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Abstract

We consider queueing networks (QN’s) with feedback loops roamed by “intelligent” agents, able
to select their routing on the basis of their measured waiting times at the QN nodes. This is an
idealized model to discuss the dynamics of customers who stay loyal to a service supplier, provided
their service time remains below a critical threshold. For these QN’s, we show that the traffic flows
may exhibit collective patterns typically encountered in multi-agent systems. In simple network
topologies, the emergent cooperative behaviors manifest themselves via stable macroscopic tempo-
ral oscillations, synchronization of the queue contents and stabilization by noise phenomena. For
a wide range of control parameters, the underlying presence of the law of large numbers enables
us to use deterministic evolution laws to analytically characterize the cooperative evolution of our
multi-agent systems. In particular, we study the case where the servers are sporadically subject to
failures altering their ordinary behavior.
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1 Introduction

The conception and the control of complex networks supporting random flows of items are key is-
sues of several engineering domains ranging from car and cargo traffics, production systems, supply
chains, water, electricity and information networks to only quote a few. For many actual situations,
these random flows find a natural mathematical modeling framework in the Queueing Networks
(QN’s) formalism where the flows’ randomness is introduced, via ad-hoc probability laws, in the
dynamics of servers located at the vertices of the network. Under fairly general conditions and for
arbitrary initial conditions, the transient regimes relax to stationary regimes. For a wide class of
dynamics, the theory pioneered by J.R. Jackson and subsequently generalized by F.P. Kelly (see an
up-to date account in (Chen and Yao, 2001)) offers powerful methods to calculate the time-invariant
probability densities and therefore provides quantitative information for the stationary performance
measures. While the basic QN’s theory considers that the circulating items composing the flows are
mainly passive entities (i.e. tokens), it is mandatory for numerous applications that each circulating
item possesses his/her own identity1, car traffic being a perfect illustration. When a collection of
such intelligent items is considered, we shall speak of a multi-agent system. Based on his individual
experience and information gathering, each agent is able to take a “private” decision affecting his
subsequent dynamical behavior and/or routing in the network. It is widely recognized that the
interactions between agents and their environment open possibilities for the emergence of collective

behaviors, which result in macroscopic spatio-temporal patterns. The recent literature offers a wealth
of illustrations where such auto-organizing features produce emergent structures (Schweitzer, 2003),
(Mikhailov and Calenbuhr, 2002). In this general context, we will show below how QN’s in which
agents are allowed to modify their routing strategies according to measures of i) their waiting time
and/or ii) the queue contents offer an ideal theoretical framework to investigate some aspects of
multi-agent systems.

Generically, the emergence of macroscopic patterns in a society of interacting agents originates from
the conjugate action of non-linearities in the dynamics coupled with the interactions between the
“intelligent” members of the society. The interactions can either be direct (i.e. from agent to agent)
or can be implemented via the reactions that each agent adopt when observing the macroscopic state
of the society (i.e. the interaction between an agent and its social environment). This paper deals
with this second type of interactions, operating in simple QN’s. The interactions between the agents
here depend on the waiting times they measure before being served at the vertices of the network.
In addition, non-linearities into the dynamics are introduced via branching nodes where each agent
has to decide either to engage himself in a feedback up-streaming route (and then to revisit certain
nodes) or to travel downstream the network. The routing decision depends on the measured waiting
time each agent suffers before a branching node. This is an idealization of the dynamics induced
by a collection of customers who remain loyal to a server provided their service time stays below a
critical threshold. By restricting our analysis to elementary topologies, we are here able to explicitly
derive analytical results characterizing the emergence of stable temporal oscillations (i.e. temporal
patterns). This cooperative evolution is entirely due to the interactions between the “intelligent”
agents and their social environment (i.e. stigmergic interactions), the “intelligence” being the ability
to monitor their waiting time. The agents’ interactions generate, via their waiting time, an effec-
tive delay mechanism in the evolution of the queue contents. This time-delayed evolution can be
represented by an hydrodynamic analogy (called the auto-siphon dynamics). Further, we increase
the complexity of the network and consider a topology with two parallel feedback queues in which
the agents, besides their ability to monitor waiting times, do also possess a vision capability (hence,
the agents’ “intelligence” is enhanced). In this situation, we are able to analytically characterize
non-linear behaviors such as synchronization of oscillations and noise-induced stabilization. Besides
the pure theoretical insights, a recent related contribution, (Zohar et al., 2002), testifies that our
class of models offers a potential for relevant applications. Note in addition that siphon effects have
been considered in the context of Petri nets (see (Chu and Xie, 1997) among others). However,
contrary to the effect occurring in the Petri nets framework, which leads to infinite delays (any

empty siphon remains empty), our dynamics deals with cyclo-stationary siphon effect.

