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Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major
concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled.
In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be
detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes.
This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance
can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe
new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is
essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal
targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.

1. Introduction

The fungal kingdom encompasses an enormous diversity
of taxa with varied ecological niches, life-cycle strategies,
and morphologies. However, little is known of the true
biodiversity of Kingdom Fungi. Of the 1.5 million species
estimated to belong to this kingdom, only about 5% were
formally classified. Many fungi are parasites for plants,
animals, human, and other fungi. Plant pathogenic fungi
are able to cause extensive damage and losses to agriculture
and forestry including the rice blast fungus, Dutch elm
disease, and chestnut blight. Some other fungi can cause
serious diseases in humans, several of which may be fatal
if left untreated. These include aspergillosis, candidosis,
coccidioidomycosis, cryptococcosis, histoplasmosis, myce-
tomas, mucormycosis, and paracoccidioidomycosis. The so-
called dermatophytic and keratinophilic fungi can attack
eyes, nails, hair, and especially skin and cause local infections
such as ringworm and athlete’s foot. Fungal spores are also
a cause of allergies, and fungi from different taxonomic
groups can provoke allergic reactions. In this paper, after a
brief presentation of the medical impact of fungal infections

at the global level and a summary of clinical treatments
available today for clinicians, we will review the mechanisms
underlying in vitro resistance to antifungals in fungal species
of major importance in human medicine. Lastly, an overview
of ongoing research undertaken to develop new therapeutic
strategies to fight against fungal infections will be exposed.

2. Fungal Infections, Clinical Treatments,
and Incidence of Antifungal Drug Resistance

2.1. Fungal Infections. At the beginning of the 20th century,
bacterial epidemics were a global and important cause of
mortality. In contrast, fungal infections were almost not
taken into account. Since the late 1960s when antibiotic
therapies were developed, a drastic rise in fungal infections
was observed, and they currently represent a global health
threat. This increasing incidence of infection is influenced
by the growing number of immunodeficient cases related
to AIDS, cancer, old age, diabetes, cystic fibrosis, and organ
transplants and other invasive surgical procedures.
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Table 1: Characteristics of main fungal infections worldwide.

Body location Pathogen type Organ Most frequent genus
Estimated incidence of

infection∗

superficial primary Skin and hair Malassezia ∼140,000,000 cases/year

cutaneous primary Skin and nails
Trichophyton

Epidermophyton
Microsporum

∼1,500,000,000 cases/year

mucosal opportunistic

Vagina,
digestive tract,
urinary tract and

Candida
∼75,000,000 cases/year
∼9,500,000 cases/year

eye Aspergillus, Fusarium ∼1,000,000 cases/year

systemic opportunistic
any organ (lungs,
brain, bloodstream
etc.)

Candida
Aspergillus

Cryptococcus
Histoplasma
Pneumocystis

Coccidioidomyces
and so on

∼300,000 cases/year
∼350,000 cases/year
∼1,000,000 cases/year
∼500,000 cases/year
>200,000 cases/year

up to 300,000 cases/year

∗
adapted from “The Fungal Research Trust. How common are fungal diseases? Fungal Research Trust 20th Anniversary meeting. London June 18th 2011.”

These infections are caused by two types of microor-
ganisms: primary and opportunistic pathogens. Primary
pathogens are naturally able to establish an infection in the
healthy population. In contrast, opportunistic pathogens,
among them commensal microorganisms of the healthy
population, are able to develop infectious colonization of
the human body when particular criteria, such as immuno-
suppression, are met. Fungal pathogens can be divided into
two major groups: filamentous fungi and yeasts. Most of
the primary pathogens are filamentous fungi, while most of
the opportunistic pathogens are yeasts and some species of
filamentous fungi are increasingly identified as opportunistic
pathogens. It is also important to note that fungal infections
can be classified in function of the tissue infected (see
Table 1).

Superficial mycoses, such as tinea versicolor, are limited to
the most external part of the skin and hair. These infections
are most frequently caused by the species Malassezia globosa
and M. furfur, which are estimated to be carried by 2%
to 8% of the healthy population worldwide but could lead
to tinea versicolor in some conditions that are still unclear
[1].

Cutaneous and subcutaneous mycoses caused by der-
matophytes fungi affect keratinized structures of the body.
The most frequently involved dermatophyte genera are
Trichophyton, Epidermophyton, and Microsporum. In most
cases, cutaneous fungal infections require a challenge of
immune system, and their incidence varies depending on
the site of infection. For example, onychomycoses are very
frequent in the global population, with an incidence varying
from 5 to 25% [2].

Mucosal infections are mostly caused by opportunistic
yeasts, and those belonging to the Candida genus are by far
the most frequent. Vaginal, esophageal, oropharyngal, and
urinary tract candidiasis are very frequent in immunocom-
promised patients. For example, esophageal candidiasis is
associated with the entry into the clinical phase of AIDS and

during the 1980s more than 80% of seropositive patients
developed such an infection [3]. Fungal infections, of the
eye are also classified as mucosal fungal infections, but are
caused more frequently by Fusarium or Aspergillus species
rather than Candida species.

Theoretically systemic mycoses may involve any part
of the body, and a lot of species formerly considered as
nonpathogenic are now recognized opportunistic pathogens
responsible for deep-seated mycoses. These infections, with
symptoms ranging from a simple fever to a severe and
rapid septic shock, are very common in immunocompro-
mised patients and are frequently associated with an ele-
vated mortality rate. The most frequent pathogens involved
in systemic fungal infections are Candida, Pneumocystis,
Histoplasma, Aspergillus, Cryptococcus, Mucor, Rhizopus, and
Coccidioidomyces [4–6].

2.2. Antifungal Agents. Despite extensive research dedicated
to the development of new therapeutic strategies, there are
only a limited number of available drugs to fight against
invasive fungal infections. Indeed, only four molecular class-
es that target three distinct fungal metabolic pathways are
currently used in clinical practice to treat essentially sys-
temic fungal infections: fluoropyrimidine analogs, polyenes,
azoles, and echinocandins. Several other classes, such as
morpholines and allylamines are only used as topical agents
due to either poor efficacy, or severe adverse effects when
administered systemically.

2.2.1. Fluoropyrimidines. Fluoropyrimidines, of which only
5-fluorocytosine (5-FC) and 5-fluorouracil (5-FU) are used
in human medicine, are synthetic structural analogs of the
DNA nucleotide cytosine (Figure 1).

5-FC was synthesized in 1957 by Duschinsky et al.,
initially as an antitumor therapy [7]. In 1963, Grunberg and
coworkers discovered its antifungal potential by means of
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Figure 1: Chemical structures of cytosine (a) and of two fluoropy-
rimidines, 5-fluorocytosine (b), and 5-fluorouracil (c).

murine models of cryptococcosis and candidiasis [8]. Several
years later 5-FC was successfully used for the treatment of
systemic candidiasis and of cryptococcal meningitis [9].

5-FC possesses a broad range of activity. This drug is
active against Candida and Cryptococcus genera. 5FC activity
on Phialophora, Cladosporium, and Aspergillus genera is
much less limited. 5-FC is also active against protozoa
belonging to Leishmania and Acanthamoeba genus [10].

Due to its high hydrosolubility and small size, 5-FC
possesses interesting pharmacokinetic properties, since it
diffuses rapidly throughout body even when orally admin-
istered [12]. Generally, it produces negligible side effects,
despite some severe adverse effects, such as hepatotoxicity
or bone marrow lesions [11, 13–15], occurring in rare
cases [16]. Surprisingly, these side effects are identical to
those observed with 5-FU treatment, despite the fact that
humans do not possess a cytosine deaminase enzyme that
is responsible for the conversion from 5-FC into 5-FU in
fungal cells [17, 18]. Some data suggest that the intestinal
microbiome could be responsible for the 5-FU production
and the observed side effects [19].

Despite its numerous pharmacological advantages, the
use of 5-FC in clinical practice is decreasing because of
the frequent occurrence of innate or acquired resistance to
this drug in fungal pathogens. Thus, with few exceptions
[20], 5-FC is never used as monotherapy but always in
combination with another antifungal, such as amphotericin
B [21, 22]. However, the elevated renal and liver toxicities
of amphotericin B, that further increase 5-FC hepatotoxicity,
has led to combination therapy of 5-FC more frequently with
azole drugs.

5-FC itself has no antifungal activity, and its fungistatic
properties are dependent upon the conversion into 5-FU
[16, 20, 23]. The drug rapidly enters the fungal cell through
specific transporters, such as cytosine permeases or pyrim-
idine transporters [24], before it is converted into 5-FU by
the cytosine deaminase [16]. 5-FU itself is converted into 5-
fluorouracil monophosphate (5-FUMP) by another enzyme,
uridine phosphoribosyltransferase (UPRT). 5-FUMP can
then be either converted into 5-fluorouracil triphosphate,
which incorporates into RNA in place of UTP and inhibits
protein synthesis, or converted into 5-fluorodeoxyuridine
monophosphate, which inhibits a key enzyme of DNA
synthesis, the thymidylate synthase, thus inhibiting cell
replication (Figure 2) [16, 25, 26].

2.2.2. Polyenes. More than 200 molecules belonging to the
chemical class of polyenes have an antifungal activity, most
of them being produced by Streptomyces bacteria. However,
only three possess a toxicity allowing their use in clinical
practice: amphotericin B (AmB), nystatin, and natamycine.

Streptomyces bacteria synthesize polyenes through a
gene cluster phylogenetically conserved within these species.
This cluster contains genes coding for several polyke-
tide synthases, ABC (ATP-binding cassette) transporters,
cytochrome P450-dependent enzymes, and enzymes respon-
sible for the synthesis and the binding of the mycosamine
group [27]. Although it is possible to synthesize polyenes
chemically, they are still produced from Streptomyces cultures
for economic reasons.

