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Abstract: In this contribution we are concerned with the asymptotic behaviour, as u — oo, of P {supte[O’T] Xu(t) > u},
where X, (t),t € [0,T],u > 0 is a family of centered Gaussian processes with continuous trajectories. A key applica-
tion of our findings concerns P {supte[O’T] (X()+g)) > u}, as u — 0o, for X a centered Gaussian process and g
some measurable trend function. Further applications include the approximation of both the ruin time and the ruin
probability of the Brownian motion risk model with constant force of interest.
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1. INTRODUCTION

Let X(t),t > 0 be a centered Gaussian process with continuous trajectories. An important problem in applied and
theoretical probability is the determination of the asymptotic behavior of
(1) p(u) :]P’{ sup (X (t) + ¢g(t)) >u}7 u — 00

te[0,T]
for some T' > 0 and g(¢),t € [0,7] a bounded measurable function. For instance, if g(t) = —ct, then in the context of
risk theory p(u) has interpretation as the ruin probability over the finite-time horizon [0, T]. Dually, in the context of
queueing theory, p(u) is related to the buffer overload problem; see e.g., [1-5].
For the special case that g(t) = 0,t € [0,T] the exact asymptotics of (1) is well-known for both locally stationary
and general non-stationary Gaussian processes, see e.g., [6—18]. Commonly, for X a centered non-stationary Gaussian
process it is assumed that the standard deviation function o is such that ty = argmax.cp,rjo(t) is unique and
o(ty) = 1. Additionally, if the correlation function r and the standard deviation function o satisfy (hereafter ~ means

asymptotic equivalence)
(2) 1—r(s,t)~alt—s|,  1—o(to+t)~blt]",  st—to
for some a, b, 8 positive and « € (0, 2], then we have (see [10][Theorem D.3])
(3) p(u) ~ Couls =B+ P{X(to) > u}, u— oo,
where (z)4 = max(0, ) and
al/b=VPT(1/B + ) Ha, if a < B,

Co = f/‘ﬂ if =20,
1, if a>g.
Here I'(+) is the gamma function, and
1 [e3
Ho = lim —=ES sup VO L ple_E{ sup VOVl L with W(t) = V2B (t) — [t|*,
T—o0 te[0,T) t€[0,00)

are the Pickands and Piterbarg constants, respectively, where B, is a standard fractional Brownian motion (fBm)
with self-similarity index «/2 € (0, 1], see [19-25] for properties of both constants.
The more general case with non-zero g has also been considered in the literature; see, e.g., [1, 26-30]. However, most
of the aforementioned contributions treat only restrictive trend functions g. For instance, in [26][Theorem 3] a Holder-

type condition for g is assumed, which excludes important cases of g that appear in applications. The restrictions are
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often so severe that simple cases such as the Brownian bridge with drift considered in Example 3.11 below cannot be
covered.
A key difficulty when dealing with p(u) is that X + ¢ is not a centered Gaussian process. It is however possible to get

rid of the trend function g since for any bounded function g and all u large (1) can be re-written as

X(t
pr(u) = }P’{tes[%%] Xu(t) > u} . Xu(t) = 1—g((t))/u’ te€0,T].
Here X, is centered, however it depends on the threshold w, which complicates the analysis.
Extremes of threshold-dependent Gaussian processes X, (t),t € R have been already dealt with in several contributions,
see e.g., [2, 3, 30-32]. Our principal result in Theorem 2.4 derives the asymptotics of ppr(u) for quite general families
of centered Gaussian processes X, under tractable assumptions on the variance and correlation functions of X,,. To

this end, in Theorem 2.2 we first derive the asymptotics of

pa(u) =P<¢ sup X,(t)>up, u— 00
teA(u)

for some short compact intervals A(u).

Applications of our main results include derivation of Proposition 3.1 for a class of locally stationary Gaussian processes
with trend and that of Proposition 3.6 for a class of non-stationary Gaussian processes with trend, as well as those of
their corollaries. For instance, a direct application of Proposition 3.6 yields the asymptotics of (1) for a non-stationary
X with standard deviation function o and correlation function r satisfying (2) with tg = argmaw,cjo ro(t). If further

the trend function g is continuous in a neighborhood of ty, g(to) = max;c(o,r] g(t) and
(4) g(t) ~g(to) —clt —to|”, t—to

for some positive constants ¢,~, then (3) holds with Cy specified in Proposition 3.9 and §,u being substituted by
min(3,27v) and u — g(to) respectivelly.
Complementary, we investigate asymptotic properties of the first passage time (ruin time) of X (¢) 4+ g(¢) to u on the

finite-time interval [0, 7], given the process has ever exceeded u during [0, T]. In particular, for
(5) Tu =1nf{t > 0: X(t) >u—g(t)},

with inf{(}} = oo, we are interested in the approximate distribution of 7, |7, < T, as u — co. Normal and exponential
approximations of various Gaussian models have been discussed in [30, 32-35]. In this paper, we derive general results
for the approximations of the conditional passage time in Propositions 3.3, 3.10. The asymptotics of pa (u) for a short
compact intervals A(u) displayed in Theorem 2.2 plays a key role in the derivation of these results.

Organisation of the rest of the paper: In Section 2, the tail asymptotics of the supremum of a family of centered
Gaussian processes indexed by u are given. Several applications and examples are displayed in Section 3. Finally, we

present all the proofs in Section 4 and Section 5.

2. MAIN RESULTS

Let X, (t),t € R,u > 0 be a family of threshold-dependent centered Gaussian processes with continuous trajectories,
variance functions o2 and correlation functions 7,. Our main results concern the asymptotics of slight generalization
of pa(u) and pr(u) for families of centered Gaussian processes X,, satisfying some regularity conditions for variance
and coavariance respectivelly.

Let Cj(FE) be the set of continuous real-valued functions defined on the interval E such that f(0) = 0 and for some
€a>€1 >0

(6) SO/ =00 Timf(0)/1H =0,

ifsup{z:z € E} =00 or inf{z :x € E} = —o0.

In the following R, denotes the set of regularly varying functions at 0 with index a € R, see [36—38] for details.
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We shall impose the following assumptions where A(u) is a compact interval:
A1l: For any large u, there exists a point ¢, € R such that o,(t,) = 1.
A2: There exists some A > 0 such that

(m - 1) u? — f(urt)

7 lim sup =0
0 U—00 te A(u) f(u/\t) +1
holds for some non-negative continuous function f with f(0) = 0.
A3: There exists p € Rq /2, € (0,2] such that
1= ry(ty + 8,y +1
lim sup T(2 ts +)—1‘:O
U005 te A(u) P (‘t - S|)
t#s

and 7 = limg_, % € [0, 00], with A given in A2.
Remark 2.1. If f satisfies f(0) =0 and f(t) > 0,t # 0, then

1 1
1i Ty (tutt)
im sup 7u*2f(u)‘t)

U0 e A(u),t#£0

. 1‘ o
for some A > 0 implies that (7) is valid.

Next we introduce some further notation, starting with the Pickands-type constant defined by
Ho[0,T] =E< sup ¢V2Ba(t)— |t , T >0,
te[0,T]
where B, is an fBm. Further, define for f € Cg([S,T]) with S,T € R, S < T and a positive constant a
,Pi a[s’ T] =E{ sup e\/%Ba(t)—‘lma—f(t) ,
' te[S,T]

and set

Plal0,00) = lim PL[0.T], Pf,(-00,00)=  lim  Pf,[S,T].
—00

S——c0,T—00
The finiteness of P/ ,[0,00) and PZ ,(—o0,00) is guaranteed under weak assumptions on f, which will be shown in
the proof of Theorem 2.2, see [2, 3, 5, 7, 15, 25, 39-43] for various properties of H,, and ng,a[o, 00).
Denote by I;.y the indicator function. For the regularly varying function p(-), we denote by ?() its asymptotic
inverse (which is asymptotically unique). Throughout this paper, we set 0- 00 = 0 and v~ = 0 if u > 0. Let
U(u) :=P{N > u}, with N a standard normal random variable.
In the next theorem we shall consider two functions z1(u), z2(u), u € R such that z1(7) € Ry, @2(3) € R, with

M1, 12 > )\7 and

(8) HILIEO u zi(u) = z; € [—00,00],i = 1,2, with x; < xy.