Our paper is organized as follows. In section 2, we introduce and study the flow dynamics of a
single queueing node with feedback loop. The resultant flow dynamics can be viewed as formed
by incoming potentially loyal customers2, their loyalty being dependent on a patience parameter.
Adopting this picture, the customers will visit the feedback loop (i.e. remain loyal) only when their
experienced waiting time before the routing decision stays below a critical threshold value. In sec-
tion 3, we study a network formed by two parallel feedback queues and a bifurcation point. Any

1From now on, we shall use “his” without sexist intention.
2From now on we shall speak of agents and customers interchangeably.

2



incoming agent has to choose between one of the two servers (routing decision), but once the choice
made, can neither renege or nor jockey between the queues. The routing decision can be either
deterministic, random, and/or guided by a partial or a full observation of the real time content of
the queues. The simultaneous ability to observe queue contents and to monitor waiting times offers
the possibility to generate new cooperative time evolutions. In section 3.2, we focus on situations
where the agents can observe the queue content of a single server and the decision to engage into
the observed queue is based on its content (the agent joins the queue if the population is below a
critical population threshold). In this case, we show how the presence of random fluctuations in
the service times can stabilize a flow dynamics which is otherwise unstable for purely determinis-
tic service times. In particular, we provide an analytical study for the case where the servers are
randomly subject to failures altering their ordinary behavior. Finally, in section 3.3, we allow the
agents to observe both queue contents. In this situation, when a “shortest-queue-first” scheduling
rule is adopted at the bifurcation node, a full synchronization of the queues’ oscillations is observed.

2 Feedback queueing system - Siphon dynamics

Consider the single server queueing system sketched in Fig. 1. An incoming flow of customers,

Figure 1: A single stage queueing system with feedback loop.

described by a renewal process with mean inter-arrival time 1

λ
and probability distribution A(x)

with density dA(x), is served by a processing unit which service times are i.i.d. random variables
with mean 1

µ
, probability distribution B(x) and density dB(x). Accordingly, the parameters λ and

µ are respectively the incoming and service rates of the renewal processes. We assume that the
distributions A(x) and B(x) have finite moments. Here, we suppose the traffic intensity ρ = λ

µ
<

1 ⇔ λ < µ, which ensures the stability of the queueing system when there is no feedback loop.
Assume also that the waiting room capacity is unlimited and that the service discipline is first-in-
first-out (FIFO). After being served at the decision node n, each customer has to choose among two
possibilities, namely:

a) either to quit the system definitively

b) or to follow the feedback loop and line up again for being served once more.

Several contributions (Takàcs, 1963), (D’avignon and Disney, 1976), (Peköz and Joglekar, 2002)
consider the situation arising when the decision between the choices a) and b) is taken randomly.
When this is the case, by imposing a stationary flow balance (i.e. incoming equals outgoing flow),
we drive the system into a self-consistant stationary regime. As we shall now see, such purely
stationary flows strongly differ from the queue dynamics that can be observed when “intelligent”
agents circulate in the network. Specifically, assume now that each customer is able to record the
total waiting time W he spent (i.e. W is the sum of the queueing and the processing times). Assume
further that W controls the decision routing between the alternatives a) and b), namely: when W

exceeds a critical value P (call it the patience parameter), the customer follows the alternative a),
and the b) otherwise. When alternative b) is chosen, we shall speak of loyal customers, as the agents
are pleased with the server and then return to it for another service. In the sequel, we focus on
homogenous agents for which P is a common value. In this case, and for large enough P , quasi-
deterministic cyclo-stationary regimes emerge, i.e. stable temporal oscillations of the queue level Q(t)
are observed and this independently of the detailed nature of the probability laws A(x) and B(x).
Despite to the presence of the fluctuations, this robust and quasi-deterministic behavior is directly
reminiscent from the law of large numbers. Indeed, the importance of the relative fluctuations
around the average waiting time 〈W 〉 (which is the sum of individual processing times) decreases for
large queue content Q(t) (a more formal characterization is given in (Filliger and Hongler, 2005)).
Accordingly, for large P , the dynamics can approximatively be discussed via a purely deterministic
approach (see (Hongler et al., 2004) and (Filliger and Hongler, 2005)) which follows when the service
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requires a fixed time interval 1