Polyenes are cyclic amphiphilic organic molecules known
as macrolides. Most of them consist of a 20 to 40 carbons
macrolactone ring conjugated with a d-mycosamine group.
Their amphiphilic properties are due to the presence of
several conjugated doublebounds on the hydrophobic side
of the macrolactone ring, and to the presence of several
hydroxyl residues on the opposite, hydrophilic side (Figure 3)
[28].

Polyene drugs target ergosterol, the main sterol com-
ponent of fungal membranes. Their amphiphilic structure
allows them to bind the lipid bilayer and form pores.
Magnetic nuclear resonance data suggest that eight AmB
molecules bind eight ergosterol molecules through their
hydrophobic moieties, with their hydrophilic sides forming
a central channel of 70–100 nm in diameter (Figure 4). Pore
formation promotes plasma membrane destabilization, and
channels allow leakage of intracellular components such as
K+ ions, responsible for cell lysis [28].

While structural data suggest that polyenes target ergos-
terol, and despite the fact that their binding to ergosterol was
experimentally demonstrated [29–31], controversy remains
over a possible intracellular mode of action. Some research
has suggested that polyene drugs are able to induce an
oxidative stress (particularly in C. albicans [32, 33]) as well
as their activity seems to be reduced in hypoxic conditions
[34].

Polyenes possess a lower but non-negligible affinity for
cholesterol, the human counterpart of ergosterol. This slight
affinity for cholesterol explains the high toxicity associated
with antifungals and is responsible for several side effects
[28]. For this reason, only AmB is given systemically, while
nystatin and natamycin are only used locally or orally. These
two last molecules fortunately possess a very limited sys-
temic activity, since their absorption trough gastrointestinal
mucosa is almost nonexistent [35, 36].

For these reasons, AmB is the most used polyene antifun-
gal for systemic infections. Due to its high hydrophobicity
and poor absorption through the gastrointestinal tract, it is
necessary to administer AmB intravenously [28]. However,
AmB administration is accompanied with adverse effects,
mostly at the level of kidneys and liver. New AmB formu-
lations, such as liposomal AmB or lipid AmB complexes,
minimize such side effects [37].

For more than 40 years, AmB was one of the goldstan-
dards for the treatment of systemic fungal infections due
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Figure 3: Chemical structures of amphotericin B (a), nystatin (b), and natamycin (c), three main polyene drugs.

to the low occurrence of acquired or innate resistance to
this drug and also because of its broad range of activity
[38]. Indeed, AmB is active against most yeasts and fil-
amentous fungi. It is recommended for the treatment of
infections caused by Candida, Aspergillus, Fusarium, Mucor,
Rhizopus, Scedosporium, Trichosporon, Cryptococcus, and so
on. AmB is also widely used to treat parasitic infections
such as leishmaniasis and amibiasis [28]. Natamycin and
nystatin are active against fungi belonging to the genera
Cryptococcus, Candida, Aspergillus, and Fusarium. If nys-
tatin is not used to treat molds infections, this drug is

frequently used for the treatment of cutaneous, vaginal,
and esophageal candidiasis, and natamycin can be used
for the treatment of fungal keratosis or corneal infections
[35].

2.2.3. Azoles. Azoles are by far the most commonly used anti-
fungals in clinical practice, and consequently, they are also
the mostly studied by the scientific community regarding
their mode of action, their pharmacological properties, and
the resistance mechanisms developed by microorganisms.
Azole antifungals are also largely studied by pharmaceutical
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Figure 4: 3D model of pore formed by amphotericin B into lipid
bilayer of the fungal plasma membrane, adapted from Baginski et
al. [29]. Amphotericin B: white (H), green (C), red (O), and blue
(N); ergosterol: pink.

companies, who seek to enhance their efficacy and to develop
the perfect antifungal.

Azoles are cyclic organic molecules which can be divided
into two groups on the basis of the number of nitrogen atoms
in the azole ring: the imidazoles contain two nitrogen atoms,
and the triazoles contain three nitrogen atoms (Figure 5)
[39].

Azole drugs target the ergosterol biosynthetic pathway
by inhibition of a key enzyme, the lanosterol 14alpha de-
methylase, encoded be the ERG11 gene. This inhibition
occurs through the binding of the free nitrogen atom of
the azole ring to the iron atom of the heme group of
the enzyme. The resulting accumulation and metabolism of
14alpha methylated sterol species leads to the synthesis of
toxic compounds, which are unable to successfully replace
ergosterol [40].

The first azole was synthesized in 1944 by Woolley [41],
but it was not until 1958 that scientific community began to
consider azoles as potential antifungal agents. In late 1960s,
clotrimazole, econazole, and miconazole became available
for treatment [42]. However, their use was restricted to
external application due to their high toxicity when adminis-
tered orally [43, 44]. In 1968, miconazole became the first
antifungal available for parenteral injection, but due to its
toxicity and relatively limited range among fungal species
[45], its use decreased until it was no longer commercialized.

In 1981, the Food and Drug Administration (FDA)
approved a new antifungal, ketoconazole, developed by
Heeres and his coworkers [46]. This drug was the only anti-
fungal available for treatment of systemic fungal infections
caused by yeasts for the following ten years. However, there
are several drawbacks to this drug. It is poorly absorbed
when administered orally, and no ketoconazole form has
ever been developed for intravenous injection. Moreover,
it cannot cross the cerebrospinal barrier and is less active
in immunosuppressed patients [42, 47–49]. It causes some
severe side effects such as a decrease in testosterone or

glucocorticoids production and liver and gastrointestinal
complications [50–52]. Lastly, numerous interactions with
other drugs were described. For these reasons, the triazoles
were developed.

Fluconazole became available for use by clinicians in
1990 and provided many advantages over the use of imi-
dazoles. Fluconazole is highly hydrosoluble and therefore
can be easily injected intravenously. It is almost completely
absorbed through the gastrointestinal tract, and it diffuses
throughout the whole body, including cerebrospinal fluid
[53, 54]. Fluconazole is suitable for the treatment of super-
ficial candidiasis (oropharyngal, esophageal, or vaginal), dis-
seminated candidiasis, cryptococcal meningitis, coccidioido-
mycosis, and cutaneous candidiasis. Due to its good pharma-
cokinetic properties as well as its broad spectrum of activity,
fluconazole was the gold-standard treatment of fungal infec-
tions during the 1990s. Unfortunately, the overprescription
of this drug by physicians for prophylaxis or treatment
led to an increase in resistance to azole drugs. Moreover,
fluconazole is almost ineffective against most molds.

Itraconazole was approved and made available by the
FDA in 1992. This triazole possesses a broad spectrum of
activity across fungal species comparable to this of keto-
conazole and wider than fluconazole. Moreover, it is less
toxic than ketoconazole and replaced it for treatment of
histoplasmosis, blastomycosis, and paracoccidioidomycosis.
Contrary to fluconazole, it is also used for the treatment of
infections due to species belonging to the genera Aspergillus
and Sporothrix [55]. However, itraconazole is hydrophobic
and is thus more toxic than fluconazole. Itraconazole is only
indicated for the treatment of onychomycosis, of superficial
infections, and in some cases for systemic aspergillosis
[56]. A new itraconazole formulation with an enhanced
absorption and a decreased toxicity was approved by FDA
in 1997 [57]. An injectable formulation of itraconazole was
made available in 2001 [58].

Fluconazole and itraconazole are still not the perfect
antifungals, since they have some nonnegligible drug inter-
actions with such drugs that are used in chemotherapy or
with AIDS treatment. These interactions can result in a
decrease in azole concentration or even to an increase in
toxicity [59]. Furthermore itraconazole and fluconazole are
ineffective against some emerging pathogens like Scedospo-
rium, Fusarium, and Mucorales, and resistance to azoles is
increasingly reported [60].

So-called new generation triazoles have also been devel-
oped. Voriconazole and posaconazole were approved by FDA
in 2002 and 2006, respectively. Ravuconazole is currently
under clinical trial phase of drug development. They possess
a wide range of activity, since they are active against Candida,
Aspergillus, Fusarium, Penicillium, Scedosporium, Acremo-
nium, and Trichosporon, and dimorphic fungi, dermato-
phytes, and Cryptococcus neoformans [61, 62]. While new
generation triazoles were shown to be more effective against
Candida and Aspergillus [62], compared to classical triazoles
their side effects and drug interactions are similar to those
observed with fluconazole and itraconazole [63]. Likewise,
fungal isolates resistant to classical triazoles are also cross-
resistant to new generation triazoles.
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2.2.4. Echinocandins. Echinocandins constitute the only new
class of antifungals made available for clinicians to fight
invasive fungal infections within the past 15 years [64]. Three
echinocandins were currently approved for clinical use by the
FDA in United States and later by the European Agency for
the Evaluation of Medicinal Products (EMEA): caspofungin

in 2001 by the FDA and in 2002 by the EMEA, micafungin in
2005, and lastly anidulafungin in 2006.

Echinocandins are synthetic derivatives of lipopeptides
(Figure 6). These lipopeptides are naturally produced by sev-
eral fungal species: Aspergillus rugulovalvus synthesizes cas-
pofungin B, Zalerion arboricola synthesizes pneumocandin
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B, and Papularia sphaerosperma synthesizes papulacandin.
Echinocandins are noncompetitive inhibitors of β(1-3)-
glucan synthase, an enzyme that catalyzes the polymerization
of uridine diphosphate-glucose into β(1-3) glucan, one of
the structural components responsible for the maintenance
of fungal cell-wall integrity and rigidity [65, 66]. β(1-3)-
glucan synthase consists of an activating and a catalytic
subunit encoded by FKS genes. In most fungi, two FKS
genes are found within the genome. It has been shown
in the model organism Saccharomyces cerevisiae that FKS1
is expressed during the vegetative growth phase and FKS2
during sporulation [67]. Echinocandins are able to inhibit
both isoforms of the enzyme [68]. Inhibition of β(1-3)-
glucan synthase leads to cell wall destabilization and to the
leakage of intracellular components, resulting in fungal cell
lysis [69].

