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Candida lusitaniae is usually susceptible to echinocandins. Beta-1,3-glucan synthase encoded by FKS genes is the target of echi-
nocandins. A few missense mutations in the C. lusitaniae FKS1 hot spot 1 (HS1) have been reported. We report here the rapid
emergence of antifungal resistance in C. lusitaniae isolated during therapy with amphotericin B (AMB), caspofungin (CAS), and
azoles for treatment of persistent candidemia in an immunocompromised child with severe enterocolitis and visceral adenoviral
disease. As documented from restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA
(RAPD) analysis, the five C. lusitaniae isolates examined were related to each other. From antifungal susceptibility and molecu-
lar analyses, 5 different profiles (P) were obtained. These profiles included the following: profile 1 (P1) (CAS MIC [�g/ml], 0.5;
fluconazole [FLC] MIC, 0.25), determined while the patient was being treated with liposomal AMB for 3 months; P2 (FLC MIC
[�g/ml], 0.25; CAS MIC, 4), while the patient was being treated with CAS for 2 weeks; P3 (CAS MIC [�g/ml], 0.5; FLC MIC, 32),
while the patient was being treated with azoles and CAS initially followed by azoles alone for a week; P4 (CAS MIC [�g/ml], 8;
FLC MIC, 8), while the patient was being treated with both drugs for 3 weeks; and P5 (AMB MIC [�g/ml], 0.125; CAS MIC, 8),
while the patient was being treated with AMB and FLC for 2 weeks. CAS resistance was associated with resistance not only to
micafungin and anidulafungin but also to AMB. Analysis of CAS resistance revealed 3 novel FKS1 mutations in CAS-resistant
isolates (S638Y in P2; S631Y in P4; S638P in P5). While S638Y and -P are within HS1, S631Y is in close proximity to this domain
but was confirmed to confer candin resistance using a site-directed mutagenesis approach. FLC resistance could be linked with
overexpression of major facilitator gene 7 (MFS7) in C. lusitaniae P2 and P4 and was associated with resistance to 5-flurocyto-
sine. This clinical report describes resistance of C. lusitaniae to all common antifungals. While candins or azole resistance fol-
lowed monotherapy, multidrug antifungal resistance emerged during combined therapy.

Candida lusitaniae, an opportunistic haploid yeast, remains a
rare cause of candidemia. While C. lusitaniae can develop am-

photericin B (AMB) resistance (1, 2), it is considered generally
susceptible to all systemic antifungal agents (3). Echinocandins
are used as first-line therapy for candidemia due to C. lusitaniae.
The target of echinocandins is �-1,3-glucan synthase and is en-
coded by FKS genes (4). Three echinocandins, anidulafungin
(ANI), caspofungin (CAS), and micafungin (MICA), have been
available and widely used for about a decade. As a result, emerging
resistance to echinocandins has been reported in several species,
including C. albicans, C. dubliniensis, C. kefyr, C. glabrata, C. kru-
sei, C. tropicalis, and C. lusitaniae (5–12). Missense mutations in
FKS genes (FKS1 and FKS2) that are situated in different regions
(host spot 1 [HS1] and HS2) are responsible for the increase of
drug MICs compared to the MICs seen with wild-type isolates.
These MIC increases were shown to cause treatment failures in
animal experiments similarly to those seen in clinical cases, thus
suggesting the emergence of clinical resistance (13). In C. lusita-
niae, a single missense mutation in C. lusitaniae FKS1 HS1 at po-
sition 645 (S645F) was reported in clinical isolates and resulted in
increased MICs of several echinocandins. While recent data doc-
umented cross-resistance between echinocandins and azoles in C.
glabrata (14), no cross-resistance has yet been reported in C. lus-
itaniae. The present paper reports the unusual emergence of clin-
ical isolates of C. lusitaniae with documented cross-resistance to
candins and azoles following exposure to various antifungal regi-
mens for persistent candidemia.

