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Abstract

OBJECTIVES: The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomi-
tantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially
known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal
tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves compar-
able mechanisms of actions.

METHODS: Human mesothelioma xenografts (H-meso-1) were grown in the dorsal skinfold chambers of 28 nude mice. By intravital
microscopy, the rolling and recruitment of leukocytes were assessed in tumour vessels following PDT (Visudyne® 400 pg/kg, fluence
rate 200 mW/cm? and fluence 60 J/cm?) using intravital microscopy. Likewise, the distribution of fluorescently labelled macromolecular
dextran (FITC-dextran, MW 2000 kDa) was determined after PDT. Study groups included no PDT, PDT, PDT plus a functionally blocking
anti-pan-selectin antibody cocktail and PDT plus isotype control antibody.

RESULTS: PDT significantly enhanced the extravascular accumulation of FITC-dextran in mesothelioma xenografts, but not in normal
tissue. PDT significantly increased leukocyte-endothelial cell interaction in tumour. While PDT-induced leukocyte recruitment was sig-
nificantly blunted by the anti-pan-selectin antibodies in the tumour xenograft, this manipulation did not affect the PDT-induced ex-
travasation of FITC-dextran.

CONCLUSIONS: Low-level PDT pre-treatment selectively enhances the uptake of systemically circulating macromolecular drugs in ma-
lignant mesothelioma, but not in normal tissue. Leukocyte-endothelial cell interaction is not required for PDT-induced drug delivery to
malignant mesothelioma.
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mesothelioma

INTRODUCTION combined to chemo- and/or radiotherapy represents the only

therapeutic procedure that may be associated with long-term
Treatment of patients suffering from malignant pleural meso- survival in a selected group of patients [2]. Nevertheless, MPM
thelioma (MPM) remains a challenge for thoracic surgeons. A still has a very poor prognosis. The natural course of the disease
multimodality approach combining cytoreductive surgery with is characterized by locoregional recurrence and relentless pro-
adjuvant therapies is now feasible with reasonable morbidity gression in the chest cavity, eventually leading to tumour inva-
and mortality [1]. To date, extrapleural pneumonectomy sion of the chest wall and the mediastinum.

For that reason, innovative treatment strategies are sought to
achieve local tumour control, such as intracavitary chemotherapy
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chest cavity after extrapleural pneumonectomy [4, 5]. Intracavitary
chemotherapy with intraoperative local application of the cyto-
static drug solution into the chest cavity aims to enhance local
drug delivery and to improve tumour control at the site of resec-
tion, but its widespread clinical application has been hampered
by nephrotoxicity following systemic absorption of the cytostatic
drug [3]. PDT as adjunct to extrapleural pneumonectomy makes
use of a photosensitizer which is administered systemically and
subsequently activated by irradiation with laser light in the chest
cavity [6]. The resulting photochemical reaction generates cyto-
toxic products, which results in local tumour cell destruction. PDT
of the chest cavity in patients with MPM has been shown to
result in tumour destruction [6]; however, depending on treat-
ment conditions, important side effects were reported. The
major drawback of cytotoxic PDT combined with extrapleural
pneumonectomy is the addition of surgical and PDT-related tox-
icity [4, 7]. The enhanced morbidity of the procedure was mainly
related to the lack of sufficient tumour selectivity of the PDT
effect, which, at the applied conditions, leads to destruction of
tumour and some vital structures in the chest cavity.
Unfortunately, modifications of PDT treatment modalities, includ-
ing improvements of light delivery, dosimetry to the chest cavity,
selection of sensitizers or modification of treatment protocols,
have not yielded significant clinical benefits [6].

Snyder et al. [8, 9] as well as our own group have shown that a
direct vascular effect of PDT at relatively low light doses may be
exploited to increase the uptake of systemically circulating drugs
to tumour and other target tissues. This is a new treatment
concept termed ‘photodynamic drug delivery'. If low-dose PDT
of the chest cavity after extrapleural pneumonectomy could
facilitate targeted delivery of a circulating cytostatic drug to
residual tumour in the chest cavity, local tumour control could
theoretically be improved even at reduced systemic cytotoxic
drug levels. Photodynamic drug delivery combines low-dose
PDT—lacking tumouricidal effect as well as normal tissue toxicity—
with systemic intravenous chemotherapy. The concept is
founded on the idea that low-dose PDT increases microvessel
permeability, hence promoting controlled release of circulating
drugs into tissue. In vitro, phototoxic effects on endothelial cells
induce the formation of endothelial gaps [10]. In vivo, assessing
photodynamic drug delivery on non-malignant tissue, PDT add-
itionally stimulates leukocyte-endothelial cell interaction and
thereby mediates PDT effects on improved drug delivery [8].

