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Abstract

One of the most fundamental challenges in developing treatments for autism-spectrum disorders is 

the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for 

autism, with each individual mutation accounting for only a small fraction of autism cases1–3. 

Subsets of risk genes can be grouped into functionally-related pathways, most prominently 

synaptic proteins, translational regulation, and chromatin modifications. To possibly circumvent 

this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin 

and vasopressin4–6 which regulate aspects of social behavior in mammals7. However, whether 

genetic risk factors might predispose to autism due to modification of oxytocinergic signaling 

remains largely unknown. Here, we report that an autism-associated mutation in the synaptic 

adhesion molecule neuroligin-3 (Nlgn3) results in impaired oxytocin signaling in dopaminergic 

neurons and in altered social novelty responses in mice. Surprisingly, loss of Nlgn3 is 

accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of 
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Nlgn3KO mice with a novel, highly specific, brain-penetrant inhibitor of MAP-kinase interacting 

kinases resets mRNA translation and restores oxytocin and social novelty responses. Thus, this 

work identifies an unexpected convergence between the genetic autism risk factor Nlgn3, 

translational regulation, and oxytocinergic signaling. Focus on such common core plasticity 

elements might provide a pragmatic approach to reduce the heterogeneity of autism. Ultimately, 

this would allow for mechanism-based stratification of patient populations to increase the success 

of therapeutic interventions.

Social recognition and communication are critical elements in the establishment and 

maintenance of social relationships. Oxytocin and vasopressin are two evolutionarily 

conserved neuropeptides with important functions in the control of social behaviors, in 

particular pair-bonding and social recognition7,8. In humans, genetic variation of the 

oxytocin receptor gene (Oxtr) is linked to individual differences in social behavior9. 

Consequently, signaling modulators and biomarkers for the oxytocin/vasopressin system are 

being explored for conditions with altered social interactions such as autism spectrum 

disorders (ASD)5,6. In mice, mutation of the genes encoding oxytocin or its receptor results 

in a loss of social recognition and social reward signaling10–14. Mutation of Cntnap2, a gene 

linked to ASD in humans, results in reduced oxytocin levels in mice, and elevation of 

oxytocin rescues altered social behavior in this model15. However, the vast majority of 

genetic autism risk factors have no known links to oxytocinergic signaling1–3,16.

Here we explored oxytocin responses in mice which recapitulate a loss of function in the 

autism risk gene Nlgn3 17–19 . Nlgn3 encodes a synaptic adhesion molecule20–23 and Nlgn3 
mutant mice exhibit a range of behavioral alterations, including motor stereotypies23,24, 

alterations in social novelty preference25–28 (but see29,30), social reward31, and social 

novelty responses31. Despite these alterations in social behaviors, adult Nlgn3KO mice 

exhibit normal responses to inanimate objects26,31. In a five-trial social habituation/

recognition task we observed that the social novelty response phenotype is established 

already in juvenile Nlgn3KO mice (Fig.1a–c, Extended Data Fig. 1a–b, see methods for 

details on the task). The recognition and response to unfamiliar conspecifics depends on 

multiple neural circuit elements, including dopaminergic cells in the ventral tegmental area 

(VTA DA neurons)7,31–33. Re-expression of Nlgn3 selectively in dopaminergic cells restored 

social novelty responses in juvenile Nlgn3KO mice (Fig.1d–f, Extended Data Fig.1c,d). 

Conversely, selective inactivation of Nlgn3 in VTA DA neurons was sufficient to affect 

social novelty responses (Fig. 1g–i, Extended Data Fig.1 e–h). Social recognition in this 

assay depends on oxytocin receptor function, as treatment of wild type mice with the 

oxytocin receptor antagonist L-368,899 impaired recognition (Fig.1j–l, Extended Data Fig. 

1.i,j).

The function of VTA DA neurons in social novelty responses and reinforcement is in part 

dependent on an oxytocin-induced elevation of neuronal firing. Specifically, oxytocin 

released from axons that arise from hypothalamic nuclei increases the firing of VTA DA 

neurons projecting to the nucleus accumbens (NAc) 12,13. Thus, we examined whether loss 

of Nlgn3 might impact the response of this population of neurons to oxytocin. We marked 

VTA DA neurons projecting to the NAc medial shell and performed electrophysiological 
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recordings from back-labeled neurons in acute slices of the VTA (Fig. 1m,n). Consistent 

with previous reports, back-labeled neurons showed low Ih currents, and there was no 

significant difference between genotypes in Ih and other basic biophysical properties 

(Extended Data Fig. 2). In cell attached recordings, baseline firing frequency of VTA DA 

neurons from Nlgn3KO mice was slightly reduced as compared to wild type mice (Fig. 1p). 

Notably, bath application of 1 μM oxytocin significantly increased firing frequency in cells 

from wild type but had no effect in Nlgn3KO slices (Fig. 1o,q). These findings uncover a 

requirement for the autism risk factor Nlgn3 for oxytocin responses in the VTA.

A loss of oxytocinergic neurons has been reported in knock-out mice for the autism risk 

factors Cntnap2 and Shank3b 14,15. In Nlgn3KO mice we did not detect any alteration in the 

density of oxytocinergic neurons in the paraventricular nucleus (one of the major 

oxytocinergic nuclei) or in the density of oxytocinergic fibers in the VTA (Fig. 2a,b, 

Extended Data Fig. 3a–c). Fluorescent in situ hybridization (FISH) revealed a slight increase 

in Oxtr mRNA in VTA DA neurons from Nlgn3KO mice compared to wild type animals 

(Fig. 2c–d, Extended Data Fig. 3d–f). However, targeted proteomics (parallel reaction 

monitoring) on microdissected VTA tissue did not detect significant alterations in total 

oxytocin receptor protein (Extended Data Fig. 3g, vasopressin 1a receptor mRNA and 

protein were unaltered, Extended Data Fig. 3 g–j and Table S1). Thus, we performed shot-

gun proteomics for an unbiased identification of molecular alterations in the VTA of 

Nlgn3KO mice (Extended data Fig.4a–c, Table S2). Gene ontology (GO) and network-based 

functional classification analysis for proteins altered in Nlgn3KO VTA identified protein 

transport, cell adhesion, and mRNA translation as main categories (Extended Data Fig.4b,c). 

Dysregulation of membrane trafficking and GPCR signaling components is consistent with 

the previously discovered roles for Nlgn3 in synapse organization and GPCR 

signaling22,23,34. However, the alterations in regulators of translation were surprising. 

Alterations in mRNA translation have been linked to neuronal plasticity deficits. We 

previously observed that behaviorally-induced plasticity is altered in VTA DA neurons of 

Nlgn3KO mice31. Thus, we compared translation in VTA DA neurons of naïve and 

behaviorally exposed wild type and Nlgn3KO mice. Incorporation of the methionine 

analogue azidohomoalanine (AHA)35 in VTA DA neurons (marked by tyrosine hydroxylase) 

of acute mouse brain slices from naive Nlgn3KO mice was reduced as compared to wild type 

(Fig. 2e–g. and see Extended Data Fig. 4d for data from cortical slice preparations). 

Interestingly, AHA incorporation was elevated in VTA DA neurons from Nlgn3KO mice 

exposed to handling (Fig.2e–g). This suggests a signaling-dependent disruption of 

translation homeostasis in the mutant mice.

Disruption of translation homeostasis is thought to broadly modify neuronal proteins 

resulting in impaired plasticity and neurodevelopmental conditions36–40. Thus, we sought to 

normalize translation in Nlgn3KO mice and to test whether this would restore oxytocin 

responses in VTA DA neurons. We focused on MAP-kinase interacting kinases (MNKs) 

which are critical regulators of signaling-dependent modification of mRNA translation (Fig. 

3a). MNK inhibition was reported to modify ribosomal protein levels and to ameliorate 

behavioral and plasticity alterations in Fmr1 knock-out mice (Fmr1KO)41–43. We tested 

efficacy and brain penetrance of a novel series of highly specific MNK inhibitors originally 

developed for oncology applications44. One of these compounds, ETC-168 resulted in a 
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dose-dependent reduction in phosphorylation of the MNK target eIF4E in cultured cortical 

mouse neurons without affecting eIF4E, eIF4G protein levels or ERK1/2 activity (Fig. 3b, 

Extended Data Fig. 5a–e). In wild type mice, orally administered ETC-168 had significant 

brain penetration (brain to plasma ratio 0.12) with a half-life of 4.3 hrs (Fig. 3d), and 

resulted in a reduction in eIF4E phosphorylation in the VTA and other brain areas (Fig. 3c, 

Extended Data Fig. 5f and l). Of note, phospho- or protein levels of Eif4E or MNK1 are 

unaltered in the VTA of Nlgn3KO mice (Extended Data Fig. 5g–k). As a proof of concept, 

we probed the effectiveness of ETC-168 treatment in modifying a behavioral phenotype in 

Fmr1KO mice. In a place-independent discrimination task, Fmr1KO and wild type mice 

learned a cue-reward contingency rule equally well, but Fmr1KO mice were impaired upon 

contingency reversal (Extended Data Fig. 6a, b). ETC-168 treatment during the reversal 

phase of the task significantly improved their performance (Extended Data Fig. 6c, d). Thus, 

ETC-168 is a novel, highly selective, brain-penetrant inhibitor of MNK1/2 activity, which 

modifies cognitive behavior in mice.

