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Odor-regulated oviposition behavior in an
ecological specialist

Raquel Álvarez-Ocaña 1, Michael P. Shahandeh 1,3, Vijayaditya Ray2,3,
Thomas O. Auer 1, Nicolas Gompel2 & Richard Benton 1

Colonization of a novel ecological niche can require, or be driven by, evolution
of an animal’s behaviors promoting their reproductive success. We investi-
gated the evolution and sensory basis of oviposition in Drosophila sechellia, a
close relative of Drosophila melanogaster that exhibits extreme specialism for
Morinda citrifolia noni fruit. D. sechellia produces fewer eggs than other dro-
sophilids and lays these almost exclusively on noni substrates. We show that
visual, textural and social cues do not explain this species-specific preference.
By contrast, we find that loss of olfactory input in D. sechellia, but not D.
melanogaster, essentially abolishes egg-laying, suggesting that olfaction gates
gustatory-driven noni preference. Noni odors are detected by redundant
olfactory pathways, but we discover a role for hexanoic acid and the cognate
Ionotropic receptor 75b (Ir75b) in odor-evoked oviposition. Through receptor
exchange inD. melanogaster, we provide evidence for a causal contribution of
odor-tuning changes in Ir75b to the evolution of D. sechellia’s oviposition
behavior.

Colonization of, and specialization on, a new ecological niche by an
animal can provide many benefits, such as access to new resources,
protection from biotic and abiotic threats, and avoidance of
competition1. Niche specialization often requires adaptation ofmultiple
behavioral, physiological and morphological traits to survive and
reproduce in a new habitat. Divergence of many traits can potentially
lead to reproductive isolation and ultimately speciation, making niche
specialization a likely driver of biodiversity2–4. Many striking examples
of adaptations to new niches are known, from the rapid evolution of
beak morphology of Darwin’s finches as they radiated across the Galá-
pagos archipelago5 to visual system loss in Mexican tetra (Astyanax
mexicanus, blind cave fish) in cave dwellings in the Gulf of Mexico and
Rio Grande6. While candidate genomic regions and genes have been
implicated in some of these adaptations (e.g.,7,8), the restricted genetic
tractability of these species– andmost other examples innature– limits
our understandingof themechanistic basis of evolutionary adaptations.

The fly Drosophila sechellia provides an exceptional model to
investigate the genetic and cellular basis of niche adaptation9–11. This

species is endemic to the Seychelles archipelago, where it has evolved
an extreme specialist lifestyle, feeding and breeding exclusively upon
the “noni” fruit of theMorinda citrifolia shrub. Adaptation to this niche
has occurred in the last few 100,000 years, potentially only since its
divergence from a last common ancestor with the cosmopolitan gen-
eralist, Drosophila simulans (Fig. 1a). Importantly, the close phyloge-
netic proximity of D. sechellia to the laboratory model, Drosophila
melanogaster (Fig. 1a), has facilitated the development of genetic tools
in this species to explore the mechanistic basis of niche
specialization11–13. Previous work identified D. sechellia Odorant
receptors (Ors) essential for long-range detection of noni odors,Or22a
and Or85c/b13–15, and demonstrated a causal relationship between dif-
ferences in tuning properties of Or22a in D. melanogaster and D.
sechellia and species-specific noni attraction13.

Long-range olfactory attraction to noni is only one facet of D.
sechellia’s phenotypic adaptations in this specialized niche11. Nota-
bly, the fruit is highly toxic to other drosophilids (and more diver-
gent insects) – predominantly due to its high levels of octanoic
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acid – indicating the existence of robust (albeit unclear) resistance
mechanisms of D. sechellia throughout its life cycle16–18. Host fruit
toxicity has been suggested to relieve D. sechellia from interspecific
competition and parasitoidization19, providing a potential expla-
nation for the selective advantage of its stringent niche
specialization.

Another unique set of phenotypes of D. sechellia relates to the
production and deposition of eggs. Compared to its generalist cou-
sins, D. sechellia ovaries contain ~3-fold fewer ovarioles, with a com-
mensurate reduction in egg number16,20,21. The evolutionary advantage
(if any) of reduced fecundity is unclear, but might be linked with the
larger size of D. sechellia eggs ( ~ 50% by volume22) and the greater
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tendency of this species to retain fertilized eggs (resulting in faculta-
tive ovoviviparity)22. Such observations hint that these traits could be
related to higher investment of D. sechellia in fewer eggs to protect
them from the acid-rich noni substrate and/or predators. However,
non-adaptive explanations (e.g., pleiotropic effects of mutations in
genes underlying other adaptations23,24) cannot be excluded.

Whatever the reason(s) for reduced fecundity of D. sechellia, this
trait makes the decision of females to engage in oviposition particu-
larly important. Previous work has shown that D. sechellia depends on
the presence of noni for both egg production and laying16,25,26. Fur-
thermore, the most abundant noni chemicals, hexanoic and octanoic
acids, can alone induce oviposition27,28. However, the cognate sensory
pathways are unknown, as is the contribution (if any) of other che-
mosensory or non-chemosensory information to this behavior. In this
work, we combine diverse behavioral assays with loss- and gain-of-
function genetic manipulations in D. sechellia and D. melanogaster to
demonstrate the essential role of olfaction forD. sechellia oviposition,
and provide evidence for a contribution of the evolved hexanoic acid
receptor Ir75b in this species’ egg-laying behaviors.

Results
Species-specific oviposition preference and rate
To investigate the neurosensory basis of egg-laying behavior in D.
sechellia, we first compared the specificity of oviposition site selection
ofD. sechellia,D. simulans andD.melanogaster in a semi-natural,multi-
choice assay inwhich animalswere offered slices of different ripe fruits
(noni, banana, apple and grape) within an enclosed arena (Fig. 1b).
While D. melanogaster and D. simulans flies avoided using noni fruit as
an oviposition substrate (preferring two or three of the other fruits
instead), D. sechellia laid eggs almost exclusively on noni (Fig. 1b).