MATERIALS AND METHODS

Strains and media. C. lusitaniae strains were grown in complete yeast
extract-peptone-dextrose (YEPD) medium (1% Bacto peptone [Difco
Laboratories, Basel, Switzerland], 0.5% yeast extract [Difco]) with 2%
(wt/vol) glucose (Fluka, Buchs, Switzerland). Saccharomyces cerevisiae was
grown on YEPD medium for isolate precultures and on yeast nitrogen
base (YNB) agar (Difco) with 2% (wt/vol) glucose. Species identification
was performed using matrix-assisted laser desorption ionization–time of
flight (MALDI-TOF) mass spectrometry (MS) Microflex LT systems
(Bruker Daltonics GmbH, Leipzig, Germany) and with analysis of data
using FlexControl (version 3.0) software (Bruker Daltonics) as described
in reference 15.

Susceptibility assays. Determinations of drug MICs for C. lusitaniae
clinical isolates according to EUCAST guidelines were performed in
RPMI 1640 medium (Sigma-Aldrich, Switzerland) with 2% glucose and
in flat-well microtiter plates. RPMI 1640 buffered at pH 7.0 with MOPS
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(morpholinepropanesulfonic acid) was used for MIC tests of azoles,
5-fluorocytosine (5-FC), candins, and AMB. Cells were diluted to a den-
sity of 0.5 2 � 105 to 2 � 105 cells/ml. All compounds were dissolved to
obtain final concentrations ranging from 128 �g/ml to 0.0162 �g/ml.
Plates were incubated at 35°C for 24 h, and readings were carried out in a
microplate reader at 540 nm. The MIC was defined as the drug concen-
tration at which the optical density was �50% of that of the drug-free
culture. Quality controls included C. albicans strain ATCC 928. Antifun-
gal agents used in this study were provided as pure substances by pharma-
ceutical companies (CAS, Merck; micafungin [MICA], Astellas; anidula-
fungin [ANI] and FLC, Pfizer). AMB deoxycholate (Fungizone) was
obtained from Bristol-Myers Squibb (Cham, Switzerland).

RLFP and RAPD analysis. The recovered C. lusitaniae isolates were
subjected to restriction fragment length polymorphism (RLFP) and ran-
dom amplified polymorphic DNA (RAPD) analysis as described else-
where (16). Genomic DNA was isolated by glass bead extraction from
each isolate as previously described (17) and was subjected to EcoRI and
MspI digestion. RAPD analysis was performed with primer OPE-18 (GG
ACTGCAGA) as previously recommended (16). Gel electrophoresis was
carried out with 0.8% agarose followed by ethidium bromide staining.
Additional software (ImageJ) (18) was used to corroborate our findings
from the RFLP analysis (see Fig. S1 in the supplemental material).

FKS1 sequencing. Primers were used to amplify FKS1 alleles encoding
�-glucan synthase from C. lusitaniae isolates (19). These primers were
designed to amplify conserved HS1 (hot spot region 1) and HS2 regions
(for HS1, MDO002 [GCCTTTGGGTGGTTTGTTTA] and MDO003 [T
CGGAATCTCTTGGGAAGAA]; for HS2, MDO004 [TGCTGGTATGG
GTGAACAGA] and MDO005 [CGAACACTTCGAAGAATGGAG]). Se-
quencing procedures were performed with the same primers and are
described elsewhere (20). Sequence alignments were performed with Ge-
neious software (Biomatters Ltd., New Zealand).