We then asked whether ETC-168 treatment would modify the translational machinery in the 

VTA of Nlgn3KO mice. Using tandem mass tag (TMT)-based isobaric labeling we verified 

the de-regulation of translational machinery in VTA tissue from vehicle-treated Nlgn3KO 

versus vehicle treated wild type mice (Extended Data Fig. 7a–d). Gene set enrichment 

analysis45 uncovered an elevation in core proteins of cytoplasmic but not mitochondrial 

ribosomes (Fig. 3e, Extended Data Fig. 7e, g). MNK-inhibition with ETC-168 abolished the 

increase in core ribosomal proteins in Nlgn3KO VTA (Fig.3f, Extended Data Fig.7f, h). In 

acute slices from ETC-168-treated Nlgn3KO mice, AHA incorporation was significantly 

reduced as compared to vehicle treated Nlgn3KO mice, resulting in AHA incorporation 

levels similar to slices from vehicle treated wild-type mice (Fig.3g–i).

We then tested whether ETC-168 treatment restored oxytocin responses and social novelty 

responses in Nlgn3KO mice (Fig. 4a). Notably, short-term oral treatment (2 applications of 

5mg/kg ETC-168 over 26 hrs) of Nlgn3KO mice recovered the oxytocin-induced elevation of 

firing frequency seen in wild type mice (Fig. 4b, c). This treatment also fully restored social 

novelty responses, with no detectable effect on wild type mice (Fig. 4a, d–f, Extended Data 

Fig. 8). This pharmacologically recovered social recognition behavior was dependent on 

oxytocin receptor function (Extended Data Fig. 9). Importantly, ETC-168 treatment was well 

tolerated and remained effective in a long-term treatment regime (Extended Data Fig. 7a–c, 

and Extended Data Fig. 10). Thus, modification of translation homeostasis in Nlgn3KO mice 

by MNK inhibition restores oxytocin responses and social novelty responses.

This work uncovers an unexpected convergence between the genetic autism risk factor 

Nlgn3, translational regulation, oxytocinergic signaling, and social novelty responses. While 

loss of Nlgn3 impairs oxytocin responses in VTA DA neurons, the behavioral phenotype 

does not fully phenocopy genetic loss of oxytocin. Oxytocin KO mice exhibit impaired 

habituation in the social recognition task10 whereas Nlgn3KO mice habituate normally but 

exhibit a selective deficit in the response to a novel conspecific. This is likely due to 

differential roles of Nlgn3 and oxytocin across multiple neural circuits and over 

development. Moreover, Nlgn3 loss-of-function also impacts signaling through additional G-

protein coupled receptors23.

Hörnberg et al. Page 4

Nature. Author manuscript; available in PMC 2021 February 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



We propose that pharmacological inhibition of MNKs may provide a novel therapeutic 

strategy for neurodevelopmental conditions with altered translation homeostasis. 

Importantly, MNK loss-of-function appears to be overall well tolerated. MNK1/2 double-

knock-out mice are viable46 and several novel MNK inhibitors are entering clinical trials for 

cancer therapy47. Previously available MNK-inhibitors were greatly limited by specificity 

and brain penetrance. Our work not only highlights a new class of highly-specific, brain-

penetrant MNK inhibitors but also expands their application from Fragile X41 to a non-

syndromic model of ASD. The common disruption in translational machinery and 

phenotypic rescue in two very different genetic models highlights that genetic heterogeneity 

of ASD might be reduced to a smaller number of cellular core processes. This raises the 

possibility that pharmacological interventions targeting such core processes may benefit 

broader subsets of patient populations.

Methods

Mice

Male wild type, Nlgn3KO 19 and Fmr1KO mice48 were used for this study. Note that this 

strain of Nlgn3KO mice contains a transcriptional stop cassette19 preventing genetic 

compensation events that might be triggered in mutants expressing truncated mRNAs49. For 

dopamine neuron-specific manipulations DAT-Cre BAC transgenic mice were employed50. 

Mice were kept on a C57BL/6j background. All animals were group housed (weaning at P21 

– P23) under a 12h light – dark cycle (6:00 a.m. – 6:00 p.m.) with food and water ad libitum. 

All physiology and behavior experiments were performed during the light cycle. Embryos 

for cortical cultures were obtained from NMRI mice (Janvier). All the procedures performed 

at University of Lausanne and Biozentrum complied with the Swiss National Institutional 

Guidelines on Animal Experimentation and were approved by the respective Swiss Cantonal 

Veterinary Office Committees for Animal Experimentation.

Pharmacokinetics of ETC-168

A group of twenty-seven male C57BL/6 mice were administered with ETC-168 solution 

formulation in 7.5% NMP, 5% Solutol HS, 10% PG, 30% PEG-400, 47.5% Normal Saline at 

a dose of 10 mg/kg. Blood samples (approximately 60μl) were collected under light 

isoflurane anesthesia from retro orbital plexus at PD, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hr. 

Plasma samples were separated by centrifugation of whole blood and stored below −70°C 

until analysis. Immediately after collection of blood, brain samples were collected from each 

mouse at PD, 0.25, 0.5, 1, 2, 4, 8, 12 and 24 hr. Brain samples were homogenized using ice-

cold phosphate buffer saline (pH 7.4) and homogenates were stored below −70°C until 

analysis. Total homogenate volume was three times the tissue weight. All samples were 

processed for analysis by protein precipitation using acetonitrile and analyzed with fit-for-

purpose LC/MS/MS method (LLOQ – 2.00 ng/mL in plasma and 1.00 ng/mL in brain). 

Pharmacokinetic parameters were calculated using the non-compartmental analysis tool of 

Phoenix WinNonlin® (Version 6.3).
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Pharmacological treatment

For in vitro experiments, ETC-168 was dissolved in DMSO. For in vivo treatment, ETC-168 

was dissolved in 0.5% Methylcellulose (Sigma, M7140) and 0.1% Tween-80 (Sigma, 

P5188) in MilliQ water to 1.25 mg/ml, and sonicated for 30 min. Animals were gavaged 24h 

and 2h before behavioral assessment or tissue collection for acute treatment. In the chronic 

treatment regime, animals were treated every 24 h and two hours before start of the 

evaluation. The OXTR antagonist L-368,899 (Tocris, #2641) was dissolved in saline and 10 

mg/kg was applied via i.p. injection 2h before the start of behavioural assessments, or 15 

min before the final dose of ETC-168.

Stereotaxic injection

Injections of diluted (1:4) Red Retrobead™ were done at P19-P23 and performed under 

isoflurane anesthesia (Baxter AG, Vienna, Austria). The animals were placed in a stereotaxic 

frame (Kopf Instrument) and a single craniotomy was made over the NAc medial shell at the 

following stereotaxic coordinates: ML 0.55 mm, AP 1.5 mm, DV −4.05 mm from bregma. 

Injections were made with a 30-G Hamilton needle (Hamilton, 7762-03) for a total volume 

of 300 nL. Injection sites were confirmed post-hoc by immunostaining. For 

electrophysiological experiments, the animals were left 5-8 days after injection before the 

start of experiment.

For Nlgn3 conditional knock-down experiments, injections of purified AAV2-DIO-

miRNlgn3-GFP and AAV2-DIO-miR-GFP were performed as described previously31. 

Briefly, DAT-cre transgenic mice were injected at postnatal day 5 – 6 and a single 

craniotomy was made over the VTA at following stereotaxic coordinates: ML +0.15 mm, AP 

+0.2 mm, DV −4.2 mm from lambda for P5-P6. Injections were made with a 33-G Hamilton 

needle (Hamilton, 65460-02) for a total volume of 200 nL. Behavioral testing was performed 

at postnatal day 28 and injections sites were confirmed post-hoc by immunostaining as 

described previously31. Briefly, VTA::DANL3KD mice were included if a minimum of 20% 

of TH-positive cells in the VTA were GFP-positive. Mice were excluded from the analysis if 

their body weight was less than 75% of the body weight at the start of behavioral trials or in 

case post-hoc analysis revealed inefficient or off-target viral infection.

Habituation/novelty recognition task

Social recognition is considered to be commonly affected in individuals on the autism 

spectrum. Autistic individuals perform poorly on face identity recognition tasks, especially 

when a medium to high time delay (seconds to several minutes) between face presentation is 

applied51,52. To model social recognition in juvenile male mice we adopted previous 

protocols that had been developed for adult rodents10,53. In this test, recognition between 

juvenile male mice (postnatal day 26 – 32) was tested with 5 minute inter-trial intervals that 

mimic the timescales of recognition tasks from patient studies. An experimental cage similar 

to the animal’s home cage was used with grid, food, and water removed. The experimental 

animals were acclimated in the cage for 30 min before the start of the test. At the start of the 

first trial, a novel same-sex mouse (stimulus mouse: C57BL/6J juvenile male mice, P21-

P28) or an object (Lego block) was introduced into the cage for 2 min and mice were left to 

freely interact. This was repeated for 4 consecutive trials with 5 min in-between trial 
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intervals to allow habituation to the stimulus mouse or object. On the 5th trial, a novel mouse 

(littermate to the stimulus mouse) or a novel object (dice) was introduced. For the social 

stimulus, interaction was scored when the experimental mouse initiated the action and when 

the nose of the animal was oriented toward the social stimulus mouse only. For the object 

stimulus, interaction was scored when nose of the mouse was oriented 1 cm or less towards 

the object. The interaction time was used to calculate the recognition index as: (Interaction 

trial 5) - (Interaction trial 4). Social recognition in rodents has been reported to depend on 

oxytocin signaling11,54. To pharmacologically validate the recognition task, we treated mice 

with the oxytocin receptor antagonist (L-368,899 10 mg/kg injected intraperitoneally 2 hrs 

before testing). This treatment significantly suppressed recognition of novel conspecifics in 

this task (see Fig.1k,l).

