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Protecting maize from rootworm 
damage with the combined 
application of arbuscular 
mycorrhizal fungi, Pseudomonas 
bacteria and entomopathogenic 
nematodes
Geoffrey Jaffuel1, Nicola Imperiali2, Kent Shelby   3, Raquel Campos-Herrera1,4, Ryan Geisert3, 
Monika Maurhofer5, Joyce Loper6,7, Christoph Keel1, Ted C. J. Turlings   2 & Bruce E. Hibbard   8

Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR), is the most destructive pest 
of maize in North America, and has recently spread across central Europe. Its subterranean larval stages 
are hard to reach with pesticides and it has evolved resistance to conventional management practices. 
The application of beneficial soil organisms is being considered as a sustainable and environmental 
friendly alternative. In a previous study, the combined application in wheat fields of arbuscular 
mycorrhizal fungi, entomopathogenic Pseudomonas bacteria, and entomopathogenic nematodes was 
found to promote growth and protection against a natural pest infestation, without negative cross 
effects. Because of the insect-killing capacity of the bacteria and nematodes, we hypothesized that the 
application of these organisms would have similar or even greater beneficial effects in WCR-infested 
maize fields. During three consecutive years (2015–2017), we conducted trials in Missouri (USA) in 
which we applied the three organisms, alone or in combinations, in plots that were artificially infested 
with WCR and in non-infested control plots. For two of the three trials, we found that in plots treated 
with entomopathogenic nematodes and/or entomopathogenic Pseudomonas bacteria, roots were less 
damaged than the roots of plants in control plots. During one year, WCR survival was significantly lower 
in plots treated with Pseudomonas than in control plots, and the surviving larvae that were recovered 
from these plots were lighter. The bacterial and nematodes treatments also enhanced yield, assessed 
as total grain weight, in one of the trials. The effects of the treatments varied considerable among the 
three years, but they were always positive for the plants.

Diabrotica virgifera virgifera LeConte, the western corn rootworm (WCR), causes significant damage to maize 
(Zea mays L.) across North America, as well as across Central and Eastern Europe1,2. The larval stage is the most 
damaging, as it feeds on root hairs, cortical tissue, and tunnels inside the roots of maize plants. This can lead to 
the destruction of roots3,4, which hampers the uptake of water and nutrients from the soil5, and increases plant’s 
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susceptibility to lodging6. Often, roots are fully pruned by older larvae that move up to the base of the stalk7. In 
affected areas in the US, WCR larvae can cause tremendous yield losses1,8–10.

From the time that it was discovered as a pest11 until 1946, the only successful management option was crop 
rotation. Since then, WCR management has also included granular and liquid soil insecticides, and more recently 
insecticidal seed treatments and transgenic Bt maize12–14. Over time, WCR has developed resistance to most 
insecticides classes15–17. Crop rotation is still highly effective against the WCR in most regions, but some popu-
lations have apparently lost their ovipositional fidelity to cornfields, and lay eggs in soybean and other crops in 
addition to maize18–20. Beginning in 2003, transgenic maize carrying a gene from the entomopathogenic bacte-
rium Bacillus thuringiensis Berliner (Bt) has been effective in controlling the WCR and northern corn rootworms 
(D. barberi). Yet, certain WCR populations have since evolved resistance to some Bt toxins21. This ability of WCR 
to rapidly evolve resistance has significantly reduced the efficacy of these management strategies, at least in cer-
tain areas.

Kuhlmann & Van der Burgt22 recommended biological control as an option for Europe, where genetically 
modified plants are mostly banned and the use of additional insecticides is not desirable. Classical biological 
control would involve the importation and the establishment of natural enemies from the WCR area of origin in 
North America. A more readily available option would be an inundative biological control approach with com-
mercially available native antagonists, such as entomopathogenic nematodes (EPN)22.

Soil-dwelling EPN have been successfully used as biological control agents against a range of different insect 
pests, including WCR23–25. EPN are favored because they are harmless to vertebrates, commercially available, and 
authorized in many countries26–31. EPN in the families Steinernematidae and Heterorhabditidae carry mutualistic 
bacteria of the genera Xenorhabdus and Photorhabdus, respectively, and together function as obligate parasites of 
insects32,33. The free-living stage of EPN, known as the infective juvenile (IJ), is adapted to persist in the soil where 
it searches for a suitable insect host34. Upon contact with a host, it enters the insect’s hemocoel through natural 
openings and releases their symbiont bacteria. Within 2–3 days, the insect host dies of septicemia caused by the 
proliferating bacteria. The EPN consume the bacteria and reproduce to form two to three generations, until the 
resources in the cadaver are depleted. Non-feeding infective stages then emerge and may survive in the surround-
ing soil for several months in search of a new host35.

Various other soil organisms also have the potential to improve plant performance by, for instance, promoting 
growth, facilitating nutrient acquisition, stimulating defenses, and protecting plants from pathogens and pests36–38.  
Among these are arbuscular mycorrhizal fungi, which colonize roots of many terrestrial plants and can provide 
these plants with nutrients in exchange for photosynthetic by-products39,40. Arbuscular mycorrhizal fungi have 
also been shown to increase plant tolerance to a variety of stresses, both biotic and abiotic40. Some arbuscular 
mycorrhizal fungi such as Rhizoglomus irregularis are commercialized as inoculates for seedlings or as seed coat-
ings, in order to improve soil fertility and plant performance41–46.

Similarly, growth promoting rhizobacteria within the Pseudomonas fluorescens group, such as Pseudomonas 
protegens and Pseudomonas chlororaphis, have been shown to trigger systemic resistance in colonized plants, 
and may control soil-borne pathogens with potent antifungal compounds47–51. Pseudomonas protegens and 
Pseudomonas chlororaphis strains also have insecticidal activity and are particularly effective against Lepidopteran 
pests52–55. Currently there are several products based on plant-beneficial pseudomonads that are commercialized, 
primarily in the USA52,56–58.

A previous study59 showed that the combined application of the EPN Heterorhabditis bacteriophora and the 
rhizobacteria Pseudomonas protegens CHA0 and Pseudomonas chlororaphis PCL1391 improved the performance 
and protection of wheat. This was most evident during a season that the plants were infested by frit fly larvae59.

In the current study, we evaluated the singular application of three beneficial soil organisms on maize perfor-
mance under WCR infestation. Treatments with EPN (Steinernema feltiae and H. bacteriophora), Pseudomonas 
bacteria, and a commercial formulation of arbuscular mycorrhizal fungi, as well as a treatment with the combina-
tion of all three beneficial organisms were applied under realistic field conditions.

Materials and Methods
The beneficial soil organisms’ origins and formulations.  Strains of Pseudomonas protegens Pf-560,61 
and Pseudomonas chlororaphis O662 with a spontaneous resistance to the antibiotic rifampicin were used in 
this study in 2015 (Table 1). In 2016 and 2017 we used two closely related bacterial strains, Pseudomonas  
protegens CHA063, and Pseudomonas chlororaphis PCL139164 that have been similarly selected for spontaneous 
resistance to rifampicin following previously described protocols59,65 (Table 1). To prepare the bacterial inoc-
ulum for field application, the strains were grown overnight at 25 °C in LB Broth Miller (Fisher BioReagents) 
containing 100 µg/ml of rifampicin. Aliquots of 200 µl of each culture were then plated on LB Agar Miller 
(Fisher BioReagents) without antibiotics. After incubation at 27 °C for 16 h, bacterial cells were harvested and 
washed in sterile distilled water. The optical density at 600 nm (OD600) of the bacterial cell suspensions was 
adjusted to 0.15 corresponding to a cell density of about 8 × 107 CFU/ml. To preserve the bacterial concen-
trations chosen for application to the field, the bacterial stock suspensions were maintained on ice until final 
dilution and use.

Entomopathogenic nematodes (EPN) of the species Steinernema feltiae and Heterorhabditis bacteriophora 
were provided by the company Koppert Biological Systems (https://www.koppert.com, Table 1). EPN were 
received in vermiculite powders around two weeks before their application to the field. One or two days before 
field application, IJs concentration was assessed and the powder containing nematodes weighted to reach a con-
centration of 0.65 Mio of IJs of each species and placed in a 50 ml sterile conical tube (USA Scientific) (Table 1). 
Tubes containing the IJs were kept at ~5 °C prior to field application.
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Arbuscular mycorrhizal fungi (AMF) were provided by Evocam™ (https://horticulturalalliance.com/product/
ecovam-vam-endo-granular/) that contains seven species of arbuscular mycorrhizal fungi, belonging to the gen-
era Rhizophagus, Funneliformis, Septoglomus, Claroideoglomus and Rhizoglomus (Table 1). The product richness 
was estimated to 150 spores per gram of substrate. Moreover, a “mock” inoculum, which consisted of the substrate 
without arbuscular mycorrhizal fungi spores was prepared by autoclaving the original arbuscular mycorrhizal 
fungi inoculum for 2 h at 110–120 °C, two weeks before field application. Bags containing the inoculum and the 
“mock” inoculum were stored at room temperature prior to field application.

Field experiments.  Field experiments were conducted during three consecutive springs, in 2015, 2016 and 
2017, at the Bradford Research and Extension Centre (38.8929376 N, −92.2009539 W, Columbia, MO, USA). The 
soil type at this location is a Mexico silt loam made up of 12.5% sand, 65% silt, and 22.5% clay as determined by 
the University of Missouri Soil Testing Facility, Columbia, MO.

In plots of 1.5 m we planted a row with 8 seeds of the maize cultivar Pioneer 33T55. Each of these experimen-
tal rows was separated with a buffer row of the same size planted with the same maize cultivar. Row spacing was 
0.76 m, hence, rows were separated from each other by 0.76 m. Experimental plots were hand planted in May of 
each year. The treatments applied to the field were: (1) EPN suspension, (2) plant-growth promoting rhizobac-
teria (PGPR) suspension, (3) AMF inoculum, (4) a combination of the EPN, AMF and PGPR, (5) AMF “mock” 
inoculum, and (6) control (no application). Each year, the experiment was conducted in different fields on the 
same experimental farm.

Bacterial cell suspensions were applied directly on the maize seeds after they were placed in the furrows using 
treatment-specific watering cans. Concentrated bacterial stock suspensions (OD600 0.15; corresponding to ~ 
8 × 107 CFU/ml) were diluted in ca. 5 L of water for each plot directly at the field site before soil inoculation. In 
the field trial performed in 2015, the bacterial inoculum was a mixture of P. protegens Pf-5 and P. chlororaphis O6, 
while in 2016 and 2017 the chosen strains were P. protegens CHA0 and P. chlororaphis PCL1391.

