02, a deeper study needs to be done 

to better understand why the CNN is doing that prediction. Nevertheless, we can see a tendency 

for the false positive cases, including 150 and 50 sequences (Supp.Fig-2.10; Supp.Fig-2.11) 

Number of 
sequences 

 
Mean branch length 

0.005 0.01 0.02 0.04 0.08 0.16 

50 
FP 0 0 0 1 1 0 

FN 41 17 4 1 2 4 

100 
FP 0 0 1 1 0 0 

FN 25 11 4 0 2 1 

150 
FP 0 0 1 0 0 0 

FN 35 6 1 0 0 0 

 

Total 
FP 0 0 1 2 1 0 

FN 101 34 9 1 4 5 

Table-2.4 Results from Case C. Number of false positive and false negative cases based on the level of divergence and in the 
number of sequences. 
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Fig-2.14 For 100 sequences and for case C. The y axis represents the maximum number of occurrences per F matrix. The x 
axis represents the different levels of average branch length from 0.005 to 0.16. a) shows the distribution of the F matrices 
predicted as True Positive at each level of divergence. Each point in blue represents one F matrix predicted as False Negative. 
b) shows the distribution of the F matrices predicted as True Negative at each level of divergence. Each point in blue represents 
one F matrix predicted as False Positive. There are only shown the levels of divergence where there is a False Negative or a 
False Positive.   

Fig-2.15 For 100 sequences and for case C. The y axis represents the percentage of top X sites being under true coevolution. 
The x axis represents the different levels of mean branch length from 0.005 to 0.16. The plot shows the distribution of the 
percentage of true coevolving sites being in the top X of sites for each F matrix. 

where its F matrices have a maximum number of occurrences above the mean maximum 

number of occurrences expected at its level of divergence. 

These results suggests that the number of occurrences may have an impact on the 

performance of the CNN, where a low number of occurrences may contribute to be a false 

negative case, and a high number of occurrences may contribute to be a false positive case.  

 

 

 

 

 

 

 

 

 

 

 

  

As a final step, we looked at the activation maps of our trained CNN when classifying 

F matrices from our testing dataset in Case C. First, for each F matrix predicted as true positive 

(F matrix simulated under coevolution and predicted under coevolution) we followed the 

pipeline described in Fig-2.3 and we selected activation value for the top X sites simulated 

under coevolution (each F matrix was simulated with a different number of coevolving sites, 

following a poison distribution See Simulations in Materials and methods). In Fig-2.15 we see 

that for 100 sequences (similar pattern found for 50 and 150 sequences) the true of coevolving 

sites are on the top X activated sites from the CNN. 

 

 

 

 

 

 

 

 

 

a) b) 
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Fig-2.16 For 100 sequences and for case C. The y axis represents the maximum site’ activation score per F matrix. The x axis 
represents the different levels of mean branch length from 0.005 to 0.16. The colors blue, orange, green and brown represents 
respectively the True Positive, False Negative, True Negative and False Positive predicted F matrix cases. 

Further to this, for each F matrix we followed the pipeline described in Fig-2.3 and we 

selected the highest averaged activation value. In Fig-2.16 we see that for 100 sequences 

(similar pattern found for 50 and 150 sequences) the true of coevolving sites are on the top X 

activated sites from the CNN. In accordance with the results that we also showed in Chapter 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSIONS 

 
In this work, we have presented Coev-Asymmetric-CNN, a machine learning model 

based on convolutional neural networks to predict if there is any signal of coevolution given 

an MSA and its phylogenetic tree. Reconstructing the ancestral state for each site at each branch 

of the tree, to see if there is a co-occurring pattern has been already investigated by (Dutheil, 

2012). Therefore, we went a step further and mapped these types of changes in a matrix and 

counted the occurrences of these changes per site. Taking this information as an input, we 

trained the CNN over a labeled benchmarking dataset to classify the signature of coevolution, 

which have a characteristic pattern manifested in the matrix. 
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Because divergence has an impact on predicting coevolution, see Chapter 1, we 

simulated the benchmarking dataset under the Coev and LG evolutionary models, with 

different divergence scenarios; contrary to other studies where the phylogeny is simulated in 

the absent of evolution (Marmier et al., 2019). 

We verify, as expected (Su et al., 2019; Alzubaidi et al., 2021), that the performance of 

our CNN improves when the training dataset is more diverse, including the different levels of 

divergence simulated and the several number of sequences. The results are very robust at high 

divergence levels, while at low divergence we find difficulties as was already shown by 

methods like plmDCA, Comap and Coev in Chapter 1. It would now be interesting to test on 

a real dataset and see the performance of the CNN mixing more disperse features, varying more 

the level of divergence, the number of sequences, the topology of the trees and the sequence 

length. 

We also showed that padding had an effect in the performance of the CNN. 

Alternatively, we could try to use other type of padding to see how the CNN performances. 

Instead of padding to left or to the bottom of the matrix, it would be interesting to further 

investigate the effect of padding all around the matrix. 

Last but not less, it might be interesting to look into RNNs. While the CNNs are good 

capturing the pattern of coevolution, this problem could be seen as a time series problem. The 

insight gained with our data transformation from the phylogenetic tree with the MSA, might 

help to develop other machine learning models able to detect the signature of coevolution too. 

 

5. SUPPLEMENNTARY DATA 

5.1. Simulated Data 
We simulated a training dataset based on the Selectome Database of bony vertebrates. 

This curated database is codon and in consequence we converted it from nucleotides to amino 

acid base re-estimating also the branches of the phylogenetic trees. Because we missed a 

benchmarking dataset to train our network, we reutilized the phylogenetic trees to simulate 

alignments and have a simulated dataset closer to reality. 

 

5.1.1. Pipeline from nucleotides to amino acid 

First, we took the dataset Euteleostomi (vertebrates) from the positive selection 

Selectome database. Because it is codon-based, we translated the DNA sequence to amino acid 

base. We re-estimated the branch tree length for each tree using phyML (Guindon & Gascuel, 
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2003). The substitution model was set to LG, bootstrap was not computed, the number of 

relative substitution rate categories was set by default to 4. The gamma distribution was set to 

e to get the maximum likelihood estimate, and the branch length and rate parameters were 

optimized. 

Finally, we re-rooted the tree to maintain the tree topology. 

 

 

 

 

 

 

 

 

 

 

5.1.2. Selected training dataset 

We filtered the amino acid dataset to have only samples with a number of sequences 

between 50 and 200 sequencies and a sequence length in the range of 50 and 200 amino acids 

too. In total there are 252 samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Translate from codon base to 
amino acid base 

2. Re-estimate tree branch length 

3. Re-root tree 

a) 
 

b) 
 

c) 
 

Supp.Fig-2.1 Pipeline to convert the alignment from codon base to amino acid 
and to re-estimate the branch length of the tree 

Supp.Fig-2.2 a) number of sequences in the bony vertebrate’s dataset. b) sequence length distribution for samples with a 
number of sequences between 50 and 200. c) the average branch length distribution for the samples with a number of sequences 
between 50 and 200. 
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Supp.Fig-2.3 Distribution maximum number of occurrences for 50 sequences. The y axis represents the maximum number of 
occurrences per F matrix. The x axis represents the different levels of divergence, from 0.005 to 0.16. At each level of 
divergence there is the distribution of the maximum number of occurrences for each site under coevolution in blue and for 
each site under non coevolution inn orange. 

Supp.Fig-2.4 Distribution maximum number of occurrences for 150 sequences. The y axis represents the maximum number 
of occurrences per F matrix. The x axis represents the different levels of divergence, from 0.005 to 0.16. At each level of 
divergence there is the distribution of the maximum number of occurrences for each site under coevolution in blue and for 
each site under non coevolution inn orange.  

