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ABSTRACT

This contribution studies a feature extraction technique aiming at reducing differences between domains in image
classification. The purpose is to find a common feature space between labeled samples issued from a source image
and test samples belonging to a related target image. The presented approach, Transfer Component Analysis,
finds a transformation matrix performing a joint mapping of the two domains by minimizing a probability
distribution distance measure, the Maximum Mean Discrepancy criterion. When predicting on a target image,
such a projection allows to apply a supervised classifier trained exclusively on labeled source pixels mapped
in this common latent subspace. Promising results are observed on a urban scene captured by a hyperspectral
image. The experiments reveal improvements with respect to a standard classification model built on the original
source image and other feature extraction techniques.
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1. INTRODUCTION

In remote sensing image classification the ground truth collection process can be very demanding. Therefore,
when classifying series of similar images with the supervised learning paradigm, the possibility to reuse labeled
samples from a first acquisition is very appealing. Particularly, the ability to adapt a classifier built on an image,
the source domain, to a new scene without needing any (or needing little) labeled data from the second image,
the target domain, is of remarkable interest.1 In the pattern recognition/machine learning community, this field
of investigation is known as domain adaptation (DA).2

Similarly, such an approach can be applied when dealing with partial ground truth data covering a small and
moderately representative subset of the image only. In a remote sensing study involving images covering a large
surface, it is often impossible to acquire reference data uniformly over the whole considered region. Therefore,
the collected class signatures are suffering a sample selection bias, meaning that the complete true statistical
distribution of the classes is not adequately sampled and, consequently, can not be suitably modeled.

The shifts in the statistical distribution of the ground materials between the acquisitions (or in different sub-
parts of an image) can be due to differences in illumination conditions, in the phenological state of the vegetative
cover, in the shadowing effects caused by satellite view angles or solar elevations, etc.

In the recent literature, several contributions tackled the problem using active learning techniques.3–5 By the
addition of new samples to an initial training set built only on the source image, the dataset shift is corrected
with an intelligently designed sampling scheme on the target image.

However, the partially unsupervised classification scheme, where the model for the target classification is
exclusively built using labeled examples from the source image, is encountered much more frequently when
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dealing with concrete remote sensing studies. An accurate land cover-mapping not needing any sampling effort
on the newly acquired image constitutes a notable achievement. Within this framework, we find approaches that
aimed at iteratively adding pseudo-labeled target samples to the training set while removing the initial source
examples6 and other strategies exploiting unlabeled target samples to build more robust cluster similarities across
domains.7 More specifically, concerning dimensionality reduction problems, Bruzzone et al. (2009)8 proved that
a thoughtful selection of the features of a hyperspectral image, based on spatial invariance, could improve the
accuracy when classifying testing regions using training data extracted from spatially disjoint areas.

Nevertheless, little attention has been paid to feature extraction (FE) techniques as tools to reduce the
distribution change between source and target domains. In the present paper we study the possibility to project
both domains to a common feature space minimizing the difference between them. After the proper joint
mapping of the samples belonging to the two domains based on these newly extracted components, a model
trained exclusively on the source image can be used for the predictions on the target image. In such a setting, we
propose hereafter a method which is especially designed for DA. Originally proposed by Pan et al. (2011),9 this
approach named Transfer Component Analysis (TCA) is founded on the minimization of the distance between
probability distributions of the two domains as measured by theMaximum Mean Discrepancy (MMD) criterion.10

Such a measure is based on the evaluation of the distance between the means of the samples of the different
domains when mapped in a common Reproducing Kernel Hilbert Space (RKHS).

The rest of the present paper is organized as follows. Section 2 outlines the general framework for DA based
on the extraction of features from the original variables. In Sect. 3.1 we present and analyse the distribution
divergence measure on which TCA is based, while Sect. 3.2 details the TCA technique in its unsupervised
version. Next, in Sect. 4, we describe the ROSIS hyperspectral image of Pavia (Italy) and the associated design
of the experiments. Section 5 reports and discusses the results obtained on the cited dataset and, finally, Sect. 6
concludes the paper.

2. DOMAIN ADAPTATION VIA FEATURE EXTRACTION
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Figure 1. The process of knowledge transfer from
a labeled source image to an unlabeled target
image using a feature extraction approach. The
final purpose of the procedure is to provide an
accurate land cover map for the target image.