These drugs are poorly absorbed in the gastrointestinal
tract because of their high molecular weights and are there-
fore only used intravenously. Their pharmacologic properties
are one of the reasons responsible for the approval of
echinocandins by the FDA and the EMEA. These molecules
possess a low toxicity (very rare side effects were reported)
and are slowly degraded, and a daily injection is sufficient,
and contrary to other antifungals, interactions between echi-
nocandins and other drugs are rare [64]. Combined therapy
between echinocandins and AmB or another azole often
leads to a synergistic effect or at least to an additive effect
[70, 71].

Another reason for which the echinocandins were ap-
proved is their activity spectrum. Indeed, echinocandins are
active against most fungal species, including Candida and
Aspergillus. For still unclear reasons, these molecules are
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Figure 7: Schematic representation of S. cerevisiae cell wall, adapted
from Stone et al. [69].

fungicidal in Candida but only fungistatic in Aspergillus [72,
73]. Moreover, fungicidal activity of echinocandins is species
and isolate dependent within the Candida genus [74]. There
exist several species within the fungal kingdom for which the
echinocandins are ineffective. Such species include Crypto-
coccus neoformans [75] or species belonging to Trichophyton
and Fusarium genera. Other species have an intermedi-
ate susceptibility to echinocandins, such as Scedosporium
apiospermum, S. prolificans, and Cladophialophora bantiana
[72]. However, echinocandins constitute a good alternative
to fight against fungal infections and most of treatment of
infections for which classical therapy with azoles or polyenes
failed are successfully managed with echinocandins [64].
Therefore, caspofungin is indicated for the treatment of
candidemia and invasive candidiasis, for fungal infection
prophylaxis, and for the treatment of invasive aspergillosis
for which itraconazole, voriconazole, or AmB is ineffective.
Micafungin is used for treatment of candidemia and is
particularly indicated for fungal infection prophylaxis in
bone-marrow transplant patients. Anidulafungin has no
particular indications, but its main advantage is its slow
degradation in the body without liver or kidney involvement,
thus it can be used in patients with liver and/or kidney
insufficiencies [76].

What makes echinocandins unique is their fungal target.
For many years, the fungal cell wall was considered to be a
promising target for the development of new antifungal
molecules [68]. The fungal cell wall contains elements that
have no equivalents in human [77]. Its integrity is necessary
for the fungal survival, since it provides a physical barrier
against the host immune cells or against other microorgan-
isms. Cell wall integrity is also responsible for osmolarity
homeostasis and the maintenance of cell shape and size. Cell
wall is also indispensable to essential enzymatic reactions
and as an important role in cell-cell communication. The
internal layer of the cell wall is composed of a β(1-3)-glucans
and chitin web, in which are included some mannopro-
teins, while external layer is composed of mannoproteins
(Figure 7) [77].

2.2.5. Other Antifungal Agents. Considering that the ergos-
terol biosynthetic pathway requires several enzymes that are
unique to fungi, they constitute good targets for antifungal

therapy, and three minor ergosterol biosynthesis inhibitors
are used as topical antifungals. The allylamines and thio-
carbamates, such as terbinafine and tolnaftate, both inhibit
the ERG1-encoded enzyme, squalene epoxidase. The mor-
pholines such as amorolfine act by inhibiting two different
enzymes of the pathway, the Δ7,8-isomerase (encoded by
ERG24) and the C14-reductase (encoded by ERG2). Despite
their wide spectrum of activity, these antifungal agents are
essentially used to treat dermatophyte infections such as
tinea capitis, tinea pedis, and onychomycosis, because they do
present numerous side effects.

Ciclopirox is also used as a topical antifungal agent,
but its mode of action remains poorly understood in fungi
[78, 79]. Another drug, griseofulvin, inhibits mitosis by
interfering with microtubules function [80].

2.3. Incidence of In Vitro Resistance in Fungal Infection. The
incidence of fungal infections has drastically increased over
the past three decades and was simultaneously accompanied
by increased acquired and innate resistance to antifungal
drugs. However, antifungal resistance occurrence has to be
considered independently for each antifungal class and for
each fungal genus. Moreover, epidemiological data regarding
incidence of resistance among fungal species is not identically
distributed worldwide [81–83]. Lastly, clinical resistance,
defined as the treatment failure in the patient, does not
always correlate with in vitro resistance, measured as an
increase in minimal inhibitory concentration of a drug.
In this paper, only in vitro resistance incidence will be
described.

2.3.1. 5-Fluorocytosine. 5FC resistance is a very common
phenomenon [9, 16, 84]. The development of resistance
can be intrinsic, as is the case for C. tropicalis, or acquired
through the selection of resistant mutants after antifungal
exposure. Within the Candida genus, 7% to 8% of clinical
isolates are resistant to 5FC, and this frequency increases to
22% when only nonalbicans Candida species are considered.
One to two percent of Cryptococcus neoformans clinical
isolates are resistant to 5FC [85]. Filamentous fungi such
as Aspergillus and dermatophytes are not susceptible to
5FC.

2.3.2. Polyenes. Despite the reported increase of polyene re-
sistance, it remains a relatively rare event in clinical isolates of
fungal pathogens [86], probably in relation with their mode
of action, and the absence of systematic and standardized
determination of susceptibility of clinical isolates [87]. The
incidence of strains resistant to polyenes may thus be
largely underestimated. Most fungal species are considered
as susceptible to polyene drugs. However, some of them are
intrinsically poorly susceptible to these antifungals, such as
C. glabrata, Scedosporium prolificans, or Aspergillus terreus
[38]. Some species are more prone to acquire polyene resis-
tance. Among yeasts, one may cite C. lusitaniae [88, 89], C.
guilliermondii [88], C. krusei [38], and Trichosporon beigelii
and among filamentous fungi Scedosporium apiospermum
and Sporothrix schenckii [90, 91].
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Table 2: Nature, target, mode of action, and fungal resistance mechanisms of the major antifungal drugs used in human therapy.

Antifungal agent Mode of action and cellular target Mechanism of resistance

polyenes binding to ergosterol
absence of ergosterol (loss of function mutation
in ERG3 or ERG6)

decrease of ergosterol content in cells

azoles

inhibition of cytochrome p450 function:
14α-lanosterol demethylase (ERG11) sterol Δ22

desaturase (ERG5)

efflux mediated by multidrug transporters

decrease of affinity in Erg11p by mutations

upregulation of ERG11

alterations in the ergosterol biosynthetic pathway

allylamines inhibition of squalene epoxidase (ERG1) unknown

morpholines
inhibition of sterol Δ14 reductase (ERG24) and the
Δ7–8 isomerase (ERG2)

unknown

5-fluorocytosine inhibition of nucleic acids synthesis
defect in cytosine permease

deficiency or lack of enzymes implicated in the
metabolism of 5-FC

deregulation of the pyrimidine biosynthetic
pathway

echinocandins inhibition of β-1,3 glucan synthase (FKS1&2)
alteration of affinity of echinocandins for
β(1,3)-glucan synthase

2.3.3. Azoles. The early 1990s was the start of a drastic
increase in resistance among fungal clinical isolates. How-
ever, the improvement of antifungal therapeutic strategies
throughout the last several years has helped to stabilize
resistance frequencies. Increase in azoles use selected less
susceptible species as well as those able to develop resistance.
This led to a shift in the pathogenic fungal species encoun-
tered in clinic.

2.3.4. Echinocandins. Echinocandins resistance is a rare
event [92]. For example, it is estimated that more than
97% of clinical isolates belonging to the Candida genus are
susceptible to these drugs [93, 94]. Contrary to acquired
resistance in other fungi, intrinsic echinocandin resistance in
Cryptococcus neoformans is not linked with a FKS1 or FKS2
mutation. Indeed, C. neoformans β(1–3)-glucan synthase is
inhibited by echinocandins, but this yeast is able to grow
in the presence of high concentrations of these drugs. C.
neoformans resistance to echinocandins seems to be due to
a particular cell-wall polysaccharides composition in this
species [95].

2.3.5. Incidence of In Vitro Resistance on Patient Care. As
antifungal in vitro resistance poorly correlates with clinical
outcome, better attention was needed to define parameters
that produced reproducible and reliable intra- and interlab-
oratory results. For this purpose, two standardized methods
for the testing of yeast and mould isolates (CLSI and Eucast)
are recognized as the gold standards for drug susceptibility
testing [96–98]. These standardized approaches produce sus-
ceptibility results comparable between laboratories, which
may help to establish breakpoints for antifungal agents
(see [96–98] for details). These breakpoints, defined as
susceptibility ranges, together with pharmacokinetic and
pharmacodynamic analyses and identification of resistance
mechanisms, help to assess the in vivo activity of antifungal

agents in invasive disease and therefore clinical outcome
[99, 100].

3. Drug Resistance Molecular Mechanisms

Microorganisms develop mechanisms to counteract the
fungicidal or fungistatic effects of all antifungals classes
that are based on three major mechanisms, namely, (i)
reducing the accumulation of the drug within the fungal
cell, (ii) decreasing the affinity of the drug for its target,
and (iii) modifications of metabolism to counterbalance the
drug effect (Table 2). The molecular mechanisms leading to
azole resistance have been most studied in yeast, and taking
them as an example, such mechanisms are divided into
four categories (Figure 8) [101]: (i) decrease in azole affinity
for their target, (ii) increase in azole target copy number,
(iii) alteration of ergosterol biosynthetic pathway after azoles
action, and (iv) decrease in intracellular azole accumulation.
In some highly resistant clinical isolates, sampled from long-
term treated patients, several mechanisms of resistance are
often combined [102, 103]. This increase in resistance along
antifungal treatment is due to the sequential acquisition of
different mechanisms [104–106]. In the following section,
the molecular basis of the resistance mechanisms to antifun-
gals will be described.