5.2. Distribution maximum number of occurrences for 50 and 150 
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Supp.Fig-2.5 Boxplots showing the mean of zeros (y-axis) for each F matrix with 50, 100 and 150 sequences (blue, orange 
and green), at each level of divergence (x-axis). 

Supp.Fig-2.6 Case A. For 150 sequences. The y-axis represents the accuracy of the trained CNN on each tested dataset. The 
x-axis represents the different levels of divergence from 0.005 to 0.16. The blue, orange, green, red, purple and brown colors 
represent the trained CNN for the divergence level of 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16 respectively. Each point 
corresponds to the accuracy of each trained CNN tested under the different levels of divergence.  

5.3. Distribution of zeros  
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

5.4. Case A 

5.4.1. 150 sequences 
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Supp.Fig-2.7 Case A. For 50 sequences. The y-axis represents the accuracy of the trained CNN on each tested dataset. The 
x-axis represents the different levels of divergence from 0.005 to 0.16. The blue, orange, green, red, purple and brown colors 
represent the trained CNN for the divergence level of 0.005, 0.01, 0.02, 0.04, 0.08 and 0.16 respectively. Each point 
corresponds to the accuracy of each trained CNN tested under the different levels of divergence. 

Supp.Fig-2.8 Sub-case a. For 150 sequences. The y-axis represents the accuracy of the CNN for case A in the second 
scenario. The x-axis represents the different levels of divergence from 0.005 to 0.16. The blue color represents the trained 
CNN. Each point corresponds to the accuracy of trained CNN tested under the different levels of divergence. 

Supp.Fig-2.9 Sub-case a. For 50 sequences. The y-axis represents the accuracy of the CNN for case A in the second 
scenario. The x-axis represents the different levels of divergence from 0.005 to 0.16. The blue color represents the trained 
CNN. Each point corresponds to the accuracy of trained CNN tested under the different levels of divergence. 
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Supp.Fig-2.10 For 150 sequences and for case C. The y axis represents the maximum number of occurrences per F matrix. 
The x axis represents the different levels of average branch length from 0.005 to 0.16. a) shows the distribution of the F 
matrices predicted as True Positive at each level of divergence. Each point in blue represents one F matrix predicted as False 
Negative. b) shows the distribution of the F matrices predicted as True Negative at each level of divergence. Each point in 
blue represents one F matrix predicted as False Positive. There are only shown the levels of divergence where there is a False 
Negative or a False Positive.   

Supp.Fig-2.11 For 50 sequences and for case C. The y axis represents the maximum number of occurrences per F matrix. The 
x axis represents the different levels of average branch length from 0.005 to 0.16. a) shows the distribution of the F matrices 
predicted as True Positive at each level of divergence. Each point in blue represents one F matrix predicted as False Negative. 
b) shows the distribution of the F matrices predicted as True Negative at each level of divergence. Each point in blue represents 
one F matrix predicted as False Positive. There are only shown the levels of divergence where there is a False Negative or a 
False Positive.   

5.5. Distribution false positive 
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Chapter 3 
 

 

 

Coev-Asymmetric-CNN: A Convolutional Neural 

Network for predicting coevolution accounting for 

phylogeny 

 

“As one Google Translate engineer put it:  
when you go from 10,000 training examples  

to 10 billion training examples,  
it all starts to work.  

Data trumps everything.”  

Garry Kasparov  
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Coev-Asymmetric-CNN: A Convolutional Neural Network 

for predicting coevolution accounting for phylogeny 

 

 
ABSTRACT 

 

 
Here we present Coev-Asymmetric-CNN, a Convolutional Neural Network (CNN) 

method to infer coevolution with a user-friendly pipeline. We demonstrated the success of the 

CNN after training it under a controlled simulated dataset. We further demonstrated that taking 

into account the phylogenetic tree, of the protein under study, improves the comprehension of 

the pairs identified under coevolution. Using the bony vertebrate Selectome genomic dataset, 

we show that Coev-Asymmetric-CNN is able to detect coevolution in 217 proteins. 

Additionally, we identified the limitations of Coev-Asymmetric-CNN when testing it on a real 

genomic dataset. The Coev-Asymmetric-CNN code is available at 

https://github.com/phylolab/Coev-Asymmetric-CNN. 
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INTRODUCTION 
 

In recent years, machine learning (ML) approaches such as deep learning methods have 

gained popularity due to the huge growth and development in the field of big data (Najafabadi 

et al., 2015; Kremer et al., 2017). Deep learning methods are highly accurate to analyze big 

datasets and find complex patterns in the data (Lecun et al., 2015). They have proved to be 

useful tools for large-scale analysis in many different fields such as physics (Liu et al., 2022), 

language recognition (Wen et al., 2021) or medicine (Heo et al., 2022). The exponential growth 

of sequenced genomes nowadays makes it possible to have databases with thousands of 

proteins (Moretti et al., 2014; Mistry et al., 2021), which we can analyze to better understand 

biological processes. 

One of the important biological processes that we can study with genomic data is 

coevolution, which can provide essential information about the structure of a protein (Sutto et 

al., 2015), its function (Fares & Travers, 2006), and also the interaction between proteins 

(Malinverni et al., 2017). Indeed, there are many available methods to infer coevolution. 

Methods only considering a multiple sequence alignment (MSA) to infer coevolution like: 

DCA, PSICOV, GREMLIN, (Jones et al., 2012; Kamisetty et al., 2013; Ekeberg et al., 2014); 

and methods like CoMap, CAPS or Coev, that study coevolution considering a MSA and its 

associated phylogenetic tree (Dutheil et al., 2005; Fares & Travers, 2006; Dib et al., 2014). 

Nevertheless, these methods are often limited by the number of sequences needed to be 

accurate about their prediction and the large computing time that is needed to run the analysis. 

By taking advantage of ML methods, we could potentially analyze and study coevolution in a 

scalable and efficient way and apply these analyses to genomic scale data. 

In Chapter 2 we developed a scalable and efficient ML method based on Convolutional 

Neural Networks that we called Coev-Asymmetric-CNN. It enabled us to infer the signal of 

coevolution while integrating the evolutionary history of the sequences. With a given labeled 

dataset, it is possible to train the Coev-Asymmetric-CNN to predict if coevolution has left a 

signature in the amino acid patterns or not. Even though, to our knowledge, there is not a 

benchmarking dataset with labeled data to be used to train a ML model, it is possible to simulate 

thousands of datasets with and without coevolution (Baker et al., 2018) given the contribution 

of evolutionary models such as LG (Le & Gascuel, 2008), and coevolutionary models such as 

Coev (Dib et al., 2014). Thus, we can simulate as much labeled data as needed by varying the 

number of sequences, or the level of divergence, for example (like we did in Chapter 1 and 
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Chapter 2), and adapt the training dataset depending on the type of protein family under study. 

After the training process, we can predict coevolution rapidly on databases with thousands of 

proteins.  

Although CNNs are highly successful for image classification/detection, their 

application to detect the signature of coevolution is novel and no tools are readily available to 

apply our new model. We implemented Coev-Asymmetric-CNN using two asymmetrical 1D 

convolutional layers. We have shown in Chapter 2 the characteristic pattern of the signature 

of coevolution, where there are co-occurrent changes happening for different rows at the same 

columns. This type of data structure is possible to detect making use of asymmetric spatial 

separable convolutions (Lo et al., 2018; Králik & Ladányi, 202). The standard 2D kernel used 

for the CNN is split across its two spatial axes, which are, in our case, the rows, representing 

the sites of the MSA, and the columns, representing the branches of the phylogenetic tree. 

Instead of applying a direct convolution of a 2D kernel on the input matrix F, we performed 

two separate convolutions. First, we convolved the matrix F of size L x B with a vector of size 

L x 1, resulting in a vector of size B x 1. This filter allowed the detection of sites that shared a 

similar pattern of substitution. Second, we applied the convolution of a vector 1 x B on the 

result of the previous convolution to detect the branches having a similar pattern of substitution. 