When dealing with data points issued from different but re-
lated distributions, a family of approaches designed to transfer
the knowledge from the one domain to the other is the feature-
representation-transfer ensemble of methods.11 The underlying
rationale consists of finding a proper common description of the
source and target datasets minimizing the differences between
these two domains while keeping the main data properties. Once
the samples are projected in the same subspace created with the
extracted features, a classifier is trained in the source domain,
where labeled examples exist, and then inference is performed di-
rectly in the projected target domain. In remote sensing image
classification, the ultimate scope is to extract a set of features
that possess both a good discrimination capability of the ground
cover classes as well as a sound spatial invariance.8

Let DS = {XS , YS} = {(xSi
, ySi

)}ns

i=1 be the ns labeled source
training data and XT = {xTj

}nt

j=1 the nt unlabeled target data,

with samples xSi
,xTj

∈ R
d ∀ i, j. In such a setting, the goal is to

predict labels yTj
∈ Ω = {ωc}

C
c=1 (with the same set of C classes

as for ySi
) making use exclusively of the labeled data belonging

to DS in the modeling phase. To this end, we look for a common
mapping φ of the samples of both domains: XS → φ(XS) = X∗

S ,
XT → φ(XT ) = X∗

T . Such a transformation is intended to reduce
the divergence between marginal probability distributions P (XS)
and P (XT ) so that P (X∗

S) ≈ P (X∗
T ).

More concretely, exploiting XT , one is allowed to build a stacked input set X = XS ∪XT . Using X we aim
at finding a transformation matrix W able to execute the joint mapping φ of the original data X obtaining thus



the embedded counterparts X∗
S and X∗

T . Different mapping matrices W can be obtained by applying standard
FE methods such as Principal Component Analysis (PCA) or Kernel Principal Component Analysis (KPCA),12

etc. Then, the user usually embeds the data in a m-dimensional space with m ≪ d.

In the next stage, we learn a classifier on the mapped training set {(x∗
Si
, ySi

)}ns

i=1 and then apply it without
any adjustment to predict class labels for the mapped target points {x∗

Tj
}nt

j=1. As a matter of fact, the adaptation
from the source to the target domain has already taken place during the FE phase. Therefore, the collection of
labeled reference samples on the target image is not necessary.

Figure 1 illustrates the concept of DA using FE techniques.

3. TRANSFER COMPONENT ANALYSIS

3.1 Differences between distributions: the Maximum Mean Discrepancy

The FE technique studied in this contribution is intended to provide a common embedding of the considered
domains such that the differences in the statistical distribution of the samples are reduced. As it will be shown
in the next section, the proper optimal mapping in a DA setting is the one minimizing the shift in the data
distributions. Hence, we first need to quantify the importance of the dataset shift occurred between source and
target domains with an objective and robust measure of distribution divergence.

Many distances exist to evaluate the difference between probability distributions: Kullback-Leibler diver-
gence,13 Jensen-Shannon divergence, Bhattacharyya distance,14 etc. However, these methods are affected by the
data dimensionality, with the necessary probability density estimations becoming infeasible in high-dimensional
spaces. Borgwardt et al. (2006)10 propose a new indicator for comparing distributions based on the difference
of the mean of the distributions computed in a common RKHS. This non-parametric measure, called Maximum

Mean Discrepancy, is easily calculated no matter the number of variables describing the examples.

Following the notation of Sect. 2, the empirical estimate of the MMD between the distribution of a given
source dataset XS and that of a related target dataset XT is given by
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∥
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where ‖·‖2
H
is the squared norm computed in a RKHS. This quantity is nothing but the squared distance between

sample means in the feature space and approaches zero when the two distributions tend to be exactly the same.
Taking advantage of the well-known kernel trick one can rewrite (1) as

MMD(XS , XT ) = Tr(KL) , (2)

where

K =

(

KS,S KS,T

KT,S KT,T

)

∈ R
(ns+nt)×(ns+nt) , (3)

with KS,S,KT,T ,KS,T ,KT,S being the kernel matrices (of elements Ki,j = φ(xi)
⊤φ(xj)) obtained from the data

of the source domain, target domain and cross domains, respectively. Moreover, Li,j = 1/n2
s if xi,xj ∈ XS , else

if xi,xj ∈ XT we have Li,j = 1/n2
t and, otherwise, Li,j = −1/nsnt.