For EPN application (S. feltiae and H. bacteriophora) the nematodes that had been stored in 50 ml sterile tubes 
were mixed in treatment-specific watering cans in which water was added to a final volume of ca. 5 L per plot and 
applied in the furrows at a final concentration of 1.3 × 106 IJs/m2.

Finally, 400 ml of substrate per plot, containing approximately 4.8 × 107 AMF spores were evenly applied on 
the seeds using a 500 ml glass beaker. AMF-control plots were inoculated with the same amount of substrate with-
out AMF propagules. Control plots were treated with the same volume of water without the beneficial organisms. 
After treatments, the seeds were immediately covered with soil by closing the seed furrows. All material which 
entered into contact with the different inoculants was cleaned and disinfested with 70% ethanol.

When plants were at the two-leaf stage, half of experimental plots were artificially infested with WCR eggs 
as previously described in El Khishen et al.66. The WCR eggs were obtained from the USDA-ARS facility in 
Brookings (SD, USA). We used their primary diapausing strain, which was maintained at ~8 °C until applica-
tion. The eggs were applied when the plants reached the V2 stage as described above. Eggs were mixed into a 
solution of water containing agar at the final concentration of 0.15%, and each plant was exposed to ~800 viable 
eggs delivered evenly down both sides of the row with a tractor-mounted system. The number of replicates for 

Beneficial group/species Strain Application type GenBank accession no. Reference or source

Arbuscular mycorrhizal fungi

Rhizophagus irregularisa Substrate n.a.d Mycorrhizal Fungi Products Sarasota, Florida

Funneliformis mosseaea Substrate n.a. Mycorrhizal Fungi Products Sarasota, Florida

Septoglomus desertícolaa Substrate n.a. Mycorrhizal Fungi Products Sarasota, Florida

Claroideoglomus claroideuma Substrate n.a Mycorrhizal Fungi Products Sarasota, Florida

Claroideoglomus etunicatuma Substrate n.a Mycorrhizal Fungi Products Sarasota, Florida

Rhizoglomus microaggregatuma Substrate n.a Mycorrhizal Fungi Products Sarasota, Florida

Rhizoglomus claruma Substrate n.a Mycorrhizal Fungi Products Sarasota, Florida

Entomopathogenic nematodes

Heterorhabditis bacteriophorab Aqueous KJ938576 Koppert biological systems

Steinernema feltiaeb Aqueous KJ938569 Koppert biological systems

Pseudomonas bacteria

Pseudomonas chlororaphis PCL1391c Aqueous NZ_LFUT01000004 Chin-A-Woeng et al.64;
Flury et al.54

Pseudomonas protegens CHA0c Aqueous NC_021237 Stutz et al.63;
Flury et al.54

Pseudomonas chlororaphis O6c Aqueous NZ_CM001490.1 Loper, et al.93

Pseudomonas protegens Pf-5c Aqueous NC_004129.6 Loper, et al.93

Table 1.  Beneficial soil organisms applied individually or in combinations in the field experiments. aA 
commercialized treatment (Ecovam™ Vamendo Granular) containing seven species of arbuscular mycorrhiza 
was used as inoculant in the 2015, 2016 and 2017 field trials. bA mixture of the entomopathogenic nematodes 
H. bacteriophora and S. feltiae was used in the 2015, 2016 and 2017 field trials. cRifampicin-resistant variants of 
strains O6 and Pf-5 were used as inoculants in the 2015 field trial, while strains CHA0 and PCL1391 were used 
as inoculants in the 2016 and 2017 field trials. dn.a., not available.
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each treatment in the experiment carried out in 2015 was 8, for a total of 96 experimental plots, while in field 
experiments performed in 2016 and 2017 the experiment was doubled to facilitate data collection, for a total of 
192 experimental plots (Supplementary Material 1). All replicates were arranged in a randomized complete block 
design with 8 blocks (each containing 12 treatments in a split-plot design WCR vs no WCR) for the field trial 
2015, and with 16 blocks for the experiments carried out the following two years. The 16 blocks in 2016 and 2017 
still resulted in 8 replications because half were used for damage plus larval recovery and half for yield.

Evaluation of WCR damage severity and maize yield.  About six weeks after the WCR eggs were 
applied, approximately 500 degree-days post infestation as calculated with the techniques of Hibbard et al.67, root 
damage was evaluated on three plants per plot. Maize plants were dug out from the soil, their roots were washed, 
and damage caused by WCR larval feeding was rated using the node injury score5.

We also evaluated the presence of WCR larvae on the roots. For this, two additional plants were removed from 
each plot at approximately 410 degree days67 post infestation, when most larvae should be at the early third instar. 
Following Hibbard et al.68, the entire root system of each collected plant was placed into onion bags and the bags 
were suspended in a greenhouse (38–50 °C). A water pan was positioned under each bag to collect all larvae that 
fell down. Larvae were collected and counted until no additional larvae were recovered for three consecutive days. 
To estimate the impact of the different treatments on the WCR fitness, collected larvae were counted and weighed.

At the end of the season, maize cobs from the three remaining plants per plot (2015) or from the yield portion 
of the study were harvested and grain yield was determined and expressed in total grain weight.

Monitoring of beneficial organisms.  Pseudomonas bacteria.  In 2017, we monitored the presence of the 
Pseudomonas strains in the different plots. Maize roots were sampled about 5 weeks after the application of WCR 
eggs. For this, the root systems from six maize plants (i.e. two plants taken from three extra-plots specifically 
planted to assess Pseudomonas survival during the field experiment) were dug up, pooled, washed and gently 
dried using paper towels. To avoid cross-contamination between samples, all material used for the sampling at 
the field site was cleaned with 70% ethanol. Roots were placed in 15 ml sterile conical screw cap centrifuge tubes 
(Basix) containing 40 ml of sterile water and vigorously agitated on a rotary shaker at 180 rpm for 15–20 min. 
Subsequently roots were removed from the tubes, dried at 80 °C for three days and weighed. The remaining sus-
pensions were transferred to fresh sterile tubes on ice and centrifuged at 8500 rpm (9300 g) at 4 °C. The obtained 
pellet was re-suspended in 1 ml of sterile water. Each sample was then serially diluted and dilutions plated on LB 
Agar Miller containing 100 μg/ml of cycloheximide (Sigma-Aldrich) and 100 μg/ml of rifampicin69. The colonies 
were counted and the results were expressed as colony forming units (CFU) per gram of dry root weight.

Entomopathogenic nematodes.  In 2017, soil samples were taken from each of the plots inoculated with the 
EPN mix. Approximately 2,000 cm3 of soil was sampled from the plots near the plants by taking multiple scoops 
approximately 12 cm deep into the soil. Individual plot samples were mixed and two subsamples of approximately 
120 ml were placed into 236 ml plastic containers (Solo Cup Company, Lake Forest, IL, USA) and baited with two 
last-instar Galleria mellonella L. (Lepidoptera: Pyralidae) larvae each. Samples were maintained in the dark at 
20 °C and checked daily for G. mellonella mortality. If cadavers were found with nematodes present as typical EPN 
symptom70, the plots tested were recorded as having an active nematode population.

Statistical analysis.  All statistical analyses were performed using the software package R71, version 3.2.3. Data 
were checked for normal distribution with the Shapiro-Wilk test and by plotting QQ-Plots. Equality of variance was 
verified performing Bartlett’s test. Most of the data failed the normality and equality of variance assumptions, therefore 
non-parametric Kruskal-Wallis analysis of variance on ranks (H-tests) were carried out. Post-hoc test analyses were 
conducted using Fisher’s least significant difference with a Benjamini-Hochberg correction of P-values (package “agri-
colae”)72. Results obtained in the control experiment in which the carrier substrate for the AMF was tested alone (AMF 
“mock” inoculum) were not significantly different from those obtained in the untreated control. Therefore, the control 
and AMF-control were pooled to facilitate the interpretation of the results. Moreover, the effect of the WCR infestation 
(infested versus non-infested) was so high compared to the effect of the beneficial organisms treatments, that, in order 
to detect differences among application treatments, the effect of the WCR infestation was assessed separately.

Results
Impact of beneficial soil organisms’ application on maize root damage.  In 2015, all plots that were 
artificially infested with WCR showed significantly more damage than non-infested plots, revealing the efficiency of 
the infestation (Chisq = 53.65, P < 0.001). Average damage was 0.78 on the Oleson scale for infested plots (Fig. 1A). The 
application of the beneficial soil organisms did not reduce the damage caused by WCR larvae to maize roots (Fig. 1A). 
For the 2016 field trial, average root damage in the infested plots was 0.25 on the Oleson scale, which was again signifi-
cantly greater than in non-infested plots (Chisq = 63.8, P < 0.001) (Fig. 1B). Maize roots from plots treated with PGPR, 
EPN and the combination of PGPR, EPN and AMF (Mix), were slightly less damaged compared to untreated plants, 
although the observed difference was statistically significant only for the EPN treatment, which showed significantly 
less root damage than the control plots (P = 0.03). Maize roots were most damaged in plots treated with AMF, and 
data were not significantly different compared to the control plots (P = 0.88) (Fig. 1B). In 2017, the average value of 
root damage was 1.18, the highest observed over the three consecutive years. Once again, all plots infested with WCR 
showed significantly more damage than non-infested plots (Chisq = 73.1, P < 0.001). Maize roots from plots treated 
with PGPR, EPN and the Mix were slightly less damaged as compared to untreated plants. The observed differences 
were statistically significant for the PGPR and the Mix treatment as compared to the AMF and the control plots (PGPR: 
AMF, P = 0.01; PGPR: control, P = 0.02; Mix: AMF, P = 0.02; Mix: control, P = 0.05) (Fig. 1C).
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Impact of treatments on WCR survival and weight.  Almost no WCR larvae were recovered from 
non-infested plots as compared to infested plots (2015: Chisq = 34.3, P < 0.001; 2016: Chisq = 68.4, P < 0.001; 
2017: Chisq = 76.1, P < 0.001) (Fig. 2). In 2015, the number of recovered WCR larvae was not affected by the 
various soil applications, but tended to be slightly higher compared to the control plots (Fig. 2). In 2016, however, 
the number of recovered WCR larvae was significantly lower in plots with PGPR application and in plots with 
EPN application, but not in plots with the mixture containing the two plus AMF (PGPR: control, P = 0.003; EPN: 
control, P = 0.03 (Fig. 2B). In 2017, the beneficial soil organisms did not negatively affect the number of recovered 
WCR larvae (Fig. 2C).

In 2015, WCR larvae weight was not affected by the applications (Fig. 3A). In 2016, WCR larvae in PGPR 
plots weight significantly less compared to those recovered from control plots (PGPR: control, P = 0.02), while no 
significant differences were observed for the other treatments (Fig. 3B). In 2017, no differences in larval weight 
were observed among the different treatment plots (Fig. 3C).