µ
. Hence, for a given queue length Nc and a given corresponding

patience parameter P = Nc

µ
, an incoming tagged customer (called C from now on) lining behind Nc

other customers, will, when reaching node n, choose the alternative a) (i.e. leave the system), as for
this deterministic regime, his measured waiting time W = Nc

µ
+ 1

µ
> P . However, before C reaches

the node n, the queue content Q(t) still increases at the rate λ (as nobody leaves the system during
this time interval), implying a delay mechanism in the draining of the queue content. As soon as
C reaches n, and thus leaves the system, a second dynamical phase is triggered. In this second
phase, the customers arriving immediately after C do also experience a waiting time exceeding P

and then will also leave the system. As λ < µ, the queue population Q(t) decreases in the second
dynamical phase and the depletion lasts until a satisfied customer and his immediate successors
reach the node n. When this happens, the first dynamical phase starts again and Q(t) fills up at
rate λ. The iteration of these two dynamical phases produces a cyclo-stationary behavior whose very
existence is entirely due to the agents’ ability to record W and take their decisions accordingly. It is
instructive, in particular to understand the underlying delay mechanism, to visualize the dynamics
of the queue content by using the hydrodynamic picture sketched in Fig. 2. The dynamics of the

Figure 2: Following (Filliger and Hongler, 2005), we have A. The agent entering at t0 is the first one of a whole
cluster U of unsatisfied customers and triggers the alternation of Q(t) from the increasing to the decreasing state
at t0 + P . The last agent belonging to the cluster of unsatisfied customers U is the one entering just before t1
and triggers the switch of Q(t) from the decreasing to the increasing state at t1 + P. This simple delay dynamic
repeats and creates stable oscillations. B. The siphon model. The queue length corresponds to the water level
Q(t). The inflow and outflow rates are λ respectively µ. The siphon leaves a water residue of hight Pλ due to
the constant inflow during P . The effective siphon length is Pµ.

vessel content, in particular its oscillations is self-explanatory. In addition, the purely deterministic
context enables an elementary derivation of both the amplitude ∆ and the period Π of the queue
population. Following (Filliger and Hongler, 2005), we obtain:

∆ = P µ, (1)

Π = P

»

2 +
λ

µ − λ
+

µ − λ

λ

–

(2)

and both Eqs.(1) and (2) are in perfect agreement with simulation experiments, as discussed in
(Hongler et al., 2004) and (Filliger and Hongler, 2005).

3 Bifurcation of feedback queues

Here, we consider the network D, formed by a bifurcation of feedback queues, as sketched in Fig.
3. Two feedback queueing systems of the type introduced in section 2 are placed in parallel. The
total incoming external customers feeding this system is a renewal process with rate Λ. At a first
decision node (DN) ne (where e stands for entry), the agents face two routing possibilities: to either
join server Su or to join Sd. In front of Su and Sd, the agents wait in queues and the respective
time dependent queue contents will be denoted by Qu(t) and Qd(t) (the indices u and d standing for
up and down respectively). We shall write by µu and µd the respective service rates of Su and Sd.
The capacities of both queues Qu(t) and Qd(t) are assumed to be unlimited for both, the service
policy is FIFO. The presence of the feedback loops introduces two DN’s nu and nd. At nu and
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Figure 3: A bifurcation of queueing systems with feedback loop.

nd, as in section 2, the decision to enter into the feedback loop depends on the waiting time W

individually measured by each customer. In the sequel, we will separately consider three typical
scenari depending on the agents’ ability to gather information.