Theorem 2.2. Let X, (t),t € R be a family of centered Gaussian processes with variance functions o2 and correlation
functions r,,. If A1-A3 are satisfied with A(u) = [x1(u), z2(w)], and f € C§([x1,x2]), then for M, satisfying M, ~
u, u — 00, we have

(9) IP{ sup X, (t, +1t) > Mu} ~C (u*<ﬁ(u*1))’“":°°} U(M,), u— oo,
teA(u)

Ha [12 eI Ddt, i n= oo,
(10) C= Pc{,n[xla zQL Zf ne (03 OO);
Supte[wl,azg] e_f(t)a Zf n= 07
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Remark 2.3. Let a € (0,2],a > 0 be given. If f € C§([x1,x2]) for 1,22,y € R,x1 < x2, as shown in Appendiz, we
have, with f,(t) == f(y+1t),teR

(11) ,P(ic,a[xlva] :,P(Qa[‘rl — Y, T2 _y]a ,Pg,a[wl’oo) :Pi?a[xl —y7oo).
In particular, if f(t) = ct,c >0, then for any x € R
,Pocct,a[xﬂ OO) = 'ngzj_d[oa OO) = e_cwpg:a[o’ OO)
Next, for any fixed T' € (0,00), in order to analyse pr(u) we shall suppose that:
A1’: For all large u, 0,(t) attains its maximum over [0,7] at a unique point ¢, such that
ou(ty) =1 and lim ¢, =tg € [0,T].

uU—r 00
A4: For all u large enough

1 p(Inw)?

inf > 1+
L0, TIN (b +A ) T4 (t) — u?

holds for some constants p > 0,q > 1.

A5: For some positive constants G,¢ > 0

E {(Yu(t) —Yu(s))z} <G|t —s|°
Xu

(t)

holds for all s,t € {z € [0,T] : o(z) # 0} and X, (t) = OR

Below we define for A given in A2 and v, d positve

[0, 0] if t,=0,
[—tu, Oul, if t, ~du™" and v > A,
(12) Au) =< [0y, 4], if ty, ~du™ orT —t, ~du™ when v <\, ortg € (0,T),
[<0u, T —t,], if T—t,~du""and v >\
[~ 64, 0] if t, =T,

A\ A
where §,, = (%) with ¢ given in A4.

2

o and

Theorem 2.4. Let X,(t),t € [0,T] be a family of centered Gaussian processes with variance functions o

correlation functions r,,. Assume that A1°,A2-A5 are satisfied with A(u) = [c1(u), c2(u)] given in (12) and

lim ¢;(u)u®
U—r 00

If f € C§([x1, x2]), then for M, suc that lim, oo M, /u =1 we have

=uz; € [-00,00],i =1,2, x1 < za.

(13) P{sm>X4w>A@}Nc@ﬂ$w*n4“°ﬂww@L U — 00,
te[0,T]

where C' is the same as in (10) if n € (0,00] and C =1 if n = 0.
Remark 2.5. Theorem 2.4 generalises both [26][Theorem 1] and [32][Theorem 4.1].

3. APPLICATIONS

3.1. Locally stationary Gaussian processes with trend. In this section we consider the asymptotics of (1) for
X(t),t € [0,T] a centered locally stationary Gaussian process with unit variance and correlation function r satisfying

1—r@t+m’_

14 lim sup o
) at) i

h=04e(0,1]

with a € (0,2], a(+) a positive continuous function on [0, 7] and further
(15) r(s,t) <1, Vs,t € [0,T] and s # ¢.

We refer to e.g., [9, 10, 44-46] for results on locally stationary Gaussian processes. Extensions of this class to «(t)-

locally stationary processes are discussed in [13, 47, 48].
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Regarding the continuous trend function g, we define g,, = max;co, 1) 9(t) and set
H:={s€[0,T]:9(8) = gm}-
Set below, for any to € [0, T]

—o0, iftg € (O,T)7

16 O =1+ Ty con, Wy, =
(16) to {to€(0.D)}s - o { 0, ifty=0orty=T

Proposition 3.1. Suppose that (14) and (15) hold for a centered locally stationary Gaussian process X (t),t € [0,T]
and let g : [0,T] — R be a continuous function.
i) If H = {to} and (4) holds, then as u — o0

(17) ]P’{ sup (X(t)+g(t)) > u} NCtou(g_%)ﬂI/(u—gm),
te[0,T)
where (set with a = a(ty))
Qioa T (1 )y 4+ DHa, if a< 2y,
Cy, = :;'fa” [wy,, 00), if =2y,
1, if a>2y.
ii) If H=[A,B] C [0,T] with0 < A< B<T, then as u — c©
B
IP’{ sup (X(¢)+g(t)) > u} ~ Ha/ (a(t))l/adtu%\I/ (u—gm) -

te[0,T] A

Remarks 3.2. i) If H = {t1,...,t,}, then as mentioned in [10], the tail distribution of the corresponding supremum

is easily obtained assuming that for each t; the assumptions of Proposition 3.1 statement i) hold, implying that

IP’{ sup (X(t)+g(t)) > u} ~ (ZCtj)u(%7%)+\I/(u —gm), Uu—o0.

t€[0,T)

it) The novelty of Proposition 3.1 statement i) is that for the trend function g only a polynomial local behavior around
to is assumed. In the literature so far only the case that (4) holds with v = 2 has been considered (see [28]).
ii1) By the proof of Proposition 3.1 statement i), if g(t) is a measurable function which is continuous in a neighborhood

of to and smaller than g, — ¢ for some & > 0 in the rest part over [0,T], then the results still hold.
We present below the approximation of the conditional passage time 7|7, < T with 7, defined in (5).

Proposition 3.3. Suppose that (14) and (15) hold for a centered locally stationary Gaussian process X (t),t € [0,T].
Let g : [0,T] — R be a continuous function, H = {to} and (4) holds.
i) If to € [0,T), then for any x € (wy,, o)

,_Ycl/'y flajto Cicw’ydt

—anram—  fa<2y
clt|Y z
P{u!(r —t0) Salry ST}~ Pl if o =2,

Pa,a [wto aOO) ’

Supte[wtmz] e—c\t|7, ZfOé > 27,
it) If to =T, then for any x € (—o0,0)

'ycl/’Y ffcm efc\tmdt

e a<2y,

P {ul/V(Tu —tg) < x|Tu < T} ~ P(i"?T'Y[_LOO)

T 00 if a =27,

e—cl=l” if a > 2.
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Example 3.4. Let X(t),t € [0,T] be a centered stationary Gaussian process with unit variance and correlation
function r that satisfies r(t) = 1 — alt|*(1 + o(1)), t — 0 for some a > 0, a € (0,2], and r(t) < 1, for all t € (0,T].
Let 1, be defined as in (5) with g(t) = —ct,c > 0. Then we have

cla'’*H,, € (0,2),

]P Xt —ct) > ~ (%71)+\Ij
{max( (t) — ct) u} u (u){ P [0,0), a2,

t€[0,T]
and for any x positive

1—e, ac(0,2),
Tu S T} ~Y Pealoal
: a=2.

P {uTu <z
Psta10,00)7

Example 3.5. Let X(t),t > 0 be a standardized fBm, i.c., X (t) = B, (t)/t*/? with B, an fBm. Let ¢, T be positive

constants. Then for any n € N, we have

27t T T 2_ 1
P X(t in— ~ o a———=ue 20 (u—c),
{tE[T{I(lgiil)T] ( ( )+csm( T )) > u} E aj | H \/ﬂu 2V (u—c)

Jj=1

. -
whereaj:%(W) ,i=1,...,n.

3.2. Non-stationary Gaussian processes with trend. In this section we consider the asymptotics of (1) for
X (t),t € [0,T] a centered Gaussian process with non-constant variance function 0. Define below whenever o(t) # 0
X(t):=—%, tel0,T],

and set for a continuous function g

o(t)
18 ma(t) = — "2 +e[0,T], u>0.
(18) ()= 20 telT
Proposition 3.6. Let X and g be as above. Assume that t, = argmaxte[o’T]mu(t) 18 unique with lim, . t, = to
and o(tp) = 1. Further, we suppose that A2-A5 are satisfied with o,(t) = mu(t) ru(s,t) = 7(s,1), Xo(t) = X(1)

mu(tu)’
and A(u) = [c1(u), ca(u)] given in (12). If in A2 f € C§([x1,x2]) and

lim ¢;(u)u* = x; € [~00,00],i = 1,2, 1 < T2,
uU—r 00
then we have
I, — g(ty,
(19) P< sup (X(¢)+g(t) >up~C (uMﬁ(u_l)) Ho=eel (ug()) , U — 00,
t€[0,T) o(tu)

where C' is the same as in (10) when n € (0,00] and C =1 when n = 0.

Remarks 3.7. i) Proposition 3.6 extends [26][Theorem 3] and the results of [1] where (1) was analyzed for special X
with stationary increments and special trend function g.

it) The assumption that o(ty) = 1 is not essential in the proof. In fact, for the general case where o(tg) # 1 we have
that (19) holds with

_2 p _
00 “ Ha [7 €70 1 Odt, if = o0,

c={ po _fQU[ml,xQ], if € (0,00), oo = o(to).

a,oq

1’ Zf 77:0a

Proposition 3.8. Under the notation and assumptions of Proposition 3.6 without assuming A3,A5, if X is differ-

entiable in the mean square sense such that
r(s,t) <l,s#t, E{X"(t))} > o"?(to),

and B {X"*(t)} — 0"*(t) is continuous in a neighborhood of to, then (19) holds with

a=2pt) = % (E {X/z(to)} - 0’2(t0)> 2.
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The next result is an extension of a classical theorem concerning the extremes of non-stationary Gaussian processes

discussed in the Introduction, see [10][Theorem D.3].

