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Abstract
Because of its strong interaction with almost every part of pure
mathematics, algebraic K-theory has had a spectacular develop-
ment since its origin in the late fifties. The objective of this paper
is to provide the basic definitions of the algebraic K-theory of
rings and an overview of the main classical theorems. Since the
algebraic K-groups of a ring R are the homotopy groups of a topo-
logical space associated with the general linear group over R, it
is obvious that many general results follow from arguments from
homotopy theory. This paper is essentially devoted to some of
them: it explains in particular how methods from stable homo-
topy theory, group cohomology and Postnikov theory can be used
in algebraic K-theory.
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0. Introduction

Algebraic K-theory is a relatively new mathematical domain which
grew up at the end of the fifties on some work by A. Grothendieck on the
algebraization of category theory (see Section 1). The category of finitely
generated projective modules over a ring R was actually in the center of
the preoccupations of the first K-theorists because of its relationships
with linear groups which play a crucial role in almost all subjects in
mathematics. Later, J. Milnor and D. Quillen introduced a very general
notion of algebraic K-groups Ki(R) of any ring R which exhibits some
properties of the linear groups over R (see Sections 2 and 3). Thus, in
some sense, algebraic K-theory is a generalization of linear algebra over
rings!

The abelian groups Ki(R) are homotopy groups of a space which is
canonically associated with the general linear group GL(R), i.e., with
the group of invertible matrices, over the ring R. Therefore, several me-
thods from homotopy theory produce interesting results in algebraic
K-theory of rings. The objective of the present paper is to describe
some of them. This will give us the opportunity to introduce the defini-
tion of the groups Ki(R) for all integers i ≥ 0 (in Sections 1, 2 and 3), to
explore their structure (in Section 4) and to present classical results (in
Sections 5 and 8). Moreover, the second part of the paper (Sections 6,
7, 8 and 9) is devoted to more recent results.

Of course, this is far from being a complete list of topological argu-
ments used in algebraic K-theory and many other methods also provide
very nice results. On the other hand, if, instead of looking at the cate-
gory of finitely generated projective modules over a ring, we apply the
same ideas to other categories, we also get interesting and important de-
velopments of algebraic K-theory in various directions in mathematics.
If the reader wants to get a better and wider understanding of algebraic
K-theory, he should consult the standard books on this subject (see for
example [19], [27], [29], [58], [65], [78], [83], [90]; a historical note can
be found in [22]).

Since our goal is to show how algebraic topology (in particular ho-
motopy theory) can be used in algebraic K-theory, we assume that the
reader is familiar with the basic notions and results in algebraic topology,
homotopy theory and homological algebra (classical references include
[2], [37], [47], [50], [51], [79], [89], [94], [100]).

Throughout the paper, all maps between topological spaces are sup-
posed to be continuous pointed maps and all rings are rings with units.
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1. The origins of algebraic K-theory

The very beginning of algebraic K-theory is certainly due to some
general considerations made by A. Grothendieck. He was motivated
by his work in algebraic geometry and introduced the first K-theoret-
ical notion in terms of category theory. His idea was to associate to
a category C an abelian group K(C) defined as the free abelian group
generated by the isomorphism classes of objects of C modulo certain re-
lations. Since Grothendieck’s mother tongue was German, he chose the
letter K for denoting this group of classes (K = Klassen) of objects of
C. This group K(C) was the first algebraic K-group: it is now called the
Grothendieck group of the category C.

Let us explain in more details the definition of a Grothendieck group
by looking at two classical examples. First, let R be a ring and P(R)
the category of finitely generated projective R-modules (see [27, Sections
VII.1 and IX.1], [65, Chapter 1], [78, Section 1.1], [83, Chapter 2], or
[90, p. 1]).

Definition 1.1. For any ring R, the Grothendieck group K0(R) is the
quotient of the free abelian group on isomorphism classes [P ] of finitely
generated projective modules P ∈ P(R) by the subgroup generated by
the elements of the form [P ⊕Q]− [P ]− [Q] for all P , Q in P(R).

Thus, every element of K0(R) can be written as a difference [P ]− [Q]
of two generators and one can easily check (see [65, Lemma 1.1], [83,
p. 9, Proposition 2], or [90, p. 1]) that two generators [P ] and [Q] are
equal in K0(R) if and only if there is a free R-module Rs such that
P ⊕Rs ∼= Q⊕Rs (in that case, the R-modules P and Q are called stably
isomorphic).

A homomorphism of rings ϕ : R → R′ induces a homomorphism of
abelian groups

ϕ∗ : K0(R) −→ K0(R′)

which is defined as follows. If P is a finitely generated projective R-mod-
ule, there is an R-module Q and a positive integer n such that P ⊕Q ∼=
Rn and consequently, (R′ ⊗R P ) ⊕ (R′ ⊗R Q) ∼= R′ ⊗R Rn ∼= (R′)n: in
other words R′⊗RP is a finitely generated projective R′-module. There-
fore, let us define for all [P ] ∈ K0(R) ϕ∗([P ]) = [R′ ⊗R P ] ∈ K0(R′);
K0(−) turns out to be a covariant functor from the category of rings to
the category of abelian groups.
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The main problems in the study of the group K0(R) are the following
two questions which express the difference between the classical linear al-
gebra over a field and the algebraic K-theory which concerns any ring R:
is every finitely generated projective module over R a free R-module?
and is the number of elements in a basis of a free R-module an invariant
of the module? If both questions would have a positive answer, then the
group K0(R) would be infinite cyclic, generated by the class [R] of the
free R-module of rank 1. This is of course the case if R is a field, but
also for other classes of rings.

Theorem 1.2. If R is a field or a principal domain or a local ring, then
K0(R) ∼= Z, generated by the class of the free R-module of rank 1.

Proof: See [65, Lemma 1.2], or [78, Sections 1.1 and 1.3].

The main interest of algebraic K-theory in dimension 0 is the inves-
tigation of projective modules which are not free. For instance, let us
look at Dedekind domains, in particular at rings of algebraic integers in
number fields.

Theorem 1.3. If R is a Dedekind domain, then K0(R) ∼= Z ⊕ C(R),
where C(R) denotes the class group of R.

Proof: See [65, Chapter 1], or [78, Section 1.4].

The second classical example of a Grothendieck group is given by the
topological K-theory which was introduced by A. Grothendieck in 1957
(see [33]) and developed by M. F. Atiyah and F. Hirzebruch (see [20]
and [19]). If X is any compact Hausdorff topological space and F = R
or C, let us denote by V(X) the category of F-vector bundles over X.

Definition 1.4. For any compact Hausdorff topological space X, the
Grothendieck group K0

F(X) is the quotient of the free abelian group on
isomorphism classes [E] of F-vector bundles E ∈ V(X) by the subgroup
generated by the elements [E ⊕ G] − [E] − [G] for all E, G in V(X),
where ⊕ is written for the Whitney sum of vector bundles. The abelian
group K0

F(X) is called the topological K-theory of X (see [19] or Part II
of [51] for more details).

Again, every element of K0
F(X) is of the form [E] − [G] where E

and G are two vector bundles and [E] = [G] if and only if there is a
trivial F-vector bundle L such that E ⊕ L ∼= G ⊕ L (E and G are then
called stably equivalent). If f : X → Y is a continuous map between two
compact Hausdorff topological spaces, and if E

p−→ Y is an F-vector
bundle over Y , then f∗(E) = {(x, e) ∈ X × E | f(x) = p(e)} together
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with f∗(p) : f∗(E) → X given by f∗(p)(x, e) = x defines an F-vector
bundle over X. Thus, the map f induces a homomorphism of abelian
groups

f∗ : K0
F(Y ) −→ K0

F(X)

and it turns out that K0
F(−) is a contravariant functor from the cate-

gory of compact Hausdorff topological spaces to the category of abelian
groups.

Remark 1.5. It is not difficult to show that the group K0
F(X) splits as

K0
F(X) ∼= Z⊕ K̃0

F(X),

where K̃0
F(X), the reduced topological K-theory of X, is the kernel of the

homomorphism K0
F(X) → Z which associates to each vector bundle its

rank.

For example, the calculation of K̃0
F(X) in the case where X is an

n-dimensional sphere Sn is provided by the celebrated

Theorem 1.6 (Bott periodicity theorem).

(a) K̃0
C(Sn) ∼=

{
Z, if n is even,
0, if n is odd.

(b) K̃0
R(Sn) ∼=



Z, if n ≡ 0 mod 8,
Z/2, if n ≡ 1 mod 8,
Z/2, if n ≡ 2 mod 8,
0, if n ≡ 3 mod 8,
Z, if n ≡ 4 mod 8,
0, if n ≡ 5 mod 8,
0, if n ≡ 6 mod 8,
0, if n ≡ 7 mod 8.

Proof: See [35] or [51, p. 109 and Chapter 10]; an alternative proof may
be found in [46].

In fact, there is a very strong relationship between topological and
algebraic K-theory:

Theorem 1.7 (Swan). Let X be any compact Hausdorff topological spa-
ce, F = R or C, and R(X) the ring of continuous functions X → F.
There is an isomorphism of abelian groups

K0
F(X) ∼= K0(R(X)).



8 D. Arlettaz

Proof: See [93] or [78, Theorem 1.6.3].

Remark 1.8. It is also possible to describe K0(R) in terms of idempotent
matrices over R (see for instance [78, Section 1.2]). This approach is the
first sign of the central role played by linear groups in algebraic K-theory:
it will become especially important for higher K-theoretical functors in
the next sections.

2. The functors K1 and K2

One of the main objects of interest in linear algebra over a ring R is
the general linear group GLn(R) consisting of the multiplicative group
of n×n invertible matrices with coefficients in R. In order to look at all
invertible matrices of any size in the same group, observe that GLn(R)
may be viewed as a subgroup of GLn+1(R) via the upper left inclusion
A �→ (A 0

0 1 ) and consider the direct limit

GL(R) = lim−→
n

GLn(R) =
∞⋃
n=1

GLn(R)

which is called the infinite general linear group. Algebraic K-theory is
essentially the study of that group for any ring R. To begin with, let us
investigate the commutator subgroup of GL(R).

Definition 2.1. Let R be any ring, n a positive integer, i and j two
integers with 1 ≤ i, j ≤ n, i �= j, and λ an element of R; let us define
the matrix eλi,j to be the n× n matrix with 1’s on the diagonal, λ in the
(i, j)-slot and 0’s elsewhere: such a matrix is called an elementary matrix
in GLn(R). Let En(R) denote the subgroup of GLn(R) generated by
these matrices and let

E(R) = lim−→
n

En(R) =
∞⋃
n=1

En(R),

where the direct limit is taken via the above upper left inclusions. The
group E(R) is called the group of elementary matrices over R.

An easy calculation produces the next two lemmas (see [78, Lem-
ma 2.1.2 and Corollary 2.1.3]).
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Lemma 2.2. The elementary matrices over any ring R satisfy the fol-
lowing relations:

(a) eλije
µ
ij = eλ+µ

ij ,

(b) The commutator [eλij , e
µ
kl] = eλije

µ
kl(e

λ
ij)

−1(eµkl)
−1 satisfies

[eλij , e
µ
kl] =


1, if j �= k, i �= l,

eλµil , if j = k, i �= l,

e−µλ
kj , if j �= k, i = l,

for all λ and µ in R. (Notice that there is no simple formula for
[eλij , e

µ
kl] if j = k and i = l.)

Lemma 2.3.

(a) Any triangular matrix with 1’s on the diagonal and coefficients in
R belongs to the group E(R).

(b) For any matrix A ∈ GLn(R), the matrix
(
A 0
0 A−1

)
is an element of

E2n(R).

The main property of the group of elementary matrices E(R) is the
following.

Lemma 2.4 (Whitehead lemma). For any ring R, the commutator sub-
groups [GL(R), GL(R)] and [E(R), E(R)] are given by

[GL(R), GL(R)] = E(R) and [E(R), E(R)] = E(R).

Proof: Because of Lemma 2.2 (b) every generator eλij of E(R) can be
written as the commutator [eλij , e

1
jl]. Thus, one gets [E(R), E(R)] =

E(R) and the inclusion E(R) ⊂ [GL(R), GL(R)]. In order to prove
that [GL(R), GL(R)] ⊂ E(R), observe that for all matrices A and B in
GL(R), one has(

ABA−1B−1 0
0 1

)
=

(
AB 0
0 B−1A−1

) (
A−1 0
0 A

) (
B−1 0

0 B

)
and therefore this matrix belongs to E2n(R) according to Lemma 2.3
(b).

Remark 2.5. Remember that a group G is called perfect if G = [G,G]
or, in other words, if the abelianization Gab of G is trivial, or, in ho-
mological terminology, if H1(G; Z) = 0 (see [37, Section II.3], or [50,
Section VI.4]). Lemma 2.4 asserts that E(R) is a perfect group for any
ring R.
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The discovery of that relationship between GL(R) and E(R) was the
first step towards the understanding of the linear groups over a ring R:
in 1962, it gave rise to the following definition (see [29, Chapter 1], [65,
Chapter 3], or [78, Definition 2.1.5]).

Definition 2.6. For any ring R, let

K1(R) = GL(R)/E(R) = GL(R)ab.