qRT-PCR. Quantitative reverse transcription-PCR (qRT-PCR) was
performed as described elsewhere (21). Total RNA was extracted from
log-phase cultures with an RNeasy Protect minikit (Qiagen) by a process
involving mechanical disruption of the cells with glass beads and an
RNase-free DNase treatment step as previously described (22). Gene ex-
pression levels were determined by real-time qRT-PCR in a StepOne real-
time PCR system (Applied Biosystems) using a Mesa Blue quantitative
PCR (qPCR) Mastermix Plus for Sybr assay kit (Eurogentec). Each reac-
tion was run in triplicate on three separate occasions. Expression levels
were normalized to ACT1 expression. Primers for C. lusitaniae ATP-bind-
ing cassette (ABC) and major facilitator superfamily (MFS) transporter
genes were designed with Primer3Plus. The primers were chosen on the
basis of the available genome sequences (Broad Institute). Primers are
listed in Table S1 in the supplemental material. Gene names were given
according to the work of Reboutier et al. (23). Primers ABC15-F and
ABC15-R as well as primers ABC9-F and ABC9-R were selected from the
C. lusitaniae genomes of the closest homologs of the C. albicans CDR1
gene. MFS7-R and MFS7-F as well as ABC12-R and ABC12-F were se-
lected since the corresponding genes were previously shown to be differ-
entially expressed in several C. lusitaniae isolates (23).

Construction of FKS1 mutants. In order to introduce specific muta-
tions in FKS1 for testing their effect on echinocandin susceptibility, the
model yeast S. cerevisiae was used in combination with the clustered reg-
ularly interspaced short palindromic repeat (CRISPR)-Cas9 genome ed-
iting system. Briefly, a 20-nucleotide (nt) guide sequence adjacent to a
protospacer-adjacent motif (PAM) sequence was selected within the re-
gion of FKS1 HS1. This region was selected using the online CHOPCHOP
selection tool (24) (https://chopchop.rc.fas.harvard.edu) and is situated
between positions 1892 and 1914 with respect to first ATG codon. The
guide sequence was flanked by pMEL10 sequences (25) to allow homolo-
gous recombination in S. cerevisiae. The guide-pMEL10 sequence was
produced by complementary assembly of primers FKS_crisp_R and
FKS_crisp_F (see Table S2 in the supplemental material). pMEL10 was
prepared by inverse PCR with primers p426 CRISPR rv and p426 CRISPR

fw (see Table S2 in the supplemental material) followed by DpnI digestion
as described by Mans et al. (25). Three different repair fragments were
produced, with each containing the desired FKS1 mutation with overlap-
ping primers for the FKS1 mutations S636Y, S643P, and S643Y. Primer
pairs using left and right primers are indicated in Table S2 in the supple-
mental material and were used for PCR amplification to produce 120-bp
repair fragments. Genome editing was performed by combining pMEL10,
the guide-pMEL10 fragment, and each of the repair fragments and by
transformation into S. cerevisiae IMX581 (25). Transformation of S.
cerevisiae was performed as described previously (25), and selection was
carried out in YNB agar lacking uracil. Verifications of introduced muta-
tions were performed by PCR amplification with primers FKS1verif left
and FKS1verif right (see Table S2 in the supplemental material) of the HS1
region and by sequence analysis as described above. Derivatives from
IMX581 are described in Table S3 in the supplemental material.

�-Glucan measurements. Patient blood samples were drawn, and
sera were stored at �80°C and subjected to batch analysis with duplicate
testing by Fungitell on an ELx808IU microplate reader (Associates of
Cape Cod, East Falmouth, MA) per the manufacturer’s package insert.
Samples with �-glucan (BG) values above the upper limit of quantifica-
tion (500 pg/ml) were diluted (58 of 921; 6%). The mean BG values of
duplicates were used for data analysis.

Galactomannan assay. The Bio-Rad Platelia Aspergillus antigen (Ag)
assay was used to measure galactomannan levels. This immunoenzymatic
sandwich microplate assay enabled the detection of Aspergillus galacto-
mannan antigen in serum and bronchoalveolar lavage fluid samples
through the use of rat EBA-2 monoclonal antibodies. Results are reported
in standard international units (provided as index values with limits of
0.25 to 0.5), which refer to the absorbance (optical density) of specimens
determined with a spectrophotometer set at 450 nm.

TDM. Therapeutic drug monitoring (TDM) was performed accord-
ing to published procedures with multiplex ultraperformance liquid
chromatography-tandem mass spectrometry methods that enable simul-
taneous quantification in plasma of azoles and candins (26).

