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Abstract. Selectins play a critical role in initiating leu- 
kocyte binding to vascular endothelium. In addition, 
in vitro experiments have shown that neutrophils use 
L-selectin to roll on adherent neutrophils, suggesting 
that they express a nonvascular L-selectin ligand. Using 
a L-selectin/IgM heavy chain (Ix) chimeric protein as an 
immunocytological probe, we show here that L-selectin 
can bind to neutrophils, monocytes, CD34 ÷ hematopoi- 
etic progenitors, and HL-60 and KG-1 myeloid cells. 
The interaction between L-selectin and teukocytes was 
protease sensitive and calcium dependent, and abol- 
ished by cell treatment with neuraminidase, chlorate, 
or O-sialoglycoprotein endopeptidase. These results 
revealed common features between leukocyte L-selec- 
tin ligand and the mucin-like P-selectin glycoprotein 
ligand 1 (PSGL-1), which mediates neutrophil rolling 
on P- and E-selectin. The possibility that PSGL-1 could 
be a ligand for L-selectin was further supported by the 
ability of P-selectin/Ix chimera to inhibit L-selectin/Ix 

binding to leukocytes and by the complete inhibition of 
both selectin interactions with myeloid cells treated 
with mocarhagin, a cobra venom metalloproteinase 
that cleaves the amino terminus of PSGL-1 at Tyr-51. 
Finally, the abrogation of L- and P-selectin binding to 
myeloid cells treated with a polyclonal antibody, raised 
against a peptide corresponding to the amino acid resi- 
dues 42-56 of PSGL-1, indicated that L- and P-selectin 
interact with a domain located at the amino-terminal 
end of PSGL-1. The ability of the anti-PSGL-1 mAb 
PL-1 to inhibit L- and P-selectin binding to KG-1 cells 
further supported that possibility. Thus, apart from be- 
ing involved in neutrophil rolling on P- and E-selectin, 
PSGL-1 also plays a critical role in mediating neutro- 
phil attachment to adherent neutrophils. Interaction 
between L-selectin and PSGL-1 may be of major im- 
portance for increasing leukocyte recruitment at in- 
flammatory sites. 

S 
EVERAL adhesion molecules are involved in the regu- 

lation of leukocyte homing into tissues. Selectins 
initiate neutrophil rolling along vascular endothe- 

lium at sites of inflammation, whereas integrins and immu- 
noglobulin-like adhesion molecules have a more impor- 
tant role in subsequent steps of leukocyte migration into 
tissues (2, 10, 24, 25, 53, 59, 65-67). L-selectin is expressed 
by most circulating leukocytes and hematopoietic progeni- 
tors, whereas E-selectin is expressed by endothelium acti- 
vated by cytokines or endotoxin (8, 9, 29, 30). P-selectin is 
contained in intracytoplasmic granules and is rapidly 
translocated to platelet or endothelial surfaces after cell 
exposure to thrombin or histamine (14, 19, 28, 31, 32). 

The amino-terminal lectin domain of selectins interacts 
in a calcium-dependent reaction with a large variety of 
carbohydrate glycoconjugates (1, 3, 20, 33, 45, 48, 53, 56, 
57, 61, 64). Some oligosaccharides, such as the tetrasaccha- 
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ride sialyl Lewis x (sLeX) 1, bind to the three selectins, 
whereas other carbohydrates react only with one or two of 
them (12, 64). Several biological ligands for selectins have 
now been identified (7, 20, 33, 45, 53), most of them being 
mucin-like glycoproteins with many serine or threonine 
residues that are potential sites for attachment of O-linked 
glycans. Sialylation and fucosylation are essential for the 
function of these sialomucins. Sulfation was also shown to 
be required for the interaction of L-selectin with endothe- 
lial ligands such as CD34 and GlyCAM-1 (6, 15, 16, 18, 21) 
or for P-selectin binding to its major ligand on leukocytes, 
the P-selectin glycoprotein ligand 1 (PSGL-1) (27, 44, 47, 
68). PSGL-1 is a disulfide-linked homodimer comprised of 
two ~120-kD subunits, which is expressed by most human 
leukocytes (35, 37, 46, 63, 69). The first 41 amino acid resi- 
dues of this mucin-like glycoprotein contain an 18-residue 
signal peptide and a propeptide extending from residues 
19-41. After cleavage of the propeptide at position 41, 

1. Abbrevia t ions  used in this paper: sLe x, sialyl LewisX; PSGL-1, P-selectin 
glycoprotein ligand 1. 
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Glu 42 becomes the amino-terminal end residue of mature 
PSGL-1 (27, 46). PSGL-1 contains many clustered sialylated 
O-linked glycans extended with poly-N-lactosamine termi- 
nating in sLe x, as well as tyrosine sulfation sites at residues 
46, 48, and 51 that are required for its interaction with 
P-selectin (27, 35-37, 39, 44, 46, 47, 68). PSGL-1 also inter- 
acts with E-selectin (4, 41) and plays an essential role in 
mediating neutrophil rolling on P- and E-selectin-express- 
ing cells (37, 41, 42). An additional ligand for E-selectin, 
E-selectin ligand 1, may also support the attachment of 
neutrophils to activated endothelium (23, 55). 

In vitro studies have shown that neutrophils can roll via 
L-selectin on the surface of previously arrested neutro- 
phils, suggesting that these cells could express a nonvascu- 
lar ligand for L-selectin (5). Additional observations have 
indicated that a ligand for L-selectin is also present on the 
CD34 ÷ KG-1 myeloid cell line (40). Indeed, function- 
blocking anti-L-selectin mAbs were found to inhibit lym- 
phocyte binding to KG-1 cells. Since this interaction was 
not dependent on CD34 expression, it was suggested that 
L-selectin could interact with a ligand distinct from that 
glycoprotein (40). 