A ring homomorphism f : R→ R′ induces obviously a homomorphism
of abelian groups f∗ : K1(R)→ K1(R′) and K1(−) is a covariant functor
from the category of rings to the category of abelian groups.

Remember that the abelianization of any group G is isomorphic to
its first homology group with integral coefficients H1(G; Z) (see [37,
Section II.3] or [50, Section VI.4]).

Corollary 2.7. K1(R) ∼= H1(GL(R); Z).

If R is commutative, the determinant of square matrices is defined
and we may consider the group SLn(R) of n × n invertible matrices
with coefficients in R and determinant +1, and the infinite special linear
group

SL(R) = lim−→
n

SLn(R) =
∞⋃
n=1

SLn(R).

This provides the extension of groups

1 −→ SL(R) −→ GL(R) det−→ R× −→ 1,

where R× = GL1(R) is the group of invertible elements in R. Ob-
serve that E(R) is clearly a subgroup of SL(R) since any elementary
matrix eλi,j has determinant +1. By looking at the above extension and
taking the quotient by E(R), one gets the short exact sequence of abelian
groups

1 −→ SL(R)/E(R) −→ K1(R) −→ R× −→ 1

which splits since the composition of the inclusion of R× = GL1(R) =
GL1(R)/E1(R) into the group GL(R)/E(R) = K1(R) with the sur-
jection K1(R) → R× is the identity. Therefore, we can introduce the
functor SK1(−) and obtain the next theorem.

Definition 2.8. For any commutative ring R, let

SK1(R) = SL(R)/E(R).

Theorem 2.9. For any commutative ring R, K1(R) ∼= R× ⊕ SK1(R).
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Consequently, it is sufficient to calculate SK1(R) in order to under-
stand K1(R). Let us first mention the following vanishing results.

Theorem 2.10. If R is a field or a commutative local ring or a com-
mutative euclidean ring or the ring of integers in a number field, then
SK1(R) = 0 and the determinant induces an isomorphism

K1(R) ∼= R×.

Proof: See [78, Sections 2.2 and 2.3].

Example 2.11. K1(Z)∼= Z/2={1,−1}, K1(Z[i])∼= Z/4={1, i,−1,−i},
and K1(F [t]) ∼= F× for any field F .

However, SK1(R) does not vanish for all commutative rings R. Here
is a result on K1 for Dedekind domains.

Definition 2.12. Let R be a commutative ring, and a and b two ele-
ments of R such that Ra + Rb = R. If c and d are elements of R such
that ad− bc = 1, then the class of

(
a b
c d

)
in SK1(R) does not depend on

the choice of c and d (see [78, Theorem 2.3.6]): it is denoted by [ ba ] and
called a Mennicke symbol.

If R is a Dedekind domain, it is possible to prove that K1(R) is
generated by the image of GL2(R) in K1(R) = GL(R)/E(R) (see [78,
Theorem 2.3.5]). This implies the following result.

Theorem 2.13. If R is a Dedekind domain, then the group SK1(R)
consists of Mennicke symbols.

Remark 2.14. In that case, SK1(R) is in general non-trivial. However,
if R is a Dedekind domain such that R/m is a finite field for each non-
trivial maximal ideal m of R, then SK1(R) is a torsion abelian group
(see [78, Corollary 2.3.7]).

The next step in the study of the linear groups over a ring R was made
by J. Milnor and M. Kervaire in the late sixties when they investigated
the universal central extension of the group E(R) (see [65] and [54]).

Definition 2.15. Let G be a group and A an abelian group. A central
extension of G by A is a group H together with a surjective homomor-
phism ϕ : H � G such that the kernel of ϕ is isomorphic to A and
contained in the center of H. A morphism from the central extension
ϕ : H � G to the central extension ϕ′ : H ′ � G is a group homomor-
phism ψ : H → H ′ such that ϕ = ϕ′ψ. A central extension ϕ : H � G of
G is universal if for any central extension ϕ′ : H ′ � G there is a unique
morphism of central extensions ψ : H → H ′.
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Remark 2.16. This universal property implies clearly that any two uni-
versal central extensions of a group G must be isomorphic.

The main result on the existence of universal central extensions is
provided by the following theorem.

Theorem 2.17.
(a) A group G has a universal central extension if and only if G is a

perfect group.
(b) In that case, a central extension ϕ : H � G of G is universal if

and only if H is perfect and all central extensions of H are trivial
(i.e., of the form of the projection A × H � H for some abelian
group A).

Proof: See [65, Theorems 5.3 and 5.7].

Remark 2.18. In fact, if G is a perfect group presented by R � F � G
(with F a free group), the proof of Theorem 2.17 (a) explicitly constructs
a universal central extension ϕ : [F, F ]/[R,F ] � G and it turns out that
the kernel of ϕ is (R ∩ [F, F ])/[R,F ] (see [65, Corollary 5.8]). On the
other hand, this corresponds to the Hopf formula for computing the
second integral homology group of a group G (see [37, Theorem II.5.3] or
[50, Section VI.9]) and we immediately obtain the following consequence:
if ϕ : H � G is the universal central extension of the perfect group G,
then

H2(G; Z) ∼= kerϕ.

Since the group of elementary matrices E(R) is perfect for any ring R
according to Lemma 2.4, it has a universal extension which can be de-
scribed as follows.

Definition 2.19. Let R be any ring and n an integer ≥ 3. The Steinberg
group Stn(R) is the free group generated by the elements xλij for 1 ≤ i,
j ≤ n, i �= j, λ ∈ R, divided by the relations

(a) xλijx
µ
ij = xλ+µ

ij ,

(b) [xλij , x
µ
kl] =

{
1, if j �= k and i �= l,

xλµil , if j = k and i �= l.

Remark 2.20. The relation (a) implies that (xλij)
−1 = x−λ

ij . It then fol-
lows from (b) that for k �= j, k �= i, one has x−µ

ki x
λ
ijx

µ
kix

−λ
ij = x−µλ

kj and
consequently xλijx

µ
kix

−λ
ij x−µ

ki = xµkix
−µλ
kj x−µ

ki = x−µλ
kj since [xµki, x

−µλ
kj ] = 1

by (b). In other words, [xλij , x
µ
kl] = x−µλ

kj if j �= k and i = l.
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Proposition 2.21. For any ring R and any integer n ≥ 3, the Steinberg
group Stn(R) is a perfect group.

Proof: It is obvious that [Stn(R), Stn(R)] = Stn(R) since every genera-
tor xλij is a commutator by the equality xλij = [xλis, x

1
sj ].

There is clearly a group homomorphism Stn(R) → Stn+1(R) send-
ing each generator xλij of Stn(R) to the corresponding generator xλij of
Stn+1(R) and it is therefore possible to define the infinite Steinberg group
St(R) = lim−→ n Stn(R).

For any ring R and any integer n ≥ 3, there is a surjective homomor-
phism ϕ : Stn(R) � En(R) defined on the generators by ϕ(xλij) = eλij
which induces a surjective homomorphism

ϕ : St(R) � E(R).

The infinite Steinberg group St(R) plays an important role for the
group E(R) because of the following result.

Theorem 2.22. The kernel of ϕ is the center of the group St(R) and
ϕ : St(R) � E(R) is the universal central extension of E(R).

Proof: See [65, Theorem 5.10], or [78, Theorems 4.2.4 and 4.2.7].

This gives rise to the definition of the next K-theoretical functor.

Definition 2.23. For any ring R, let K2(R) be the kernel of ϕ : St(R) �
E(R). Notice that K2(R) is an abelian group which is exactly the center
of St(R).

A ring homomorphism f : R → R′ induces group homomorphisms
St(R)→ St(R′) and E(R)→ E(R′) and consequently a homomorphism
of abelian groups f∗ : K2(R) → K2(R′). Thus, K2(−) is a covariant
functor from the category of rings to the category of abelian groups.

Remark 2.24. In fact, the relations occuring in the definition of the
Steinberg group St(R) correspond to the obvious relations of the group
of elementary matrices E(R). However, E(R) has in general more rela-
tions and the group K2(R) measures the non-obvious relations of E(R).
From that viewpoint, the knowledge of K2(R) is essential for the under-
standing of the structure of the group E(R).

Remark 2.18 immediately implies the following homological interpre-
tation of the functor K2(−).

Corollary 2.25. For any ring R, K2(R) ∼= H2(E(R); Z).
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Remark 2.26. The definitions of K1(R) and K2(R) show the existence
of the exact sequence

0 −→ K2(R) −→ St(R) −→ GL(R) −→ K1(R) −→ 0,

where the middle arrow is the composition of the homomorphism
ϕ : St(R) � E(R) with the inclusion E(R) ↪→ GL(R).

For the remainder of this section, let us assume that R is a commu-
tative ring. Consider the above homomorphism ϕ : St(R) � E(R). If x
and y belong to E(R), one can choose elements X and Y in St(R) such
that ϕ(X) = x and ϕ(Y ) = y. Of course, X and Y are not unique; how-
ever, the commutator [X,Y ] is uniquely determined by x and y, because
for any a and b in kerϕ one has [Xa, Y b] = XaY ba−1X−1b−1Y −1 =
XYX−1Y −1 = [X,Y ] since a and b are central. Consequently, we can
look at the commutator [X,Y ] ∈ St(R) and observe that ϕ([X,Y ]) = 1
if x and y commute in E(R). Thus, we choose x =

(
u 0 0
0 u−1 0
0 0 1

)
and

y =
(
v 0 0
0 1 0
0 0 v−1

)
in E3(R) (see Lemma 2.3 (b)), where u and v are in-

vertible elements in R. Since R is commutative, the elements x and y
commute and we get an element [X,Y ] of K2(R).

Definition 2.27. Let R be a commutative ring. For all u and v in R×,
the Steinberg symbol of u and v is the element {u, v} = [X,Y ] ∈ K2(R),
where X and Y are chosen as above.

Lemma 2.28. For all u, v and w in R×, the Steinberg symbols have the
following properties in K2(R):

(a) {u, v} = {v, u}−1,
(b) {uv,w} = {u,w}{v, w},
(c) {u, vw} = {u, v}{u,w},
(d) {u,−u} = 1,
(e) {u, 1− u} = 1, when (1− u) ∈ R×.

Proof: See [65, Chapter 9], or [78, Lemma 4.2.14 and Theorem 4.2.17].

Example 2.29. Let R be the ring of integers Z. Then Z× has only
two elements: 1 and −1. By Lemma 2.28, it is clear that {1,−1} =
{−1, 1} = {1, 1} = 1 and that {−1,−1} is at most of order 2. In fact,
the group K2(Z) is generated by the Steinberg symbol {−1,−1} and
K2(Z) ∼= Z/2 (see [65, Chapter 10]).
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Many results have been obtained on K2(R) in the case where R is a
field. The first one asserts that K2 of a field is generated by Steinberg
symbols and that the above properties (a) and (d) in Lemma 2.28 follow
from the other three.

Theorem 2.30 (Matsumoto). If F is a field, then K2(F ) is the free
abelian group generated by the Steinberg symbols {u, v}, where u and v
run over F×, divided by the relations {uv,w} = {u,w}{v, w}, {u, vw} =
{u, v}{u,w}, {u, 1− u} = 1.

Proof: See [65, Theorem 11.1], or [78, Theorems 4.3.3 and 4.3.15].

If F is a finite field, the situation is much simpler because of the
following vanishing result.

Theorem 2.31. If F is a finite field, then all Steinberg symbols in
K2(F ) are trivial.

Proof: See [65, Corollary 9.9], or [78, Corollary 4.2.18].

We then may deduce a direct consequence of Theorems 2.30 and 2.31.

Corollary 2.32. If F is a finite field, then K2(F ) = 0.

Theorem 2.30 suggests a possible algebraic generalization of the func-
tor K2(−) to higher dimensions: the Milnor K-theory which is defined
as follows (see [64]).

Definition 2.33. For any field F , the tensor algebra over F× is

T∗(F×) =
∞⊕
n=1

Tn(F×),

where F× is considered as an abelian group and

Tn(F×) = F× ⊗Z F× ⊗Z · · · ⊗Z F×︸ ︷︷ ︸
n copies

.

In this algebra, one can consider the ideal I generated by all elements of
the form u⊗ (1− u) when u belongs to F×. Then the Milnor K-theory
of F is defined by

KM
∗ (F ) = T∗(F×)/I.
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For each positive integer n, the elements of KM
n (F ) are the symbols

{u1, u2, . . . , un}, with the ui’s in F× satisfying the following rules (ad-
ditively written):

(a) {u,−u} = 0,
(b) {u, 1− u} = 0,
(c) {u, v} = −{v, u},

and KM
∗ (F ) has an obvious multiplicative structure given by the juxta-

position of symbols.

A lot of work has been done in the study and calculation of Milnor
K-theory. However, we shall not discuss it here since the purpose of
this paper is to study another generalization of K1 and K2, based on
topological considerations: Quillen’s higher K-theory.

3. Quillen’s higher K-groups

The main ingredient of the notions introduced in Section 2 is the
investigation of the linear groups GL(R), E(R) and St(R). In order
to generalize them and to define higher K-theoretical functors, the idea
presented by D. Quillen in 1970 (see [70]) consists in trying to construct
a topological space corresponding in a suitable way to the group GL(R)
and studying its homotopical properties. Let us first discuss a very
general question on the relationships between topology and group theory.