To systematically test the species-specificity of oviposition beha-
vior and its sensory basis, we next established two-choice group ovi-
position assays. In these, egg-laying substrates comprised of
commercial juices/vinegar (to ensure consistency of chemical stimuli)
mixed in either agarose or Formula 4–24® instant Drosophilamedium
(hereafter, “instant medium”). The latter substrate supported higher
egg-laying rate, which was important when examining the influence of
single odors in subsequent experiments. Two independent strains of
each species were tested in all assays to distinguish interspecific from
intraspecific differences. D. melanogaster and D. simulans strains
generally exhibited indifference between noni and grape juice sub-
strates, in either agarose or instant medium, with small differences
between strains (Fig. 1c and Supplementary Fig. 1a). By contrast,
D. sechellia consistently displayed a strong preference for noni

juice-containing substrates (Fig. 1c and Supplementary Fig. 1a). Similar,
though less marked, differences between species’ preferences were
observed in assays offering a choice between noni juice and apple
cider vinegar in agarose (Fig. 1d), but not in instant medium (Supple-
mentary Fig. 1b).

As social interactions can influence drosophilids’ oviposition
preference29,30, we also established a single-fly oviposition assay (see
Methods and Supplementary Fig. 2)31. Using the same combinations of
stimuli and substrates as in group assays, we observed even more
marked species differences in oviposition site preference: D. sechellia
laid the vast majority of its eggs on noni juice substrates in all assays
(Fig. 1e, f and Supplementary Fig. 1c, d), while D. melanogaster and D.
simulans exhibited strong preference for either grape juice or apple
cider vinegar in agarose, and variable, strain-specific levels of pre-
ference for these counter-stimuli in instant medium.

Both group and single-fly assays also confirmed the substantially
lower fecundity of D. sechellia compared to D. melanogaster and D.
simulans (Fig. 1c–f and Supplementary Fig. 1). Quantification of eggs
laid by individual flies revealed large variation in egg-laying rate for all
species, even within a given assay (Fig. 1e, f and Supplementary Fig. 1c,
d). However, on average, D. sechellia consistently laid a low number of
eggs (up to ~5–7 eggs/female/day), while the mean egg-laying fre-
quency for the other species could vary substantially (from ~10 to ~30
eggs/female/day), which might be related to the provision of less or
more appealing substrates in different assays.

Together, these results highlight the innate, social context-inde-
pendent, and robust preference of D. sechellia for noni substrates,
contrasting with the more context-dependent noni indifference or
avoidance exhibited by the generalist drosophilids.

D. sechellia robustly probe the oviposition substrate
In the oviposition experiments with D. sechellia on agarose, we
observed many small indentations in the substrate surface at the end
of the assay (Fig. 2a). Such indentations were only occasionally
observed on the agarose substrates where D. melanogaster or D.
simulans had laid eggs (see below). (The presence of indentations
could not be easily assessed in the instant medium substrate due to its
more granular texture). Furthermore, indentations were not observed
on agarose exposed only toD. sechelliamales, suggesting that they are
not the result of non-sexually dimorphic behaviors, such as proboscis
probing of the substrate.

The size and shape of the indentations led us to hypothesize that
they correspond to the substrate marks formed by the ovipositor dur-
ing “burrowing” – rhythmic digging of the ovipositor into the substrate

Fig. 1 | D. sechellia displays robust, species-specific preference for oviposition
on noni substrates. a Phylogeny of the drosophilid species studied in this work.
Mya, million years ago. b Fruit multi-choice oviposition preference assay. Left:
image of the assay with noni, banana, apple and grape (clockwise from top left) in
the arena. Right: quantification of the number of eggs laid per day; N = 3 assays/
species, using 50 flies each for a duration of 3 days. Strains used: D. melanogaster
Canton-S (CS),D. simulans 14021-0251.004 (04) andD. sechellia 14021-0248.28 (28);
see Supplementary Table 1 for details of all strains used in this work. In these and all
other bar plots, mean values ± standard error of the mean (SEM) are shown,
overlaid with individual data points. All raw behavioral data are provided in the
Source Data files. cGroup oviposition preference assays for noni juice versus grape
juice (see Supplementary Table 2 for sources of all chemical stimuli) in 0.67%
agarose using two strains each of wild-type D. melanogaster (Dmel: CS and Oregon
R (OR)) (dark grey bars, here and elsewhere), D. simulans (Dsim: 04 and 14021-
0251.196 (196)) (light grey bars, here and elsewhere) and D. sechellia (Dsec: 14021-
0248.07 (07) and 28) (red bars, here and elsewhere). Left: box plots of oviposition
preference index. In these and all other box plots, the middle line represents the
median, and the lower and upper hinges indicate the first and third quartiles,
respectively. Individualdata points areoverlaidon theboxplots; point size is scaled
by the total number of eggs laid in an assay (key at top right of the plot); data

beyond the whiskers are considered outliers. For these and other box plots,
statistically-significant differences from 0 (no preference) are indicated:
***P <0.001; **P <0.01; *P <0.05; NS (not significant) P >0.05 (Wilcoxon test with
Bonferroni correction for multiple comparisons); N = 12 (representing 4 group
assays, each scored on 3 successive days with fresh oviposition plates each day).
Exact P values for the statistical comparisons are provided in the Source Data files.
Right: bar plots of egg-laying rate per fly per day in these assays. Statistically-
significant differences from the D. melanogaster CS strain are indicated:
***P <0.001; **P <0.01; *P <0.05; NS P >0.05 (Kruskal-Wallis rank sum test with
Nemenyi post-hoc test). d Group oviposition preference assays, as in c, for noni
juice versus apple cider vinegar; N = 12, as in c. e Single-fly oviposition preference
assays for noni juice versus grape juice in agarose for the same strains as in c. Top:
total number of eggs laid in each substrate by each female. Bottom left: oviposition
preference index. Statistically-significant differences from 0 (no preference) are
indicated as in c;N = 30–60 flies across 1-2 technical replicates (preciseN values for
these and all following assays are provided in the Source Data files). Bottom right:
egg-laying rate, presented as in c. f Single-fly oviposition preference assays, as in
e, for noni juice versus apple cider vinegar; N = 30–90 flies across 1–3 technical
replicates.
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Fig. 2 | D. sechellia make frequent substrate indentations during oviposition.
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vided in Supplementary Movies 4 and 5. c Rate and distribution of egg-laying and
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(ACV) as oviposition substrates (indicated by different colors in the figure);
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significant differences from the CS strain are indicated: ***P <0.001; **P <0.01;
*P <0.05; NS P >0.05 (Kruskal-Wallis rank sum test with Nemenyi post-hoc test).
Exact P values for the statistical comparisons are provided in the Source Data files.
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prior to egg deposition – described in D. melanogaster32. To test this
hypothesis, we used high-speed imaging to visualize D. sechellia ovi-
position behavior at high spatio-temporal resolution33. Notably,
although the total number of egg-laying events captured was low
(precluding detailed quantitative analyses), we observed frequent
interactions of the ovipositor of these flies with the substrate that did
not culminate in egg deposition. These interactions ranged from simple
substrate touching or scratching by the ovipositor (Supplementary
Movie 1-2; seeMethods for classification of behaviors) tomore involved
digging behaviors (Supplementary Movie 3). In two instances, such
digging resulted in the formation of a visible indentation (Fig. 2b and
Supplementary Movie 4). However, post-hoc observation of the sub-
strate revealed several other examples of indentations that were not
captured during the recordings, possibly because they were not visible
from the camera angle to the substrate. Conversely, we did not observe
any other behaviors of the fly that could explain the formation of the
indentations. Very similar ovipositor-digging events were observed
prior to egg laying (Fig. 2b and Supplementary Movie 5).