Using an L-selectin/IgM heavy chain (Ix) chimeric pro- 
tein, we show in the present study that CD34 ÷ hematopoi- 
etic progenitors, neutrophils, monocytes, and KG-1 and 
HL-60 cells express a ligand for L-selectin. In addition, we 
present a detailed biochemical and immunochemical char- 
acterization of this L-selectin ligand. 

Materials and Methods 

Antibodies 
Anti-L-selectin mAbs anti-LAM1-3, -4, -10, -11 (49) were purified from 
hybridoma culture supernatants on protein A using the MAPP-II kit (Bio 
Rad Laboratories, Irvine, CA). Anti-E-selectin mAb H18/7 (8) was a gift 
from F.W. Luscinskas (Brigham and Women's  Hospital, Harvard Medical 
School, Boston, MA), and anti-P-selectin mAb G1, anti-PSGL-1 mAb 
PL-1, and PL-2 (31, 37) were gifts from R.P. McEver and K.L. Moore 
(Warren Medical Research Institute, University of Oklahoma Health Sci- 
ences Center, Oklahoma City, OK). Phycoerythrin-conjugated mAb anti- 
CD34 (QBEND) was from Becton Dickinson (Basel, Switzerland). Rab- 
bit anti-PSGL-1 (42-56) antibody was raised against a 15-met peptide 
(QATEYEYLDYDFLEPE) corresponding to the amino acid residues 
42-56 of PSGL-1 (46). The specificity of this antibody was established by 
experiments showing that it reacted with recombinant PSGL-1 expressed 
by COS-7 or CHO cells transfected with PSGL-1 cDNA (gift from D. 
Sako, Genetics Institute, Cambridge, MA) (46) but not with mock-trans- 
fected COS-7 or CHO cells. Like PL-1 mAb, it immunoprecipitated a pro- 
tein from [35S]Met metabolically labeled KG-1 cells that migrated, in 7.5% 
SDS polyacrylamide gels, with a Mr of ~240 kD under nonreducing condi- 
tions and with a Mr of ~120 kD under reducing conditions. The binding 
of anti-PSGL-1 (42-56) antibody to KG-1 cells was partially inhibited 
by PL-1 mAb but not by PL-2 mAb. This is in agreement with the recog- 
nition by PL-1 mAb of an epitope on PSGL-1 spanning residues 49~52, 
whereas PL-2 mAb binds to a region within residues 188-235 (26). Ant i -  
PSGL-1 (42-56) antibody was purified on protein A-Sepharose  or on 
the immunizing 15-mer peptide (QATEYEYLDYDFLEPE)  coupled 
to SulfoLink TM (Pierce Chemical Co., Rockford, IL). Identical results 
were obtained with purified anti-PSGL-1 (42-56) antibody or with di- 
luted antiserum (1:100). Rabbit IgG were purified from serum using pro- 
tein A-Sepharose. 

Construction of cDNAs Encoding for Chimeric 
Selectins and pCD411x 
Sequences encoding the lectin domain, the EGF-like domain, the first two 
short consensus repeats, and the membrane proximal region of L-selectin 

were amplified by PCR using synthetic oligonucleotides. The sequence of 
the forward primer was GCCTCCCGGGACCTCACCATGGGCTGCA-  
GAAGA.  The reverse primer contained an artificial splice donor site and 
its sequence was GCCTCCCGGGTATACTFACCGTTATAATCAC-  
CCTCC. L-selectin eDNA (60) was amplified by conducting 35 cycles (1 min 
at 94°C, 2 min at 45°C, and 1 min 30" at 55°C). The PCR mixture (100 I~1) 
contained L-selectin eDNA (10 ng), PCR buffer, Taq polymerase (1 U), 
primers (0.5 ~M), and dNTP (0.8 mM). PCR buffer, Taq polymerase, and 
dNTP were obtained from Perkin-Elmer Corp. (Cetus, CA). The PCR 
product was first subcloned in the PCR-Script TM vector (Stratagene, La 
Jolla, CA) and then in a plasmid containing the CH2, CH3, and CH4 do- 
mains of IgM heavy chain (p,) in genomic configuration (kindly provided 
by A. Traunecker, Basel Institute for Immunology, Basel, Switzerland) 
(62). After digestion with Notl and XhoI, the resulting pL-selectin//.L frag- 
ment was subcloned into the pcDNA I expression vector (Invitrogen, San 
Diego, CA) and used to transiently transfect COS-7 cells by the DEAE 
dextran method. Transfected cells were cultured in serum-free medium 
(Optimem; Gibco BRL, Basel, Switzerland). After 4 d of culture, cell su- 
pernatants were filtered and concentrated by ultrafiltration. E- and P-selec- 
fin/p~ chimeric cDNAs were constructed by replacing L-selectin coding 
sequences in pcDNAI L-selectin/l~ vector by eDNA fragments encoding 
the lectin domain, the EGF-like domain, and the first two short consensus 
repeats of E- or P-selectin. In addition, to facilitate subcloning, a SmaI site 
was introduced in oligomers used to prime E-selectin cDNA for the PCR. 
Similarly, a HindIII site was introduced in the primers used to amplify 
P-selectin eDNA. E-selectin eDNA (9) was amplified using a AAC- 
CCGGGGAAGTCATGATI~GCTTCACAG forward primer. The re- 
verse primer AACCCGGGTCTACCTTTACACGTTGGCTT contained 
a splice donor site at its 3' end. P-selectin eDNA (19) amplification was 
carried out using a C G C T A A G C T T A G A G G A G A T G G C C A A C T G C -  
C A A A T A  5' oligomer, the reverse primer being TATAAAGCTTACT-  
CACC'IqTACACACFGGGGC. Amplification of E- and P-selectin cDNAs 
was performed using the same cycling parameters as for L-seleetin eDNA. 
For construction of CD4/Ix cDNA, a cDNA fragment encoding the first 
two amino-terminal domains of CD4 was substituted for the L-selectin 
coding sequence in pcDNAI L-selectin/ix cDNA. The cDNA fragment en- 
coding the first two amino-terminal domains of CD4 was kindly provided 
by A. Traunecker. 