Nucleotide sequence accession numbers. C. lusitaniae sequences
were deposited in GenBank under accession no. JF304613 and JF304615.
Sequences from isolates P1 to P5 were deposited in GenBank under ac-
cession numbers KM383792 to KM383795 and KP100692.

RESULTS
Case report. A 3-year-old female with hematologic and central
nervous system (CNS) relapse of acute myeloid leukemia (AML)
was started on high-dose cytarabine and clofarabine as second-
line induction. She remained profoundly neutropenic over the
following 4 months until her death. Three weeks after induction
chemotherapy, she presented with fever and diarrhea. She had
been on prolonged prophylactic treatment with intravenous (i.v.)
liposomal AMB (3 mg/kg of body weight/day) and broad-spec-
trum antibiotics for over a month. Clinical and radiological exam-
ination showed severe enterocolitis. As such invasive C. lusitaniae
candidiasis was suspected based on the documentation of C. lus-
itaniae in her stools and a positive mannan assay result (immu-
noenzyme assay, 500 pg/ml) (27, 28). Blood culture results were,
however, negative. Given the lack of validated clinical breakpoint
definitions for C. lusitaniae, we used those available for C. albicans
(29, 30). Given the profile (P1; see Fig. 1 and Table 2 for suscepti-
bility profiles) of the susceptibility of the recovered C. lusitaniae
isolate to echinocandins (CAS, micafungin [MICA], and anidula-
fungin [ANI] MICs, 0.5 �g/ml, 0.03 �g/ml, and 0.06 �g/ml, re-
spectively), to azoles (FLC MIC, 0.25 �g/ml) and to AMB (MIC,
0.06 �g/ml), she was started on CAS at 100 mg/m2/day, which
resulted in clinical improvement. While she was on CAS for 2
weeks with measured plasma levels of 4.3 mg/liter, she presented
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with C. lusitaniae candidemia (isolate P2; see Fig. 1), which was
resistant to all echinocandins (CAS, MICA, and ANI MICs, 4 �g/
ml, 16 �g/ml, and 2 �g/ml, respectively) and AMB (MIC, 2 �g/
ml) but not to azoles (FLC MIC, 0.25 �g/ml) or 5-fluorocytosine
(5-FC) (MIC, 0.5 �g/ml). At the same time, she presented with
visceral adenovirus disease (subtype 41 F) with high viral loads in
her blood (2 � 105 copies [cp]/ml) and stool (4 � 109 cp/ml) (31).
She was therefore started on intravenous cidofovir. No endovas-
cular source was documented, and repeat computed tomography
(CT) showed severe enterocolitis but no hepatosplenic nor pul-
monary lesions. Intravenous FLC (12 mg/kg/day) was added to
CAS, with documented plasma levels of 12.1 mg/liter and 4.4 mg/
liter, respectively (26). While she was on combined therapy for a
week, she presented with a new onset of fever and diarrhea with
simultaneous positive blood cultures for C. lusitaniae (isolate P2).
Combined therapy with CAS was maintained pending synergistic
testing results as we suspected the presence of different strains,
among which some could still have been CAS sensitive. In addi-
tion, we preferred maintaining a fungicidal drug in a profoundly
neutropenic host. Synergistic testing showed no benefit of com-
bined CAS/FLC therapy (data not shown). Therefore, CAS was
stopped after an overall duration of 6 weeks. Her blood culture
results remained persistently positive (P2) for a week despite clin-
ical improvement, adequate drug levels, and no documented en-
dovascular source. All intravenous lines were changed. While be-
ing on combined therapy (CAS/FLC) for 3 weeks, followed by FLC
monotherapy for 1 week with adequate drug levels, she presented
with a new onset of fever, a maculopapular rash, profuse diarrhea,
and candidemia. Surprisingly, her new C. lusitaniae isolate (P3;
see Fig. 1) was susceptible to echinocandins (CAS and MICA
MICs, 0.5 �g/ml and 0.03 �g/ml, respectively) and AMB (MIC,
0.25 �g/ml) but resistant to azoles (FLC MIC, 32 �g/ml) and 5-FC
(MIC, 64 �g/ml). CAS (100 mg/m2/day) was added again to FLC
to avoid the emergence of C. lusitaniae strains exhibiting either