It is well known that one can associate with any topological space X
its fundamental group π1(X) and with any discrete group G its
classifying space BG which is an Eilenberg-MacLane space K(G, 1).
This means that the homotopy groups of BG are all trivial except for
π1(BG) ∼= G and implies that the homology of the group G and the sin-
gular homology of the space BG are isomorphic: H∗(G;A) ∼= H∗(BG;A)
for all coefficients A (see [37, Proposition II.4.1]). Thus, the correspon-
dence G→ BG and X → π1(X) fulfills π1(BG) ∼= G, but it is in general
not true that the classifying space of the fundamental group of a space X
is homotopy equivalent to X: in other words, a topological space X is
in general not a K(G, 1) for some group G. Therefore, we are forced
to introduce a new way to go from group theory to topology. This was
essentially done by D. Quillen when he introduced the plus construction
(see [70], [59, Section 1.1], [3, Section 3.2], [29, Chapter 5], [48], [78,
Section 5.2], or [90, Chapter 2]).
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Theorem 3.1. Let X be a connected CW-complex, P a perfect normal
subgroup of its fundamental group π1(X). There exists a CW-complex
X+

P , obtained from X by attaching 2-cells and 3-cells, such that the in-
clusion i : X ↪→ X+

P satisfies the following properties:

(a) the induced homomorphism i∗ : π1(X) → π1(X+
P ) is exactly the

quotient map π1(X) � π1(X)/P ,
(b) i induces an isomorphism i∗ : H∗(X;A)

∼=−→ H∗(X+
P ;A) for any

local coefficient system A on X+
P ,

(c) the space X+
P is universal in the following sense: if Y is any

CW-complex and f : X → Y any map such that the induced ho-
momorphism f∗ : π1(X) → π1(Y ) fulfills f∗(P ) = 0, then there is
a unique map f+ : X+

P → Y such that f+i = f . In particular, X+
P

is unique up to homotopy equivalence.

Proof: The idea of the proof of this theorem is the following. We first
attach 2-cells to the CW-complex X in order to kill the subgroup P of
π1(X); then, we build X+

P by attaching 3-cells to the space we just ob-
tained because X+

P must have the same homology as the original space X.
Observe that this creates a lot of new elements in the homotopy groups of
X+

P in dimensions ≥ 2. For details, see [59, Section 1.1], [29, Chapter 5],
or [78, Section 5.2].

The universal property of the plus construction implies the following
assertion.

Corollary 3.2. Let X and X ′ be two connected CW-complexes, P and
P ′ two perfect normal subgroups of π1(X) and π1(X ′) respectively and
f : X → X ′ a map such that f∗(P ) ⊂ P ′. Then there is a map f+ : X+

P →
X

′+
P ′ (unique up to homotopy) making the following diagram commuta-

tive:

X
f−−−−→ X ′�i

�i′

X+
P

f+

−−−−→ X
′+
P ′ ,

and it is easy to check that the plus construction is functorial.

Let us also mention the following important property.
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Lemma 3.3. If X̂ is the covering space of X associated with the perfect
normal subgroup P of π1(X), then there is a homotopy equivalence

(X̂)+P � X̃+
P

between (X̂)+P and the universal cover X̃+
P of X+

P .

Proof: See [59, Proposition 1.1.4] for more details.

Remark 3.4. If P is the maximal perfect normal subgroup of π1(X), it
is usual to write X+ for X+

P .

Let us come back to the question of the correspondence between group
theory and topology. If G is a group and P a perfect normal subgroup
of G, it is indeed a very good idea to look at the space BG+

P since the
celebrated Kan-Thurston theorem asserts that every topological space is
of that form (see [52], [61], [28] and [49]).

Theorem 3.5 (Kan-Thurston). For every connected CW-complex X
there exists a group GX and a map tX : BGX = K(GX , 1) → X which
is natural with respect to X and has the following properties:

(a) the homomorphism (tX)∗ : π1(BGX) ∼= GX → π1(X) induced by
tX is surjective,

(b) the map tX induces an isomorphism (tX)∗ : H∗(BGX ;A)
∼=−→

H∗(X;A) for any local coefficient system A on X.

This implies the following consequences.

Corollary 3.6. For every connected CW-complex X, the kernel PX of
(tX)∗ : GX � π1(X) is perfect.

Proof: Let us look at the pull-back Y of the diagram
Y −−−−→ BGX�t̃X

�tX

X̃ −−−−→ X,

in which X̃ is the universal cover of X. Both horizontal maps have the
same homotopy fiber π1(X) and tX induces an isomorphism on homol-
ogy with any local coefficient system. Therefore, the comparison the-
orem for the Serre spectral sequences of both horizontal maps implies
that (t̃X)∗ : H1(Y ; Z)→ H1(X̃; Z) is an isomorphism and that H1(Y ; Z)
vanishes since H1(X̃; Z) = 0. The homotopy exact sequence of the fi-
bration

Y −→ BGX −→ Bπ1(X)
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shows that π1(Y ) ∼= PX . Consequently, (PX)ab ∼= π1(Y )ab ∼= H1(Y ; Z) =
0, in other words, PX is a perfect group.

Theorem 3.7. For every connected CW-complex X, there exists a
group GX together with a perfect normal subgroup PX such that one
has a homotopy equivalence (BGX)+PX

� X.

Proof: For a connected CW-complex X, let us consider the group GX ,
the map tX : BGX → X and the perfect group PX = ker((tX)∗ : GX �
π1(X)) given by Theorem 3.5 and Corollary 3.6. Then, consider the
plus construction (BGX)+PX

and apply Theorem 3.1 (c): there is a
map t+X : (BGX)+PX

→ X which induces an isomorphism on π1 and on all
homology groups. The generalized Whitehead theorem (see [48, Corol-
lary 1.5], or [29, Proposition 4.15]) finally implies that t+X is a homotopy
equivalence.

Definition 3.8 (see [49, Sections 1 and 2]). A topogenic group is a
pair (G,P ), where G is a group and P a perfect normal subgroup of G. In
particular, a perfect group P can be viewed as a topogenic group because
of the pair (P, P ). A morphism of topogenic groups f : (G,P )→ (G′, P ′)
is a group homomorphism f : G → G′ such that f(P ) ⊂ P ′. An equiv-
alence of topogenic groups is a morphism f : (G,P ) → (G′, P ′) induc-
ing an isomorphism G/P

∼=−→ G′/P ′ and an isomorphism on homol-
ogy f∗ : H∗(G;A)

∼=−→ H∗(G′;A) for all coefficients A. Consequently, if
two topogenic groups are equivalent, there is a map Bf+ : BG+

P → BG
′+
P ′

between the corresponding CW-complexes which induces an isomor-
phism on the fundamental group and on all homology groups. Again,
it follows from the generalized Whitehead theorem that Bf+ : BG+

P →
BG

′+
P ′ is a homotopy equivalence.

Consequently, this establishes a very nice one-to-one correspondence
between group theory and topology (see [28, Section 11], and [49, Sec-
tion 2]):

equivalence classes
of topogenic groups ←→ homotopy types

of CW-complexes
(G,P ) −→ BG+

P

(GX , PX) ←− X.

Remark 3.9. By Theorem 3.1 the space BG+
P associated with the topo-

genic group (G,P ) satisfies the following properties:
(a) π1(BG+

P ) ∼= G/P ,
(b) Hi(BG+

P ;A) ∼= Hi(G;A) for any coefficients A.
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Example 3.10. The perfect groups correspond to the simply connected
CW-complexes, because for any perfect group P , the space BP+

P asso-
ciated with the topogenic group (P, P ) has trivial fundamental group
π1BP+

P
∼= P/P = 0.

Example 3.11. Let Σ∞ = lim−→ n Σn be the infinite symmetric group
and A∞ = lim−→ nAn the infinite alternating group which is perfect. The
Barratt-Priddy theorem [26] asserts that the topogenic group (Σ∞, A∞)
corresponds to (BΣ∞)+A∞

which is homotopy equivalent to the connected
component of the space Q0S

0 = lim−→ n ΩnSn whose homotopy groups are
the stable homotopy groups of spheres πi(Q0S

0) = lim−→ n πi(ΩnSn) =
lim−→ n πi+n(Sn), i ≥ 0.

In order to define a suitable generalization of the functor K1(−)
and K2(−) for rings, let us consider again the infinite general linear
group GL(R) with coefficients in a ring R and its perfect normal sub-
group generated by elementary matrices E(R): we get the topogenic
group (GL(R), E(R)). The higher algebraic K-theory of R is the study
of the corresponding topological space BGL(R)+E(R) (for simplicity, we
shall write BGL(R)+ for BGL(R)+E(R) according to Remark 3.4).

Definition 3.12 (Quillen (see [70])). For any ring R and any positive
integer i, the i-th algebraic K-theory group of R is

Ki(R) = πi(BGL(R)+).

Let us check that this definition extends the definition of K1(R) and
K2(R) given in Section 2. Remark 3.9 (a) shows that π1(BGL(R)+) ∼=
GL(R)/E(R) and this group is exactly K1(R) according to Definition 2.6.

Notice also that Lemma 3.3 shows that the universal cover of
BGL(R)+ is the space BE(R)+ associated with the topogenic group
(E(R), E(R)). Therefore, we get the following result.

Theorem 3.13. For any ring R the space BE(R)+ is simply connected
and for all integers i ≥ 2,

Ki(R) ∼= πi(BE(R))+.

In particular, the group K2(R) given by Definition 3.12 coincides
with the group π2(BE(R)+) which is isomorphic to H2(BE(R)+; Z) ∼=
H2(E(R); Z) (see Remark 3.9 (b)) because of the Hurewicz theorem.
Corollary 2.25 then implies that it is isomorphic to K2(R) as defined in
Definition 2.23.
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Of course, a ring homomorphism f : R → R′ induces a group homo-
morphism GL(R)→ GL(R′) whose restriction to E(R) sends E(R) into
E(R′). Thus, Corollary 3.2 implies the existence of a map BGL(R)+ →
BGL(R′)+ and consequently of a homomorphism of abelian groups
f∗ : Ki(R)→ Ki(R′) for all i ≥ 1. Moreover, one can check that Kn(−)
is a covariant functor from the category of rings to the category of abelian
groups.

As we just observed, one can express the first two K-groups homo-
logically (see Corollaries 2.7 and 2.25):

K1(R) ∼= H1(GL(R); Z),

K2(R) ∼= H2(E(R); Z).

In the same way, we can prove the following result.

Theorem 3.14. Let St(R) be the infinite Steinberg group over a ring R.
Then

(a) the space BSt(R)+ is 2-connected,
(b) Ki(R) ∼= πi(BSt(R)+) for all i ≥ 3,
(c) K3(R) ∼= H3(St(R); Z).

Proof: Let us consider the universal central extension

0 −→ K2(R) −→ St(R)
ϕ−→ E(R) −→ 1

and the associated fibration of classifying spaces

BK2(R) −→ BSt(R)
Bϕ−→ BE(R).

Since E(R) and St(R) are perfect, one can perform the + construction
to both spaces BSt(R) and BE(R). If one denotes by F the homotopy
fiber of the induced map

BSt(R)+
Bϕ+

−→ BE(R)+,

one has the following commutative diagram where both rows are fibra-
tions:

BK2(R) −−−−→ BSt(R)
Bϕ−−−−→ BE(R)�f

�+

�+

F −−−−→ BSt(R)+
Bϕ+

−−−−→ BE(R)+.
Since K2(R) is the center of St(R) by Theorem 2.22, the action of
π1(BE(R)) on the homology of BK2(R) is trivial. The same holds for the
second fibration since BE(R)+ is simply connected. The two right ver-
tical arrows induce isomorphisms on integral homology by Theorem 3.1.
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Therefore, the comparison theorem for spectral sequences implies that
f∗ : H∗(BK2(R); Z)→ H∗(F ; Z) is an isomorphism. Since St(R) is per-
fect, the space BSt(R)+ is also simply connected. On the other hand,
it is known that H2(BSt(R)+; Z) ∼= H2(St(R); Z) = 0 according to [54].
Consequently, the Hurewicz theorem shows that BSt(R)+ is actually
2-connected. Now, let us look at the homotopy exact sequence

π2(BSt(R)+)︸ ︷︷ ︸
=0

−→ π2(BE(R)+)︸ ︷︷ ︸
∼=K2(R)

Bϕ+
∗−→ π1(F ) −→ 0

of the fibration

F −→ BSt(R)+ −→ BE(R)+.

Since π1(F ) ∼= K2(R), it is an abelian group. Consequently, the Hurewicz
homomorphism π1(F ) → H1(F ; Z) is an isomorphism. Then, consider
the commutative diagram

π1(BK2(R))
f∗−−−−→ π1(F )� �∼=

H1(BK2(R); Z)
f∗−−−−→∼=

H1(F ; Z),

where the vertical arrows are Hurewicz homomorphisms. The left ver-
tical arrow is an isomorphism since BK2(R) is an Eilenberg-MacLane
space K(K2(R), 1) with K2(R) abelian. Thus, f∗ : π1(BK2(R))→ π1(F )
is an isomorphism and f : BK2(R) → F is a homotopy equivalence be-
cause of the generalized Whitehead theorem (see [48, Corollary 1.5], or
[29, Proposition 4.15]). In other words, one obtains the following fibra-
tion (which can also be deduced from a more general topological argu-
ment, see [29, Theorem 6.4], [59, Théorème 1.3.5], or [96, Lemma 3.1]):

BK2(R) −→ BSt(R)+ −→ BE(R)+.