Impact of treatments on yield.  The infestation with WCR did not have any impact on yield (expressed 
as gram of seed per plot) in any of the field trials (2015: Chisq = 0.01, P = 0.9; 2016: Chisq = 0.1, P = 0.7; 2017: 
Chisq = 0.1, P = 0.7) (Fig. 4). However, in 2015, yield was positively impacted by PGPR and EPN applications 

Figure 1.  Root damage measured on the node-injury scale (Oleson et al.5) depending on the beneficial 
organisms applied and the western corn root worm (WCR) infestation status. (A) in 2015, (B) in 2016 
and (C) in 2017. The dash line represents the economical threshold of root damage. PGPR: plant-growth 
promoting rhizobacteria, EPN: entomopathogenic nematodes, AMF: arbuscular mycorrhizial fungi, Mix: 
PGPR + EPN + AMF. Bars represent mean percentage ± SE. Means denoted by different letters are significantly 
different (P < 0.05, Fisher’s least significant difference test).
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(independently of the WCR infestation) (PGPR: control, P = 0.01, EPN: control, P = 0.01). In 2016 and 2017, the 
beneficial soil organisms had no impact on yield (Fig. 4B,C).

Persistence of the applied rhizobacteria and nematodes.  In 2017, nematodes were found in 
all of the corresponding augmented plots. In plots that had been treated with rhizobacteria, the numbers of 
rifampicin-resistant Pseudomonas varied between 1.05 × 103 and 3.81 × 105 CFU.g−1 of dry root weight. No 
rifampicin-resistant bacteria were found in control plots.

Discussion
Overall, our results confirm that PGPR and EPN can protect maize roots from WCR, as observed through a 
reduction in root damage in plots where they were applied separately or in combination with AMF. In 2016, in 
plots treated with EPNs, root damage was reduced below the economic threshold. This was expected because both 
EPN species used in this study (S. feltiae and H. bacteriophora) are known to readily kill WCR23–26,73–75, and in a 
previous study on the same experimental farm, root damage by WCR was reduced by the application of a slightly 
lower dose of H. bacteriophora (50 IJs/cm2)76. From our 2017 trial, we can conclude that PGPR application can 
also significantly reduced WCR-inflicted root damage. For the PGPR, the observed reduction of root feeding may 
be explained by induced systemic resistance77,78, as well as by direct insecticidal effects. Ours is the first field trial 

Figure 2.  Number of western corn root worm larvae recovered from root system depending on the beneficial 
organisms applied and the western corn root worm (WCR) infestation status. (A) In 2015, (B) in 2016 and (C) 
in 2017. PGPR: plant-growth promoting rhizobacteria, EPN: entomopathogenic nematodes, AMF: arbuscular 
mycorrhizial fungi, Mix: PGPR + EPN + AMF. Bars represent mean percentage ± SE. Means denoted by 
different letters are significantly different (P < 0.05, Fisher’s least significant difference test).
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to test if Pseudomonas strains application can reduce WCR pressures. Yet, from a study using transgenic maize 
plants expressing an insecticidal protein that is naturally produced by a P. chlororaphis isolate, it is known that it 
strongly affects WCR feeding and survival79.

PGPR application in the 2016 trial was the only treatment that reduced WCR weight, possibly explained by 
enhanced plant defense or increased infection of the insects. In 2016 and 2017, the yield was not affected by WCR 
infestation, nor by any of the applications of soil organisms. Apparently, despite significant damage to the root 
system, the plants were able to somehow compensate and still be fully productive80. Although PGPR and EPN 

Figure 3.  Western corn rootworm weight in response to the application of beneficial organisms. (A) In 
2015, (B) in 2016 and (C) in 2017. PGPR: plant-growth promoting rhizobacteria, EPN: entomopathogenic 
nematodes, AMF: arbuscular mycorrhizial fungi, Mix: PGPR + EPN + AMF. Bars represent mean 
percentage ± SE. Means denoted by different letters are significantly different (P < 0.05, Fisher’s least significant 
difference test).
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did not have any detectable impact on WCR in 2015, this was the only year where yield was increased follow-
ing their application. Impact of WCR was minimal during 2015, probably due to waterlogging of the plots. We 
speculate that the positive impact of EPN and PGPR application may have been the result of induced resistance 
against pathogens and growth promotion, which are known properties of these organisms77,78,81,82. For instance, 
Pseudomonas spp. produce antimicrobial compounds that can stimulate systemic resistance in plants82, or act 
as growth promoters or inhibitors and increase stress tolerance83. EPN have also been shown to induce such 
resistance in plants, but the mechanisms that are involved remain to be elucidated81. Also, phytohormones like 
auxin, cytokinin, gibberellin or ethylene of microbial and fungal origin can affect growth, root development, 
immune response and hormonal pathways in plants38,51. PGPR are also involved in the solubilization of mineral 
phosphates and other nutrients that can facilitate their access by the plant84,85. We should stress that the bacterial 
strains used in 2015 (i.e., P. protegens Pf-5 and P. chlororaphis O6) were not the same as those used in 2016 and 
2017 (i.e., P. protegens CHA0 and P. chlororaphis PCL1391) and, although they were very similar, possible differ-
ences between strains may have had an impact on their effectiveness. All four strains possess the cluster fit that 
directs the synthesis of FitD, the insecticidal protein that enables these bacteria to kill different insect pests53,54.

The application of AMF, which were included to confirm their compatibility with the nematodes and bacte-
ria, did not significantly affect WCR survival and performance, nor did it affect plant performance. AMF were 
applied before the development of the first roots because the spores can persist for a long time in the soil until 

Figure 4.  Yield, expressed as maize grain weight, in response to the application of beneficial organisms and 
the western corn root worm (WCR) infestation status. (A) in 2015, (B) in 2016 and (C) in 2017. PGPR: plant-
growth promoting rhizobacteria, EPN: entomopathogenic nematodes, AMF: arbuscular mycorrhizial fungi, 
Mix: PGPR + EPN + AMF. Bars represent mean percentage ± SE. Means denoted by different letters are 
significantly different (P < 0.05, Fisher’s least significant difference test).
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they form hyphae to colonize roots86. Unfortunately, for practical reasons, we could not assess the establishment 
success of the AMF, but the same commercial inoculum is commonly used to enhance crop performance and has 
been shown to successfully colonize rice roots87. It is, however, possible that our inoculant was not effective and 
failed to persist in the soil and to colonize roots, as was reported for another trail with similar AMF species for 
arable maize88. From a Swiss study in wheat plots with a different AMF inoculum we know that after application 
at the seedling stage, it has the potential to persist and can successfully colonize the roots59. Although we can 
safely conclude that the applied AMF had no effect on the efficacy of the PGPR and EPN, for future studies, it 
would be desirable to gather information on the inoculant fate over the field seasons to confirm persistence and 
colonization status.

We observed no synergistic or additive effect of the soil organisms as their combined application did not 
result in a higher efficacy to protect maize roots from damage or increase yield. Therefore, it is not excluded that 
interactions between the applied soil organisms in some ways limit their full potential. The weather, and therefore 
the field conditions, were very different from one year to another (Supplementary Material 2), in particular in 
terms of precipitation, which surely affected the results. To compare the weather over the entire period of each 
trial, we took into account several parameters from 1st May to 1st November, for each year. Rainfall, with 625 mm, 
was intermediate for 2015, whereas 2016 was wetter (700 mm) and 2017 much drier (506 mm). Temperature was 
quite stable with an average of 20.5 °C, 21.1 °C, and 19.9 °C for 2015, 2016 and 2017, respectively. Based on these 
values we can assume that soil moisture was quite different among years and this must have had a significant 
impact on the organisms that we applied to the field. For EPNs, soil moisture determines the thickness of the 
water film that the nematodes need to move and survive, and it also affects the surface tension and the amount of 
oxygen present in the soil. These parameters influence the efficacy and survival of EPN89 and could explain why 
EPN application was most effective in 2016, the year with the highest precipitation rate. Soil moisture is also one 
of the best predictors of soil microbial biomass: wet soils normally contain a greater bacterial biomass than dry 
soils90. Yet, Burr et al.91 found that specific strains of P. fluorescens and P. putida were able to persist under field 
conditions for many weeks when the soil was “relatively dry”. Soil moisture was also a key factor in a field study 
on stress tolerance of P. protegens Pf-559. Interestingly, the level of irrigation can have contrasting effects on the 
abundance of different Pseudomonas strains. For instance, strains that produce the antimicrobial compounds 
2,4-diacetylphloroglucinol are more present in irrigated soils, whereas phenazines producers are more abundant 
in drier terrains92. Soil moisture effects on the persistence and performance of the strains used in our study have 
not yet been specifically tested.

In this study we chose to apply the soil organisms at seeding as a strategy to reduce the field work-load, using 
a single event for seeding and the application of the biocontrol agents. The infestation with WCR eggs occurred 
about two weeks after the application of the soil organisms and the WCR larvae started feeding on the roots about 
three weeks after application. Therefore, the soil organisms must persist in the soil for this period of time to have 
an effect. Applying the soil organisms after WCR infestation can be expected to be more effective in controlling 
the pest, but would be much more labor intensive.

Conclusion
As is often the case with field studies, the results were quite different for the different years. Yet, each year at least 
one of the treatments was significantly better compared to the control (Figs 1–3). Depending on the year, the 
treatments had a direct impact on corn plant performance, but also impacted the survival and performance of the 
WCR larvae. The results obtained in 2016 were particularly encouraging, although the effect on WCR was not as 
evident as the two other two years. The fact that the yield was not been significantly compromised by the artificial 
WCR infestation explains at least partially why we found no significant impact on plant productivity, except for 
2015. During years 2016 and 2017, the level of root damage proved to be a suitable parameter to measure treat-
ment effects. We think that studies such as this one can be the basis for the development of effective soil treat-
ments that can replace the use of pesticides, and provide a more sustainable control of WCR and other soil pests.

Data Availability
The datasets generated during and/or analyzed during the current study are provided in the supplementary ma-
terials.
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Supplementary material 1:  

Field plot design 

 

 

Experimental design for the field trial conducted in 2015, resulting in 8 blocks of 12 plots each, for a total of 96 

plots. In 2016 and 2017, the size of the experiments was doubled, with 16 blocks of 12 plots each, for a total of 192 

plots. 