These observations support the hypothesis that indentations
represent aborted oviposition events in D. sechellia. We reasoned that
they provide a relevant complementary measure of oviposition beha-
vior to the number of eggs laid.We therefore quantified the numbers of
both indentations and eggs for all three species in single-fly two-choice
assays (Fig. 2c). The total numbers of indentations and eggs were
comparable for D. sechellia and D. simulans strains, and slightly lower
than for D. melanogaster (Fig. 2d). We also tested D. melanogaster
mutants that lack eggs (ovoD1), but found that these flies do not make
indentations (Fig. 2c). This observation suggests that the higher rate
of indentation formation of D. sechellia is not simply a consequence of
lower egg number in this species, but rather reflects its robust probing
of the oviposition substrate before proceeding to egg deposition.

D. sechellia’s oviposition preference does not require vision
To assess the sensory basis of D. sechellia’s strong preference for ovi-
position on noni substrates, we first tested the contribution of vision,
because the natural fruits (as well as the artificial substrates) have
characteristic colors that might influence decisions on where to lay
eggs. In single-fly two-choice assays run in the dark, D. sechellia
retained very strong, species-specific, preference for laying on noni
juice substrates, and no decrease in egg-laying rate was noted (Fig. 3a).

We extended this analysis to examine whetherD. sechellia exhibits
any unique color preference, reflecting its use of ripe (dull white/yel-
low) but not unripe (green) fruit. As the noni juice colored the ovipo-
sition substrate brown, we tested this possibility using a short-range
trap assay34, in which identical odor traps – containing noni juice for D.
sechelliaorbalsamic vinegar forD.melanogaster andD. simulans–were
enclosed within green or white casings (Fig. 3b). Because noni fruit can
be found among green foliage or on the white sandy substrate below
Morinda citrifolia shrubs11, we reasoned that color contrast might also
play an important role in substrate preference, and therefore tested
trap preference on a white or green background, as well as in the dark
as a control. We observed no preference of any species to enter dif-
ferent colored traps (Fig. 3b), suggesting that color is not a critical cue
that D. sechellia uses to locate host fruit, at least at short-range.

D. sechellia and D. simulans prefer softer substrates
Substrate hardness is another factor influencing oviposition site pre-
ference that might have diverged between drosophilid species. For
example, the pest species D. suzukii – which oviposits in various ripe,
but not rotten, fruits – exhibits stronger preference for stiffer sub-
strates (that presumably resemble more closely ripe fruit) than D.
melanogaster35. We compared the texture preference profile of D.
sechellia, D. simulans and D. melanogaster through single-fly two-
choice assays in which both substrates contain the same attractive
chemical stimulus (either noni juice or apple cider vinegar) but

different stiffness, obtained by pairing a soft agarose substrate (0.5%)
with one ranging from 0.5–2% agarose. Although all three species
preferred to oviposit on softer agarose, the discrimination threshold
was different: D. melanogaster only exhibited such a preference when
0.5% agarose was paired with 1.25% (or higher) agarose, while D.
simulans and D. sechellia discriminated a more subtle difference in
texture, preferring 0.5% agarose over 0.75% agarose (Fig. 3c, d). The
textural discrimination ability of D. sechellia therefore cannot explain
its ecological specialization. However it is consistent with our obser-
vations thatD. sechellia lays its eggs on the softest part of noni fruit: the
pedicel cavity in intact fruits (or internal flesh in cut/broken fruits)
(Fig. 3e), which is much softer than the fruit skin, whose stiffness is
approximately equivalent to 0.75% agarose (Fig. 3f).

Olfactory pathways required for oviposition behaviors
Having excluded the importance of vision for D. sechellia’s egg-laying
preference, we reasoned that olfactory cues are likely to be the first
sensory signals that D. sechellia uses when assessing potential ovipo-
sition sites, as these do not require direct contact with the substrate.
We first tested near-anosmic double-mutant animals for the conserved
olfactory co-receptors Orco (required for the function of all Ors) and
Ir8a (required for the function of volatile acid-sensing Irs)13,36–38.
Strikingly, in single-fly assays –offering a choiceofnoni juice and apple
cider vinegar in agarose– these flies laid essentially no eggs (Fig. 4a, b).
Moreover, no indentations were observed on the substrate at the end
of the assay (Fig. 4b). This lack of oviposition activity is not due to any
overt locomotor defects, as thesemutant animals display similar levels
of activity as wild-type strains (Supplementary Fig. 3). It is also not due
to any decrease in egg production of these mutants, as their ovaries
contain a similar number of mature eggs as in wild-type animals
(Fig. 4c). Importantly, equivalent D. melanogaster near-anosmic
Ir8a;Orco double-mutant animals lay many eggs (Supplementary
Fig. 4). These observations provide evidence that olfactory input is
critical for ovipositionbehavior inD. sechellia, but notD.melanogaster.