The use of the kernel trick, with its non-linear mapping of the data in a higher-dimensional feature space, is
key for the MMD. Figure 2 presents the effectiveness of the presented indicator in detecting distribution shifts
on toy datasets. We compare the MMD in its non-linear kernel version (with a Gaussian RBF kernel) with the
simple difference of the means of the two distributions in the input space: in these examples we can appreciate
the capability of MMD RBF to properly capture the difference in the shape of the data. In fact, even though
the means of the distributions basically remain the same (overlapping blue and red centroids in the plots of
Fig. 2), as the divergence between the blue and red data points becomes more marked, the MMD RBF indicator
increases (value of 0.005 when distributions almost exactly overlap, 0.123 when XT displays a higher variance
and 0.476 when P (XT ) is bimodal).
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Figure 2. Dataset shift assessment for 3 toy datasets, representing source (in blue) and target (in red) domains combinations
of increasing divergence ((a): no shift, (b): increase of the variance, (c): appearance of two modes). All experiments
compare the MMD computed using a Gaussian RBF kernel with σ = 2 to the MMD with a linear kernel, i.e. the distance
between the means in the input space (distance between centroids in 2-D).

3.2 Transfer Component Analysis

In order to reduce the differences between two distributions, it is very intuitive to seek a shared feature repre-
sentation across domains. Such a representation is intended to mitigate the shift occurred between the source
and target datasets. To this end, we present the TCA technique9 (in its unsupervised form, i.e. not requiring
any labeled target data) designed to extract meaningful transfer components from the original data belonging
to different but related domains. As mentioned in Sect. 2, the purpose of FE algorithms in a DA setting is to
find a mapping function φ, practically a transformation matrix W, whose aim is to:

a) obtain a reduced distance between the probability distributions of φ(XS) and φ(XT )

b) preserve the main properties of the original data XS and XT .

Starting from the kernel matrix K of (3) built on the stacked source and target sets, it is possible to use an
embedding matrix W ∈ R

(ns+nt)×m (with m ≪ ns+nt) to compute the kernel matrix between mapped samples
as K̃ = KWW⊤K. Afterwards, to obtain the MMD measure for the mapped samples, we are allowed to rewrite
(2) as

MMD(X∗

S , X
∗

T ) = Tr((KWW⊤K)L) = Tr(W⊤KLKW) . (4)

The objective stated in a) is thus achieved by minimizing (4) w.r.t. W.

On the other hand, goal b) requires φ not to harm the target supervised learning task by deforming too much
the input space. Hence, we look for a matrix W able to preserve (and maximize) the initial data variance in the
newly created subspace, whose covariance matrix Σ̃ is given by

Σ̃ = W⊤KHKW , (5)

where H = I− (1/(ns + nt)11
⊤) ∈ R

(ns+nt)×(ns+nt) is the centering matrix. Thus, the following constraint will
be integrated in the optimization problem: Σ̃ = Im, where Im ∈ R

m×m is the identity matrix.

The final kernel learning problem is then set up as

minW Tr(W⊤KLKW) + µTr(W⊤W)

s.t. Σ̃ = Im , (6)

where µ is a tradeoff parameter tuning the influence of the regularization term Tr(W⊤W) controlling the
complexity of W. Such an optimization problem can be reformulated as a trace maximization problem yielding
the following solution: the mapping matrix W is obtained by performing the eigendecomposition of

M = (KLK+ µI)−1KHK , (7)



and keeping the m eigenvectors associated with the m largest eigenvalues eig(M). For the detailed development
refer to (Pan et al., 2011).9

Once W is available, one is allowed to readily compute the m coordinates (the m uncorrelated transfer

components) of the mapped samples as X∗ = KW. In this latent subspace where distribution differences are
reduced it is now possible to train a supervised classifier on the mapped source labeled samples and subsequently
use it to classify the target image embedded in the same subspace.

4. DATA AND EXPERIMENTAL SETUP

Experiments have been carried out on a 1.3 m spatial resolution hyperspectral image acquired by the ROSIS-03
optical sensor over the city of Pavia (Italy).15 The region of the spectrum covered by the 102 retained bands (13
noisy bands have been removed from the initial set of 115 channels) ranged from 0.43 to 0.86 µm. Given the urban
setting, the goal is to discriminate between 4 classes: “buildings”, “roads”, “shadows” and “vegetation” (the
class “water” has not been considered in the experiments). The image, presented in Fig. 3, shows a noticeable
variation over space of the signatures of the ground cover classes (different materials constituting roofs and roads,
different types of vegetative cover, etc.). In this context, we were allowed to consider subsets of the image as
separate domains.

