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Abstract

Diet is considered as one of the most important modifiable factors influencing human health,

but efforts to identify foods or dietary patterns associated with health outcomes often suffer

from biases, confounding, and reverse causation. Applying Mendelian randomization in this

context may provide evidence to strengthen causality in nutrition research. To this end, we

first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank

participants. We then converted these associations into direct genetic effects on food expo-

sures by adjusting them for effects mediated via other traits. The SNPs which did not show

evidence of mediation were then used for MR, assessing the association between geneti-

cally predicted food choices and other risk factors, health outcomes. We show that using all

associated SNPs without omitting those which show evidence of mediation, leads to biases

in downstream analyses (genetic correlations, causal inference), similar to those present in

observational studies. However, MR analyses using SNPs which have only a direct effect

on the exposure on food exposures provided unequivocal evidence of causal associations

between specific eating patterns and obesity, blood lipid status, and several other risk fac-

tors and health outcomes.
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Author summary

Food and drink consumption is one of the most important factors influencing human

health and wellbeing. The role of diet in human physiology and disease has been widely

studied, but challenges in accurately assessing long term diet result in contradicting find-

ings. Mendelian randomization is a statistical technique that uses genetic variants associ-

ated with modifiable exposures to estimate the causal effect of an exposure to a health

outcome and could be extremely useful in the context of diet-health relationships. In our

study, we initially identified genetic variants associated to 29 measures of food and drink

consumption. We then show that genetic variants associated with food and drink con-

sumption are subject to reverse causation and confounding. We have thus developed a

statistical genetics method to identify genetic variants directly associated with food and

drink consumption. By using these genetic variants (and their corresponding direct

effects) in Mendelian randomization analyses we provided consistent evidence of causal

associations of food and drink consumption with obesity, blood lipid status, and several

other risk factors and health outcomes.

Introduction

Given its impact on human well-being, diet is one of the most studied human behaviours.

Quality, quantity, and patterns of consumed foods are associated with a wide range of medical

conditions such as metabolic, inflammatory, or mental health diseases.[1] However, despite

the growing number of studies reporting associations between diet and health outcomes, it has

been challenging to establish causal relationships due methodological limitations such as mea-

surement error, confounding, and reverse causation [2,3]. To date, several approaches have

been devised to try to account for intrinsic limitations in nutritional studies such as the use of

methods to calibrate food records [4] through the use of 24h recalls [5], biomarkers [6] and

doubly labelled water, [7] or the implementation of domiciled feeding studies.[8] Although the

implementation of these methods or study designs have helped in addressing some of the limi-

tations of nutrition research, difficulties remain especially when it comes to estimate the causal

effect of diet on health outcomes.

In this context genetics may represent an alternative approach by the use of Mendelian

Randomization (MR). MR is a methodological approach in which genetic variants associated

with an exposure of interest are used as instrumental variables to investigate the causal associa-

tion between this exposure and an outcome.[9] To date, several MR studies have been

designed to investigate the associations between the consumption of single food groups, such

as alcoholic beverages [10], coffee [11], milk [12–14] and specific health outcomes, but a sys-

tematic study investigating the overall role of diet on multiple health outcomes is missing. Pre-

vious MR studies have not accounted for the fact that genetic variants associated with reported

dietary intake may be primarily associated with other risk factors, reporting characteristics or

social determinants of health which may confound the causal estimates.

The present study was designed to initially identify the genetic variants associated with

reported food consumption, and then to leverage a causal inference statistical framework to

systematically investigate the causal effects of dietary factors on health outcomes while

accounting for the reverse causal effects that health determinants have on habitual dietary

intake reporting.
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Methods

Given large number of analyses conducted for this study and their complexity Fig 1 summa-

rises the main analyses.

Study population and genome-wide association for dietary intake

The UK Biobank [15] is a large population-based cohort including 500 000 adults aged

between 40 and 69 years at baseline across 22 assessments centres in the United Kingdom.

Data were collected based on clinical examinations, assays of biological samples, detailed infor-

mation on self-reported health characteristics, and genome-wide genotyping. Dietary intake in

UK Biobank was assessed using a touchscreen dietary frequency questionnaire which included

questions about the frequency of consumption specific foods and beverages over the past year.

The number of samples used for each trait can be found in Table A in S1 Table while a detailed

description of the phenotypes, can be found in the in the S1 Note 1.2 and Table B in S1 Table.

For alcohol consumption traits analyses were limited to people drinking at least one glass of

the alcoholic beverage a week. This choice was due to very high number of people who

reported to drink 0 glasses of the specific alcoholic beverage per week (between 58% for red

wine to 94% for fortified wine) which would have biases the analyses, due to reverse causation

[16]. A similar issue applies to coffee consumption traits where stratifying for coffee type

required to restrict the analysis to coffee drinkers. Finally, we have excluded people who

reported eating certain foods (e.g. beef) less than once a week due to the very large range of dif-

ferent consumptions which this response corresponds to. The proportion of people used for

the analysis compared to the overall UK biobank participants can be found in Table A in S1

Table. Validity of the food consumption measures has been evaluated by Bradbury and others

Fig 1. Overall study design.

https://doi.org/10.1371/journal.pgen.1010162.g001
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[17] which concluded that “the dietary touchscreen variables, available on the full cohort, reli-

ably rank participants according to intakes of the main food groups”.

We used the BOLT-LMM software [18] to assess the association between the genetic vari-

ants across the human genome and 29 food phenotypes. Analyses were conducted on genetic

data release version 3 imputed to the HRC panel [19], as provided by the UK Biobank (http://

www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_

documentation-web.pdf). Population stratification was assessed using LD-score regression as

implemented in ldsc [20,21] using the LD scores provided with the software which refer to the

HapMap [22] v3 SNPs. Table Q in S1 Table reports for each food trait the LD regression inter-

cept and heritability estimation using the ldsc software [20]. Cluster analysis conducted on the

foods identified five main independent groups of traits (see additional online methods para-

graph 1.8 and 2.2 for details of group definition) and we thus set the genome-wide significance

threshold at 1x10-8 (5x10-8/5). This work was conducted using the UK Biobank resource

(application 19655). Participants enrolled in UK Biobank have signed informed consent

forms. Replication analyses for the identified signals associated with food phenotypes were

conducted independently by using genetic and dietary data from the EPIC-Norfolk Study [23]

and the Fenland Study [24]. Details additional online methods 1.4.