The resulting scalar will give an estimation of the weight of coevolution signal corresponding 

to the two 1D filters in the input matrix F (check Chapter 2: Materials and Methods for more 

details).  

The development of libraries and API (Chollet & others, 2015; Abadi et al., 2016; Team 

et al., 2016; Paszke et al., 2019) dedicated to ML algorithms, make it easier to implement, to 

test and to run CNN algorithms. Moreover, profiting from these tools, we can design and 

implement our own CNN to depart from the standard image classifiers. However, it is still not 

straightforward how to prepare the data, implement the CNN model and output the results with 

visualizations. Here we present a user-friendly pipeline described in a Jupyter notebook to 

predict coevolution on MSAs and their phylogenetic trees. The implementation is available on 

Github2 and the pipeline can also be executed through the command line with a Python module. 

Our implementation contains three main steps: 

1) Data input preparation: 

a. Transformation of the phylogenetic tree and the alignment into a matrix MLxB 

accounting for the changes in the ancestral state reconstruction 

 
2 https://github.com/phylolab/Coev-Asymmetric-CNN 
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b. Conversion of the MLxB matrices to FLxB matrices, considering the number of 

occurrences per each type of change 

2) Training and validation of the CNN-Asymmetric-Coev with a given labeled input 

dataset 

3) Testing the CNN-Asymmetric-Coev on a given labeled input dataset, and output the 

results 

 

Finally, we illustrated the use of the Coev-Asymmetric-CNN on the positive selection 

Selectome Database. The goal is to show the steps to follow to analyze and explore some 

characteristics of the data that can help to predict which protein families have been evolving 

through coevolution. We analyzed a total of 252 protein families and we detected 217 proteins 

under coevolution. We showed that Coev-Asymmetric-CNN can run in an efficient computing 

time. In addition, we studied these results to better understand the signature of coevolution.  

 

2. MATERIALS AND METHODS 
 

A typical workflow to execute Coev-Asymmetric-CNN contains three steps: 1) the 

preparation of the input data, 2) the training and validation of the model, and 3) the prediction 

and visualization of the testing datasets. We present here each of these steps and give the 

implementation details that were used to run the model. 

 

2.1. Input preparation 
Our Coev-Asymmetric-CNN uses as an input a matrix derived from substitutions 

occurring for each site of a MSA along each branch of its phylogenetic tree. We assume that 

the matrix and the tree are in fasta and newick format, respectively, which are standard formats 

used for such data. The workflow (Fig-3.1) to generate the input data needed for the CNN has 

two parts. The first part is done in R, while the second is implemented in Python.  

First, we need to generate a matrix MLxB (L = sequence length, B = number of branches), 

whose values mi,n are the types of substitutions occurring for site i on branch n. Even though 

we assume that the input MSA is amino-acid based, the script can be modified to process 

nucleotides passing as an argument the fasta type (nucleotides or amino acids). For amino acid 

datasets, which contain 20 different states, there are a total of 380 possible substitution types, 

while nucleotide datasets have 4 different states and a total of 12 possible substitution types. 
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Fig-3.1 The pipeline for data generation. 1) The user provides a MSA and a phylogenetic tree 2) Ancestral state reconstruction 
for each site is done and it is mapped into a matrix of changes (MLxB) where the branches are the columns and the sites are the 
rows. 3) FLxB matrix is generated with the number of occurrences per type of change from MLxB. 

Each substitution type is represented by the mi,n values, which can include the value 0 to 

indicate no change (see Chapter 2 for more details). The order of the branches is created 

automatically by the phytools R package (Revell, 2012) when reading the phylogenetic tree. 

This has, however, no impact on the CNN model as branches can be reordered without affecting 

the coevolution pattern. At the end, we generate a matrix MLxB that will be used, after another 

transformation step (see below), as an input feature to the CNN (Fig-3.1). In most datasets, the 

majority of the sites of the alignment do not change over most branches, especially for lowly 

evolving amino acid/nucleotide sequences. The MLxB matrix is therefore usually sparse. 

Once the MLxB matrix is created, we transform it into a frequency matrix FLxB by 

counting the number of times each substitution type occurred at a given site. The values fi,n of 

the F matrix represent the number of times the type of change encoded in mi,n has occurred for 

site i through the phylogenetic tree (see Chapter 2 for more details). 

 

 

 

 

 

 

 

 

 

 

 

The dataset containing the MSAs and their phylogenetic trees must be already prepared, 

following the directory hierarchy shown in Fig-3.2, to generate the F matrices. The full dataset 

(both for training and testing the CNN) must contain two types of classes: a set of MSAs with 

their corresponding phylogenetic trees with signature of coevolution, labeled as ‘COEV’; and 

a set of MSAs with their corresponding phylogenetic trees with no signature of coevolution, 

labeled as ‘NO_COEV’. To simulate a reliable dataset with labeled data we recommend 

following the steps in Chapter 2. 
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Fig-3.2 Folder structure where the parent directory (cnnData) contains 2 folders: test and train. Each of them has 2 sub-folders: 
COEV and NO_COEV, with the MSAs and the phylogenetic trees. 

 

 

 

 

 
 
2.2. CNN-Asymmetric-Coev training and validation 

We implemented the CNN-Asymmetric-Coev model based on one input layer of size 

LxB with a single channel, two asymmetric convolutional layers (the first one Lx1 and the 

second one 1xB), and a fully connected layer with two output values, one value for each class 

(i.e. presence or absence of a coevolution signal; Fig-3.3).  

After each convolution layer, we used a standard rectified linear activation function 

(ReLU; Schmidhuber, 2015). Other functions can also be used, but it was shown that the ReLU 

allowed the model to learn faster and reach better performance in most CNN applications 

(Goodfellow et al., 2016). The results from the second convolution were then converted into a 

1-dimensional array and fed into the fully connected network. We further used the 

regularization method Dropout (Srivastava et al., 2014) to reduce overfitting and improve the 

generalization in the model. This is done during training, where some nodes of the fully 

connected network are randomly ignored. Finally, we used a LogSoftMax activation function 

as the output layer of our CNN to obtain a vector of two values describing the probabilities for 

the input data to be under coevolution or not.  

We did not use pooling in our model due to the characteristics of our input data. Co-

substitutions occurring across sites at several branches have a positional dependency in the 

FLxB matrix representing the process of coevolution. If we applied a pooling layer, then the 

positional dependency would be lost and the input matrix labeled as ‘COEV’ would no longer 

represent the coevolution pattern that our CNN is supposed to learn.  

Moreover, we did not normalize the input data because of the sparseness contained in 

the input matrices (see above Input preparation). A normalization step would make the values 

in the F matrix very small and, thus, very similar to each other. It would render the signal of 

coevolution fuzzy and impossible to detect by the CNN. 
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Fig-3.3 CNN-Asymmetric-Coev network architecture. The matrix FLxB is the input to the Asymmetric-Coev-CNN. It contains 
two 1D convolution layers, each of them with a ReLu activation function. Finally, a fully connected network layer provides 
the output: there is signature or coevolution or not.  

 

 

 

 

 

 

 

 

 

2.3. CNN-Asymmetric-Coev predicting and visualizing coevolution  
Once trained, CNN-Asymmetric-Coev can be applied to any input matrix FLxB, of the 

same size as it was trained for, to predict if there is any signature of coevolution. The prediction 

label is returned for each input matrix. If the prediction label returned is ‘COEV’ (there is 

signature of coevolution), then it will also return by default the 4 most probable sites under 

coevolution (it can be modified to return more sites). Moreover, it is possible to plot, in an 

image, the rows from the FLxB matrix corresponding to these coevolving sites, to better 

visualize the branches where the co-substitutions are happening. 

