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Abstract. We introduce a broad class of categorical dissimilarities, the quotient
dissimilarities, for which aggregation invariance is automatically satisfied. This class
contains the chi-square, ratio, Kullback-Leibler and Hellinger dissimilarities, as well
as presumably new “power” and “threshold” dissimilarity families. For a large sub-
class of the latter, the product dissimilarities, we show that the Euclidean embed-
dability property on one hand and the weak Huygens’ principle on the other hand
are mutually exclusive, the only exception being provided by the chi-square dis-
similarity DX. Various suggestions are presented, aimed at generalizing Factorial
Correspondence Analysis beyond the chi-square metric, by non-linear distortion of
departures from independence. In particular, the central inertia appearing in one

formulation turns out to exactly amount to the mutual information of Information
Theory. !

1 Introduction and notations

Let nj; be an (|J] x |K]) contingency table, with relative frequency f;r =
nji/n, row profiles w;x = njp/n;,, column profiles wi; = njk/ner and
marginal (strictly positive) profiles p; = Nje/n = fijo and pgp = nep/n =
for, where nj;y = ZkeK njr are the row marginals, ne, = Zjejnjk are
the column marginals, and n := ne, is the grand total. By construction,
fik = pjwir = pk wzj; also, the row and column profiles transform as w;; =
pewi; /7 and wi; = piwis/pr.

Independence quotients constitute a most convenient cell-by-cell represen-
tation of departures from independence. Surprisingly enough, they are not
routinely used in standard Statistics, with the exception of quantitative Ge-
ography and Economics, where they are referred (when J or K enumerates
regions) to as location quotients.

! Stimulating discussions with Martin Rajman and Jean-Cédric Chappelier are
gratefully acknowledged. This work has benefited from a join grant from the
University of Lausanne and the Swiss Federal Institute of Technology of Lau-
sanne.
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Definition 1 Independence quotients ¢ are the ratios of the observed counts
to the expected counts under independence:
nj N fin _ wie _ Wiy
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Property 1 ¢;; = 1 for all cells off perfect independence holds. Also, in any
case,

S pige=1 Vkek S prap=1 VieJ 2)
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Conversely, independence quotients q;, obeying (2) determine a contingency
table unique up to a multiplicative constant by njx :=n p; pr k-

A dissimilarity D between J objects is a symmetric (J x J) non-negative
matrix [J;; with a null diagonal. The most popular dissimilarity for contin-
gency tables is the chi-square dissimilarity between rows j and j' expressing
in terms of independence quotients as

n Nik Nk
Dy =) (=== L5 =" pr (aje — g5)° (3)

n n; n;
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DX is well known to be aggregation invariant (definition 3). Furthermore, the
chi-square measure of row/column dependence obtains as half the weighted
average of the dissimilarity between each pairs of rows, or equivalently, as
the weighted average of the dissimilarity between each row and the average
profile (remark 1):

2
x©_ 1 X X X . 2
=3 E p; p;/ Dy = E p; D3, where D7 = E pr(gie — 1)
i3’ J k

The equivalence emphasized above constitutes the weak Huygens’ principle
(definition 6). In the present case, the strong Huygens’ principle Zj P; D;»(a =
> p; DY, + DX, also holds (definition 6). Finally, the dissimilarities DX
can be represented as FEuclidean square distances in a space with at most
min(]J|, |K|) — 1 dimensions; this Euclidean embeddability property (defini-
tion 4) allows visualization in Factorial Correspondence Analysis.

What are the necessary implications, if any, between the above properties
for a general dissimilarity D7 In a previous publication (Bavaud 2000), we
addressed in part the same question for weights dissimilarities,i.e. of the form
D;; =5 Glpr) F(wjg, wji), for which necessary and sufficient conditions
for aggregation invariance were established. In the present self-contained pa-
per, we focus on quotients dissimilarities (definition 2), for which aggregation
invariance is automatically satisfied (theorem 1)%. As far as dissimilarities

2 to the best of our knowledge, this elementary but fundamental property has gone
so far unnoticed.
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are concerned, quotients dissimilarities appear as more natural objects than
weights dissimilarities, and easier to manipulate as well.