 

 

 

 

 

 

 

 

 

 

 

0.75m

1.5m

x x x x x x x x x x x x x x

x x x x x x x x

Block1 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x

Block2 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x

Block3 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x

Block4 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x

Block5 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x

Block6 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x

Block7 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x

x x x x x x x x

Block8 x x x x x x x x x x x x x x

x x x x x x x x

x x x x x x x x x x x x x x

WCR infestation Benefical organism Color code

(-) Bacteria

(-) Fungi

(-) Nematode

(-) Mix

(-) Control

(-) Control-Fungi

(+) Bacteria

(+) Fungi

(+) Nematode

(+) Mix

(+) Control

(+) Control-Fungi

30.5m



Supplementary Material 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main physical parameters recorded between the months of May and November in 2015, 2016 and 

2017, at the Bradford Research and Extension Centre, Columbia, Missouri. Data were taken from the 

"Missouri Historical Agricultural Weather Database" platform. 

(http://agebb.missouri.edu/weather/history). 

 

 

Field trials (year) 2015 2016 2017 

 
Parameters recorded 

from  1st May to 1st 
November 

   

    
Total precipitation  

(mm) 
625.11 700.24 506.22 

 
Average maximum air 

temperature  
(˚C) 

 
26.2 

 
27.0 

 
26.1 

 
Average minimum air 

temperature  
(˚C) 

 
15.3 

 
15.7 

 
14.0 

 
Average air temperature 

(˚C) 

 
20.5 

 
21.1  

 
19.9 

 
Total solar radiation  

(MJ / m2) 

 
17.41 

 
17.97 

 
18.81 

 
Vapor pressure  

(kPa) 

 
1.884   

 
1.958 

 
1.749 

 
Average maximum wind 

speed  
(m/s) 

 
8.6 

 
8.2 

 
8.8 
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Field design 2015

Block Treat-Number WCR Beneficial Missouri Plot Number

1 7 YES Bacteria 1

1 9 YES Nematode 2

1 8 YES Fungi 3

1 3 NO Nematode 4

1 2 NO Fungi 5

1 1 NO Bacteria 6

1 10 YES Mix 7

1 11 YES Control 8

1 12 YES Control-Fungi 9

1 6 NO Control-Fungi 10

1 5 NO Control 11

1 4 NO Mix 12

2 2 NO Fungi 13

2 6 NO Control-Fungi 14

2 5 NO Control 15

2 11 YES Control 16

2 12 YES Control-Fungi 17

2 9 YES Nematode 18

2 3 NO Nematode 19

2 4 NO Mix 20

2 1 NO Bacteria 21

2 8 YES Fungi 22

2 7 YES Bacteria 23

2 10 YES Mix 24

3 9 YES Nematode 25

3 11 YES Control 26

3 7 YES Bacteria 27

3 6 NO Control-Fungi 28

3 3 NO Nematode 29

3 5 NO Control 30

3 8 YES Fungi 31

3 12 YES Control-Fungi 32

3 10 YES Mix 33

3 1 NO Bacteria 34

3 4 NO Mix 35

3 2 NO Fungi 36

4 4 NO Mix 37

4 3 NO Nematode 38

4 6 NO Control-Fungi 39

4 7 YES Bacteria 40

4 11 YES Control 41

4 8 YES Fungi 42

4 1 NO Bacteria 43

4 5 NO Control 44

4 2 NO Fungi 45

4 9 YES Nematode 46

4 10 YES Mix 47



4 12 YES Control-Fungi 48

5 10 YES Mix 49

5 8 YES Fungi 50

5 9 YES Nematode 51

5 5 NO Control 52

5 6 NO Control-Fungi 53

5 4 NO Mix 54

5 12 YES Control-Fungi 55

5 7 YES Bacteria 56

5 11 YES Control 57

5 2 NO Fungi 58

5 1 NO Bacteria 59

5 3 NO Nematode 60

6 3 NO Nematode 61

6 2 NO Fungi 62

6 1 NO Bacteria 63

6 9 YES Nematode 64

6 11 YES Control 65

6 7 YES Bacteria 66

6 5 NO Control 67

6 6 NO Control-Fungi 68

6 4 NO Mix 69

6 8 YES Fungi 70

6 12 YES Control-Fungi 71

6 10 YES Mix 72

7 11 YES Control 73

7 7 YES Bacteria 74

7 8 YES Fungi 75

7 2 NO Fungi 76

7 5 NO Control 77

7 6 NO Control-Fungi 78

7 9 YES Nematode 79

7 10 YES Mix 80

7 12 YES Control-Fungi 81

7 4 NO Mix 82

7 3 NO Nematode 83

7 1 NO Bacteria 84

8 4 NO Mix 85

8 1 NO Bacteria 86

8 3 NO Nematode 87

8 10 YES Mix 88

8 8 YES Fungi 89

8 7 YES Bacteria 90

8 6 NO Control-Fungi 91

8 5 NO Control 92

8 2 NO Fungi 93

8 12 YES Control-Fungi 94

8 9 YES Nematode 95

8 11 YES Control 96



Root damage 2015

Plot Beneficial WCR Damage (1-3)

2006 Bacteria NO 0.005

2021 Bacteria NO 0.025

2034 Bacteria NO 0.0125

2043 Bacteria NO 0.0625

2059 Bacteria NO 0

2063 Bacteria NO 0

2084 Bacteria NO 0

2086 Bacteria NO 0.1875

2005 Fungi NO 0

2013 Fungi NO 0.025

2036 Fungi NO 0.0625

2045 Fungi NO 0

2058 Fungi NO 0

2062 Fungi NO 0

2076 Fungi NO 0.0675

2093 Fungi NO 0.005

2004 Nematode NO 0

2019 Nematode NO 0

2029 Nematode NO 0

2038 Nematode NO 0.0675

2060 Nematode NO 0

2061 Nematode NO 0.125

2083 Nematode NO 0.025

2087 Nematode NO 0.0375

2012 Mix NO 0

2020 Mix NO 0.025

2035 Mix NO 0

2037 Mix NO 0.025

2054 Mix NO 0.0625

2069 Mix NO 0

2082 Mix NO 0.0375

2085 Mix NO 0.05

2011 Control NO 0.125

2077 Control NO 0

2015 Control NO 0

2030 Control NO 0

2052 Control NO 0.005

2092 Control NO 0.066666667

2044 Control NO 0

2067 Control NO 0

2010 Control-Fungi NO 0.275

2014 Control-Fungi NO 0

2028 Control-Fungi NO 0.033333333

2039 Control-Fungi NO 0.006666667

2053 Control-Fungi NO 0

2068 Control-Fungi NO 0.005

2078 Control-Fungi NO 0



2091 Control-Fungi NO 0.0025

2001 Bacteria YES 0.6875

2023 Bacteria YES 0.0025

2027 Bacteria YES 0.5625

2040 Bacteria YES 0.5

2056 Bacteria YES 1.3125

2066 Bacteria YES 1.5625

2074 Bacteria YES 1.1875

2090 Bacteria YES 1.625

2003 Fungi YES 0.833333333

2022 Fungi YES 0

2031 Fungi YES 1.6875

2042 Fungi YES 1.125

2050 Fungi YES 1.125

2070 Fungi YES 0.1375

2075 Fungi YES 0.1925

2089 Fungi YES 0.8125

2002 Nematode YES 0.025

2018 Nematode YES 1.5

2025 Nematode YES 1.416666667

2046 Nematode YES 0.04

2051 Nematode YES 0.075

2064 Nematode YES 0.0875

2079 Nematode YES 1.25

2095 Nematode YES 1

2007 Mix YES 0.9375

2024 Mix YES 1.625

2033 Mix YES 0.275

2047 Mix YES 0.003333333

2049 Mix YES 0.875

2072 Mix YES 1.125

2080 Mix YES 0.9375

2088 Mix YES 1.4375

2057 Control YES 0.1375

2008 Control YES 0.175

2065 Control YES 1.333333333

2041 Control YES 0.0775

2026 Control YES 0.255

2016 Control YES 0.09

2073 Control YES 0.625

2096 Control YES 1.125

2009 Control-Fungi YES 0.5875

2017 Control-Fungi YES 0.0125

2032 Control-Fungi YES 1.3125

2048 Control-Fungi YES 1.5625

2055 Control-Fungi YES 1.75

2071 Control-Fungi YES 0.275

2081 Control-Fungi YES 0.325

2094 Control-Fungi YES 1.166666667



Larval recovery 2015

Plot Beneficial WCR larval recovery (mean nb)

2001 Bacteria YES 0.5

2023 Bacteria YES 0

2027 Bacteria YES 0

2040 Bacteria YES 0

2056 Bacteria YES 11.5

2066 Bacteria YES 5.5

2074 Bacteria YES 4.5

2090 Bacteria YES 20.5

2006 Bacteria NO 0

2021 Bacteria NO 0

2034 Bacteria NO 0

2043 Bacteria NO 0

2059 Bacteria NO 0

2063 Bacteria NO 0

2084 Bacteria NO 0

2086 Bacteria NO 0

2008 Control YES 0

2016 Control YES 2

2026 Control YES 8

2041 Control YES 0

2057 Control YES 0

2065 Control YES 0

2073 Control YES 4

2096 Control YES 10.5

2011 Control NO 0

2015 Control NO 0

2030 Control NO 0

2044 Control NO 0

2052 Control NO 1

2067 Control NO 0.5

2077 Control NO 0

2092 Control NO 0

2009 Control-Fungi YES 7

2017 Control-Fungi YES 0

2032 Control-Fungi YES 1

2048 Control-Fungi YES 1.5

2055 Control-Fungi YES 16.5

2071 Control-Fungi YES 0

2081 Control-Fungi YES 0

2094 Control-Fungi YES 0

2010 Control-Fungi NO 0

2014 Control-Fungi NO 0

2028 Control-Fungi NO 0

2039 Control-Fungi NO 0

2053 Control-Fungi NO 0

2068 Control-Fungi NO 0

2078 Control-Fungi NO 0



2091 Control-Fungi NO 0

2003 Fungi YES 1.5

2022 Fungi YES 0

2031 Fungi YES 5.5

2042 Fungi YES 4

2050 Fungi YES 7.5

2070 Fungi YES 4

2075 Fungi YES 0

2089 Fungi YES 5.5

2005 Fungi NO 0

2013 Fungi NO 1

2036 Fungi NO 0

2045 Fungi NO 0

2058 Fungi NO 0

2062 Fungi NO 1

2076 Fungi NO 0

2093 Fungi NO 0

2007 Mix YES 4.5

2024 Mix YES 2

2033 Mix YES 1

2047 Mix YES 0

2049 Mix YES 8

2072 Mix YES 18

2080 Mix YES 13

2088 Mix YES 1.5

2012 Mix NO 0

2020 Mix NO 0

2035 Mix NO 0

2037 Mix NO 0

2054 Mix NO 0

2069 Mix NO 0

2082 Mix NO 0

2085 Mix NO 0

2002 Nematode YES 0

2018 Nematode YES 18

2025 Nematode YES 11

2046 Nematode YES 0

2051 Nematode YES 8.5

2064 Nematode YES 0.5

2079 Nematode YES 11

2095 Nematode YES 7

2004 Nematode NO 0.5

2019 Nematode NO 0

2029 Nematode NO 0

2038 Nematode NO 0

2060 Nematode NO 0

2061 Nematode NO 1

2083 Nematode NO 0

2087 Nematode NO 0



Larval weigth 2015

Plot Beneficial WCR larvae weight (mg)