Investigating the causal effect of health outcomes on reported food intake

Univariable MR analyses were initially conducted to measure the causal effect of health out-

comes on food consumption using the TwoSampleMR [25] R package. Exposures of interest

were selected amongst those for which nutritional advice is given and included body mass

index (BMI), low density lipoprotein cholesterol (LDLc), high density lipoprotein cholesterol

(HDLc), Total cholesterol, Triglycerides, Diastolic and Systolic blood pressure, Type 2 diabe-

tes, and coronary artery disease. In addition, we included educational attainment amongst the

exposure traits for the multivariable MR, as a proxy of socio-economic status which is likely to

affect food consumption. The full list of studies from which the summary statistics were

derived is detailed in Table F in S1 Table. For each exposure we selected all SNPs with p<5 x

10−8 and r2<0.001 to be used as instruments in the MR analysis. After performing stepwise

heterogeneity pruning to remove SNPs which showed evidence of heterogeneity in the causal

effect estimate, we performed MR analysis using the inverse variance method [26]. We then

tested if the intercept from the MR-Egger [27] regression was different from zero (p<0.05). If

this was the case, MR-Egger was used for the analysis instead.

Identification of genetic variants with predominantly direct effects on diet

One of the most important assumptions in MR is that the effect of the instrument on the out-

come must be mediated only through the exposure of interest (sometimes referred as exclusion

restriction criteria) [28]. In this light, genetic instruments whose effect on food is mediated

through the health outcomes or through educational attainment may violate this assumption

acting as confounders in the relationship between the exposure and the outcome. Moreover, if

the mediating trait is acting on the reporting of food consumption and not food consumption

itself it would mean that the genetic variant is not truly associated to food consumption, and it

would thus not be a valid instrument. It is thus important to estimate the direct effect (i.e., the

effect that acts directly on food intake rather than is mediated through other factors see Fig 2)

the SNPs are exerting on actual food consumption in order to properly select the genetic vari-

ants to be used as instrumental variables.

To this end we use a modified version of bGWAS [29], in which corrected estimates

for genetic variants are obtained after accounting for the effect of other phenotypes on
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these genetic variants. Further details about bGWAS can be found in S1 Note 1.6. We

applied bGWAS to all 29 food phenotypes. As potential mediators, we used the same cardio-

metabolic phenotypes as before except total cholesterol to avoid collinearity issues with

LDL and HDL cholesterol, and we added summary statistics from Crohn’s disease and

ulcerative colitis and smoking as they are likely to affect dietary patterns. A full list of the

traits used as exposures and their sources can be found in Table F in S1 Table. We identified

genetic variants with only a direct effect on diet based on the corrected to uncorrected ratio

(CUR) as the ratio between the corrected and the uncorrected effects (see additional meth-

ods 1.7 for a detailed explanation). The threshold to define genetic variants with non-medi-

ated effects (CUR = 1±0.05) is based on simulations provided in the S1 Note 2.1 and on the

genetic variants with known biological function (i.e. bitter taste receptors). We defined as

“non- mediated” those SNPs whose CUR fell within the defined ranges while “uncertain”

the others.

Genome-wide genetic correlations between corrected dietary intake and

health outcomes

We used LD-score regression implemented in LD Hub [20,21] to estimate genome-wide

genetic correlations between dietary intake phenotypes and 844 health outcomes and interme-

diary phenotypes. Genetic correlations were estimated both with the corrected and uncor-

rected GWAS summary statistics using the bivariate LD-score regression model. Stratified

P
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17

EDU

LDL

SBP

Cheese 
consumption

Cheese 
consumption 

reporting

S
IX

3

Fig 2. Direct and indirect SNP effects. The plot shows the causal path of exemplar genes identified for cheese consumption. In the multivariable MR model

cheese consumption is causally influenced by educational attainment (EDU), low density lipoprotein cholesterol levels (LDL) and systolic blood pressure

(SBP). The effect of PDCH17 and is mediated through educational attainment, while SIX3 has a direct effect on cheese consumption. The mediated effects

cannot be used reliably as MR instruments as they could be affecting either consumption or its reporting. Moreover, they could act as confounders in the MR

analysis and thus they need to be identified.

https://doi.org/10.1371/journal.pgen.1010162.g002
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LD-score regression [30] analyses were implemented using ldsc and the annotation files avail-

able on the ldsc website.

Definition of food group variables

In order to define measures of dietary patterns we first performed cluster analysis of the 29

food items applying iCLUST [31] to the corrected genetic correlation matrix between the dif-

ferent foods. iCLUST clusters items in different groups based on a hierarchical structure

(Details additional methods 1.8). Fig 3 shows the resulting dendrogram and its comparison

with the genetic correlation matrix.

We then defined based on the resulting structure several measures of dietary pattern at dif-

ferent levels of the dendrogram as shown in Fig 3. For each group we performed principal

component analysis of the items of that group. The rotation matrix was derived from the eigen

decomposition of the genetic correlation matrix of the foods in the PC trait of interest. For

example, for the Coffee PC measure we performed principal component analysis of “Ground

Coffee”, “Instant Coffee” and “Decaf Coffee”. Once the rotation matrix was estimated for each

SNP its effect on the new measure was estimated as the linear combination of the effect on

each food trait using as weights the loadings on each PC. This method has been described

before in Tsepilov et al. 2020[32]. For each group of traits only the first component which

explained the greatest amount of genetic variance was retained for further analyses. A correla-

tion plot of the loadings of each item onto the PC traits can be found in Fig G in S1 Note.

MR analyses to assess causal relationships between food intake and health

outcomes

MR analyses were conducted to estimate the effects of the food phenotypes on 64 health related

phenotypes (see Table S in S1 Table for details) available in MR-base.[25] Genetic instruments

for each exposure of interest included independent genetic variants (p<5x10-8 and pruning

for LD (r2<0.001)). For dietary patterns exposures SNPs were selected as outlined in addi-

tional methods 1.9. Briefly once each defined group of traits we estimated the loadings of each

index item as the eigen decomposition of the corresponding correlation matrix as outlined in

the previous section. This procedure was repeatedly applied to both the original and corrected

effects which allowed us to estimate for each SNP on each PC trait effect size, standard error,

p-value and CUR. The PC traits where then treated as any other trait applying the same p-

value threshold to the projected traits.

For the main analysis we restricted the genetic instruments to those that had evidence of

purely direct effect (i.e., not affecting the main exposure through a different pathway; CUR 1

±0.05). Discussion of the relationship with other methods can be found in S1 Note 2.7.