echinocandin resistance or azole resistance. While being on com-
bined therapy for 3 weeks (CAS plasma level, 2.5 mg/liter; FLC
plasma level, 9.3 mg/liter), she presented with a new onset of can-
didemia, with a C. lusitaniae isolate (P4; see Fig. 1) resistant to
echinocandins (CAS, MICA, and ANI MICs, 8 �g/ml, 16 �g/ml,
and 4 �g/ml, respectively), FLC (MIC, 8 �g/ml), and 5-FC (MIC,
32 �g/ml) but susceptible to AMB (MIC, 0.06 �g/ml). CAS was
therefore replaced by AMB (5 mg/kg/day). FLC was replaced by
voriconazole (VORI) (9 mg/kg twice a day [b.i.d.]; plasma level,
1.5 mg/liter), as probable invasive pulmonary aspergillosis (32)
was suspected based on new pulmonary infiltrates on a repeat CT
and a positive blood galactomannan assay result (enzyme-linked
immunoassay [EIA], 6.54 pg/ml) (32). Although AMB mono-
therapy would have covered both fungal infections, combined
therapy was preferred because of the severity of both infections.
Further disease evolution was marked by persistent fever and di-
arrhea associated with persistent adenovirus viremia (106 cp/ml).
A week later, she underwent allogeneic hematopoietic stem cell
transplantation (HSCT) after receiving conditioning chemother-
apy with busulfan, anti-thymocyte globulins (ATG), and fludara-
bine. While she was on AMB and VORI at subtherapeutic (0.7
mg/liter) levels for almost 2 weeks, her blood cultures were again
found to be positive for C. lusitaniae. At that point, she was con-
tinued on the same antifungal regimen. An isolate (P5) with a
susceptibility profile similar to that of P2 (CAS, AMB, and FLC
MICs, 8, 2.0, and 0.125 �g/ml, respectively) was recovered during
this period. All her lines were changed, an endovascular source
was ruled out, and a repeat CT scan still evidenced severe entero-
colitis. The further evolution of her disease state was marked with
progressive fulminant hepatitis, renal dysfunction, and death,
mainly attributed to drug toxicities and disseminated adenoviral
infection. The latter was corroborated by persistently high-level
viremia (�5 � 108 cp/ml) despite her having received 11 doses of
intravenous cidofovir (5 mg/kg) but no administration of adeno-

FIG 1 Summary of the susceptibility profiles of C. lusitaniae isolates. MIC values were obtained with the EUCAST method as described in Materials and
Methods. Dates of isolate collection are given at the top of the figure as follows: 9.06, 9 June 2013; 1-8-15.07, 1, 8, and 15 July 2013; 1.08, 1 August 2013; 20.08,
20 August 2013; 20.09, 20 September 2013. Resistance and susceptibility are highlighted by red and yellow sectors, respectively. Details of the types of treatments
and their durations and therapeutic drug monitoring (TDM) are given at the bottom of the figure. BC, blood culture; NA, not available.
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virus-specific cytotoxic T lymphocytes. Invasive candidiasis and
pulmonary aspergillosis probably also contributed to her death.
Autopsy was refused by the family.

