
 1 

Circadian regulation of renal function 
 
 

Dmitri FIRSOV1  and Olivier Bonny1,2 

 
 
 

1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, 

Switzerland 

2 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 

 
 
 
 
 
 
 

 
 
to whom correspondence should be addressed: 

Dmitri FIRSOV 

Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 

1005 Lausanne, Switzerland  

Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: dmitri.firsov@unil.ch 

and 

Olivier BONNY 

Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 

1005 Lausanne, Switzerland  

Phone: ++ 41-216925417  Fax: ++ 41-216925355 e-mail: olivier.bonny@unil.ch 

 
 
 
 
 
 
 



 2 

Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 

24-hour periodicity has been well documented for several important determinants of urine 

formation, including renal blood flow (RBF), glomerular filtration (GFR), tubular reabsorption 

and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as 

a risk factor for hypertension, polyuria and other diseases and may contribute to renal fibrosis. 

The origin of these rhythms has been attributed to the reactive response of the kidney to 

circadian changes in volume and/or in the composition of extracellular fluids which are 

entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown 

that most of the renal excretory rhythms persist for long periods of time even in the absence of 

periodic environmental cues. These observations led to the hypothesis of the existence of a 

self-sustained mechanism enabling the kidney to anticipate various predictable circadian 

challenges to homeostasis. The molecular basis of this mechanism remained unknown until the 

recent discovery of the mammalian circadian clock made of a system of autoregulatory 

transcriptional/translational feedback loops which have been found in all tissues studied, 

including the kidney. Here, we present a review of the growing evidence demonstrating the 

involvement of the molecular clock in the generation of renal excretory rhythms. 



 3 

Circadian rhythms in renal function have been studied since the middle of the 19th century. In 

1861, Edward Smith, one of the pioneers in circadian physiology, published the first 

documented evidence for the existence of circadian oscillations in renal excretion of urea and 

water (1) (for an excellent historical review tracing the early stages in the development of the   

experimental chronobiology see (2)). Later studies showed that sodium, potassium, chloride 

and other major electrolytes also follow circadian excretory patterns. Because most of the 

excretory rhythms are maintained in kidney transplant patients (3), it was concluded that either 

humoral factors or yet unknown intrinsic renal mechanisms (or both) are involved in their 

generation. Analysis of circulating factors revealed that blood levels of vasopressin, 

aldosterone and many other hormones responsible for maintaining water and electrolyte 

balance exhibit circadian oscillations (4, 5). Until recently, it was thought that these hormonal 

rhythms are entrained principally by circadian changes in the volume and/or composition of 

extracellular fluids produced by the rest/activity and feeding/fasting cycles. The evidence for 

the existence of an intrinsic renal mechanism remained elusive because of the difficulty in 

dissociating this mechanism from the effects of circadian circulating factors. The discovery of 

the circadian timing system allowed major advance in the understanding of the origin of renal 

excretory rhythms. Several recent studies have clearly demonstrated that at least a part of the 

hormonal rhythms can be attributed to a self-sustained mechanism driven by the circadian 

clock at the site of synthesis and/or release of these hormones (see below). It was also shown 

that the kidney itself possesses an intrinsic circadian clock potentially involved in 

transcriptional/translational control of thousands of genes of the renal transcriptome. 

 

CIRCADIAN CLOCK   

The great majority of physiological processes run with a periodicity of ~ 24 hours. The ~ 24 

hour period length gave rise to the name circadian which is composed of two latin words circa 
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(about) and dies (day). Functionally, circadian rhythms are thought to provide an important 

advantage by allowing the organism to anticipate the upcoming environmental changes. The 

molecular basis of circadian rhythms in mammals was uncovered at the end of the 20th century. 

It was shown that the mammalian circadian clock is a hierarchically organized system of 

individual cellular oscillators orchestrated by a self-sustained central pacemaker residing in the 

suprachiasmatic nucleus (SCN) of the hypothalamus (reviewed in (6)). The SCN pacemaker is 

synchronized with the external world primarily by the light/dark cycle. Its activity imposes the 

feeding pattern through the control of the rest/activity cycle. The feeding time is thought to be 

the dominant time cue for resetting circadian oscillators in peripheral tissues. However, the 

latter are capable of sustaining circadian rhythms for long periods of time in the absence of the 

SCN synchronization, thus demonstrating a high degree of autonomy. Central and peripheral 

oscillators share a similar core clock based on a system of autoregulatory 

transcriptional/translational feedback loops composed of the transcriptional activators Clock, 

BmalI and Npas2, and of the feedback repressors Cry1, Cry2, Per1 and Per2 (Figure 1). 