To test whether olfactory cues are sufficient to promote ovipo-
sition, we performed a no-choice oviposition assay in which flies were
provided with an agarose/sucrose substrate with a non-accessible
source of noni juice or, as control, water (Supplementary Fig. 5). No
differences were observed in egg-laying rate of D. sechellia (or D.
melanogaster) strains between these two conditions (Supplementary
Fig. 5). These results argue that noni odors alone are insufficient to
promote egg-laying behavior in D. sechellia, which presumably relies
also upon gustatory input through multiple contact chemosensory
organs, as is the case in D. melanogaster39–41.

To further understand the contribution of olfaction to D. sechel-
lia’s oviposition behavior,we next tested theOrco and Ir8a co-receptor
mutants singly: both showed a decreased egg-laying rate compared to
wild-type controls, but only Ir8a mutants displayed reduced pre-
ference for noni juice (Figs. 4a, d). Similar phenotypes for these
mutants were observed in two-choice assays with grape juice as a
counter-stimulus (Supplementary Fig. 6). We went on to screen the
phenotypes of mutants lacking genes encoding individual odor-
specific “tuning” Ors and Irs13, including Or22a and Or85c/b that are
required for long-range noni attraction13. While these lines displayed
variable reductions in egg-laying rate, none of them displayed sig-
nificantly diminished oviposition preference for noni substrates
(Figs. 4a, d andSupplementary Fig. 6) or diminished locomotor activity
(Supplementary Fig. 3). The maintenance of robust oviposition pre-
ference towards noni in most of these assays suggested that multiple,
partially redundant olfactory signals contribute to oviposition beha-
vior in D. sechellia.

Effect of individual noni chemicals on oviposition
To characterize the noni chemicals promoting D. sechellia-specific
oviposition, we tested several candidates in single-fly assays using the
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different species and three odor concentrations (0.05%, 0.1%, 0.5%)
(Fig. 5 and Supplementary Fig. 7). Confirming and extending previous
group assays27,28,42, we found that hexanoic acid promoted very strong
preference in D. sechellia at all concentrations tested (Fig. 5a) and a
higher egg-laying rate (compared to water-only control substrates) at
least at intermediate concentrations (Fig. 5b). D. melanogaster and D.
simulans both displayed slight preference or indifference at lower
concentrations of hexanoic acid and strong aversion at the highest
concentration (Fig. 5a), but egg-laying rate was not greatly influenced
by this chemical (Fig. 5b). Octanoic acid has also been described to be
an oviposition stimulant/attractant for D. sechellia in some27,42,43,
though not all22, reports. In our assays, this acid did not evoke strong
oviposition preference of D. sechellia at lower concentrations; more-
over, egg laying was largely suppressed at the highest concentration,
although the very few eggs laid were found on the octanoic acid

substrate (Fig. 5a, b). D. melanogaster and D. simulans generally found
this odor aversive (Fig. 5a).

We tested two other noni chemicals that are behaviorally-
important for long-range noni location: methyl hexanoate (detected
by Or22a) and 2-heptanone (detected by Or85c/b)13–15. D. sechellia did
not display a strong oviposition site preference for substrates con-
taining methyl hexanoate, although this chemical stimulated a slight
enhancement of egg laying at intermediate concentrations (Fig. 5a, b).
Similarly, neither D. melanogaster nor D. simulans exhibited strong
preference or aversion to methyl hexanoate-containing substrates
(Fig. 5a). 2-heptanone had little consistent influenceon oviposition-site
selection of any species (Fig. 5a, b); we were unable to use the highest
concentration (0.5%) as this was toxic for flies.

Lastly, we tested oviposition stimulants described in D. melano-
gaster, valencene and limonene, which are detected by Or19a
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neurons44. D. sechellia flies were indifferent to, or avoided oviposition
on, substrates containing either of these chemicals, and egg layingwas
suppressed at high stimulus concentrations (Supplementary Fig. 7).
Interpretation of these results must be tempered, however, with our
inability to consistently reproduce behavioral effects of these com-
pounds on oviposition reported in D. melanogaster (Supplementary

Fig. 7)44, potentially reflecting observations that the behavioral func-
tion of this olfactory pathway is context-dependent45.

Together, these experiments reveal the complex, concentration-
dependent influence of different individual chemicals on drosophilid
oviposition behavior, which might be due to their detection via both
olfactory and gustatory systems. The robust and D. sechellia-specific
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effect of hexanoic acid on oviposition led us to focus on determining
the sensory mechanism by which this noni chemical is detected.

D. sechellia’s hexanoic acid sensor Ir75b promotes egg laying
To define the sensory mechanisms of volatile hexanoic acid-mediated
control of oviposition behavior, we tested our panel of D. sechellia
olfactory receptor mutants. Loss of either Ir8a or Orco alone led to
abolished or greatly diminished egg laying onhexanoic acid substrates
(Fig. 6a), suggesting that both Ir and Or pathways contribute. Within
the Ir repertoire, Ir75b was an excellent candidate as this receptor has
evolved novel sensitivity to hexanoic acid in D. sechellia from the
ancestral butyric acid sensitivity of theD.melanogaster andD. simulans
orthologs34. Indeed, mutation of Ir75b in D. sechellia led to complete
loss of egg laying on hexanoic acid substrates, a phenotype confirmed
in two independent alleles, and a transheterozygous Ir75b mutant

combination (Fig. 6a). Dissection of these flies’ ovaries revealed a
similar number of eggs as in controls (Fig. 6b), suggesting the defect
was in egg laying not production. Consistent with this hypothesis,
DsecIr75b mutant flies also produced no indentations in these assays
(Fig. 6c). By contrast, D. sechellia lacking the broadly-tuned volatile
acid sensor, Ir64a46, still oviposited, laying almost all eggs on hexanoic
acid substrates (Fig. 6a).

Amongst the Ors, all three mutants (DsecOr22a, DsecOr35a and
DsecOr85c/b) displayed reduced egg-laying rate (Fig. 6a). Of the
subset of flies that did lay eggs, the DsecOr35a and DsecOr85c/b
mutants maintained strong preference for oviposition on hexanoic
acid substrates while DsecOr22a mutants no longer discriminated
this substrate from the control medium (Fig. 6a). Or22a neurons are
generally considered to be ester sensors in drosophilids47, but
weak Or22a-dependent hexanoic responses have been described in
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comparisons are provided in the Source Data files.
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D. sechellia13 (as well as in D. melanogaster48, where it is the most
sensitive hexanoic acid sensor of this species49), suggesting that it
might be a second olfactory pathway for this oviposition stimulant
(see Discussion).