Proposition 3.9. Let X(t),t € [0,T] be a centered Gaussian process with correlation function r and variance function
o? such that tg = argmazcio,r)o(t) is unique with o(ty) = o > 0. Suppose that g is a bounded measurable function

being continuous in a neighborhood of ty such that (4) holds. If further (2) is satisfied, then
—g(t
(20) JP’{ sup (X (t) + g(t)) > u} ~ Cou3-F)+ g <“9(0)) ,
te[0,T]

where §* = min(S, 27),
o 2egl/ oy, fifo e fOdt, if a < p*,

CO = P£7U—2a[wtoa OO), ’LfOf = B*a
L, if a>p7,
with f(t) = Z|tPL_py + S|t T{2y—p+} and wy, defined in (16).

Proposition 3.10. i) Under the conditions and notation of Proposition 3.6, for any x € [x1,x2] we have

f;l e T gt )
f;lz e T(Ddt? Zf = o0,

(21) IP’{u/\(Tu —ty) < £U|Tu < T} ~ PLyleral if e (0,00),

P(J:,n[$172702]7

Supte[ml,m] eif(t)v Zf n= 0.
ii) Under the conditions and notation of Proposition 8.9, if to € [0,T'), then for x € (wy,, o)

fst e~ f®qt
- *
IOOO e—F)dt? ZfOé < 6 ’
wt

P{uz/ﬁ* (Tu - tO) < I‘Tu < T} ~ Pl alweg 7] if a = B*,

Pc{,a[wtoxoo)7

SUD e [uy, 2] e O ifa>p*,
and if to =T, then for x € (—o0,0)

ffi e T M) gt .
fgooe—f(t)dt7 ZfO(<B*,

2/8% (. _ DA TS .
P{u (T t0)§x|Tu§T} Pﬁ,a[,[opo))’ .

eff(z)

, if a > p*.
Example 3.11. Let X(t) = B(t) —tB(1),t € [0, 1], where B(t) is a standard Brownian motion and suppose that T,
is defined by (5) with g(t) = —ct. Then

(22) P< sup (X(t) —ct) >u g2 tew)
te[0,1]

P {u (Tu - ) <z
c+2u
We note that according to [49][Lemma 2.7], the result in (22) is actually exact, i.e. for any u > 0,

P {SUPte[o,l] (X(t) —ct) > u} = =2 +eu)
Now, let T =1/2. It appears that the asymptotics in this case is different, i.e.,

Tu < 1} ~ ®(4x), xz € (—00,00).

(23) IP’{ sup (X(t) —ct) > u} ~ <I>(c)e_2("2+cu),
tel0,1/2]
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and

Similarly, we have

(24) ]P’{ sup (X(t) +--—c

and

t c 2
} filio e_(\ \;r ) dt
2210 (c)

We conclude this section with an application of Proposition 3.6 to the calculation of the ruin probability of a Brownian

x € (—00,00).

motion risk model with constant force of interest over infinite-time horizon.

3.3. Ruin probability in Gaussian risk model. Counsider risk reserve process U (t), with interest rate J, modeled
by
t t
U(t) = ue® + c/ A dy — a/ EdB(v), t>0,
0 0
where ¢, d, 0 are some positive constants and B is a standard Brownian motion. The corresponding ruin probability

over infinite-time horizon is defined as

p(u)—IF’{ inf U(t)<()}.

t€[0,00)
For this model we also define the ruin time 7, = inf{t > 0: U(t) < 0}. Set below

h(t):% (\/t+r27r)2, tel0,00), r= ¢

]

We present next approximations of the ruin probability and the conditional ruin time 7|7, < co as u — 0.

Proposition 3.12. Asu — oo

(25) p(u) ~ 77{1_’5/02 [—rz, oo) v (i\/ 20u? + 4cu>

and for x € (—r?, 00)
2 Ph _,,,2’33
P < u? 6267—“( ¢ ) §x|7’u<oo N%_
ou+c Pl,(;/c,z [—12,00)

Remark 3.13. According to [50] (see also [51]) we have

(26) ]P’{tei[gfx)) U(t) < 0} = <\f»5 (u+r)> /\1/ <;€§> .

By (25) and (11)

IE”{ inf U(t) < 0}
te[0,00]

2

2
E{ sup  exp ( i—gB(t) — % (\/t+7“2 — r) — j2|t> } v (i\/ 26u? +4cu>

te[—r2,00)

c? 2c |/ c? V26

te[—

_ gy 20 V28
i E{tei&&fxp(ﬁ”“ Qt*aﬂﬁ>}“’< o >>’

which combined with (26) implies that

e AV (o (Y2
(27) E{tes[glgo)exp (\/iB(t)—%—i—M\/i)}— (‘I’ (aﬁ)) .
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4. PROOFS

In the proofs presented in this section C;,i € N are some positive constants which may be different from line to line.

We first give two preliminary lemmas, which play an important role in the proof of Theorem 2.2.

Lemma 4.1. Let £(t),t € R be a centered stationary Gaussian process with unit variance and correlation function r
satisfying

(28) 1—r(t) ~ap’(t]), t—0,

with a > 0, and p € Ry /2, a € (0,2]. Let f be a continuous function, K, be a family of index sets and

v U))
2 = S G

where A > 0 and —oo < 87 < So < 0o. If My(u),k € K, is such that

t e [51,52],

(29) lim sup ’]\@(u) - 1’ =0,

U= LK,

then we have

(30) lim sup

U= ke K,

=0,
te[S1,92]

_ b el N
‘I’(Mk(u))]P{ p Zu(t)>Mk( )} Rn[sl;SZ]

where

1/ 1/ . =
RI[S1, 82 :=E{ sup eV2aBa®=alt®=fn~/7H L _ Hala'/"51,07%5]  [() =0,
t€[S1,52] Pl 151, 5] otherwise,

with n := limy o ’;zgi) € (0,00] and h(t) = f(n~Y/t) for n € (0,00), h(t) = f(0) for n = co.

Proof of Lemma 4.1: We set n~1/% = 0 if = co. The proof follows by checking the conditions of [52][Theorem 2.1]
where the results still holds if we omit the requirements f(0) = 0 and [S7, So] 0. By (29)

lim inf Mj(u) = oco.

u—oo ke K,

By continuity of f we have

(31) lim sup MR M) - £ 0] =o.

U0 ke K, t€[S1,52)

Moreover, (28) implies

Var(( (u™")t) = €(9 (w)t)) = 2= 2r (|9 (w)(t = ¢)]) ~ 2ap® (| (™)t ~ 1)

holds for ¢,t" € [S1, S2]. Thus

), u— oo,

) b s sup |22 YREE O )

W RGeS 5 2au%p? ([ (w 1)(t — )

Since p? € R, which satisfies the uniform convergence theorem (UCT) for regularly varying function, see, e.g., [53],

ie.,

(33) lim sup [uo? (| ()= 1)) — e =17 =0,

U0 ¢ t/€[S1,S2]
and further by the Potter’s bound for p?, see [53] we have

u?p? (|9 ()t =)

(34) lim sup sup P < Cymax (|Sl _ 52|a—61 , |S1 . S2|a+s1) < o0,
u—00 ¢,t'€[Sy,Sa] [t —¢ |
t£t!

where €1 € (0, min(1, «)). We know that for a € (0, 2]

(35) 141 = [ < Co [t = #|*"", £,¢ € [S1, Sa].
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By (28) for any small € > 0, when u large enough
(36) r(p (™)) <1=p* (P A=), r(P ) =1=p (P ) )1 +e)

hold for t € [S1, Sa], then by (29) for u large enough

sup sup M (W)E{[£( (w™)t) = £ (u™H)t)]€(0)}
keEK, |t—t'|<e,t,t’€[S1,S2]
< Cau? sup r(p (u=t) = r(p (u™ "))
[t—t'|<e,t,t'€[S1,52]
< Cy sup (Ju2p? (o (™) 1)) — u?p* (o (™) [1])] + e [u?p? (5 (u™ ) [t])| + € [u2p?(p (u™") [1'])])
[t—t'|<e,t,t'€[S1,52]
<Cs sup (lw?e® (' (™ 1) @®)]) = [E1%] + |u®0® (| (™ E)]) = [E1%] + |[£]* = [¢'|°]

[t—t'|<e,t,t’€[S1,52]
(B7)  4+Cae (U 1))
(38) < Cse™M 4 Cge, u — 00
—0,e > 0,¢e = 0,
where in (37) we use (34) and (38) follows from (33) and (35).