 

2.4. Implementation 
There are many libraries available to implement deep learning models. The most 

popular are based in Python such as: Keras (Chollet & others, 2015), TensorFlow (Abadi et al., 

2016) or PyTorch (Paszke et al., 2019). We implemented CNN-Asymmetric-Coev model in 

PyTorch (Paszke et al., 2019) because its coding style is more imperative and dynamic, which 

makes the code more readable and understandable. Furthermore, we also find that PyTorch 

also allows low-level coding, giving more freedom to write custom CNN models, contrary to 

Keras. Moreover, because of our big training datasets, PyTorch and TensorFlow are better in 

terms of performance. Finally, we wanted to have a prototype, and we found PyTorch’s less 

complex framework ideal. 

We created our own CNN model, a PyTorch object (named coevClassifier) based on 

the class torch.nn.Module that is used for all neural network modules. The instantiation of this 

class requires two arguments specified by the user: the size of the two 1D filters: ROW_SIZE 

for the length of the sequence alignment, and COL_SIZE for the total number of branches. Both 

convolutional layers are implemented using the PyTorch function Conv2d. The first layer is a 
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1D convolution layer and it is created with 1-dimensional 400 filters of size ROW_SIZE x 1 

(by default it is 400 but it could be modified). The second convolutional layer is another 1D 

convolution and it is created with 1-dimensional 400 filters of size 1 x COL_SIZE (also, by 

default it is 400 filters, but it could be modified). We incorporated a bias parameter in both 

layers. Moreover, the stride of the convolution is set to 1, which means that the 1D filters will 

be applied to each row and column in turn. We further set the padding to 0. Finally, after each 

convolutional layer, we are utilizing the ReLU function, already implemented in Pytorch, 

converting all the negative values to 0. The two layers of fully connected networks were 

implemented using the PyTorch function Linear, which applies a linear transformation to the 

data. The first fully connected neural network takes as an input the number of filters used in 

the previous convolutions and transforms them into an output size of 100 nodes (or neurons). 

Between these two layers, we used the PyTorch function dropout during training, giving a 

probability of 0.25 for a node to be set to zero. The output was then passed as input to the 

second fully connected network, which returned an output consisting of two values. We applied 

the function log_softmax implemented in PyTorch to the final output and selected the 

maximum value as the final result. 

During training, we used the optimizer function Adam from PyTorch (Kingma & Ba, 

2015) with a standard learning rate of 0.008. It is possible to use other optimizers (e.g. Adadelta 

or RMSprop; Zeiler, 2012; Schaul et al., 2013), but Adam can better handle the sparse features 

of our data and it worked well with standard parameters. Our CNN aimed at classifying our 

input data into coevolving and non-coevolving datasets. We thus selected a loss function that 

is appropriate for this type of problems and used the PyTorch function CrossEntropyLoss. 

Moreover, we utilized mini-batches of size 64 by default, meaning that during training it loads 

in memory 64 samples of the training dataset. However, this value can be modified by the user. 

It is recommended to use a power of 2 for the mini-batch size (64, 128, 256 or 512). If the data 

set is bigger, then a good option could be to increase the mini-batch size. Nevertheless, the 

bigger the size of the mini-batches, the more data that is loaded in memory. 

Furthermore, the weights of the convolutional and fully connected layers were 

initialized through the default Kaiming Uniform method (He et al., 2015), which is the most 

appropriate way to initialize the weights when the ReLU activation function is used. 

Finally, the training of the CNN was implemented with the possibility of using an early-

stop to avoid overfitting. The training loop stops when the performance on the validation 

dataset (validation loss) starts to degrade consecutively during 2 epochs. This early-stop step 

can also be decided by the user. 
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Fig-3.4 Pipeline to rank the sites to get the top most probable sites under coevolution. First we have the input matrix of size 
400xLxB, (the 2D F matrix repeated 400 times), then, we applied the 400 learnt filters of size 1xB to each dimension of our 
input. After that, we get the activation map of size 400xLx1 (each of the 400 dimensions correspond to one specific filter from 
the previous step). Finally, we average over the 400 activation maps to get the average activation map of size Lx1. This last 
output is a vector where the L values correspond to the activation value of the L sites. 

The current version of the software can be downloaded and run from GitHub 

(https://github.com/phylolab/Coev-Asymmetric-CNN). The readme file on the GitHub 

repository provides a list with all the packages needed to be installed before running the 

software.  

 

2.5. Data visualization an activation map 
After the CNN has been trained, we can input a F matrix to our CNN to obtain a 

prediction score defining if the MSA contained any signal of coevolution or not. Due to the 

fact that it is the second convolutional layer the one detecting which sites are under coevolution 

(it is the one having the filters of size 1 x L, and going row by row detecting which pattern is 

common between them), we proposed a pipeline to identify the most probable sites to be under 

coevolution (Fig-3.4), using the activation maps from the second convolutional layer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

First, we repeated the input F matrix as many times as the number of filters used in the 

second convolutional layer. In our case, there were 400 filters in the second convolutional layer 

and the input F matrix was repeated 400 times to have a matrix of size 400 x L x B. We then 

applied the second convolutional layer to this new input matrix (F matrix repeated 400 times) 

to obtain the activation maps of size 400 x L x 1. Each of the 400 activation maps (also known 

as feature maps) corresponds to the activation of the different sites from the input F matrix. We 

averaged the 400 activation maps, with size L x 1, to obtain a single final averaged activation 

map of size L x 1. Finally, to identify the sites that were responsible for the strong activations 
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and thus the signal of coevolution, we ranked the L sites based on the averaged activation value 

and selected those with higher values to represent the sites more likely to be under coevolution.  

There are other methods available to visualize the activation maps like Grad-CAM 

(Selvaraju et al., 2017). However, given our CNN architecture, with 2 asymmetrical 1D filters, 

the activation maps returned by Grad-Cam only provide useful information for the first 

convolutional filter. Thus, we can detect which branches are “activated”, but not which sites..  

 

2.6. Data input format 
To run the Coev-Asymmetric-CNN, there are two options: load all the training dataset 

in memory and run the CNN, or load in memory only the batches which the CNN is going to 

train. For example, in Chapter 2, the total size of case C was approx. 4GB (14,400 F matrices 

in format .csv). Thus, we provided two different types of data format to store the input data 

depending on the memory limitations that the users may have. First, it is possible to use the 

standard npy format, which is a binary file that can be manipulated through the Numpy library 

(Harris et al., 2020). The input data will have to include 6 files in total: 3 files to train the CNN 

and 3 files to test it. In each of these two cases, the 3 files contain i) all the FLxB matrices 

(input.npy), ii) the labels associated with each matrix (0 for no coevolution and 1 for 

coevolution) (label.npy), iii) the name of the files containing each FLxB matrix (name.npy). The 

latter is important to be able to retrieve the MSA and phylogenetic tree that were used to create 

the F matrices. Second, we provide the H5 format, which is a Hierarchical Data Format (HDF) 

able to store multidimensional arrays with a structure (Koranne, 2011). The input data will be 

contained in a single file that includes the 6 datatypes described for the npy format above. It 

acts like a dictionary, and it is possible to access any of the following elements: training_input 

FLxB matrices, training_label, training_names; and testing_input FLxB matrices, testing_label, 

testing_names. 
We have done a small benchmarking comparing the behavior between these two types 

of formats, checking the memory occupancy and the time to train the CNN during one epoch 

(there are 64 FLxB matrices in each epoch) (Table-3.1). We see that if we have a memory 

limitation, it is better to use the H5 format to train the CNN. When the number of filters is low, 

and consequently the number of parameters to train the network is small, loading all the data 

with the npy format is faster than with the H5 format. When increasing the number of filters, 

and consequently the number of parameters to be trained, the time to train the network, during 
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one epoch, is practically the same between the two formats but the memory footprint is much 

more reduced with the npy format. 
 