Place-independent cue discrimination and reversal task

Adult male mice were used for this test. The test box (25 × 35 cm) was divided in a waiting 

and a reward zone by a gated plexiglass wall. Reward (condensed milk) was associated to 

one of the two lining patterns of a double tray (white tape vs brown sandpaper). The tray 

was turned in a pseudorandom fashion between trials in order to present the rewarded 

pattern on the right and the left 8 times within a daily session of 16 trials. Sliding lids were 

used to prevent nosepoke in the correct target after the mouse made a wrong choice, and to 

signal end of a trial and return to the waiting zone after the bait has been consumed. Before 

the start of the trial, mice were food deprived overnight and the reward was presented in the 

home cage to habituate to the reward. For the duration of the test, mice were food restricted 

overnight and receive food ad libitum after completion of the discrimination task. After the 

first night of food deprivation, mice were brought to the testing arena where they find 

condensed milk droplets (15 μl) in falcon lids similar to those used for the test. First day of 

habituation takes place in groups of cage mates, second day in individual session. Mice were 

shaped to shuttle to the waiting compartment of the arena after having consumed the reward. 

On day 1, mice were trained to find the reward only in one of two adjacent falcon lids that 

have been lined and mounted on little stages with a different pattern (brown sandpaper vs 

white tape). Each mouse undergoes 16 daily trials, with a cutoff of 20 minutes. Mice not 

completing 16 trials by the third testing day were excluded from further testing. Mice not 

attaining learning criterion for the first contingency (8 consecutive correct responses over 

two days), after 6 days of training did not go to the reversal learning step (nor received any 

treatment). Mice were trained for 6 consecutive days/week. Feeding was restricted to 1 g/

mouse overnight. On day 7 (day 1 of reversal learning training), mice received ETC-168 5 

mg/kg or vehicle by gavage 120 min before starting the tests for the duration of the reversal 

task. For the contingency reversal learning, mice were trained to nosepoke in the previously 

non-baited pattern in order to find reward. The training schedule was the same as before: 16 

trials / day, until attainment of learning criterion (second day when 8 consecutive correct 

responses have been performed).

Open field and marble burying

Male mice were placed individually in the center of a square open field arena (50 × 50 × 30 

cm) made of grey plastic for 7 minutes. Velocity (cm/sec) was analyzed using EthoVision10 

system (Noldus). The arena was cleaned with 70% ethanol between trials. For the marble 
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burying test, animals were placed in a standard Type II cage with 5 cm bedding containing 

20 identical black marbles distributed equally for 30 minutes. A marble was considered 

buried if at least 2/3 of the marble was covered.

Electrophysiology

Male mice (P28-P34) were deeply anesthetized with isoflurane (4% in O2, Vapor, Draeger) 

prior decapitation and brain isolation. Acute horizontal brain slices (250 μm thick) from the 

midbrain were cut with a vibrating microslicer (Leica VT1200S) in ice-cold oxygenated 

sucrose-based cutting solution containing: NaCl (87 mM), NaHCO3 (25 mM), KCl (2.5 

mM), NaH2PO4 (1.25 mM) sucrose (75 mM), CaCl2 (0.5), MgCl2 (7mM) and glucose (10 

mM) (equilibrated with 95% O2/ 5% CO2). Slices were immediately transferred to a storage 

chamber containing artificial cerebral spinal fluid (ACSF) containing: NaCl (125 mM), 

NaHCO3 (25 mM), KCl (2.5 mM), NaH2PO4 (1.25 mM), MgCl2 (2 mM), CaCl2 (2.5 mM) 

and glucose (11 mM), pH 7.4, constantly bubbled with 95% O2 and 5% CO2; 315-320 

mOsm. Slices were maintained at 35°C in ACSF for 60 min and then kept at room 

temperature before their transfer to the recording chamber. During the recordings, the slices 

were continuously perfused with ACSF at 35.0 ± 2.0°C throughout the experiments. 

Neurons were visualized with a LNScope (Luigs & Neumann, Germany) equipped with an 

oblique illumination condenser, a 60× objective (LUMPplanFI, NA 0.9) and a reflected 

illuminator (Olympus). Slices were illuminated with a collimated LED infrared light source 

(Thorlabs) and wLS LED illumination unit (Q-imaging). The recorded neurons in the VTA 

were identified by their anatomical localization and recorded if they were labeled with red 

retrobeads (or by morphology for recording from non-retrobead labelled cells). Their 

dopaminergic identity was subsequently confirmed by immunohistochemistry. Neuronal 

activity was recorded at the somata with borosilicate glass pipettes (4-6 MΩ) filled with an 

intracellular solution containing: K-gluconate (125 mM), KCl (20 mM), HEPES (10 mM), 

EGTA (10 mM), MgCl2 (2 mM), Na2ATP (2 mM), Na2-phosphocreatine (1 mM), Na3GTP 

(0.3 mM), 0.2% biocytin, pH 7.2 (with KOH); 312.3 mOsm. Electrophysiological recordings 

were obtained using a Multiclamp 700B amplifier and digitized at 10 kHz. Recording of 

spontaneous firing activity in VTA in dopaminergic neurons was achieved in voltage clamp 

cell-attached configuration after formation of a gigaseal.

Baseline activity was recorded during 2 or 3 minutes (sweeps of 5 second duration were 

acquired every 10 seconds) before Oxytocin (1 μM; TOCRIS, # 1910) applied to the 

perfusion reached the recording chamber. Recordings in the presence of Oxytocin were 

continued for 3 minutes. At the end of these recordings, a whole-cell configuration in 

voltage clamp (holding potential: −55 mV) was achieved by disruption of the gigaseal with 

gentle negative pressure applied through the recording pipette. A period of 5 minutes was 

then allowed for loading the neurons with biocytin. Finally, the recording pipette was 

carefully removed and the slice transferred to paraformaldehyde (4 % in PBS) for 

subsequent anatomical analysis. All TH+ cells, including cells negative for retrobeads, were 

used to analyze frequency. Only TH+ and retrobead positive cells recorded for a minimum 

of 3 min after OXT application were used to analyze OXT response, and all data points 

represent an average per minute.
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Ih recordings were performed in whole-cell voltage-clamp configuration after compensating 

the pipette capacitance and the series resistance (Rs) (15-20 MΩ; 40-50%, bandwidth 3.5 

kHz). Rs was monitored on-line and the experiments were discarded if the Rs changed 

>20%.

Neuronal input resistances (Ri) and membrane capacitances were evaluated for each neuron 

by injecting a voltage command of −5 mV for 200 ms duration, from a holding potential 

(HP) of −50 mV. The electrical capacitance of the neurons was determined by fitting a bi-

exponential function to the capacitive current at the beginning of a −50 mV pulse from a 

holding potential of −55 mV (pipette capaciantce was previously compensated during the 

cell-attached configuration prior whole-cell formation). The amplitude-weighted time 

constant (□vc) and measured current peak (Ipeak) amplitude was inserted into the following 

formula to calculate the electrical capacitance.

C[pF] =
weighted τvc[ms] ∗ Ipeak [pA]

5[mV]

Weighted T_VC was calculated from the the bi-exponential fitting as:

τvc =
A1 ∗ τ1 + A2 ∗ τ2

A1 + A2

Ih was evoked by injecting a series of 1.5 sec duration hyperpolarizing voltage commands 

(Vcomm) from a HP of −50 mV to −130 mV, in consecutive steps of 10 mV. Ih-tail currents 

were evoked at 130 mV at the end of each Vcomm before returning the HP to −50 mV. Ih-tail 

voltage dependency was calculated by plotting their normalized amplitudes. Maximal Ih-tail 

currents (Imax) as defined as recorded after the Vcomm to −130 mV, was set to 1; Minimal 

Ih-tail currents (Imin) as recorded after the HP of −50 mV, was set to 0. A Boltzmann function 

was fitted: I = Imin + (Imax − Imin) / 1 + exp [(V50 − Vcomm)/s]; where V50 is the half-

activation potential and s is the slope factor. After recording the Ih, each cell was switched to 

current clamp mode to record the resting membrane potential. The experimenter was blinded 

to the genotype and treatment condition.