In the present study, we set out to assess the effect of
low-dose PDT on the uptake of a systemically circulating macro-
molecular agent into human mesothelioma xenografts and
normal tissue, using the dorsal skinfold chamber model and
intravital fluorescence microscopy.

MATERIALS AND METHODS
Dorsal skinfold chamber

A custom-built dorsal skinfold chamber was implanted on the
back of nude mice (Charles River, France), as previously
described [8]. After a recovery period of 48 h, dorsal skinfold
chambers were selected based on their vascularization and their
limited inflammation (hyperaemia, distortion of vein segments
and presence of oedema). All animals were kept in a sterile en-
vironment, and the experiments were conducted in accordance

with the European Institutional Guidelines for Animal Care and
Use.

Tumour model

A human mesothelioma tumour cell line (H-meso-1, Mason,
Worchester, MA, USA) was maintained in culture, as previously
described [11]. For donor tumour generation, a 0.1 ml cell sus-
pension containing 5x 107 tumour cells was injected subcuta-
neously behind the left scapula of the nude mice (Charles
River). Tumours were grown up to a diameter of 8 mm. The
animals were then sacrificed, and the tumours were cut into
chunks that were used for dorsal skinfold chamber implant-
ation. Tumour chunks were prepared by removing the capsule
and the necrotic portions of the donor tumour and by cutting
the remaining tumour in 2x2x2 mm cubes that were placed
in a Petri dish and immersed in cold phosphate-buffered saline.
The chunks were then placed in the centre of the dorsal skin-
fold chambers. The vascularization of the implanted tumour
chunks was checked daily, and the experiments began when a
stable perfused vasculature was visible using transillumination
microscopy.

Photodynamic therapy protocol

PDT was performed using Visudyne® (Novartis, Hettlingen,
Switzerland) at a concentration of 400 pg/kg body weight (b.w.).
A drug light interval of 10 min was used to ensure homogeneous
perfusion of the photosensitizer within the tumour vasculature.
Light administration was performed using an Hg-arc lamp fil-
tered at 420+20 nm (Carl Zeiss ‘cube filter set 05, Exc. BP
395-440, DM FT 460, Em. LP470) through a 20x water immer-
sion lens. A homogeneous light dose of 60 J/cm? was applied to
a circular surface (diameter of 400 um). The fluence rate was
200 mW/cm?.

Intravital microscopy

A Carl Zeiss Axiotech Vario 100 microscope was used for in vivo
observation of the dorsal skinfold chamber. For that purpose,
the mouse was placed in a lateral decubitus position inside a
plexiglas tube which was positioned under the microscope. The
chamber on the back of the mouse was fixed horizontally, so
that its position under the microscope allowed for transillumin-
ation from the bottom side and at the same time for
epi-illumination for fluorescence microscopy. Animals were not
anaesthetized during intravital microscopy. Achroplan Carl Zeiss
2.5%/0.0075 and 4x/0.10 Plan Neofluar objectives were used for
a large field of view (3 x 3 mm for the 4x objective). A 20x/0.50
water immersion objective was used for PDT excitation and
close observation of the capillaries (field of view 600 x 600 pm).
Excitation was performed via a filtered 100W HBO103 light
source (OSRAM GmbH, Augsburg, Germany), powered through a
variable Carl Zeiss FluoArc device that allowed diminishing the
light power and thus prevents excessive PDT excitation during
data recording. A Uniblitz shutter VS25 with its controller
VMM-D1 (Vincent Associates, Rochester, NY, USA) was used to
cut off the light from the HBO lamp. Images and video
sequences were recorded with an on-chip-amplified electron
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multiplier consisting of a back illuminated thinned Peltier-cooled
CCD camera (EM-CCD C9100-12, 400-1000 nm, Hamamatsu
Photonics, Solothurn, Switzerland) allowing for an up to 2000x
amplified signal gain. This set-up allowed to lower the excitation
light and thus prevents both PDT and photobleaching using the
analysis light. Images and sequences were recorded through the
Hamamatsu camera controller with the Hamamatsu HiPic
version 7.0 software, producing 16 bit grey level images with a
size of 512x512 pixels. A Multiscan Rate Converter
MSC-12A-HPK (Stack Ltd, Saitama, Japan) was added between
the EM-CCD and the controller providing digital and video
signals in parallel. Date and time information were superim-
posed on the video signal with a VTG-33 Video Timer (FOR-A,
Tokyo, Japan). Images were recorded on an SR-S388E video re-
corder (S-VHS; JVC, Yokohama, Japan).