Dataset size Data type Filters Time 
(seconds) Memory 

~ 6 GB 

(Matrix199x396) 

h5 

100 66 < 700 MB 

200 174 < 1 GB 

300 335 ~ 1GB 

npy 

100 40 ~ 6.8 GB 

200 152 ~ 7 GB 

300 314 ~ 7 GB 

~ 2.5 GB 

(Matrix199x396) 

h5 

100 27 < 700 MB 

200 70 < 1 GB 

300 137 ~ 1 GB 

npy 

100 16 ~ 3 GB 

200 61 ~ 3 GB 

300 125 < 4 GB 

Table-3.1 Comparative table between h5 and npy formats varying the size of the dataset  
and the number of filters. Bigger dataset and a higher number of filters mean that it will take  
more time to train the model and more memory to allocate.  

 

3. PIPELINE EXECUTION EXAMPLE 
 

To illustrate how to proceed to run Coev-Asymmetric-CNN, here we describe the steps 

to follow: 1) input preparation, 2) model training and validation, and 3) prediction and 

visualization. 

 

3.1. Input preparation 
  

1. Execute the script run_ancestral_changes_matrix.sh with the following inputs: 

- a fasta MSA 

- a newick phylogenetic tree 

- a folder to save the matrix MLxB as a csv file 
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This step must be done for each MSA and its phylogenetic tree, the more 

samples/simulations we have, the better. To have a balanced dataset, we should have a 

similar number of matrices in COEV and NO_COEV folders. 

 

2. Execute the script generate_cnn_datasets.py with the following inputs: 

- path:  the path to the training and testing label dataset (with the hierarchy of 

Fig-3.2) 

- output:  the path to store the file(s) with all the training and testing label data 

(by default ./ ) 

- format: h5 or npy 

(by default h5) 

- row: the number of rows (sites) of our final matrices  

the value must be the highest number of rows through all the matrices  

(by default 199) 

- col:  the number of columns (branches) of our final matrices  

the value must be the highest number of columns through all the 

matrices  

(by default 396) 

 

    

 

The program will go through all the MLxB matrices files, first in the ~/cnnData/train/ 

folder and later in the  ~/cnnData/test/, transforming all the MLxB matrices in the FLxB 

and saving them into a new file(s).  

 See Supplementary Data for more details about the output. 

 

3.2. Model training and validation 
 

3. Execute the script run_CNN.py. It takes as an input a configuration file (Supp.Fig-3.1), 

which contains all the needed variables to train the CNN. 
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The program trains a Coev-Asymmetric-CNN model with the training dataset provided 

in the configuration file.  

It outputs the accuracy of the CNN for the testing dataset and saves the trained model 

as a PyTorch “.pt” file.  

3.3. Prediction and visualization 
 

4. Execute the script test_CNN.py. It takes as an input a configuration file (Supp.Fig-3.2), 

which contains all the needed variables to test the CNN. 

 

 

The program loads the Coev-Asymmetric-CNN model from the configuration file to 

infer coevolution on a given testing dataset. 

It outputs a csv file (Supp.Fig-3.3) which contains information about the predictions. 

Moreover, it outputs a pdf file (Supp.Fig-3.4), which each page is a file predicted with 

coevolution signal and an image of the most probable 2 pairs being under coevolution. 

 

3.5. Illustrating our pipeline on an empirical data 
 

We wanted to apply Coev-Asymmetric-CNN to a real dataset to infer coevolution. We 

selected the bony vertebrate Selectome dataset (Proux et al., 2009), which is a positive selection 

database with curated data containing more than 15,000 gene families of vertebrates with their 

phylogenetic trees and corresponding alignments. Given the lack of a labeled dataset with and 

without coevolution to train our model, the first step we did was to simulate a training labeled 

dataset (MSAs with their corresponding phylogenetic trees). Then, we transformed the 

simulated data into a 2D matrix representing the number of substitutions occurring at each site 

along each branch of the tree. The 2D matrices are then used as the training dataset input to the 

CNN architecture. Afterward, we used the trained CNN to predict coevolution on the real bony 

vertebrate Selectome dataset. 

The predictions of coevolution required first to train Coev-Asymmetric-CNN on a 

labeled dataset. However, there is little understanding of the minimum size that such a training 

dataset should have to obtain a good performance for CNN methods, and some studies suggest 

to take increasingly bigger subsets of the data, calculate the error and see how the model 

performances when increasing the training dataset (Cho et al., 2015; Balki et al., 2019). 
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Therefore, we simulated three datasets going from a small, medium, and large number of 

samples included in the training (~2,000, ~4,000 and ~8,000 respectively). We used the 

phylogenetic trees available for the datasets from the Selectome database to simulate new MSA 

as described below. 

 

3.5.1. Simulations 

First, we filtered the Selectome database to have a more heterogeneous dataset with 

only alignments and phylogenetic trees containing between 50 and 200 sequences whose 

sequence length was longer than 50 but smaller than 200 amino-acids. Our final dataset 

contained 252 MSAs with their phylogenetic trees.  

We simulated new MSAs by resampling with replacement the 252 phylogenetic trees. 

The distributions of the number of sequences, the mean branch lengths of the phylogenetic 

trees and the alpha parameter for the Gamma distribution used to model site heterogeneity were 

given in Supp.Fig-3.5. For each tree sampled, we simulated a new MSA by varying the 

sequence length and the alpha value by randomly selecting these two parameters from their 

respective distributions. The MSA were randomly assigned to one of the two labeled categories 

defined as either evolving under coevolution, using the LG (Le & Gascuel, 2008) and Coev 

models (Dib et al., 2014) or under the independent LG model alone. The details of the 

simulations can be found in Chapter 2 and we followed here strictly the same procedure.  

Next, we transformed each MSA and its phylogenetic tree into a 2D matrix, FLxB, as 

described in Chapter 2. Considering that each matrix has a different number of sites and 

branches, we padded all of them with zeros until all had the size of the biggest matrix (199 

rows x 396 columns).  

 

3.5.2. Training and testing dataset 

We studied the performance of our Coev-Asymmetric-CNN while varying the number 

of samples used to train our network. The large dataset contained a total of 8,476 simulated 

samples (MSA and trees) and half of the dataset was simulated under the signature of 

coevolution and the other half was simulated under no signature of coevolution. We split the 

dataset into different training datasets as follows: the first case, referred to as the small dataset, 

contained 1,008 samples, the second case, referred to as the medium dataset, contained 3,296 

samples, while the third case, referred to as the big dataset, contained 8,072 samples.  
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To test the performance of each training case we randomly took from the full dataset 

562 samples, not included during the training phase. There are 291 samples simulated under 

coevolution and 271 under the independent model. Moreover, this testing dataset was common 

to test the performance of the three training scenarios. 

Moreover, the performance of the model for each scenario was done calculating the 

recall and precision over the testing dataset. Where the recall is defined as the number of true 

positive predictions divided by the sum of the true positive and the false negative predictions; 

and the precision is defined as the number of true positive predictions divided by the total 

number of predicted positive cases.  

recall = true positives/(true positives + false negatives) 

precision = true positives/(true positives + false positives) 

 

3.5.3. Results from the simulated dataset 

We tested the Coev-Asymmetric-CNN performance under the different simulated 

datasets. We observed that increasing the size of the training dataset increased the accuracy of 

the CNN model (Table-3.2). These results were in agreement with the literature (Hestness et 

al., 2017; Sun et al., 2017), where it was also shown that the size of the training data had an 

effect on the accuracy of the model. In general, the more data present in the training dataset, 

the better was the accuracy of the CNN model. In our case, when the training dataset size 

increases by 8 times, the accuracy of the model increases from 0.79 of accuracy with the 

smallest dataset to 0.87 for the bigger one. Moreover, we showed that the ratio of false negative 

cases decreased when increasing the size of the training dataset size (Table-3.2). Concerning 

the false positive cases, our simulations showed that they were stable across the different sizes 

of training datasets with only a difference of 2 among them. Overall, our results suggested that 

we need a bigger training dataset. 
 

