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Autophagy-related proteins measured in umbilical blood cord
samples from human newborns: what can we learn from?
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Macroautophagy (hereafter simply referred to as autophagy) is

a highly conserved intracellular process involved in the degrada-
tion and recycling of proteins and organelles.1 It cooperates with
the ubiquitin-proteasome system to maintain cell homeostasis
and stress adaptation. Defective autophagy results in the buildup
of dysfunctional proteins and organelles, abnormal protein
aggregates, or invading pathogens, and thus contributes to
various pathologies such as aging, cancer, proteinopathies (e.g.
Alzheimer’s and Parkinson’s diseases), or infection. In most cases,
stress-enhanced autophagy flux promotes cell survival, for
instance during starvation or pathogen infection. However, after
reaching a certain threshold or in specific circumstances,
exacerbated autophagic mechanisms can contribute to cell death
(e.g. in neurons after perinatal cerebral hypoxia-ischemia2–4). In
short, maintaining an appropriate level of autophagic flux, from
the engulfment of cargoes into an autophagosome to their fusion
with a lysosome (maturation) for degradation (Fig. 1), is crucial for
cell well-being and survival. Most autophagy-deficient mice
typically do not survive beyond the embryonic or neonatal stage.5

From the first mention of the term “autophagy” over sixty years
ago, research on autophagy continues to progress and gain
importance in numerous fields such as cancerology, neuros-
ciences, and immunology. Autophagy also plays a significant role
in various physiological and pathological processes in mammalian
development, including embryogenesis, morphogenesis, maternal
birth induction, and postnatal organ adaptation.6–10

Among the best-investigated cellular stressors that enhance
autophagy, reactive oxygen species (ROS) can be considered as a
key mechanism.11,12 ROS (or oxidative stress) results from the
imbalance between ROS production and the available antioxida-
tive defenses. Preterm infants are known to be prone to oxidative
stress, particularly due to immature or deficient antioxidative
enzymes.13 Therefore, when born prematurely, the infants are
exposed to several exogenic and endogenic stressors during their
hospitalization (infections, nutrition, drugs, infections, ventilation-
induced lung injury, sensorial stress) and this may ultimately lead
to inflammation-driven pathologies, such as preterm brain injury
or bronchopulmonary dysplasia. In general, the lower the
gestational age and the sicker the infant, the more pronounced
are the implications on the different organs.13 Further, oxidative

stress has been recently associated with several adverse
pregnancy outcomes, such as pre-eclampsia, fetal growth restric-
tion, gestational diabetes mellitus, and preterm birth.12 The main
organ involved in these pathological processes is the placental
tissue, mainly the placentation which is considered as a transient
vital fetal organ impacting maternal and fetal outcomes.14

According primarily to data from preclinical models, an impaired
placental autophagy flux appeared to be one of the possible
cellular mechanisms contributing to pregnancy-associated pathol-
ogies, specifically to preterm birth.14 Restricted growth of the
placenta leading to hypertension in the dam is also observed
when autophagy is specifically deficient in trophoblasts.15 More-
over, efficient autophagy flux is necessary to support placental
inflammation resistance and prevent inflammation-induced pre-
term birth.14,16–18 Limited information on the levels of autophagy
flux over human gestation is available, and the few existing data
are restricted to the placental tissue. Cao et al. suggested that
preterm placentas present less active autophagy than term infants
as shown by a lower expression of LC3-II (a marker of
autophagosome (Fig. 1)) combined with a higher expression of
SQSTM1/p62 (an autophagy receptor selectively degraded by
autophagy) in preterm samples.17 Other studies have reported
higher SQSTM1/p62 expression in preterm placentas, but data for
LC3-II levels are more heterogeneous.19,20

Based on these previous findings, Künstle et al. hypothesized in
the recent Pediatric Research issue of May 29 that preterm infants
may begin life with different levels of autophagy from those of
term infants. They performed an exploratory study that presents,
for the first time, biological human data of autophagy-related
protein levels in umbilical cord blood plasma of both preterm and
term infants in a large population-based sample.21 The population
studied is issued from the BILD (Bern-Basel Infant Lung Develop-
ment) prospective cohort study (1999–2019) including more than
500 infants (453 term and 64 preterm infants less than 37 weeks of
gestation divided into 4 groups). This cohort has been studied
previously for developmental and environmental aspects, focusing
on the lung development and respiratory morbidity of preterm
and term infants.22 Comparisons stratified on gestational age were
performed in adjusted models for different variables (such as
preeclampsia, fetal growth restriction, gestational diabetes, anti-
biotic use in mothers and chorioamnionitis). Among the
investigated proteins (LC3B, SQSTM1/p62, BECLIN1 (BECN1), and
SIRT1), no statistical differences were obtained for BECN1 and
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LC3B, two ATG proteins involved in autophagy induction and
autophagosome formation, respectively.1 However, SQSTM1/p62
levels were significantly reduced (up to 38th week) with
gestational age and negatively correlated with LC3B levels, while
SIRT1 (an indirect non-specific autophagy activator) levels were
increased. Altogether, these data suggest that autophagy activity
could be, just after birth, lower in preterm than term infants.
Künstle et al. proposed that differences in autophagy-related
proteins may be linked to different responses and vulnerabilities
according to their outcomes, specifically respiratory morbidity.
Despite these interesting findings, experimental limitations in