Evolution of Ir75b contributes to species-specific behavior
Given the important role of Ir75b for hexanoic acid-stimulated ovipo-
sition of D. sechellia, we asked if the evolution of the tuning of this
receptor might explain species-specific oviposition behavior. In an
Ir75b mutant of D. melanogaster50, we rescued Ir75b function through
transgenic expression of either D. sechellia Ir75b or, as a control, D.
melanogaster Ir75b. Confirming our previous analysis of these trans-
genes in other neuron classes34,51, we validated their expression and
functional differences in Ir75b neurons (Supplementary Fig. 8a, b).
These flies were offered a choice to lay eggs on substrates containing
hexanoic acid or butyric acid, the preferential ligand of the receptors
from D. sechellia and D. melanogaster, respectively34. Egg-laying rate
was broadly comparable between all control mutant and both rescue
lines (Fig. 6d). This result indicates that a functional Ir75b pathway is
not important for egg laying in D. melanogaster – consistent with our
observation that near-anosmic D. melanogaster lay many eggs –

thereby permitting assessment of the contribution of the Ir75b path-
way to oviposition preference. Rescue flies expressingD.melanogaster
Ir75b displayed a substrate preference that was not significantly dif-
ferent from parental genotypes (Fig. 6d). By contrast, expression ofD.
sechellia Ir75b was sufficient to shift oviposition preference from
butyric acid to hexanoic acid substrates compared to controls
(Fig. 6d). These results support a causal contribution of Ir75b to the
evolution of oviposition site preference during D. sechellia’s host
specialization. We note that wild-type D. sechellia displays a much
stronger preference for hexanoic acid over butyric acid (Supplemen-
tary Fig. 8c); it is possible that the higher number of Ir75bneurons inD.
sechellia than in D. melanogaster (and D. simulans)34, as well as other
sensory adaptations (e.g., in gustatory inputs), contribute to this spe-
cies’ acid preferences.

Discussion
Decisions onwhen andwhere to lay an egg are critical for all oviparous
animals to maximize the chance of survival of their offspring, in par-
ticular those lacking parental care52,53. As such, these decisions are
influenced by multiple biotic and abiotic factors in the environment.
When species establish themselves within a new ecological niche,
changes in these factors can exert selective pressures for novel or
modified behavioral responses to sensory cues. It is also possible that
chance evolution of traits can permit exploitation of a new niche.
Either way, studying differences between species can provide insight
into the relative importance of the plethora of environmental signals,
as well as the mechanisms by which nervous systems evolve, changing
the relationship between these cues and behavioral outputs. D.
sechellia offers an excellent opportunity to study oviposition beha-
vioral adaptations, both because its specialist lifestyle likely constrains
the set of pertinent sensory signals and because its low fecundity
presumably renders the decision to lay an individual egg more
important than for highly fertile species. Moreover, the phylogenetic
proximity of D. sechellia to the generalists D. melanogaster and D.
simulans facilitates comparative behavioral and genetic analyses that
might enable reconstruction of the (still-unknown) evolutionary his-
tory of this species11,54.

Studies in D. melanogaster and other drosophilids have revealed
that oviposition decisions are complex, multisensory-dependent
behaviors35,52,55,56, guided both by substrate properties and the recent
experience of animals57; moreover, the choice of egg-laying site is
often assay-dependent (e.g.,58,59). Using several types of behavioral
assays, we have confirmed the importance of noni for D. sechellia for
egg-laying rate and site selection. The latter trait contrasts with the

variable preferences of D. melanogaster and D. simulans. We also dis-
covered an unappreciated feature of oviposition behavior of D.
sechellia: extensive probing of the substrate surface, resulting in the
formation of numerous indentations. These indentations are most
likely equivalent to the “burrows” resulting from aborted oviposition
events of D. melanogaster32. One explanation for the high rate of
indentations in D. sechellia is that females engage in the initiation of
the oviposition routine unaware of the low number of eggs they carry.
This seems unlikely, however, as it would represent a futile energetic
investment for these animals, and D. melanogaster mutants that lack
eggs do not make indentations. Moreover, high-resolution behavioral
observations suggest that the presence of the egg in the ovipositor is
integral to penetration of the substrate in D. melanogaster32 and D.
sechellia. We favor a hypothesis that extensive indentation formation
by D. sechellia reflects greater choosiness of this species to deposit
eggs only after the female has ascertained to have found the optimal
substrate available.

To account for the species-specificity of D. sechellia substrate
selection, we have been able to exclude several sources of sensory
information. Visual input is unimportant (at least at short-range), and
D. sechellia does not exhibit obvious changes in preference for colors
that mimic the choice this species makes in nature. While D. sechellia
prefers to lay eggs within the softest part of the fruit, and within softer
agar, there is no difference in texture preference compared to D.
simulans, suggesting that this trait is not a key facet of host adaptation,
contrasting with the fresh fruit feeder D. suzukii35. Finally, although
communal egg laying is widespread in many invertebrates and
vertebrates60, we do not find evidence that this phenomenon con-
tributes to noni preference. If anything, isolated flies lay more eggs
with stricter noni preference than those in groups, possibly because
they are less distracted by social interactions.

Our genetic analysis indicates that olfactory input is essential for
egg laying inD. sechellia, as near-anosmicflies fail to lay eggs even in the
presence of noni, despite normal eggproduction. Conversely, exposure
of flies to noni odors alone, without allowing them to have gustatory
sensation of noni juice, does not enhance oviposition rate. Together,
these observations suggest that both olfactory and gustatory inputs are
important: without olfaction, gustatory signals are insufficient for pro-
moting oviposition, but olfactory signals without gustatory inputs are
similarly ineffective. A future priority is to determine how D. sechellia
detects noni via gustation and if, as in the olfactory system, any such
gustatory pathways differ between drosophilids.