Hence the proof follows from [52][Theorem 2.1]. O

Lemma 4.2. Let Z,(s,t),(s,t) € R? be a centered stationary Gaussian field with unit variance and correlation function

rz,(+,") satisfying

(39) 1= 1y (5,8) = au™ ((ﬁ Wﬂﬁ Q/Z) . (s,0) €R?,

with a > 0, p?> € Ry and a € (0,2]. Let K, be some index sets. Then, for My(u),k € K, satisfying (29) and for any
S1,82, Ty, To > 0 such that max(Sy, S2) > 0, max(Ty,Ts) > 0, we have

lim sup
U= keI,

= 0,
W (M, s,t)eD(w)

1())}?{ sup Zu(S,t)>Mk(u)}—f(S1,SQ7T1,T2)
u (

where D(u) = [~ (™)1, T ()8 x [~ 7 () Ty, F(w™)T] and
F(S1, 82, T1,To) = Heyo|—a?*S1,a* *So)Hy o[ —a? *Ti, a* *Tp).
Proof of Lemma 4.2: The proof follows by checking the conditions of [35][Lemma 5.3].

For D = [-51,S2] x [=T1, T3] we have

P {( . Zu(s,t) > Mk(u)} = P{ sup  Zu(p (u™")s, o (u™)t) > Mk(u>} :

Since by (39)
Var(Z, (0 (u™)s, 9 (w™)t) = Zu(p ()8, p(w ) = 2=2rz, (P (s—s), Pt —1))
au"? (\s — $'|0‘/2 + [t — t'|a/2>

we obtain
=1\, <, —1 =N S =1\
w0 i s (S’t);és(g}?t,)eD M2 () Var(Z,(p (u 2);,(|§£u8/|27;)2 +|Ztu£i/|(:/2))s sp () 1’ _o.
Further, since for a/2 € (0, 1]
e e e e e L [ e e E A PR

holds for ¢,t' € [Ty, T3], s,s" € [—S1,52], we have by (39)

sup sup  ME(wE{[Z,(p (u™")s, P (wM)t) = Zu(p (w s, o (u™H)t)] 2,(0,0)}
kEK .y |(s,t)—(s',t)|<e
(s,t),(s',t')ED
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<Csu®  sup |z, (P )s, D) —rg, (P (s, o (uH)
[(s,t)—(s",t")|<e
(s,t),(s",t")ED

=Cya sup e | )
[(s,t)—(s",t")|<e
(s:t),(s",t")€D

<Csa sup ([l =117 [l 11
[(s,t)=(s",t")|<e
(s,t),(s",t")eD

< Cue®? 50, u— 00,6 — 0.

Hence the claim follows from [35][Lemma 5.3]. O
Proof of Theorem 2.2: We have from A3

im () =nel0,00, lim v p(u™t)=n"?/?

t—0 t2//\ U ’ T uS o P N ’

Without loss of generality, we consider only the case t,, = 0 for u large enough.
By A2 for t € A(u), for sufficiently large u,

1 1
41 <o) L =, Fur()=14+u?[1+£ M)+
(a1) g S0 € o Fusel) = 140 (1200 ]
for small constant € € (0,1). Since further
(42) m(u) = IP{ sup X, (t) > Mu} = IP’{ sup X, (t)ou(t) > Mu}
teA(u) teA(u)

we have
Xu(t) X, (t)
m(u) <P sup ———— > M, ,, 7(u)>P sup ———— > M, ;.
( ) {tEA(u) ]:u,*é‘(t) } ( ) {tEA(u) ]:u,+e(t)

Set for some positive constant S

I(u) = [k (™S, (k+ 1) (w™1)S], keZ
Further, define
x1(u)
utelk) = M, u,+e , IV = -1 z ;
Guselh) = Mot Pl 36) = 55| T

B . | ma(u)
gu,—f:‘(k) - Mu SEIIIif(‘u) Fu,—6(8)7 NQ(U) - \\WJ + H{a:2§0}'

In view of [54], we can find centered stationary Gaussian processes Y. (¢),t € R with continuous trajectories, unit

variance and correlation function satisfying
ree(t) =1 (1£)p*(t))(1 +0(1)), t—0.

Case 1) n = oc:

For any w positive

No(u)—1 2 N (u)
(43) > 1@{ sup Xu(t)>Mu}—ZAi(u)<7r(u)< > IP’{ sup Xu(t)>Mu}7

k=N1(u)+1 tely (u) i=1 k=N (u) tel (u)
where
Nz(u)
A (u) = Z IP’{ sup X, (t) > M, sup X,(t)> Mu} ,
k=N () (€I t€ 1541 (u)
and
Ao(u) = Z ]P’{ sup X, (t) > M, sup X,(t) > Mu} .
Ny (u)<kI<Nap(u)zk+2  \(PELE(W) ten(u)
Set below
Ha

T2
/ e T Odtw(M,).
x

1

O T
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which is well-defined since [** e~/ dt < oo follows by the assumption f € Cg([x1,22]). By Slepian inequality (see
e.g., [59]), (42) and Lemma 4.1

Na(u)
Z ]P’{ sup Xu(t)>Mu} < { sup t) > Gu,—c(k )}
)

k=N (u tel(u) tel( u)
S { sup Y—i—a > gu,—a(k')}
k=N tely u)
= { sup Yio(t) > gu,_auc)}
k=N tely u)
~ ”Ha[O, (1+)VSU(Gu,—<(k))
k:Nl(u)
Ng(u) 2 —2. A
~ Hal0,(L+e)VOS|O(M,) Y e M infen o[- (w9 —]
k:Nl(u)
Hal0, (1 + 5)1/QS] /JE2 —(1—e)f(t)+e
~ e dtw (M,
G, (M)
(44) ~ Ou), u— 00,5 —00,e—0.
Similarly, we derive that
Nz(u) 1
(45) > ]P’{ sup X, (t) > }> (14 0(1))O(u),u — oo, S — oo, € — 0.
k=Ni(u)+1  (FETR(W)
Moreover,
NQ(U) N —~
A(u) < Z P< sup Yio(t) > Gu—e(k)p+P< sup Yio(t) > Gy —_c(k)
k=N (u) tel (u) t€lk41(u)
—P { sSup Y_c(t) > gu,+s(k)}>
telk(u)ulk+1(u)
Nz (u) R
< ¥ (ma[o, (1+2)/28] — Ha[0,2(1 — s)l/O‘S]) V(G (k)
k=N1(u)
Na(u) R
< (2%[0, (1+€)Y*S] — Hal0,2(1 — 5)1/0‘5]> S WG (k))
k=N1(u)
(46) = 0(0O(u)), u— 00,5 = 00,e = 0,
where

au,—é(k) = min(gu,—e(k)a gu,—s(k + 1))a §u,+s(k) = max(gu7+5(k), gu,-‘rs(k + 1))
By A3 for any (s,t) € I(u) x I;(u) with Ny(u) < k,l < No(u),l > k + 2 we have

2 < Var (Xu(s) + Xu(t)) =4 —2(1 —ru(s,t) <4 —p*(|t —s]) <4—-Cru 3|l — k — 1)S]~/2

and for (s,t),(s',t") € Ix(u) X I;(u) with Ny (u) < k,1 < No(u)

1— Couv Xu(s )+X () Xi(s’)-i-Xiu(t’)
\/Var \/Var + Xu(t))
_lg Xu(s) + 7( ) Xu(s') +7u(t’)
\/Var ul \/Var + X (t))
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1 Y ¥ (o ~ /2
" Var (E(s)+E(t))E{(X”(S) ~ Xuls) + Xult) - X))}

—_

+Var (X, (s") + Xu(t'

. 2
L ——
\/Var (Xuls) + X)) Var (Ku(s) + Xu(t)
< 28 { (Xu(s) — X))} + 28 { (K1) - Kul#) "} + B { (Kuls) — Kuls) + Xat) -
<8(1 —ry(s,8) + 1 —ry(t, 1))

X))’}

— g ja/2 t—t /2
— 16u~2 (‘ 5 ) .
P (ut) P (ut)

In view of our assumptions, we can find centered homogeneous Gaussian random fields Z, (s, t) with correlation

)

a/2

rz,(s,t) = exp <—32u2 <|% +)m

Slepian inequality, Lemma 4.2 and (44) imply

As(u) < ]P’{ sup X,(s) > M,, sup X, ()>Mu}
Ni(uw)<k, l<N2(u) I>ht2 (€W tel (u)
< ]P’{ sup (XT(S) + X, (1) > 2§u,_s(k,Z)}
Nl(u)<kl<N2(u) 1>kt U(sOel(u)xDi(u
2G. _c(k,1
< IP{ sup Z( QZ e(k,1) 2}
Nl(u)<kl<N2(u kg2 \(8DE€lo(u)xTo(u \/4 Cru=2|(l =k —1)S|*/
2Gy,—<(k,1
< ) (Hapalo, 322/°5)) ( Gure(t,]) m)
Ny (w)<k,I<Na(w),l>k+2 V4= Ciu2[(l — k= 1)S]
NQZ(U,) NQ(’U,)E—:Nl(u)( 2g )
< 2 Ha2[0, 322/as " ( Lt )
k=N (u) =1 V4 — Cru—2(15)a/2
N2(U) o0
cx 2
< 2 Y (Haplo, 32”“5]) U (Gupe (k) S e G209
k=N1(u) =1
a/2 Nz(u)
< 2Ha232%98e”C5 T N 2 5[0,32%/ 81 (G, e (k)
k=N1(u)
(47) = 0(O(u)), u—o00,S—00,e—0,

where g~u,,5(k,l) =min(Gy,—c(k), Gu,—<(1)). Combing (43)-(46) with (47), we obtain
m(u) ~O(u), u— oo.