The homotopy exact sequence of that fibration shows that

πi(BSt(R)+)
∼=−→

Bϕ+
∗

πi(BE(R)+) ∼= Ki(R)

for all i ≥ 3 and that BSt(R)+ is the 2-connected cover of BGL(R)+.
Finally, it follows from the Hurewicz theorem that

K3(R) ∼= π3(BSt(R)+) ∼= H3(BSt(R)+; Z) ∼= H3(St(R); Z).

Remark 3.15. This homological interpretation of the groups Ki(R)
for i = 1, 2, 3, suggests the following generalization. Let us denote
by BGL(R)+(m) the m-connected cover of the space BGL(R)+ for
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m ≥ 0; more precisely, BGL(R)+(m) is m-connected and there is a
map BGL(R)+(m) → BGL(R)+ inducing an isomorphism on πi for
i ≥ m + 1. For instance, BGL(R)+(1) = BE(R)+ and BGL(R)+(2) =
BSt(R)+. According to the Kan-Thurston theorem (see Theorem 3.5),
there exists a perfect group Gm(R) for each positive integer m such that
BGm(R)+ � BGL(R)+(m). Consequently,

Ki(R) ∼= πi(BGL(R)+(m)) ∼= πi(BGm(R)+)

for i ≥ m + 1 and

Km+1(R) ∼= πm+1(BGm(R)+) ∼= Hm+1(BGm(R)+; Z)
∼= Hm+1(Gm(R); Z)

since BGm(R)+ is m-connected. Thus, there exists a list of groups
G0(R) = GL(R), G1(R) = E(R), G2(R) = St(R), G3(R), G4(R), . . .
whose homology represents the K-groups of R. Unfortunately, we do
not have any explicit description of the groups Gm(R) for m ≥ 3.

Remark 3.16. D. Quillen also gave another equivalent definition of the
higher K-groups. Let R be a ring and consider again the category P(R)
of finitely generated projective R-modules. He constructed a new cate-
gory QP(R) and its classifying space BQP(R). Furthermore, he defined

Ki(R) = πi+1(BQP(R))

for i ≥ 0. In fact, it turns out that the loop space ΩBQP(R) of BQP(R)
satisfies

ΩBQP(R) � K0(R)×BGL(R)+

for any ring R (see [72, Sections 1 and 2], or [74, Theorem 1], for the
details of that construction). Of course, Quillen proved that both defin-
itions of the K-groups coincide.

In the present paper we want to concentrate our attention on the first
definition of the K-groups (see Definition 3.12). The higher algebraic
K-theory of a ring R is really the study of the space BGL(R)+ whose
homotopy type is determined by its homotopy groups Ki(R) and by its
Postnikov k-invariants (see Section 7). The space BGL(R)+ has actually
many other interesting properties. The remainder of the paper is devoted
to the investigation of some of them.
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4. The product structure in algebraic K-theory and the
K-theory spectrum

The goal of this section is to show that the algebraic K-theory spa-
ce BGL(R)+ of any ring R has actually a very rich structure. Let us
start by considering a ring R and the homomorphism

⊕ : GL(R)×GL(R) −→ GL(R)

given by

(α⊕ β)ij =


αkl, if i = 2k − 1 and j = 2l − 1,
βkl, if i = 2k and j = 2l,
0, otherwise,

for α, β ∈ GL(R). Since there is a homotopy equivalence BGL(R)+ ×
BGL(R)+ � B(GL(R)×GL(R))+ (see [59, Proposition 1.1.4]), we can
define the map

µ : BGL(R)+ ×BGL(R)+ � B(GL(R)×GL(R))+ ⊕+

−→ BGL(R)+

which endows BGL(R)+ with the following structure.

Proposition 4.1. For any ring R, the space BGL(R)+, together with
the map µ, is a commutative H-group.

Proof: See [59, Théorème 1.2.6].

Now, let R and R′ be two rings and let us denote by R ⊗ R′ the
tensor product R⊗Z R′ over Z. The tensor product of matrices induces
a homomorphism

GLm(R)×GLn(R′) −→ GLmn(R⊗R′)

and a map

η̃R,R
′

m,n : BGLm(R)+ ×BGLn(R′)+ −→ BGLmn(R⊗R′)+.

By composing this map with the map induced by the upper left inclu-
sion GLmn(R⊗R′) ↪→ GL(R⊗R′) we get a map

ηR,R
′

m,n : BGLm(R)+ ×BGLn(R′)+ −→ BGL(R⊗R′)+.

Then, let us define the map

γR,R
′

m,n : BGLm(R)+ ×BGLn(R′)+ −→ BGL(R⊗R′)+

by γR,R
′

m,n (x, y) = ηR,R
′

m,n (x, y) − ηR,R
′

m,n (x0, y) − ηR,R
′

m,n (x, y0), where x0 and
y0 are the base points of BGLm(R)+ and BGLn(R′)+ respectively, and
where “−” is the subtraction in the sense of the H-space structure of
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the space BGL(R ⊗ R′)+. Since the maps γR,R
′

m,n are compatible (up to
homotopy) with the stabilizations iR,R

′
m,n : BGLm(R)+ × BGLn(R′)+ →

BGLm+1(R)+ × BGLn+1(R′)+ induced by upper left inclusions, i.e.,
γR,R

′
m,n � γR,R

′

m+1,n+1i
R,R′
m,n , (see [59, Lemme 2.1.3]), we get a map

γR,R
′
: BGL(R)+ ×BGL(R′)+ −→ BGL(R⊗R′)+,

which is unique up to weak homotopy (see [59, Lemme 2.1.6 and Remar-
que 2.1.9]). By definition, this map γR,R

′
is homotopic to the trivial map

on the wedge BGL(R)+ ∨BGL(R′)+. Consequently, it finally induces a
map

γ̂R,R
′
: BGL(R)+ ∧BGL(R′)+ −→ BGL(R⊗R′)+.

It turns out that this map γ̂R,R
′

is natural in R and R′, bilinear, as-
sociative and commutative, up to weak homotopy (see [59, Proposi-
tion 2.1.8]). It enables us to give the following definition (see [59,
Définition 2.1.10]; an alternative definition can be found in Chapter 13
of [29]).

Definition 4.2 (Loday). For all rings R and R′, and for all integers
i, j ≥ 1, the product map

2 : Ki(R)×Kj(R′) = πi(BGL(R)+)× πj(BGL(R′)+)

−→ πi+j(BGL(R⊗R′)+) = Ki+j(R⊗R′),

is defined as follows: if x ∈ Ki(R) and y ∈ Kj(R′) are represented by
α : Si → BGL(R)+ and β : Sj → BGL(R′)+ respectively, then

x 2 y = [Si+j � Si ∧ Sj α∧β−→ BGL(R)+ ∧BGL(R′)+

γ̂R,R′

−→ BGL(R⊗R′)+].

One can then immediately deduce the following properties (see [59,
Théorème 2.1.11]).

Proposition 4.3. The product map 2 : Ki(R)×Kj(R′)→ Ki+j(R⊗R′)
is natural in R and R′, bilinear and associative for all i, j ≥ 1.

Remark 4.4. Because of that proposition, we can consider the above
product on the tensor product Ki(R)⊗Kj(R′) and we shall also denote
it by the symbol 2:

2 : Ki(R)⊗Kj(R′) −→ Ki+j(R⊗R′).
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Now, let us look at the special case where R′ = R. If R is a commuta-
tive ring, the ring homomorphism ∇ : R⊗R→ R given by ∇(a⊗b) = ab
induces a ring structure on K∗(R).

Definition 4.5. If R is a commutative ring, then there is a product map
(also denoted by 2)

2 : Ki(R)⊗Kj(R)  −→ Ki+j(R⊗R) ∇∗−→ Ki+j(R)

for all i, j ≥ 1.

This product satisfies:

Proposition 4.6. If R is a commutative ring, then for all x ∈ Ki(R)
and y ∈ Kj(R) with i, j ≥ 1, one has x 2 y = (−1)ijy 2 x.

Proof: Let again x ∈ Ki(R) and y ∈ Kj(R) be represented by α : Si →
BGL(R)+ and β : Sj → BGL(R)+ respectively. Let t : R⊗R→ R⊗R
denote the homomorphism given by t(a ⊗ b) = b ⊗ a and s : Si ∧ Sj →
Sj ∧ Si the homeomorphism which exchanges the factors. Since R is
commutative, ∇ t = ∇ and we get the commutative diagram

Si ∧ Sj γ̂R,Rα∧β−−−−−−→ BGL(R⊗R)+ ∇+

−−−−→ BGL(R)+�s

�t+

�id

Sj ∧ Si γ̂R,Rβ∧α−−−−−−→ BGL(R⊗R)+ ∇+

−−−−→ BGL(R)+

which provides the result since the homotopy class of s is (−1)ij ∈
πi+j(Si+j) ∼= Z.

The remainder of this section is devoted to further investigation of
the H-space structure of the space BGL(R)+ (see [59, Sections 1.4 and
2.3]). Let us first consider the ring of integers R = Z. Its cone CZ is
the set of all infinite matrices with integral coefficients having only a
finite number of non-trivial elements on each row and on each column.
This set turns out to be a ring by the usual addition and multiplication
of matrices. Let JZ be the ideal of CZ which consists of all matrices
having only finitely many non-trivial coefficients. Finally, let us define
the suspension of Z to be the quotient ring ΣZ = CZ/JZ.

Definition 4.7. For any ring R, the suspension of R is the ring

ΣR = ΣZ⊗Z R.
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Let

τ =


0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
· · · · · · ·
· · · · · · ·

 ∈ ΣZ.

This element is invertible since ττ t = 1 in ΣZ and consequently τ ∈
GL1(ΣZ). Let [P ] be a generator of the group K0(R), where P is a
finitely generated projective R-module. There is an R-module Q such
that P ⊕Q ∼= Rn for some n and an R-module homomorphism Rn → Rn

which is the identity on P and trivial on Q. Let us call p the n×n matrix
with coefficients in R corresponding to that homomorphism. By using
the tensor product of matrices, one can construct the element τ ⊗ p +
1⊗ (1−p), which is an invertible n×n matrix with coefficients in ΣR, in
other words, which belongs to GL(ΣR). This produces a homomorphism

θ : K0(R)→ K1(ΣR)

which sends [P ] to the class of τ ⊗ p + 1 ⊗ (1 − p) in K1(ΣR) =
GL(ΣR)/E(ΣR).

Proposition 4.8. The homomorphism θ : K0(R)→ K1(ΣR) is an iso-
momorphism.

This fact is proved in [53] and can be generalized. Let σ : Z →
GL1(ΣZ) be the group homomorphism given by σ(1) = τ . It induces
a map σ+ : S1 � BZ+ → BGL(ΣZ)+ and we write ε̃R for the composi-
tion

ε̃R : S1 ∧BGL(R)+ σ+∧id−→ BGL(ΣZ)+ ∧BGL(R)+
γ̂ΣZ,R

−→ BGL(ΣR)+.

For any generator [P ] of K0(R), let us choose a representative ζP : S1 →
BGL(ΣR)+ of the element θ([P ]) ∈ K1(ΣR) = π1(BGL(ΣR)+). This
defines a map

ε′R : S1 ∧ (K0(R)×BGL(R)+) −→ K0(ΣR)×BGL(ΣR)+

given by ε′R(t ∧ ([P ], x)) = (0, ζP (t) + ε̃R(t ∧ x)). Its adjoint is

εR : K0(R)×BGL(R)+ −→ Ω(K0(ΣR)×BGL(ΣR)+).

The point is that the homotopy type of the space BGL(ΣR)+ depends
very strongly on the homotopy type of BGL(R)+ because of the following
result.
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Theorem 4.9. The map εR is a natural homotopy equivalence:

εR : K0(R)×BGL(R)+ 
−→ Ω(K0(ΣR)×BGL(ΣR)+).

Proof: See [59, Théorème 1.4.9 and Théorème 2.3.5]; see also [96, Sec-
tion 3].

Theorem 4.9 immediately implies the following consequence.

Corollary 4.10. For any ring R and for any integer i ≥ 0, there is an
isomorphism

Ki(R) ∼= Ki+1(ΣR).

Proof: By definition,

Ki(R) = πi(K0(R)×BGL(R)+) ∼= πi+1(K0(ΣR)×BGL(ΣR)+)
∼= πi+1(BGL(ΣR)+) = Ki+1(ΣR)

for any integer i ≥ 0.

If one takes the 0-connected cover of both sides of the equivalence
provided by Theorem 4.9 and applies Theorem 3.13, one gets:

Corollary 4.11. There is a natural homotopy equivalence

BGL(R)+ � ΩBE(ΣR)+.

Remark 4.12. Of course, Theorem 4.9 shows that for any ring R, the spa-
ce K0(R)×BGL(R)+ is an infinite loop space since K0(R)×BGL(R)+ �
Ω(K0(ΣR) × BGL(ΣR)+) � Ω2(K0(Σ2R) × BGL(Σ2R)+) � · · · . This
enables us to define an Ω-spectrum whose 0-th space is the space K0(R)×
BGL(R)+.