The concentration of L-selectin/~ chimera in COS cell culture medium 
was measured by ELISA as previously described (51, 52, 58). The concen- 
tration of the other chimera was also determined by ELISA, using a goat 
anti-human IgM heavy chain antibody to capture the chimeric protein 
(Vector Laboratories, Inc., Burlingame, CA). The presence of the chi- 
mera was detected with a biotinylated goat ant i-human IgM heavy chain 
antibody (Vector Laboratories, Inc.), avidin-HRP (Pierce, BA oud Belier- 
land, Holland) and O-phenylendiamine (0.125%, wt/vol; Sigma Chemical 
Co., St. Louis, MO), in 0.1 M citrate buffer, pH 4.5, as substrate. The con- 
centration of the chimera was determined using L-selectin/;~ chimera as 
standard. Samples were run in triplicate, diluted at 1:500 to 1:5,000 to ob- 
tain a measure in the linear range of our assay. Absorbance at 490 nm was 
measured using an ELISA reader (MR 5000; Dynatech Laboratories, Inc., 
Chantilly, VA). 

Cell Samples 
Heparinized blood was obtained from normal donors. Peripheral blood 
mononuclear cells were prepared by centrifugation on Ficoll-Hypaque. 
Neutrophils were isolated from FicoI1-Hypaque pellets by dextran sedi- 
mentation followed by erythrocyte hypotonic lysis with ice-cold 0.2% (wt/ 
vol) NaC1. Monocytes were prepared by adherence of mononuclear cells 
on gelatin (1%)-coated plastic flasks. After two washes, monocytes were 
detached with PBS containing 5 mM EDTA. Monocytes were washed 
again with RPMI 1640 (Gibco BRL) and kept on ice until use. The KG-1 
and HL60 cell lines were gifts from Drs. R. Peters and S. Carrel (Centre 
Pluridisciplinaire d'Oncologie and Ludwig Institute for Cancer Research, 
Lausanne, Switzerland). KG-I and HL60-cells were cultured in RPMI 
1640 containing 10% FCS. CD34 + cells were isolated from umbilical cord 
blood by centrifugation on FicoU-Hypaque and positive selection with 
anti-CD34-conjugated immunomagnetic beads. CD34 ÷ cell purification 
was performed using the procedure described in the progenitor cell isola- 
tion kit (OBEN/10 CD34; Miltenyi Biotec GmBH, Bergisch Gladbach, 
Germany). After a 15-min incubation at 4°C, mononuclear cells were ap- 
plied to the appropriate MACS column, and CD34 ÷ cells were captured 
using a magnet (SuperMACS; Miltenyi Biotec GmBH). After preincuba- 
tion with the OKT-3 anti-CD3 mouse mAb, T lymphocytes were isolated 
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from peripheral blood mononuclear cells by positive selection using im- 
munomagnetic beads conjugated with goat anti-mouse antibody. The cell 
suspension obtained by this method contained 90% CD3 ÷ lymphocytes, 
as determined by immunostaining with a phycoerythrin-conjugated anti- 
CD3 mAb (UCHT-1; Becton Dickinson). 

lmmunofluorescence Analysis 
One- or two-color flow eytometric analysis was performed using cells 
washed and resuspended in PBS containing 1% albumin, lmmunostaining 
was carried out by cell incubation for 20 min at 4°C with appropriate 
FITC- and phycoerythrin-conjugated mAbs or chimeric proteins, mAbs 
and chimeric proteins were used at optimal concentrations in PBS supple- 
mented with 1% albumin and 1 mM CaC12. Cell surface binding of chi- 
meric proteins was detected using a polyclonal FITC-conjugated rabbit 
ant i-human IgM heavy chain antibody (Dako, Glostrup, Denmark). Flow 
cytometry was performed with a cytofluorimeter (EPICS Profile; Coulter 
Electronics, Inc., Hialeah, FL). Mononuclear cells were gated by forward- 
and side-scatter signals. A total of 5,000 cells was analyzed in experiments 
involving monocytes, neutrophils, or lymphocytes. At least 10,000 events 
were analyzed for the characterization of CD34 + cells. T lymphocytes 
were identified by CD3 expression. Monocytes were identified by CD14 
expression. CD34 + cells were identified by coexpression of CD34 and 
CD45. 

Chimera Cross-blocking Experiments 
Neutrophils, monocytes, KG-1 cells, or HL-60 cells (2 x 105 cells) were 
preincubated for 30 min with one- to threefold saturating concentrations 
of E-selectin/p., P-selectin/p., or CD4/~ chimera. Cell suspensions were 
then incubated for 30 min on ice with optimal concentrations of L-selec- 
tin/p~ chimera. After washing, L-selectin/p~ cellular binding was revealed 
using FITC-conjugated anti-LAM1-5 mAb and flow cytometry (see 
above). 

Enzyme Treatments 
In experiments using sialidase, live cells were incubated with Vibrio chol- 
erae neuraminidase (150 to 500 mU/ml for 20 rain at 37°C) (Boehringer 
Mannheim GmBH, Mannheim, Germany) in RPMI 1640 medium con- 
taining 10 mM Hepes. Endoglycosidase F and O-sialoglycoprotease (Boeh- 
ringer Mannheim GmBH) were used at 42 U/ml and 0.8 mg/ml, respec- 
tively, in the same medium. Peptide N glycosidase F was used at 33 U/ml. 
Aerobacter aerogenes arylsulfatase (type V1; Sigma Chemical Co.) was 
used at 5 U/ml. Digestion with glycosidase and sulfatase was performed 
for 45 min at 37°C. In control experiments, cells were incubated in the ab- 
sence of enzymes. Enzyme treatment did not change the expression of 
surface molecules such as CD13, CD33, or human histocompatibility leu- 
kocyte antigen class I. CSLEX-1 mAb binding to KG-1 cells was com- 
pletely inhibited by neuraminidase. Mocarhagin was a gift from M.C. 
Berndt (Baker Institute, Victoria, Australia). Purified nentrophils, HL-60 
cells, and KG-1 cells were incubated for 45 rain at 37°C with 8 p.g/ml 
mocarhagin in RPMI medium. After three washes, cells were incubated 
with L-selectin/~, P-selectin/p, E-selectin/p., or CD4/p, Chimeric protein 
binding was evaluated using FITC-conjugated rabbit antibody against hu- 
man IgM heavy chain and flow cytometry (see above). 