Case 2) n € (0,00): This implies A = 2/a.
Set for any small constant 6 € (0,1) and any constant S; > 0

(48) g = —51, if zp = —o0; i = (g = O)n'/*, if x5 € (00, 00);
(z1+0)n'/*,  if z1 € (—o0,00), Si, if x5 = oo,
(49) S = -5, if x1 = —o0; 5 = (zg +0)nt/®,  if 25 € (—00, 00);
(x1 —O)n'/*,  if z1 € (—o0,00), S, if x5 = oo.
With K* = [ (u=1)SF, 9 (u=1)S3] and K** = [ (u=1)S7*, 0 (u=1)S3*] we have for any S; > 0 and u large enough

(50) () > ]P’{ sup Xo(t) > Mu} ,

teK*
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Nz(u)
(51) m(u) < IP’{ sup X, (t) > Mu} + > PR osup Xu(t) > M, .
teK > ey () \tETR(w)
k#0,—1
Using Slepian inequality and Lemma 4.1, we have that
]P’{sup Xu(t)>Mu} > P{sup () >Mu}
teK tek* Fu,re(t)

~ PhEIST S31W(M,), u — oo,

where hic(t) = (1 +£¢)f(n~/t) £ ¢, and similarly

P{ sup X, (t) > Mu} < P{ sup M > Mu}
teEK** teEK** ]:u775(t)
(52) ~ PEEIST, S5 W (M,), u — oo

Moreover, in light of (6), the Slepian inequality and Lemma 4.1

Nz (u) N2 (u) Yie(t)
Z ]P’{ sup Xu(t)>Mu} < Z IP’{ sup JFE)>MU}

te I (u) ten(u) Fu,—e(t

k=N (u) k=N (u)
k#-1,0 k#-1,0
N (u)
< > P{ sup Y+E(t)>gu,_s<k)}
k:Nl(u) tEIO(u)
k#-1,0
Na(u)
~ DD Haf0, (14 6) S (G, ()
k=N (u)
k#-1,0
Na(u)
~ Ha [O (1+€)1/QS] Z e —infoem ki) ((1 e)f(sn~t/*8)— 6)
k=N1(u)
k#—1,0

~ C4HQ\I/(Mu)Se*&(”_l/aS)Q/z65
(53) = o(¥(M,)), u— 00,5 — 00, = 0.
Letting e — 0, S1 — 00, S — 00, and # — 0 we obtain

m(u) ~ P!

a,n

[x1, 2] U (M), u— 0.

Next, if we set x1(u) = — (ln—“))\ ,xo(u) = (1““) then

u

1 = —00, T = OO, Sik :—51, S; :Sl, ST* :—57 S;* =285.

Inserting (52), (53) into (51) and letting e — 0 leads to

71/(15)61/2 < 0

. 71'(’(1,) for_ —Cs(n
uh—>12<> T S’Paw[ S, 8]+ CyH,Se

By (50), we have

lim (% >Pf [-51,5] >0

Letting S1 — 00,5 — oo we obtain
f f
Pam(—oo, o0) € (0,00), w(u)~ Payn(—oo,oo)\I/(Mu), U — 00.

Case 3) n = 0: Note that

Na(u)
m(u) < IP’{ sup Xy (t)oy(t) > Mu} + Z IP’{ sup X, (t)ou(t) > Mu} =: Ji(u) + J2(u).
te((J-1(u)Ulp(u))NA(u)) k=N (u) tel (u)

k#-1,0
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By (41)
1
54 —— < o,(t) < < :
( ) —Fu,Jre(t) =7 ( ) a -Fu,fe(t) 14 u=? lnfSGA(u)[(l - E)f(’U’)\S) - 5}
holds for all t € A(u). Hence Lemma 4.1 implies
Ji(u) < P sup X, (t) > M, (1 +u™2 inf [(1—¢)f(uts) — E])
te[=p (u1)8, % (u=1)s] sEA(u)

IN

P { sup Yi.(t) > M, <1 +u™? inf [(1—e)f(uts) — 5]) }

te[=% (u1)S, % (u1)S] s€A(u)

~ Hal0,2(1 + &)/ S|w < <1+u 2 eigl(c )[(l—s)f(u/\s)—s])>
~ Hal0,2(1+ &)V 28U (M,) e~ (17w +e
~ U(M)e ™, u—s00, S0, e—0,

where w* = inf;c[y, 4, f(t). Furthermore, by Lemma 4.1, for any z > 0

N (u) No(u)
D) <> P{ sup Vi (t) > Gu e (k } > Hal0,(14+2) S8 (G (R))

telp(u)

k:Nl(u) k= Nl(u)
k#—1,0 k#—1,0
M0, (14 ) SR (M,) 3 -k 2
k=1
(55) < CoHaT(M,)Se S @M = 5 (W(M,)), u— 0o,z — 00, S — 0,

. m(u) —u
Jm O (M,) e,

Next, since f € C§([x1, z2]) there exists y(u) € A(u) satistying

u — 0.

lim y(u)u* =y € {z € [a1,22] : f(2) = ).

U— 00

Consequently, in view of (54)

%

m(u) P{X,(y(u)) > My}
P{Xu(y(w) > My(1+ [(1+¢)f(uy(u) +eJu™?)}
U (M, (14 (14 ) [f(uty(u) + elu?))

~ U (M) e W u— 00, £ =0,

%

which implies that

establishing the proof. O
Proof of Theorem 2.4: Clearly, for any u > 0

t€[0,T]

m(u) < ]P’{ sup X, (t) > Mu} < 7(u) + 71 (u),

where with D(u) := [0,T]\ (t, + A(u)),

m(u) = IP’{ sup X, (ty, +1t) > Mu}, m(u) == ]P’{ sup X, (t) > Mu} .

teA(u) teD(u)

Next, we derive an upper bound for 71 (u) which will finally imply that

(56) m(u) = o(m(u)), u— oo.
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Thus by A4, A5 and Piterbarg inequality (see e.g., [10][Theorem 8.1], [56][Theorem 3] and [35][Lemma 5.1])

m(u) = IP’{ sup X, (t)ou(t) >Mu}

teD(u)

IN

_ Inw)4
IP{ sup X, (t) > M, _Hclp(nuu)}

teD(u)

IN

q
CQTMS/W (Mu + Clp(lnu)>
u

(57)

o(¥ (M), u— 0.
Since A1’ implies A1, by Theorem 2.2 and A2, A3, we have

iy Jo, e /Wty i =0
(58) 7(w) ~ O (M) PL [r, ], it ne(0,00), u— o0

1, it n=0,

where the result of case n = 0 comes from the fact that f(t) > 0 for ¢ € [x1,z2], f(0) =0 and 0 € [z1, z2].
Consequently, it follows from (57) and (58) that (56) holds, and thus the proof is complete. O
Proof of Proposition 3.1: Without loss of generality we assume that g,, = g(to) = 0.

i) We present first the proof for ty € (0,T). Let A(u) = [—d(u), (u)], where §(u) = (%) v with some large ¢ > 1.
By (4) for u large enough and some small ¢ € (0, 1)

1-— v 1 _ -
(59) Ly (L=l _uzglt+te) | glttto)  (A+e)el

u ~ ou(t+to) u u u

holds for all t € [—6,6],0 > 0. It follows that

t€[0,T]

IM(u) < ]P’{ sup (X (t) +g(t)) > u} < TM(u) + Iy (u),
with
IT; (u) ;:P{ sup (X(#) +g() > U}
te([0,T\[to—0,t0+0]

and

M(u) := ]P’{ sup (X (t) +g(t)) > u} = ]P’{ sup  X(¥) L u} .

t€[to—0,t0+0] t€[to—0,t0+0] u—g(t)

By (59), we may further write

1 1
1 1
(60) lim  sup % —1|= lim  sup % 1| =0,
u=00 pe A(u) a0 | CUT Y U—00 4o A (y) 120 | CUT 2 [ul/TE[Y
and
1 1-— Inw)?
inf >4 Lot
te[—0,0\A(u) 0y (t + to) U
In addition, from (14) we have that
1—r(t t, 1
lim sup 7”(0“1‘,04-8)_1:07
U005 te A(u) (l|t - S|a
t#£s

and

sup E{X(t)— X(s))*} < sup (2 —2r(s,t)) < Cy |t —s|*
5,t€[to—0,t0+0] 5,t€[to—0,t0+0]
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hold when 6 is small enough. Therefore, by Theorem 2.4
Hoax [ eeltldt, if o <2y,
1 ‘o
() ~ &30 0 ) § P [y 00), i a =2y,
1, if a>2y.
Moreover, since g := Sup;eo, 1)\ [to—0,t0-+0] 9(t) < 0 We have
! 2
Mi(u) <P sup X(@t)>u—gop~Ha / ——dt u=V (u — gp) = o(Il(w)), u— o0,
€[0, T\ [to—0,t0-+6] o a(t)
hence the claims follow.
For to = 0 and tg = T, we just need to replace A(u) by A(u) = [0,d(u)] and A(u) = [—d(u), 0], respectively.
ii) Applying [10][Theorem 7.1] we obtain
B
P< sup (X(t)+g(t)>up=Pq sup X(t) >u,p ~ / (a(t)V*dtHqua W (u).
te[A,B] te[A,B] A

Set A, =[A—¢,B+¢]N[0,T] for some € > 0, then we have

t€[0,7] te[A,B]

P{ sup <X<t>+g<t>>>u} > P{ sup <X<t>+g<t>>>u},

te[0,T] teA. te[0,T\A.