Study design

Twenty-three animals underwent Visudyne-mediated low-level
PDT followed 1h later by the intravenous administration of
FITC-dextran (2000 kDa). Eight of these animals had PDT, but no
antibody injection (PDT group). In two groups of five animals
each, PDT was combined to the administration of a pan-selectin
inhibitor (MABS group; n=5) cocktail or to an isotype control
antibody (isotype group; n=5). Five of 23 animals had no xeno-
graft implanted in the dorsal skinfold chamber. In these animals,
PDT was performed on normal tissue. The control group com-
prised five additional xenograft-bearing animals undergoing
Visudyne injection, but no laser irradiation. For each group, the
extravasation of FITC-dextran (2000 kDa) was assessed over a 45
min period by intravital microscopy. In addition, the rolling and
recruitment of leukocytes were assessed before, 1 and 2 h after
PDT.

Tumour permeability evaluation

The extravasation of FITC-dextran was determined by fluores-
cence microscopy, using an Hg-arc lamp, in real time. The daily
stability of the Hg-arc lamp was tested using a rubis 8Sp3
disc (diameter 12 mm, thickness 1 mm; Hans Stettler, Lyss,
Switzerland), as described previously [12]. FITC-dextran (25 mg/ml
and 100 mg/kg b.w.) was injected in the tail vein 1 h after PDT.
FITC-dextran fluorescence was recorded in regions of interest
(ROIs) over time with different treatment schemes. All intensity
values for each ROl were normalized to their initial value for
analysis (2 min after FITC-dextran injection).

Inhibition of leukocyte-endothelial interaction

Rat anti-mouse selectin  monoclonal antibodies MEL-14
(anti-L-selectin; rat 1gG2a k, Becton-Dickinson, USA) 0.1 mg,
monoclonal antibodies RB40.34 (anti-P-selectin; rat 1gG12,
Becton Dickinson) 0.1 mg and monoclonal antibodies 10E9.6
(anti-E-selectin; rat 1gG2a k, Becton Dickinson) 0.1 mg were
mixed and administered intraperitoneally for functional blocking
1 h before PDT. The selectivity and efficiency of these antibodies
were previously validated by our group and others [13-15].

Assessment of the leukocyte-endothelial
interaction

Leukocyte-endothelial interaction was assessed before, 1 and 2 h
after PDT. To perform this, 100 ul of rhodamine-6-G (0.05%,
Sigma-Aldrich, Buchs, Switzerland) was injected intravenously to
stain leukocytes. Because of the high mitochondrial content of
leukocytes, rhodamine-6-G preferentially accumulates in the
cytoplasm of these cells. For each time point of interest, image
fields were recorded on a videotape for 1 min that were then
analysed offline.

The rolling of leukocytes was determined by counting the
number of rolling cells passing a 100 um vessel segment during
a 30 s time frame. Results were expressed as the number of cells
per cross-section circumference of vessel segments (cells/mm/
30's). Leukocytes were considered as rolling when their velocity
along the vessel wall was lower than those of erythrocytes [16].

Recruitment of leukocyte in a PDT-treated site was assessed and
expressed as the number of cells per surface area (cells/mm?).
Leukocytes were considered as recruited when they remained
stationary in the treated zone for a minimum of 30s.