Circadian oscillations of the core clock entrain circadian rhythms in expression of output genes 

which are, in turn, translating these transcriptional oscillations into tissue-specific functional 

rhythms. Current estimates indicate that up to 10% of all genes are under the control of 

circadian transcriptional factors.  

 

ROLE OF MOLECULAR CLOCK IN THE HOMEOSTATIC CONTROL OF WATER AND 

ELECTROLYTE BALANCE BY THE KIDNEY. 

Water  It is well established that the rate of urine formation by the kidney follows a well-

defined circadian rhythm with a maximum excretion which takes place during the activity 

phase. This excretory pattern has been shown to persist for several days when activity/feeding 

cycles are either completely reversed or when water and meals are taken at regular intervals 
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throughout the 24-hour period (7). Upon water restriction the volume of excreted water is 

rapidly decreased and cycles disappear, thereby reflecting domination of the reactive 

mechanism of water conservation over anticipatory circadian functional rhythms. Urinary 

output of water depends on several parameters including circulating vasopressin levels, 

variations in the osmotic pressure along the cortico-medullary axis, the renal blood flow (RBF) 

and the glomerular filtration rate (GFR). Hence, self-sustained circadian oscillation of one of 

these factors or their combinations would be capable of entraining circadian rhythms in water 

diuresis. Circadian variations in both, RBF and GFR are well documented. Moreover, it has 

been demonstrated that both, RBF and GFR are oscillating in-phase with rhythms of urinary 

excretion of water and several major electrolytes (8). However, the self-sustained rhythmicity 

has only been shown for the GFR (9). Whether the cortico-medullary osmotic gradient is 

following a circadian profile remains unknown. Data concerning circadian variations in blood 

vasopressin concentration remain limited due, in part, to the low circulating levels of this 

hormone. A few available data indicate that maximal vasopressin levels are reached at the 

beginning of the activity phase (10). Vasopressin is synthesized in the paraventricular (PVN), 

supraoptic (SON) and suprachiasmatic (SCN) nuclei of hypothalamus. Significant circadian 

changes in vasopressin mRNA and protein abundance have only been detected in the SCN, in 

which about one-third of neurons synthesize this hormone (11, 12). The SCN-derived 

vasopressin is considered one of the major rhythmic outputs of the central pacemaker which is 

involved, among other functions, in the control of hypothalamo-pituitary axis. Hence, it was 

proposed that oscillations in the SCN-derived vasopressin might be involved in the circadian 

release of this hormone from the posterior pituitary (13). This interesting theory, however, 

requires further investigation.  

The involvement of the molecular clock in renal water handling was recently tested in 

Clock-deficient mice. Zuber et al., have demonstrated that several key genes regulating water 
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reabsorption in the distal nephron and the collecting duct exhibit circadian patterns of mRNA 

expression (14). Expression levels of vasopressin type 2 receptor (V2R) and the aquaporin-2 

(aqp-2) and aquaporin-4 (aqp-4) water channels have been shown to follow temporarily 

synchronized circadian oscillations with the maximal expression which takes place in the 

second half of the activity phase. The suppression of Clock leads to significant changes in the 

expression levels of these transcripts. The phenotype analysis of Clock-deficient mice revealed 

an impaired capacity of the kidney to concentrate urine, a condition called as a partial diabetes 

insipidus. Collectively, this study provided the first direct evidence of the role of circadian 

timing system in water homeostasis. 

 

Sodium As mentioned above, urinary excretory rhythms of sodium, potassium, chloride 

and other major electrolytes parallel both, the RBF and the GFR oscillations. However, these 

rhythms differ significantly in their amplitudes. Indeed, both RBF and GFR rhythms show a 

low amplitude of ~ 20% of the daily mean (9), whereas the circadian amplitude of sodium 

excretion, for instance, is several-fold greater. This difference in amplitudes clearly indicates 

that the tubular component plays a dominant role. Doi et al., have recently shown that the 

circadian clock controls renal sodium reabsorption via a mechanism modulating aldosterone 

production by the adrenal glands (15). In this study, double knockout of the circadian 

repressors Cry1 and Cry2 has been used to demonstrate that the permanent activation of the 

circadian clock results in the significantly increased plasma aldosterone levels. The analysis of 

transcriptional profiles in adrenal glands of Cry1/Cry2 knockout mice allowed the 

identification of a molecular mechanism underlying this increase in aldosterone production. It 

was shown that Cry1/Cry2 knockout mice exhibit chronic overexpression of type VI 3β-

hydroxyl-steroid dehydrogenase (Hsd3b6), one of the key enzymes in adrenal aldosterone 

biosynthesis in mice. In vitro promoter analysis has shown that expression of Hsd3b6 could be 
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directly regulated by circadian transcriptional factors. Under a standard salt diet the Cry1/Cry 