3.1 Fixed dispatching rule

Let us start with agents only being able to record the time spent in the system (i.e. queueing time
+ service time). In this case, the decision at node ne does not depend on agents’ “intelligence” and
an incoming customer selects between Su and Sd by using either a deterministic or a random rule,
independently with regard to the content of the queues forming D. Typical cases would be:

i) Deterministic polling . In this case, the time horizon is divided into deterministic intervals
Tu and Td during which Su and Sd respectively are alternatively fed with the total incoming
traffic Λ. The conditions ρu = Tu

Tu+Td

· Λ

µu
< 1 and ρd = Td

Tu+Td

· Λ

µd

< 1 ensure the stability
of the system. In view of section 2, it is not surprising that stable oscillations of the queue
contents will, here again, be observed. However, the alternative feeding of the servers implies
that the evolution of the queue contents exhibits indentations, instead of being smooth. The
frequency of the alternations determines the indentation structure. Qualitatively, increasing
the frequency of the alternations does decrease the roughness of the curve. For large P , the
amplitudes and frequencies of the two decoupled oscillations are determined using Eqs.(1) and
(2) with the parameters µu, λu = TuΛ

Tu+Td

on one hand and µd, λd = TdΛ

Tu+Td

on the other hand.

ii) Random dispatching rule. Here, we typically consider a Bernoulli sampling of the incom-
ing flow, where the Bernoulli random variable is determined by a parameter r, (0 ≤ r ≤ 1). A
partial traffic with rate rΛ enters into server Su while a traffic with rate (1 − r)Λ enters into
Sd. As the deterministic polling, the Bernoulli sampling implies that both systems Su and Sd

evolve independently. Their two individual dynamics follow the discussion given in section 2
and, for large P , two decoupled cyclo-stationary oscillations with amplitudes and frequencies
determined using Eqs.(1) and (2) with the parameters µu, rΛ on one hand and µd, (1 − r)Λ
on the other hand.

3.2 Dispatching based on partial observation of the queues - Noise

induced stabilization

Besides chronometers to record W , we equip now each customer with a vision system, thus enabling
him to observe, in real time, the instantaneous queue content Qu(t) in front of Su. In contrary, the
real time content Qd(t) always remains hidden to the incoming agents, although they do know the
average service rate µd. At time t, an incoming agent at node ne first observes the queue content
Qu(t) and, based on his observation, decides either to enter Su or to join Sd. Once entered into a
queue, neither reneging nor jockeying (i.e. jumping between Su and Sd) is allowed. Note that except
the presence of feedback loops, this network configuration is fully similar to the two gas stations
network studied in (Hassin, 1996). In this contribution, two gas stations are located one after the
other on a main road. A driver who needs to refuel is only able to observe the queue length Qu(t)
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at the first station (which would be here Su). Then, he compares Qu(t) to the conditional expected
queue content at the second station (here Sd) and decides either to enter into the first station or to
wait and enter into the second one. Returning to our present model, we assume from now on that
an incoming agent decides:

a) either to enter Su whenever Qu(t) strictly stays below a threshold value N∗ (i.e. when
Qu(t) < N∗)

b) or to enter into Sd otherwise.

At the DN’s nu and nd, the routing depends, as in section 2, on a patience parameter P which is
again assumed to be common to all agents. The patience P and the threshold control parameter
N∗ will be related by assuming that:

P ≥
N∗ + 1 + δ

µu

, δ ∈ N
+

. (3)

We can interpret the decision at nu whether to engage or not into the feedback loop as a formal
illustration of the H. Maister’s first principle of the psychology of waiting lines (Maister, 1985),
namely: “Satisfaction equals perception minus expectation”. Indeed, at the DN ne, the level N∗

defines via P as given by Eq.(3) an expected admissible waiting time. Later, when reaching nu,
each agent compares his actually measured waiting time (playing the role of the perceived waiting
time) with P (playing the role of the expected waiting time) and then take his routing decision.