Weights for the genetic instruments were based on the uncorrected effects. To verify the effects

of using only direct effect only SNPs on MR, all the analyses were also conducted without

applying the CUR filtering.

After selecting the genetic instruments, exposure and outcome data were harmonised. The

MR estimates were tested for heterogeneity and outliers were removed using the MR-Radial

method.[33] MR analyses were based on the inverse variance weighted method, which esti-

mates the causal effect of an exposure on an outcome by combining ratio estimates using each

variant. A random effect model was used if significant heterogeneity between the different esti-

mates was detected. We then tested for the presence of directional pleiotropy using the inter-

cept from the MR-Egger regression. MR median and MR-Raps were used as sensitivity

analyses. All results have been made available through an online app (https://npirastu.

shinyapps.io/Food_MR/) and can be found in additional Table T in S1 Table.
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Fig 3. Clustering of the food traits and definition of measures of dietary patterns. The plot reports the genetic correlation

plot amongst the food traits after applying the correction. The stars report the Bonferroni-corrected significant correlations.

The dendrogram and the boxes represent the clustering according to the ICLUST algorithm. The labels on the dendrogram

branches show the traits used to define each measure of dietary pattern. The dashed line represents the traits excluded from

the estimation of the dietary pattern traits. The “Vegetarian” trait was excluded from the “Meat PC” trait but was included in

the overall dietary pattern measure (All PC).

https://doi.org/10.1371/journal.pgen.1010162.g003
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Results

Genetic variants associated with food intake

In a GWAS of 29 food phenotypes we identified 412 genetic associations in 256 independent

loci (Fig 4 and additional Table D in S1 Table) at Bonferroni corrected level of significance

(P< 1×10−8). The principal component association analysis revealed 160 additional SNP-

trait associations with additional 27 loci for a total of 572 genetic associations in 283 distinct

loci.

Replication was sought in two additional UK-based cohorts including up to 32,779 partici-

pants. Despite relatively limited power in replication cohorts, concordant direction of effect

was observed for 82% of the signals (p = 7.82x10-35, Binomial test; Table E in S1 Table), and

nominal significance was achieved by 32% of the signals (p = 9.47x10-54). Gene prioritization

is described in S1 Note 1.10 while biological annotation, network analysis and tissue enrich-

ment analysis are discussed in additional paragraphs 1.11, 2.4 and 2.5. Several of the identified

loci have been previously associated with BMI. However, contrary to our expectations, the

BMI-raising allele was consistently associated with lower reported consumption of energy-

dense foods such as meat or fat, and higher reported intake of low-calorie foods.

Genetic variants associated with food intake are strongly influenced by

other phenotypes

In univariable MR we identified 81 instances in which health-related traits significantly influ-

encing food intake (Fig 5 additional Table G in S1 Table). For example, BMI and Educational

attainment influenced more than 50% of the food traits. Similar effects extend to a broad range

of traits, for example LDL and triglycerides influenced 15 and 18 traits respectively.

Higher genetically predicted CAD associates with higher consumption of fish and red wine,

and lower consumption of whole milk, salt and lamb. These findings suggest that some of the

signals identified in GWAS for reported food phenotypes are not directly associated with food

intake but are mediated through a wide range of potential confounders.

Fig 4. 302 independent genomic loci associate with food choices. Results for both univariate (256 loci) and PC traits (additional 27 loci see paragraph S2.3)

analyses are included. For each SNP the lowest uncorrected p-value for all traits was plotted. The upper panel represents the unadjusted GWAS associations

while the lower panel represents the association with food choices, after adjustment for mediating traits, such as health status for the same snp-trait pair used

for the upper panel.

https://doi.org/10.1371/journal.pgen.1010162.g004
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The Multivariable MR confirmed the univariable MR results (Fig B in S1 Note panel B and

Table H in S1 Table). The percentage of genetic variance for the reported food phenotypes

explained by health determinants ranged from 42% for cheese to ~0% for fortified wine and

white wine/champagne (Fig B in S1 Note panel A and Table H in S1 Table). We systematically

Fig 5. Health status influences reported food choices. The plot reports only the univariable MR results which were

significant at FDR<0.05. For each food outcome the effect estimate (β) is reported in standard deviations of the exposure

trait, together with 95% confidence intervals. Each colour represents a different exposure. BMI, body mass index; CHD,

coronary heart disease; DBP, diastolic blood pressure; HDL, high density lipoprotein cholesterol; LDL, low density

lipoprotein cholesterol; TotalC, total cholesterol. Champ/Wh wine, champagne, white wine. Temp, temperature.

https://doi.org/10.1371/journal.pgen.1010162.g005
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compared the estimated effect sizes of each genetic variants influencing food consumption

before and after correcting for the effect of health determinants and showed that in many loci

the variant initially identified for food phenotypes changed dramatically after considering the

effect of health factors (Fig 4). For example, the effect size of the lead FTO variant (rs55872725,

p = 2x10-29) on milk fat percentage chosen decreased three-fold after accounting for the medi-

ated effects. To further explore the magnitude of this indirect effect on food intake phenotypes,

we compared the correlation patterns between the 29 food phenotypes and 832 phenotypes

present in the LD hub [21] database identifying great differences. For example, low fat milk

intake was correlated with a beneficial effect on body fat percentage (rG = -0.43) but this associ-

ation diminished to near zero (rG = -0.04) after accounting for indirect effects (S1 Note 2.2 and

additional Table L in S1 Table). The effects of the correction procedure on the genetic correla-

tion amongst the traits and with the 844 health traits are discussed in S1 Note 2.2 while full

results can be found at in Table L in S1 Table and browsed at https://npirastu.shinyapps.io/rg_

plotter_2/. These findings highlight the relevance of biases and confounding in genetic correla-

tion studies and we provide a framework to mitigate these problems and to reliably study com-

plex physiological relationships.

Causal inference analyses for diet phenotypes and health outcomes

A total of 245 out of 572 genetic variants initially associated with food phenotypes were catego-

rized as “non-mediated” associations (Table C in S1 Table). Most loci contained either non-

mediated (146/283 loci) or uncertain associations (92/283 loci), while the remaining 45 con-

tained a mixture of the two.

The fraction of uncertain genetic associations varied by food group, ranging from mostly

direct effect for tea, decaffeinated coffee, poultry and processed meat, to mostly uncertain for

percentage fat in milk and adding spread to bread (Table C in S1 Table).