Analysis of mRNA translation

Translational in the VTA was analyzed using FUNCAT55,56, where AHA is incorporated 

into cells and then detected using an alkyne tagged to Alexa 488. Mice were anesthetized at 

P28 and 250 μm thick coronal slices were cut on a vibratome and placed in ACSF for 45 min 

at 35°C to recover. The same cutting solution and ACSF as described for electrophysiology 

was used. Slices were moved to an incubation chamber and incubated for an additional 3h 

with 1mM AHA (Jena Bioscience, CLK-AA005). At the end of incubation, slices were 

transferred to ice-cold 4% PFA and left overnight at 4°C. Next day, slices were incubated for 

1.5h in a blocking solution containing 5% BSA (Sigma), 5% normal donkey serum and 

0.3% Trition X-100 in 1× PBS at agitation at RT. Slices were then washed 3× 5 min 

followed by incubation over night with gentle agitation with 500 μl Click-iT reaction 

cocktail according to the manual instructions (Click-iT Cell Reaction Buffer Kit, Invirogen, 
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C10269). Slices were then washed 3× 10 min with 1xPBS followed by incubation with anti-

TH (Millipor, AB1542, 1:1000) primary antibody at RT for 2h, washed three times in 1× 

PBS, followed by incubation for 2h at room temperature with a secondary antibody. The 

sections were then washed three times in 1× PBS before mounted onto microscope slides 

with ProLong Gold antifade (Invitrogen, p36930). Images were taken on an Olympus 

SpinSR spinning disk with a UPL S APO 30× objective (NA 1.5). All images were taken 

with the same laser power, gain and exposure settings, and analyzed using ImageJ. For 

analysis of AHA incorporation, 10 images were taken of the VTA and the Alexa-488 mean 

fluorescent intensity of 9-20 regions of interest (ROI) corresponding to TH+ somas were 

measured. The mean fluorescent intensity of cells per image was used for analysis, and the 

experimenter was blinded to genotype and treatment. All images within each experiment 

were processed in parallel using identical settings in ImageJ (NIH) and Adobe Photoshop 

CS 8.0 (Adobe systems).

For puromycin incorporation, 400 μm thick coronal slices were cut on a vibratome and 

placed in ACSF (in mM: 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 20 Glucose, 

26 NaHCO3, 95% O2/5% CO2) for 30 min at RT followed by 2h at 32°C. 5 μg/ul puromycin 

(Sigma) was added for 45 min to label newly synthesized proteins. Sections were snap 

frozen and subsequently lysed in 10mM Hepes, 1% SDS, 1mM NaF, 1mM NaVO4 

containing protease and phosphatase inhibitor cocktail (Roche Applied Science), sonicated 

and incubated for 10min at 95°C. Puromycin incorporation was measured by western blot 

(see ‘Western blot’ for detailed methods) using mouse anti-puromycin antibody (EQ0001, 

Kerafast). The results were normalized to signal obtained with anti-calnexin antibodies run 

at the same time on a different blot.

Western blot and AlphaLISA immunoassay

Cortical neurons and brain tissue were homogenized in lysis buffer containing NaCl 137 

mM, KCl, 2.7 mM, Na2HPO4 10 mM, KH2PO4, 1.8 mM, EDTA 5 mM, Triton 1%, and 

complete protease and phosphatase inhibitors (Roche Applied Science). Immunoblotting 

was done with HRP-conjugated secondary antibodies and Pierce ECL Western Blotting 

Substrate. The following primary antibody was used in this study: p-eIF4E (Abcam, 

ab76256 1:1000), eIF4E (Abcam, ab47482 1:1000), p-ERK1/2 (Cell Signaling, 4370S 

1:1000), ERK1/2 (Cell Signaling, 4695S 1:1000), p-eIF4G (Cell Signaling, 2441S 1:1000), 

eIF4G (Cell Signaling, 2498 1:1000), p-MNK1 (Cell Signaling, 2111, 1:1000), MNK1 (Cell 

Signaling, 2195S, 1:1000), GAPDH (Cell Signaling, 5174 1:2000) and calnexin (Stressgen, 

SPA-865 1:2000). Loading controls were run on the same gel, and for some experiments 

Mini PROTEAN® TGX Stain-Free™ Gels (Bio-Rad) were used as loading controls. Signals 

were acquired using an image analyzer (Bio-Rad, ChemiDoc MP Imaging System) and 

images were analyzed and prepared using ImageJ.

For additional measurements of eIF4E phosphorylation state, the AlphaLISA SureFire Ultra 

p-eIF4E (Ser209) Assay Kits (PerkinElmer) were used according to the manufactures 

protocol. AlphaLISA signals were measured using a Tecan SPARK plate reader on 

recommended settings.
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Immunohistochemistry and imaging

Animals were transcardially perfused with fixative (4% paraformaldehyde in 100mM 

phosphate buffer, pH 7.4) at P26-P32. Brains were post-fixed overnight at 4°C, incubated in 

30% sucrose in 1xPBS for 48h, and snap frozen on dry ice. Tissues were sectioned at 35 μm 

on a cryostat (Microm HM650, Thermo Scientific). Floating sections were kept in 1×PBS 

before incubation with blocking solution containing 0.5% Triton X-100 in 1× TBS and 10% 

normal donkey serum. The slices were incubated with primary antibody at 4°C overnight 

and washed three times in 1× TBS containing 0.5% Triton X-100, followed by incubation 

for 2 hours at room temperature with a secondary antibody. The sections were washed three 

times in 1× TBS containing 0.5% Triton X-100 before mounted onto microscope slides with 

ProLong Gold antifade (Invitrogen, p36930). For post-hoc confirmation of TH positive cells 

after electrophysiology, the sections were fixed in the same fixative as described above, 

washed 3× with 1× PBS before blocking and incubation with anti-TH antibody using same 

method as above. The following primary antibodies were used for this study: sheep anti-TH 

(Millipor, AB1542, 1:1000) and mouse-anti neurophysin-1 (Millipore, MABN844, 1:2000). 

Secondary antibodies used were: donkey anti-sheep IgG-Cy3 (713-165-147), donkey anti-

sheep Cy5 (713-175-147), donkey anti-rabbit IgG Cy3 (711-165-152), goat anti-mouse Cy2 

(714-225-150) all from Jackson ImmunoResearch. Streptavidin DyLight 488 (Thermo 

Scientific #21832, 1mg/ml), was used to visualize biocytin. Hoechst dye was co-applied 

with the secondary antibody at a final concentration of 0.5 μg/ml. Images were acquired on a 

custom-made dual spinning disk microscope (Life Imaging Services GmbH, Basel 

Switzerland) using 10× and 40× objectives. Images were taken bilaterally along the whole 

VTA and PVN dorso-ventral axis and images from at least 4 (VTA) or 5 (PVN) planes were 

analyzed. OXT+ cells in the PVN were counted manually. Neurophysin-1 area coverage and 

puncta intensity was measured using the particle measurement tool in ImageJ on sum 

projections. All images within each experiment were processed in parallel with identical 

settings using ImageJ and Adobe Photoshop CS 8.0 (Adobe systems).

Fluorescent in situ hybridization

Mice were deeply anesthetized using isoflurane inhalation. Brains were quickly removed 

and snap frozen on dry ice prior to storage at −80°C. Brains were cut on a cryostat into 10 

μm sections, adhered to Superfrost ultra plus slides (Thermo Scientific) and stored at −80°C. 

Sections were fixed for 30 min in 4% PFA before being processed using the RNAscope® 

Fluorescent Multiplex Kit (ACD) according to the manufacturers instruction. The following 

probes were used: oxtr (C3 #412171), v1ar (C3 # 418061), th (Slc6a3-C2, #315441) and 

nlgn3 (C1 #497661). Probes were combined as oxtr/th/nlgn3 or v1ar/th/nlgn3. Amp-4-Alt B 

were used for all combinations. Sections were imaged on a custom-made dual spinning disk 

microscope (Life Imaging Services GmbH, Basel Switzerland) using 40× objective, with 12 

section z-stacks with 0.2 um in-between z sections. Images were processed in ImageJ by 

doing sum projection of the z-stacks, followed by analysis of fluorescent intensity and 

number of puncta. Cell types were identified based on the presence of th and DAPI. A region 

of interest (ROI) was drawn around the cell to define the area using DAPI, and only cells 

with no adjacent DAPI staining was used to avoid false positives from signals from a second 

cell. Dots in the ROI were manually counted and fluorescent intensity was analyzed using 
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ImageJ. Images were assembled with identical settings using ImageJ and Adobe Photoshop 

CS 8.0 (Adobe systems).

Cell culture

Cortical cultures were prepared from E16.5 mouse embryos. Neocortices were dissociated 

by addition of papain (130 units, Worthington Biochemical LK003176) for 30 min at 37 °C. 

Cells were maintained in neurobasal medium (Gibco 21103-049) containing 2% B27 

supplement (Gibco 17504-044), 1% Glutamax (Gibco 35050-038), and 1% penicillin/

streptomycin (Sigma P4333). At DIV14, the cells were treated with either vehicle (DMSO) 

or different doses of ETC-168 for 3 hours before harvesting for western blot.

Proteomic analysis

VTA tissue was microdissected from coronal sections using anatomical landmarks. 

Dissected tissue was snap frozen in liquid nitrogen. Successful recovery of proteins from 

dopaminergic neurons was confirmed by quantitative assessment of enrichment of 

dopaminergic markers (dopamine transporter, tyrosine hydroxylase, dopamine 

decarboxylase) as compared to other brain regions (Extended data Fig.4a).