2001 Bacteria YES 1

2023 Bacteria YES 0

2027 Bacteria YES 0

2040 Bacteria YES 0

2056 Bacteria YES 11.5

2066 Bacteria YES 5.5

2074 Bacteria YES 4.5

2090 Bacteria YES 20.5

2008 Control YES 0

2016 Control YES 4

2026 Control YES 8

2041 Control YES 0

2057 Control YES 0

2065 Control YES 0

2073 Control YES 4

2096 Control YES 10.5

2009 Control-Fungi YES 14

2017 Control-Fungi YES 0

2032 Control-Fungi YES 1

2048 Control-Fungi YES 1.5

2055 Control-Fungi YES 16.5

2071 Control-Fungi YES 0

2081 Control-Fungi YES 0

2094 Control-Fungi YES 0

2003 Fungi YES 1.5

2022 Fungi YES 0

2031 Fungi YES 5.5

2042 Fungi YES 4

2050 Fungi YES 7.5

2070 Fungi YES 4

2075 Fungi YES 0

2089 Fungi YES 5.5

2007 Mix YES 4.5

2024 Mix YES 2

2033 Mix YES 1

2047 Mix YES 0

2049 Mix YES 8

2072 Mix YES 18

2080 Mix YES 26

2088 Mix YES 1.5

2002 Nematode YES 0

2018 Nematode YES 18

2025 Nematode YES 11

2046 Nematode YES 0

2051 Nematode YES 17

2064 Nematode YES 1

2079 Nematode YES 11



2095 Nematode YES 7

2006 Bacteria NO 0

2021 Bacteria NO 0

2034 Bacteria NO 0

2043 Bacteria NO 0

2059 Bacteria NO 0

2063 Bacteria NO 0

2084 Bacteria NO 0

2086 Bacteria NO 0

2011 Control NO 0

2015 Control NO 0

2030 Control NO 0

2044 Control NO 0

2052 Control NO 2

2067 Control NO 0.5

2077 Control NO 0

2092 Control NO 0

2010 Control-Fungi NO 0

2014 Control-Fungi NO 0

2028 Control-Fungi NO 0

2039 Control-Fungi NO 0

2053 Control-Fungi NO 0

2068 Control-Fungi NO 0

2078 Control-Fungi NO 0

2091 Control-Fungi NO 0

2005 Fungi NO 0

2013 Fungi NO 2

2036 Fungi NO 0

2045 Fungi NO 0

2058 Fungi NO 0

2062 Fungi NO 2

2076 Fungi NO 0

2093 Fungi NO 0

2012 Mix NO 0

2020 Mix NO 0

2035 Mix NO 0

2037 Mix NO 0

2054 Mix NO 0

2069 Mix NO 0

2082 Mix NO 0

2085 Mix NO 0

2004 Nematode NO 1

2019 Nematode NO 0

2029 Nematode NO 0

2038 Nematode NO 0

2060 Nematode NO 0

2061 Nematode NO 2

2083 Nematode NO 0

2087 Nematode NO 0



Yield 2015

Plot Beneficial WCR Weight (g)

2182 Bacteria NO 600.7263288

2159 Bacteria NO 640.1321616

2102 Bacteria NO 664.2292536

2117 Bacteria NO 676.136052

2139 Bacteria NO 717.5263512

2130 Bacteria NO 754.097232

2155 Bacteria NO 761.4681072

2180 Bacteria NO 849.068124

2140 Control NO 319.4990904

2107 Control NO 346.1476392

2111 Control NO 346.9981248

2126 Control NO 448.4894064

2173 Control NO 517.6622352

2163 Control NO 679.8214896

2188 Control NO 686.6253744

2148 Control NO 841.6972488

2135 Control-Fungi NO 392.640852

2124 Control-Fungi NO 403.6971648

2187 Control-Fungi NO 415.6039632

2106 Control-Fungi NO 438.000084

2164 Control-Fungi NO 555.650592

2110 Control-Fungi NO 572.3768088

2149 Control-Fungi NO 701.9341152

2174 Control-Fungi NO 1051.767192

2109 Fungi NO 536.9399088

2172 Fungi NO 564.4389432

2158 Fungi NO 592.2214728

2189 Fungi NO 601.5768144

2154 Fungi NO 676.136052

2141 Fungi NO 707.320524

2132 Fungi NO 779.3283048

2101 Fungi NO 806.2603488

2165 Mix NO 362.5903608

2133 Mix NO 552.5321448

2116 Mix NO 622.271964

2178 Mix NO 709.0214952

2131 Mix NO 740.4894624

2181 Mix NO 797.4719976

2108 Mix NO 925.0448376

2150 Mix NO 1113.28565

2183 Nematode NO 551.1146688

2115 Nematode NO 612.0661368

2134 Nematode NO 679.8214896

2157 Nematode NO 747.009852

2179 Nematode NO 845.0991912

2125 Nematode NO 898.1127936

2100 Nematode NO 1047.798259



2156 Nematode NO 1330.442974

2123 Bacteria YES 372.2291976

2170 Bacteria YES 735.1030536

2136 Bacteria YES 744.1749

2152 Bacteria YES 770.5399536

2119 Bacteria YES 833.475888

2186 Bacteria YES 868.3457976

2097 Bacteria YES 908.3186208

2162 Bacteria YES 912.854544

2104 Control YES 422.9748384

2137 Control YES 458.9787288

2122 Control YES 511.708836

2169 Control YES 599.8758432

2153 Control YES 607.5302136

2112 Control YES 633.611772

2161 Control YES 657.9923592

2192 Control YES 680.1049848

2128 Control-Fungi YES 333.9573456

2190 Control-Fungi YES 393.4913376

2177 Control-Fungi YES 453.0253296

2167 Control-Fungi YES 485.3437824

2105 Control-Fungi YES 516.5282544

2151 Control-Fungi YES 629.9263344

2113 Control-Fungi YES 803.1419016

2144 Control-Fungi YES 922.776876

2185 Fungi YES 385.553472

2138 Fungi YES 499.5185424

2118 Fungi YES 531.5535

2146 Fungi YES 553.6661256

2099 Fungi YES 555.9340872

2127 Fungi YES 579.1806936

2171 Fungi YES 667.9146912

2166 Fungi YES 699.6661536

2145 Mix YES 477.4059168

2176 Mix YES 555.650592

2129 Mix YES 573.5107896

2103 Mix YES 691.4447928

2184 Mix YES 705.903048

2143 Mix YES 843.39822

2120 Mix YES 983.1613536

2168 Mix YES 995.9186376

2121 Nematode YES 625.3904112

2147 Nematode YES 697.9651824

2098 Nematode YES 700.233144

2160 Nematode YES 738.504996

2191 Nematode YES 769.9729632

2142 Nematode YES 815.6156904

2175 Nematode YES 851.903076

2114 Nematode YES 961.3322232



Field design 2016

Plant damage/larval recovery plots

Block Plot Treatment WCR Beneficial Code

1 3001 5 NO 1 Control C

1 3002 4 NO 2 Mix MIX

1 3003 3 NO 3 Nematode N

1 3004 2 NO 4 Fungi F

1 3005 1 NO 5 Bacteria B

1 3006 6 NO 6 Control-Fungi C-F

1 3007 9 YES 1 Nematode N*

1 3008 10 YES 2 Mix MIX*

1 3009 12 YES 3 Control-Fungi C-F*

1 3010 11 YES 4 Control C*

1 3011 7 YES 5 Bacteria B*

1 3012 8 YES 6 Fungi F*

2 3013 9 YES 1 Nematode N*

2 3014 11 YES 2 Control C*

2 3015 8 YES 3 Fungi F*

2 3016 10 YES 4 Mix MIX*

2 3017 12 YES 5 Control-Fungi C-F*

2 3018 7 YES 6 Bacteria B*

2 3019 2 NO 1 Fungi F

2 3020 5 NO 2 Control C

2 3021 6 NO 3 Control-Fungi C-F

2 3022 1 NO 4 Bacteria B

2 3023 3 NO 5 Nematode N

2 3024 4 NO 6 Mix MIX

3 3025 5 NO 1 Control C

3 3026 6 NO 2 Control-Fungi C-F

3 3027 3 NO 3 Nematode N

3 3028 1 NO 4 Bacteria B

3 3029 2 NO 5 Fungi F

3 3030 4 NO 6 Mix MIX

3 3031 9 YES 1 Nematode N*

3 3032 12 YES 2 Control-Fungi C-F*

3 3033 10 YES 3 Mix MIX*

3 3034 11 YES 4 Control C*

3 3035 7 YES 5 Bacteria B*

3 3036 8 YES 6 Fungi F*

4 3037 12 YES 1 Control-Fungi C-F*

4 3038 11 YES 2 Control C*

4 3039 9 YES 3 Nematode N*

4 3040 8 YES 4 Fungi F*

4 3041 10 YES 5 Mix MIX*

4 3042 7 YES 6 Bacteria B*

4 3043 6 NO 1 Control-Fungi C-F

4 3044 5 NO 2 Control C

4 3045 2 NO 3 Fungi F

4 3046 4 NO 4 Mix MIX



4 3047 1 NO 5 Bacteria B

4 3048 3 NO 6 Nematode N

5 3049 11 YES 1 Control C*

5 3050 7 YES 2 Bacteria B*

5 3051 9 YES 3 Nematode N*

5 3052 8 YES 4 Fungi F*

5 3053 10 YES 5 Mix MIX*

5 3054 12 YES 6 Control-Fungi C-F*

5 3055 4 NO 1 Mix MIX

5 3056 6 NO 2 Control-Fungi C-F

5 3057 3 NO 3 Nematode N

5 3058 5 NO 4 Control C

5 3059 1 NO 5 Bacteria B

5 3060 2 NO 6 Fungi F

6 3061 4 NO 1 Mix MIX

6 3062 3 NO 2 Nematode N

6 3063 1 NO 3 Bacteria B

6 3064 5 NO 4 Control C

6 3065 2 NO 5 Fungi F

6 3066 6 NO 6 Control-Fungi C-F

6 3067 11 YES 1 Control C*

6 3068 9 YES 2 Nematode N*

6 3069 12 YES 3 Control-Fungi C-F*

6 3070 10 YES 4 Mix MIX*

6 3071 8 YES 5 Fungi F*

6 3072 7 YES 6 Bacteria B*

7 3073 5 NO 1 Control C

7 3074 4 NO 2 Mix MIX

7 3075 2 NO 3 Fungi F

7 3076 1 NO 4 Bacteria B

7 3077 6 NO 5 Control-Fungi C-F

7 3078 3 NO 6 Nematode N

7 3079 10 YES 1 Mix MIX*

7 3080 11 YES 2 Control C*

7 3081 7 YES 3 Bacteria B*

7 3082 9 YES 4 Nematode N*

7 3083 12 YES 5 Control-Fungi C-F*

7 3084 8 YES 6 Fungi F*

8 3085 11 YES 1 Control C*

8 3086 7 YES 2 Bacteria B*

8 3087 8 YES 3 Fungi F*

8 3088 9 YES 4 Nematode N*

8 3089 10 YES 5 Mix MIX*

8 3090 12 YES 6 Control-Fungi C-F*

8 3091 2 NO 1 Fungi F

8 3092 1 NO 2 Bacteria B

8 3093 6 NO 3 Control-Fungi C-F

8 3094 5 NO 4 Control C

8 3095 4 NO 5 Mix MIX

8 3096 3 NO 6 Nematode N



Root damage 2016

Plot Beneficial WCR Damage (1-3)