Therefore, to assess the ability of different FE techniques to transfer the knowledge acquired on a given source
image to a related target image, we partitioned the hyperspectral scene into several spatially disjoint subsets.
Figure 3 illustrates which parts of the ROSIS image were taken as target and source domains. To analyse
different DA scenarios, we defined two source sub-images. The statistical distribution of the pixels issued from
the sub-region named “Source A” is assumed to possess a moderate divergence from that of the pixels belonging
to the sub-image identified as “Target” (empirical MMD RBF computed on standardized data equal to 0.0054).
This divergence is thought to be higher when considering the “Source B” sub-image (MMD RBF = 0.0085), also
due to the small spatial extent of the region covered by this subset. As preprocessing step, the histograms of the
sub-images have been matched separately for each one of these source/target domains combinations.

Using Linear Discriminant Analysis (LDA) as base classifier, we compared the performances of 3 FE tech-
niques. Namely, we report the classification accuracies on the target test set of a LDA model built with source
samples described by features extracted by PCA (PCA FE), by KPCA (KPCA FE) and by the proposed TCA ap-
proach (TCA FE). After the FE step, LDA models have been trained with source samples embedded in a space
(common to the target samples) of increasing dimension (1 to 18 features). Furthermore, for comparison sake,
models trained with samples belonging to the original target (Target orig) and source (Source orig) input
space described by the 102 initial bands (no mapping) have also been tested.

Classification performances have been evaluated on a test set counting 14’047 pixels issued from the “Target”
sub-image. As training sets to be exploited by the Source orig model and by the 3 FE methods, we took
into account 300 pixels per class belonging to the source regions of the Pavia image. We then have resorted to

Source A

Source B

Target

Figure 3. ROSIS image of Pavia used for the experiments (true color visualization). The sub-region identified with
“Target” has been used as the target image. Sub-regions “Source A” and “Source B” have been considered as source
images displaying a moderate and a large shift with respect to “Target”, respectively.



the same amount of unlabeled examples coming from the target image to find the corresponding transformation
matrices W. Lastly, 500 pixels/class were considered to build the model setting reference accuracies in the target
domain (Target orig method). Ten independent experiments with randomly selected pixels have been carried
out to validate the approaches considered.

The selection of the σ parameter of the Gaussian RBF kernel, chosen both for the KPCA FE and the TCA FE

mapping methods, has been carried out using the Kernel Alignment heuristic.16 As done in previous studies,17

we selected the parameter maximizing the alignment between the kernel matrix encoding sample similarities and
the ideal kernel constructed using the associated class labels. Such a procedure only involved pixels belonging
to the source domain, those whose labels were known. For the TCA FE technique, after several tests having
highlighted a low model sensitivity to its variation, we set the tradeoff parameter µ as equal to the standard
value of 1.9

5. RESULTS AND DISCUSSION

Figure 4 illustrates the Overall Accuracy (OA) of the LDA model on the “Target” image when trained using an
increasing number of components (1 to 18) extracted with the 3 FE methods.

In the moderate shift setting involving image “Source A” (Fig. 4(a)), the Source orig model achieves an
average OA of 81.68%, approaching the reference performance of the same-domain model Target orig (OA =
87.73%). The PCA-based extraction considering the first 3 components is suitable to adequately describe the
ground cover classes when source and target pixels are embedded in a shared subspace were the domain differences
are reduced (OA = 84.81%). On the other hand, if we only consider components with the 3 largest eigenvalues, the
two kernel-based FE methods provide less informative features (and consequent inferior classification accuracies).
However, already from the inclusion of the 4th component on, the performance increases for both KPCA FE and
TCA FE. With a similar evolution, such methods are able to reach and even exceed the Target orig performance
with LDA models built using 9 or more features.

In the second scenario considering image “Source B” as source domain, differences in methods performances
are emphasized (Fig. 4(b)). Due to the larger divergence affecting the marginal probabilities of XS and XT ,
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(a) Training sets issued from the “Source A” sub-image:
moderate dataset shift.
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Figure 4. Average LDA classification accuracies (OA %) on the “Target” sub-image for the 5 compared methods over 10
experiments as a function of the number of extracted features included in the model. Target orig (solid blue line): model
only using original target samples, Source orig (dashed red line): model only using original source samples, PCA FE

(dashed green curve with dots): model using source samples with features extracted by PCA, KPCA FE (solid brown
curve with crosses): model using source samples with features extracted by KPCA, TCA FE (dashed light blue curve with
squares): model using source samples with features extracted by TCA.



the Source orig model fails in appropriately mapping the land cover in the target domain (OA = 71.60%).
The PCA and KPCA dimensionality reduction methods display here accuracy curves which are close to those of
Fig. 4(a). However, because of the larger shift, we notice lower starting points for both methods and a sharper
decrease in accuracy with the inclusion of noisy features (from 3 features on) for PCA. The TCA technique
presented in this paper (TCA FE curve), reveals good generalization abilities if 3 or more features are retained.
TCA properly reduces the domain differences attaining notable accuracy levels (> 90.50% OA) when predicting
on the target image. We also remark that this ability is exhibited by KPCA as well.