Sample preparation for LC-MS analysis—Tissue was washed twice with PBS and 

dissolved in 50 μl lysis buffer (1% sodium deoxycholate, 0.1M ammoniumbicarbonate), 

reduced with 5mM TCEP for 15 min at 95°C and alkylated with 10mM chloroacetamide for 

30min at 37°C. Samples were digested with trypsin (Promega) at 37°C overnight (protein to 

trypsin ratio: 50:1). To each peptide samples an aliquot of a heavy reference peptide mix 

containing 10 chemically synthesized proteotypic peptides (Spike-Tides, JPT, Berlin, 

Germany) was spiked into each sample at a concentration of 5 fmol of heavy reference 

peptides per 1μg of total endogenous protein mass. Then, the peptides were cleaned up using 

iST cartridges (PreOmics, Munich) according to the manufacturer’s instructions. Samples 

were dried under vacuum and stored at −80 °C until further use.

Targeted PRM-LC-MS analysis of protein isoforms—In a first step, parallel 

reaction-monitoring (PRM) assays57 were generated from a mixture containing 100 fmol of 

each heavy reference peptide and shotgun data-dependent acquisition (DDA) LC-MS/MS 

analysis on a Thermo Orbitrap Fusion Lumos platform (Thermo Fisher Scientific). The 

setup of the μRPLC-MS system was as described previously (Pubmed-ID: 27345528). 

Chromatographic separation of peptides was carried out using an EASY nano-LC 1200 

system (Thermo Fisher Scientific), equipped with a heated RP-HPLC column (75 μm × 30 

cm) packed in-house with 1.9 μm C18 resin (Reprosil-AQ Pur, Dr. Maisch). Peptides were 

analyzed per LC-MS/MS run using a linear gradient ranging from 95% solvent A (0.15% 

formic acid, 2% acetonitrile) and 5% solvent B (98% acetonitrile, 2% water, 0.15% formic 

acid) to 45% solvent B over 60 minutes at a flow rate of 200 nl/min. Mass spectrometry 

analysis was performed on Thermo Orbitrap Fusion Lumos mass spectrometer equipped 

with a nanoelectrospray ion source (both Thermo Fisher Scientific). Each MS1 scan was 

followed by high-collision-dissociation (HCD) of the 10 most abundant precursor ions with 

dynamic exclusion for 20 seconds. Total cycle time was approximately 1 s. For MS1, 1e6 

ions were accumulated in the Orbitrap cell over a maximum time of 100 ms and scanned at a 
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resolution of 120,000 FWHM (at 200 m/z). MS2 scans were acquired at a target setting of 

1e5 ions, accumulation time of 50 ms and a resolution of 30,000 FWHM (at 200 m/z). 

Singly charged ions and ions with unassigned charge state were excluded from triggering 

MS2 events. The normalized collision energy was set to 30%, the mass isolation window 

was set to 1.4 m/z and one microscan was acquired for each spectrum.

The acquired raw-files were database searched against a mouse database (Uniprot, download 

date: 2017/04/18, total of 34,490 entries) by the MaxQuant software (Version 1.0.13.13). 

The search criteria were set as following: full tryptic specificity was required (cleavage after 

lysine or arginine residues); 3 missed cleavages were allowed; carbamidomethylation (C) 

was set as fixed modification; Arg10 (R), Lys8 (K) and oxidation (M) as variable 

modification. The mass tolerance was set to 10 ppm for precursor ions and 0.02 Da for 

fragment ions. The best 6 transitions for each peptide were selected automatically using an 

in-house software tool and imported to Skyline (version 4.1 (https://brendanx-

uw1.gs.washington.edu/labkey/project/home/software/Skyline/begin.view). A mass isolation 

lists containing all selected peptide ion masses were exported form Skyline, split into 8 mass 

lists by charge, c-terminal amino acid and transition and precursor ions. The mass lists were 

then imported into the Lumos operating software for SureQuant analysis using the following 

settings: The resolution of the orbitrap was set to 30k (120k) FWHM (at 200 m/z) for heavy 

(light) peptide ions and the fill time was set to 54 (246) ms, respectively, to reach a target 

value of 1e6 ions. Ion isolation window was set to 0.4 Th and the scan range was set to 

150-1500 Th. The mass window for triggering heavy PRM scans was set to 10 ppm and the 

depended PRM triggering threshold for the light channel was set to a minimum of 2 detected 

transitions. A MS1 scan using the same conditions are for DDA was included in each MS 

cycle. Each condition was analyzed in biological quadruplicates or quintuplicates. All raw-

files were imported into Skyline for protein / peptide quantification. To control for variation 

in sample amounts, the total ion chromatogram (only comprising peptide ions with two or 

more charges) of each sample was determined by Progenesis QI (version 2.0, Waters) and 

used for normalization. A summary of the peptides used is displayed in Supplementary 

Table 1.

Global Proteome analysis using shotgun proteomics—1 μg of peptides of each 

sample were subjected to LC–MS analysis using a using a Q-Exactive HF mass 

spectrometer connected to an electrospray ion source (both Thermo Fisher Scientific) as 

recently specified58 and a custom-made column heater set to 60°C. In brief, peptide 

separation was carried out using an EASY nLC-1000 system (Thermo Fisher Scientific) 

equipped with a RP-HPLC column (75μm × 30cm) packed in-house with C18 resin 

(ReproSil-Pur C18–AQ, 1.9μm resin; Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) 

using a linear gradient from 95% solvent A (0.1% formic acid, 2% acetonitrile) and 5% 

solvent B (98% acetonitrile, 0.1% formic acid) to 45% solvent B over 60 min at a flow rate 

of 0.2μl/min. 3x106 and 105 ions were accumulated for MS1 and MS2, respectively, and 

scanned at a resolution of 60,000 and 15,000 FWHM (at 200 m/z). Fill time was set to 110 

ms for MS1 and 50 ms for MS2 scans. For MS2, a normalized collision energy of 28% was 

employed, the ion isolation window was set to 1.4 Th and the first mass was fixed to 100 Th. 

To determine changes in protein expressions across samples, a MS1 based label-free 
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quantification was carried out. Therefore, the generated raw files were imported into the 

Progenesis QI software (Nonlinear Dynamics, Version 2.0) and analyzed using the default 

parameter settings. MS/MS-data were exported directly from Progenesis QI in mgf format 

and searched against a decoy database of the forward and reverse sequences of the predicted 

proteome from mus musculus (Uniprot, download date: 2017/04/18, total of 34,490 entries) 

using MASCOT (version 2.4.1). The search criteria were set as following: full tryptic 

specificity was required (cleavage after lysine or arginine residues); 3 missed cleavages were 

allowed; carbamidomethylation (C) was set as fixed modification; oxidation (M) as variable 

modification. The mass tolerance was set to 10 ppm for precursor ions and 0.02 Da for 

fragment ions. Results from the database search were imported into Progenesis QI and the 

final peptide measurement list containing the peak areas of all identified peptides, 

respectively, was exported. This list was further processed and statically analyzed using our 

in-house developed SafeQuant R script (SafeQuant, https://github.com/eahrne/SafeQuant 
58). The peptide and protein false discovery rate (FDR) was set to 1% using the number of 

reverse hits in the dataset. All quantitative analyses were performed in biological 

quintuplicates. Proteins with less than 1 peptide were excluded from the analysis.

The results details of the proteomics experiments carried out including identification scores, 

number of peptides quantified, normalized (by sum of all peak intensities) peak intensities, 

log2 ratios, coefficients of variations and p-values for each quantified protein. A summary is 

displayed in Supplementary table 2.

Global Proteome analysis using tandem mass tags—Sample aliquots (prepared as 

described above) containing 10 μg of peptides were dried and labeled with tandem mass 

isobaric tags (TMTpro 16-plex, Thermo Fisher Scientific) according to the manufacturer’s 

instructions. To control for ratio distortion during quantification, a peptide calibration 

mixture consisting of six digested standard proteins mixed in different amounts were added 

to each sample before TMT labeling as recently described58. After pooling the differentially 

TMT labeled peptide samples, peptides were again desalted on C18 reversed-phase spin 

columns according to the manufacturer’s instructions (Macrospin, Harvard Apparatus) and 

dried under vacuum. TMT-labeled peptides were fractionated by high-pH reversed phase 

separation using a XBridge Peptide BEH C18 column (3,5 μm, 130 Å, 1 mm × 150 mm, 

Waters) on an Agilent 1260 Infinity HPLC system. Peptides were loaded on column in 

buffer A (ammonium formate (20 mM, pH 10) in water) and eluted using a two-step linear 

gradient starting from 2% to 10% in 5 minutes and then to 50% (v/v) buffer B (90% 

acetonitrile / 10% ammonium formate (20 mM, pH 10) over 55 minutes at a flow rate of 42 

μl/min. Elution of peptides was monitored with a UV detector (215 nm, 254 nm). A total of 

36 fractions were collected, pooled into 12 fractions using a post-concatenation strategy as 

previously described59, dried under vacuum.