3005 Bacteria NO 0.00666667

3022 Bacteria NO 0.04

3028 Bacteria NO 0

3047 Bacteria NO 0

3059 Bacteria NO 0

3063 Bacteria NO 0.03333333

3076 Bacteria NO 0

3092 Bacteria NO 0

3004 Fungi NO 0

3019 Fungi NO 0

3029 Fungi NO 0

3045 Fungi NO 0

3060 Fungi NO 0.04

3065 Fungi NO 0

3075 Fungi NO 0

3091 Fungi NO 0.01666667

3003 Nematode NO 0

3023 Nematode NO 0

3027 Nematode NO 0

3048 Nematode NO 0.09

3057 Nematode NO 0

3062 Nematode NO 0

3078 Nematode NO 0

3096 Nematode NO 0

3002 Mix NO 0

3024 Mix NO 0

3030 Mix NO 0

3046 Mix NO 0

3055 Mix NO 0

3061 Mix NO 0

3074 Mix NO 0.03333333

3095 Mix NO 0

3001 Control NO 0

3020 Control NO 0

3025 Control NO 0.00666667

3044 Control NO 0

3058 Control NO 0

3064 Control NO 0.08333333

3073 Control NO 0

3094 Control NO 0.00666667

3006 Control-Fungi NO 0.03333333

3021 Control-Fungi NO 0

3026 Control-Fungi NO 0

3043 Control-Fungi NO 0

3056 Control-Fungi NO 0

3066 Control-Fungi NO 0.00666667

3077 Control-Fungi NO 0



3093 Control-Fungi NO 0

3011 Bacteria NO 0.28333333

3018 Bacteria YES 0.58333333

3035 Bacteria YES 0.35

3042 Bacteria YES 0.2

3050 Bacteria YES 0.05666667

3072 Bacteria YES 0.13333333

3081 Bacteria YES 0.21666667

3086 Bacteria YES 0.1

3012 Fungi YES 0.19

3015 Fungi YES 0.00666667

3036 Fungi YES 0.2

3040 Fungi YES 0.66666667

3052 Fungi YES 0.66666667

3071 Fungi YES 0.25

3084 Fungi YES 0.42333333

3087 Fungi YES 0.28333333

3007 Nematode YES 0.1

3013 Nematode YES 0

3031 Nematode YES 0.15

3039 Nematode YES 0.00666667

3051 Nematode YES 0.18333333

3068 Nematode YES 0.25666667

3082 Nematode YES 0.03333333

3088 Nematode YES 0.51666667

3008 Mix YES 0.5

3016 Mix YES 0.09

3033 Mix YES 0.09

3041 Mix YES 0.03333333

3053 Mix YES 0.11666667

3070 Mix YES 0.33333333

3079 Mix YES 0.05

3089 Mix YES 0.25

3010 Control YES 0.91666667

3014 Control YES 0

3034 Control YES 0.7

3038 Control YES 0.09

3049 Control YES 0.33333333

3067 Control YES 0.45

3080 Control YES 0.20666667

3085 Control YES 0.36666667

3009 Control-Fungi YES 0.16666667

3017 Control-Fungi YES 0.5

3032 Control-Fungi YES 0.25

3037 Control-Fungi YES 0.17333333

3054 Control-Fungi YES 0.58333333

3069 Control-Fungi YES 0.5

3083 Control-Fungi YES 0.16666667

3090 Control-Fungi YES 0.18333333



Larval recovery 2016

Plot Beneficial WCR Larval recovery (mean nb)

3005 Bacteria NO 0

3022 Bacteria NO 0

3028 Bacteria NO 0

3047 Bacteria NO 1

3059 Bacteria NO 0.5

3063 Bacteria NO 0

3076 Bacteria NO 0

3092 Bacteria NO 0.5

3004 Fungi NO 0

3019 Fungi NO 0

3029 Fungi NO 0

3045 Fungi NO 0

3060 Fungi NO 0.5

3065 Fungi NO 0

3075 Fungi NO 0

3091 Fungi NO 0

3003 Nematode NO 0

3023 Nematode NO 0.5

3027 Nematode NO 0

3048 Nematode NO 0.5

3057 Nematode NO 0

3062 Nematode NO 0

3078 Nematode NO 0

3096 Nematode NO 0

3002 Mix NO 0

3024 Mix NO 0

3030 Mix NO 0

3046 Mix NO 0

3055 Mix NO 0.5

3061 Mix NO 0

3074 Mix NO 0

3095 Mix NO 0

3001 Control NO 0.5

3020 Control NO 0

3025 Control NO 0

3044 Control NO 0

3058 Control NO 1.5

3064 Control NO 0

3073 Control NO 0

3094 Control NO 0

3006 Control-Fungi NO 0

3021 Control-Fungi NO 0

3026 Control-Fungi NO 0

3043 Control-Fungi NO 0

3056 Control-Fungi NO 0

3066 Control-Fungi NO 0

3077 Control-Fungi NO 0



3093 Control-Fungi NO 0

3011 Bacteria YES 2.5

3018 Bacteria YES 0.5

3035 Bacteria YES 1.5

3042 Bacteria YES 0.5

3050 Bacteria YES 3

3072 Bacteria YES 2

3081 Bacteria YES 1

3086 Bacteria YES 1.5

3012 Fungi YES 6.5

3015 Fungi YES 4.5

3036 Fungi YES 0.5

3040 Fungi YES 2.5

3052 Fungi YES 3

3071 Fungi YES 2

3084 Fungi YES 3

3087 Fungi YES 5

3007 Nematode YES 4

3013 Nematode YES 0.5

3031 Nematode YES 4

3039 Nematode YES 2

3051 Nematode YES 5

3068 Nematode YES 0

3082 Nematode YES 0.5

3088 Nematode YES 6.5

3008 Mix YES 6

3016 Mix YES 2

3033 Mix YES 3.5

3041 Mix YES 1.5

3053 Mix YES 2

3070 Mix YES 4.5

3079 Mix YES 1.5

3089 Mix YES 4

3010 Control YES 7

3014 Control YES 1.5

3034 Control YES 4.5

3038 Control YES 1.5

3049 Control YES 3.5

3067 Control YES 5

3080 Control YES 6

3085 Control YES 5.5

3009 Control-Fungi YES 2.5

3017 Control-Fungi YES 6.5

3032 Control-Fungi YES 9

3037 Control-Fungi YES 1.5

3054 Control-Fungi YES 8.5

3069 Control-Fungi YES 3.5

3083 Control-Fungi YES 0.5

3090 Control-Fungi YES 5.5



Larval weight 2016

Plot Beneficial WCR larval weight (mg)

3005 Bacteria NO .

3022 Bacteria NO .

3028 Bacteria NO .

3047 Bacteria NO 0.234

3059 Bacteria NO .

3063 Bacteria NO .

3076 Bacteria NO .

3092 Bacteria NO 0.247

3004 Fungi NO .

3019 Fungi NO .

3029 Fungi NO .

3045 Fungi NO .

3060 Fungi NO 0.342

3065 Fungi NO .

3075 Fungi NO .

3091 Fungi NO .

3003 Nematode NO .

3023 Nematode NO 0.106

3027 Nematode NO .

3048 Nematode NO 0.217

3057 Nematode NO .

3062 Nematode NO .

3078 Nematode NO .

3096 Nematode NO .

3002 Mix NO .

3024 Mix NO .

3030 Mix NO .

3046 Mix NO .

3055 Mix NO 0.092

3061 Mix NO .

3074 Mix NO .

3095 Mix NO .

3001 Control NO 0.241

3020 Control NO .

3025 Control NO .

3044 Control NO .

3058 Control NO 0.552

3064 Control NO .

3073 Control NO .

3094 Control NO .

3006 Control-Fungi NO .

3021 Control-Fungi NO .

3026 Control-Fungi NO .

3043 Control-Fungi NO .

3056 Control-Fungi NO .

3066 Control-Fungi NO .

3077 Control-Fungi NO .



3093 Control-Fungi NO .

3011 Bacteria YES 0.482

3018 Bacteria YES 0.231

3035 Bacteria YES 0.2275

3042 Bacteria YES 0.055

3050 Bacteria YES 0.09

3072 Bacteria YES 0.314

3081 Bacteria YES 0.268

3086 Bacteria YES 0.276

3012 Fungi YES 0.769

3015 Fungi YES 0.572

3036 Fungi YES 0.18

3040 Fungi YES 0.3465

3052 Fungi YES 0.759

3071 Fungi YES 0.266

3084 Fungi YES 0.307

3087 Fungi YES 0.6565

3007 Nematode YES 0.6145

3013 Nematode YES 0.123

3031 Nematode YES 0.376

3039 Nematode YES 0.925

3051 Nematode YES 0.4655

3068 Nematode YES .

3082 Nematode YES 0.187

3088 Nematode YES 1.1145

3008 Mix YES 0.757

3016 Mix YES 0.2375

3033 Mix YES 0.3925

3041 Mix YES 0.201

3053 Mix YES 0.2405

3070 Mix YES 0.8075

3079 Mix YES 0.2625

3089 Mix YES 0.8045

3010 Control YES 1.985

3014 Control YES 0.1705

3034 Control YES 0.665

3038 Control YES 0.2185

3049 Control YES 0.447

3067 Control YES 0.6805

3080 Control YES 1.696

3085 Control YES 0.984

3009 Control-Fungi YES 0.989

3017 Control-Fungi YES 0.915

3032 Control-Fungi YES 1.1335

3037 Control-Fungi YES 0.345

3054 Control-Fungi YES 1.0185

3069 Control-Fungi YES 0.689

3083 Control-Fungi YES 0.196

3090 Control-Fungi YES 1.1115



Yield 2016

Plot Beneficial WCR Weight (g)