Neutrophil-Neutrophil Binding Assay 
The neutrophil-neutrophil  binding assay used in this study was based 
on the methods of Oxley et al. (40) and Stamper and Woodruff (54). 
Neutrophil cytospins were prepared by centrifuging 2.0 x 105 neutro- 
phils in a polysiloxane circle (2.2-cm-diam) on glass slides. Cytospins were 
then dried at room temperature. Neutrophil suspensions (4 x 106 cells) 
were incubated for 15 min at 4°C in 200 ~1 of medium (RPMI/1% FCS) 
containing mAbs (20 ~g/ml) or polyclonal antibodies (1.0 mg/ml). 
Cytospins were preincubated for 15 min with antibodies. Neutrophil sus- 
pensions were then added to the cytospins. After 20 min of incubation at 
4°C under rotation at 72 rpm, nonadherent cells were discarded, and petri 
dishes were placed vertically in PBS/2% glutaraldhehyde. After washing, 
the number of adherent neutrophils was determined by counting six to 
eight microscopic fields (0.25 mm 2 per field). Results were expressed as 
the mean -+ 1 SD. 

Statistical Analysis 
Differences between groups were assessed using the paired t test. 

Results 

Neutrophils, Monocytes, KG-1, HL-60, and 
CD34 + Hematopoietic Progenitor Cells Express a 
Ligand for L-Selectin 

L-selectin/ix, P-selectin/ix, and E-selectin/ix chimera were 
found to strongly react with neutrophils, monocytes, and 
HL-60 cells (Fig. 1, solid lines), whereas CD4/IX did not 
(Fig. 1, dotted lines). The specificity of selectin binding to 
leukocytes was demonstrated by showing the ability of 
adhesion-blocking mAbs to inhibit binding of the three 
selectin/ix chimeric proteins (Fig. 1, dashed lines). Anti- 
L-selectin LAM1-3 or -4 mAbs (49) abolished L-selectin/ix 
binding (Fig. 1, dashed lines, column 1), anti-P-selectin 
mAb G1 (31) completely inhibited P-selectin/ix cell bind- 
ing (Fig. 1, dashed lines, column 2), and anti-E-selectin 
mAb H18/7 (8) completely inhibited E-selectin/ix cell bind- 
ing (Fig. 1, dashed lines, column 3). Further evidence for 
the specificity of selectin binding was provided by experi- 
ments revealing that the binding of E- or P-selectin/ix was 
not inhibited by the presence of the blocking anti-L-selectin 
mAb LAM1-3 (100 Ixg/ml). In addition, anti-LAM1-11, an 
mAb that recognizes a nonfunctional epitope of L-selec- 
tin, did not inhibit binding of L-selectin/ix (not shown) 
(49). In keeping with the calcium dependence of selectin- 
carbohydrate interactions, chimera cell binding was com- 
pletely abrogated by addition of 5 mM EDTA or EGTA 
(Fig. 1, dotted lines). Cell specificity of L-selectin/ix, P-selec- 
tin/ix, and E-selectin/ix binding was shown by observations 
indicating that only a low percentage (5-7%) of peripheral 
blood T lymphocytes reacted with the chimeric receptor 
proteins (Fig. 1). Several studies have indicated that L-selec- 
tin contributes to rolling on E-selectin (22, 41). With the 
assay system used in this study, no interaction was detect- 
able between L- and E- or P-selectin. Thus, treatment of 
neutrophils with the anti-LAM1-3 or anti-LAM1-4 mAbs, 
or complete shedding of L-selectin after cell exposure to 
phorbol-ester (100 ng/ml for 60 min at 37°C), had no effect 
on E- or P-selectin/ix neutrophil binding (not shown). 

A recent study suggested that a ligand for L-selectin 
could be expressed on the CD34 ÷ hematopoietic cell line, 
KG-1 (40). L- and P-selectin/ix strongly reacted with KG-1 
cells, whereas E-selectin binding was weaker (Fig. 1). 
Since selectins could be involved in the regulation of stem 
cells homing into bone marrow (13, 69), the interaction of 
chimeric selectins with purified CD34 ÷ hematopoietic pro- 
genitors was examined (Fig. 1). In agreement with earlier 
results, most CD34 ÷ cells (50-60%) expressed a ligand for 
P-selectin/ix. Moreover, a strong interaction was demon- 
strated with L-selectin/ix, with >30% of CD34 ÷ cells ex- 
pressing a ligand for this receptor. In contrast, only a low 
percentage of CD34 ÷ ceils bound E-selectin/ix (Fig. 1). 