Somewhat to our surprise, we realized that the Euclidean embeddabil-
ity condition and the weak Huygens’ principle seem to work in competition
rather than in association. More specifically, we consider here a broad but
strict subclass of quotients dissimilarities, namely the product dissimilarities
(definition 7), covering all the (aggregation-invariant versions of) dissimilar-
ities we remember having encountered in the literature. For this subclass,
we prove (theorem 3, our main result) that Euclidean embeddability and
the weak Huygens’ principle are mutually exclusive, the only exception being
provided by the chi-square dissimilarity DX.

2 Main results

Definition 2 Quotients dissimilarities Dj;+ between rows j,j* € J and
quotients dissimilarities D} ,, between columns k,k’ € K are respectively

defined as

Djjr = pr Flgjn, ¢jon) Dy =05 Flajs ajw)  (4)
k J

where F(gq,q’) > 0 is a non-negative function obeying F(q,¢') = F(¢',¢q) and
F(g,9)=0,Yq,4'" > 0.

Remark 1 Definition (4) enables to compute dissimilarities such as Dj,
where j is one of the original rows and a is a supplementary row, whose
quotient profile {ay}rex satisfies ax > 0 and >, pr ax = 1 in virtue of
(2). Similarly, Dj . is the dissimilarity between column k and supplementary
column a* of quotient profile {a};es satisfying a} > 0 and Zj p;a; = 1.
As typical examples, consider the average row p whose associated quotient
profile is ax = ¢,x = pu/pr = 1, as well as the average column p* with
assoclated quotient profile aj = g;,» = 1.

Definition 3 A dissimilarity D is aggregation invariant if its values D;;/
remain unchanged when two identical profiles wzlj = wzﬂ» (or equivalently
¢ik. = jk,) assoclated to distinct columns ky and k, are further aggregated
into a single column denoted [k; U k2] yielding the same profile wf‘kluk2]j.

Theorem 1. Quotients dissimilarities D and D* are aggregation invariant.
Proof: D of the form (4) is aggregation invariant iff
Py F(@inys @) + Pro F(@inzy @5ks) = Plryoka] (9 1k10ko]s 451181 0k])

for all j # j/, whenever ¢;i, = ¢z, =: b; for all j. The above identity follows
form pp,uk,] = Py + pr, and
Milkauka] (e, + Mk,) 1

Gilk1Uks] = = =b; = qix, = ik
jlk1Uk2] Nje no[klukg] Nje (nokl +n0k2) J JR1 JR2
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Aggregation invariance for D* is proved similarly. O

Definition 4 A dissimilarity D is Euclidean embeddable if there exist
coordinates zj; for j € J and [ = 1,...,r < oo such that Dj; =Y _, (zj —
l‘j/l)z. 3

Definition 5 Let {h;};cs be a signed vector (not necessarily non-negative)
normed to EjeJ h; =1, and let a be a row of J or a supplementary row
whose quotient profile obeys >, pr ap = 1.

a)the “type 1 products matrix” B” associated to dissimilarity D and
center h is B" := —1(I — H)D(I — H’), that is:

1
B;j/ = —§(Djj/ — Zhl Dlj/ — Zhl Djl + Z h; hy D”/)
1eJ 1eJ e
where I := 11/, that is (H); = hy.
b) the “type 2 products matrix” “B associated to dissimilarity D and

. e 1
center a is B := —5(Dj0 — Dja — Dajr).

Note the type 2 products matrix /98 associated to the center j; € J to

: : R® 0 _
be at same time a type 1 products matrix B* with center h; = d;j,. In

general, the dissimilarities obtain from the “products matrices” as D;;» =

ij + Bf/j, — Qij,, respectively D;; =%By; +%Bjr;0 — 2 °B;;, and the well-

known Schoenberg characterization holds:

Theorem 2. a) D is Buclidean embeddable iff B is positive semi-definite

(p.s.d.). In this case, B" is also p.s.d. for any signed h 0beyi~ng Zj 71j =1.
b)D is Euclidean embeddable iff °B is p.s.d. In this case, °B is also p.s.d.

for any supplementary row a.

Proof: see e.g. Schoenberg (1935) or Gower (1982).

Definition 6 Huygens’ principles relative to a quotient dissimilarity D are

Z p; Dja = Z P; Djp + Dpa strong Huygens’ principle (5)
J J
Zp}f Py Djjr =2 Zp}‘ Dj, weak Huygens’ principle (6)
Ji’ J

where ap > 0 is any quotient profile obeying >, pr ax = 1 and p is the
average quotient profile, identically equal to 1 (remark 1).

Writing ar = ¢;4 and applying the weighted average operator Zj, P
shows the strong formulation (5) to entail the weak one (6).