In two-sample MR analyses we found 52 significant associations between food phenotypes

and health outcomes after multiple test correction (q-value < 0.05, Table T in S1 Table). None

of them showed sign of heterogeneity amongst the estimates (heterogeneity test q-value

>0.05). Fig 6 reports full results for all significant food exposure trait outcome pairs.

Overall, we found that the “overall unhealthy diet” measure did not show significant associ-

ations with many traits except for BMI where higher values of this measure corresponded to

higher obesity. However, we showed that specific components had effects on different traits.

For example, BMI was significantly associated with genetically determined meat consumption,

particularly pork and processed meat, but also with a general tendency to heating less healthy

foods. In contrast, other measures of adiposity such as waist-to-hip ratio were not associated

with meat consumption.

We identified 13 instances in which we would have not detected significant associations

without filtering out the non-direct effect instruments such as the effect of increased fruit con-

sumption on triglycerides levels (estimated uncorrected effect = -0.09 (SE = 0.04) vs. estimated

corrected effect = -0.17 (SE = 0.05)) or the effect of increased healthy foods consumption on

BMI (uncorrected effect = 0.004 (-0.13, 0.14) vs corrected effect = -0.16 (CI 0.07–0.26). In

addition, we found 109 food/trait relationships that were not significant after applying CUR

filtering, showing that either confounding effects or reduced power explain the lack of associa-

tion (see additional note 2.6). For example, Psychoactive drinks consumption was initially

associated with increased lung cancer (uncorrected effect = 0.27 (CI 0.09–0.45)), but there was

little evidence of an association after filtering out the instruments not directly influencing Psy-

choactive drinks (corrected effect 0.02 (CI -0.17–0.19)). On the flip side, we showed that the

effect of alcohol consumption on mean corpuscular volume remains substantially unchanged
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when applying the filtering approach (beta 0.05 (SE 0.02) uncorrected and 0.05 (SE 0.06)

corrected), suggesting that our approach could precisely identify relevant biological

relationships.

A full description of our findings is found in Table T in S1 Table and have been made avail-

able through an online app (https://npirastu.shinyapps.io/Food_MR/).
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Fig 6. Significant effects of food choice on disease related traits. The heatmap reports the results for all significant food trait exposure trait outcome. Only

dietary pattern exposures summarising the overall group consumption (PC1) have been reported. All exposures have been aligned to have a positive loading

onto the “overall unhealthy diet” measure. Significant food/trait association are indicated with �. Abbreviations: BMI Body Mass Index, WHR Waist to Hip

Ratio, TRY triglycerides, TC total cholesterol, HDL HDL cholesterol, LDL LDL cholesterol, Hb% Haemoglobin percentage, PLT Platelet count, Edu

Educational attainment, CD Chron’s Disease, IBD Inflammatory Bowel Disease. Panel has been divided in two to separate quantitative traits where effect size is

in SDoutcome per SDexposure (higher effect equals red colour) from qualitative traits where effect sizes are expressed in log(ORoutcome) per SDexposure (higher effect

equals green colour).

https://doi.org/10.1371/journal.pgen.1010162.g006
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Discussion

In this study we have quantified the complex interplay between diet and health outcomes

showing that the causal path from food intake to adverse health outcomes is not unidirectional

and may be influenced by reverse causation and confounding even when MR is used. We

showed that genetic correlations and causal inference can be improved by leveraging statistical

approaches that consider these mediated effects and identify genetic variants that have pre-

dominantly direct effect on the exposure of interest. This information allowed us to perform

causal inference analyses that helped identifying more reliable potential causal effects of food

on health outcomes.

Results in context

Previous MR studies have mainly focused on specific food groups such as coffee, alcohol and

milk consumption while none has comprehensively investigated the role of different food

groups on health outcomes. Here we have expanded this approach to encompass a wide range

of specific foods and dietary patterns allowing to compare results across the different traits and

giving us more insight in the interpretation of the results. Findings from this study suggest that

the biases affecting measures of food consumption (reporting bias, confounding and reverse

causation) are propagated to genetic associations. We have shown that these issues extend

beyond obesity and socio-economic status, and revealed a broad range of intermediate factors.

For example, we showed that LDL and triglycerides concentration influence a wide variety of

food traits, implying these phenotypes should be considered as potential sources of bias in

future MR studies. For our analyses we have used UK biobank in which participants were aged

between 40 and 69 at the time of the questionnaire, it is likely that a younger cohort will suffer

less from some of these biases (i.e. altered food consumption due to elevated LDL cholesterol

or blood pressure) as it is unlikely that they will display pathological level of these traits.

Our results showing that genetic variations associated with food phenotypes could be influ-

enced by reverse causation and confounding are in contradiction to some previous studies, in

which no evidence of reverse causation was reported.[34,35] We believe that this difference is

due to our novel approach, which does not correct for potential mediators based on their cor-

relation (through linear regression), but rather based on their causal effect (through MR),

which should be able to distinguish the forward and reverse effects when the causal relation-

ship is bidirectional. Our study suggests that it is possible to disentangle these different collid-

ing effects, and identify genetic instruments with a non-mediated effect. This particularity of

our approach enables the use of MR for the assessment of causal relationships between food

and health.

Many studies have looked at the relationship between nutritional composition and health

outcomes. One of the most salient examples is the relationship between saturated fat intake

and cardiovascular disease and all-cause mortality, in which recent studies suggest that food

sources of saturated fatty acids are more important than saturated fat content per se [36]. Our

study provides a new angle on the importance of food sources by showing that foods with sim-

ilar nutrient profile, for example cheese and meat, have opposite effects on some metabolic

risk factors such as BMI but there is no difference in other phenotypes such as blood lipids.

Similarly, food with relatively different nutritional composition such as fruit, vegetables, and

fish had the beneficial effect on triglycerides. While these findings require further investiga-

tions, our genetic evidence lends support for the importance of studying foods in their com-

plexity and not as a mere mixture of nutrients. This approach, in fact, does not consider that

the sources of the nutrients are not equal due to the food matrix, the different preparations
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and that foods are seldom consumed by themselves but in patterns which are likely to modify

the effects on health.

Our findings illustrate that the effect of diet on health outcomes is complex, and compo-

nents of specific food groups have a differential association with health. In this case, although

fish and fruit and vegetables have a very different macronutrient composition it was impossible

to separate their effect on triglyceride concentrations. This suggests that at least in this case the

macronutrient composition is not as important as an overall tendency to eat certain foods and

it highlights the importance of always including the assessment of dietary patterns before

claiming health effects of single foods or nutrients. This example also highlights one of the lim-

itations of MR. We can study only specific food exposures for which valid and relatively spe-

cific instrument exists and the resolution stops at the point where genes influence food

groups/patterns rather than specific items. Better powered studies may enable the identifica-

tion of genetic markers associated with specific food items, enabling more refined analyses.