Sialylation, Sulfation, and O-Glycosylation Are 
Essential for the Function of L-Selectin Ligand 

Cell exposure to chymotrypsin rapidly abolished L- and 
P-selectin binding to neutrophils, KG-1, or HL-60 cells (data 
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Figure 1. Interaction of L-, P-, and E-selectin with neutrophils, 
monocytes, CD3 + lymphocytes, KG-I,  HL-60, and CD34 + he- 
matopoietic progenitors. L-, P-, and E-selectin/l~ chimera (solid 
lines) were used as immunocytological probes, and CD4/I~ chi- 
mera was used as unreactive isotype-matched control (not 
shown). Se]ectin chimera were used at optimal concentration for 
immunostaining, and binding was revealed by indirect immuno- 
fluorescence analysis. The binding of chimeric selectins was abol- 
ished by the presence of 5 mM EDTA in RPMI 1640 medium 
(dotted lines) or by treatment with adhesion-blocking mAb 
(dashed lines). Anti-L-selectin mAb LAM 1-3, anti-P-selectin 
mAb G1, and anti-E-selectin mAb H18/7 were used to inhibit L-, 
P-, and E-selectin binding. 

not shown), indicating that L- and P-selectin counter-recep- 
tors are located on cell surface glycoproteins and not on 
glycolipids. Additional experiments investigated the role 
of sulfate groups and sialic acid residues, which are known 
to be essential for the interaction of L-selectin with several 
mucin-like glycoprotein ligands (15-18). Exposure of KG-1 
cells to Aerobacter aerogenes aryl-sulfatase decreased L- and 
P-selectin binding, suggesting a role for sulfate residues in 
the interaction of these two selectins with KG-1 cells (Fig. 
2, lower panels). The importance of sulfate residues for L- and 
P-selectin binding to KG-1 cells was demonstrated by cul- 
turing KG-1 cells in medium containing sodium chlorate, 
an inhibitor of ATP-sulfurylase and sulfate biosynthesis. 
To inhibit the sulfation of most newly synthesized cell sur- 
face proteins, KG-1 cells were pretreated for 15 min with 
chymotrypsin, and then cultured for 24 h in R P M I  me- 
dium containing 100 mM sodium chlorate. Control ceils 
were submitted to the same pretreatment,  and then cul- 

(b 
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I, k '  i :  
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Fluorescence intensity (log scale) 
Figure 2. L- and P-selectin ligands require sulfate residues for 
function. After pretreatment with chymotrypsin, sulfation was in- 
hibited by culturing KG-1 cells for 24 h in RPMI medium/10% 
FCS containing 100 mM sodium chlorate. In experiments of de- 
sulfation, KG-1 cells were exposed to aryl-sulfatase for 45 min at 
37°C. (Solid histograms) Fluorescence intensity of control cells 
stained with saturating concentrations of L- or P-selectin/l~; 
(dashed lines) staining after inhibition of sulfation with chlorate 
or desulfation with sulfatase; (dotted histograms) staining ob- 
tained with L- or P-selectin/ix in medium containing 5 mM 
EDTA. Control cells, like cells cultured in the presence of chlor- 
ate, were pretreated with chymotrypsin for 15 min, and then cul- 
tured for 24 h in RPMI medium/10% FCS before staining with 
L- or P-selectin/~. 

tured in R P M I  1640/10% FCS without chlorate. P- and 
L-selectin chimera brightly stained KG-1 cells initially pre- 
treated with chymotrypsin, and then cultured for 24 h in 
RPMI  medium/10% FCS (Fig. 2, solid lines, upper panels). 
In contrast, culturing KG-1 cells in medium containing so- 
dium chlorate completely abrogated L- and P-selectin 
binding (Fig. 2, dashed lines, upper panels). This treatment 
did not affect cell viability or the expression of  other sur- 
face molecules such as CD13, CD33, or H L A - D R  (not 
shown). The role of sialic acid residues was examined by 
exposing neutrophils, monocytes,  KG-1, and HL-60 cells 
to Vibrio cholera neuraminidase. Sialidase abolished L- and 
E-selectin interactions with the cells, suggesting that sialic 
acid residues have a critical role in the function of L- and 
E-selectin ligands on neutrophils (Fig. 3). P-selectin bind- 
ing to neuraminidase-treated cells was only partially inhib- 
ited. 

The experiments illustrated in Fig. 4 examined whether 
L-, P-, and E-selectin interact with O-glycosylated cell sur- 
face proteins. Neutrophils, monocytes,  KG-I ,  and HL-60 
cells treated with O-sialoglycoprotease completely abro- 
gated cellular binding of L-, P-, and E-selectin (Fig. 4). 
These results indicate that O-glycosylated proteins are es- 
sential for L-, P-, and E-selectin binding. In contrast, treat- 
ment of  neutrophils or KG-1 cells with endoglycosidase F 
or  peptide N glycosidase F did not  significantly inhibit 
L-, P-, or E-selectin cellular binding (data not shown). 
However,  this result does not exclude the possibility that a 
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Figure 3. Sialic acid residues are important for L-, P-, and E-selec- 
tin interaction with neutrophils and monocytes. Cells were either 
sham treated (solid lines) or exposed for 45 min at 37°C to Vibrio 
cholerae neuraminidase (dashed lines). Selectin binding in the 
presence of EDTA (dotted lines). 

subset of N-glycans, resistant to enzymatic cleavage, could 
function in selectin recognition. 

L- and P-Selectin Interact with Closely Located 
Domains of  the P-Selectin Ligand PSGL-1 

The results of the experiments reported in the preceding 
paragraphs indicate that L-, P-, and E-selectin ligands 
share several biochemical features. The characteristics of 
these ligands were examined further in cross-blocking ex- 
periments using the various selectin chimera. Most of the 
L-selectinhx binding was inhibited when neutrophils, 
monocytes, KG-1, or HL-60 cells were preincubated with 
P-selectin/p~. This observation strongly suggests that L- and 
P-selectin recognize a common cellular ligand and indi- 
cates that L- and P-selectin binding domains are spatially 
related (Fig. 5). The inhibition of L-selectin/ix binding by 
E-selectin/Ix was variable. E-selectin strongly inhibited 
L-selectin binding to HL-60 cells, whereas it was a weak 
inhibitor of L-selectin interaction with neutrophils, mono- 
cytes, or KG-1 cells (Fig. 5). Low concentrations of E-selec- 
tin (3 ixg/ml) were able to inhibit most of the L-selectin 

L-selectin P-selectin E-selectin 

j 

;i 

L I  ~ • J 

' ~  t~" 

Fluorescence intensity (log scale) 

Figure 4. L-, P-, and E-selectin interact with O-glycosylated pro- 
teins. Neutrophils and monocytes were either sham treated (solid 
lines) or exposed to O-sialoglycoprotein endopeptidase (dashed 
lines). Selectin binding was revealed by indirect immunofluores- 
cence analysis. Histograms representing the binding of selectins 
in presence of E D T A  (not shown) were superposable to histo- 
grams obtained using CD4/Ix chimera (dotted lines). 