Consider first the deterministic dynamics where Su operates with a fixed service time 1

µu
. When,

at a given time t, Qu(t) = N∗ agents are waiting in front of Su, they will remain loyal to Su forever
(i.e. these agents will loop forever and ever). Indeed, their measured waiting time W never exceeds
P and, the dynamics being deterministic, no perturbation will alter this dynamically “frozen” sit-
uation. In particular, once Qu(t) ≡ N∗, the server Su is definitively unavailable for any external
incomer and the global incoming traffic with rate Λ is entirely dispatched to Sd. Whenever Λ

µd

> 1,

the queueing system will thus be unstable (i.e. limt→∞ Qd(t) = ∞). Assume now that random fluc-
tuations affect the service times of Su. While Eq.(3) is still satisfied on average, service time noise
triggers, at node nu, a random flow of unsatisfied customers, who will definitively leave the system.
Hence, the very presence of noise (in the service time) does effectively increase the availability of
Su. Consequently, a part of the global incoming traffic will now be processed by Su. For a selected
range of control parameters, we may simultaneously have:

αΛ

µu

< 1 and
(1 − α) Λ

µd

< 1, 0 ≤ α ≤ 1, (4)

where αΛ and (1− α)Λ stand for the rates of the stationary average partial traffic flows feeding Su

and Sd respectively. When no fluctuations affect the service time of Su, then α ≡ 0. Whenever
Eq.(4) holds, both queueing branches are stable. The previous qualitative reasoning suggests that
it exists a critical variance σ2

u,c of the service time of Su (and hence a critical value αc) such that:

a) for σ2
u ≥ σ2

u,c, the queueing system is stable.

b) for σ2
u < σ2

u,c, the queueing system is unstable.

3.2.1 Experimental observations.

The above dynamical behavior is easily observed in simulation experiments where the incoming flow
of customers is an exponential process with parameter Λ and the Su service times are drawn from
a probability density dBu(x) being:

a) uniform with support
h

1

µu
− ξ, 1

µu
+ ξ

i

with ξ ≥ 0 (thus σ2
u = ξ2

3
). The following numerical

values were used: Λ = 1.11, 1

µu
= 1

µd

= 1, N∗ = 28 and P = 30 (i.e. δ = 1 in Eq.(3)). We

observe that for ξ ≥ 0.118 ⇒ σ2
u,c ≥ 0.0046, the queueing system remains stable, while it

becomes unstable (i.e. limt→∞ Qd(t) = ∞) for smaller values of ξ.

b) a Normal law N ( 1

µu
, σ2

u). For the same numerical values as above, we observe that for σ2
u ≥

σ2
u,c = 0.0046, the queueing system remains stable, while it becomes unstable for σ2

u < σ2
u,c.

3.2.2 Analytical approach.

To analytically discuss the stability issue reported above, let us consider the situation where the

service times of Su are independent Bernoulli random variables with values
n

1

µu
, 1

µ+

o

and corre-

sponding probabilities (1−q) and q respectively, 0 ≤ q << 1. We assume that µ+ < µu and interpret
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1

µ+ (with 1

µ+ > 1

µu
) as the effective service time occurring when a failure alters the ordinary behav-

ior of the server Su. Remember that the agents follow the FIFO rule and are homogenous in their
patience parameter P , chosen here to fulfill:

P <
N∗

µu

+
1

µ+
and P >

N∗ + 1

µu

. (5)

When, at a given time t, Qu(t) ≡ N∗ − 1, an incoming tagged customer C at DN ne will decide to
enter Su. Later on, when C reaches nu, he will, according to Eq.(5), choose:

a) either to follow the feedback loop, whenever no failure occurred during the service of the
N∗ customers who were directly in front of him (including the customer who was served when
C joined Qu(t)) and during his own service

b) or to leave the system, whenever one or more failures occurred during the service of the N∗

customers who were directly in front of him and during his own service.

Hence, in absence of failures and when Qu(t) ≡ N∗, the agents will remain in the feedback loop
forever and, at DN’s ne and nu, neither an externally new incomer nor a leaving customer will be
observed. However, as soon as failures occur in Su, Eq.(5) implies that one or more customers will
definitively leave the system after the decision at nu. Hence, this implies that the global incoming
traffic will now be shared between Su and Sd. Assume that:

µd < Λ ⇐⇒ ρd =
Λ

µd

> 1. (6)

Thus, Sd cannot sustain alone the full traffic load without being in an unstable regime (ρd > 1 ⇒
limt→∞ Qd(t) = ∞). Remember that αΛ and (1−α)Λ denote the rates of the average partial traffics
processed by Su and Sd respectively. It exists a critical incoming flow, defined by (1 − αc)Λ, above
which the queue Qd(t) becomes unstable. For the associated traffic intensities, this implies that:

ρu =
αΛ

µu

< 1 and ρd =
(1 − α)Λ

µd

< 1, ∀α > αc, (7)

ρd,c =
(1 − αc)Λ

µd

= 1, (8)

where ρd,c is the critical traffic load driving the queue Qd(t) to its marginal stability regime.