3.1. Increase of Drug Efflux

3.1.1. ABC Transporters. CDR1 and CDR2 (Candida drug re-
sistance 1 and 2) from C. albicans are the two major ABC
transporters involved in azole resistance in this species.
CDR1 and CDR2 can be coordinately upregulated in some
azole-resistant strains or by exposure to a wide vari-
ety of chemically unrelated inducers such as terbinafine,
amorolfine, fluphenazine, or steroid hormones. Several cis-
acting regulatory elements responsible for the regulation of
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Figure 8: Mechanisms of resistance to azole compounds in C. albicans.

these two genes were identified by several investigators [107–
111]. Promoter deletion studies have revealed 5 different
regulatory elements in the CDR1 promoter including a
BEE (basal expression element), a DRE (drug responsive
element), two SREs (steroid responsive element), and a
NRE (negative regulatory element) (see Table 3 for details).
Internal deletions of the BEE and DRE motifs in the CDR1
promoter affect basal CDR1 expression and drug-induced
expression, respectively [107]. SRE1 and SRE2 were reported
to be involved in the response to steroid hormones: with
SRE1 responding only to progesterone and SRE2 to both
progesterone and β-oestradiol [108]. Finally, the deletion of
the NRE motif leads to an increase in the basal expression of
CDR1 [110, 111]. In contrast to CDR1, the CDR2 promoter
contains only a DRE motif (Table 3) [107]. Among these
different cis-acting elements, DRE was the only element
involved in constitutive high expression and in transient
upregulation of both CDR1 and CDR2. This DRE sequence
was functionally analyzed by systematic mutation each base
of the initially described DRE sequence [107, 112]. The data
obtained from systematic mutational studies are in agree-
ment with ChIP-Chip assays performed with the trans-acting
factor binding to the DRE [113]. In other Candida species,
functional homologues to CDR1 and CDR2 were described
as involved in drug resistance. In C. glabrata, CgCDR1 and

CgCDR2 (formerly denoted PDH1) as well as SNQ2 (another
ABC transporter coregulated with CgCDR1 and CgCDR2)
are upregulated in azole-resistant clinical isolates and partici-
pate in azole resistance [114–118]. All the three genes contain
cis-acting elements in their promoters, so-called PDRE.
These elements are similar to those described in S. cerevisiae
for PDR5, an ABC transporter involved in drug resistance of
S. cerevisiae [119, 120]. Disruptions of CgCDR1 and CgCDR2
lead to hypersusceptibility to fluconazole, cycloheximide,
and chloramphenicol [115, 117]. In both C. albicans and
C. glabrata, CDR1 was shown to be the main contributor
in azole-resistance among the ABC-transporters [121–123].
Other ABC-transporters from C. dubliniensis (CdCDR1 and
CdCDR2) [124, 125], C. krusei (ABC1 and 2) [126, 127], C.
tropicalis (CDR1-homologue), and C. neoformans (CnAFR1,
AntiFungal Resistance 1) were reportedly upregulated in
azole-resistant isolates. In A. fumigatus, atrF, and AfuMDR4
are upregulated in itraconazole-resistant strains [128–130].
The cis-acting regulatory elements of these genes are still
awaiting in-depth dissection analysis. The overexpression of
ABC-transporters have also been identified as a resistance
mechanism to azole in Aspergillus nidulans [131, 132].

The identification of trans-acting factors regulating ABC-
transporters in pathogenic fungi relied first on the well-
described S. cerevisiae PDR network as a model [138–142].
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Table 3: Cis-acting elements involved in drug resistance.

Organism Gene Regulatory element
Position
respectively to
the ATG

Trans-acting
factor

Name Sequence

A
B

C
tr

an
sp

or
te

rs

BEE — −960 to −710 ?

DRE ACGGATATCGGATATTTTTTT −460 to −439 Tac1

CDR1 NRE CTGATTGA −335 to −328 ?

C. albicans SRE1 GGAGTAGCAAGTGTGTCAAGAACCTGAATTC −740 to −711 ?

SRE2 TTATCCGAAACGCTTTACTCCTCTATTATT −691 to −661 ?

CDR2 DRE ACGGAAATCGGATATTTTTTT −221 to −201 Tac1

C. glabrata
CgCDR1 PDRE TTCCGTGGAA −1201 to −1192 CgPdr1

CgCDR2 PDRE TTCCGTGGAA −560 to −551 CgPdr1

M
FS

tr
an

sp
or

te
rs HRE/YRE — −561 to −520 Cap1/?

BRE/
MDRE

ACGGTAAAATCCTAATTGGGAAAAATACCGAGAATGA −296 to −260 Mcm1/Mrr1

C. albicans CaMDR1 AR1 — −397 to –301 ?

AR2 — −588 to –500 ?

AR3 — −287 to −209 ?

C. glabrata CgFLR1 YRE3 TTAGTAA −372 to −366 CgAp1

E
R

G
11 C. albicans ERG11 ARE AATATCGTACCCGATTATGTCGTATATT −224 to −251 Upc2

C. glabrata ERG11 SRE Upc2A

Since the Zn2-Cys6 transcription factors PDR1/PDR3 are
master regulators of this network in S. cerevisiae, an in silico
search for PDR1/PDR3 homologues in fungal genomes was
performed. Data so far available found only one functional
homologue in C. glabrata [120]. CgPdr1p has 40% and 35%
identity with Pdr1p and Pdr3p, respectively [143], and was
able to complement a pdr1Δ S. cerevisiae mutant strain.
Likewise, PDR1 deletion in C. glabrata leads to a loss of
CgCDR1 and CgCDR2 regulation and to a sharp decrease
in azole MICs. [144]. Three studies have identified separate
gain-of-function mutations in CgPDR1 alleles of azole-re-
sistant strains which are responsible for constitutive high
expression of CgCDR1, CgCDR2, SNQ2, and CgPDR1 itself
(Figure 9) [120, 145, 146].

Attempts to identify C. albicans PDR1/3 functional hom-
ologues were undertaken to complement the absence of
PDR1/PDR3 in S. cerevisiae by genetic screens. Several
genes were identified including FCR1 and FCR3 (FluConazol
Resistance) [147–149] and SHY1-3 (Suppressor of Hyper-
susceptibility) [150] (formerly, resp., named CTA4, ASG1
and ATF1). FCR1, CTA4, ASG1, and ATF1 encode Zn2-Cys6
transcription factors, while FCR3 encodes a bZip transcrip-
tion factor. Even though FCR1 was able to restore PDR5
expression in a pdr1Δ/pdr3Δ S. cerevisiae mutant strain, its
disruption in C. albicans resulted in decreased susceptibility
to fluconazole, suggesting that FCR1 acts as a negative
regulator of fluconazole susceptibility [147]. Nevertheless,
the target genes of FCR1 in C. albicans are not yet known. Up
to now, the relevance of FCR3 in azole resistance has not been
addressed in C. albicans. CTA4, ASG1, and ATF1 expression
in S. cerevisiae could restore PDR1/PDR3 functions in S.
cerevisiae; however, their disruption in C. albicans did not

affect azole susceptibility and expression of CDR1 and
CDR2 [150]. An additional regulator of CDR1 was identified
by a genetic screen in S. cerevisiae with a LacZ reporter
system under the control of the CDR1 promoter. A C.
albicans gene was subsequently identified that encodes for a
protein CaNdt80p similar to the S. cerevisiae meiosis specific
transcription factor Ndt80p. Disruption of CaNDT80 in C.
albicans was shown to affect basal expression levels of CDR1
in C. albicans and reduce the ability of this gene to be
upregulated in the presence of miconazole [151, 152]. More
recently, Ndt80p was shown to have a global effect on azole-
resistance through is regulon which includes many genes
involved in ergosterol metabolism [153].

The release of the entire data from the C. albicans genome
sequence has encouraged other approaches for identifying
trans-regulators of CDR1 and CDR2. Since the DRE motifs
present in the promoter of CDR genes contains two CGG
triplets that are potentially recognized by Zn2-Cys6 tran-
scription factors (TF) [154–157], it was likely that one of
the 78 ORFs encoding proteins with Zn2-Cys6 signatures
could be involved in the regulation of CDR1 and CDR2.
Interestingly, genome data revealed that three of these ORF
(the so-called “zinc cluster”) were located in tandem close
to the mating type locus (MTL) at a distance of 14 kb
[158]. Homozygosity at the MTL locus is associated with the
development of azole resistance in C. albicans [159], thus
indicating that one the genes of the zinc cluster could control
CDR1 and CDR2 expression. As a matter of fact, deletion
of one of these Zn2-Cys6 TF-encoding genes in an azole-
susceptible strain led to increased drug susceptibility and loss
of transient CDR1 and CDR2 upregulation in the presence
of inducers. This gene was named TAC1 for transcriptional
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Figure 9: Point mutations affecting antifungal susceptibility in clinical isolates of C. albicans. Indicated functional domains were determined
using either Prosite or Pfam tools. Only mutations which involvement in antifungal resistance was experimentally demonstrated are indicated
by a red stick. Hot spot mutations in Erg11 and Fks1 are delimitated by gray boxes (Point mutation localization references: Tac1 [112], Mrr1
[133], Upc2 [134], Erg11 [135], Fks1 [136], Fur1 [137]). Drawings of the proteins were made with Prosite My Domain-Image Creator tool.

activator of CDR genes [158]. Consistent with the mutant
phenotype, Tac1p can bind in vitro and in vivo to the DRE
[112, 158]. However, TAC1 is not involved is the basal
expression of CDR1 controlled at least by the BEE [158].
Hyperactive alleles that confer constitutive high CDR1 and
CDR2 expression, and therefore drug resistance to a tac1Δ/Δ
mutant strain of TAC1, were isolated from azole-resistant
strains. Wild-type and hyperactive alleles differed by point
mutations defined as gain-of-function mutations (GOF). Up
to now, at least 15 GOF were described in TAC1 at 12
different positions [112, 158, 160, 161] (Figure 9). Wild-type
and hyperactive alleles are co-dominant for the expression
of their phenotypes [112, 158, 160, 161], and because of
this property, high drug resistance levels correlate with
homozygosity of hyperactive alleles. Interestingly, the TAC1
locus and the associated MTL are rendered homozygous
in the development of azole resistance. Such events are
accomplished by rearrangements on chromosome 5 includ-
ing mitotic recombinations on one chromosome 5 arm
or the loss of one chromosome 5 homologue followed by
duplication [160]. Increase of resistance can still be obtained
by isochromosome formation with the left arm of the
chromosome 5. This allows for the increase of drug resistance
genes present on this chromosome (among which TAC1 and
ERG11) and thus can contribute to drug resistance increase
[160–164]. Up to this date, regulation of Tac1p activity
remains unknown.