Our study also provide evidence that the overall unhealthy diet is almost exclusively associ-

ated with BMI, with no evidence of associations with any other outcome. This means that it

may be possible to design dietary interventions by modulating only specific food depending

on the effect we want to obtain for everyone. For example, if we consider obesity related traits,

meat seems to have an effect specifically on BMI while consumption of healthy foods, fish,

fruit and vegetables influence fat distribution as indicated by the association with WHR and

WHR adjusted for BMI. Although thus there is heterogeneity in effects both lowering BMI

and WHR are desirable outcomes and thus and overall healthy diet is still the desirable inter-

vention if we aim at maximising the beneficial health effects across all outcomes.

Our study has several potential limitations. First, the number of items available in the die-

tary questionnaire in the UK biobank is limited, and therefore it limited our ability to capture

overall diet or specific food groups not available. The inclusion of white and relatively healthy

and educated participants from UK Biobank may have limited the generalisability of our find-

ings. The self-reported nature of the diet questionnaire is prone to measurement error and

bias, and the use of a short food frequency survey could have further reduced the resolution of

dietary data collected. More accurate dietary intake assessment methods such as the use of die-

tary intake biomarkers (doubly labelled water, urinary nitrogen, minerals, and vitamins) for

calibration purposes would be valuable in future studies, specially to obtain more precise esti-

mates of the causal effect sizes, however these are challenging to implement in large-scale

cohort. Another source of bias may be due to the missing samples due to either nonresponse

or to removal due to the phenotype definition which may induce spurious correlation similarly

to sampling bias. Moreover estimated effect sizes could be inflated because of the underestima-

tion of the SNP effects on the actual food trait consumption, rather than its self-report, if so,

this will have inflated our estimates of the effects of food on health, due to the noise in the

questionnaire responses, and warrants further statistical investigations. Even so, our method

should not have falsely identified a causal effect or reversed its direction, but further studies

are needed to assess the precise effect sizes. Finally, we must consider the possibility of residual

confounding effects through variable either not included in our models or imperfectly mea-

sured. For example, we have used educational attainment as a proxy for socio economic status,

so we cannot exclude that more precise measures would result in even better estimates. Despite

these limitations, our methodological approach offers a possibility to improve our understand-

ing of the genetics of diet and strengthen causality in nutrition research.

In conclusion, our findings show that overall, what is generally considered a healthy diet

leads to many favourable health outcomes and to reducing a wide range of risk factors broadly

agreeing with current guidelines aimed at reducing meat and alcohol consumption while

increasing fruit vegetables and fish. We also show that some of these effects are mostly
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attributable to specific food or group of foods which however are not characterized by com-

mon nutrient composition thus adding granularity to our knowledge on the effect of diet on

health. This information can be useful to inform the design and implementation of future

studies to reduce the burden of diet-related diseases.

Supporting information

S1 Note. Supplementary Methods and results. Fig A. Directed acyclic graph explaining the

two possible scenarios for the effect of a SNP on the trait of interest Y. (a) The SNP has a direct

effect on Y not mediated through X. Then the estimated effect of SNP on X will be normally

distributed around 0, thus the corrected and uncorrected effects will be similar and their CUR

will be close to 1. (b) The SNP effect is mediated through X, thus the corrected effect will devi-

ate from the observed one and CUR will deviate from 1. Fig B. Results for the Mutlivariable

MR. Panel A. The plot represents the proportion of genetic variance which is explained by the

effect of the health related traits on the food traits. Clearly some of the food traits are extremely

biased having up to 25% of genetic variance due to the mediation of the health related traits.

Panel B The heatmap represents the effect of the health related traits on each food trait using

from the multivariable model. The color is proportional to the effect size. Fig C. Diagram

describing the relationships between the simulated traits and their relative parameters. Gy

refers to the genetic variants which directly affect Y before any influence of confounding or

other mediated traits (Yt). Gu represents the genetic component of a confounder trait U which

causally affects both Y and X. Gx represents the genetic component of the outcome trait X

which is in turn causally affecting the trait Yi. Yo represents the actual observed trait to which

we add noise to reflect the test-retest correlation in FFQ data. Fig D. Scatterplot of the CUR

values for Gx (in red), Gy (in green) and Gu (in blue) at the different values of the effect of Y

on X and of X on Y. Fig E. Corrected-to-uncorreected ratio (CUR) successfully distinguishes

mediated and non-mediated associations. (a) Graph showing mediated and non-mediated

pathways. The values of CUR that different types of simulated SNPs (Gx, Gy, Gu) assume at

different explained variances (σ2) of X->Y when σ(Y->X)6¼0, i.e. presence of reverse causality

(b). The values we used for defining a “non-mediated” variant are highlighted in purple. (c)

The proportion of variants that are truly Gy, that is directly associated with the trait of interest,

across a range of CUR. (d) The overall proportion of variants directly associated with the trait

(SNPy) whose CUR falls inside the specified ranges, i.e., the probability of detecting SNPy over

all possible scenarios.When the effect of Y->X is equal to zero, Gy is clearly distinguishable

from Gx and Gu using CUR (Fig E), however, when β(Y->X) increases, values of CUR for

both Gy and Gx start varying and overlapping (Fig Eb). We thus determined which values of

CUR would maximise the probability of correctly selecting Gy under all scenarios. Clearly the

parameters we have chosen for defining a “non-mediated” SNPs maximise both the probability

of correctly selecting a SNPy. Fig F. Clustering of food consumption traits before and after cor-

rection. Comparison between the hierarchical clustering of the food traits based on the uncor-

rected (on the left) and corrected (on the right) genetic correlations. Black lines connect the

same traits for which the clustering has changed. Dendrograms connect the items in each case

with the boldness of the line representing the strength of support for the tree nodes. Unique

nodes are represented with a dashed line while shared nodes with a bold one. The thickness of

the line is thicker for conserved higher level nodes. Fig G. Corrplot of the loadings of each

food item onto the measures of dietary pattern. All items have been aligned to the “Overall

unhealthy diet” measure. The items that have been flipped are noted as “Less” to clarify the

direction of the relationship. Fig H. Heatmap of tissue and functional enrichments. The colour

is proportional for the enrichment revealed by stratified LD-score regression. Only
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correlations with FDR<0.05 are reported. (a) Enrichment among different classes of func-

tional annotation. (b) Tissue enrichment from Gtex expression. (c) Tissue enrichment from

ROADMAP epigenetics. (d) Tissue enrichment from the Franke lab dataset. Fig I. Dotplot of

the differential expression analysis run on the prioritised genes from the non-mediated loci

and the overrepresentation analysis performed with MAGMA. The overexpressed tissue

involved by the two methods were highly overlapping with the analysis performed on the

prioritised genes showing the tissues in which there is evidence of underexpression. Fig L.