Molecular analysis of C. lusitaniae strains. The RFLP and
RAPD profiles of recovered isolates P1 to P5 were identical (Fig. 2;

see also Fig. S1 in the supplemental material) and thus suggest that
the strains originated from the same parent. Molecular analyses of
candin resistance revealed two novel FKS1 mutations in resistant
isolates (S638Y in P2 and S631Y in P4). These mutations corre-
spond to positions S638 and S645 in FKS1 of C. albicans; the latter
position is known to be involved in CAS resistance (S645F, -P, and
-Y) (Fig. 3) (8, 33). Interestingly, the last recovered isolate, P5,
with a drug susceptibility profile similar to that of P2, exhibited
the FKS1 S638P substitution (corresponding to S645P in C. albi-
cans), which was different from that exhibited by P2 (S638Y).
Thus, P2 and P5 are of distinct genotypes. No mutations were
observed in HS2 of FKS1 (data not shown). As summarized in
Table 1, CAS resistance was associated with cross-resistance to
other candins (MICA MICs, 8 to 16 �g/ml; ANI MICs, 2 to 4
�g/ml) and, surprisingly, with resistance to AMB (MIC, 2 �g/ml)
in P2.

Since mutation S631Y in C. lusitaniae and the equivalent mu-
tation, Ser638, in C. albicans have not yet been reported to be
involved in candin resistance, we performed site-directed mu-
tagenesis analysis in FKS1 from S. cerevisiae at the equivalent po-
sition (Ser636) to produce a S636Y variant. FKS1 variants at po-
sition Ser643 (S643Y and S643P), which is equivalent to position
Ser638 in C. lusitaniae, were also produced as comparisons. A
recent genome editing system (CRISPR-Cas) was used for this
purpose (25) and thus introduced the desired mutations at the S.
cerevisiae genomic FKS1 locus. The resulting isolates exhibited
resistance to all three candins compared to the wild type (Table 2).
The FKS1 S636Y mutation showed CAS, MICA, and ANI MICs
that had increased by 32-, 32-, and 16-fold, respectively, compared

FIG 2 RFLP and RAPD analysis of C. lusitaniae isolates P1 to P5. RFLP anal-
ysis was carried out with EcoRI and MspI. RFLP profiles are shown in Fig. S1 in
the supplemental material. RAPD analysis was performed as described in Ma-
terials and Methods. Identical patterns of ethidium bromide-stained profiles
suggest a high-level relationship between the strains. Lambda phage DNAs
digested by HindIII were loaded as standard sizes. A separate C. lusitaniae
isolate (Sanglard laboratory collection) was used as a control for RAPD anal-
ysis.

FIG 3 Alignments of FKS1 HS1 regions from Candida spp. The C. lusitaniae and C. albicans SC5314 data were aligned with chromatograms of FKS1 HS1 regions
from C. lusitaniae isolates P1 to P5 as indicated. Sequences from isolates P1 to P5 were deposited in GenBank.
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to the wild type (Table 2). The mutations S643Y and S643P in-
creased candin MICs from 32- to 256-fold compared to the wild
type (Table 2); thus, the data suggest that they have a greater im-
pact on candin resistance than S636Y. In any case, position Ser636
(Ser631 in C. lusitaniae) can be added as another novel site rele-
vant for candin resistance.

Azole resistance in C. albicans is mediated by several mecha-
nisms, among which transport-related mechanisms involving ei-
ther major facilitator superfamily (MFS) genes or ATP-binding
cassette (ABC) transporter genes are the most frequently reported
(34). Few studies have explored azole resistance and the involve-
ment of major drug transporters. Among these, a recent report by
Reboutier et al. (23) suggested upregulation of MFS7 in docu-
mented FLC-resistant isolates. As illustrated in Fig. 4, we corrob-
orated the overexpression of MFS7 in FLC-resistant C. lusitaniae
isolates P3 and P4 (50- and 32-fold compared to P1, respectively).
No expression variations in azole resistance genes belonging to the
ABC transporter family or to ERG11 (target of azoles) were iden-
tified among our C. lusitaniae isolates (Fig. 4). Interestingly, FLC
resistance in P3 and P4 correlated with an elevated VORI MIC
(0.25 �g/ml, compared with 0.008 �g/ml for P1, P2, and P5) but
also with resistance to 5-FC (MIC, 32 �g/ml).