3.1.2. Major Facilitator Superfamily (MFS) Transporters. In
C. albicans, MDR1 (MultiDrug Resistance 1, previously
named BENr for Benomyl resistance) is a transporter cur-

rently shown to be the only MFS transporter involved in
azole resistance of clinical isolates [165, 166]. MDR1 is
not usually expressed at detectable levels in fluconazole-
susceptible isolates, but is constitutively upregulated in
some fluconazole-resistant isolates. As for CDR1 and CDR2,
MDR1 can be specifically transiently upregulated by drugs
such as benomyl, cycloheximide, methotrexate, and several
oxidizing agents [165]. MFS transporters are known to
be involved in azole resistance of other fungal species.
Homologues of MDR1 in C. dubliniensis and C. tropicalis,
named CdMDR1 and CtMDR1, respectively, are upregulated
in azole-resistant strains [167–170]. In A. fumigatus, in vitro-
generated itraconazole-resistant isolates show constitutive
high expression level of the MFS transporter, AfuMDR3
[128]. The role of cis-acting regulatory elements in resistance
was investigated in the C. albicans MDR1 gene by separate
studies. Two of the studies undertaken by Rognon et al.
and Riggle and Kumamoto identified a similar region, called
BRE (benomyl response element) or MDRE (MDR1 drug
resistance element) respectively. This region is responsible
for the constitutive high expression of MDR1 in fluconazole-
resistant isolates [171, 172] and was also shown to be
responsible for the response to benomyl [172]. A second
regulatory element involved in the response of MDR1 to
oxidative stress is designated HRE (H2O2 response Element).
This region contains two YRE (YAP1 response element)
motifs [173], one perfectly conserved (-532 TTAGTAA-
526) and the other with two mismatches (-549 TAACTAT-
543). Interestingly, the HRE is not required for constitutive
upregulation of MDR1 in azole-resistant isolates. A separate
study undertaken by Hiller et al. described three distinct
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cis-activating regions (1, 2, and 3) in MDR1. Region 2, which
overlaps with encompassing the HRE, was implicated in
benomyl-dependent MDR1 response [174]. Region 1 and
3, close to the BRE/MDRE region, were required for a
constitutive high expression of MDR1 in an azole-resistant
isolate.

MDR1 expression was shown to be regulated by at least
four trans-acting factors: Cap1p [175–177], Mrr1p [178,
179], Upc2p [180, 181], and Mcm1p [182]. Nucleotide
sequence data of cis-acting elements has provided some
clues to their identification. When comparing the MDR1 cis-
acting elements with existing transcription factor binding
site databases, several putative trans-acting elements were
identified. As mentioned above, the HRE of MDR1 contains
Yap1p binding sites. The bZip transcription factor Cap1
was shown to directly interact with the cis-acting domains
[177] and to be involved in drug resistance [175]. The
BRE/MDRE motif contains a perfect match for the Mads-
box transcription factor Mcm1p in its sequence. Mogavero
et al. showed that Mcm1p acts as a coregulator for Cap1 and
Mrr1p and is not required for MDR1 upregulation by H2O2

but is required for full MDR1 induction by benomyl [182].
Genome-wide transcriptional analyses of clinical isolates that
exhibit MDR1upregulation permitted the identification of
a Zn2-Cys6 transcription factor that is coregulated with
MDR1 [179]. Deletion of MRR1 in azole-resistant strains
abolishes the constitutive overexpression of MDR1, therefore
identifying Mrr1p as a central regulator of MDR1. Like for
TAC1, two types of alleles were distinguished for MRR1.
Wild-type alleles are needed for a transient upregulation of
MDR1 by drug exposure. In contrast, hyperactive alleles con-
fer constitutive overexpression of MDR1 and therefore also
confer increased resistance to fluconazole [179]. Wild-type
and hyperactive alleles differ by GOF mutations and until
now, 14 GOF mutations at 13 positions were described in
hyperactive Mrr1 [180] (Figure 9). Interestingly, hyperactive
Mrr1 proteins were also shown to be able to confer Mdr1p-
independent drug resistance probably through the regulation
of oxydoreductases implicated in the detoxification of yeast
cells after fluconazole exposure [183]. A blast analysis in C.
dubliniensis allowed for the identification of a gene encoding
for a protein that shares 91% of identity with Mrr1 of C.
albicans [133] and able to complement a CaMrr1Δ mutant
strain. The properties of CdMrr1 are similar to those of
CaMrr1 and two types of alleles can also be distinguished.
Until now 5 GOF mutations were identified and analyzed in
hyperactive CdMrr1 proteins [133].

3.2. Target Alteration

3.2.1. Target Mutation. Another mechanism by which fungal
pathogens are able to develop resistance is a decrease in
antifungal affinity for their respective targets, without a
major decrease in target activity. Such is the case for azole
drugs, in which a decreased affinity between azole and a
mutated lanosterol 14α-demethylase, can lead to resistance.
A point mutation in the ERG11 gene that codes for lanosterol
14α-demethylase leads to the complete inhibition of the
binding capacity of the azole drug to its target [184, 185].

Numerous of these point mutations identified in ERG11
were previously described, and their involvement in azole
resistance was experimentally demonstrated for fungi such
as Cryptococcus neoformans [186], C. albicans [187], (see also
Figure 9), and C. tropicalis [167]. In Aspergillus fumigates,
CYP51A and CYP51B encode two distinct forms of 14α-
demethylase and mutations in the first of these two genes
seem to be the most frequent mechanism responsible for
azole resistance in clinical isolates. In this species, it was
demonstrated that the nature of the nucleotide mutation,
and therefore, the nature of the amino acid substitution,
influences the development of resistance to different azole
agents [188–192]. Interestingly, it was demonstrated that
some clinical isolates share common mutations in Cyp51A
with environmental azole-resistant strains, suggesting that
some clinical azole resistant isolates might originate from the
environment [193–195].

While target site alteration is far from being the most
significant mechanism of resistance to azole drugs, it is
the only known mechanism by which fungal pathogens are
able to develop resistance to echinocandin drugs. This was
demonstrated for S. cerevisiae and C. albicans. Echinocandin
resistance is systematically associated with point mutations
in either FKS1 or FKS2 [196, 197]. Analysis of the loca-
tion of these mutations within the FKS genes led to the
characterization of two regions, the so-called “hot spots”,
integrity of which seems to be essential for enzyme activity
[136]. In contrast to azoles and ERG11, mutations in FKS1
did not alter the β-glucane synthase affinity for its target
but decreased only the enzyme processivity [198]. Hot-spot
mutations have also been identified in other species, such
as C. glabrata [196, 199], C. krusei [200], Scedosporium
apiospermum [201], and A. fumigatus [202, 203] (Figure 9).

Numerous enzymes of the pyrimidine salvage pathway
are involved in 5FC mode of action and thus numerous
molecular mechanisms could lead to resistance to this drug
[16, 204]. The most frequently found mechanism in clin-
ical isolates of pathogenic fungi is a point mutation in
the FUR1 gene that encodes the enzyme responsible for
the conversion of 5FU into metabolites able to enter the
cytosine metabolism (Figure 9) [14]. FUR1 mutation leads
to complete resistance to both 5FC and 5FU in fungi. A
second, frequently reported mutation leads only to resistance
of 5FC. This second mutation is a point mutation in the
FCY1 gene that codes for cytosine deaminase, the enzyme
responsible for the conversion from 5FC into 5FU. Several
such point mutations that lead to decreased activity of the
cytosine deaminase were identified, essentially in Candida
yeast species such as C. glabrata [205, 206] and in S. cerevisiae
[207].