Definition 4.13. For any ring R, the K-theory spectrum of R is the
Ω-spectrum KR whose n-th space is (KR)n = K0(ΣnR)×BGL(ΣnR)+

for all n ≥ 0.

We shall also use the 0-connected cover XR of the K-theory spec-
trum KR of a ring R.

Definition 4.14. For any ring R, the 0-connected K-theory spectrum of
R is the Ω-spectrum XR whose n-th space is (XR)n = BGL(ΣnR)+(n)
for all n ≥ 0. Here, X(n) is written for the n-th connected cover of a
CW-complex X, i.e., the homotopy fiber of the n-th Postnikov section
X → X[n] of X (see Section 7): this means that X(n) is n-connected
and that πi(X(n)) ∼= πi(X) for all i ≥ n.
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Of course, since these spectra are Ω-spectra, their homotopy groups
are

πi(KR) = lim−→
n

πi+n((KR)n)

= lim−→
n

πi+n(K0(ΣnR)×BGL(ΣnR)+) ∼= lim−→
n

Ki+n(ΣnR)

for any i ∈ Z; in particular, they are in general non-trivial if i < 0. On
the other hand, for XR,

πi(XR) = lim−→
n

πi+n((XR)n) = lim−→
n

πi+n(BGL(ΣnR)+(n))

and we may conclude that πi(XR) = 0 if i ≤ 0 since BGL(ΣnR)+(n) is
n-connected and that

πi(XR) ∼= lim−→
n

πi+n(BGL(ΣnR)+) ∼= lim−→
n

Ki+n(ΣnR)

if i ≥ 1. Therefore, Corollary 4.10 implies the following result for i ≥ 0.

Theorem 4.15.

(a) For any integer i ≥ 0, Ki(R) ∼= πi(KR).
(b) For any integer i ≥ 1, Ki(R) ∼= πi(XR).

Remark 4.16. There are many other constructions of the K-theory spec-
trum of a ring R: see for instance [29, Chapter 11], [45], or [96, Sec-
tion 3].

Remark 4.17. Since the K-groups of a ring R in positive dimensions are
the homotopy groups of its 0-connected K-theory spectrum XR (or of
KR), they are very strongly related to the homology groups of XR via the
stable Hurewicz homomorphism, as we shall see in Section 6. Therefore,
it would be extremely useful to be able to compute

Hi(XR; Z) = lim−→
n

Hi+n((XR)n; Z) = lim−→
n

Hi+n(BGL(ΣnR)+(n); Z).

In a recent paper [63] which generalizes MacLane’s Q-construction for
computing the stable homology of Eilenberg-Maclane spaces [60], R. Mc-
Carthy obtains an explicit chain complex whose homology is the homol-
ogy of XR. This promising idea should provide more information on
Hi(XR; Z) and consequently on the algebraic K-groups Ki(R).

Let us conclude this section by explaining that the product structure
in the K-theory of rings may also be expressed in terms of K-theory
spectra.
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Definition 4.18. Let us consider two rings R and R′, together with
their associated 0-connected spectra XR and XR′ , and let S denote the
sphere spectrum. The external product

∧ : πi(XR)⊗ πj(XR′) −→ πi+j(XR ∧XR′)

is defined as follows. If x ∈ πi(XR) and y ∈ πj(XR′) are represented by
maps of spectra α : S → XR of degree i and β : S → XR′ of degree j
respectively, x∧y is then the class in πi+j(XR∧XR′) represented by the
map α ∧ β : S � S ∧ S → XR ∧XR′ of degree i + j (see [94, p. 270]).

Definition 4.19. The map

γ̂R,R
′
: BGL(R)+ ∧BGL(R′)+ −→ BGL(R⊗R′)+

which was the key ingredient in Definition 4.2 extends of course to a map

γ̂ΣnR,ΣmR′
: BGL(ΣnR)+ ∧BGL(ΣmR′)+ −→ BGL(Σn+m(R⊗R′))+

for all n and m and consequently to a pairing of spectra

γR,R
′
: XR ∧XR′ −→ XR⊗R′

which we call the Loday pairing (see [59, Proposition 2.4.2]).

Therefore, the definition of the K-theoretical product introduced in
Definition 4.2 and Remark 4.4 can be formulated as follows.

Corollary 4.20. For all rings R and R′ and for all positive integers i
and j, the K-theoretical product is given by

2 : Ki(R)⊗Kj(R′) ∼= πi(XR)⊗ πj(XR′) ∧−→ πi+j(XR ∧XR′)

(γR,R′
)∗−→ πi+j(XR⊗R′) ∼= Ki+j(R⊗R′).

Moreover, if R is commutative, the ring structure of K∗(R) is given by

2 : Ki(R)⊗Kj(R) ∼= πi(XR)⊗ πj(XR) ∧−→ πi+j(XR ∧XR)

(γR,R)∗−→ πi+j(XR⊗R) ∼= Ki+j(R⊗R) ∇∗−→ Ki+j(R)

for all i, j ≥ 1.

5. The algebraic K-theory of finite fields

When D. Quillen introduced the higher algebraic K-groups, one of
his great achievements was to completely compute them for finite fields
(see [71]). Let p be a prime, q a power of p and let Fq denote the field
with q elements. Since Fq is a field, it is known by Theorem 1.2 that

K0(Fq) ∼= Z.
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In order to calculate Ki(Fq) for any positive integer i, Quillen’s brilliant
idea was to construct a topological model for the space BGL(Fq)+ using
well known spaces. He considered the classifying space BU of the infinite
unitary group U and the Adams operation Ψq : BU → BU . Remember
that for i ≥ 1 πi(BU) = 0 if i is odd and πi(BU) ∼= Z if i is even (by
Bott periodicity, see [35] or Chapter 10 of [51]), and that the homomor-
phism Ψq

∗ : π2j(BU) → π2j(BU) induced by Ψq is multiplication by qj

(see [1, Corollary 5.2]).

Definition 5.1. For any integer q ≥ 2, let FΨq be the pull-back of the
diagram

FΨq ϕ−−−−→ BU� �(Ψq,id)

BU [0,1] ∆−−−−→ BU ×BU,

where BU [0,1] is the path space of BU and ∆ the map sending a path in
BU to its endpoints. A point of FΨq is a pair (x, u), where x is a point
of BU and u a path in BU joining Ψq(x) to x. In other words, FΨq

is the homotopy theoretical fixpoint set of Ψq. According to Lemma 1
of [71], it turns out that if d : BU × BU → BU is the map defined by
d(x, y) = x− y, then FΨq is the homotopy fiber of the composition

Ψq − 1: BU
(Ψq,id)−→ BU ×BU

d−→ BU.

Proposition 5.2. For any integer q ≥ 2, the space FΨq is simple and
its homotopy groups are

πi(FΨq) ∼=


0, if i is an even integer ≥ 2,
Z/(qj − 1), if i is an odd integer

of the form i = 2j − 1 with j ≥ 1.

Proof: Let us consider the fibration

FΨq ϕ−→ BU
Ψq−1−→ BU.

Since the action of π1(FΨq) on the higher homotopy groups πi(FΨq)
comes from the action of π1(BU) on πi(FΨq), it is trivial because BU is
simply connected. The calculation of πi(FΨq) directly follows from the
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homotopy exact sequence of the above fibration

· · · −→ π2j+1(BU)︸ ︷︷ ︸
=0

−→ π2j(FΨq) −→ π2j(BU)︸ ︷︷ ︸
∼=Z

qj−1−→ π2j(BU)︸ ︷︷ ︸
∼=Z

−→ π2j−1(FΨq) −→ π2j−1(BU)︸ ︷︷ ︸
=0

−→ · · ·

for any positive integer j.

From now on, let p be a prime, q a power of p and fix a prime l
such that l �= p. Quillen’s main argument is based on the calculation
of the cohomology of the space FΨq and of the infinite general linear
group GL(Fq). Let us start by defining some classes in the cohomology
of FΨq. It is well known that

H∗(BU ; Z) ∼= Z[ĉ1, ĉ2, ĉ3, . . . ]

and

H∗(BU ; Z/l) ∼= Z/l[c1, c2, c3, . . . ],

where the ĉi’s and the ci’s are the integral universal Chern classes, re-
spectively the mod l universal Chern classes, of degree 2i (see [66, Chap-
ter 14]).

Definition 5.3. For any positive integer i, the i-th integral Chern class
of FΨq is

c̃i = ϕ∗(ĉi) ∈ H2i(FΨq; Z)

and the i-th mod l Chern class of FΨq is

ci = ϕ∗(ci) ∈ H2i(FΨq; Z/l),

where ϕ∗ : H∗(BU ;A)→ H∗(FΨq;A) is the homomorphism induced by
ϕ, for A = Z and A = Z/l respectively.

The diagram occuring in Definition 5.1 induces the following commu-
tative diagram for any abelian group A in which the columns are exact
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sequences of pairs:

H2i−1(BU [0,1];A) −−−−→ H2i−1(FΨq;A)�δ′
�δ

H2i(BU ×BU,BU [0,1];A) −−−−→
ζ

H2i(BU,FΨq;A)�γ′
�γ

H2i(BU ×BU ;A) −−−−−→
(Ψq,id)∗

H2i(BU ;A)�∆∗
�ϕ∗

H2i(BU [0,1];A) −−−−→ H2i(FΨq;A).

In this diagram, γ′ and δ are injective because H2i−1(BU [0,1];A) =
H2i−1(BU ;A) = 0. Let us first take A = Z. Since ∆: BU [0,1] → BU ×
BU is homotopy equivalent to the diagonal map BU → BU×BU sending
a point x to (x, x), the induced homomorphism ∆∗ : H2i(BU×BU ; Z)→
H2i(BU [0,1]; Z) satisfies ∆∗(ĉi ⊗ 1 − 1 ⊗ ĉi) = 0. Consequently, there
is a unique element z ∈ H2i(BU × BU,BU [0,1]; Z) such that γ′(z) =
ĉi ⊗ 1 − 1 ⊗ ĉi. Thus, the commutativity of the diagram shows that
ζ(z) ∈ H2i(BU,FΨq; Z) has the property that γ ζ(z) = (qi − 1)ĉi ∈
H2i(BU ; Z). Now, consider both coefficients A = Z and A = Z/(qi− 1),
and the diagram

0 0� �
H2i−1(FΨq; Z/(qi − 1)) ←−−−−−−

red(qi−1)

H2i−1(FΨq; Z)�δ

�δ

H2i(BU,FΨq; Z/(qi − 1)) ←−−−−−−
red(qi−1)

H2i(BU,FΨq; Z)�γ

�γ

H2i(BU ; Z/(qi − 1)) ←−−−−−−
red(qi−1)

H2i(BU ; Z),

where the horizontal homomorphisms are induced by the reduction
mod(qi − 1). It follows from the commutativity of the diagram that
γ red(qi−1) ζ(z) = red(qi−1)((qi − 1)ĉi) = 0.
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Definition 5.4. For any positive integer i, there is a unique element

ẽi ∈ H2i−1(FΨq; Z/(qi − 1))

such that δ(ẽi) = red(qi−1) ζ(z). This element is related to the integral
Chern class c̃i ∈ H2i(FΨq; Z) by the formula

β(qi−1)(ẽi) = c̃i,

where β(qi−1) is the Bockstein homomorphism H2i−1(FΨq; Z/(qi−1))→
H2i(FΨq; Z) (see Lemmas 3 and 5 in [71]).

Definition 5.5. Let r be the smallest positive integer such that qr ≡
1 mod l. Then, we define for any integer j ≥ 1

ejr ∈ H2jr−1(FΨq; Z/l)

as the image of ẽjr under the homomorphism

H2jr−1(FΨq; Z/(qjr − 1))→ H2jr−1(FΨq; Z/l)

induced by the obvious surjection Z/(qjr − 1) � Z/l.

By using the Eilenberg-Moore spectral sequence of the fibration

FΨq ϕ−→ BU
Ψq−1−→ BU,

D. Quillen was able to calculate the cohomology of FΨq with coefficients
in Z/l.

Theorem 5.6.

(a) The monomials cα1
r cα2

2r c
α3
3r · · · eβ1

r eβ2
2re

β3
3r · · · , with αj ≥ 0 and βj = 0

or 1, form an additive basis for H∗(FΨq; Z/l).
(b) If l is an odd prime or if l = 2 and q ≡ 1 mod 4, then e2jr = 0 for

all j ≥ 1 and there is an algebra isomorphism

H∗(FΨq; Z/l) ∼= Z/l[cr, c2r, c3r, . . . ]⊗ ΛZ/l(er, e2r, e3r, . . . ).

(c) If l = 2 and q ≡ 3 mod 4, one has r = 1 and the relations

e2j = c2j−1 +
j−1∑
k=1

ckc2j−k−1,

and there is an algebra isomorphism

H∗(FΨq; Z/2) ∼= Z/2[c2, c4, c6, . . . , e1, e2, e3, . . . ].

Proof: See [71, Theorem 1] and [44, Section IV.8].
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The next ingredient in Quillen’s argument is the notion of the Brauer
lift (see [71, Section 7]). Let G be a finite group and ρ : G→ GLn(Fq) a
representation of G over the field Fq with q elements. Let us denote by ρ

the representation ρ = ρ⊗Fq
Fq of G over the algebraic closure Fq of Fq.