To proceed further with analytical considerations, let us now focus on rare events regimes (RER), for
which more than a single failure during N∗ + 1 consecutive ordinary services is a highly improbable
event. As N∗ is the threshold value governing the decision at node ne and P fulfills Eq.(5), the
RER is expected when N∗ + 1 << 1

q
. Under the RER, each failure triggers the drainage of the

queue Qu(t). Indeed, due to the FIFO scheduling rule, when a failure occurs at time t, the last
agent in Qu(t) will experience a waiting time larger than P when arriving at nu. So will also do
the N∗ − 1 agents directly lining behind him (i.e. these are the loyal customers traveling in the
loop and feeding Qu(t′) for t′ > t). As it has been discussed in section 2, this produces a siphon

avalanche, here of size N∗. In the RER, the succession of these siphon events will be approximately
uncorrelated. Hence, in the stationary regime, we can simply estimate the outgoing flow rate λu at
DN nu as being given by:

λu = Prob {a single failure occurs}N
∗

µu = qN
∗

µu. (9)

When Eq.(9) holds, the partial traffic on Sd is given by:

ρd =
λd

µd

=
Λ − λu

µd

=
Λ − qN∗µu

µd

. (10)

The marginal stability of queue Qd(t) is attained at the critical traffic ρd = ρd,c = 1, which implies:

q ≥ qc :=
Λ − µd

N∗µu

. (11)

In terms of αc, we can write:

αc = 1 −
µd

Λ
. (12)

Finally, we can also express the stability condition given by Eq.(11) in terms of the critical variance
σ2

u,c of the underlying Bernoulli random variable. We obtain:

σ
2
u ≥ σ

2
u,c = qc(1 − qc)

„

1

µ+
−

1

µu

«2

. (13)
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The numerical experiments reported in Tab. 1 are in perfect agreement with Eqs.(11) to (13).

Global incoming Simulated stability Simulated stability

traffic Λ condition on q condition on σ
2
u

1.05 0.0017 0.00075

1.1 0.0034 0.0015

Table 1: Stability conditions obtained when using a discrete events simulator with the following parameters:
N∗ = 28, 1

µd

= 1

µu
= 1, 1

µ+
= 3 and P = 30. No discrepancy between simulated and theoretical results have

been observed up to the shown precision.

While the concept of stabilization by noise is already abundantly discussed in the context of stochas-
tic differential equations (Has’minskǐi, 1980), (Arnold et al., 1983) and (Ruszczynski and Kish, 2000),
our present class of models exemplifies clearly that such a random stabilization can be encountered
in multi-agent systems where a non-linearity (in our case, the feedback loop) is present.

Remark 3.1. When the assumptions for RER are not satisfied (i.e. more than a single failure during
N∗ + 1 consecutive ordinary services is not a highly improbable event), then Eqs.(11) to (13) are
not valid anymore. Indeed, it is now possible (and not improbable) that the siphon avalanches due
to two successive single failures overlap. Hence, in this case, the number of agents that leave the
system after a failure is not always equal to N∗ (but is above-bounded by N∗) and thus the number
of single failure events needed to reach the critical partial traffic ρd,c is underestimated in Eqs.(11)
to (13), as it is testified by numerical experiments (see Tab. 2).

Global incoming Theoretical stability Simulated stability

traffic Λ condition on q condition on q

1.2 0.0069 0.0074

1.3 0.0103 0.124

Table 2: Theoretical vs. numerical stability conditions obtained when using a discrete events simulator with the
following parameters: N∗ = 28, 1

µd

= 1

µu
= 1, 1

µ+
= 3 and P = 30.