Training 
Dataset 

Training 
size 

Testing 
size Accuracy TP TN FP FN 

Small 1008 562 0.79 192 254 17 99 

Medium 3296 562 0.83 213 255 16 78 

Big 8072 562 0.87 237 253 18 54 

Table-3.2 Results after training the Coev-Asymmetric-CNN with small, medium and big. Testing results analysis showing the 
number of true positive, true negative, false positive and false negative cases. 
 

Based on the results obtained with the Big dataset, we looked at better understanding 

the behavior of the CNN. Beside the prediction of coevolution done at the MSA level, it is also 
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Fig-3.5 Boxplots of the highest activation score per alignment. The y-axis represents the maximum site’ activation score per 
F matrix. The colors blue, orange, green and brown represent respectively the True Positive, False Negative, True Negative 
and False Positive predicted F matrix cases. 

Fig-3.6 Positive correlation between activation score with the maximum number of occurrences per F matrix. Each point is a 
F matrix. The y-axis represents the activation score of the top-1 site given by Coev-Asymmetric-CNN. The x axis is the 
maximum number of occurrences in a given F matrix 

possible to identify the pairs of sites that activated the CNN and led to a positive prediction. 

First, we looked at the activation score given by Coev-Asymmetric-CNN to the top sites 

predicted as coevolution for each F matrix (to know more details about how the activation score 

is calculated, read the “Visualization and activation maps” in the Implementation section). We 

observed that the activation score is in general higher for the true positive cases (Fig-3.5). The 

mean activation score for the true positives sites is 44.55 with a minimum value of 1.3 and a 

maximum of 337.6. The true negative cases have a mean value of 2.2, with a range between 

0.4 and 46.6. We also observed that the false negative had in average a lower activation score 

than the false positive cases (Fig-3.5). Still, it is difficult to understand the false positive cases 

only based on the activation score. These false positive cases have the highest activation score 

lower than 21 (lower than the mean value for the true positive cases), and they have a mean 

activation score of 8.8. Nevertheless, these results suggest that even though the activation score 

it is not enough to understand how the classification it is done, it may be an indicator for the 

CNN to decide if there is coevolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
 

109 

Fig-3.7 Recall (a) and precision (b) scores based on the maximum number of changes for each F matrix. Both values (recall 
and precision) increase with the maximum number of changes. 

In addition, given the results from Chapter 2, where we showed that the maximum 

number of changes had an effect on detecting the signature of coevolution, we looked at the 

correlation between the maximum number of changes and the activation score Fig-3.6. We 

observed that these two variables are positively correlated and the higher the maximum number 

of changes, the higher the activation score is. This also supports the results from Chapter 2, 

and it suggests that the maximum number of changes per F matrix may be having an impact on 

the activation score and, therefore, on the way Coev-Asymmetric-CNN is learning to detect 

the signature of coevolution. 

Finally, we looked at the recall and precision (see 3.5.2. Training and testing dataset) 

of our Coev-Asymmetric-CNN considering the maximum number of occurrences per F matrix. 

In Fig-3.7, we see that the recall is equal to 1 when the maximum number of occurrences are 

bigger than 15. For the precision it is when the maximum number of occurrences are bigger 

than 8, meaning that above 8 number of occurrences, there are not false positive cases, only 

coevolving simulations have 8 or more number of occurrences. Once again, these results are 

consistent with the previous results, suggesting that there is a bias in the simulations and that 

coevolving simulations tend to have more number of occurrences happening than the 

simulations done under the independent model. Thus, actually, may lead to false positive cases, 

i.e., when the number of occurrences happening for one site is high, but it is not co-occurring 

with any other site. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

a) b) 
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Fig-3.8 Boxplots of the maximum number of occurrences of the cases predicted by Coev-Asymmetric-CNN under coevolution 
and without coevolution on simulated data (blue) and Selectome dataset (orange) 

3.5.4. Predictions on the real dataset 
After training Coev-Asymmetric-CNN and seeing that we still had a good overall 

accuracy, we predicted coevolution on the real bony vertebrate Selectome dataset. It took 40 

seconds to go through the 252 proteins. We showed that the CNN, trained with the Big dataset, 

predicted 217 proteins as being under coevolution. 

The large number of MSA predicted under coevolution (86% of the data) was 

unexpected. When comparing with another method (CoMap) that uses the phylogenetic 

information to estimate pairs of coevolving sites, we found that all 252 datasets analyzed had 

at least one pair of sites significant. It shows that our method is probably more able to tease 

apart real coevolution signals from noise coming from the pattern of amino-acid frequencies 

found in the MSA, especially at low sequence divergence (see Chapter 1). To better 

understand the factors involved in this result, we showed in Fig-3.8 the distribution of 

maximum number of changes in both the real and simulated datasets. The distribution is similar 

in both datasets. Nevertheless, trying to understand a bit better the behavior of our Coev-

Asymmetric-CNN, and knowing from Chapter 1 and  Chapter 2 that divergence had an effect 

on predicting coevolution, we looked at the divergence of our data. In Fig-3.9, we observed 

that on the simulated dataset, we have the same range of mean branch lengths for the 

simulations of either coevolution or no coevolution. In contrast, in the real protein dataset, all 

the samples predicted to be under no coevolution have a very low mean branch length, while 

the samples predicted to be coevolving had a wide range of mean branch length (Fig-3.9). The 

conclusions that we get from Fig-3.8 and Fig-3.9, is that on real data, the maximum number of 

occurrences are directly linked with the mean branch length. Somehow, this is something 

expected because the lower the mean branch length the less changes are expected to occur.  
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Fig-3.9 Boxplots of the mean branch length of the cases predicted by Coev-Asymmetric-CNN under coevolution and without 
coevolution on simulated data (blue) and Selectome dataset (orange) 

 

 

 

 

 

 

 

 

 

 

4. CONCLUSIONS 
 

Coevolution is an important evolutionary phenomenon that occurs to maintain proteins’ 

function and structure. Nevertheless, understanding coevolution and detecting its signature is 

not an easy task. In this study we presented Coev-Asymmetric-CNN, a user-friendly 

implementation of a deep learning method to infer the signature of coevolution. It provides two 

main features: 1) a way to transform a given MSA with its phylogenetic tree into a type of data 

easy to input to a CNN; and 2) a CNN model for predicting the signature of coevolution. 

Given that the good accuracy of the model is based on the quality of the training 

process, the training dataset is decisive. We observed that a big dataset with enough variability 

and closer to the type of real genomic data is needed. One way to improve the training process 

is to have a training dataset with as much variability as the real testing dataset. For this, some 

features that could be useful to take into account would be: including more trees with different 

topologies, varying the gamma values per alignment, and adding bigger or lower number of 

sequences are some of the features to take into account.  

Moreover, we trained our Coev-Asymmetric-CNN with a big dataset (~8.000 samples) 

and we analyzed 252 protein families from the bony vertebrate Selectome database. The results 

indicate that there are 217 protein families under coevolution. Also, we showed that Coev-

Asymmetric-CNN is probably bias by the maximum number of changes occurring per site, per 

alignment. Thus, there is still a need for a more deeply investigation of these families. 
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Supp.Fig-3.1 Configuration file to train the CNN 

Supp.Fig-3.2 Configuration file for predictions and visualization 

Supp.Fig-3.3 Output csv file with the result from the predictions. 