STRING network of genes in non mediated loci. Network plot of the genes in the non-medi-

ated loci. After performing community detection we identified ten different clusters of genes

each with its particular set of functions and expression patterns (see additional paragraph 2.6

for details). Nodes have been colored according to community membership. Fig M. Tissues

which overexpress the genes in each community. Fig N. Overlap in Go-terms between differ-

ent communities. The Fig shows that there is no overlap (with the exception of 2 terms)

between the terms enriched in each community. The labels have been removed as the plot is

meant to only show the overlaps. Fig O-AD show the enriched terms for each community sep-

arately. Fig O. Enriched GO-Terms for community 1. Fig P. Enriched GO-Terms for commu-

nity 2. Fig Q. Enriched GO-Terms for community 3. Fig R. Enriched GO-Terms for

community 4. Fig S. Enriched GO-Terms for community 5. Fig T. Enriched GO-Terms for

community 6. Fig U. Enriched GO-Terms for community 7. Fig V. Enriched GO-Terms for

community 8. Fig Z. Enriched GO-Terms for community 9. Fig AA. Enriched GO-Terms for

community 10. Fig AB. Enriched GO-Terms for community 11. Fig AC. Enriched GO-Terms

for community 12. Fig AD. Enriched GO-Terms for community 13. Fig AE. Selected forest

plots of MR-estimated effect sizes. A Forest plot of the effect of Cheese and Meat consumption

on lipid and obesity measures. Despite both foods have a high protein and high fat content

their effects on lipid levels and BMI are different. Abbreviations BMI Body Mass Index, TRY

Triglycerides, TC Total Cholesterol, LDL Low Density Lipoprotein. B Effect of several foods

related to healthy foods on blood tryglicerides levels. Effect for all foods are very similar and

make it impossible to distinguish the contribution of each food. Fig AF. Effect of food on obe-

sity related measures. The forest plot compares the effect of each food trait on four obesity

related measures: BMI, Body Fat, Waist to Hip Ratio (WHR) and BMI adjusted WHR (WHR|

BMI). Each color and shape represents a different obesity related measure. Fig AG. Forest

plots of the exposure/outcome pairs significant at the uncorrected analysis. The forest plots

represent the estimated effect sizes for all the non CUR filtered MR analyses. The squares rep-

resent the point estimates while the bars the 95% confidence intervals. Results from the uncor-

rected analysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated

in the header of the plots while the row labels refer to the outcomes. Beta’s always refer to stan-

dard deviations for the exposure while for the outcomes it is standard deviations for the quan-

titative traits and log(OR) for the disease traits. Fig AH. The forest plots represent the

estimated effect sizes for all the non CUR filtered MR analyses. The squares represent the

point estimates while the bars the 95% confidence intervals. Results from the uncorrected anal-

ysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated in the

header of the plots while the row labels refer to the outcomes. Beta’s always refer to standard

deviations for the exposure while for the outcomes it is standard deviations for the quantitative

traits and log(OR) for the disease traits. Fig AI. The forest plots represent the estimated effect

sizes for all the non CUR filtered MR analyses. The squares represent the point estimates while

the bars the 95% confidence intervals. Results from the uncorrected analysis (raw) and CUR

filtered IVs (CUR) are reported. The exposure trait is indicated in the header of the plots while

the row labels refer to the outcomes. Beta’s always refer to standard deviations for the exposure

while for the outcomes it is standard deviations for the quantitative traits and log(OR) for the
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disease traits. Fig AL. The forest plots represent the estimated effect sizes for all the non CUR

filtered MR analyses. The squares represent the point estimates while the bars the 95% confi-

dence intervals. Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are

reported. The exposure trait is indicated in the header of the plots while the row labels refer to

the outcomes. Beta’s always refer to standard deviations for the exposure while for the out-

comes it is standard deviations for the quantitative traits and log(OR) for the disease traits. Fig

AM. The forest plots represent the estimated effect sizes for all the non CUR filtered MR analy-

ses. The squares represent the point estimates while the bars the 95% confidence intervals.

Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are reported. The

exposure trait is indicated in the header of the plots while the row labels refer to the outcomes.

Beta’s always refer to standard deviations for the exposure while for the outcomes it is standard

deviations for the quantitative traits and log(OR) for the disease traits. Fig AO. The forest plots

represent the estimated effect sizes for all the non CUR filtered MR analyses. The squares rep-

resent the point estimates while the bars the 95% confidence intervals. Results from the uncor-

rected analysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated

in the header of the plots while the row labels refer to the outcomes. Beta’s always refer to stan-

dard deviations for the exposure while for the outcomes it is standard deviations for the quan-

titative traits and log(OR) for the disease traits. Fig AP. The forest plots represent the

estimated effect sizes for all the non CUR filtered MR analyses. The squares represent the

point estimates while the bars the 95% confidence intervals. Results from the uncorrected anal-

ysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated in the

header of the plots while the row labels refer to the outcomes. Beta’s always refer to standard

deviations for the exposure while for the outcomes it is standard deviations for the quantitative

traits and log(OR) for the disease traits. Fig AQ. The forest plots represent the estimated effect

sizes for all the non CUR filtered MR analyses. The squares represent the point estimates while

the bars the 95% confidence intervals. Results from the uncorrected analysis (raw) and CUR

filtered IVs (CUR) are reported. The exposure trait is indicated in the header of the plots while

the row labels refer to the outcomes. Beta’s always refer to standard deviations for the exposure

while for the outcomes it is standard deviations for the quantitative traits and log(OR) for the

disease traits. Fig AR. The forest plots represent the estimated effect sizes for all the non CUR

filtered MR analyses. The squares represent the point estimates while the bars the 95% confi-

dence intervals. Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are

reported. The exposure trait is indicated in the header of the plots while the row labels refer to

the outcomes. Beta’s always refer to standard deviations for the exposure while for the out-

comes it is standard deviations for the quantitative traits and log(OR) for the disease traits. Fig

AS. The forest plots represent the estimated effect sizes for all the non CUR filtered MR analy-

ses. The squares represent the point estimates while the bars the 95% confidence intervals.

Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are reported. The

exposure trait is indicated in the header of the plots while the row labels refer to the outcomes.

Beta’s always refer to standard deviations for the exposure while for the outcomes it is standard

deviations for the quantitative traits and log(OR) for the disease traits. Fig AT. The forest plots

represent the estimated effect sizes for all the non CUR filtered MR analyses. The squares rep-

resent the point estimates while the bars the 95% confidence intervals. Results from the uncor-

rected analysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated

in the header of the plots while the row labels refer to the outcomes. Beta’s always refer to stan-

dard deviations for the exposure while for the outcomes it is standard deviations for the quan-

titative traits and log(OR) for the disease traits. Fig AU. The forest plots represent the

estimated effect sizes for all the non CUR filtered MR analyses. The squares represent the

point estimates while the bars the 95% confidence intervals. Results from the uncorrected
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analysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated in the

header of the plots while the row labels refer to the outcomes. Beta’s always refer to standard

deviations for the exposure while for the outcomes it is standard deviations for the quantitative

traits and log(OR) for the disease traits. Fig AV. The forest plots represent the estimated effect

sizes for all the non CUR filtered MR analyses. The squares represent the point estimates while

the bars the 95% confidence intervals. Results from the uncorrected analysis (raw) and CUR

filtered IVs (CUR) are reported. The exposure trait is indicated in the header of the plots while

the row labels refer to the outcomes. Beta’s always refer to standard deviations for the exposure

while for the outcomes it is standard deviations for the quantitative traits and log(OR) for the

disease traits. Fig AZ. The forest plots represent the estimated effect sizes for all the non CUR

filtered MR analyses. The squares represent the point estimates while the bars the 95% confi-

dence intervals. Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are

reported. The exposure trait is indicated in the header of the plots while the row labels refer to

the outcomes. Beta’s always refer to standard deviations for the exposure while for the out-

comes it is standard deviations for the quantitative traits and log(OR) for the disease traits. Fig

BA. The forest plots represent the estimated effect sizes for all the non CUR filtered MR analy-

ses. The squares represent the point estimates while the bars the 95% confidence intervals.

Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are reported. The

exposure trait is indicated in the header of the plots while the row labels refer to the outcomes.

Beta’s always refer to standard deviations for the exposure while for the outcomes it is standard

deviations for the quantitative traits and log(OR) for the disease traits. Fig BB. The forest plots

represent the estimated effect sizes for all the non CUR filtered MR analyses. The squares rep-

resent the point estimates while the bars the 95% confidence intervals. Results from the uncor-

rected analysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated

in the header of the plots while the row labels refer to the outcomes. Beta’s always refer to stan-

dard deviations for the exposure while for the outcomes it is standard deviations for the quan-

titative traits and log(OR) for the disease traits. Fig BC. The forest plots represent the

estimated effect sizes for all the non CUR filtered MR analyses. The squares represent the

point estimates while the bars the 95% confidence intervals. Results from the uncorrected anal-

ysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated in the

header of the plots while the row labels refer to the outcomes. Beta’s always refer to standard

deviations for the exposure while for the outcomes it is standard deviations for the quantitative

traits and log(OR) for the disease traits. Fig BD. The forest plots represent the estimated effect

sizes for all the non CUR filtered MR analyses. The squares represent the point estimates while

the bars the 95% confidence intervals. Results from the uncorrected analysis (raw) and CUR

filtered IVs (CUR) are reported. The exposure trait is indicated in the header of the plots while

the row labels refer to the outcomes. Beta’s always refer to standard deviations for the exposure

while for the outcomes it is standard deviations for the quantitative traits and log(OR) for the

disease traits. Fig BE. The forest plots represent the estimated effect sizes for all the non CUR

filtered MR analyses. The squares represent the point estimates while the bars the 95% confi-

dence intervals. Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are

reported. The exposure trait is indicated in the header of the plots while the row labels refer to

the outcomes. Beta’s always refer to standard deviations for the exposure while for the out-

comes it is standard deviations for the quantitative traits and log(OR) for the disease traits. Fig

BF. The forest plots represent the estimated effect sizes for all the non CUR filtered MR analy-

ses. The squares represent the point estimates while the bars the 95% confidence intervals.

Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are reported. The

exposure trait is indicated in the header of the plots while the row labels refer to the outcomes.

Beta’s always refer to standard deviations for the exposure while for the outcomes it is standard
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deviations for the quantitative traits and log(OR) for the disease traits. Fig BG. The forest plots

represent the estimated effect sizes for all the non CUR filtered MR analyses. The squares rep-

resent the point estimates while the bars the 95% confidence intervals. Results from the uncor-

rected analysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated

in the header of the plots while the row labels refer to the outcomes. Beta’s always refer to stan-

dard deviations for the exposure while for the outcomes it is standard deviations for the quan-

titative traits and log(OR) for the disease traits. Fig BH. The forest plots represent the

estimated effect sizes for all the non CUR filtered MR analyses. The squares represent the

point estimates while the bars the 95% confidence intervals. Results from the uncorrected anal-

ysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated in the

header of the plots while the row labels refer to the outcomes. Beta’s always refer to standard

deviations for the exposure while for the outcomes it is standard deviations for the quantitative

traits and log(OR) for the disease traits. Fig BI. The forest plots represent the estimated effect

sizes for all the non CUR filtered MR analyses. The squares represent the point estimates while

the bars the 95% confidence intervals. Results from the uncorrected analysis (raw) and CUR

filtered IVs (CUR) are reported. The exposure trait is indicated in the header of the plots while

the row labels refer to the outcomes. Beta’s always refer to standard deviations for the exposure

while for the outcomes it is standard deviations for the quantitative traits and log(OR) for the

disease traits. Fig BL. The forest plots represent the estimated effect sizes for all the non CUR

filtered MR analyses. The squares represent the point estimates while the bars the 95% confi-

dence intervals. Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are

reported. The exposure trait is indicated in the header of the plots while the row labels refer to

the outcomes. Beta’s always refer to standard deviations for the exposure while for the out-

comes it is standard deviations for the quantitative traits and log(OR) for the disease traits. Fig

BM. The forest plots represent the estimated effect sizes for all the non CUR filtered MR analy-

ses. The squares represent the point estimates while the bars the 95% confidence intervals.