1μg of peptides were LC-MS analyzed as described previously58. Chromatographic 

separation of peptides was carried out using an EASY nano-LC 1000 system (Thermo Fisher 

Scientific), equipped with a heated RP-HPLC column (75 μm × 37 cm) packed in-house 

with 1.9 μm C18 resin (Reprosil-AQ Pur, Dr. Maisch). Aliquots of 1 μg total peptides were 

analyzed per LC-MS/MS run using a linear gradient ranging from 95% solvent A (0.15% 

formic acid, 2% acetonitrile) and 5% solvent B (98% acetonitrile, 2% water, 0.15% formic 
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acid) to 30% solvent B over 90 minutes at a flow rate of 200 nl/min. Mass spectrometry 

analysis was performed on Q-Exactive HF mass spectrometer equipped with a 

nanoelectrospray ion source (both Thermo Fisher Scientific). Each MS1 scan was followed 

by high-collision-dissociation (HCD) of the 10 most abundant precursor ions with dynamic 

exclusion for 20 seconds. Total cycle time was approximately 1 s. For MS1, 3e6 ions were 

accumulated in the Orbitrap cell over a maximum time of 100 ms and scanned at a 

resolution of 120,000 FWHM (at 200 m/z). MS2 scans were acquired at a target setting of 

1e5 ions, accumulation time of 100 ms and a resolution of 30,000 FWHM (at 200 m/z). 

Singly charged ions and ions with unassigned charge state were excluded from triggering 

MS2 events. The normalized collision energy was set to 35%, the mass isolation window 

was set to 1.1 m/z and one microscan was acquired for each spectrum.

The acquired raw-files were searched against a protein database containing sequences of the 

predicted SwissProt entries of mus musculus (www.ebi.ac.uk, release date 2019/03/27), the 

six calibration mix proteins58 and commonly observed contaminants (in total 17,412 

sequences) using the SpectroMine software (Biognosys, version 1.0.20235.13.16424) and 

the TMT 16-plex default settings. In brief, the precursor ion tolerance was set to 10 ppm and 

fragment ion tolerance was set to 0.02 Da. The search criteria were set as follows: full 

tryptic specificity was required (cleavage after lysine or arginine residues unless followed by 

proline), 3 missed cleavages were allowed, carbamidomethylation (C), TMTpro (K and 

peptide n-terminus) were set as fixed modification and oxidation (M) as a variable 

modification. The false identification rate was set to 1% by the software based on the 

number of decoy hits. Proteins that contained similar peptides and could not be 

differentiated based on MS/MS analysis alone were grouped to satisfy the principles of 

parsimony. Proteins sharing significant peptide evidence were grouped into clusters. 

Acquired reporter ion intensities in the experiments were employed for automated 

quantification and statically analysis using a modified version of our in-house developed 

SafeQuant R script (v2.3, ref.58). This analysis included adjustment of reporter ion 

intensities, global data normalization by equalizing the total reporter ion intensity across all 

channels, summation of reporter ion intensities per protein and channel, calculation of 

protein abundance ratios and testing for differential abundance using empirical Bayes 

moderated t-statistics. Finally, the calculated p-values were corrected for multiple testing 

using the Benjamini−Hochberg method. A summary is displayed in Supplementary Table 3.

Raw MS data associated with the manuscript have been deposited in to the 

ProteomeXchange Consortium via the PRIDE60 partner repository with the dataset identifier 

PXD018808 and 10.6019/PXD018808.

Gene ontology, network and gene set enrichment analysis

Gene ontology (GO) analysis was performed using DAVID classification system (https://

david.ncifcrf.gov). Proteins significantly different between vehicle treated wild type and 

Nlgn3 KO (P<0.05) were compared to all proteins detected in the proteomic screen using the 

GO GOTERM_BP_DIRECT annotation data set with minimum number of hits set to 5 and 

maximum P-value threshold to 0.05 with Benjamini correction (P<0.05). Network analysis 

was obtained using String v11 database61. Each node represents a protein altered in 
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Nlgn3KO VTA compared to wild type VTA in vehicle treated conditions, and each edge 

show protein-protein interaction as determined by experiments and databases. The highest 

confidence (0.900) was used for interaction scores. Disconnected nodes and networks 

containing >6 proteins were removed. Gene set enrichment analysis for TMT proteomic data 

was performed using all proteins detected with at least 2 peptides with PSEA-Quant45. The 

list of GO terms with a Q-value of Q<0.01 were summarized using REVIGO62 with small 

(0.5) allowed similarity, and displayed using Cytoscape.

Statistical analysis

The animals were randomly assigned to each group the moment of drug treatment, and 

minimum 3 independent cohorts were used for behavioral experiments. Statistical analysis 

was conducted with GraphPad Prism 8 (San Diego, CA, USA). The normality of sample 

distributions was assessed and when violated non-parametrical tests were used. When 

normally distributed, the data were analyzed with unpaired t-test for comparison between 

two groups, while for multiple comparisons one-way ANOVA and repeated measures (RM) 

ANOVA were used. For the analysis of variance with 2 factors (two-way ANOVA, RM two-

way ANOVA and RM two-way ANOVA by both factors), normality of sample distribution 

was assumed, and followed by Bonferroni post-hoc test. Differences in frequency 

distribution was assessed using the Kolmogorov-Smirnov test. All the statistical tests 

adopted were two-sided. When comparing two samples distributions similarity of variances 

was assumed, therefore no corrections were adopted. Outliers were identified using ROUTS 

test on the most stringent setting (Q=0.1%). Data are represented as the mean ± s.e.m. and 

the significance was set at P<0.05.
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Extended Data

Extended Data Fig. 1. Loss of social recognition in Nlgn3KO mice.
a-b, Mean social interaction time and data for individual mice in the social habituation/

recognition test plotted for (a) wild type (n=11) and (b) Nlgn3KO mice (n=12). c,d, Mean 

social interaction time and data for individual mice plotted for (c) DATCre control mice 

(n=10) and (d) DATCre::Nlgn3KO mice (n=11). e, Example for validation of targeted gene 

knockdown (n=8 mice) from AAV2-DIO-miRNL3-GFP viruses (green) in TH-positive cells 

(red) in the VTA of DATCre mice. f, Quantification of percentage of TH-positive cells in 

VTA and SNc of DATCre mice that express GFP from the AAV2-DIO-miR-GFP vector 

(n=8). g, h, Mean social interaction time and data for individual mice plotted for control 

mice (g, VTA::DA-miR, n=10) and VTA DA-specific Nlgn3 loss-of-function (h, VTA::DA-

NL3, n=8) in the social habituation/recognition test. g, Mean social interaction time and data 
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for individual mice plotted for (i) vehicle (n=12) and (j) OXTR-A treated mice (n=11). All 

error bars are s.e.m. RM one-way ANOVA followed by Bonferroni’s post-hoc test for 

planned multiple comparison for a, b, c, g, h, i, j; Friedman test followed by Dunn’s post-

hoc test for planned multiple comparison for d. See Supplementary information for 

additional statistics.

Extended Data Fig. 2. Properties of NAc projecting VTA DA neurons in wild type and Nlgn3KO 

mice.
(a) Representative Ih currents recorded from wild type (black) and Nlgn3KO (blue) neurons 

evoked by consecutive hyperpolarizing voltage steps of −10 mV from −50 to −130 mV 

(bottom panel). At the end of each voltage step the voltage command was returned to −130 

mV to evoke tail currents (Ih-tail, depicted with an arrowhead). Red lines show fit of a single 

exponential function used to assess the Ih activation kinetics. (b) Averaged Ih amplitudes 

were plotted against the voltage step. Ih current amplitudes were measured at the steady state 

(indicated with • in a) and the leak current values, as defined as the amplitude of the 

instantaneous currents at the onset of voltage steps (indicated with an * in a), subtracted. (c) 

Voltage-dependency of Ih-tail currents. Ih-tail amplitudes were normalized relative to Ih-tail at 

– 50 mV and −130 mV. Solid lines show fits with a Boltzmann function for least square fit. 

P-value on graph show difference in V50 between datasets. (d) Activation kinetics of the Ih 

as determined by the τ values obtained from the exponential fitting, as a function of the 

voltage commands voltage. Only the values obtained from commands between −130 mV to 

−90 mV were evaluated. (e) Comparison between groups of the resting membrane potential 

as assessed with current clamp recordings. (f) Membrane capacitance (Cm) of wild type and 
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Nlgn3KO DA neurons. (g) Input resistant values (Rin) for wild type and Nlgn3KO.Cm and Ri 

values were obtained in voltage clamp mode by applying a −5 mV (200 ms) voltage 

command from a holding potential set at −50 mV. All error bars are s.e.m. P-value on graph 

represent genotype difference. n=5 mice per genotype, numbers on graphs represent cells. 

RM two-way ANOVA for b; Boltzmann sigmoidal for c; Mixed-effects model for d; 
unpaired two-sided t-test for e, f; two-sided Mann-Whitney test for g. See Supplementary 

information for additional statistics.

Extended Data Fig. 3. Oxytocinergic innervation to VTA and vasopressin receptor 1a mRNA 
levels are not affected in Nlgn3KO mice.
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a, Representative images from 3 mice per genotype of neurophysin 1 (green), a cleavage 

product of the oxytocin neuropeptide precursor that is transported in vesicles together with 

oxytocin63, and TH (red) immunofluorescence in the VTA of wild type and Nlgn3KO mice. 