human samples require caution in concluding on the levels of the
autophagy flux and the roles of autophagy. An increased
autophagic flux means that all autophagy steps are enhanced,
from the formation of autophagosomes to their maturation
(Fig. 1). A decreased or defective autophagy could result from
either a reduced induction/formation of autophagosomes or a
failure in autophagosome maturation (or both). Increased LC3-II
levels can thus reflect enhanced autophagy flux (more newly
formed autophagosomes) or impaired degradation (autophago-
some accumulation). To be conclusive, studies on autophagy flux
should investigate at least LC3-II and SQSTM1/p62 levels. Künstle
et al. showed no significant difference in LC3B levels. However, the

method used to evaluate protein level did not allow to
differentiate between the cytosolic LC3-I form, and the
autophagosome-bound LC3-II form. Therefore, it is difficult to
conclude on autophagosome presence in the blood cord over
gestation. The higher SQSTM1/p62 expression observed in
preterm could suggest that autophagic degradation of this
protein is lower in preterm than in term infants. Lower SIRT1
expression in preterm tends to confirm a potentially less active
autophagy flux in preterm. However, with no indication of
autophagosome abundance, a developmental change in
SQSTM1/p62 expression level between preterm and term could
not be excluded.
Moreover, autophagic flux is an adaptative process that changes

over time and is modulated by external changes. Therefore, one
could speculate that the findings reported are time- and
maturation-dependent and might be associated with several
pathological conditions (gestational diabetes, chorioamnionitis,
pre-eclampsia). The authors have considered this by adjusting their
analysis for risk factors. Serial measurements of autophagic markers
in blood, throughout hospitalization could be one potential
approach to reveal more information about this issue.
It is also important to note that the functional significance and

the origin of the autophagic markers measured in cord blood
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Fig. 1 Overview of mammalian autophagy. Autophagy involves the sequestration of cargos (such as long-lived proteins, organelles, and
pathogens) by an intermediate multi-membrane organelle called the autophagosome, which then fuses with a lysosome to form an
autolysosome for degradation. Autophagy can be divided into 4 main steps: induction/nucleation, elongation/incurvation, closure and
maturation. Autophagy is induced by different cell stresses (such as starvation, oxidative stress, accumulation of defective proteins or
unfunctional organelles) and depends on several protein complexes (not exhaustively represented in this figure). The PI3K-III (class III
phosphoinositide 3-kinase)/BECN1 (BECLIN 1) complex drives the nucleation of the isolation membrane. Autophagosome membrane
components could have different sources such as ER omegasome, mitochondria-associated membrane, trans-Golgi network (TGN) or plasma
membrane. PI3K-III activation and generation of phosphatidylinositol 3-phosphate (PI3P) on isolation membrane serves as a signal for protein
assembly required for autophagosome formation. LC3-II is a key autophagic protein playing important roles in elongation, cargo selection,
incurvation, and closure steps of autophagy. A LC3 cytosolic precursor is first post-translationally modified (LC3-I) and then covalently
conjugated to the membrane phospholipid phosphatidylethanolamine (PE) (LC3-II). This lipidated form is recruited at the phagophore
membrane and remains on autophagosome membrane until maturation into a degradative autolysosome (acidification and loading in
hydrolases). Fusion machinery involves RAB proteins (mainly RAB7) which recruit tethering complexes (HOPS, TECPR1) to bring the two
vesicular compartments close enough to allow SNARE proteins to drive the fusion. SIRT1 is a NAD+-dependent histone deacetylase involved
in various processes, including cell proliferation, survival, differentiation, oxidative stress, and autophagy. SIRT1 has been shown to regulate
autophagy at different steps (induction, elongation and fusion). SQSTM1/p62 is an important autophagy receptor recruiting many cargoes
(ubiquitinated substrates, mitochondria, bacteria…) into autophagosomes, and selectively degraded by autophagy.
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plasma just after birth are undefined and could be diverse. As the
authors discussed, exocytosis and extracellular vesicles release in
plasma could be one explanation for their findings. Recently,
secretory autophagy has also been recognized as an unconven-
tional pathway for extracellular secretion.23 Then, the plasma level
of autophagy-related proteins does not necessarily reflect the
intracellular level of autophagy. However, regardless of the origin
of these proteins, the results of this issue indicate that it would be
very interesting to determine whether the levels of autophagy-
related proteins at birth could be used as predictive biomarkers
for subsequent complications. It would permit to categorize and
individualize the management of these identified patients. For
instance, in adult neurology, SQSTM1/p62 blood levels could be
used as a biomarker to evaluate the severity of Charcot-Marie-
Tooth disease type 1A.24

In conclusion, this study provides new descriptive insights into a
potential cellular mechanism that may be related not only to
preterm birth, but also to the greater susceptibility of preterm
infants later in life. Further research is needed to clarify the
significance of these gestational changes in autophagy-related
proteins in blood cord plasma. To gain further insight into the
correlation between autophagy and preterm complications,
similar investigations could be conducted on samples obtained
from other postnatal biological fluids, including but not limited to
tracheal secretions, plasma, urine, cerebrospinal fluids, and
mucous and skin smears.
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