Figure 5 represents the RGB visualizations of the first 18 extracted components, taken 3 at a time in a
decreasing order of importance (w.r.t. the eigenvalues), for the “Target” portion of the Pavia scene. The sub-
image possessing a large shift (“Source B”) was used as source for the FE step. A good correspondence can be
found between the ability of the different groups of features in (visually) discriminating the land cover classes and
the behavior of the associated classification models. Concerning the PCA extraction method, one can remark
noisy features starting to appear already in the second RGB image (components 4, 5 and 6). This can be directly
related to the decrease in classification accuracy described in the preceding paragraph, which is due to a lack of
useful information contained in these features. On the other hand, one can observe the fairly neat RGB images
involving features produced by KPCA and TCA. These extracted variables seem to be able to capture, in a
non-linear fashion, the underlying structure of the data valid across domains. They display a certain richness
in information, which is missing in those linearly combined by PCA (whose accuracy stagnates at a lower level
from the inclusion of 3rd feature on). A supervised classifier will be greatly helped if asked to make use of such
components for a given ground cover mapping task.

As general considerations, one can retain that the extraction of a set of features that is shared across domains
induces a significant gain in the quality of the classification maps on the target image. In the large shift setting,
one can notice up to 18% OA gains for the TCA and KPCA techniques over the source model using unmapped
samples. This can be explained by the fact that all the considered FE procedures jointly use examples drawn from
both the domains of interest, and this intrinsically reduces the existing dataset shift. Kernel-based non-linear
FE methods proved very efficient in reducing distribution divergences, outperforming their linear counterparts.
Even when the labeled pixels carrying the knowledge regarding the land cover signatures were issued from a
source domain exhibiting a large divergence with respect to the target domain, a proper joint embedding of the

Figure 5. Visualization of the first 18 components respectively extracted by the 3 FE methods using samples from the
“Source B” image. The columns represent the RGB combinations (3 components at a time) of the features sorted by
decreasing eigenvalues. Top row: PCA, middle row: KPCA, bottom row: TCA.



samples allowed to effectively reuse the already acquired class labels. Thanks to the information conveyed by
smartly built features, no labeling efforts on the target image were then needed in order to keep a satisfying
classification performance. Moreover, note that, bearing in mind the high initial number of features (102 spectral
bands), the dimensionality of the problem at hand is sharply reduced, no matter which FE technique is applied.

However, in this DA setting involving a single hyperspectral image, no pronounced differences have been
observed between the presented TCA technique and KPCA. The reason behind such a similar evolution of the
curves probably lies in the light distribution shift induced by the experimental setting considered. Moreover, one
of the objectives of TCA, besides the minimization of the MMD distance between domains, is that of maximally
preserving the data variance (constraint given by Eq. (5)), objective that is also pursued by KPCA. The specific
aim of the transfer components, i.e. the reduction of distribution divergences, is perhaps not particularly required
for a correct modeling of the various subregions of the considered scene.

6. CONCLUSIONS

With this contribution, we put forward the use of FE techniques as powerful tools to reduce distribution diver-
gences between remote sensing images. We provided a preliminary study of some methods able to generalize the
predictive abilities of existing classification models to newly acquired target images. Considering the increasing
frequency and spatial extent of the acquisitions of remote sensing images we observed in the recent years, the
possibility to intelligently reuse the information provided by previously labeled pixels is strongly needed.

In particular, the TCA method we presented, with its MMD minimization scope, proved potential in extract-
ing features mitigating domain differences while being discriminant for image classification. LDA models trained
on source images using such variables showed classification accuracies even exceeding those of models built on
the target image constituted by the original spectral bands. Although more work (namely with other types
of images and more challenging DA settings) is needed to thoroughly validate the usefulness of the considered
approach, encouraging results have been obtained with these experiments on a hyperspectral dataset.
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