CD4/L-selectin P-/L-selectin E-/L-selectin 

t '% l 

Fluorescence intensity (log scale) 
Figure 5. L- and P-selectin interact with overlapping domains of 
a common ligand. Cross-blocking experiments were performed 
by treating cells with saturating concentrations of CD4/IX, P-, or 
E-selectin/ix chimera before staining with L-selectin/ix chimera 
(dashed lines). L-selectin binding was analyzed by indirect immu- 
nofluorescence analysis using FITC-conjugated anti-LAM1-5 
mAb as secondary antibody. Binding of L-selectin in the pres- 
ence of 5 mM EDTA (dotted lines). 

binding on HL-60 cells. In contrast, much higher concen- 
trations (25 i~g/ml) did not inhibit L-selectin binding to 
neutrophils or monocytes. These results suggest that the 
affinity of E-selectin for an L-selectin binding site could be 
lower on neutrophils, monocytes, and KG-1 cells than on 
HL-60 cells. 

The hypothesis that L- and P-selectin could bind to 
overlapping domains of PSGL-1 was tested using the anti- 
PSGL-1 (42-56) antibody raised against a peptide encod- 
ing residues 42-56 of PSGL-1 and the PL-1 mAb, which 
blocks P-selectin interaction with PSGL-1 and recognizes 
an epitope spanning residues 49-62 of PSGL-1 (26, 37). As 
shown in Fig. 6, the binding of L- and P-selectin to neutro- 
phils was abrogated by anti-PSGL-1 (42-56) antibody. 
The complete inhibition of L-selectin binding to KG-1 
cells by the PL-1 mAb further supported the possibility 
that L-selectin interacts with the amino-terminal domain 
of mature PSGL-1 (Fig. 7) (26). The control mAb PL-2, 
which binds to a region of PSGL-1 located between resi- 
dues 188 and 235 (26) and does not inhibit P-selectin inter- 
action with PSGL-1 (37), had no effect on L-selectin bind- 
ing (Fig. 7). In agreement with previous studies, P-selectin 
binding was completely inhibited by PL-1 but not by PL-2 
mAb (data not shown) (37). 

The role of the NH2 terminus of mature PSGL-1 was 
further demonstrated by treating neutrophils, KG-1, and 
HL-60 cells with the cobra venom metalloproteinase, 
mocarhagin. This protease, purified from the Mozambican 
spitting cobra, Naja mocambique mocambique, specifically 
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Figure 6. L-and P-selectin interact with the amino-terminal end 
of PSGL-1. Preincubation of neutrophils with the anti-PSGL-1 
(42-56) antibody, directed against the amino-terminal end of ma- 
ture PSGL-1, abolished P-selectin binding and inhibited most of 
L-selectin binding to neutrophils, whereas control rabbit IgG had 
no effect• L-, P-, and E-selectin chimera binding in the presence 
of 5 mM EDTA (dotted lines)• 

cleaves mature PSGL-1 between Tyr-51 and Asp-52 (11). 
As recently reported, P-selectin/ix chimera cell binding 
was completely abrogated by the treatment of neutrophils, 
KG-1 cells, and HL-60 cells with mocarhagin (1.6-8.0 ixg/ml) 
(Fig. 8) (11). The importance of PSGL-1 NH2 terminus for 
L-selectin binding was further indicated by the inhibition 
of a major part of L-selectin binding by cell treatment with 
that protease (Fig. 8). 

L-Selectin Myeloid Ligand Supports 
Neutrophil-Neutrophil Interactions 

The capacity of L-selectin to interact with neutrophil 
ligands was evaluated using an attachment system inspired 

medium 

PL-1 

r i 

anti-PSGL-1 (42-56) 

PL-2 

Fluorescence intensity (log scale) 
Figure 7. L-selectin interaction with KG-1 cells is completely in- 
hibited by the anti-PSGL-1 mAb PL-1. Preincubation of KG-1 
cells with PL-1 mAb, known to block P-selectin binding to PSGL-1 
(37), abolished L-selectin/ix binding• In contrast, KG-1 cell treat- 
ment with the anti-PSGL-1 mAb PL-2, which binds to a distinct 
domain of PSGL-1, had no effect (26, 37), L-selectin binding in 
the presence of EDTA (dotted lines)• 

L-selectin P-selectin E-selectln 

, \  
I I 

Fluorescence intensity (log scale) 

Figure 8. Neutrophil treatment with the cobra venom metallo- 
proteinase mocarhagin drastically inhibited P- and L-selectin 
binding. Neutrophils were incubated for 20 min at 37°C with 
mocarhagin, and then stained with selectin chimera. Selectin 
binding in the presence of EDTA (dotted lines). 

by the assay used by Stamper and Woodruff to assess lym- 
phocyte binding to high endothelial venules (40, 54). The 
assay was performed under rotation (72 rpm) at 4°C, 
where L-selectin shedding is minimal (48, 50). A mean 
binding value of 465 cells per field was observed when sus- 
pended neutrophils were incubated with adherent neutro- 
phils on cytospins (Fig. 9; Medium)• Most neutrophil bind- 
ing (76 --- 10%, n = 2) was inhibited by calcium chelation 
with 5 mM E D T A  (not shown)• A major part (51 - 10%, 
n = 3) of neutrophil interactions with adherent neutro- 
phils was inhibited by preincubation with the function- 
blocking mAb LAM1-3 (P < 0.001). In contrast, treatment 
with LAMI-10 (Fig. 9) or L A M I - l l  (not shown) mAbs, 
which recognize functionally silent epitopes of L-selectin 
lectin domain, did not inhibit cell adhesion (49). An im- 
portant role for PSGL-1 was indicated by the ability of the 
anti-PSGL-1 (42-56) antibody to inhibit neutrophil-neu- 
trophil interactions (P < 0.001) (Fig. 9; 47 ___ 3%, n = 3), 
whereas purified nonimmune rabbit IgG had no effect on 
cell adhesion. 