We can look at the complex valued function on G defined by χρ(g) =∑
ι(λk(g)) for g ∈ G, where ι is an embedding F

∗
q ↪→ C∗ and {λk(g)}

is the set of eigenvalues of ρ(g). It turns out that χρ is the character
of a unique virtual complex representation ρ̃ of G; therefore, χρ belongs
to the complex representation ring R(G) = RC(G) of G and we get a
homomorphism RFq

(G) → R(G) which maps the class of the character
of ρ to χρ. In fact, ρ̃ is stable under the Adams operation Ψq (see
[71, Section 7]) and the previous homomorphism is actually RFq

(G) →
R(G)Ψ

q

. If we compose it with the classifying map R(G) → [BG,BU ]
sending a complex representation to the corresponding homotopy class
of maps between classifying spaces, we obtain the homomorphism

τ : RFq
(G)→ [BG,BU ]Ψ

q

.

On the other hand, observe again the fibration FΨq ϕ−→ BU
Ψq−1−→ BU

and remember that a point of FΨq is a pair (x, u), where x is a point
of BU and u a path joining Ψq(x) to x: this implies that for any
Y , a map Y → FΨq can be identified with a pair consisting of a
map f : Y → BU together with a homotopy joining Ψq f to f . Con-
sequently, ϕ induces a homomorphism

ϕ∗ : [Y, FΨq] −→ [Y,BU ]Ψ
q

which is clearly surjective. By looking at the fibration

ΩBU � U −→ FΨq ϕ−→ BU

obtained by looping the base space of the above fibration, one gets that
ϕ∗ is an isomorphism if [Y,U ] = 0. Therefore, if [BG,U ] = 0, the above
homomorphism τ can be viewed as a homomorphism

τ : RFq
(G)→ [BG,FΨq].

This is the case for G = GLn(Fq) and for the direct limit G = GL(Fq) =
lim−→ nGLn(Fq) according to Lemma 14 of [71].

Definition 5.7. Let G=GLn(Fq) and ρ=id:GLn(Fq)→GLn(Fq). The
Brauer lift is the homotopy class of maps bn=τ(id)∈ [BGLn(Fq), FΨq].
By passing to the direct limit GL(Fq) = lim−→ nGLn(Fq), one obtains a
homotopy class of maps

b = τ(id) ∈ [BGL(Fq), FΨq].



36 D. Arlettaz

For simplicity, we shall also denote by b ∈ [BGL(Fq), BU ] the composi-
tion of this last homotopy class of maps with the inclusion ϕ : FΨq → BU
and call it the Brauer lift.

This enables Quillen to prove his main result.

Theorem 5.8 (Quillen). For any prime power q, there is a homotopy
equivalence

BGL(Fq)+ � FΨq.

Proof: (See [71, Theorems 2, 3, 4, 5, 6 and 7] for the details.) Let p be
a prime, q a power of p and r be as in Definition 5.5. The argument is
based on the investigation of the map

b+ : BGL(Fq)+ −→ FΨq

induced by the the Brauer lift b :BGL(Fq)−→FΨq (notice that (FΨq)+�
FΨq since π1(FΨq) is abelian by Proposition 5.2 and contains therefore
no non-trivial perfect normal subgroup). Because of Theorem 5.6, one
can also compute the mod l homology of FΨq for any prime l �= p. On the
other hand, using techniques from homology theory of finite groups, it is
possible to calculate H∗(GLn(Fq); Z/l) for all positive integers n and con-
sequently H∗(GL(Fq); Z/l) ∼= lim−→ nH∗(GLn(Fq); Z/l), and to prove that
the homomorphism (b+)∗ : H∗(BGL(Fq)+; Z/l) ∼= H∗(GL(Fq); Z/l) −→
H∗(FΨq; Z/l) induced by b is an isomorphism. The next thing to do is
to prove the vanishing of Hi(GL(Fq); Z/p) ∼= Hi(BGL(Fq)+; Z/p) for all
i ≥ 1. Then, apply the generalized Whitehead theorem (see [48, Corol-
lary 1.5], or [29, Proposition 4.15]) to the map b+ : BGL(Fq)+ −→ FΨq:
since both spaces are simple according to Propositions 4.1 and 5.2, we
can conclude that b+ is a homotopy equivalence if we can show that b
induces an isomorphism

(b+)∗ : H∗(BGL(Fq)+; Z)
∼=−→ H∗(FΨq; Z).

This holds if b+ induces an isomorphism on homology with coefficients
in Q, in Z/p and in Z/l for all primes l �=p. This is already done for coeffi-
cients in Z/l. It is easy to check that Hi(BGL(Fq)+; Q)∼=Hi(GL(Fq);Q)=
0 for all i ≥ 1 because Hi(GL(Fq); Q) ∼= lim−→ nHi(GLn(Fq); Q) = 0 since
GLn(Fq) is a finite group. On the other hand, we know from Propo-
sition 5.2 that the homotopy groups of FΨq are torsion groups which
are p-torsion free. Thus, by Serre class theory (see [82, Chapitre I]),
all integral homology groups of FΨq are also torsion groups which are
p-torsion free: in other words, Hi(FΨq; Q) = 0 and Hi(FΨq; Z/p) = 0
for all i ≥ 1. Thus, b+ : BGL(Fq)+ → FΨq is a homotopy equivalence
and we get the statement of the theorem.
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This result is important because it provides a convenient topological
model FΨq for the algebraic K-theory space BGL(Fq)+. In particu-
lar, an immediate consequence of it is the calculation of the algebraic
K-groups of all finite fields: Proposition 5.2 and Theorem 5.8 imply the
following result (see [71, Theorem 8]).

Corollary 5.9. For any prime power q, the algebraic K-theory of the
finite field Fq is given by

K2i(Fq) = 0 and K2i−1(Fq) ∼= Z/(qi − 1)

for all integers i ≥ 1.

This result was the first determination of K-groups and initiated in
some sense the research in the algebraic K-theory of rings.

6. The Hurewicz homomorphism in algebraic K-theory

The computation of the algebraic K-groups of finite fields was the first
impressive K-theoretical result. It turns out that it is actually difficult
to perform many other computations. However, this is not a surprise
because the algebraic K-groups are homotopy groups and it is never
easy to compute homotopy groups! On the other hand, there are many
sophisticated techniques for the computation of the homology of groups.
Notice for instance that Quillen’s result on the K-groups of finite fields
is actually based on homological calculations. Therefore, it is useful to
investigate the relationships between the algebraic K-theory of a ring R
and the homology of its infinite linear groups GL(R), E(R), or of its
infinite Steinberg group St(R). They are exhibited by the Hurewicz
homomorphisms

hi : Ki(R) = πi(BGL(R)+)

−→ Hi(BGL(R)+; Z) ∼= Hi(GL(R); Z), for i ≥ 1,

hi : Ki(R) ∼= πi(BE(R)+)

−→ Hi(BE(R)+; Z) ∼= Hi(E(R); Z), for i ≥ 2,

hi : Ki(R) ∼= πi(BSt(R)+)

−→ Hi(BSt(R)+; Z) ∼= Hi(St(R); Z), for i ≥ 3.

Of course, since BGL(R)+, BE(R)+ and BSt(R)+ are connected, sim-
ply connected and 2-connected respectively (see Theorems 3.13 and 3.14),
the classical Hurewicz theorem (see [100, Theorem IV.7.1]) implies the
following result.
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Theorem 6.1. For any ring R,
(a) K1(R) ∼= H1(GL(R); Z),
(b) K2(R) ∼= H2(E(R); Z) and h3 : K3(R) → H3(E(R); Z) is surjec-

tive,
(c) K3(R) ∼= H3(St(R); Z) and h4 : K4(R) → H4(St(R); Z) is surjec-

tive.

The general objective of this section is to approximate the size of the
kernel and of the cokernel of hi in higher dimensions. We will proceed
from different points of view (see also [7], [9], [12] and [14]).

Let us start by using stable homotopy theory (see also [14, Sections 1
and 2]). For any spectrum X, the stable Hurewicz homomorphism is a
homomorphism

h̄i : πi(X) −→ Hi(X; Z),

defined for all integers i, which fits into the long stable Whitehead ex-
act sequence. This sequence can be defined as follows. Consider the
sphere spectrum S. It is (−1)-connected with π0(S) ∼= Z and if we kill
all its homotopy groups in positive dimensions, we get a map of spec-
tra α0 : S → H(Z) inducing an isomorphism on π0, where H(Z) is the
Eilenberg-Maclane spectrum having all homotopy groups trivial except
π0(H(Z)) ∼= Z. The map α0 is actually the 0-th Postnikov section of S
(see Section 7). The stable Hurewicz homomorphism is the homomor-
phism

h̄i : πi(X) ∼= πi(X ∧ S) −→ πi(X ∧H(Z)) ∼= Hi(X; Z)

induced by the map of spectra id∧α0 : X ∧ S → X ∧ H(Z), where id
is the identity : X → X. Let us write S(0) for the homotopy fiber of
α0: in other words, S(0) is the 0-connected cover of S. By taking the
smash product of X with the cofibration S(0)

γ0−→ S
α0−→ S[0] = H(Z),

we obtain the cofibration of spectra

X ∧ S(0)
id∧γ0−→ X ∧ S � X

id∧α0−→ X ∧H(Z).

Definition 6.2. The long stable Whitehead exact sequence of a spec-
trum X is the homotopy exact sequence of the above cofibration:

· · · −→ πi(X ∧ S(0))
χ̄i−→ πi(X) h̄i−→ Hi(X; Z)

ν̄i−→ πi−1(X ∧ S(0)) −→ · · · .

Here i is any integer, χ̄i is induced by (id∧γ0), h̄i is the stable Hurewicz
homomorphism and ν̄i is the connecting homomorphism. The groups
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πi(X ∧ S(0)) are usually denoted by Γi(X): that definition coincides
actually with the homotopy groups of the homotopy fiber of the Dold-
Thom map (see [39]) and it was recently proved in [81, Corollary 3.9],
that they are isomorphic to the groups introduced in the original paper
[102] by J. H. C. Whitehead.

Now, let us assume that the spectrum X is (b − 1)-connected for
some integer b. The advantage of this approach is that one can compute
the groups Γi(X) by using the Atiyah-Hirzebruch spectral sequence for
S(0)-homology (see [2, Section III.7]):

E2
s,t
∼= Hs(X;πt(S(0))) =⇒ Γs+t(X).

Notice that E2
s,t = 0 if s ≤ b− 1 or if t ≤ 0. This reproves the Hurewicz

theorem because

Γi(X) = 0 for i ≤ b

and consequently h̄i is an isomorphism for i ≤ b and an epimorphism for
i = b + 1.

Remark 6.3. For i = b + 1, we get

Γb+1(X) ∼= E2
b,1
∼= πb(X)⊗ π1(S) ∼= πb(X)⊗ Z/2

for any (b − 1)-connected spectrum X (this was already known by
J. H. C. Whitehead for any (b − 1)-connected spectrum or for any
(b−1)-connected space with b ≥ 3, see [102, p. 81], or [101]). Thus, the
homomorphism χ̄b+1 is actually a homomorphism from πb(X) ⊗ π1(S)
to πb+1(X). Consider the commutative diagram

Hb(X; Z)⊗H1(S(0); Z) ∧−−−−→∼=
Hb+1(X ∧ S(0); Z)) ∼=

 ∼=

πb(X)⊗ π1(S(0)) ∧−−−−→ πb+1(X ∧ S(0)) = Γb+1(X)

∼=
�(id)∗⊗(γ0)∗

�χ̄b+1

πb(X)⊗ π1(S) ∧−−−−→ πb+1(X ∧ S) ∼= πb+1(X),
in which ∧ is the external product (see Definition 4.18 or [94, p. 270]).
The top horizontal homomorphism is an isomorphism by Künneth for-
mula and the two top vertical arrows, which are Hurewicz homomor-
phisms, are isomorphisms since X is (b − 1)-connected, S(0) is 0-con-
nected and X ∧ S(0) is b-connected. Consequently, the external prod-
uct in the middle of the diagram is an isomorphism. The homomor-
phism (id)∗⊗(γ0)∗ is an isomorphism because (γ0)∗ : π1(S(0))

∼=−→ π1(S).
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Therefore, χ̄b+1 may be identified with the external product
πb(X)⊗ π1(S) ∧−→ πb+1(X). Thus, we proved the following result.

Proposition 6.4. For any (b− 1)-connected spectrum X, the sequence

· · · −→ Γb+2(X)
χ̄b+2−→ πb+2(X)

h̄b+2−→ Hb+2(X; Z)
ν̄b+2−→ πb(X)⊗ π1(S)

∧−→ πb+1(X)
h̄b+1−→ Hb+1(X; Z) −→ 0

is exact. Observe in particular that 2(ker h̄b+1) = 0 and 2(coker h̄b+2) =
0.

Our first goal is to show that the spectral sequence

E2
s,t
∼= Hs(X;πt(S(0))) =⇒ Γs+t(X)

provides a generalization of that result for the exponent of all Gamma
groups of X.