deficient mice exhibit normal blood pressure. However, already on the second day of the high 

salt intake there was a significant increase in arterial pressure, suggesting salt-sensitive 

hypertension. Analysis of human genome revealed Hsd3b1 as a functional counterpart of 

mouse Hsd3b6, thereby identifying this gene as a new candidate for salt-sensitive hypertension 

in humans. Interestingly, Zuber et al, have shown that mice with the whole-body deletion of 

the circadian transcriptional activator Clock exhibit decreased expression of the α subunit of 

the epithelial sodium channel (αENaC), a modified rhythm of urinary sodium excretion and a 

significantly reduced blood pressure (14). Collectively, these two studies have demonstrated 

that the activation level of the circadian clock results either in salt-sensitive hypertension, when 

the molecular clock is permanently active, or in decreased blood pressure, when the molecular 

clock is downregulated (Figure 2). Recently, Gumz et al., proposed that the circadian repressor 

Per1 can generate the sodium excretory rhythms via a direct control of αENaC promoter (16). 

However, the molecular mechanism of this control remains unclear.  

 The predictive circadian regulation of aldosterone production has a clear physiological 

meaning. The plasma aldosterone levels start to rise several hours before the beginning of the 

activity phase and remain elevated for ~ 12 hours. Aldosterone is a steroid hormone which 

requires a delay of several hours before its genomic effects become apparent. Thus, the rhythm 

of the aldosterone’s effect on sodium reabsorption in the kidney could be responsible for the 

synchronous circadian variations in arterial blood pressure. It should be noted, however, that 

the sodium excretion rhythms persists in adrenalectomized rats, thereby indicating that others 

as yet uncharacterized factors might be involved (17, 18). 

 

Potassium The urinary excretion of potassium is characterized by the highly stable 

circadian oscillations that have been shown to persist for more than a week when food intake, 
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posture and activity are evenly distributed throughout day and night (19). Upon fasting, 

however, these rhythms demonstrate a major difference from water and sodium excretory 

oscillations. Indeed, potassium excretory rhythms are maintained for at least 24 hours upon 

fasting and the amount of potassium excreted in the urine exceeds that in the extracellular fluid 

and in the gut. This suggests that (i) potassium flux between the intracellular and extracellular 

compartments is controlled by a circadian mechanism and (ii) circadian timing system could 

play an important role in the overall potassium balance. Moore-Ede et al., have shown that 

renal capacity to excrete potassium is significantly lower during the inactivity phase (20). 

Steele et al., have demonstrated that the circadian pattern of urinary potassium excretion is 

mostly determined by circadian changes in the intratubular potassium concentration in the 

cortical collecting duct (CCD) and to a significantly lesser extent by variations in the urine 

flow rate (21). These observations indicate that potassium secretion in the distal nephron and 

the collecting duct follows a circadian pattern. Experiments with adrenalectomized rats 

receiving or not receiving aldosterone and/or dexamethasone replacement have shown that 

circadian rhythms of urinary potassium excretion remain unchanged (19). The existence of 

other cyclic circulating factors controlling potassium secretion or participation of the intrinsic 

renal clock in generation of these rhythms remains to be determined.  

 

Calcium  Circadian variations of plasma calcium, urinary calcium and of regulators of 

calcium homeostasis such as calcitonine, parathormone (PTH) or vitamin D have been 

described in humans and other species (22, 23). Similarly, circadian rhythms have been 

described for bone turnover markers (hydroxyproline, C-terminal telopeptide of type I 

collagen, and osteocalcin) (24-26). However, the physiological relevance of calcium cycling 

remains elusive. Alterations of circadian rhythms may increase renal stone formation (27-30). 

Intestinal calcium absorption could differ depending on the time food is provided (31). But the 
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most spectacular effects of circadian rhythms on mineral metabolism have been described for 

the bone (32) and have been attributed to the circadian rhythm of the parathormone (PTH). 

PTH has a very short half-life; it is secreted in a pulsatile manner at a basal rate and regulates 

plasma calcium concentrations. In normal humans, PTH has a circadian rhythm with a peak 

between 01:00 and 03:00am and a trough occurring at approximately 10:00-11:00am and 

which has been shown to be independent of sleep/wake or light/dark cycles, meals or posture 

(22, 23). How circadian variations of PTH levels affect bone turnover is not yet well 

understood. Experiments performed on mice perfused continuously with PTH have shown a 

decrease in bone mass, while mice stimulated daily by pulses of PTH presented a gain in their 

bone mass (33). Similar observations have been made in humans. On one hand, high 

concentrations of PTH and loss of circadian rhythm is associated with decreased bone mass in 

primary hyperparathyroidism (34). On the other hand, recombinant 1-34 amino terminal 

fragment of PTH (teriparatide) is an effective treatment for osteoporosis when injected once a 

day (35, 36). Overall, circadian variations have been described for all the different players in 

calcium metabolism, but the underlying specific molecular mechanisms remain largely 

unknown. 