3.3 Flow dispatching based on fully observable queues - Synchro-

nization of oscillations

In this section, we assume that both queues Qu(t) and Qd(t) can be observed simultaneously by
the incoming agents. Thus, compared with section 3.2, the information gathering process has been
further increased. Based on the queue contents, several dispatching policies at the DN ne can be
constructed. Among the simplest and natural rules, let us here focus on the policy sending a new
externally incoming customer to the shortest observed queue. As we shall now see, this shortest
queue first (SQF) rule implies the natural emergence, for large common patience parameter P , of
synchronized stable temporal oscillations of the queue contents Qu(t) and Qd(t). This happens for
any initial conditions of the queue populations. As before, when P is large and common to all
agents, a purely deterministic approach is perfectly suitable. We assume that Λ

µu+µd

< 1, which
ensures the stability of the system. Let us consider the two selected configurations characterized by:

a) two identical servers (i.e. 1

µu
= 1

µd

= 1

µ
).

b) two servers with service rate ratio S = µu

µd

6= 1 (i.e. one of the two servers is faster than the

other).

In configuration a), the total incoming traffic is evenly divided between the two servers, both re-
ceiving a partial traffic with rate Λ

2
. The amplitude and period of the common synchronized stable

temporal oscillations of the queue contents Qu(t) and Qd(t) are given by Eqs.(1) and (2) with pa-
rameters Λ

2
and µ.

Consider now configuration b) and suppose, without loss of generality, that 1

µu
> 1

µd

. We ob-
serve the following dynamics: even though the servers do not work at the same speed, the queue
contents Qu(t) and Qd(t) are equal at any time, provided Λ

µd

> 1 (i.e. provided Sd is not able to

handle alone the total incoming flow). The greater speed of Sd implies that the customers joining
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this server will remain satisfied for a longer queue length than with Su. As a consequence of the
SQF rule, there will be more unsatisfied customers with server Su and this server will thus process
a greater part of the global incoming traffic than Sd (i.e. Su will absorb more fresh customers, but
these customers will stay less time in the system than those joining Sd). As shown in Fig. 4, two
cases may emerge. For both, it is possible to fully characterize the emergent common synchronized
stable temporal oscillations.

Figure 4: The SQF policy implies that 0 ≤ |Qu(t) − Qd(t)| ≤ 1, ∀t. Thus, we only show the state of Qu(t) in
the above figures. Left : Queue content Qu(t) when P = 2500 and processes are exponential with parameters
Λ = 1.25, 1

µu
= 1.6 and 1

µd

= 1.2. The amplitude and period of the common synchronized stable temporal

oscillations are given by ∆ = Pµd

2
and Π = P

“

µd

µd+µu−Λ
+ µd

Λ−µu

”

respectively. The two different slopes are given

by A = Λ−µu−µd

2
and B = Λ−µu

2
. Right : Queue content Qu(t) when P = 2500 and processes are exponential

with parameters Λ = 0.9, 1

µu
= 1.6 and 1

µd

= 1.2. The dynamics differs from the Left behavior by the presence

of a time interval with slope C = Λ

2
. During this interval, customers in Su and Sd are all satisfied. On the other

hand, during the time intervals with slope A and B, the customers in Su are unsatisfied (the customers in Sd

being unsatisfied only during the interval with slope A). For instance, in the Left configuration, all the customers
joining Su are unsatisfied, because Qu(t) always remains above the critical threshold. The complexity of the
dynamics in the Right case requires more involved computations, which precludes to give simple and compact
expressions for the amplitude and the period of the synchronized oscillations. However, due to the deterministic
nature of the dynamics (when P is large), an analytical characterization is still feasible.

4 Conclusion

Networks where circulating items are endowed with elementary forms of “intelligence” which affects
their routing decisions clearly offer a high relevance for applications. As so far relatively little
analytical work has being devoted to such systems, we address here this issue. By adopting a multi-
agent point of view, our note explores, mostly analytically, the behavior of simple queueing networks
where agents decide, based on individually measured waiting times, whether to visit or not feedback
loops present in the network topology. The underlying idea to study such systems originates from
questions related to the loyalty of customers to a particular service provider. It is remarkable that
this simple class of models is already rich enough to exhibit temporal patterns of the queue contents
(i.e. stable temporal oscillations), synchronization and stabilization by noise phenomena, which are
typical for multi-agent systems.
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