5. SUPPLEMENTARY DATA 
 

5.1. Configuration files 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

5.2. Output csv file 
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Supp.Fig-3.4 Output pdf file with the sites under coevolution with the branches where the changes occur. 

5.3. Output pdf file 

 

 

 

 

 

5.4. Output format 

The output files vary depending on the type of format. 

 

If the format is .npy, then we will have 6 outputs: 

- training_file.npy   Containing all the FLxB matrices for training 

- name_training_file.npy Containing all the names corresponding to the FLxB matrices for 

training 

- label_training_file.npy Containing the values 1 or 0 corresponding to the FLxB matrices 

for testing, depending on if the matrix was on the COEV or NO_COEV folder respectively 

 

- testing_file.npy   Containing all the FLxB matrices for testing 

- name_testing_file.npy Containing all the names corresponding to the FLxB matric 

- es for testing 

- label_testing_file.npy Containing the values 1 or 0 corresponding to the FLxB matrices 

for testing, depending on if the matrix was on the COEV or NO_COEV folder respectively 

 

On other hand, the .h5 format will contain a single file: name_output.h5.  

It has a hierarchical structure, completely hidden for the user, separated as well on training and 

testing: 

- training_dataset 

- filenames_training_dataset 

- label_training_dataset 

- testing_dataset 

- filenames_testing_dataset 

- label_testing_dataset 
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Supp.Fig-3.5 Analysis from the bony vertebrate Selectome filtered dataset. Histograms showing the distribution of the gamma 
value (a), number of species (b), mean branch length (c) and sequence length (d). 

5.5. Distribution features Selectome dataset 
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DISCUSSION AND PERSPECTIVES 
 

 

Machine Learning techniques are highly successful in many areas of science. In life 

science, the Machine Learning algorithm AlphaFold is one of the most impressive advances 

for its capabilities to predict the 3D structure of proteins from their amino acid sequence 

(Jumper et al., 2021). However, we are still far from comprehending the full set of mechanisms 

underlying these structures. One crucial piece of information used to better predict the folding 

of proteins are coevolving pairs of sites. Moreover, coevolving pairs of sites are involved in 

maintaining or improving not only structural interactions but also functional ones. In this sense, 

it is possible to profit from powerful Machine Learning techniques to improve our knowledge 

of how to infer coevolving pairs of sites and to get a step closer to understanding these 

biological mechanisms. In my Ph.D. thesis, I studied the limitations of some of the current 

methods inferring coevolution. For this, I simulated different genomic datasets with varying 

levels of evolutionary divergence (Chapter 1). I then developed a new Deep Learning model 

(Coev-Asymmetric-CNN) to predict coevolution, which I trained under different scenarios 

before testing its performance (Chapter 2). Moreover, I described its implementation using 

PyTorch and the pipeline to run Coev-Asymmetric-CNN on real datasets (Chapter 3). Finally, 

I tested its performance predicting coevolution on a real dataset from the Selectome database. 

         In Chapter 1, I benchmarked some of the current methods to infer sites that show  

signatures of coevolution (plmDCA, CoMap and Coev). I simulated pairs of sites under 

coevolution using the evolutionary model of Coev, and sites without coevolution, under the 

independent model of evolution LG. Finally, I studied the limitations of these methods under 

different levels of divergence. The results that I obtained showed that divergence has an impact 

on the way these methods infer coevolution and that the interpretation of the results from these 

methods are challenging. Even though plmDCA is outstanding compared to the evolutionary 

methods of Coev and CoMap, I highlighted the fact that ranking each pair of sites based on one 

score was not a reliable measure to infer which sites are under coevolution. The score given by 

plmDCA has a range that varies depending on the MSA under study, and I have shown that 

divergence has an impact on the value of these scores. Because plmDCA is only providing a 

score for each pair of sites of the MSA, it would be interesting to study how it could be possible 

to add a parameter to determine if the score is significant or not. In contrast, methods like Coev 

and CoMap, provide more than one score to predict which pairs of sites are coevolving, 

therefore enriching their predictions. I think that these abilities provide more robust information 
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about each pair of sites such as the evolutionary rate or if the correlation value is significant or 

not. Nevertheless, it was surprising to find that even though the coevolving sites were simulated 

under the Coev model of co-evolution, these evolutionary methods did not perform as well as 

plmDCA. This may be due to the fact that the co-evolutionary model used (Coev) is adding 

noise when simulating coevolving pairs of sites. As shown in Chapter 3, Coev can simulate 

coevolving pairs of sites that are not under coevolution because they both change on the same 

but single branch of the phylogenetic tree. Thus, these changes cannot be considered as 

coevolution from an evolutionary perspective (based on the definition by Dutheil, 2012), 

because they can easily occur through chance alone. Future coevolutionary model simulators 

should take into account the minimum number of mutations co-occurring between pairs of 

sites. Additionally, other studies are simulating coevolving pairs of sites; for example, in 

Marmier et al., 2019, they generated controlled synthetic “sequences” as strings of values 0 or 

1. They considered perfect binary trees and follow a Poisson distribution to draw the number 

of mutations per branch to evolve the sequences (0 and 1) along the phylogenetic tree. 

However, they do not base their simulations on any of the evolutionary models available in the 

literature, making this approach very simplistic compared with the true biological process.   

Overall, while it is true that plmDCA had a good performance, I observed that it is also 

affected by divergence. As mentioned previously, since it only provides a score as an output 

for each predicted pair of sites, it is not sufficient to know how many sites are truly under 

coevolution. This is why I have highlighted the importance of having more knowledge about 

the data, and the pairs inferred under coevolution (or non-coevolution) like the Coev or CoMap 

methods. If the phylogenetic tree is included to infer coevolution, it is possible to estimate the 

level of divergence of the protein family as well as where and how many co-occurrences are 

happening, and the site-specific substitution rate (Dutheil, 2012). This additional data would 

provide a better understanding of the evolutionary process behind these models’ predictions. 

In Chapter 2, I developed a supervised machine learning method using Convolutional 

Neural Networks (CNN) to infer coevolution in a 2D matrix that contains the coevolutionary 

pattern from a multiple sequence alignment (MSA) and its phylogenetic tree. I created a 

training labeled dataset by simulating phylogenetic trees and MSAs under coevolution and non-

coevolution. I transformed the data mapping changes into the branches of the phylogenetic tree 

through ancestral state reconstruction, generating 2D matrices containing the evolutionary 

information. After studying and discovering the pattern of the signature of coevolution I 

implemented a convolutional neural network using two 1D asymmetric convolutions. 
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One of the drawbacks of using machine learning is that it requires training labeled 

datasets. For coevolution, as for most applications in molecular and evolutionary biology, there 

are no labeled datasets available. This is why simulating coevolving data can help, as shown in 

other studies in which they simulated data to have a bigger and more variable dataset (Amini 

et al., 2022). To have a genomic dataset close enough to a real one, I based my simulations 

(MSAs with their phylogenetic trees) on the positive selection database Selectome. 

Moreover, it is important to recognize that by simulating the genomic data and 

reconstructing the ancestral state for each site, we only obtain an approximation, which could 

bias the 2D matrix reconstruction. Nevertheless, the main concept behind creating a 2D matrix 

is to account for the number of changes and to make it easier to detect which branches are in 

common for any pairs of sites. Based on the study from Dutheil (Dutheil, 2012), we can 

consider that the higher the number of co-occurring changes between a pair of sites, the stronger 

the evolutionary pressure favoring the maintenance of mutations at both sites, and therefore, 

the stronger  the signal of coevolution between this pair of sites. However, to my knowledge, 

there are no studies providing how many co-occurring changes are needed in a pair of sites to 

be considered  a case of coevolution. Furthermore, how coevolution occurs and why this 

biological process is happening, are questions still under consideration. Furthermore, this new 

approach to generate 2D matrices, based on the MSA and a phylogenetic tree (Chapter 2 and 

Chapter 3), highlights the signature of coevolution by increasing the values of the changes 

depending on the number of times the type of change has occurred. Therefore, it is easier to 

detect when a pair of sites have co-occurring changes. This work led to an innovation in the 

type of input data available to infer coevolution. Moreover, this type of data is suitable as an 

input for a machine learning user-friendly software tool (Chapter 2 and Chapter 3) based on 

1D asymmetrical convolutions, Coev-Asymmetrical-CNN. 