Discussion 

Selectins play a major role in initiating neutrophil attach- 
ment to vascular endothelium. In vivo video microscopy 
experiments have demonstrated that L-, P-, and E-selectin 
are involved in mediating neutrophil rolling along endo- 
thelium. In addition, in vitro studies indicated that L-selectin 
supports the rolling of neutrophils on adherent neutro- 
phils, promoting leukocyte recruitment into sites of inflam- 
mation (5). In this study, we show that this interaction is 
dependent on the binding of L-selectin to the P-selectin 
ligand PSGL-1, a mucin-like protein expressed by neutro- 
phils. The interaction of L-selectin with PSGL-1 was dem- 
onstrated on neutrophils, monocytes, CD34 ÷ hematopoi- 
etic progenitors, and HL-60 and CD34 ÷ KG-1 myeloid cell 
lines• In addition, cross-blocking experiments and anti- 
body-blocking experiments indicated that L- and P-selectin 
bind to overlapping domains located at the amino terminus 
of mature PSGL-1. 

The characteristics of L-selectin ligand were investigated 
by immunofluorescence analysis using L-selectin/ix chi- 
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Figure 9. Neutrophil attachment on adherent neutrophils is de- 
pendent on L-selectin interaction with PSGL-1. Assays were per- 
formed under rotation for 30 min at 4°C. Pretreatment of neutro- 
phils with the anti-PSGL-1 (42-56) antibody or with the 
adhesion blocking anti-L-selectin mAb LAM1-3 significantly in- 
hibited neutrophil-neutrophil interactions (P < 0.001), whereas 
control mAb (anti-LAM-l-lO) or rabbit immunoglobulins (Con- 
trol Rig) had no effect. Results are expressed as the mean --_ SD 
number of attached neutrophils per field (0.25 mm 2) and are rep- 
resentative of three similar experiments. 

mera as immunocytological probe. In keeping with the lectin 
activity of selectins, L-selectin interaction with its ligand 
was calcium dependent (Fig. 1). Treatment of KG-1 cells, 
HL-60 cells, or neutrophils with chymotrypsin completely 
inhibited L-selectin binding, suggesting that the major 
ligand for L-selectin is a glycoprotein and not a glycolipid. 
In addition, abrogation of L-selectin binding by inhibi- 
tion of sulfation or less extensively by exposure to aryl-sul- 
fatase demonstrated that sulfate residues are essential for 
the function of L-selectin ligand on myeloid KG-1 or HL- 
60 cells (Fig. 2). L-selectin binding was also abolished by 
treatment with sialidase or exposure to O-sialoglycopro- 
tease, indicating that L-selectin ligand is a sialylated O-gly- 
coprotein (Figs. 3 and 4). 

As illustrated in Figs. 2, 3, and 4, treatment with siali- 
dase and sulfatase, inhibition of sulfation, or exposure to 
O-sialoglycoprotease also inhibited P-selectin binding. 
Sulfation, sialylation, and O-glycosylation are essential for 
the function of the P-selectin ligand, PSGL-1, on neutro- 
phils, monocytes, activated T lymphocytes, and HL-60 
cells (27, 36, 44, 47, 63, 68). Considering that L-selectin 
ligand has essentially the same characteristics as PSGL-1, 
we investigated the possibility that this mucin-like protein 
could be a major ligand for L-selectin and support neutro- 
phil-neutrophil interactions. The consistent inhibition of 
L-selectin/~ binding obtained by preincubation of neutro- 
phils, monocytes, KG-1, or HL-60 cells with P-selectinhx 
indicated that both selectins interact with overlapping do- 
mains of a common ligand (Fig. 5). In addition, the abro- 
gation of L- and P-selectin binding to KG-1 cells, HL-60 
cells, and neutrophils treated with the polyclonal anti- 
PSGL-1 (42-56) antibody indicated that both selectins in- 
teract with a common domain of PSGL-1, located at the 

amino-terminal end of that molecule (Fig. 6). This possi- 
bility was also supported by the abrogation of L-selectin 
binding to KG-1 cells treated with the anti-PSGL-1 mAb 
PL-1, which blocks P-selectin binding to PSGL-1 and rec- 
ognizes an epitope spanning residues 49--62 (Fig. 7) (26). 
The functional importance of the amino-terminal end of 
mature PSGL-1 was further underlined by the capacity of 
the polyclonal anti-PSGL-1 (42-56) antibody to inhibit 
neutrophil attachment to adherent neutrophils (Fig. 9). 
These results indicate that P-and L-selectin interact with 
closely located domains of the amino-terminal end of ma- 
ture PSGL-1. Additional experiments using mocarhagin 
suggested that the amino-terminal anionic/sulfated tyrosine 
motif of PSGL-1 plays a major role in mediating L-selectin 
interaction with PSGL-1. Thus, L-selectin binding to neu- 
trophil was strongly decreased by the proteolytic cleavage 
of the NHz-terminal 10-amino acid peptide of PSGL-1 
(QATEYEYLDY) by mocarhagin (Fig. 8) (11). Consis- 
tent with recent studies that demonstrated the role of the 
NH2-terminal tyrosine sulfation consensus in P-selectin 
recognition of PSGL-1 (27, 44, 47, 68), cleavage of this 
negatively charged peptide by mocarhagin abolished P-selec- 
tin binding (Fig. 8) (11). O-glycans and sialic acid residues 
could also play an important role in L-selectin interaction 
with PSGL-1 since binding was strongly inhibited by cell 
treatment with sialidase and O-sialoglycoprotease. This 
observation is consistent with the presentation of sLe x 
determinants on O-linked oligosaccharides by PSGL-1 
(27, 36, 38, 46) and suggests that L-selectin recognition of 
PSGL-1 involves both sialylated O-glycans and the amino- 
terminal negatively charged tyrosine consensus. The re- 
cently proposed model of P-selectin interaction with PSGL-1 
in which both tyrosine sulfate and O-glycans near the 
amino-terminal end support P-selectin binding may also 
be relevant for L-selectin binding (27, 44, 47). 