3099 Bacteria NO 1167.4

3117 Bacteria NO 812.1

3127 Bacteria NO 904.3

3134 Bacteria NO 717.3

3150 Bacteria NO 537.4

3157 Bacteria NO 607.3

3180 Bacteria NO 832.1

3184 Bacteria NO 752.3

3100 Fungi NO 1054.9

3119 Fungi NO 886.8

3129 Fungi NO 822.7

3137 Fungi NO 915.4

3146 Fungi NO 663.6

3158 Fungi NO 745

3175 Fungi NO 741.7

3185 Fungi NO 604.9

3097 Nematode NO 1013

3120 Nematode NO 577.3

3131 Nematode NO 855.6

3136 Nematode NO 831.1

3145 Nematode NO 700.3

3162 Nematode NO 642

3179 Nematode NO 868.7

3183 Nematode NO 601.5

3101 Mix NO 1120.5

3116 Mix NO 850.1

3130 Mix NO 727.6

3135 Mix NO 856.8

3149 Mix NO 602.5

3159 Mix NO 700.3

3177 Mix NO 1024.4

3186 Mix NO 870.6

3098 Control NO 1031.8

3115 Control NO 1194

3128 Control NO 627.6

3133 Control NO 853.9

3147 Control NO 605

3161 Control NO 646.3

3178 Control NO 817

3181 Control NO 1156.5

3102 Control-Fungi NO 1164.8

3118 Control-Fungi NO 909

3132 Control-Fungi NO 713.1

3138 Control-Fungi NO 664.9

3148 Control-Fungi NO 896.7

3160 Control-Fungi NO 505.9

3176 Control-Fungi NO 833.3



3182 Control-Fungi NO 1053.5

3103 Bacteria YES 1131

3114 Bacteria YES 882.4

3123 Bacteria YES 672.9

3143 Bacteria YES 955.5

3151 Bacteria YES 758.5

3166 Bacteria YES 670.2

3170 Bacteria YES 982

3187 Bacteria YES 941.6

3105 Fungi YES 1044.6

3109 Fungi YES 1004.2

3122 Fungi YES 748.5

3144 Fungi YES 791.4

3153 Fungi YES 764.7

3163 Fungi YES 638.6

3174 Fungi YES 992

3190 Fungi YES 567

3107 Nematode YES 899.2

3112 Nematode YES 983.6

3124 Nematode YES 742.9

3139 Nematode YES 1035.3

3155 Nematode YES 764.3

3167 Nematode YES 503.7

3173 Nematode YES 896.7

3189 Nematode YES 690.1

3104 Mix YES 1062.2

3111 Mix YES 804

3121 Mix YES 945.7

3141 Mix YES 807

3154 Mix YES 761.6

3164 Mix YES 750.8

3169 Mix YES 954.4

3188 Mix YES 1004.1

3106 Control YES 613.1

3113 Control YES 820.9

3125 Control YES 641.2

3142 Control YES 874.6

3152 Control YES 726.6

3165 Control YES 776.6

3171 Control YES 1000.9

3192 Control YES 676.5

3108 Control-Fungi YES 928.1

3110 Control-Fungi YES 1003.8

3126 Control-Fungi YES 600.8

3140 Control-Fungi YES 1072.8

3156 Control-Fungi YES 615.4

3168 Control-Fungi YES 575.9

3172 Control-Fungi YES 1016.6

3191 Control-Fungi YES 505.2



Field design 2017

Plant damage/larval recovery plots

Block Plot Treatment WCR Beneficial Code

1 1001 12 add 1 Control-Fungi C-F*

1 1002 8 add 2 Fungi F*

1 1003 11 add 3 Control C*

1 1004 9 add 4 Nematode N*

1 1005 7 add 5 Bacteria B*

1 1006 10 add 6 Mix MIX*

1 1007 4 neg 1 Mix MIX

1 1008 6 neg 2 Control-Fungi C-F

1 1009 2 neg 3 Fungi F

1 1010 1 neg 4 Bacteria B

1 1011 3 neg 5 Nematode N

1 1012 5 neg 6 Control C

2 1013 9 add 1 Nematode N*

2 1014 8 add 2 Fungi F*

2 1015 12 add 3 Control-Fungi C-F*

2 1016 11 add 4 Control C*

2 1017 10 add 5 Mix MIX*

2 1018 7 add 6 Bacteria B*

2 1019 5 neg 1 Control C

2 1020 3 neg 2 Nematode N

2 1021 1 neg 3 Bacteria B

2 1022 4 neg 4 Mix MIX

2 1023 2 neg 5 Fungi F

2 1024 6 neg 6 Control-Fungi C-F

3 1025 4 neg 1 Mix MIX

3 1026 1 neg 2 Bacteria B

3 1027 5 neg 3 Control C

3 1028 3 neg 4 Nematode N

3 1029 2 neg 5 Fungi F

3 1030 6 neg 6 Control-Fungi C-F

3 1031 8 add 1 Fungi F*

3 1032 9 add 2 Nematode N*

3 1033 7 add 3 Bacteria B*

3 1034 11 add 4 Control C*

3 1035 10 add 5 Mix MIX*

3 1036 12 add 6 Control-Fungi C-F*

4 1037 8 add 1 Fungi F*

4 1038 9 add 2 Nematode N*

4 1039 12 add 3 Control-Fungi C-F*

4 1040 11 add 4 Control C*

4 1041 10 add 5 Mix MIX*

4 1042 7 add 6 Bacteria B*

4 1043 5 neg 1 Control C

4 1044 2 neg 2 Fungi F

4 1045 1 neg 3 Bacteria B

4 1046 6 neg 4 Control-Fungi C-F



4 1047 4 neg 5 Mix MIX

4 1048 3 neg 6 Nematode N

5 1049 12 add 1 Control-Fungi C-F*

5 1050 10 add 2 Mix MIX*

5 1051 8 add 3 Fungi F*

5 1052 11 add 4 Control C*

5 1053 9 add 5 Nematode N*

5 1054 7 add 6 Bacteria B*

5 1055 1 neg 1 Bacteria B

5 1056 2 neg 2 Fungi F

5 1057 4 neg 3 Mix MIX

5 1058 6 neg 4 Control-Fungi C-F

5 1059 3 neg 5 Nematode N

5 1060 5 neg 6 Control C

6 1061 9 add 1 Nematode N*

6 1062 11 add 2 Control C*

6 1063 8 add 3 Fungi F*

6 1064 10 add 4 Mix MIX*

6 1065 7 add 5 Bacteria B*

6 1066 12 add 6 Control-Fungi C-F*

6 1067 6 neg 1 Control-Fungi C-F

6 1068 5 neg 2 Control C

6 1069 1 neg 3 Bacteria B

6 1070 3 neg 4 Nematode N

6 1071 4 neg 5 Mix MIX

6 1072 2 neg 6 Fungi F

7 1073 2 neg 1 Fungi F

7 1074 4 neg 2 Mix MIX

7 1075 6 neg 3 Control-Fungi C-F

7 1076 3 neg 4 Nematode N

7 1077 1 neg 5 Bacteria B

7 1078 5 neg 6 Control C

7 1079 11 add 1 Control C*

7 1080 7 add 2 Bacteria B*

7 1081 12 add 3 Control-Fungi C-F*

7 1082 10 add 4 Mix MIX*

7 1083 8 add 5 Fungi F*

7 1084 9 add 6 Nematode N*

8 1085 2 neg 1 Fungi F

8 1086 5 neg 2 Control C

8 1087 6 neg 3 Control-Fungi C-F

8 1088 4 neg 4 Mix MIX

8 1089 3 neg 5 Nematode N

8 1090 1 neg 6 Bacteria B

8 1091 7 add 1 Bacteria B*

8 1092 8 add 2 Fungi F*

8 1093 9 add 3 Nematode N*

8 1094 10 add 4 Mix MIX*

8 1095 11 add 5 Control C*

8 1096 12 add 6 Control-Fungi C-F*



Root damage 2017

Plot WCR Beneficial Damage (1-3)

1005 add Bacteria 0.766666667

1018 add Bacteria 0.7

1033 add Bacteria 1.166666667

1042 add Bacteria 0.166666667

1054 add Bacteria 1

1065 add Bacteria 1.5

1080 add Bacteria 0.116666667

1091 add Bacteria 0.933333333

1010 neg Bacteria 0

1021 neg Bacteria 0

1026 neg Bacteria 0.003333333

1045 neg Bacteria 0.005

1055 neg Bacteria 0

1069 neg Bacteria 0.003333333

1077 neg Bacteria 0

1090 neg Bacteria 0.006666667

1003 add Control 1.35

1016 add Control 0.916666667

1034 add Control 1.333333333

1040 add Control 0.216666667

1052 add Control 2.083333333

1062 add Control 1.083333333

1079 add Control 0.75

1095 add Control 1.666666667

1012 neg Control 0

1019 neg Control 0

1027 neg Control 0.003333333

1043 neg Control 0

1060 neg Control 0

1068 neg Control 0

1078 neg Control 0

1086 neg Control 0

1001 add Control-Fungi 0.253333333

1015 add Control-Fungi 2.333333333

1036 add Control-Fungi 1.166666667

1039 add Control-Fungi 2.083333333

1049 add Control-Fungi 2

1066 add Control-Fungi 1.25

1081 add Control-Fungi 1.666666667

1096 add Control-Fungi 1.916666667

1008 neg Control-Fungi 0

1024 neg Control-Fungi 0.003333333

1030 neg Control-Fungi 0

1046 neg Control-Fungi 0.003333333

1058 neg Control-Fungi 0.016666667

1067 neg Control-Fungi 0.016666667

1075 neg Control-Fungi 0



1087 neg Control-Fungi 0.016666667

1002 add Fungi 1.083333333

1014 add Fungi 3

1031 add Fungi 1.75

1037 add Fungi 2.416666667

1051 add Fungi 0.683333333

1063 add Fungi 2.75

1083 add Fungi 0.866666667

1092 add Fungi 1.916666667

1009 neg Fungi 0.006666667

1023 neg Fungi 0

1029 neg Fungi 0.006666667

1044 neg Fungi 0.003333333

1056 neg Fungi 0.03

1072 neg Fungi 0.003333333

1073 neg Fungi 0

1085 neg Fungi 0.03333333

1006 add Mix 0.25

1017 add Mix 0.95

1035 add Mix 2

1041 add Mix 0.7

1050 add Mix 0.683333333

1064 add Mix 1

1082 add Mix 0.833333333

1094 add Mix 0.833333333

1007 neg Mix 0.003333333

1022 neg Mix 0

1025 neg Mix 0.173333333

1047 neg Mix 0

1057 neg Mix 0

1071 neg Mix 0

1074 neg Mix 0

1088 neg Mix 0

1004 add Nematode 1.1

1013 add Nematode 0.283333333

1032 add Nematode 1.5

1038 add Nematode 1.083333333

1053 add Nematode 1.833333333

1061 add Nematode 1.5

1084 add Nematode 0.333333333

1093 add Nematode 0.333333333

1011 neg Nematode 0

1020 neg Nematode 0

1028 neg Nematode 0

1048 neg Nematode 0.003333333

1059 neg Nematode 0

1070 neg Nematode 0

1076 neg Nematode 0

1089 neg Nematode 0



Larval recovery 2017

Plot WCR Beneficial Larval recovery (mean nb)