Additionally, in Chapter 2, I realized that the 2D matrices and therefore, the 

performance of Coev-Asymmetric-CNN, are also affected by divergence along the tree, similar 

to what has been observed in Chapter 1 for plmDCA, CoMap and Coev methods. Thus, I 

tested the CNN performance under different levels of divergence, and although the method has 

an accuracy up to 90% when all the levels of divergence are mixed, the method performed 

poorer under low levels of divergence. I observed that at a low level of divergence, the number 

of changes under coevolution and the independent model (non-coevolution) is very low in the 

2D matrix obtained after transforming the simulated genomic data. On the contrary, when there 

is a high level of divergence, the number of changes occurring under coevolution or the 

independent model is higher. This is expected because at a low level of divergence there are 
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more conserved sites and fewer changes occur; and for a high divergence level, there are sites 

that are more variable because more changes occur. To reiterate, including the phylogenetic 

tree allows us to better analyze these results (i.e., looking at the number of changes occurring 

or at the level of divergence) and to better understand the limitations of the method and the 

input data.  

While the performance of the method is sufficient, I realized that it is a tedious process 

to obtain the input 2D matrix, and the divergence is still affecting the performance of the CNN. 

Hence, future studies should advance towards improving the model by evaluating other 

machine learning models. I suggest investigating Depthwise Separable Convolutional Neural 

Networks (Howard et al., 2017), where instead of having a 1-dimensional matrix, the input 

matrix could be extended to have 380 channels, each of them to map a type of change which 

would allow us to keep better track of the changes. The tradeoff is that it will increase the 

amount of memory needed to train the network. Moreover, Recurrent Neural Networks seem 

like a good approach to detect the signature of coevolution. The pattern is repeated through 

multiple branches (the columns), and if there are 2 sites under coevolution (the rows), they 

have a similar pattern always in the same branches. The matrix’s rows could be seen as an input 

signal for the RNN, where it could learn to detect whenever there are similar signals in a 2D 

matrix. Nevertheless, my Coev-Asymmetric-CNN approach also permits extending the type of 

classification done. Since divergence is affecting the performance of the model, it is possible 

to have more than a binary classification and more types of classes based on the type of 

divergence. 

In Chapter 3, I described the implementation of Coev-Asymmetric-CNN and I 

proposed a pipeline to run the model to detect coevolution using any genomic data. I made the 

code accessible to other users with user-friendly options to run it. I also illustrated the use of 

the model by analyzing a subset of the database of bony vertebrates provided in Selectome. 

Overall, in this chapter, I discovered the limitations of Coev-Asymmetric-CNN when applied 

to real genomic data. 

Once more, there is the need to simulate the genomic data to be able to train the model 

to detect coevolution in a given genomic dataset. A good approach to follow would be to 

simulate the genomic data based on the dataset where coevolution wants to be detected. With 

the big dataset that I simulated in Chapter 3, it took approximately 3 hours to train the network 

and less than 1 second to predict if a new 2D matrix contains any signature of coevolution. In 

this sense, I am confident that it is a good approach to analyze big databases with thousands of 

proteins to have a quick overview of which proteins may have a signature of coevolution. 
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However, the more variable the data, the more the data that is needed to train the 

network, as discussed in Chapter 3. Considering the variability in terms of the number of 

sequences, sequence length, gaps contained in alignments and divergence, among other 

features, I believe it is worth further investigating the possibility to train a network based on 

these features. For instance, it would be possible to train three different CNNs to detect 

coevolution, each one for a different number of sequences: low, medium and high. In this 

scenario, alignments with a similar number of sequences will be clustered, therefore, the 

matrices will have similar sizes, avoiding the issues related to huge padding at the left of the 

matrix as shown in Chapter 2. 

Nevertheless, while Coev-Asymmetric-CNN is accurate and it detects the signature of 

coevolution under simulated data, it is necessary to understand the genomic data in the study 

before drawing robust conclusions if two sites are coevolving. When I predicted 217 proteins 

under coevolution out of the 252 proteins filtered from the bony vertebrates Selectome dataset, 

I realized that understanding the reasons for these predictions are necessary. Incorporating the 

phylogenetic tree to infer coevolution provides extra information to better understand the 

results from the CNN. I observed that the maximum number of occurrences per site was having 

an impact on the way the CNN was identifying the signature of coevolution. In addition, the 

maximum number of occurrences was directly correlated with the level of divergence. 

Consequently, taking into account the phylogenetic tree in the analysis helps to better 

understand these results, which suggests that the CNN was biased by the maximum number of 

occurrences. 

In conclusion, during the process of this thesis, I developed Coev-Asymmetrical-CNN, 

the first Deep Learning method to detect the signature of coevolution, while highlighting the 

relevance of taking into account the evolutionary history of the protein in the study. Overall, I 

provided experimental evidence of the potential of machine learning models to detect the 

signature of coevolution, which may be easy to extrapolate to other evolutionary processes 

such as positive selection. The results I obtained integrate the advances in machine learning 

models with the transformation of sequence data and their phylogenetic tree, which brings us 

a step closer to understanding  how coevolution contributes to the evolution of molecular 

structure and function, and ultimately, to the creation of the biodiversity that we have on Earth. 
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Annex 1: Master First-step project of Karim Saied 

Data extraction and machine learning in features involved in coevolution 

December 2017 

Abstract 

Coevolution is a fundamental process observed at different levels in nature. At molecular level, 

several methods are used to detect coevolving pairs. Once done, their distribution is generally 

investigated in order to highlight their location within and between proteins, which provide 

useful structural and functional information. In this study, coevolving positions pairs in several 

human genes were first used to assess the relationship between coevolution and structural 

features in the genes products. The impact of gene conservation was also evaluated. The results 

showed that beta strands tend to contain a higher amount of coevolving positions compared to 

other secondary structures. Moreover, relatively variable proteins seem to display more related 

pairs than conserved proteins. As a second step, by using machine learning, another approach 

to investigate coevolution was introduced. As a matter of fact, predictions about coevolution 

scores and the distributions of positions pairs among the secondary structures have been 

attempted. Unfortunately, the dataset used by the machine learning algorithm suffered from a 

lack of information as only two features were used to predict a third one. As a consequence, 

none of the predictions displayed a sufficient accuracy. 
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Annex 2: Master First-step project of Léonard Jequier  

Automatically classifying clownfish pictures datasets at the species level 

December 2018 

Abstract 

Amphiprion species, commonly called clownfishes, are a valuable evolutionary model. 

Researchers are interested in computationally studying morphological variation between 

clownfishes species in order link theses variations to their molecular bases. To achieve this, 

they need as much data as possible, consisting of pictures of clownfish specimen labeled with 

the species name. Currently, labelling the picture is done manually and require a lot of time 

and expertise. The aim of this project is to create a program capable of providing species label 

to a sets of clownfish pictures. To do so, the best currently available image recognition 

technology was used: convolutional neural networks. Among the created programs, one can 

distinguish between pictures of A. clarkii and A. perideraion with an accuracy of 96%. Another 

can distinguish A. ocellaris and A. frenatus in addition to the two species mentioned before 

with an accuracy of 89%. 