P{ sup (X (t)+g(t)) > u} < P{sup (X(t)+g(t) > u} + ]P’{ sup (X (t) +g(t)) > u} .

Since g is a continuous function and g := sup,cp, 1\ A, g(t) <0

P{te[sup (X(t)+g(t))>u} < ]P’{te[sup X(t)>u—gs}

0,T\A. 0,T\A.

< Cou*U(u—g.)=o0 (uz/o‘\ll(u)) , u—o00,e—0.

Further, we have
B+e . )
P { sup (X (¢) + g(t)) > u} < P { sup X(t) > u} N/ (a(t))~dtHou~P(u)
teEA,L teA, A—e
B 1 2
N / (a(t))® dtHoud U(u), u— 00,e — 0,
A

Hence the claims follow. O

Proof of Proposition 3.3: We give the proof only for ¢, = 0. In this case, x € (0,00). By definition
P {supye 10y (X(6) + (1) > u |

P {supyeqor) (X (1) + (1)) > u

P{ul/'y(Tu —t9) < J)‘Tu < T} =

Set A(u) = [0,u=/7z]. For all u large

]P’{ sup (X(t)+g(t))>u}]P’{ sup X(t) 4 >u}.

teA(u) teA(u) u—g(t)

Denote X, (t) = X(t)u%g(t) and oy, (t) = a=erry- As in the proof of Proposition 3.1 i), by Theorem 2.2 we obtain
avHg Joetat, if o< 2y,
IP’{ sup (X(¢) +g(t)) > u} ~ulE3r Y (u) Océ‘falw [0, z], if a=2y,
teA(u) .
1, if a>2y.
Consequently, by Proposition 3.1 statement i), the results follow. (Il

Proof of Proposition 3.6: Clearly, for any v > 0

]P’{ sup (X (t)+g(t)) > u} = IE”{ sup X(t) ma(t) S 2= g(tu) } ’

t€[0,7] t€[0,77] My, (ty) o(tu)
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and A1’ is satisfied. By the continuity of o (t), lim, o0 t,, = to and o(tg) = 1, we have that for u large enough

— g(t,
o(ty) >0, and uzgtt) | u, U — 0.
oty
Set next

=/ Mu(t)
Xu(t) =X (¢t te |0, T
(0 X220 ve o),

)

which has standard deviation function o, (t) = and correlation function r,(s,t) = r(s,t) satisfying assump-

M (ta)

tions A2-A4. Further, X,(t) = X(t) implies A5. Hence the claims follow from Theorem 2.4. O

Proof of Proposition 3.8: For all u large

E{[X(tu+1t) = X(tu +5)*} = [o(tu + 1) — o(t, + 5)]?

(61) Lorltuttotuts) = 20 (ty + t)o(ty + 5)
Using that
E{[X(tu+t)— X(tu+3)]*} = E{X?(tu+3s)}(t—s)*+o((t—s)?),
ot +t) oty +8))* = 0 (tu+1)(t—9)* +o((t = 5)°),

we have, as u — 00

E{X"?(t,+t)} — 0"(tu +1)

ot ot rs) 5)2 +o((t — 5)?).

1—r(ty +t,t,+8) =

_ E{X"?(t)}-0"(t)

Since D(s,t) := 55 (5)o ) is continuous at (o, to), then setting D = D(tg,to) we obtain

1—r(t t,t
lim sup r(u+’;+s>—1’:0,
U0 e A (u),sE€A (u) DIt — s
t#s

which implies that A3 is satisfied. Next we suppose that o(t) > % for any t € [0, 7], since if we set By = {t € [0,T] :
o(t) < 1}, by Borell-TIS inequality

P { sup (X (t) + g(t)) > u} <exp | -2 (u — sup g¢g(t) — <_c1>2 -0 (q; (“_Q(tu)»

teFy te[0,7] o(ty)

as u — oo, where C; = E {Supte[(LT] X(t)} < 0. Further by (61)

E{(X(t)—X(s))*} <2—2r(t,s) <4 ( sup E{X"?(0)}(t—s)*— inf o”(0)(t— 5)2> ,

0€[0,T) 0€[0,T]
then A5 is satisfied. Consequently, the conditions of Proposition 3.6 are satisfied and hence the claim follows. ([l
Proof of Proposition 3.9: Without loss of generality we assume that g(¢) satisfies (4) with g(to) = 0.

First we present the proof for ¢ty € (0,T). Clearly, m, attains its maximum at the unique point ¢y. Further, we have

mu(to) 1 g(to +1)
1= 1—o(to+1) — =272
ma(to + 1) s LS AU e ey
Consequently, by (2) and (4)
My (to) B C oy
2 ——=1 blt — |t 1 1 t
(62) oty = 1 (1 + L) (o)), 60
(Inw)? 2/8" .
holds for all u large. Further, set A(u) = [—d(u),d(w)], where d(u) = (T) for some constant ¢ > 1 with

B* =min(B,2v), and let f(t) = b|t|° I s} + c|t| T{2y—p}. We have

( malto) 1) u? — f(u?/5t)

. T (b0 +E)
63 lim sup " =0
(63) U0 42 A (), 1£0 Fu?/578) + Ty prayy

By (2)

(61)  E{(X(t) - X(5)?} = E{(X(1)*} + E{(X(5))*} — 2B {X()X(5)} =2~ 2r(s,) < Cat — 5|
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holds for s,t € [tg — 0, to + 6], with § > 0 sufficiently small. By (62), for any & > 0

M., (to) (Inw)?
(65) leJrCQ(l*E)

holds for all ¢ € [—6,6] \ A(u). Further
I(u) = P{ sup  (X(#) +g(t) > U} < ]P’{ sup (X (t) +g(t)) > U} < T(u) + 1 (u),
te[to—0,t0+0) te[0,T]

with

tE([O,T]\[t()—@,to-‘r@])

Ty (u) := IP’{ sup (X(t)+g(t) > u} :

By(63), (2), (65), (64) which imply A2-A5 and Proposition 3.6, we have

Hoal!™ fucfo e fWdt,  if a < p*,

(66) () ~ uls =350 () PL gy, 00), if o = B*,
1, if a > p*.

In order to complete the proof it suffices to show that
I (u) = o(Il(u)).
Since 0g := max;e([o,7]\[to—0,t0+6]) @ (t) < 1, by the Borell-TIS inequality we have

(u— C3)2>

2
205

I (u) < IP’{ sup ])X(t) > U} < exp < = o(II(w)),

te([0,T\[to—0,to+6

where C3 =E {supte[oﬂ X(t)} < 0o0.