Note that oxytocinergic axons arise from multiple hypothalamic nuclei, including the 

paraventricular nucleus. b, Mean VTA area coverage and c, puncta fluorescence in the VTA 

from wild type and Nlgn3KO mice. n= 3 mice per genotype. Number in brackets represent 

sections. d, Quantification of mean th intensity per TH+ cell. e, Quantification of Nlgn3 
puncta per 100um2 TH+ cell. f, Quantification of Oxtr puncta per 100um2 TH+ cell. n=WT: 

280 cells from 4 mice; Nlgn3KO: 265 cells from 3 mice for d, e, f. g, targeted proteomic 

(PRM) measurements for oxytocin receptor (left) and vasopressin receptor 1A (right) 

proteins in VTA. Number on bars indicate mice. h, Representative images of FISH labeling 

of avrp1a (cyan), th (red) and Nlgn3 (green) in the VTA from wild type and Nlgn3KO mice. 

Experiment was repeated independently twice. i, Quantification of mean avpr1a intensity per 

TH+ cell. j, Quantification of avpr1a puncta per 100um2 TH+ cell from wild type and 

Nlgn3KO VTA. n: wild type=169 cells from 4 animals; Nlgn3 KO=200 cells from 3 animals 

for i and j. All error bars are s.e.m. Unpaired two-sided t-test for b, c, g; two-sided Mann-

Whitney U test for d, e, f, i, j. See Supplementary information for additional statistics.
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Extended Data Fig. 4. Ribosomal proteins and translation processes are altered in Nlgn3KO mice.
a, TMT proteomics: graphs plotting abundance of dopamine markers and synaptic proteins 

from VTA, cortex and hippocampus. Dopaminergic markers are strongly enriched in VTA 

samples. n= 5 animals per brain region. b, c, Proteomic analysis of wild type and Nlgn3KO 

VTA, n=5 mice per genotype. b, Enrichment of GO terms for biological processes for 

proteins significantly altered (P<0.05) in Nlgn3KO mice compared to wild type. c, Network-

based analysis of proteins altered in Nlgn3KO VTA (P<0.01). Blue nodes indicate 

downregulated proteins, red nodes upregulated proteins, light blue lines indicate interactions 

known from database and purple lines interactions experimentally determined. Disconnected 

nodes and nodes containing less than 6 proteins are not shown. See methods for additional 
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information of statistics and analysis parameters. d, Mean puromycin incorporation in acute 

cortical slices from adult wild type and Nlgn3KO mice. All error bars are s.e.m. Two-sided 

Mann-Whitney U test for d. See Supplementary information for additional statistics.

Extended Data Fig. 5. Pharmacological profile of novel MNK1/2 inhibitor ETC-168
a, b, Quantification of (a) p-ERK1/2 and (b) p-eIF4G levels compared to non-

phosphorylated protein in cortical neurons at DIV14 treated with ETC-168. n=8 replicates 

from 3 independent experiments. c-d, Quantification of (c) eIF4E (d) ERK1/2 and (e) eIF4G 
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levels normalized to calnexin in cortical neurons at DIV14 treated with ETC-168. One-way 

ANOVA. n=8 replicates from 3 independent experiments. f, Representative western blot of 

cerebellar lysate from wild type mice treated with vehicle or ETC-168 and quantification of 

p-eIF4E levels compared to eIF4E. n: vehicle=4; 1 mg/kg=3; 5 mg/kg=6. g, Representative 

western blot of VTA lysate from wild type mice and Nlgn3KO mice (n=7 mice per 

genotype). h, Quantification of p-eIF4E compared to eIF4E and eIF4E levels in VTA of wild 

type mice and Nlgn3KO mice. n= 7 mice per genotype. i, Normalized p-eIF4E AlphaLisa 

counts from wild type and Nlgn3KO VTA lysate. n= 7 mice per genotype. j, k, 

Representative western blot (j) and quantification (k) of p-MNK1 and MNK1 levels in VTA 

lysate from wild type mice and Nlgn3KO mice. n= 7 mice per genotype. l, Normalized p-

eIF4E AlphaLisa counts from VTA from wild type treated with 5mg/kg ETC-168 for 24h 

+2h. n= 5 mice per genotype. All error bars are s.e.m. One-way ANOVA for a, c, d, e, f; 
Kruskal-Wallis test for b; Unpaired two-sided t-test for h, k; two-sided Mann-Whitney test 

for i, l. See Supplementary information for additional statistics.

Extended Data Fig. 6. ETC-168 treatment restores cognitive rigidity in Fmr1KO mice.
a, Schematics of the Place-independent cue discrimination and reversal task. This task was 

chosen given that phenotypes in cognitive rigidity tasks have been replicated in multiple 

studies on this model. b, Mean consecutive correct responses plotted for Fmr1WT/y and 

Fmr1KO/y mice. c, Treatment schedule of Fmr1WT/y and Fmr1KO /y mice. Animals were 

treated daily with vehicle during the learning phase and with 5 mg/kg ETC-168 during the 

reversal phase 2 hours before the start of the test. d, Mean consecutive correct responses 
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plotted for vehicle treated Fmr1WT /y and vehicle or ETC-168 Fmr1KO/y mice. Numbers in 

brackets indicate mice. Error bars report s.e.m. RM two-way ANOVA followed by 

Bonferrroni’s post-hoc test for b, d. See Supplementary information for additional statistics.

Extended Data Fig. 7. Effect of ETC-168 treatment on protein abundance in wild type and 
Nlgn3KO mice.
a, Experimental outline. b, Representative western blot and quantification of p-eIF4E 

compared to eIF4E levels in VTA lysate from wild type mice treated with vehicle or 5mg/kg 

ETC-168 for 7 consecutive days. n: vehicle=6; ETC-168: 7. c, Normalized p-eIF4E 
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AlphaLisa counts from wild type mice VTA treated with vehicle or 5mg/kg ETC-168 for 7 

consecutive days. n: vehicle=6; ETC-168: 7. d, Graphs plotting TMT proteomic normalized 

protein expression of dopaminergic markers in VTA from vehicle or ETC-168 treated wild 

type and Nlgn3KO mice. Animals were treated for 7 days. n=4 mice per genotype and 

treatment. e,f, Graphical representation of Molecular function GO terms enriched in (e) 

Nlgn3KO versus wild type vehicle treated and (f) Nlgn3KO ETC-168 versus wild type 

vehicle treated VTA. GO terms were summarized using REVIGO and only terms with 

Q<0.01 are represented. g,h, TMT proteomic comparison of VTA from (g) vehicle-treated 

mice and (h) ETC-168 treated Nlgn3KO versus wild type. Relative frequency of log2 fold 

change in core proteasome n abundance (Nlgn3KO/wild type) is plotted. n= 4 mice per 

genotype and treatment. All error bars are s.e.m. Unpaired two-sided t-test for b; two-sided 

Mann-Whitney U test for c. Kolmogorov-Smirnov test for g, h. See methods and 

Supplementary information for additional statistics.

Extended Data Fig. 8. Effect of short-term ETC-168 treatment on social recognition in wild type 
and Nlgn3KO mice.
a-d, Time course of time interacting in the social habituation/recognition test for mice after 

short-term treatment with ETC-168. (a) Wild type vehicle (n=12), (b) wild type ETC-168 

(n=10), (c) Nlgn3KO vehicle (n=9), and (d) Nlgn3KO ETC-168 (n=11). Error bars report 

s.e.m. Friedmans test followed by Dunn’s post hoc test for planned multiple comparison for 

a, c, d, RM one-way ANOVA followed by Bonferroni’s post-hoc test for planned multiple 

comparison for b. See Supplementary information for additional statistics.
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Extended Data Fig. 9. Effect of ETC-168 treatment is dependent on the oxytocin receptor.
a, Experimental outline. b, Mean social interaction time in Nlgn3KO mice treated with 5 

mg/kg ETC-168 and either vehicle or 10 mg/kg OXTR-A. Number in brackets indicate 

mice. c, Social recognition index for Nlgn3KO mice treated with ETC-168 and vehicle, or 

ETC-168 and OXTR-A. Number on graph indicate mice. d-e, Individual values and mean of 

time interacting in the social habituation/recognition test after treatment with (d) ETC-168 + 

vehicle (n=9), or (e) ETC-168 + OXTR-A (n=8). Error bars report s.e.m. RM two-way 

ANOVA followed by Bonferroni’s post-hoc test for b; unpaired two-sided t-test for c; RM 

one-way ANOVA followed by Bonferroni’s post-hoc test for planned multiple comparison 

for d, e. See Supplementary information for additional statistics.
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Extended Data Fig. 10. Effect of long-term ETC-168 treatment on behavior in wild type and 
Nlgn3KO mice.
a, Experimental schematics of chronic ETC-168 treatment and behavior schedule. Number 

of animals per treatment conditions for all behaviors in b-p: wild type vehicle=9, wild type 

ETC-168=10, Nlgn3KO vehicle=8, Nlgn3KO ETC-168=9. b, c, Mean social interaction time 

in (b) wild type and (c) Nlgn3KO mice treated for 8 days with vehicle or 5 mg/kg ETC-168. 