Statistical analysis

To analyse the variables ‘rolling’ and ‘recruitment’, we applied
the analysis of variance (ANOVA) test with repeated measures
(time as within factor and group as between factor) using the
software Statistica 9. The variable ‘recruitment’ was transformed
before analysis in order to satisfy the assumptions of ANOVA
with repeated measures application (log transformation). Tukey's
honestly significant difference post hoc test was run for multiple
comparisons. To analyse the integrated fluorescence inside
tumour or the difference between tumour and normal tissues,
multilevel models with ‘time’ and ‘group’ as fixed effects and
‘mice’ as random effect were created. A weight on ‘group’ was
added in order to modelize the heteroscedasticity due to
groups. The outcome was transformed before analysis in order
to satisfy the assumptions of multilevel application (square root
transformation). The package ‘NLME' of the software R was used
for the analysis. For post hoc multiple comparison, Bonferroni
corrections were used. Data were expressed as mean * standard
error of mean. Statistical significance was accepted at P < 0.05.

RESULTS

To assess the permeability of tumour microvessels and leukocyte
behaviour under different treatment conditions, we grew human
mesothelioma xenografts (H-meso-1) in nude mice chronically
instrumented with dorsal skinfold chambers (Fig. 1). This model
allowed real-time and sequential monitoring of these parameters
for up to 3 weeks after tumour implantation.

A representative real-time assessment of FITC-dextran leakage
in tumour tissue following PDT is shown in Fig. 2. FITC-dextran
extravasation was then quantified in tumour and normal tissues.
PDT significantly enhanced FITC-dextran extravasation in tumour
but not in normal tissue, applying the same drug and light dose
(Fig. 3).

We then assessed leukocyte-endothelial interaction. A typical
real-time image of rhodamine-labelled leukocyte recruitment
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Figure 1: (a) Skinfold chamber preparation in nude mice (bar: 10 mm). (b) Partially vascularized human malignant mesothelioma xenograft (circle, dotted line) 7
days after transplantation into the skinfold chamber (intravital imaging, objective x4, length of bar: T mm). (c) Fully vascularized mesothelioma xenograft 14 days

after implantation.

Figure 2: Typical example of PDT-induced FITC-dextran (MW 2000 kDa) leakage to the mesothelioma xenograft (a) 2.5 min, (b) 20 min and (c) 45 min time point

after systemic drug injection; length of bar: T mm.
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Figure 3: PDT-induced leakage recorded by the time-dependent evolution of
the FITC-dextran-integrated fluorescence in the dorsal skinfold chamber
model. Seven minutes after FITC-dextran injection, PDT induced a significantly
enhanced extravasation of FITC-dextran in the PDT group (P<0.05). The
human mesothelioma xenograft and normal tissue were both treated with a
light dose of 60)/cm? 10 min after tail vein injection of 0.4 mg/kg of
Visudyne. Data are presented as mean *SEM. ***P <0.001 when compared
with PDT-treated normal tissue and non-treated tumour tissue.

following PDT is shown in Fig. 4. Leukocyte rolling and recruit-
ment were quantified in different treatment groups: control, PDT,
PDT plus isotype antibodies (isotype group) and PDT plus a func-
tionally blocking anti-pan-selectin antibody cocktail (MABS
group) (Figs 5 and 6). PDT and PDT plus the isotype antibody sig-
nificantly increased the mean number of rolling leukocytes and

their recruitment to the PDT-treated area in tumours up to 2 h
following therapy (Figs 5 and 6). In contrast, the anti-pan-selectin
antibody cocktail significantly attenuated PDT-induced leukocyte
rolling and recruitment in tumour vessels. To assess whether
leukocyte-endothelial interaction affected drug distribution, we
compared the extravasation of FITC-dextran in tumours treated
by PDT plus the anti-pan-selectin antibody cocktail with the
other treatment groups. FITC-dextran extravasation was signifi-
cantly enhanced in all PDT treatment groups, irrespective of
whether the isotype or the functionally blocking anti-pan-selectin
antibody cocktail was given (Fig. 7).

DISCUSSION

In the current study, we assess the use of low-level PDT for tar-
geted drug delivery to MPM. PDT-mediated drug delivery works
by induction of an increased transendothelial transfer of circulat-
ing intravascular drugs to the tumour interstitium, resulting in a
preferential accumulation of an intravenously administered drug
in the irradiated area. While the PDT itself has most probably no
tumouricidal activity and no toxicity in this context, the treat-
ment effect is achieved by the increased uptake of the circulat-
ing drug (e.g. chemotherapy and immunotherapy) in the
PDT-treated area [9, 17].