For the cases top = 0 and tg = T', we just need to replace A(u) by [0,0(u)] and [—d(u), 0], respectively. Hence the proof
is complete. (I
Proof of Proposition 3.10: i) We shall present the proof only for the case ¢ty € (0,7"). In this case, [z1,22] = R. By
definition, for any x € R

P{suprcio o) (X () + 9(8) > u}
P {supieio (X (1) + 9(1)) > uf

]P’{UA(TH —ty) < x|7—u < T} =

For u > 0 define

— My (ty, + 1)

Xult) = Xt + 0700 Ma(tu + 1)

My ()

»oou(t) =
As in the proof of Proposition 3.6, we obtain
_ u— g(tu)
P sup (X)) +g@)>up, =P sup Xu(t) > ———= 5,
t€[0,ty +u— z] te[0,ty+u— ] U(tu)
and A1’, A2-A5 are satisfied with A(u) = [~6,,u"*z]. Clearly, for any u > 0
u— g(tu)
m(u) <P sup Xu(t) > ————= ¢ <m(u) +m(u),
te[0,ty+u—>x) o(tu)
where
— g(ty —g(ty
m(u) =P sup Xu(t) > u=9(tu) , m(u)=P sup X, (t) > u=g(tu) .
teltu—6(u) tu+u—a] o(ty) £€[0,tu—5(w)] o(ty)
Applying Theorem 2.2 we have
i e O, i =
(67 )~ Pl (—o0ral, it 5 (0,00),
Supte(foow} e_f(t)7 if n= 0.
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In view of (57)

hence

]P’{ sup  (X() +g(t)) >u} ~7(u), u— o0

te[0,ty, +u—*x]
and thus the claim follows by (67) and Proposition 3.6.
ii) We give the proof of tg = T'. In this case x € (—00,0) implying
P {Subyefo.1su-2/m (X (D) + 9(8)) > u}

P {supycgo (X (1) + 9(t)) > u

P{uw* (ru =T) < |7, < T} _

a\2/8"
Set §, = (%) for some ¢ > 1 and let

Alw) =[-8, 0™ 2], ou(t) = :;ﬂ(ﬁtr))’
with
Ty Y T

For all u large, we have

m(u) SP{ sup  (X(2) +9(1)) >u} < F(U)+P{t€[sup (X(t) +9(1)) >U},

te[0,T+u—2/P" 2] 0,7—4.]
where
m(u) ::IP’{ sup (X(T+16)+g(T +1)) > u} :]P’{ sup X, (T +1)> u}
teA(u) teA(u)
As in the proof of Proposition 3.9 it follows that the Assumptions A2-A5 hold with A(u) = [—6,,u"%/# 2]. Hence

an application of Theorem 2.2 yields

a/* M, ffc e fMdt, if a < B*,
(68) () ~ulsTFT () P [, 00), if o = 5,
eI, if a > p*.

In view of (57)

P {te[sup (X(t) +g(t) > u} =P {te[sup Xu(t) > u} =0o(¥(u), u—oo

0,7—6,] 0,T—6,]
implying
P sup (X@®)+g@) >up ~m(u), u— .
te[0,T+u—2/8" z]
Consequently, the proof follows by (68) and Proposition 3.9. (]

Proof of Proposition 3.12: Set next A(t) = fot e~%dB(v) and define

¢

Ult)y=u+ c/ e dv — o A(t), t>0.
0

Since

e E {lA®”} = 55

implying sup,¢jo o0) E {|A(t)[} < oo, then by the martingale convergence theorem in [57] we have that U(oo) =

limy_y oo U (t) exists and is finite almost surely. Clearly, for any u > 0

te[0,00)

plu) = 1@{ inf ﬁ(t)<o}
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t
IP’{ sup (UA(t) - c/ e_‘s”dv> > u}
t€[0,00] 0

P< su oA Int 1—t2) ) >ub.
{te[ol,)l]< (25 - 5( )) }

The proof will follow by applying Proposition 3.6, hence we check next the assumptions therein for this specific model.

Below, we set Z(t) = 0 A(— 4 Int) with variance function given by

7% Int 0_2
Vi(t) = Var cr/ e %%dB(v) | = 2—6(1 —t), te][0,1].
0
We show next that for u sufficiently large, the function

uVz(t) _ %V B

M, (1) = 0<t<1,
®) Gu(t) 1+£(1 —t1/2) -
2
with Gy (t) == u+ §(1 — t2) attains its maximum at the unique point t, = (M‘;C) . In fact, we have
dM,(t) dvz(t)  wu Vz(t) / cu 1 u dV2(t) N
M, (t)]; := = : - _e) = Wt '
M () dt dt  Gu(t)  G2(t) ( 26 ) 2G2 (V. (1) | dt Gult) +V2() =5
uo?t=1/2 c C\ |1
= — = Z)tz].
(69) B OV, ) 5 (ur5)e]

2
Letting [M,(t)]: = 0, we get ¢, = (Tcﬂ) . By (69), [M,(t)]s > 0 for t € (0,t,) and [M,(t)]; <0 for ¢t € (ty, 1], so t,
is the unique maximum point of M, (t) over [0, 1]. Further

M, := M, (t,) =

7t 7 (1+40(1)), u— oo.

Voou? + dcu V26
2
We set §(u) = (M) for some ¢ > 1, and A(u) = [—ty, 6(u)]. Next we check the assumption A2. It follows that

M, _ [Gu u T )

3 (tu + ) Vz(tw))* = [Gu(tu)Vz(ty +1)]?
M, (t, +1) C Va(ty +1)Gu(ta)]

1%
Gulty +)Vz(ty) + Vz(ty +1)Gu(ty)]

We further write

[Gu(tu +1)Vz(ta)]? = [Gu(t)V: ( +1)]?
c c c 2 g2
= [(w+5) - 5va] G50 -t [(n+5) - 5VA] 50—t
{er e D T v -

2 2

:(u+g)z%tu—tu)—2(u+5)2%<1—tu>m<m—m>
=510+ 5) - ()| i v
2 (v + X0) viFm - iy

Since for any t € A(u)

2

\/02(1—15 — (1) S Va(te +1) </, u+t S — S\/te +0(u) < Gulty +1) <u+ =
2% u u)) = Vz(ly > 267“ S s u U) > Gylly Su 5’

we have for all large u

Valtu +1Gu(t)[Gultu + OVa(t) + Va(tu + G (t)] < & (u+ §>2

and

Valtu + 0Gu(t)[Cultu + OVa(0) + Valtu + 0Gu(t)] > %0~ 1y —0(w)) (u+ & = SV/a+ 5(u))2
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Thus as u — oo

My /My (t, +1) — 1 %

nf b —1> i
in
teA(u) t£0 | . . 2 , 1 F2 . 2 “(ut9)?
21V u-t + 52 3 u 2 )2 ou

where we used the fact that for t € A(u)

(Vt+ty (, [t+ )
Furthermore, since

0 < /t+t f \/t+(5u)2+5u 1/t+(6 )2 \/t"‘t

- t+(5)2 < N T Vit + Vi

ou

2

[ 2
_ Guw)? ty < Gu)z — tu _ (1 N £>2 1
(VIF T+ VIt + o +VEF ) Vi VA ou

we have as u — 0o

u+5u
My /My (ty +1) — 1 ST (Vi e = Vi)
sup 5 -1 < 5 —1
A(u),t#£0 1 c2 c
teAlu ;(y/’th‘l’g;g) u=2 5( tJr(éu)z*E)
2
2 2c
+ =< 2
(71) < 11+ 5) —1) —1-0
(u+$)?—u du
Consequently, (70) and (71) imply
My /M, (t, +1t) —1
(72) lim  sup /Mot +1) 5 — 1] =0.
uU—r 00 M
tEA(u),t#0 % ( / 2t—|— 2 ) y2
Since for 0 < ¢ <t < 1, the correlation function of Z(t) equals
— 1 _5v Int’ _
T(t t,)_E{(afO 25 | &dB fO 35 5vdB( ))} B - » P
’ \/%(1_t)\/%(1_t/) VA \/1—t’(\/1—t'+\/1—t)’
we have
1—r(ty +t,t, +1t) 1‘ 2
sup - = sup -
£t/ €A (u) b/t slt =] trenutze | VI =t =t (VT =t =ty + VT =t —t,)
1
(73) < e — 1= 0, u— oo
1= (e — (B

Further, for some small 6 € (0,1), we obtain (set below Z(t) = VZZ((tt)))
(74) E(Z(t) — Z(t))* =2 = 2r(t,t) < Cy|t — 1|

for t,t’ € [0,0]. For all u large

where
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Moreover, for all u large

2

1 [Gu)Vz(t))? = [Gut)V2 () 55+ Fu)(VE— Vi)
M,(t) M, ~ 2uV 3 (ty)Gu(tu 2u[% (1 — t)]3/2[u + $(1 — V)]
(75) > Cz(\/f—\/ﬂ)z S Co6?(u) ch(lnu)Z(I

= 2 u2
(Vo) +tu + VE)
holds for any ¢ € [t,, + d(u), 0], therefore

u

inf
te[tulﬁs(u),e] M,(t) —
The above inequality combined with (72), (73), (74) and Proposition 3.6 yields

Inw)4
1+C3(n1;) .
U

2

1
1) ~ Pl [ o0 ) w (3BT 100) e

Finally, since

o2

sup V2(t) < 2—(1 —0), and E{ sup Z(t)} < Cy < o0,
te[6,1] te[6,1]

[« %)

by Borell-TIS inequality

Il u su u ex —M =0 u u oo
. )<P{te[91,)1]Z(t)> }< p< 02(1—9)> (). = ec,

which establishes the proof. Next, we consider that
2 ]P’{inf it a2 oo U (1) < 0}
]P’{u2<625”< < >>§x7u<oo} elmy bt N)’ )
ou+c P {infte[om) U(t) < o}
P {SUPte[o,tquu—%] (UA(—2—15 Int) — £(1— t%)) > u}
P{SUPte[o,u (O'A(*%é Int) — $(1— t%)) > u}

=P{u?(r; —t,) < x|y <1},

where

T ={te€[0,1] :JA(—%lnt) - g(l —t%) > u}.