3.2.2. Target Expression Deregulation. A third mechanism of
drug resistance is the deregulation of the drug target ex-
pression. For drugs targeting, the biosynthesis of ergosterol,
such as azoles, terbinafine, or fenpropimorph, even relative
short exposures of two to three hours lead to the transient
upregulation of the ERG gene family in C. albicans, glabrata,
tropicalis, and krusei [208]. These data suggest a common
regulation of the ergosterol biosynthetic pathway in the
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presence of inhibitors. Longer azoles in vitro exposures (min-
imum 24 h) lead to constitutive upregulation of ERG genes,
including ERG11 [209], and decrease drug susceptibility. In
clinical isolates of C. albicans and C. dubliniensis resistant to
azoles isolated from HIV patients, upregulation of ERG11
was described as a minor mechanism often combined with
other more major mechanisms of resistance such as pump
overexpression or ERG11 mutations [103, 169, 210]. The
overexpression of ERG11 originates either by gene dosage
effect through duplication of the gene or by upregulation
of the gene by a trans-acting factors, both hypotheses were
verified. In C. albicans and C. glabrata, it was shown that
increased azole resistance due to ERG11 upregulation was
in fact due to genome rearrangement via formation of
an isochromosome in C. albicans and duplication of a
chromosome in C. glabrata, and therefore amplification of
ERG11 [163, 211]. In Cryptococcus neoformans, the well-
known SRE1 gene was shown to regulate the ergosterol
biosynthesis pathway and also to be involved with viru-
lence of the fungus [212]. In S. cerevisiae, the ERG gene
family was shown to be regulated by two zinc cluster
transcription factors encoded by ScUPC2 and ScECM22.
Two homologues of ScUPC2 were found in the genome
of C. glabrata: CgUPC2A and CgUPC2B. It appears that
while both transcription factors regulate sterol biosynthesis
and exogenous uptake, only CgUpc2A is responsible for
the regulation of the transcription of the ERG gene family
in response to sterol inhibitors [213]. In C. albicans, only
one gene homologue of ScUPC2/ScECM22 was found and
named CaUPC2 [214, 215]. It was shown that CaUpc2 is
necessary for the upregulation of ERG genes in the presence
of ergosterol synthesis inhibitors. Moreover, the upc2 Δ/Δ
mutant shows increased susceptibility to most drugs and
a decrease in sterol uptake as compared to the wild-type
strain [214, 215]. Further studies demonstrated the ability
of CaUpc2 to bind to the ARE motif in the promoter
of C. albicans ERG11 (Table 3) [215, 216]. Genome-wide
location analysis of CaUpc2 confirmed the SRE motif as
the DNA binding site, and also confirmed the ERG gene
family as a CaUpc2 target as well as CDR1, MDR1, and
UPC2 itself as new target genes. Analysis of clinical strains
resistant to fluconazole with upregulated ERG11 expression,
demonstrated the existence of a hyperactive allele of CaUPC2
that confers intrinsic upregulation of ERG genes. Currently,
two GOF mutations were described for CaUpc2 (Figure 9)
[134, 180].

3.3. Metabolism Modification

3.3.1. Echinocandins Paradoxical Effect. Some yeasts and
filamentous fungi are able to grow in elevated echinocandin
concentrations much higher than the MICs [136, 217].
This phenomenon, called paradoxical effect, is due to the
metabolic adaptation of microorganism and is mediated by
the cell wall integrity signalization pathway. This response is
the direct consequence of the β(1-3)-glucans synthesis inhi-
bition and the subsequent cell wall composition modifica-
tions, upon echinocandin administration [218, 219]. Several
studies suggest that the magnitude of the paradoxical effect

is variable depending on the microorganism itself as well as
on the echinocandin nature. Therefore, the paradoxical effect
would be more pronounced in the presence of caspofungin as
compared to anidulafungin or micafungin [220]. However,
the clinical significance of paradoxical effect has never been
studied nor has it ever been observed in echinocandin-
treated patients [86].

3.3.2. De Novo Synthesis of Pyrimidines. It is possible that
5FC resistance could be the consequence of an overall
induction of the de novo pyrimidine biosynthetic pathway.
In this case, the antifungal drug competes with the regular
pyrimidine intermediate metabolites for incorporation into
nucleic acids [16]. This increase in activity of the de novo
pyrimidine biosynthetic pathway is reflected by an increased
expression of the CDC21 gene, whose product is inhibited
by 5FC [205]. FUR1 mutations could lead to 5FC resistance.
However, its downregulation has also been demonstrated
to be involved in 5FC decreased susceptibility. A 4-fold
decreased expression of this gene of high importance in 5FC
mode of action is sufficient to lead to a total resistance to this
pyrimidine fluorinated analog in C. glabrata [84].

3.3.3. Ergosterol Biosynthesis Pathway Alteration. Modifica-
tions of main metabolic pathways could also lead to azole
drugs resistance. For example, alteration of the late steps of
the ergosterol biosynthetic pathway through inactivation of
the ERG3 gene gives rise to cross-resistance to all azole drugs
[101]. Indeed, the antifungal activity of azole drugs relies
on the synthesis of toxic 14α methylated sterols by the late
enzymes of this pathway. A point mutation that occurs in
the ERG3 gene can lead to the total inactivation of C5 sterol
desaturase. In this case, toxic 14α methylated sterols are no
longer synthesized and even in the presence of azole drugs
sterols species able to replace ergosterol are generated. While
very uncommon, this mechanism was identified in several
clinical isolates of C. albicans [221–223].

3.3.4. Plasma Membrane Composition Variation. Polyene
drugs do not require internalization into fungal cells in order
to exert their antifungal activity, since they incorporate into
the plasma membrane from the external side. Thus, they
escape metabolizing enzymes and efflux systems, and the
only possibility for fungi to develop resistance to polyene
is to modify their target, ergosterol. However, ergosterol
is responsible for the integrity and fluidity of the plasma
membrane, and therefore, possibilities to compensate for
its absence are very limited. Although rarely described,
resistance mechanisms responsible for acquired or innate
resistance to polyene drugs were studied in several fungal
species. In each case, resistance to polyenes results from
a decrease or total absence of ergosterol in the plasma
membrane through mutations in nonessential genes of the
ergosterol biosynthetic pathway [224]. Molecular polyene
resistance mechanisms were described in laboratory mutants
of yeasts belonging to the Candida genus and in S. cerevisiae.
Thus, both ERG11 deletion in C. albicans [225] and ERG3
deletion in S. cerevisiae [226] lead to mutants with cross-
resistance to azole and polyene drugs. Likewise, ERG6
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inactivation in C. lusitaniae [227] and S. cerevisiae results in
polyene resistance [228]. Regarding clinical isolates, very few
data is available. Only a few studies have associated polyene
resistance to an ERG3 mutation in clinical isolates of C.
albicans [221, 229] and to an ERG6 mutation in C. glabrata
[230, 231].

3.3.5. Biofilms. “United we stand, divided we fall”. This
statement is certainly true concerning the fight between
fungi and antifungals. It is well characterized that microbial
communities engulfed in a polysaccharides-rich extracellular
matrix, also known as biofilm, are by far more resistant
to antifungal drugs than isolated cells. Fortunately, few
pathogenic species within the fungal kingdom are able to
form biofilms. The mostly known and widely studied of
those species able to form biofilms are the species of the
Candida genus [232]. Another yeast frequently responsible
for biofilm-associated infections is Cryptococcus neoformans
[233, 234]. Some clinical cases have also reported the
involvement of other yeast species, such as Pichia fabianii
[235] or Trichosporon asahii [236]. Additionally, it is now
accepted that filamentous fungi, and particularly those of
the Aspergillus genus, can grow as biofilms in humans [237–
239]. Fungal biofilms are frequently polymicrobial biofilms,
meaning that bacterial species frequently associate with one
or several fungi [240, 241]. In medical mycology, biofilms
constitute a real concern in the fields of invasive and
dental medicine. They constitute a nonnegligible source of
nosocomial fungal infections, essentially through the use
medical devices. Moreover fungal biofilms are resistant to
almost all the currently used antifungals, with the exceptions
of echinocandins and lipid formulations of AmB [242].
The molecular mechanisms underlying the persistence of
the fungal biofilms despite antifungal treatment remain
unclear. It is likely that biofilm resistance is the result of a
combination a multiple factors, among them an increased
expression of efflux pumps, a modification of plasma mem-
brane composition, and the biofilm-produced extracellular
matrix itself [232, 243].

4. Development of New Antifungal Strategies

Current antifungal treatments are limited in their capac-
ity to treat infections, especially systemic infections and
no considerable advancements in antifungal therapies were
developed recently. New therapies are therefore needed
against pathogenic fungi. Several approaches were developed
during the last several years in order to find new solutions.
Researchers aim to discover new antifungal drugs either
by testing already existing medical compounds, compounds
from natural sources such as plants, sea, microorganisms
or by systematic screens of chemical compound libraries.
Researchers also strive to elucidate the underlying biology of
fungal microorganism both in vitro and in vivo. Host-fungal
interactions play a critical role for all fungal pathogens.
Targeting this interaction provides novel therapies, which
could be used alone or in combination with existing
antifungal drugs. Such a combination may also determine
the development of antifungal drug resistance.

4.1. Development of New Antifungal Active Compounds.
Much effort has gone towards analyzing the antifungal
properties of what is called natural compounds (NP) or
natural bioactive compounds isolated from plants, other
microorganisms, or marine organisms [244–246]. Some such
compounds are investigated because their known triggering
mechanisms important for fungi, while other compounds are
tested blindly for their antifungal properties. Currently, none
of these studies have produced a compound suitable for the
clinical trial stage although interesting results were obtained.

Other studies focused on in vitro screens of several drugs
currently used in clinical practice for their potentiation of the
antifungal effect of the fungistatic agent fluconazole (FLC)
on Candida albicans. This facilitated the discovery of several
compounds, such as inhibitors of the calcineurin [247, 248]
or Tor pathways [249–251], efflux pump inhibitors (derived
compounds of milbemycin) [252–254], and more recently,
antibodies against heat-shock 90 protein (HSP90) [255]. In
particular, inhibitors of the calcineurin pathway were shown
to be fully active in vivo in the potentiation of fluconazole,
and they also led to a dramatic decrease in fungi virulence
[256–260].