 

Magnesium  Several studies have shown circadian changes in the urinary excretion of 

magnesium (37-39), but to our knowledge, the molecular events involved in the changes in the 

expression of the magnesium transporters still need to be unravelled. 

 

Phosphate  Variation in the urinary excretion of phosphate is expected in relation to food 

intake. However, even in constant conditions (food intake taken as hourly snacks, constant 

light and rest) important variations in phosphate excretion have been observed (37, 40). This 

data suggests that phosphate excretion is controlled by an endogenous mechanism independent 
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of food intake or other systemic cues. Bielesz and colleagues have explored the putative 

regulation of one of the main phosphate-sodium co-transporters NaPi-IIa by such a mechanism 

in the rat kidney and have shown that the abundance of NaPi-IIa was unchanged and that the 

brush border NaPi-IIa activity was only slightly changed over 24 hours (41). However, whether 

the molecular clock is involved in the control of the endogenous circadian rhythm of phosphate 

excretion is unknown so far. 

 

Acid-base  Acid-base effectors and regulators are highly dependent on circadian oscillators. 

In humans, urine pH is lower during the night with a trough around 4am (42). Several acid-

base transporters have been shown to have circadian variations of the expression levels and 

might be involved in urinary pH changes. The sodium/proton exchanger 3 (NHE3/SLC9A3) 

displays a strong 24-hour oscillation of its renal mRNA expression and its promoter contains 

an E-Box that can be regulated by the Bmal1-Clock complex (43). Oscillating expression of 

the V-ATPase might also contribute to the circadian variations of urinary pH, in comparison to 

what has been found in the vas deferens of the moth (44). However, the contributing role of the 

molecular clock to this phenomenon and its physiological function remain to be established. 

 

Erythropoietin (EPO)  Erythropoietin levels show a robust circadian rhythm (45). 

More than 10 times variation in amplitude has been observed in constant darkness and 

normoxia for mice kidney EPO mRNA over 24 hours and an E-Box has been identified in the 

promoter region of the EPO gene and has been shown to regulate EPO expression (46). 

However, the significance of the 24h variation of EPO levels is not known. It is noteworthy 

that EPO administration in normal and dialysed patients could be influenced by the circadian 

rhythm (47) and deserves further chronopharmacological studies. 
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CLINICAL RELEVANCE OF RENAL EXCRETORY RHYTHMS  

The dysfunction of the circadian clock or its misalignment with behavioural cycles has been 

implicated in pathogenesis of many diseases. For instance, long-term night work is associated 

with a significant increase in the risk of breast cancer (48), metabolic syndrome (49) and 

ischemic heart disease (50). In the individuals with essential hypertension, abnormal rhythm of 

sodium reabsorption by the kidney has been associated with a blunted decrease in nighttime 

blood pressure, a condition characterized by a significantly increased risk of end organ damage 

(51). The abnormal rhythm of natriuresis is also associated with nocturnal polyuria in chronic 

kidney disease and in the elderly and in children with enuresis (52). In hamsters, it has been 

shown that a point mutation in the circadian regulatory gene, casein kinase-1ε, leads to a 

disorganization of the circadian clock accompanied by cardiomyopathy, extensive cardiac and 

renal fibrosis and renal tubular dilation (53). As discussed above, disturbance in renal rhythms 

may influence calciuria, phosphaturia, natriuria, urinary pH and diuresis, but also other risk 

factors for stone formation, including citrate and oxalate urinary excretion (28, 29).  

 

PERSPECTIVES  

To what extent the intrinsic renal clock is contributing to the generation of renal rhythms still 

remains to be evaluated. Efforts will be needed to addressing this quest in two ways. First, 

mice models carrying kidney-specific deletion of the different elements of the molecular clock 

will allow the direct exploration of the role of the clock function in the cells of the whole 

kidney or in specific segments. These experiments might be coupled with the silencing of 

systemic cues by using adrenalectomized or parathyroidectomized mice whenever possible. 

Second, new genetic tools will contribute to the evaluation of the clock system in the renal 

function, especially in humans, provided that a thorough circadian phenotyping has been 
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performed. Undoubtedly, renal circadian predictive physiology and renal pathophysiology are 

entering a new promising era. 
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Figure legends: 

 

Figure 1. Schematic presentation of circadian molecular clock. 

 

Figure 2. Transcriptional activity of circadian clock controls arterial blood pressure in mice: its 

constitutive activation leads to salt-sensitive hypertension whereas its suppression results in 

decreased blood pressure.   
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