d, Social recognition index for wild type and Nlgn3KO mice treated with vehicle or 5 mg/kg 

ETC-168. Numbers in brackets indicate mice. e-f, Individual values and mean time 
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interacting in the social habituation/recognition test after chronic treatment with ETC-168 

for (e) wild type vehicle (n=9), (f) wild type ETC-168 (n=10), (g) Nlgn3KO vehicle (n=8), 

and (h) Nlgn3KO ETC-168 (n=9). i, Experimental schematics of object habituation/

recognition test in juvenile mice. j-l, Mean object interaction time plotted for (j) wild type 

and (k) Nlgn3KO mice. P-value above graphs report Trial. l, Object recognition index. m, 

Mean velocity (cm/sec) in an open field arena during 7 min. n, Time spend in center of the 

open field arena. o, Number of marbles buried during a 30 minutes marble burying test. p, 

Percentage weight gain in wild type and Nlgn3KO mice treated with ETC-168 or vehicle. P-

value for treatment is displayed on graphs. Error bars report s.e.m. RM two-way ANOVA 

followed by Bonferroni’s post-hoc test for genotype and treatment for b, c, j, k; RM two-

way ANOVA followed by Bonferroni’s post-hoc test for genotype and treatment for d, l, o; 
Friedman test followed by Dunn’s post-hoc test for planned multiple comparison for e, f, h; 
One-way ANOVA followed by Bonferroni’s post-hoc test for planned multiple comparison 

for g; RM two-way ANOVA for m, n, p. See Supplementary information for additional 

statistics.
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Fig. 1. Oxytocin response is altered in VTA DA neurons lacking Nlgn3.
a, 5-trial social habituation/recognition task. s1=first, s2=second social stimulus. b,c, Mean 

social interaction time (b) and social recognition index (c) in wild type and Nlgn3KO mice. 

Numbers on graphs represent mice. d, Nlgn3KO mutation containing a loxP-flanked 

transcriptional stop cassette. In DATCre mice Nlgn3 is selectively re-expressed in 

dopaminergic neurons. e,f, Mean social interaction time (e) and social recognition index (f) 
in DATCre and DATCre::Nlgn3KO mice. g, VTA AAV-injection in DAT-Cre mice for 

microRNA-mediated knockdown of Nlgn3 in VTA-DA neurons (VTA::DA-NL3). h,i, Mean 

social interaction (h) and social recognition index (i) for VTA::DA-NL3 or control 

(VTA::DA-miR) mice. j, Oxytocin receptor antagonist treatment (OXTR-A, L-368,899 10 

mg/kg i.p. in saline). k,l Mean social interaction (k) and social recognition index (l) for 

OXTR-A and vehicle treated mice. m, Retrobeads were injected in the NAc medial shell and 

tissues prepared for slice physiology. n, Retrobead injection site in the NAc (top) and TH 

immunoreactivity and retrobead labeling in biocytin-filled VTA neurons (bottom) after 

recording. o, Example traces of spontaneous firing at baseline (top) and after bath 

application of 1 μM OXT (bottom) in VTA DA neurons from wild type (left) and Nlgn3 KO 

(right). p, Frequency at baseline in TH-positive wild type and Nlgn3 KO VTA DA neurons. 

n: wild type=22 cells from 12 animals; Nlgn3 KO=14 neurons from 8 animals. q, Average 
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firing frequency (Hz) after bath application with OXT in retrobead-labeled TH-positive cells 

in VTA of wild type and Nlgn3KO mice. P-value on graph: Within group comparison of 

baseline vs. OXT 3rd min. n: wild type= 8 cells from 7 animals; Nlgn3 KO=10 neurons from 

7 animals. Error bars are s.e.m. RM two-way ANOVA followed by Bonferroni’s post-hoc 

test for b, e, h, k, q; unpaired two-sided t-test for c, f, i, p; two-sided Mann-Whitney test for 

l. Additional statistics in Supplementary Information.
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Fig. 2. Disruption of translational regulation in VTA of Nlgn3KO mice.
a, Representative image of OXT (red) and DAPI (blue) immunofluorescence in the PVN of 

wild type and Nlgn3KO mice. b, Mean OXT positive cells per section in the PVN in wild 

type and Nlgn3KO mice. n= 3 mice per genotype, numbers on bar indicate sections analyzed. 

c, Representative fluorescent in situ hybridization (FISH) images in the VTA from wild type 

(top) and Nlgn3KO (bottom) using probes for th (red), nlgn3 (green) and oxtr (magenta). d, 
Quantification of mean fluorescence intensity per th+ cell from wild type and Nlgn3 KO 

VTA for nlgn3 (left) and oxtr (right). n: wild type= 280 cells from 4 animals; Nlgn3 KO=265 

cells from 3 animals. e, Scheme for AHA incorporation on slice preparations from untreated 

and vehicle treated mice. f, Representative images of acute slice measurements of protein 

synthesis in VTA visualized by AHA incorporation (green) with marking of TH-positive 

cells (red). g, quantitative assessment of AHA incorporation in naïve mice versus mice 

treated by oral gavage with vehicle. n: wild type untreated= 3 animals; Nlgn3KO untreated, 

Nlgn3KO vehicle and wild type vehicle = 4 animals. Numbers on graph refer to the number 

of images analyzed (8-20 VTA DA cells per image, approximately 10 images per animal). 

All error bars are s.e.m. Two-sided Mann-Whitney test for b, d; Kruskal-Wallis test followed 

by Dunn’s multiple comparison test for g. See Supplementary information for additional 

statistics.
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Fig. 3. The novel MNK1/2 inhibitor ETC-168 rescues translation in Nlgn3KO VTA.
a, ETC-168 targets MNK1/2. Note that eIF4E phosphorylation decreases affinity of eIF4E 

for the mRNA 5’cap structure b, eIF4E phosphorylation in day in vitro 14 cortical neurons 

treated with ETC-168 for 3 hours. n=8 replicates, 3 independent experiments. c, 

Representative western blot and quantification of VTA lysate from wild type mice treated 

with vehicle or 5 mg/kg ETC-168. Numbers on graphs represent mice. d, Pharmacokinetic 

analysis of ETC-168 in male mice (n=27) after single oral dose of 10 mg/kg. Plasma levels 

in red, brain levels in blue. Half life (T1/2), maximal concentration (Cmax), and brain to 
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plasma exposure (AUCratio) are displayed on the graph. e, Tandem mass tag (TMT) 

proteomic comparison of VTA from vehicle-treated mice (n=4 mice per genotype and 

treatment). Relative frequency of log2 fold change in either all detected proteins, cytosolic, 

or mitochondrial ribosomal protein abundance is plotted (Nlgn3KO/wild type). f, 
Comparison as in e for log2 fold change in protein abundance in ETC-168 treated Nlgn3KO 

versus wild type. g, FUNCAT assay in acute slices from vehicle or ETC-168 treated mice 

(5mg/kg or vehicle by oral gavage). h, Representative examples of AHA incorporation 

(green) in TH-positive cells (red). i, Quantitative assessment of AHA incorporation in 

vehicle (as in Fig. 2h for comparison to untreated mice) versus ETC-168 treated wild type 

and Nlgn3KO mice. n=4 mice per genotype and treatment. Numbers on graphs refer are 

number of images analyzed. Error bars are s.e.m. One-way ANOVA followed by 

Bonferroni’s post-hoc test for b; two-sided unpaired t-test for c; Kolmogorov-Smirnov test 

for e, f; Kruskal-Wallis test followed by Dunn’s multiple comparison test for i. Additional 

statistics in Supplementary Information.
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Fig. 4. MNK inhibition restores social novelty responses in Nlgn3 KO mice.
a, Scheme for drug treatment and analysis. b, Firing frequency at baseline in VTA DA 

neurons from Nlgn3 KO animals untreated, treated with vehicle, or 5 mg/kg ETC-168. n: 

untreated=14 neurons from 8 mice; vehicle=8 neurons from 4 mice; ETC-168=14 neurons 

from 8 mice. The wild type mouse data from Fig. 1c is presented for comparison (n=22). c, 

OXT-induced frequency changes over time in VTA DA neurons from Nlgn3 KO animals 

treated with vehicle or 5 mg/kg ETC-168. Wild type mice from Fig. 1e are presented for 

comparison. P-values on graph: Baseline vs. OXT 3rd min. n: vehicle treated=8 cells from 4 

mice; ETC-168 treated=11 neurons from 6 mice. d, e, Mean social interaction time in (d) 

wild type and (e) Nlgn3KO mice treated with vehicle or 5 mg/kg ETC-168. f, Social 

recognition index for wild type and Nlgn3KO mice treated with vehicle or 5 mg/kg ETC-168. 

Numbers in brackets indicate mice. All error bars are s.e.m. One-way ANOVA followed by 

Bonferroni’s post-hoc test for b; RM two-way ANOVA followed by Bonferroni’s post-hoc 
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test for c; RM two-way ANOVA between all genotype and treatment groups followed by 

Bonferroni’s post-hoc test for d, e; RM two-way ANOVA followed by Bonferroni’s post-hoc 

test for treatment and genotype for f. Additional statistics Supplementary Information.
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