In contrast to our findings, other studies reported 5-FC/azole
cross-resistance correlating with mutations of FCY1 and FCY2
genes encoding cytosine deaminase and purine-cytosine permease
involved in 5-FC transport and metabolism (35). These mutations
were documented following simultaneous use of 5-FC and azoles
in susceptibility assays, thus suggesting a different mechanism for
5-FC-azole cross-resistance. Indeed, no mutations in 5-FC resis-
tance genes (FCY1 and FCY2) were detected in the P3 and P4
isolates (data not shown). Analysis of FUR1, encoding uracil
phosphoribosyl transferase, was not conducted as isolates P1 to P5
were not resistant to 5-fluorouracil, which is commonly reported
among FUR1-deficient isolates (data not shown) (36).

DISCUSSION

This clinical report describes acquired resistance of C. lusitaniae to
all common antifungals in a profoundly neutropenic host with
severe enterocolitis. When simultaneous combinations of resis-
tance to 2 or more different drug classes occur, which was the case
in the present study, the phenotype is referred to as multidrug
resistance (MDR). While MDR is not a common phenotype
among fungal pathogens, it was reported earlier in C. glabrata,
with simultaneous acquisition of resistance to echinocandins and
to azoles and separate acquisition of resistance to 5-FC (37). In the
United States, a significant proportion (30% to 40%) of echino-
candin-resistant isolates are also resistant to azoles (38, 39). While
a recent study (40) suggested an association between MDR and the
use of echinocandins and azoles, another investigation (41) de-
scribed MDR to echinocandins, azoles, and amphotericin B in C.
glabrata isolates recovered from a neutropenic patient with pro-
longed fever.

Antifungal resistance is a growing concern worldwide (42–44);
however, less is known about the mechanism of resistance to echi-
nocandins in C. lusitaniae. In the present paper, resistance to CAS
was correlated to the identification of 3 novel FKS1 mutations
(S638Y, S638P, and S631Y). Among these, FKS1 mutations S638Y
and -P corresponded to C. albicans and S. cerevisiae positions
Ser645 and Ser643, respectively, which are commonly attributed
to echinocandin resistance (45), whereas the remaining FKS1
S631Y mutation corresponded to position Ser638 in C. albicans

TABLE 1 Antifungal susceptibility profiles of C. lusitaniae isolatesa

Date of isolation
Sample
origin Profile

MIC (�g/ml)b

FKS1
mutation

MFS7
expression AFFLC CAS MICA ANI AMB 5-FC

9 June 2013 Stool 1 0.25 0.5 0.03 0.06 0.06 0.5 WT No AMB
1 July 2013 Blood 2 0.25 4 (8) 16 (512) 2 (32) 2 0.5 S638Y No CAS
1 August 2013 Blood 3 32 0.5 (1) 0.03 (1) 0.06 (1) 0.25 64 WT Yes FLC
23 August 2013 Blood 4 8 8 (16) 16 (512) 4 (64) 0.06 32 S631Y Yes VORI/CAS
2 September 2013 Stool 4 32 4 (8) 8 (256) 4 (64) 0.125 32 S631Y Yes VORI/AMB
20 September 2013 NA 5 0.125 8 (16) 16 (512) 4 (64) 2 2 S638P No VORI/AMB
a AF, antifungal treatment; NA, not available; WT, wild-type HS1 FKS1 sequence.
b Numbers in parentheses represent relative fold increases in MICs compared to the MIC value of the isolate with profile 1.

TABLE 2 Candin MICs of S. cerevisiae FKS1 mutants

Isolate

MIC (�g/ml)a

CAS MICA ANI

S. cerevisiae wild-type IMX581 0.03 0.015 0.03
DSY4762 (FKS1S636Y) 1 (32) 0.5 (32) 0.5 (16)
DSY4763 (FKS1S643Y) 2 (64) 4 (256) 1 (32)
DSY4764 (FKS1S643P) 8 (256) 4 (256) 1 (32)
a MIC assays were performed according to the EUCAST protocol but at 30°C and with
YEPD medium. Numbers in parentheses represent relative fold increases in MICs
compared to the MIC value of the wild type.