While loss of the vast majority of olfactory input prevents egg
laying on noni in D. sechellia, we found substantial redundancy, as
mutation of any single tuning Or or Ir (or even Orco) did not strongly
diminish noni preference. This observation indicates that multiple
distinct odors, acting via several different olfactory receptors, must
contribute to short-range behavioral decisions. By simplifying the noni
odorscape in our oviposition assays we demonstrate the unique
oviposition-promoting role of hexanoic acid and, importantly, define
Ir75b and its obligate co-receptor Ir8a, as the cognate sensory recep-
tor. Although hexanoic acid might also be detected by gustatory
neurons (based upon studies in D. melanogaster61–63), the selective
expression of Ir75b and Ir8a in the antenna argues that this is an odor-
guided behavior. Moreover, the demonstration that Ir75b is required
for this behavior provides an explanation for the evolutionary changes
described in this sensory pathway: while D. melanogaster and D.
simulans Ir75b are tuned primarily to butyric acid, the D. sechellia
receptor has evolved novel sensitivity to hexanoic acid, through amino
acid substitutions within the ligand-binding domain34,51. In addition, D.
sechellia exhibits a 2-3-fold increase in number of sensory neurons
expressing Ir75b, resulting in increased sensory pooling onto partner
interneurons in the brain34. Importantly, replacement of D. melano-
gaster Ir75b with the D. sechellia receptor induces a small but sig-
nificant shift in oviposition site preference, indicating that receptor
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tuning changes are sufficient alone to confer more D. sechellia-like
behavior on D. melanogaster.

Together with previous work13, our studies of noni-dependent
odor-guidedbehaviors inD. sechellia reveal similarities anddifferences
in the sensory coding properties and evolution of olfactory pathways
mediating long-range and short-range host detection (Fig. 6e). The
high redundancy in short-range olfactory signals contrasts markedly
with olfactory contributions to long-range noni seeking, where loss of
single tuning receptors essentially abolishes the ability of flies to locate
the odor source13. This difference might reflect the complexity of the
noni odor blend at different spatial scales: there are likely to be fewer,
highly-volatile, compounds reaching behaviorally-relevant concentra-
tions at a distance compared to odors present at short-range13. Con-
cordantly, the most-important receptors for long-range (Or22a and
Or85c/b) and short-range (Ir75b) noni detection, display differences in
sensitivity: Ir75b neurons require several orders of magnitude higher
odor concentrations to evoke the same level of neuronal firing as
Or22a or Or85c/b neurons13. The segregation of behavioral function of
the pathways is, however, not absolute: the long-range olfactory
detectors, notably Or22a, also appear to contribute to oviposition
behaviors on hexanoic acid substrates, though further genetic analysis
will be necessary to confirm this.

One striking commonality of all three of these OSN populations is
their expansion in D. sechellia, although the functional significance of
this phenotype is unknown. By contrast, the nature of odor specificity
evolution of these pathways is different: Or85c/b neuron sensitivity to
2-heptanone is unchanged across the drosophilid species13,D. sechellia
Or22a has enhanced sensitivity to methyl hexanoate compared to the
orthologous receptor in D. melanogaster (but not in D. simulans)13,14,
while Ir75b has acquired new sensitivity to hexanoic acid specifically in
D. sechellia34,51. In addition,methyl hexanoate and 2-heptanone, but not
hexanoic acid, are emitted by a wide range of fruits64. Amodel to unify
these observations is that methyl hexanoate and 2-heptanone act as
“habitat odor cues”65, attracting D. sechellia (but also other species) in
the vicinity of noni, while hexanoic acid is a specific “host odor cue”65

that, through Ir75b, evokes short-range behaviors only in D. sechellia.
In this context, the ecological role of the Ir75b sensory pathway in

D. melanogaster is unclear, although optogenetic activation experi-
ments have provided evidence for a role in positional attraction and
ovipositionpreference34,66. Severalother olfactorypathways havebeen
implicated in oviposition promotion in D. melanogaster52,67,68, includ-
ing Or19a, which detects the citrus odors valencene and limonene44.
Interestingly,D. sechelliaOr19a neurons appear to have lost sensitivity
to these odors44, which are not reliably detected in noni fruit13. Adap-
tation of this species might therefore have involved sensory gain or
loss in several olfactory pathways to match the pertinent chemical
signals in its niche.

Finally, beyond the issues mentioned above, a key future
question – in any species – is how olfactory input controls oviposition
behavior. Recent studies in D. melanogaster have defined circuitry
linking mating and egg laying69; notably, the activity of some of the
component neuron populations (i.e., oviENs and oviINs in the central
brain) are activated or inhibited by gustatory and mechanosensory
inputs69. It is possible that olfactory sensory pathways (e.g., down-
stream of the Ir75b sensory neurons) impinge on this circuitry70.
Alternatively, olfactory signals might have only an indirect influence,
for example, by modulating gustatory inputs to this egg-laying cir-
cuitry. Further exploration of the neural basis of oviposition in D.
sechellia should yield insights into the mechanistic basis of the adap-
tations of this critical behavior to this species’ unique lifestyle.

Methods
Drosophila culture
Drosophila stocks were cultured in a 25 °C incubator under a 12 h
light:12 h dark cycle on a wheat flour–yeast–fruit juice food. Unless

noted otherwise, D. sechellia culture vials were supplemented with
noni paste, consisting of a few grams of Formula 4–24® instant Dro-
sophilamedium,blue (Carolina Biological Supply) andnoni juice (Raab
Vitalfood Bio). All strains used in this study are listed in Supplementary
Table 1 and sources of chemicals are listed in Supplementary Table 2.

Oviposition assays
Wemaximized flies’ egg-laying capacity by following the protocol of31:
in brief, prior to the experiments, ∼50 1-2 day-old females and males
were collected andplaced innewfly food tubes enrichedwithdry yeast
(D. melanogaster and D. simulans) or with dry yeast and noni paste (D.
sechellia) for 5 days. At this point the foodwas typically full of crawling
larvae, inducing females to retain eggs until they were transferred to
the assay chamber. Unless otherwise stated, oviposition assays were
performed at 25 °C, 60% relative humidity and a 12 h light:12 h dark
cycle (starting assays in the early afternoon), in either an incubator or
behavior room for 22–72 h (depending upon the assay, see below).