% in presence of metric properties, D;;: thus behaves as the square of an Euclidean
distance.
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Definition 7 Product dissimilarities, f- and g-dissimilarities are quo-
tient dissimilarities (definition 2) defined as

Djj’ = ZkeK Pk (g((]jk) - g((]j/k))(h((]jk) — h(Qj/k)) (product dissimilarity)
Djjr =Y wex Pr (Faix) — Fajm))? (f-dissimilarity)
Djjr =3 nex pr (9(aix) — 9(g5%)) (@51 — q5n) (g-dissimilarity)

where f, g and h are non-decreasing functions obeying f(1) = g(1) = h(1)
1. When differentiable, we impose the normalization f/(1) = ¢'(1) = A'(1) =
to hold in addition.

Theorem 3. The product dissimilarity (7)
o is Fuclidean embeddable (definition 4) iff ¢ = h =: f, that is iff the

product dissimilarity is a f-dissimilarity.

o obeys Huygens’ weak principle (6) iff g(q) = q or h(q) = ¢, that is iff the
product dissimilarity is a g-dissimilarity.

o is Buclidean embeddable and satisfies Huygens’ weak principle iff g(q) =
h(g) = q, that is iff the product dissimilarity is the chi-square dissimi-
larity DX. Also, DX 1s the only product dissimilarity obeying the strong
Huygens’ principle.

Proof : the first part of the third point is a direct consequence of the first
and second points. To prove the first point, observe (definitions 4, 7 and
remark 1) that, if D is a product dissimilarity, then

’Bjjr = % > o Wagin) = 1) (hlgjm) = 1) + (9(gjm) = 1) (h(gj) — 1)]

However, /B;;/ is p.s.d. for any quotient profile iff it is of the form B;;.,, =
> ok Glgis) Ggjm), that is iff g = h =: f.

To prove the second point, observe (definition 6) that, if D is a product
dissimilarity, then

Y0 Dijr =2 p5 Dip =2 pr (g — 1) (hs = 1)
i’ i p

where gy := Zj P} 9(g;x) and Ry = Zj p; h(qjx). Then the weak’s Huygens
principle holds iff g = 1 or hy = 1 for any quotient profiles; but the only
rule to be followed by all profiles is (2), which shows (with A(1) = g(1) = 1)
that ¢(¢) = ¢ or h(q) = ¢, or equivalently that D is a g-dissimilarity.

To prove the second part of the third point, suppose the product dissimi-
larity D to obey Huygens’ strong principle, and therefore the weak principle
as well. One finds Huygens’ strong principle to hold iff ij PP} 9(g5k)(gar)—
ar) = 0 for any quotient profiles ¢;5 and ay, which implies g(ax) = ag, that
s D=Dx. 0
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3 Examples and comments

a) Product dissimilarities do not exhaust the class of “interesting” quotient
dissimilarities: as a counter-example, consider for instance the “symmetrized
generalized power quotient dissimilarities”

1 gk gk
DYy i=m e g (22 = U4 g (P25 =1 for X real
= iy o e 2 = D (EEP 1) fordrea
whose name refers to similar functionals studied by Cressie and Read (1984)
in the context of model selection.

b) For s > 0, g-dissimilarities with ¢(¢q) := (¢°* +s—1)/s constitute the so-
called “type s” dissimilarities, identified in Bavaud (2000) as an aggregation-
invariant class of weight dissimilarities obeying Huygens’s weak principle.
Theorem 3 permits to show that this class 1s unique. The particular cases
9(q) = q (chi-square dissimilarity), ¢(¢) = Ing¢ + 1 (logarithmic dissimilarity)
and ¢(q) = 2 — 1/q (ratio dissimilarity) obtain for s = 1,0, —1 respectively.

¢) Let us list some f-dissimilarities with promising properties: they are
flexible, intuitively transparent regarding the non-linear distortion of depar-
tures of the independence, and thus potentially well-adapted and finely tun-
able for particular needs:

1. the power dissimilarities with f(q) := (¢° + 3 — 1)/, restoring the chi-
square dissimilarity for 5 = 1. The limit § — 0 yields the logarithm
f(g) = Ing+ 1. The case # = 1/2 gives the so-called Hellinger distance,
whose aggregation invariance properties have been noticed and investi-
gated by Escofier (1978). The limit of large positive 7 produces “carica-
ture” dissimilarities in that object j tends to be characterized exclusively
by its dominant feature ko (such that ¢;x, > ¢;&). Inversely, low positive
values of 3 overweight the effect of rare features.