FIG 4 qRT-PCR of C. lusitaniae genes potentially involved in azole resistance.
Results are expressed as means of the results from triplicate biological experi-
ments relative to isolate P1 data.
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and position Ser636 in S. cerevisiae. Here we confirmed that a
mutation at this position can alter candin susceptibility in S.
cerevisiae. The FKS1 S636Y mutation yields lower candin MICs
than S643Y and S643P; thus, one may conclude that Ser636 is less
effective for candin resistance development. In evaluating the rel-
ative increases of candin MICs in C. lusitaniae and S. cerevisiae
compared to their respective wild types (Table 1 and 2), the trends
seen with the two yeast species are globally similar, with the excep-
tion of the relative MICA MIC increases (32-fold versus 256-fold
and 256-fold for C. lusitaniae and S. cerevisiae, respectively). Such
differences might be due to differences in the intrinsic FKS1 struc-
tures of the two species. Similarly to our case report, a recent study
(19) documented isolates of C. lusitaniae exhibiting missense mu-
tation S645F in FKS1, which resulted in increased MICs of several
echinocandins (CAS, MICA, and ANI) following CAS exposure.
In contrast to our report, those isolates were not cross-resistant to
other classes of antifungal drugs (5-FC, FLC, and AMB).

Overexpression of a major facilitator gene (MFS7) was docu-
mented among our FLC-resistant isolates. MFS transporter up-
regulation in Candida spp. is associated with mutations in the
MRR1 transcriptional activator in C. albicans (46). Similar muta-
tions could be suspected in C. lusitaniae strains. In the present
report, FLC resistance was coupled to 5-FC resistance, despite the
lack of 5-FC exposure, thus suggesting that the 5-FC resistance
resulted from FLC resistance. Given that MFS7 upregulation re-
sults in FLC efflux in FLC-resistant strains, a similar mechanism
might be involved in 5-FC-resistant strains. While this hypothesis
remains speculative, mutations responsible for FLC/5-FC cross-
resistance differ from the usual nonsense and missense mutations
in FCY2 and FCY1 reported in C. lusitaniae strains and should
thus be further explored (35).

Cross-resistance to AMB resistance and candins occurred
without ongoing exposure to AMB (see Fig. 1). The molecular
basis of AMB resistance in C. lusitaniae has not yet been well
documented. While some studies attributed AMB resistance to a
rapidly switching phenotype occurring at a frequency of 10�2 to
10�4 (47), other studies attributed it to cell wall reorganization
(48). FKS mutations documented in C. lusitaniae P2 could have
induced cell wall stress, which then could result in AMB resis-
tance. Even if CAS resistance was not associated with AMB resis-
tance in P4 (FKS1 mutation S631Y), this hypothesis should be
further investigated. Such issues could now be addressed using the
genetic tools that have become accessible for use in C. lusitaniae
studies.

The present report illustrates rapid selection of resistant mu-
tants under conditions of drug pressure. The sequential adminis-
tration of specific agents resulted in the emergence of isolates re-
sistant to a specific molecule as illustrated in Fig. 1. Treatments
using CAS and azole and their combination were followed within
days by the selection of CAS- and/or azole-resistant isolates. This
rapid emergence can be facilitated by the haploid nature of C.
lusitaniae. It is also possible that several resistant populations with
P1 to P5 profiles may have coexisted in the patient and that dom-
inant resistance profiles were selected and emerged under condi-
tions of exposure to a specific antifungal agent. As such, the colon
may have been a colonizing reservoir which then seeded infection
and different resistance phenotypes. Long-lasting neutropenia
and enterocolitis certainly also contributed to this mechanism.
Rapid emergence of multidrug-resistant mutants under condi-

tions of combined therapy reinforces the idea of a need for limit-
ing dual therapy to exceptional situations.
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