1010 NO Bacteria 0

1021 NO Bacteria 0

1026 NO Bacteria 0

1045 NO Bacteria 0

1055 NO Bacteria 0

1069 NO Bacteria 0.5

1077 NO Bacteria 0

1090 NO Bacteria 1

1009 NO Fungi 0

1023 NO Fungi 0

1029 NO Fungi 1

1044 NO Fungi 0

1056 NO Fungi 0

1072 NO Fungi 0

1073 NO Fungi 0

1085 NO Fungi 0

1011 NO Nematode 0

1020 NO Nematode 0

1028 NO Nematode 0

1048 NO Nematode 0

1059 NO Nematode 0

1070 NO Nematode 1

1076 NO Nematode 0.5

1089 NO Nematode 0

1007 NO Mix 0

1022 NO Mix 0

1025 NO Mix 0

1047 NO Mix 0

1057 NO Mix 0

1071 NO Mix 0

1074 NO Mix 0

1088 NO Mix 0

1012 NO Control 0

1019 NO Control 0

1027 NO Control 0

1043 NO Control 1

1060 NO Control 0.5

1068 NO Control 0

1078 NO Control 0

1086 NO Control 0

1008 NO Control-Fungi 0

1024 NO Control-Fungi 0

1030 NO Control-Fungi 0

1046 NO Control-Fungi 0

1058 NO Control-Fungi 0

1067 NO Control-Fungi 0

1075 NO Control-Fungi 0



1087 NO Control-Fungi 0

1005 YES Bacteria 4

1018 YES Bacteria 4

1033 YES Bacteria 1.5

1042 YES Bacteria 2

1054 YES Bacteria 3

1065 YES Bacteria 5.5

1080 YES Bacteria 7.5

1091 YES Bacteria 0.5

1002 YES Fungi 1.5

1014 YES Fungi 6.5

1031 YES Fungi 7.5

1037 YES Fungi 21.5

1051 YES Fungi 3

1063 YES Fungi 4.5

1083 YES Fungi 6

1092 YES Fungi 5.5

1004 YES Nematode 6.5

1013 YES Nematode 3.5

1032 YES Nematode 3.5

1038 YES Nematode 5

1053 YES Nematode 2

1061 YES Nematode 2.5

1084 YES Nematode 1

1093 YES Nematode 9

1006 YES Mix 1.5

1017 YES Mix 2

1035 YES Mix 4.5

1041 YES Mix 5

1050 YES Mix 4.5

1064 YES Mix 4.5

1082 YES Mix 6

1094 YES Mix 5

1003 YES Control 4

1016 YES Control 1.5

1034 YES Control 3

1040 YES Control 1

1052 YES Control 1.5

1062 YES Control 4

1079 YES Control 4

1095 YES Control 6

1001 YES Control-Fungi 5

1015 YES Control-Fungi 11.5

1036 YES Control-Fungi 3

1039 YES Control-Fungi 4.5

1049 YES Control-Fungi 2.5

1066 YES Control-Fungi 3.5

1081 YES Control-Fungi 3.5

1096 YES Control-Fungi 10



Larval weight 2017

Plot WCR Beneficial larval weight (mg)

1005 YES Bacteria 1.2575

1018 YES Bacteria 1.02

1033 YES Bacteria 0.78333333

1042 YES Bacteria 1.095

1054 YES Bacteria 0.85666667

1065 YES Bacteria 1.26454545

1080 YES Bacteria 1.02466667

1091 YES Bacteria .

1002 YES Fungi 0.84

1014 YES Fungi 0.95307692

1031 YES Fungi 0.98733333

1037 YES Fungi 0.93348837

1051 YES Fungi 0.81666667

1063 YES Fungi 1.20333333

1083 YES Fungi 1.38916667

1092 YES Fungi 1.34909091

1004 YES Nematode 1.04307692

1013 YES Nematode 1.34285714

1032 YES Nematode 0.80428571

1038 YES Nematode 1.01

1053 YES Nematode 0.935

1061 YES Nematode 1.228

1084 YES Nematode 1.005

1093 YES Nematode 0.56388889

1006 YES Mix 1.26666667

1017 YES Mix 2.0025

1035 YES Mix 0.94777778

1041 YES Mix 1.39

1050 YES Mix 1.29444444

1064 YES Mix 1.08222222

1082 YES Mix 1.47166667

1094 YES Mix 1.414

1003 YES Control 1.1825

1016 YES Control 1.63333333

1034 YES Control 0.75333333

1040 YES Control 0.64

1052 YES Control 1.08666667

1062 YES Control 1.3825

1079 YES Control 0.5075

1095 YES Control 1.09

1001 YES Control-Fungi 1.554

1015 YES Control-Fungi 1.13565217

1036 YES Control-Fungi 0.49333333

1039 YES Control-Fungi 0.88222222

1049 YES Control-Fungi 1.12

1066 YES Control-Fungi 1.40857143

1081 YES Control-Fungi 0.64428571



1096 YES Control-Fungi 0.8685

1010 NO Bacteria .

1021 NO Bacteria .

1026 NO Bacteria .

1045 NO Bacteria .

1055 NO Bacteria .

1069 NO Bacteria 0.06

1077 NO Bacteria .

1090 NO Bacteria 1.215

1009 NO Fungi .

1023 NO Fungi .

1029 NO Fungi 0.47

1044 NO Fungi .

1056 NO Fungi .

1072 NO Fungi .

1073 NO Fungi .

1085 NO Fungi .

1011 NO Nematode .

1020 NO Nematode .

1028 NO Nematode .

1048 NO Nematode .

1059 NO Nematode .

1070 NO Nematode 0.065

1076 NO Nematode 1.6

1089 NO Nematode .

1007 NO Mix .

1022 NO Mix .

1025 NO Mix .

1047 NO Mix .

1057 NO Mix .

1071 NO Mix .

1074 NO Mix .

1088 NO Mix .

1012 NO Control .

1019 NO Control .

1027 NO Control .

1043 NO Control 2.17

1060 NO Control 1.78

1068 NO Control .

1078 NO Control .

1086 NO Control .

1008 NO Control-Fungi .

1024 NO Control-Fungi .

1030 NO Control-Fungi .

1046 NO Control-Fungi .

1058 NO Control-Fungi .

1067 NO Control-Fungi .

1075 NO Control-Fungi .

1087 NO Control-Fungi .



Yield 2017

Plot WCR Beneficial Weight (g)

1102 NO Bacteria 443.783688

1110 NO Bacteria 1227.53008

1128 NO Bacteria 755.98227

1138 NO Bacteria 740.594697

1148 NO Bacteria 816.292

1164 NO Bacteria 936.902344

1180 NO Bacteria 305.454887

1186 NO Bacteria 841.72695

1101 NO Fungi 725.445255

1109 NO Fungi 835.875

1130 NO Fungi 1190.05556

1133 NO Fungi 726.046763

1146 NO Fungi 587.652174

1167 NO Fungi 1056.24809

1177 NO Fungi 1112.24609

1185 NO Fungi 712.369919

1098 NO Nematode 1008.368

1112 NO Nematode 568.036885

1131 NO Nematode 544.665441

1135 NO Nematode 740.582677

1147 NO Nematode 572.934307

1168 NO Nematode 1147.24409

1176 NO Nematode 976.150376

1181 NO Nematode 1282.45652

1100 NO Mix 824.272358

1111 NO Mix 897.25188

1132 NO Mix 429.951493

1134 NO Mix 829.46831

1150 NO Mix 907.556

1163 NO Mix 991.03125

1179 NO Mix 794.267361

1183 NO Mix 1017.172

1097 NO Control 1290.43852

1114 NO Control 771.776

1127 NO Control 838.357664

1137 NO Control 888.666667

1149 NO Control 587.304688

1165 NO Control 505.92

1178 NO Control 1196.38372

1184 NO Control 677.651079

1099 NO Control-Fungi 664.30315

1113 NO Control-Fungi 682.834615

1129 NO Control-Fungi 970.164234

1136 NO Control-Fungi 626.488372

1145 NO Control-Fungi 1197.23358

1166 NO Control-Fungi 1101.78276

1175 NO Control-Fungi 727.190141



1182 NO Control-Fungi 1117.14815

1108 YES Bacteria 999.566929

1118 YES Bacteria 924.639098

1125 YES Bacteria 1053.44643

1139 YES Bacteria 948.023256

1155 YES Bacteria 684.165441

1161 YES Bacteria 655.822222

1171 YES Bacteria 1007.748

1190 YES Bacteria 988.620301

1107 YES Fungi 842.698529

1115 YES Fungi 688.774074

1124 YES Fungi 665.503571

1144 YES Fungi 639.79927

1152 YES Fungi 658.467153

1159 YES Fungi 666.172535

1173 YES Fungi 1009.66783

1192 YES Fungi 1322.956

1105 YES Nematode 1179.48162

1119 YES Nematode 990.277778

1122 YES Nematode 924.985294

1142 YES Nematode 1209.58271

1153 YES Nematode 496.120155

1157 YES Nematode 290.914179

1169 YES Nematode 1316.91729

1189 YES Nematode 1117.612

1106 YES Mix 1190.32677

1117 YES Mix 1183.32813

1123 YES Mix 928.189781

1143 YES Mix 313.640152

1151 YES Mix 493.58156

1160 YES Mix 907.433824

1174 YES Mix 147.306569

1191 YES Mix 837.446043

1103 YES Control 1072.82963

1116 YES Control 551.406716

1126 YES Control 874.507634

1140 YES Control 797.865248

1156 YES Control 889.043796

1162 YES Control 1055.59559

1172 YES Control 913.995935

1188 YES Control 1158.53759

1104 YES Control-Fungi 494.518382

1120 YES Control-Fungi 1026.19466

1121 YES Control-Fungi 610.240741

1141 YES Control-Fungi 900.419847

1154 YES Control-Fungi 905.753571

1158 YES Control-Fungi 479.869919

1170 YES Control-Fungi 770.434109
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