Systematic screening of chemical compounds libraries
was also undertaken, essentially by industrial laboratories as
an attempt to discover new antifungal compounds. High
throughput screening of the legacy Schering-Plough com-
pound collection has recently lead to the discovery of a new
glucan synthase inhibitor effective again C. albicans and C.
glabrata [261–263].

Some analysis used reverse genetic assay in which, C.
albicans heterozygous deletion or transposon disruption
mutants collection were screened for growth under treat-
ment with collections of chemical compounds [264, 265].
This approach allowed identification of both antifungal
drugs and the genes related to the mechanism of action of
the related compounds.

Another type of high-throughput screens of chemical
libraries was achieved measuring the viability of drug-treated
Caenorhabditis elegans infected with C. albicans [266]. Com-
pounds can be simultaneously screened for antifungal
efficacy and host toxicity, which overcomes one of the
main obstacles in current antimicrobial discovery. A pilot
screen for antifungal compounds using this novel C. elegans
system identified 15 compounds that prolonged survival of
nematodes infected with the medically important human
pathogen C. albicans. One of these compounds, caffeic acid
phenethyl ester (CAPE), had effective antifungal activity in
a murine model of systemic candidiasis and had in vitro
activity against several other fungal species [266]. In addi-
tion, this whole-animal system may enable the identification
of compounds that modulate immune responses and/or
affect fungal virulence factors that are only expressed during
infection.

4.2. Genome-Wide Studies to Detect Potential New Antifungal
Targets. The improvement of already existing antifungal
drugs and the limitation of drugs resistance apparition has
helped to elucidate the basic biology of the fungal pathogen.
For this purpose, several groups made efforts to develop
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collection of systematic mutants essentially for C. albicans.
An important difficulty for antifungal therapy is to develop
drugs that exploit factors unique to fungi, which can be
challenging considering that organism are eukaryotic and
share many conserved biological pathways. Genes that are
essential to fungal survival are possible targets for drug
development.

Using the GRACE (gene replacement and conditional
expression) or CPR (conditional promoter replacement)
technologies, some research groups have assessed the essen-
tiality of C. albicans and Aspergillus fumigatus genes [267,
268]. One study identified 567 essential genes in C. albicans
[267]. And another study screened 54 genes of A. fumigatus
based on ortholog functions and essentiality in C. albicans
and S. cerevisiae [268], of which 35 were defined as essential
in A. fumigatus. Authors were able to show that while the
ERG11 gene family (CYP51A and ERG11B) is essential in
A. fumigatus, the individual genes themselves are not. These
analyses provide interesting and fully informative data for
antifungal drug design and improve upon previous in silico
analyses that when using S. cerevisiae data were only able
to identify 61% of homologous genes reported in the genes
found in the Roemer et al. analysis [267].

The diploid state of the genome presents a major problem
to the development of a mutant collection. Therefore,
some collections consist of heterozygous deletion [265] or
transposon disruption mutants [264, 265]. Other collections
contain homozygous transposon disruption mutants based
on the random insertion thanks to the Tn7 transposon to a
UAU cassette [269, 270]. These collection were first restricted
to the transcription factors of C. albicans [269, 271, 272] but
continue to be enlarged for the entire genome [270, 273].
Other collections consist of deletion mutants constructed
with PCR generated deletion cassettes, with two different
markers for each allele in the case of C. albicans [274, 275].
Such collections are now being constructed for C. glabrata.

Three kinds of analyses detailed below were performed
with these collections. They aimed a better understanding
of the modifications occurring in the fungi submitted
to antifungal treatments or of the relationship developed
between the fungus and its host all along the infectious
process. Such knowledge might improve the actual therapy
to avoid resistance development or might allow playing
on the host-fungus equilibrium to improve recovery of
patients.

First of all, treating strains with already known antifungal
drugs and analyzing for example, growth modification and
later transcriptional rewiring, some authors try to better
understand drugs mechanisms of action and/or to find syn-
ergistic effect between them [272, 274]. Gene encoding the
transcription factor Cas5 was found to be involved in the
response to caspofungin [272]. Other studies showed that
AGE3, which encodes an ADP-ribosylation factor GTPase
activating effector protein, if deleted, abrogates fluconazole
tolerance in C. albicans. Interestingly, Brefeldin A, an
inhibitor of ADP-ribosylation factor, resulted in a synergistic
effect with other drugs for C. albicans as well as for Aspergillus
[273]. Finally, Homann et al. screened a collection of 143
transcription factor mutants under 55 distinct conditions

among which exposition to fluconazole and 5FC, and
they conclude in their analysis that nearly a quarter of
the knockout strains affected sensitivity to commonly used
antifungal drugs [274].

Other studies were geared better understand the biology
of fungal species. For this purpose, mutant collections were
subjected to a wide range of environmental conditions,
modifying elements such as pH, salt concentration, carbon
sources, oxidative conditions, temperature, and availability
of essential elements such as metals (iron, copper, zinc, etc.)
[274, 276].

Understanding the relationship between fungus and host
during infection may provide further information useful
for the improvement of antifungal treatment. In order
to analyze the cross-talk occurring between fungus and
host during the infectious process, researchers screened
the colonization properties of mutants directly in hosts.
One study that was performed with 1201 gene knockout
mutants of Cryptococcus neoformans analyzed their in vivo
proliferation profile in the murine lung, and they were
able to identify 40 infectivity mutants [277]. Gene deletions
in these mutants were previously uncharacterized and did
not show any defect in traits known to be linked to
virulence (polysaccharide capsule formation, melanization,
and growth at body temperature). At least, four other similar
studies were performed with C. albicans mutants. Two of
them were done in invertebrate host models such as C.
elegans or D. melanogaster [266, 278]. Interestingly, the Cas5
Δ/Δ mutant, which has already been shown to be important
for caspofungin response, was shown to be less virulent in
both invertebrate models of infection [278, 279]. Finally, this
transcription factor was demonstrated as crucial for cell wall
integrity, and its importance in virulence was confirmed in
the mice intravenous model of infection [278]. Two other
studies screened collections of C. albicans mutants directly in
mice by pools of mutants that were previously tagged [280,
281]. One collection was restricted to Zn2-Cys6 transcription
factors (TF) mutants and the other was composed of mutants
affecting about 11% of the entire C. albicans genome with
no respect to a gene class. In both cases, mutants were also
screened for traits known to be linked to virulence, such as
the ability to filament and proliferate as well as the ability
to grow at 42◦C, at high and low pH, and in oxidative
conditions. Noble et al. identified 115 mutants among the
674 screened with attenuated infectivity, but normal mor-
phological switching and proliferation [281]. More precisely,
they identified glycolipid and glucosylceramide as the first
small molecules synthesized by C. albicans that are specif-
ically required for virulence. Vandeputte et al. identified
two Zn2-Cys6 TF mutants within 77 tested. These mutants
displayed attenuated infectivity in their pool test, which was
also confirmed in independent single strains infection of
mice ZCF13 and ZCF18 [280]. Both genes were previously
uncharacterized. ZCF18 showed a slight growth defect in
contrast to ZCF13 which grew normally at body temperature,
but slightly less at 42◦C. ZCF13 mutant displayed an abnor-
mal morphology, producing strongly filamentous colonies
on YPD medium at 35◦C and displaying high invasion
ability. ZCF18 deletion also led to a slight enhancement of
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colony wrinkling. Both genes are currently under further
analysis.

Unfortunately, whenever promising, up to now, no new
compound and/or new target have been selected for further
development from these approaches.

5. Conclusion

These last years were very rich in better knowledge of
molecular basis of antifungal resistance and more generally
of the metabolism of pathogenic fungi. Antifungal drug
resistance appears to essentially be due to point mutations
in either drug targets or transcription factors regulating
actors of the resistance. In the near future, high throughput
diagnostic tools could be used in the course of treatment of
fungal infections in order to detect resistance and adjust ther-
apeutic strategies accordingly before any clinical evidence
and therefore allow a rapid adjustment of the antifungal
treatment.

One of the challenges of finding new antifungal targets
in C. albicans was the lack of sophisticated screening tech-
nologies often employed with other fungal species such as
Saccharomyces cerevisiae. The recent application of genome-
wide studies to pathogenic fungi for both host-pathogen
interactions and the biological study will hopefully encour-
age and facilitate the development of new effective thera-
peutic strategies. Such improvements in antifungal treatment
may lead to a better clinical outcome.

Acknowledgment

The authors would like to thank Shawna McCallin for proof-
reading of the paper.

References

[1] N. Morishita and Y. Sei, “Microreview of Pityriasis versicolor
and Malassezia species,” Mycopathologia, vol. 162, no. 6, pp.
373–376, 2006.

[2] J. Thomas, G. A. Jacobson, C. K. Narkowicz, G. M. Peterson,
H. Burnet, and C. Sharpe, “Toenail onychomycosis: an
important global disease burden,” Journal of Clinical Phar-
macy and Therapeutics, vol. 35, no. 5, pp. 497–519, 2010.

[3] R. D. Diamond, “The growing problem of mycoses in
patients infected with the human immunodeficiency virus,”
Reviews of Infectious Diseases, vol. 13, no. 3, pp. 480–486,
1991.

[4] M. C. Arendrup, “Epidemiology of invasive candidiasis,”
Current Opinion in Critical Care, vol. 16, no. 5, pp. 445–452,
2010.

[5] T. J. Walsh and D. M. Dixon, “Spectrum of mycoses,” in
Medical Microbiology, S. Baron, Ed., Galveston, Tex, USA,
1996.

[6] J. Eucker, O. Sezer, B. Graf, and K. Possinger, “Mucormy-
coses,” Mycoses, vol. 44, no. 7-8, pp. 253–260, 2001.

[7] R. Duschinsky, E. Pleven, and W. Oberhansli, “Synthesis of
5-fluoropyrimidine metabolites,” Acta—Unio Internationalis
Contra Cancrum, vol. 16, pp. 599–604, 1960.