The principal finding of this experimental study is that
low-dose PDT leads to a robust and selective uptake of a circu-
lating macromolecular drug in human malignant mesothelioma
xenografts, but not in normal tissue.
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Figure 4: Typical example of leukocyte recruitment after PDT in the illuminated area of the mesothelioma xenograft: (a) before, (b) 1 h and (c) 2 h after treatment;

length of bar: 100 pm.
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Figure 5: Rolling of leukocytes was measured before and 1 and 2 h after PDT
in the neovasculature of human mesothelioma xenografts. Data are presented
as mean + SEM. *P < 0.05, P < 0.001, *P < 0.05 and **P < 0.001 when com-
pared with the baseline (before PDT) value in each group.
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Figure 6: Leukocyte recruitment was measured before and 1 and 2 h after
PDT in the human mesothelioma xenograft-treated site of various groups.
Data are presented as mean+SEM. **P <0.01 and **P <0.001 when com-
pared with the baseline value (before PDT) in each group. *P < 0.05.

The macromolecular model drug (FITC-dextran, MW 2000
kDa) was chosen in this study to reflect the dimensions of
modern cytostatic compounds such as liposomal formulation of
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Figure 7: Effect of leukocyte-endothelial interaction modulation on the
PDT-mediated extravasation of FITC-dextran in human mesothelioma xeno-
grafts. PDT was performed at a light dose of 60 J/cm? 10 min after intravenous
injection of 0.4 mg/kg Visudyne, followed by intravenous administration of
FITC-dextran 1 h after PDT. Animals in the MABS group received specific
antibodies against selectins, and animals in the isotype group received non-
specific antibodies. Control animals had Visudyne administration but no
irradiation or antibodies. Bars indicate the SEM. **P < 0.001 when compared
with PDT, MABS and isotype groups.

doxorubicin or cisplatin [18]. Due to the fluorescent label, we
could document by intravital fluorescence microscopy (i) its
intravascular distribution after intravenous injection, (ii) the
transfer from the intravascular to the extravascular space and
(iii) tissue accumulation over time (Fig. 2).

During the observation period of 45 min, we observed a
roughly 1000-fold increase (arbitrary units, normalized data) in
the intensity of the fluorescent signal within the PDT-treated
zone of the mesothelioma xenografts, corresponding to a robust
extravasation and tissue accumulation of the macromolecular
drug in the tumour tissue (Fig. 3). No spontaneous uptake of
FITC-dextran in untreated tumour tissue occurred during the ob-
servation period, demonstrating the well-known difficulty of
drug delivery to tumours [19]. Most importantly, PDT on normal
tissue (striated muscle and fat tissue) under the same treatment
conditions had no effect on extravasation of FITC-dextran at all,
with a fluorescent signal decreasing over time, due to metabol-
ism and excretion (Fig. 3).

We can only speculate about the reasons for this remarkable
selectivity for tumour tissue. First, the minimally required photo-
sensitizer and light doses to induce efficient drug extravasation
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were found to be much lower in tumour than in normal tissue.
In our recent study on the same animal model, in which we
studied PDT-induced drug delivery to 'non-malignant’ tissues [8],
we needed to apply a fluence of 200 J/cm? and a Visudyne dose
of 800 pg/kg b.w. for efficient extravasation of FITC-dextran. In
contrast, we have now applied half of the drug dose and less
than a third of the light dose (60 J/cm?) in order to induce drug
accumulation in mesothelioma xenografts, hence well below the
threshold dose for normal tissues. It is well known that the vas-
cular effect of PDT is dose-dependent [20], ranging from vaso-
constriction and reversible endothelial damage at low doses,
interrupted flow and transient thrombosis at intermediate doses,
to irreversible vessel occlusion at highest PDT doses. It has also
been well documented that newly formed tumour neovessels
are less resistant to the applied PDT dose than mature vessels in
normal tissue [21]. Conversely, high PDT doses would interfere
with the tumour uptake of a circulating drug. In the light of the
differential response of tumour and normal vessels to compar-
able PDT doses [21], it is not unreasonable to warrant that the
microcirculation in tumour neovessels would be actively inter-
rupted at a high PDT dose which would enhance transendothe-
lial permeability in normal mature vessels. In such a scenario,
the microcirculatory impairment would then shield the irra-
diated tumour from efficient drug delivery, and the opposite of
the desired effect would be seen. In this respect, the effects
observed in our study provide an important experimental proof
of principle.