Definition 6.5. For any positive integer j, let ej be the exponent of
the j-th homotopy group πj(S) of the sphere spectrum S. For any
positive integer i, let ēi denote the product ēi = e1 e2 e3 · · · ei. Notice
that a prime p divides ēi if and only if p ≤ i+3

2 according to Serre’s
theorem on the stable homotopy groups of spheres (see [82, Section IV.6,
Proposition 11]).

Now, if you look at the E2-term E2
s,t
∼= Hs(X;πtS(0)) of the Atiyah-

Hirzebruch spectral sequence for a (b − 1)-connected spectrum X, it is
obvious that the product of the exponents of the groups E2

s,t, for s+t = i
with t ≥ 1 and s ≥ b, kills the Gamma group Γi(X). Because

etE
2
s,t = 0 for any t ≥ 1

by Definition 6.5, since πt(S(0)) ∼= πt(S) when t ≥ 1, we conclude that
the exponent of Γi(X) divides the product e1e2e3 · · · ei−b. This imme-
diately implies the following result which was also proved by a different
argument in [81, Theorem 4.3], and in [12, Theorem 4.1].

Theorem 6.6. Let X be a (b− 1)-connected spectrum. Then

ēi−bΓi(X) = 0

for all integers i ≥ b + 1 and the stable Hurewicz homomorphism h̄i :
πi(X)→ Hi(X; Z) satisfies:

(a) ēi−b(ker h̄i) = 0 for all integers i ≥ b + 1,
(b) ēi−b−1(coker h̄i) = 0 for all integers i ≥ b + 2.
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Of course, we want to apply this theorem to the K-theory spectrum.
Let us consider again the 0-connected K-theory spectrum XR of any
ring R (see Definition 4.14) and let us kill its first homotopy group: we
get the 1-connected K-theory spectrum XR(1). The above argument
enables us to study the stable Hurewicz homomorphism h̄i : Ki(R) ∼=
πi(XR(1)) → Hi(XR(1); Z) which is an isomorphism if i = 2. Theo-
rem 6.6 holds here with b = 2.

Corollary 6.7. For any ring R, the stable Hurewicz homomorphism h̄i :
Ki(R)→ Hi(XR(1); Z) satisfies:

(a) ēi−2(ker h̄i) = 0 for all integers i ≥ 3,
(b) ēi−3(coker h̄i) = 0 for all integers i ≥ 4.

In particular, the exponent of the kernel, respectively of the cokernel,
of h̄i is only divisible by primes p ≤ i+1

2 , respectively by primes p ≤ i
2 .

This can be formulated in another way.

Definition 6.8. For any ring R, for any abelian group A and for any
positive integer i, the i-th algebraic K-group of R with coefficients in A
is the i-th homotopy group of BGL(R)+ or XR with coefficients in A
(see [36] and [69]):

Ki(R;A) = πi(BGL(R)+;A) ∼= πi(XR;A).

In particular, if Z(p) denotes the ring of integers localized at p, then
Ki(R; Z(p)) ∼= Ki(R) ⊗ Z(p) (see [36, Theorem 1.8], or [69, Proposi-
tion 1.4]) and Corollary 6.7 shows (see also [12, Corollary 5.1]):

Corollary 6.9. For any ring R and any integer i ≥ 2,

Ki(R; Z(p)) ∼= Hi(XR(1); Z(p))

for all prime numbers p ≥ i
2 + 1.

On the other hand, we can also deduce from the above considerations
some information on the unstable Hurewicz homomorphism

hi : Ki(R) ∼= πi(BE(R)+) −→ Hi(BE(R)+; Z) ∼= Hi(E(R); Z)

for i ≥ 2. Since BE(R)+ is the 0-th space of the Ω-spectrum XR(1), we
can look at the following commutative diagram for all integers i ≥ 2:

Ki(R) ∼= πi(BE(R)+)
∼=−−−−→ πi(XR(1))�hi

�h̄i

Hi(E(R); Z) ∼= Hi(BE(R)+; Z) σi−−−−→ Hi(XR(1); Z),
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where σi is the iterated homology suspension (see [100, Section VII.6
and Chapter VIII]). In order to state the next result, define h̃i : Ki(R)→
Hi(E(R); Z)/(kerσi) as the composition of hi :Ki(R)→Hi(BE(R)+; Z)∼=
Hi(E(R); Z) with the quotient map Hi(E(R); Z)�Hi(E(R); Z)/(kerσi).

Corollary 6.10. For any ring R, the unstable Hurewicz homomorphism
hi : Ki(R)→ Hi(E(R); Z) satisfies:

(a) ēi−2(kerhi) = 0 for all integers i ≥ 3,
(b) ēi−3(coker h̃i) = 0 for all integers i ≥ 4,
(c) for all integers i ≥ 4 and for any integral homology class x ∈

Hi(E(R); Z), there exists an element y in the image of hi : Ki(R)→
Hi(E(R); Z) and an element z in the kernel of the iterated homol-
ogy suspension σi : Hi(E(R); Z)→ Hi(XR(1); Z) such that ēi−3 x =
y + z.

Proof: (See also [12, Corollary 5.2].) Because of the commutativity
of the above diagram, Corollary 6.7 (a) implies assertion (a) since
kerhi is contained in ker h̄i. Assertions (b) and (c) follow from Co-
rollary 6.7 (b).

If one works with coefficients in Z(p), where p is a prime ≥ i
2 + 1, the

composition σi hi is an isomorphism according to Corollary 6.9 and one
gets immediately:

Corollary 6.11. For any ring R and any integer i ≥ 2, the unstable
Hurewicz homomorphism hi : Ki(R; Z(p)) → Hi(E(R); Z(p)) is a split
injection for all prime numbers p ≥ i

2 + 1.

Our second approach of the understanding of the Hurewicz homomor-
phism is based on the study of the relationships between its kernel and
products in algebraic K-theory of the form

2 : Ki(R)⊗Kj(Z) −→ Ki+j(R⊗ Z) ∼= Ki+j(R)

which have been defined in Definition 4.2 and Corollary 4.20.

Theorem 6.12. For any ring R and any integer i ≥ 2, the image of the
product homomorphism

2 : Ki(R)⊗K1(Z) −→ Ki+1(R)

is contained in the kernel of the unstable Hurewicz homomorphism

hi+1 : Ki+1(R) −→ Hi+1(GL(R); Z).
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Proof: Let us denote by KZ(−1) the (−1)-connected K-theory spec-
trum of Z, the 0-th space of which is BGL(Z)+ × K0(Z): it is a ring
spectrum with unit η : S → KZ(−1) whose 0-connected cover S(0) →
XZ is the map of spectra induced by the map of infinite loop spaces
(BΣ∞)+ → BGL(Z)+ which comes from the obvious inclusion of the
infinite symmetric group Σ∞ into GL(Z). This map η induces an isomor-
phism η∗ : π1(S)

∼=−→ π1(KZ(−1)) ∼= K1(Z) and the image of η∗ : πj(S)→
Kj(Z) for j ≥ 2 is described in [67] and [75]. Let R be any ring and for
i ≥ 2, let us write XR(i− 1) for the (i− 1)-connected cover of the 0-con-
nected K-theory spectrum XR. It is obvious that πj(XR(i−1)) ∼= Kj(R)
for j ≥ i. By Definition 6.2 and Proposition 6.4, there is an exact se-
quence

Ki+2(R)
h̄i+2−→ Hi+2(XR(i− 1); Z)

ν̄i+2−→ Ki(R)⊗ π1(S)

∧−→ Ki+1(R)
h̄i+1−→ Hi+1(XR(i− 1); Z) −→ 0.

The diagram

Ki(R)⊗ π1(S) ∧−−−−→ Ki+1(R)

id⊗η∗

�∼=
�=

Ki(R)⊗K1(Z)  −−−−→ Ki+1(R),

which commutes since KR(−1) is a KZ(−1)-module, shows that the
above exact sequence is actually

Ki+2(R)
h̄i+2−→ Hi+2(XR(i− 1); Z)

ν̄i+2−→ Ki(R)⊗K1(Z)

 −→ Ki+1(R)
h̄i+1−→ Hi+1(XR(i− 1); Z) −→ 0.

Now, let us write BGL(R)+(i− 1) for the (i− 1)-connected cover of the
infinite loop space BGL(R)+ and consider the commutative diagram

Ki+1(R)
hi+1−−−−→ Hi+1(BGL(R)+(i− 1); Z)�=

�σi+1

Ki+1(R)
h̄i+1−−−−→ Hi+1(XR(i− 1); Z),

where the iterated homology suspension σi+1 is an isomorphism since
i ≥ 2 (see [100, Corollary VII.6.5]). Thus, the composition

Ki(R)⊗K1(Z)  −→ Ki+1(R)
hi+1−→ Hi+1(BGL(R)+(i− 1); Z)
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is trivial and the assertion immediately follows if one composes hi+1 with
the homomorphism

Hi+1(BGL(R)+(i− 1); Z)→ Hi+1(BGL(R)+; Z) ∼= Hi+1(GL(R); Z)

induced by the obvious map BGL(R)+(i− 1)→ BGL(R)+.

By an analogous argument, it is possible to generalize this result as
follows.

Theorem 6.13. If R is any ring, and if i and j are two integers such
that i− 1 ≥ j ≥ 1, then the composition

Ki(R)⊗Kj(Z)  −→ Ki+j(R)
hi+j−→ Hi+j(GL(R); Z)

is trivial on all elements of the form x⊗y with x ∈ Ki(R) and y belonging
to the image of η∗ : πj(S)→ Kj(Z).

Proof: See [14, Proposition 3.1].

Remark 6.14. The assertions of Theorems 6.12 and 6.13 still hold if one
replaces the infinite general linear group GL(R) by the group of ele-
mentary matrices E(R) or, if one assumes that i ≥ 3, by the infinite
Steinberg group St(R) (see [14, Proposition 3.1 and Theorem 3.2]).

In low dimensions, we are able to be more precise by providing exact-
ness results. For instance, let us describe the unstable Hurewicz homo-
morphism in dimension 3.

Theorem 6.15. For any ring R there is a natural exact sequence

K2(R)⊗K1(Z)  −→ K3(R) h3−→ H3(E(R); Z) −→ 0.

Proof: (See [14, Theorem 4.1].) Let us consider the 1-connected infinite
loop space BE(R)+ and kill all its homotopy groups above dimension 3.
We get its third Postnikov section (see also Section 7) BE(R)+[3] which
has only two non-trivial homotopy groups π2(BE(R)+[3]) ∼= K2(R) and
π3(BE(R)+[3]) ∼= K3(R). Therefore, BE(R)+[3] fits into the fibration
of spaces

K(K3(R), 3) −→ BE(R)+[3] −→ K(K2(R), 2),

in which the base space and the fiber are Eilenberg-MacLane spaces.
Similarly, look at the third Postnikov section XR(1)[3] of the 1-connected
cover XR(1) of XR and at the cofibration of spectra

Σ3H(K3(R)) −→ XR(1)[3] −→ Σ2H(K2(R)),

in which the base and the fiber are Eilenberg-MacLane spectra.
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This induces the following commutative diagram where both columns
are homology exact sequences:

0 0   
H3(BE(R)+; Z) σ3−−−−→ H3(XR(1); Z)

h3

  h̄3

 
K3(R)

∼=−−−−→ K3(R)

∂

  ∂̄

 
H4(K(K2(R), 2); Z) σ4−−−−→ H4(Σ2H(K2(R)); Z)   

...
... .

Here ∂ and ∂̄ are connecting homomorphisms and the three horizontal
arrows are iterated homology suspensions. Because of the long stable
Whitehead exact sequence (see Definition 6.2 and Proposition 6.4), it
turns out easily that

H4(Σ2H(K2(R)); Z) ∼= π3(Σ2H(K2(R)) ∧ S(0))
∼= K2(R)⊗ π1S ∼= K2(R)⊗K1(Z)

and it is again possible to check that ∂̄ is the product 2 : K2(R) ⊗
K1(Z) → K3(R) (see Proposition 2.2 of [14]). Since σ4 is surjective
(see [100, Corollary VII.6.5]) one can deduce that the image of ∂ is
actually equal to the image of ∂̄, i.e., to the product K2(R) 2K1(Z).

A similar argument provides the next theorem on the unstable Hure-
wicz homomorphism relating the algebraic K-theory of ring R to the
homology of its infinite Steinberg group in dimensions 4 and 5.

Theorem 6.16. For any ring R there is a natural exact sequence

K5(R) h5−→ H5(St(R); Z) −→ K3(R)⊗K1(Z)
 −→ K4(R) h4−→ H4(St(R); Z)→ 0

and the kernel of h5 fits into the natural exact sequence

0 −→ K4(R)⊗K1(Z)  −→ kerh5 −→ Q(R) −→ 0,

where Q(R) is a quotient of the subgroup of elements of order dividing 2
in K3(R).
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Proof: See [14, Theorem 4.3].

The last point of view from which we want to study the Hurewicz ho-
momorphism is based on the Postnikov decomposition of CW-complexes.
This is the subject of the next section.