2. the presence-absence dissimilarity with f(q) := I(q¢ > 0), where I(A)
is the indicator function for the event A. The resulting dissimilarity is
aggregation invariant by construction (theorem 1), and so is the weighted
simple matching similarity

S st = S gL — (gge > 0) = gy > 0))7]
keK

By contrast, the usual (unweighted or uniform) simple matching similar-
ity

K

S;}H;ple, unweighted . _ Z [1 _ (I(ij > 0) _ I(Qj’k > 0))2]/
keK

(see e.g. Joly and Le Calvé (1994)) is not aggregation invariant. The same
remarks apply to the unweighted and weighted dissimilarity of Jaccard
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defined as

number of features common to j and j’

GJaccard, unweighted _
I

1 ht . .
J number of features common to 5 or j'

Glaceard, weighted . _ ZkeK Pk I(ij > 0) I(Qj’k > 0)
" Yokex P [L—1(qjn = 0) I(gj = 0)]

3. the major-minor dissimilarity with f(q) := I(¢ > 1). This dissimilarity
only distinguishes whether quotients are above or below average (whence
its name). Major-minor and presence-absence dissimilarities are partic-
ular cases of the threshold dissimilarities f(q) := I(¢ > 6) + I(6 > 1)
(obeying f(1) = 1 for any 6 > 0).

4. the entropic dissimilarity with f(q) := 1+sgn(q — 1)v2+/q(Ing — 1) + 1.
Calculus shows f(q) to be increasing with f(1) = 0 and f/(1) = 1. The

resulting central (half-)inertia is

1 * 1 * *

2 ij Djp = 52% pr (flgin) — 1) = ij ok (girIngjr —1]+1) =
J Jk Jk

ZP; Pr Gk lng;, = ZP}F wir In
Jk j

Wik

J *

_J E pj Wik In Wy —
k Jk

J)+ H(K)=1(J: K)

Jk
Zpk Inpy = —H(K
%

where I(J : K) := H(J)+ H(K) — H(J,K) > 0 is the mutual infor-
mation between rows j € J and columns & € K, null iff J and K are
independent, that is iff ¢;5 = 1. The non-linear function f(¢) thus al-
lows an exact FEuclidean representation for mutual information, without
having to expand the logarithm to the second order: mutual information
H(J)+ H(K) — H(J,K) can be visualized as a particular instantiation
of the central inertia, thus providing a direct link between Data Analysis
and Information Theory.

d) The Euclidean embeddability property enjoyed by f-dissimilarities
is obvious when considering the transformation ¢;x — ;& = /pr fqsx),
transforming the profile {¢;x}rex of row j into coordinates {z;i }rex, since
Dijr =3 er @ik — zji)? from definition 7 *. In this paper, we have de-
fined the coordinates of the average profile by first averaging over the row
profiles and then applying the above transformation. This coincides with the
direct averaging of the row coordinates iff f(¢) is linear, which is the chi-
square case. Distinguishing clearly between those two definitions for average
profiles is therefore crucial: in terms of average coordinates (rather than av-
erage profiles) f-dissimilarities do indeed trivially satisfy the weak Huygens’
principle.

1 or equivalently D = ZkeK(chk - x]c,k)2 in the centered version with x7, :=

Vo (Fggw) = 1))
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4 Conclusion

The Euclidean embeddability condition is of course essential for validating
visualization techniques in Data Analysis. On the other hand, the weak Huy-
gens’ principle justifies the definition of a local dissimilarity by splitting the
double summation into a summation restricted on pairs satisfying a given
relation (such as a contiguity relation in local variance formulations; see e.g.
Lebart (1969)) and its complementary. Thus the theoretical results obtained
in this paper should invite to reconsider a few practical aspects in Visualiza-
tion, Classification and Factor Analysis, when dealing with generalized, non
chi-square dissimilarities. In particular:

e usual (dis-)similarities indices should be modified into their aggregation-
invariant versions (section 3.c.2).

e the distinction between representing clusters by averaging profiles or co-
ordinates should be carefully addressed (section 3.d).

e to consider dissimilarities between binary profiles as particular cases of
general categorical dissimilarities (sections 3.c.2 and 3.c.3) is more direct
than the current practice, which operates the other way round by first
dichotomizing categorical variables.
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