Sulfate residues were not essential for E-selectin inter- 
action with PSGL-1 on KG-1 and HL-60 cells. Thus, the 
level of immunostaining by E-selectin/~ chimera of cells 
cultured in the presence of chlorate remained unchanged 
(not shown), whereas chlorate treatment abolished L- and 
P-selectin binding (Fig. 2). This observation is in agree- 
ment with results of recent studies suggesting that the 
interaction of E-selectin with PSGL-1 is mediated essen- 
tially by sLe x determinants presented by O-glycans (27, 44, 
47). The partial inhibition of L-selectin chimera to HL-60 
cells by E-selectin suggests that L- and E-selectin recog- 
nize partially overlapping domains of PSGL-1 (Fig. 5). 
E-selectin binding domain could be located downstream 
of residues 42-56 since the anti-PSGL-1 (42-56) antibody, 
which strongly inhibited L- and P-selectin binding to 
PSGL-1, had no effect on E-selectin binding (Fig. 6). 

L-selectin has been reported to express sLe x and to 
function as a counter-receptor for E- and P-selectin (43). 
L-selectin interaction with E-selectin was studied in a con- 
trol shear adhesion assay. In this assay, neutrophil tether- 
ing to E-selectin was dependent on expression of carbohy- 
drates presented by L-selectin lectin domain, indicating 
that L-selectin can function as a ligand for E-selectin un- 
der certain conditions of shear stress (22). However, this 
interaction was not observed in static conditions (22). In 
the present study, immunofluorescence analysis by flow 
cytometry did not disclose any interactions between L-selec- 
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tin expressed by neutrophils and the P- or E-selectin/tx chi- 
mera. E- and P-selectin binding to neutrophils was not 
inhibited by the function-blocking anti-LAM1-3 or anti- 
LAM1-4 mAbs that block L-selectin tethering on E-selec- 
tin under flow conditions (not shown) (22). In addition, 
the shedding of L-selectin observed after exposure of neu- 
trophils to phorbol-ester did not affect E- or P-selectin 
binding (data not shown). Thus, L-selectin was not a major 
ligand for E- or P-selectin in the conditions used in this 
study. With different conditions, L-selectin could function 
as a ligand for E- or P-selectin (22, 41, 43). 

A small percentage of peripheral blood T lymphocytes 
(~7%)  interacted with the L-selectin/tx chimera (Fig. 1). 
Future studies will be required to characterize more pre- 
cisely the immunophenotype and function of these T cells. 
P-selectin/tx also bound with a few T lymphocytes (~7%). 
These data are in agreement with those of others who 
identified a ligand for P-selectin on ~12% of peripheral 
blood lymphocytes (34). Interestingly, using anti-PSGL-1 
mAbs, PSGL-1 expression was observed on >90% of pe- 
ripheral blood T lymphocytes and on the majority of lym- 
phoid cell lines (37, 63). This observation suggests that 
PSGL-1 is constitutively expressed by most lymphocytes 
in a form unable to interact with P-selectin. T lymphocyte 
activation increased P-selectin binding, whereas cell sur- 
face expression of PSGL-1 remained unchanged, suggest- 
ing that activation-dependent posttranslational events 
contribute to the expression of functional PSGL-1 (37, 63). 
Similarly, L-selectin reactivity with T lymphocytes could 
increase after cell activation. 

The expression of a ligand for L-selectin was demon- 
strated on 35% of CD34 ÷ hematopoietic progenitors. 
P-selectin interacted with 55% of CD34 ÷ hematopoietic 
progenitors, whereas only a few CD34 ÷ cells bound to 
E-selectin. The nature of the ligand for L-, E-, and P-selec- 
tin on CD34 ÷ stem cells has not been characterized. How- 
ever, the demonstration of PSGL-1 mRNA expression 
(69) and surface expression of this molecule by ~30% of 
CD34 ÷ cells (data not shown) suggest that PSGL-1 could 
be important in mediating interactions of stem cells with 
selectins. In particular, PSGL-1 could be involved in regu- 
lating the migration of hematopoietic progenitors by at- 
taching them to selectins expressed by bone marrow en- 
dothelium (69). Recently, altered hematopoiesis was 
observed in P- and E-selectin-deficient mice underlining 
the role of vascular selectins in regulating hematopoiesis 
(13). Additional studies will be needed to determine the 
role of PSGL-1 in regulating stem cell circulation and 
homing into the bone marrow. The importance of L-selec- 
tin interaction with PSGL-1 in regulating stem cell homing 
remains also to be established. 

In conclusion, this study extends our knowledge on the 
role of L-selectin in leukocyte migration and provides evi- 
dence that the mucin-like glycoprotein PSGL-1 regulates 
neutrophil-neutrophil and leukocyte-endothelial interac- 
tions, promoting leukocyte recruitment at sites of inflam- 
mation. Moreover, by demonstrating that L-, P-, and E-selec- 
tin interact with PSGL-1, our results emphasize the role of 
this mucin-like glycoprotein as a major protagonist in the 
inflammatory reaction. Furthermore, the expression of 
PSGL-1 by CD34 ÷ hematopoietic progenitors and most 
lymphocytes suggests that this counter-receptor could also 

be involved in stem cell homing in the bone marrow and 
contribute to regulating the immune response. 
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