The proof follows by Proposition 3.10 i). O

5. APPENDIX

Proof of (11): Let £(¢),t € R be a centered stationary Gaussian process with unit variance and correlation function

r satisfying
1—r(t) ~alt]*, t =0, a>0, ac(0,2].

In view of by Theorem 2.2, for —oo < 1 < 23 < 00 and f € C§([z1,x2]) we have

IP’{ sup 5(75)) > u} ~ \I/(u)Pi,a[xhxg], u — 00

te[u—2/ogy,u—2/ag,) 1+ u72f(u2/at

and for any y € R

e
P{te[ _2/”I1 u—Q/Qo;z] 14+u— zf(u2/at) > u}

I
~

te[u=2/(z1—y),u=2/2(za—y)] 1+ u_2f(y + u?/(xt)
(1+u2f(y )))pfy(t)*f(y) (21— y, 22 — ]

u(l +u2f(y))}

2

W (u(
~¥(

U)Pfy (®) (1 —y, 22 —y].
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Zu(t) =

E(t+yu ) (1 +u2f(y))

14+ u=2f(y + u?/t)

and denote its variance function by 6% (t). Then

ie.,

(7t

lim

)-

)

teu ¥ (x

(1+u 2f(y 4+ u?t) 1) .

1+u=2f(y)

sup

1= y) (22— y)]

fly+u?t) — f(y)
L+u2f(y)

1 2
(w1 o

U0 pelu—2/a (21 —y),u—2/ (zo—y)] f(y + u2/at) —

Consequently, we have

Further, letting x5 — oo yields ng,a[:m,

P(]:,a[zla ‘TQ]

OO) = Pi?a[xl -,

f)

= Pligler —y, 22 — y).

00). This completes the proof.

Proof of Example 3.4: We have to = 0,7 = 1, g,, = 0. Then by Proposition 3.1 statement 1)

IP’{ max (X(t) —ct) >

t€[0,T)

Since for all u large

]P’{uTu <z

TUST}:

S

ctat/eu?/ =1, a € (0,2),
Pelal0, 00),

o = 2.

P {supiefo, 10 (X (1) — (1)) > u}

P {sup,cjo.n) (X (6) — g(t)) > u

then using Proposition 3.3, we obtain for x € (0, 00)

Proof of Example 3.5: We have that X (t) =

for any ¢t > 0. Since g(t) = csin (2

Tx(t,t + h) =

JE e tat
]P{UTU <z, < T} ~ 'f,;gct Eoc;cit,
Per, (0,000
Ba(t)
Var(Ba(t))
1"+t + A" —h]" o
a/2 e |h|
2[t(t+ h)| 2t

L)t € [T, (n + 1)T) attains its maximum at t; = T

a € (0,2),

a = 2.

is locally stationary with correlation function

o(|n*), h—0

4]“) ,7 <mn and

g(t)f6720<T) [t — ;2L +o(1), t =5, j<n

the claim follows by applying Remarks 3.2 statement i).

Proof of Example 3.11: First note that the variance function of X (t) is given by o?(t) =

£/ s(1—t)

function is given by r(t,s) =

Case 1) The proof of (22): Clearly, m,(t) :=

(0,1) which converges to tg =

(76)

Setting A(u) = [

(77)

(u+ ct)

(Inwu)? (ln w)?

u )

2t (1 —ty,) —

(u+ct)?t (1 —t,) —

attains its maximum over [0, 1] at the unique point #,

. Furthermore, we have

tu(1—ty) — (u+cty)/t(1 — 1)

Vi 0Ss <<l
Vi—t)
14ct/u
3 as u — oo, and mj, := my(t,) = ———
2 1+c/u
u—+ct ty (1 —ty) _ (utet)
t(l1—t) utcty

t(1 —¢)(u+ cty)

(u+ cty)*t(1 —t)

t(1 —t)(u+ cty)|

(u+ cty)

21—t

u(u+c)

(u+ ct)/tu(1 — ty) + (u+ cty)/t(1 = 1)]

] and (t, + A(u)) C [0, 3] for all u large, we have

wP[(ty, —t) — (t — 17
(t —tu)?

)] 4 2cutty (t — ty) + ity (t —ty)

(‘+2u

O

t(1 — ) and correlation

€
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and

ud

7—11*1/2 2w+ )21 — " 52
2(u+g) < 2u+ et - )] < 5 ( +2)

for all t € (t, + A(uw)). Then

N | =

* 1 y 1
(78) lim  sup mu/mu(tu2—|— 2 —1|= lim  sup mu/mu(tz _‘17;) - 1’ =0.
U0 4 A (1), ££0 2t U0 4 A () ££0 2(ut)?u
Furthermore, since
1—-t 1—t) —/t(1— t—
r(t,s) = l ):1+\/s( ) — VI s)zl— s ,
t(1—s) t(1—s) VEL = 8)(V/s(L—t) + /t(1—s))
and
5 S VI (/00 + Vil —9) < 5+
2w~ 5 5 5= 2w
for all s <t, s,t € (t, + A(u)), we have
lim  sup 1—r(tu+t,tu+s)_1 =0.
U=00 ¢ seA(u) 2‘t - S|
t#s
Next for some small 6 € (0, 1), we have
— — |t — s
E{(X(t) - X(5))*} =2(1 —r(t,s)) < T o2
2

holds for all s,¢ € [§ — 6, 2 + 6]. Moreover, by (76), (77) and

2(u + ct)?[t(1 —t)] <2 [u+c <; +9> 2 <; +0>2

for all t € [3 — 6, 2 + 6], we have that for any t € [+ — 0,2 + 6]\ (t, + A(u))
)

my = (Inw)2
ma() 7 2ut o3 + OG0
and further
my (Inw)? 1 1
u_ > ——0,- A(u)).
(79) Ok +Ci—~—, te[2 9,2+9]\(tu+ (u))

Consequently, by Proposition 3.6

P sup  (X(t)—ct)>up~ 87—[1u/ e 8 dt T (2 cu + uQ) ~ e~ 2w teu)
tE[to—e,to-‘rQ] —00

In addition, since oy := maxc(o,1)/[to—0,t0+0) O(t) < o(to) = %, by Borell-TIS inequality

(U —-E {SuptE[O,l] X(t)}>2

P sup (X@t)—ct)y>up < P sup X(t)y>up <exp| - 5
t€[0,1)\[to—0,t0+0] t€[0,1)\[to—0,t0+0] 205

(80) = 0(672(“2““)).

Thus, by the fact that
P{ sup (X(t)—ct)>u} ZIF’{ sup (X(t)—ct)>u}
te[O,l] te[to—a,to-‘re]
and
]P’{sup (X(t)—ct)>u}<]P’{ sup (X(t)—ct)>u}+]P’{ sup (X(t)—ct)>u},
te[0,1] t€[to—0,to+0) te[0,1]\[to—0,to+6]

we conclude that

]P’{ sup (X(t) —ct) > u} 2w Feu),
te(0,1]
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For any u > 0

} P {suPrcio 1, 410 (X(2) = t) > u}
T <1p=
P {supte[m] (X () —ct) > u}

and by Theorem 2.2

P sup (X@t)—ct)y>up~ 87—[1u/ e 8 gt (2 cu + u2> .

te [ty — 2% ¢ fu—1a]

The above combined with (79) and (80) implies that as u — oo

P sup  (X(t)—ct)>up~P sup (X({t)—ct) >up ~ 8H1u/ e =8 (2 cu + u2> .
tE[O,tu—&-u*lx] tE[tu—W,tu—&-uflx] —00
Consequently,

[* e85 dt

]P’{u(ru— Y )Sm
c+ 2u

Case 2) The proof of (23): We have t,, = % € (0, %) which converge to to = % as u — co. Since

by Proposition 3.6

c/4 ) )
IP{ sup (X(t) —ct) > u} ~ SHlu/ e 8 dtv (2\/ cu + u2) ~ B(c)e 2 Feuw)

te[0,1/2] —o0

~ ®(4z)/D(c), = € (—o0,c/4].

u =

As for the proof of Case 1) we obtain further
1 } [f e dt

Pu - <z < =
Tu c+2u/) — T 2 fc/46—8t2dt

Case 3) The proof of (24): We have that o(t) attains its maximum over [0, 1] at the unique point to = %, which is also

the unique maximum point of § — ¢ |t — % ,t €]0,1]. Furthermore,

o(t) = W‘ﬂ“é-@—;f,t%;

and

1
r(t,s) ~1—=2|t —s|, s,t— 7

By Proposition 3.9 as u — oo

p{ sup (X(t)+§c

1 oo
t— ') >up o~ 87-[1u/ ¢ (Bl +delt]) gy (2u—c) ~ 2\11(0)672(“27“‘)
tef0,1] 2 —o0

and in view of Proposition 3.10 ii)

- U — 00.

f:r 6—(8|t|2+4c|t\)dt
< ~ =
Tu S 1} T e G gz
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