Results from the uncorrected analysis (raw) and CUR filtered IVs (CUR) are reported. The

exposure trait is indicated in the header of the plots while the row labels refer to the outcomes.

Beta’s always refer to standard deviations for the exposure while for the outcomes it is standard

deviations for the quantitative traits and log(OR) for the disease traits. Fig BN. The forest plots

represent the estimated effect sizes for all the non CUR filtered MR analyses. The squares rep-

resent the point estimates while the bars the 95% confidence intervals. Results from the uncor-

rected analysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated

in the header of the plots while the row labels refer to the outcomes. Beta’s always refer to stan-

dard deviations for the exposure while for the outcomes it is standard deviations for the quan-

titative traits and log(OR) for the disease traits. Fig BO. The forest plots represent the

estimated effect sizes for all the non CUR filtered MR analyses. The squares represent the

point estimates while the bars the 95% confidence intervals. Results from the uncorrected anal-

ysis (raw) and CUR filtered IVs (CUR) are reported. The exposure trait is indicated in the

header of the plots while the row labels refer to the outcomes. Beta’s always refer to standard

deviations for the exposure while for the outcomes it is standard deviations for the quantitative

traits and log(OR) for the disease traits.

(DOCX)

S1 Table. Supplementary tables. Table A: Number of samples used for the GWAS for each

trait. The questionnaire column indicates from which questionnaire the item was taken. Pro-

portion of sample indicates the proportion of samples used compared to the number of people

who participated in the UK biobank at baseline (501,520). Table B: Description of the pheno-

types: the table reports the description and coding of the phenotypes used for the GWAS
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analyisis. Phenotype, name of the phenotype; Question, question asked in the tochscreen ques-

tionnaire; Answer—Converted to, coding of the phenotype; Covariates, covariates used for the

analysis, standard = age+sex; Transformation, transformation applied for normalising the

trait. Table C: Significant loci per trait and type. Table D. Summary statistics of top SNP per

trait per locus. Locus N, genomic locus number. Chr, chromosome; Start, starting position of

the locus; End ending position of the locus; rsid, per trait top SNP in the locus; a1 a0 Effect

allele, Other allele; N number of samples; Beta effect of the coded allele; SE Standard error of

the uncorrected effect; p p-value of the initial association; Corr.Beta, effect of a1 after the GW

mediation correction procedure;Corr.SE Standard error of the corrected effect; Corr.p p-value

of the corrected association; CUR corrected to raw ratio; Gene prioritised genes, if the top-

SNP was between genes and the closet one was chosen, the distance from the gene was indi-

cated; type category of the association based on the CRR values. Table E. Replication results.

The table reports the replication results for the traits/SNP for which replication was availble.

Locus.N locus number; rsid SNP use for replication; a0 a1, Other allele effect allele; Beta effect

of the effect allele in the discovery cohort; p p-value in the discovery cohort; n number of sam-

ples used in the discovery cohort; rep_effect effect of the a1 allele in the replication cohorts;

rep_p p-value in the replication cohorts; N_rep, number of samples used for replication.

Table F. a: GWAS used for the Multivariate MR analysis and GW mediation analysis. Name,

name of the trait; Consortium, consortium that performae the GWAS; Reference link to paper

describing the GWAS; Download; source of the summary statistics. b: GWAS used for the

Multivariate MR analysis and GW mediation analysis. Name, name of the trait; Consortium,

consortium that performae the GWAS; Reference link to paper describing the GWAS; Down-

load; source of the summary statistics. Table G: Full results of univariate MR. Outcome, out-

come trait; Exposure, exposure trait. Method used for the MR analysis; nsnp, number of SNPs

used for th IV; b effect of the exposure on the outcome; se standard error of the effect; pval, p-

value; results_adjusted, Multiple test corrected pvalues. Table H: Multivariable MR results: for

each food trait (otucome column) the best model used for the prior estimation is reported.

Exposure column indicates the exposure used; Beta the multivariable effect of the exposure on

the outcome; Se standard error of the effect; P-value p-value of the effects; Cor^2 the squared

correlation between the prior and the original z-scores. Table I: Full Genetic correlation

amongst food results: The table reports the full genetic correlations between the food traits

using both corrected and uncorrected results. p1 trait 1; p2 trait 2; rg genetic correlation; se

standard error of the genetic correlation estimate; z z-score of the genetic correlation; p p-

value; the extension Raw and Corrected refer to the uncorrected and corrected results respec-

tively. Table L: Genetic correlations between the food traits and common traits. Both uncor-

rected and corrected (the prefix.Corrected is used to indicate corrected results) results are

reported. rg, genetic correlation, se standard error of the genetic correlation, p p.value.

Table M: Interaction network results analysis performed with STRING. Table N: Comunity

membership of the genes in the STRING interaction network. Table O: GO term enrichment

for the 13 Detected communities. Table P. Results for tissue enrichment analysis performed on

each community. Only tissues with FDR<0.05 are reported. Table Q. LD score regression

intercept and heritability estimates. Table R. Proportion of genetic variance explained of each

food trait by the causal health related traits. Trait, name of food trait, rg2 proportion of genetic

variance explained, rg2se standard error of the proportion of explained genetic variance.

Table S: Information on the outcomes used for MR. Table T. Full results of the Food Mende-

lian Randomization: The table reports the full resutls of the mendellian randomization of food

on all the selected outcomes. Exposure: exposure trait, Outcome: outcome trait; Method:

method for the main MR analysis: IVW (FE) inverse variance method fixed effect, IVW (RE)

inverse variance method random effect, Wald ratio: Wald ratiomethod; nsnp, number of SNPs
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used for the MR; b effect size relative to the method columns; se standard error relative to the

method column; pval p-value of relative to the method column; type exposure betas used

(Uncorrected, Corrected); outliers number of SNPs excluded because they were foudn to be

outliers at the MR radial analysis; egger.pleio p-value relative to the mr egger test for directlio-

nal pleiotropy; mr.raps.beta/me.raps.se beta and standard error relative to the MR-RAPS

method; beta_egger/se_egger beta and standard error realtive to the MR-Egger analysis; beta_-

median/se_median beta and standard error realtive to the Median analysis; het.p Heterogene-

ity test p-value; qval Storeys qvalues, the qvalues have been estimated only on the CRR

Uncorrected analysis; sens.het Heterogeneity test run on the estimates coming from the differ-

ent methods.

(XLSX)
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