[8] E. Grunberg, E. Titsworth, and M. Bennett, “Chemothera-
peutic activity of 5-fluorocytosine,” Antimicrobial Agents and
Chemotherapy, vol. 161, pp. 566–568, 1963.

[9] D. Tassel and M. A. Madoff, “Treatment of Candida sepsis
and Cryptococcus meningitis with 5-fluorocytosine. A new
antifungal agent,” Journal of the American Medical Associa-
tion, vol. 206, no. 4, pp. 830–832, 1968.

[10] R. L. Stiller, J. E. Bennett, and H. J. Scholer, “Correlation
of in vitro susceptibility test results with in vivo response:
flucytosine therapy in a systemic candidiasis model,” The
Journal of Infectious Diseases, vol. 147, no. 6, pp. 1070–1077,
1983.

[11] A. Vermes, H. J. Guchelaar, and J. Dankert, “Flucytosine:
a review of its pharmacology, clinical indications, pharma-
cokinetics, toxicity and drug interactions,” The Journal of
Antimicrobial Chemotherapy, vol. 46, no. 2, pp. 171–179,
2000.

[12] T. K. Daneshmend and D. W. Warnock, “Clinical pharma-
cokinetics of systemic antifungal drugs,” Clinical Pharma-
cokinetics, vol. 8, no. 1, pp. 17–42, 1983.

[13] A. M. Stamm, R. B. Diasio, W. E. Dismukes et al., “Toxicity
of amphotericin B plus flucytosine in 194 patients with
cryptococcal meningitis,” American Journal of Medicine, vol.
83, no. 2, pp. 236–242, 1987.

[14] P. Francis and T. J. Walsh, “Evolving role of flucytosine
in immunocompromised patients: new insights into safety,
pharmacokinetics, and antifungal therapy,” Clinical Infectious
Diseases, vol. 15, no. 6, pp. 1003–1018, 1992.

[15] C. A. Kauffman and P. T. Frame, “Bone marrow toxicity asso-
ciated with 5 fluorocytosine therapy,” Antimicrobial Agents
and Chemotherapy, vol. 11, no. 2, pp. 244–247, 1977.

[16] A. Polak and H. J. Scholer, “Mode of action of 5 fluorocyto-
sine and mechanisms of resistance,” Chemotherapy, vol. 21,
no. 3-4, pp. 113–130, 1975.

[17] R. Diasio, D. Lakings, and J. Bennett, “Evidence for conver-
sion of 5-fluorocytosine to 5-fluorouracil in humans: possi-
ble factor in 5-fluorocytosine clinical toxicity,” Antimicrobial
Agents and Chemotherapy, vol. 14, no. 6, pp. 903–908, 1978.

[18] K. M. Williams, A. M. Duffield, R. K. Christopher, and
P. J. Finlayson, “Identification of minor metabolites of 5-
fluorocytosine in man by chemical ionization gas chromatog-
raphy mass spectrometry,” Biomedical Mass Spectrometry,
vol. 8, no. 4, pp. 179–182, 1981.

[19] B. E. Harris, B. W. Manning, T. W. Federle, and R. B. Diasio,
“Conversion of 5-fluorocytosine to 5-fluorouracil by human
intestinal microflora,” Antimicrobial Agents and Chemother-
apy, vol. 29, no. 1, pp. 44–48, 1986.

[20] J. M. Benson and M. C. Nahata, “Clinical use of systemic
antifungal agents,” Clinical Pharmacy, vol. 7, no. 6, pp. 424–
438, 1988.

[21] J. E. Bennett, W. E. Dismukes, and R. J. Duma, “A comparison
of amphotericin B alone and combined with flucytosine
in the treatment of cryptococcal meningitis,” New England
Journal of Medicine, vol. 301, no. 3, pp. 126–131, 1979.

[22] R. Patel, “Antifungal agents. Part I. Amphotericin B prepara-
tions and flucytosine,” Mayo Clinic Proceedings, vol. 73, no.
12, pp. 1205–1225, 1998.

[23] D. R. Hospenthal and J. E. Bennett, “Flucytosine monother-
apy for cryptococcosis,” Clinical Infectious Diseases, vol. 27,
no. 2, pp. 260–264, 1998.

[24] A. Polak and M. Grenson, “Evidence for a common transport
system for cytosine, adenine and hypoxanthine in Saccha-
romyces cerevisiae and Candida albicans,” European Journal of
Biochemistry, vol. 32, no. 2, pp. 276–282, 1973.

[25] A. R. Waldorf and A. Polak, “Mechanisms of action of 5-
fluorocytosine,” Antimicrobial Agents and Chemotherapy, vol.
23, no. 1, pp. 79–85, 1983.



18 International Journal of Microbiology

[26] J. E. Bennett, “Antifungal agents,” in Goodman and Gilman’s
The Pharmacological Basis of Therapeurics, J. G. Hardman et
al., Ed., pp. 1175–1190, McGraw-Hill, New York, NY, USA,
1996.

[27] P. Caffrey, S. Lynch, E. Flood, S. Finnan, and M. Oliynyk,
“Amphotericin biosynthesis in Streptomyces nodosus: deduc-
tions from analysis of polyketide synthase and late genes,”
Chemistry and Biology, vol. 8, no. 7, pp. 713–723, 2001.

[28] A. Lemke, A. F. Kiderlen, and O. Kayser, “Amphotericin B,”
Applied Microbiology and Biotechnology, vol. 68, no. 2, pp.
151–162, 2005.

[29] M. Baginski, H. Resat, and J. A. McCammon, “Molecular
properties of amphotericin B membrane channel: a molec-
ular dynamics simulation,” Molecular Pharmacology, vol. 52,
no. 4, pp. 560–570, 1997.

[30] J. Milhaud, V. Ponsinet, M. Takashi, and B. Michels, “In-
teractions of the drug amphotericin B with phospholipid
membranes containing or not ergosterol: new insight into the
role of ergosterol,” Biochimica et Biophysica Acta, vol. 1558,
no. 2, pp. 95–108, 2002.

[31] M. J. Paquet, I. Fournier, J. Barwicz, P. Tancrède, and M.
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J. Morschhäuser, “An A643T mutation in the transcrip-
tion factor Upc2p causes constitutive ERG11 upregulation
and increased fluconazole resistance in Candida albicans,”
Antimicrobial Agents and Chemotherapy, vol. 54, no. 1, pp.
353–359, 2010.

[135] F. Morio, C. Loge, B. Besse, C. Hennequin, and P. Le
Pape, “Screening for amino acid substitutions in the Can-
dida albicans Erg11 protein of azole-susceptible and azole-
resistant clinical isolates: new substitutions and a review of
the literature,” Diagnostic Microbiology and Infectious Disease,
vol. 66, no. 4, pp. 373–384, 2010.

[136] D. S. Perlin, “Resistance to echinocandin-class antifungal
drugs,” Drug Resistance Updates, vol. 10, no. 3, pp. 121–130,
2007.

[137] W. W. Hope, L. Tabernero, D. W. Denning, and M. J.
Anderson, “Molecular mechanisms of primary resistance to
flucytosine in Candida albicans,” Antimicrobial Agents and
Chemotherapy, vol. 48, no. 11, pp. 4377–4386, 2004.

[138] V. Fardeau, G. Lelandais, A. Oldfield et al., “The central role
of PDR1 in the foundation of yeast drug resistance,” Journal
of Biological Chemistry, vol. 282, no. 7, pp. 5063–5074, 2007.

[139] S. Le Crom, F. Devaux, P. Marc, X. Zhang, W. S. Moye-
Rowley, and C. Jacq, “New insights into the pleiotropic drug
resistance network from genome-wide characterization of
the YRR1 transcription factor regulation system,” Molecular
and Cellular Biology, vol. 22, no. 8, pp. 2642–2649, 2002.

[140] A. Delahodde, T. Delaveau, and C. Jacq, “Positive autoregula-
tion of the yeast transcription factor Pdr3p, which is involved
in control of drug resistance,” Molecular and Cellular Biology,
vol. 15, no. 8, pp. 4043–4051, 1995.

[141] D. Katzmann, P. E. Burnett, J. Golin, Y. Mahe, and W. S.
Moye-Rowley, “Transcriptional control of the yeast PDR5
gene by the PDR3 gene product,” Molecular and Cellular
Biology, vol. 14, no. 7, pp. 4653–4661, 1994.

[142] Y. Mamnun, R. Pandjaitan, Y. Mahé, A. Delahodde, and K.
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J. Morschhäuser, “MDR1-mediated drug resistance in Can-
dida dubliniensis,” Antimicrobial Agents and Chemotherapy,
vol. 45, no. 12, pp. 3416–3421, 2001.

[171] P. Riggle and C. Kumamoto, “Transcriptional regulation of
MDR1, encoding a drug efflux determinant, in fluconazole-
resistant Candida albicans strains through an Mcm1p bind-
ing site,” Eukaryotic Cell, vol. 5, no. 12, pp. 1957–1968, 2006.

[172] B. Rognon, Z. Kozovska, A. T. Coste, G. Pardini, and D.
Sanglard, “Identification of promoter elements responsible
for the regulation of MDR1 from Candida albicans, a major
facilitator transporter involved in azole resistance,” Microbi-
ology, vol. 152, no. 12, pp. 3701–3722, 2006.

[173] D. Nguyên, A. Alarco, and M. Raymond, “Multiple Yap1p-
binding sites mediate induction of the yeast major facilitator
FLR1 gene in response to drugs, oxidants, and alkylating
agents,” Journal of Biological Chemistry, vol. 276, no. 2, pp.
1138–1145, 2001.

[174] D. Hiller, S. Stahl, and J. Morschhäuser, “Multiple cis-acting
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