Previous work suggested that the low egg-laying rate of D.
sechellia is due to alterations in dopamine metabolism – which con-
tributes, at least indirectly, to fertility in D. melanogaster71,72 – and
could be partially compensated by supplementation of food with the
dopamine precursor 3,4-dihydroxyphenylalanine (L-DOPA), which is
found in noni fruit25. To increase D. sechellia’s oviposition rate, we
cultivated flies’ for five days on noni food supplemented with L-DOPA
(1mg/ml), but did not observe increased egg laying in either group or
single-fly assays compared to control flies given only noni paste
(Supplementary Fig. 9a). Treatment with α-methyl-DOPA (0.4mM), a
non-hydrolyzable L-DOPAanalog that acts as a competitive inhibitor of
DOPA decarboxylase (which converts L-DOPA to dopamine) reduced
egg laying in the single-fly assay but not the group assay (Supple-
mentary Fig. 9a). Our inability to fully reproduce the reported effects
on oviposition25 – we did not examine other traits investigated in that
study, such as egg size and germline cyst apoptosis –might be due to
experimental differences in our assays (e.g., use of noni fruit) or the
use of more fertile D. sechellia strains.

We also tested whether substrates containing freshly-extracted
noni juice substrates – obtained by crushing ripe noni fruits, removing
the seeds, centrifuging in a 15ml Falcon at 4000 rcf for 10min and
collecting the supernatant (“noni extract”) –might be more attractive
than those prepared with commercial noni juice; we did not find that
fresh juice induced higher oviposition rates, nor any differences in
indentation formation (Supplementary Fig. 9b, c, d).

Fruitmultiple-choice assay. Ripe fruits (apple, banana, grape (all from
Migros); noni from M. citrifolia plants (University of Zurich Botanical
Gardens and Canarius) grown in a greenhouse) were cut into thick (1-
2 cm) slices. Fruit pieces were placed in a 5 cm diameter Petri dish
(Falcon) inside a plastic chamber (15 cm length × 14 cm width × 5 cm
height; Migros). For all species, 50 females and 20 males were anes-
thetized on ice and introduced into the chamber, which was covered
with a fabric gauze. The chambers were placed in a behavioral room in
constant darkness for 72 h, after which the number of eggs on each
fruit piece was quantified.

Group two-choice assay. Agarose (Promega) substrates were pre-
pared as follows: a 1% agarose solution was prepared and let to cool
until it was possible to hold the glass Erlenmeyer flask with bare hands.
The 1% agarose preparation was added to the juice/odor solution in a
2:1 ratio, resulting in a final concentration of 0.67% agarose. The final
mixture was poured up to a 0.5 cm depth into 3 cm diameter Petri
dishes (Falcon). Agarose plates were kept at 4 °C for a maximum of
3 days. Instant medium substrates were prepared by diluting 12 g of
instantmedium in 100ml of noni juice (or apple cider vinegar or grape
juice) creating a semi-solid consistency. The instant medium was
spread in a 3 cm diameter Petri dish until fully covering the bottom of
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the plate. Instant mediummixes were kept at 4 °C and used within two
weeks. Two Petri dishes containing the desired combination of sub-
strates were placed into the same chamber used for the fruit multiple-
choice assay. 10 females and 8–10 males (D. melanogaster and D.
simulans) or 20 females and 15–20 males (D. sechellia) were anesthe-
tized with CO2 and introduced into the chamber for 3 days. Due to D.
sechellia’s low fecundity, through preliminary experiments we con-
sidered that the number of eggs laid by 20 D. sechellia female flies was
sufficient to observe a clear behavioral preference between two con-
ditions. Petri dishes were exchanged with fresh ones every 24 h by
quickly lifting the mesh cover. The number of eggs laid per substrate
was counted independently on each plate.

Group no-choice odor cue assay. As for the “Group two-choice assay”
except using a single 3 cm diameter Petri dish containing 0.67% agar-
ose and 150mM sucrose (Sigma) onto which a non-accessible con-
tainer covered with a fabric gauze and a perforated cap of a 15ml
Falcon tube (diameter 1 cm, height 2 cm; Techno Plastic Products AG)
into which 300 μl of H2O or noni juice was pipetted.

Single-fly two-choice assay. 30-cell single-fly chambers were
designed and manufactured by Formoplast S.A. following published
blueprints31, but using poly(methyl methacrylate) instead of acrylic,
and adding a small handle to the top door. Flies were anesthetized in
CO2 and placed in individual egg-laying chambers. Animals were
allowed a 30min period for recovery from anesthetization and accli-
mation to the chamber, during which time the oviposition substrate
was prepared as described above. For single-odor assays, instant
mediumwas dissolved in the desired odor solution diluted in water or
juice. The concentration range of odors was defined from preliminary
tests and previous studies27; specified concentrations represent those
before adding the instant medium. For agarose substrates, 1ml of
agarose solution containing the stimuli was added to the appropriate
wells of the chamber (each underlying one side of 5 separate cells) to
produce the desired combination of substrates within each cell. For
instant medium substrates, the paste was added to the wells with a
spatula. The fly loading compartment was placed on top of these wells
to allow flies access to the substrates. Eggs were scored on each sub-
strate after 22 h. Preliminary tests of oviposition preferences on dif-
ferent substrates, which informed subsequent experimental design,
are shown in Supplementary Fig. 2.

Texture assays. Single-fly oviposition assays were performed as
described above but preparing substrates with different final con-
centrations of agarose.

For all assays, eggs were scored manually under a binocular
microscope. The oviposition preference index was calculated as:
(number of eggs on substrate X - number of eggs on substrate Y)/total
number of eggs. The preference index was not calculated for assays
where <2 eggs were laid. Indentations were scored as small breaks/
holes in the substrate surface; in some cases, the presence of multiple
indentations in the same region of the substrate likely led to under-
estimation of the number of independent indentations.