However, it could also be speculated that the selective effect of
PDT-induced drug delivery to malignant mesothelioma tissue is
due to soluble hyperpermeability mediators affecting the endo-
thelial barrier, such as vascular endothelial growth factor (VEGF).
VEGF is known to be induced by PDT under certain conditions in
tumours, but only to a lesser degree in normal tissue [22].

Leukocytes are known as important effectors of microvessel
permeability [23]. We hypothesized that the observed effect of
PDT on the permeability in neovessels of mesothelioma xeno-
grafts may be explained by activation of the adhesion cascade,
as observed in response to other inflammatory stimuli [14].
Activated leukocytes induce increased microvascular vessel per-
meability by enzyme release and oxidative burst when interact-
ing with the microvessel walls. Activation of leukocyte requires
their rolling and adhesion, a process which depends on different
subtypes of selectins. Indeed, in a recent study, we have shown
that PDT renders microvessel walls in ‘non-malignant’ tissue
more permeable to water and macromolecular drugs through a
leukocyte-mediated mechanism. Suppression of leukocyte-
endothelial interaction diminished the PDT-induced drug
leakage in normal tissue by 70% [8]. It is hence a surprise to note
that in the malignant mesothelioma, leukocyte-endothelial cell
interaction seems to play no pathomechanistic role. To
assess whether interaction between tumour vessel endothelium
and leukocytes is the critical event leading to permeability en-
hancement, we suppressed in the current study the leukocyte
adhesion by systemic administration of functionally blocking
antibodies directed against selectins. Without antibodies or with
non-specific antibodies, PDT induced a strong inflammatory
tissue reaction in the PDT-treated zone of the mesothelioma
xenograft, as documented by in vivo observation of significantly
increased leukocyte rolling along the endothelium, transmigra-
tion and recruitment in the interstitium for up to 2 h of observa-
tion (Figs 5 and 6). This is in accordance with results of other
groups [24]. As expected, the anti-adhesion treatment by

pan-selectin antibodies led to a significant reduction in the in-
flammatory reaction (Figs 5 and 6). However, this inhibition of
leukocyte adhesion had no influence on PDT-induced drug
delivery to mesothelioma xenografts (Fig. 7). PDT led to the
targeted transfer of FITC-dextran from the intravascular to
the interstitial compartment in the irradiated zone of the meso-
thelioma xenograft, whether or not the leukocyte cascade was
inhibited. Apparently, PDT-related actions other than the inflam-
matory tissue response must be responsible for the observed
phenomenon of PDT-induced drug delivery. Tumour vasculature
is structurally and functionally abnormal. Tumour vessels are
innately leaky and show morphological and functional abnor-
malities and an incomplete basement membrane [19]. The leaki-
ness of tumour vessels results in an increased interstitial fluid
pressure, forming a barrier to transcapillary transport and effi-
cient delivery of therapeutic agents [20]. Interestingly, there is
evidence in the literature that PDT has the capacity to temporar-
ily reduce the interstitial fluid pressure, presumably due to tran-
sitory vasoconstriction and reduced blood flow [25]. Since
macromolecular drugs such as FITC-dextran are mainly trans-
ported from the intravascular compartment to the tumour inter-
stitium by convection (and not by diffusion), their transport
depends on the transendothelial flow of fluid (and not on the
difference of their concentration). In consequence, it is reason-
able to speculate that the PDT-induced drug delivery in tumours
is likely not induced by alteration of the endothelial barrier,
which is already disturbed at baseline, but rather by modification
of the transendothelial flow.

In conclusion, low-dose PDT enhances targeted delivery of a
macromolecular drug to human mesothelioma xenografts in a
tumour-selective way. This observation provides a valuable proof
of principle and warrants further studies, eventually aiming at
novel therapy concepts of mesothelioma patients. Intracavitary
low-dose PDT after pleuropneumonectomy could enhance the
uptake of concomitant systemically administered cytostatic
agents in remnant tumour islets and thereby improve local
control.
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