High-speed imaging of oviposition behavior
D. sechellia flies were cultured on cornmeal media. Mated D. sechellia
females (aged 4–10 days in cornmeal food vials with or without sup-
plementation with noni paste), were placed in empty vials with
hydrated tissue for 14–20 h before the day of the experiment to force
egg retention. A group of 2-3 individuals was introduced into a cubical
oviposition filming chamber33. A trough on one side of the chamber
wasfilled with a noni juice-agar substrate (1:3 or 1:6 v/v), with awet pad
at its base to limit sagging causedbydesiccation. Flieswerefilmedwith
a high-speed camera (JAI RMC-6740 GE, IMACO as detailed in33) using
the custom FlyBehavior software33 (https://github.com/LMU-

AgGompel/FlyBehaviour), focused on the surface of the agar col-
umn, which provided a 1 × 3mm oviposition substrate. Recording of
the group was performed for several separate 2 h-sessions over the
course of one day (from late morning to mid-evening). The following
specific behaviors were observed qualitatively by visual inspection of
the resulting Movies: Touching (Supplementary Movie 1) - the ovipo-
sitor simply touches the substrate; Scratching (Supplementary
Movie 2) - the ovipositor brushes against the substrate, giving the
impression of gentle scratching; Digging (Supplementary Movie 3) -
the ovipositor burrows into the substrate surface; Indentation forma-
tion (Supplementary Movie 4) - the fly digs with its ovipositor at a
particular site on the substrate leaving a minor depression (indenta-
tion) but no egg; occasionally, we observed that a fly returns to an
indentation for egg laying; Egg laying (SupplementaryMovie 5) - the fly
starts digging into the surface and lays an egg at this site. In many
movies, we also observed flies exuding a liquid droplet, possibly from
their anal plates (e.g., Supplementary Movie 1, example 4, left-hand
animal); this action does not appear to be related to oviposition as it
was observed also in virgin female and male flies. Movie sequences
were cropped and assembled in Fiji73.

Color preference assays
Color preference was assessed by adapting an olfactory trap assay34, in
which the arena contained two traps filled with 300 μl of the same
attractive odor – noni juice (D. sechellia) and balsamic vinegar (Antica
Modena) (D. melanogaster and D. simulans) – masked with different
visual cues. To simulate fruit at a ripe or unripe stage, a trap was
covered with a green or white matte table-tennis ball (Lakikey; 40mm
diameter) with two opposing holes cut into it: one large hole on the
bottom to insert the trap vial, and a smaller hole on top to allow the
flies to enter the trap through a 200 μl pipette tip that was flush with
the ball surface. Arenas were lined with either green or white paper (to
provide different contrast for the green and white traps), and assays
were performed in the light as well as under complete darkness in a
behavior room (25 °C and 60% relative humidity). Prior to the assay,
flies were kept on wheat flour-yeast-fruit juice media without noni
supplement for 24 h. Twenty-five fed and mated 3–5 day-old females
were introduced into each arena after brief ice anesthesia. The number
of flies in each trap (as well as untrapped animals) was counted after
24 h; replicateswhere >25%offlies diedwithin the experimental period
were discarded. The preference index was calculated as: (number of
flies in white trap - number of flies in green trap)/number living flies
(trapped and untrapped).

Locomotor activity monitoring
Activity was measured for 5–7 day old mated females at 25 °C under a
12 h light: 12 h dark cycle, staged as for oviposition assays to ensure
mating status, in the Drosophila activity monitor (DAM) system74 in
incubators with continuous monitoring of light and temperature
conditions (TriTech Research DT2-CIRC-TK). In brief, this system uses
an infrared beam that bisects a 5mm glass tube, in which the fly is
housed, to record activity as the number of beam crossings per min-
ute. Each tube is plugged with a 5% sucrose/2% agar (w/v) food source
at one end and cottonwool at the other. EachDAMwas used to record
the activity of up to 32 flies simultaneously, and multiple monitors
were contained in a single incubator. For all genotypes, we recorded
flies over at least 2 technical replicates. Mean activity of an animal was
calculated as the average number of beamcrossings perminute over 3
complete days of recording.

Ovary dissection and egg quantification
Females, prepared as for the oviposition assays, were anesthetized with
CO2 and their ovaries dissected with forceps in phosphate buffered
saline, using a surgical needle to separate the ovarioles. Mature eggs
present in each ovary were counted under a binocular microscope.
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Histology
Immunostainings on whole-mount antennae were performed follow-
ing a published protocol75 using guinea pig α-Ir75b (RRID:
AB_2631093)76 (diluted 1:100) and Alexa488 α-guinea pig (A11073
INVITROGEN AG) (diluted 1:500). Images were acquired using ZEN 2.3
SP1 software on a Zeiss LSM 710 confocal microscope and processed
using Fiji73.

Electrophysiology
Single sensillum electrophysiological recordings from female flies
were performed following published protocols77 using chemicals of
the highest purity purchased from Sigma Aldrich. Odorants (butyric
acid (CAS 107-92-6) and hexanoic acid (CAS 1821-02-9)) were used at
1:100 (v/v) dilutions in solvent (double-distilled water) for a maximum
of 5 consecutive trials. Corrected responses were calculated as the
number of spikes in a 0.5 s window at stimulus delivery (200ms after
stimulus onset to take account of the delay due to the air path for
olfactory stimulation) subtracting the number of spontaneous spikes
in a 0.5 s window 2 s before stimulation, multiplied by 2 to obtain
spikes/s. The solvent-corrected responses shown in the figures were
calculated by subtracting from the response to each diluted odor the
response obtainedwhen stimulatingwith the solvent. Recordingswere
performed on a maximum of 3 sensilla per fly.

Statistical analyses
Oviposition preference indices were calculated compared to the null
hypothesis (i.e., preference index = 0) for each strain using aWilcoxon
test with Bonferroni correction for multiple comparisons. In all box
plots, the middle line represents the median, and the lower and upper
hinges indicate the first and third quartiles, respectively; whiskers
extending out of the box indicate the variability beyond the upper and
lower quartiles; data points beyond the whiskers are considered out-
liers. All bar plots of egg-laying rate show themean ± SEM. Statistically-
significant differences across the number of eggs laid per fly per day
formultiple comparisons were calculated applying Kruskal-Wallis rank
sum test with Nemenyi post-hoc test. For two-sample comparisons, a
two-sample t-test was used. The reference strain for multiple or two-
sample comparisons is indicated in the figure legends. Error bars show
SEM.All statistical values reportedon thefigures are as follows: NS (not
significant) P >0.05; *P <0.05; **P <0.01; ***P < 0.001. As egg-laying
rate ofD. sechellia sometimesdisplayedquantitative variation between
experiments performed at different times, statistical comparisons
were only performed between assays performed in parallel. All beha-
vioral data were analyzed usingMicrosoft Excel and statistical analyses
were performed in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All materials and data supporting the findings of this study are avail-
able from the corresponding author on request. Source data from
behavioral and electrophysiological experiments, together with sta-
tistical analyses, are provided with this paper.
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