7. The Postnikov invariants in algebraic K-theory

The Postnikov invariants of a connected simple CW-complex X are
cohomology classes which provide the necessary information for the re-
construction of X, up to a weak homotopy equivalence, from its homo-
topy groups. Let αi : X → X[i] denote the i-th Postnikov section of X
for any positive integer i: X[i] is the CW-complex obtained from X by
killing the homotopy groups of X in dimensions > i, more precisely by
adjoining cells of dimensions ≥ i + 2 such that πj(X[i]) = 0 for j > i
and (αi)∗ : πj(X)→ πj(X[i]) is an isomorphism for j ≤ i. Thus, we may
view X[i] as the i-th homotopical approximation of X. The Postnikov
k-invariants of X are cohomology classes

ki+1(X) ∈ Hi+1(X[i− 1];πi(X)),

for i ≥ 2, which are defined as follows (see for instance [100, Sec-
tion IX.2]).

Definition 7.1. Let X be a simple CW-complex, i an integer ≥ 2, and
let κi+1 denote the composition

Hi+1(X[i− 1], X[i]; Z)
(h̃i+1)

−1

−→ πi+1(X[i− 1], X[i]) ∂−→πi(X[i]) ∼= πi(X),

where h̃i+1 is the Hurewicz isomorphism for the i-connected pair
(X[i− 1], X[i]) and ∂ the connecting homomorphism (which is actually
an isomorphism) of the homotopy exact sequence of that pair. Consider
the isomorphism

λ : Hom(Hi+1(X[i− 1], X[i]; Z), πi(X))
∼=−→ Hi+1(X[i− 1], X[i];πi(X))

given by the universal coefficient theorem and the homomorphism

ν : Hi+1(X[i− 1], X[i];πi(X))→ Hi+1(X[i− 1];πi(X))

induced by the inclusion of pairs (X[i − 1], ∗) ↪→ (X[i − 1], X[i]). The
k-invariant ki+1(X) is defined by

ki+1(X) = νλ(κi+1) ∈ Hi+1(X[i− 1];πi(X)).
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The main property of these invariants is that X[i] is the homotopy
fiber of the map X[i− 1]→ K(πi(X), i + 1) corresponding to the coho-
mology class ki+1(X) ∈ Hi+1(X[i−1];πi(X)), for i ≥ 2. In other words,
there is a commutative diagram of fibrations

K(πi(X), i) 
−−−−→ K(πi(X), i)� �
X[i] −−−−→ PK(πi(X), i + 1)� �p

X[i− 1]
ki+1(X)−−−−−→ K(πi(X), i + 1),

in which the right column is the path fibration over the Eilenberg-
MacLane space K(πi(X), i + 1) and the bottom square is a homotopy
pull-back. Consequently, the knowledge of X[i− 1], πi(X) and ki+1(X)
enables us to construct the next homotopical approximation X[i] of X.

Remark 7.2. From that point of view, the understanding of the (weak)
homotopy type of the K-theory space BGL(R)+ of a ring R depends on
the knowledge of the K-groups Ki(R) = πi(BGL(R)+) and of the k-in-
variants ki+1(BGL(R)+). In the remainder of this section and in Sec-
tion 9, we shall give some results on the k-invariants of K-theory spaces,
especially on the (additive) order of the k-invariants ki+1(BGL(R)+)
considered as elements of the group Hi+1(BGL(R)+[i− 1];Ki(R)).

In order to understand the role of the k-invariants of a simple
CW-complex, let us first mention the following obvious fact.

Lemma 7.3. If ki+1(X) = 0 in Hi+1(X[i− 1];πi(X)), then

X[i] � X[i− 1]×K(πi(X), i)

and the Hurewicz homomorphism hi : πi(X) → Hi(X; Z) is split injec-
tive.

Proof: Since the diagram occuring in Definition 7.1 is a pull-back, the
vanishing of ki+1(X) implies that

X[i] = {(x, y) ∈ X[i− 1]× PK(πi(X), i + 1) | p(y) = ∗}
� X[i− 1]× (fiber of p) � X[i− 1]×K(πi(X), i).
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By definition of αi : X → X[i], the induced homomorphism (αi)∗ :
Hj(X; Z) → Hj(X[i]; Z) is an isomorphism for j ≤ i by the Whitehead
theorem (see [100, Theorem IV.7.13]). Thus, the Künneth formula gives

Hi(X; Z) ∼= Hi(X[i]; Z) ∼= Hi(X[i− 1]; Z)⊕ πi(X).

One of the crucial properties of the k-invariants is the following lemma
which follows almost directly from Definition 7.1 (see [100, Section IX.5,
Example 3]).

Lemma 7.4. If X is a loop space X � ΩY , then the k-invariants of
X and Y are related by the formula σ∗(ki+2(Y )) = ki+1(X), where
σ∗ : Hi+2(Y [i];πi(X)) → Hi+1(X[i − 1];πi(X)) is the cohomology sus-
pension.

Our first result is a vanishing theorem (see Theorem 7.6 below) based
on the following remark on the cohomology suspension for Eilenberg-
MacLane spaces.

Proposition 7.5. For any abelian groups G and M , the double coho-
mology suspension

(σ∗)2 : H5(K(G, 3);M) −→ H4(K(G, 2);M) −→ H3(K(G, 1);M)

is trivial.

Proof: For any abelian group G, it is known that H4(K(G, 3); Z) = 0 and
it follows easily from Remark 6.3 that H5(K(G, 3); Z) ∼= Γ4(K(G, 3)) ∼=
G ⊗ π1(S) = G ⊗ Z/2 ∼= G/2G (see also [100, Theorems V.7.8 and
XII.3.20]). Thus, the universal coefficient theorem provides an isomor-
phism

H5(K(G, 3);M) ∼= Hom(G/2G,M).

For any element u ∈ H5(K(G, 3);M) let us write û for the corre-
sponding element in Hom(G/2G,M). For example, if one takes any
abelian group G and M = G/2G, the element Ŝq2 corresponding to
the Steenrod square Sq2 viewed as a cohomology operation belonging to
H5(K(G, 3);G/2G) turns out to be the identity id ∈ Hom(G/2G,G/2G).
Now, for any cohomology class u ∈ H5(K(G, 3);M), it is clear that
û = û-(id) = û-(Ŝq2), where û- : Hom(G/2G,G/2G)→ Hom(G/2G,M)
is induced by û ∈ Hom(G/2G,M). Consequently, u = û∗(Sq2), where
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û∗ : H5(K(G, 3);G/2G) → H5(K(G, 3);M) is the homomorphism in-
duced by û. Finally, let us consider the commutative diagram

H5(K(G, 3);G/2G) û∗−−−−→ H5(K(G, 3);M)�(σ∗)2
�(σ∗)2

H3(K(G, 1);G/2G) û∗−−−−→ H3(K(G, 1);M).

Because it is well known that the cohomology operation (σ∗)2(Sq2) is
trivial in H3(K(G, 1);G/2G), we may deduce that

(σ∗)2(u) = (σ∗)2(û∗(Sq2)) = û∗(σ∗)2(Sq2) = 0.

Theorem 7.6. The first k-invariant k3(X) ∈ H3(K(π1(X), 1);π2(X))
of any connected double loop space X is trivial.

Proof: Consider any connected double loop space X � Ω2Y . We may as-
sume that Y is 2-connected and consequently that Y [3] � K(π3(Y ), 3) �
K(π1(X), 3). According to Lemma 7.4, k3(X) = (σ∗)2(k5(Y )) , where
(σ∗)2 is the double cohomology suspension

(σ∗)2 : H5(Y [3];π2(X)) ∼= H5(K(π1(X), 3);π2(X))

−→ H3(X[1];π2(X)) ∼= H3(K(π1(X), 1);π2(X)).

Therefore, the assertion is a direct consequence of Proposition 7.5. See
[8] for another proof.

Corollary 7.7. For any connected double loop space X,

H2(X; Z) ∼= π2(X)⊕ Λ2(π1(X))

where Λ2 denotes the exterior square.

Proof: Since k3(X) = 0 in H3(K(π1(X), 1);π2(X)) by the previous the-
orem, the second Postnikov section X[2] of X is a product of Eilenberg-
MacLane spaces according to Lemma 7.3:

X[2] � K(π1(X), 1)×K(π2(X), 2).

Thus,

H2(X; Z) ∼= H2(K(π1(X), 1); Z)⊕H2(K(π2(X), 2); Z).

The second summand is isomorphic to π2(X) by the Hurewicz theo-
rem and the fact that X is an H-space implies that π1(X) is abelian
and consequently that H2(K(π1(X), 1); Z) ∼= Λ2(π1(X)) (see [37, Theo-
rem V.6.4]).
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A direct application of that result to the infinite loop space BGL(R)+

(see Remark 4.12) provides the following splitting (see also [11, Sec-
tion 3], for the discussion of the naturality of that splitting).

Theorem 7.8. For any ring R,

H2(GL(R); Z) ∼= K2(R)⊕ Λ2(K1(R)).

Remark 7.9. This statement is quite obvious when the ring R is com-
mutative with SK1(R) = 0. In that case, E(R) = SL(R), BSL(R)+ �

˜BGL(R)+, K1(R) = R× (see Theorem 2.9 and Lemma 3.3), and there is
a fibration of infinite loop spaces BSL(R)+ → BGL(R)+ → K(R×, 1)
which has a splitting induced by the inclusion R× = GL1(R) ↪→ GL(R).
Therefore, BGL(R)+ � BSL(R)+×K(R×, 1) and one gets the assertion.
However, in the general case, the above topological argument involving
k3(BGL(R)+) is necessary.

This kind of nice consequences can be generalized when the k-invari-
ant ki+1(X) is a cohomology class which is not trivial, but of finite order
in the group Hi+1(X[i− 1];πi(X)).

Proposition 7.10. Let X be a connected simple CW-complex, i an inte-
ger ≥ 2 and ρ a positive integer. The following assertions are equivalent:

(a) ρ ki+1(X) = 0 in Hi+1(X[i− 1];πi(X)).
(b) There is a map

fi : X −→ K(πi(X), i)

such that the induced homomorphism (fi)∗ : πi(X)→ πi(X) is mul-
tiplication by ρ.

(c) There is a homomorphism θi : Hi(X; Z) → πi(X) such that the
composition

πi(X) hi−→ Hi(X; Z) θi−→ πi(X)

is multiplication by ρ.

Proof: (See also Section 1 of [16].) If (a) holds, the composition

X[i− 1]
ki+1(X)−→ K(πi(X), i + 1)

ρ(id)−→ K(πi(X), i + 1)

(where id is written for the identity K(πi(X), i+ 1)→ K(πi(X), i+ 1))
is trivial since it corresponds to the cohomology class ρ ki+1(X) = 0.
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Therefore, we have the following commutative diagram

K(πi(X), i) 
−−−−→ K(πi(X), i)
ρ(id)−−−−→ K(πi(X), i)� � �

X[i] −−−−→ PK(πi(X), i + 1)
ρ(id)−−−−→ PK(πi(X), i + 1)� �p

�p

X[i− 1]
ki+1(X)−−−−−→ K(πi(X), i + 1)

ρ(id)−−−−→ K(πi(X), i + 1),

where all columns are fibrations and in which the bottom left square is a
pull-back by definition of the k-invariant ki+1(X). Let E be the pull-back
of (ρ ki+1(X), p). Since the bottom composition in the above diagram is
nullhomotopic, E is a product E � X[i− 1]×K(πi(X), i). Since E is a
pull-back, there is a map ϕ : X[i] → E inducing an isomorphism on πj
for j ≤ i− 1 and multiplication by ρ on πi. Thus, we can define

fi : X
αi−→ X[i]

ϕ−→ E � X[i− 1]×K(πi(X), i) −→ K(πi(X), i),

where the last map is the projection onto the second factor. This map
induces multiplication by ρ on the only interesting homotopy group πi:

(fi)∗ : πi(X)
·ρ−→ πi(X).

Assertion (c) follows from (b) because of the commutativity of the dia-
gram

πi(X)
(fi)∗−−−−→
·ρ

πi(X)�hi

�∼=

Hi(X; Z)
(fi)∗−−−−→ Hi(K(πi(X), i); Z) ∼= πi(X)

induced by the map fi, where both vertical arrows are Hurewicz homo-
morphisms: we call θi the bottom horizontal homomorphism (fi)∗ in
that diagram.

In order to prove that (a) follows from (c), let us look at the commu-
tative diagram

πi+1(X[i− 1], X[i])
h̃i+1−−−−→∼=

Hi+1(X[i− 1], X[i]; Z)

∼=
�∂

�∂̃

πi(X) ∼= πi(X[i]) hi−−−−→ Hi(X[i]; Z) ∼= Hi(X; Z),
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in which the horizontal arrows are Hurewicz homomorphisms and the
vertical arrows are connecting homomorphisms. If θi : Hi(X; Z)→ πi(X)
exists as in (c), we deduce that

θi ∂̃ = θi hi ∂ (h̃i+1)−1 = ρ∂ (h̃i+1)−1 = ρκi+1,

where κi+1 is the element introduced in Definition 7.1. Thus, the image
of ρκi+1 under the isomorphism

λ : Hom(Hi+1(X[i− 1], X[i]; Z), πi(X))
∼=−→ Hi+1(X[i− 1], X[i];πi(X))

belongs to the image of the connecting homomorphism

δ : Hi(X[i];πi(X))→ Hi+1(X[i− 1], X[i];πi(X)).

The exactness of the cohomology sequence

Hi(X[i];πi(X)) δ−→ Hi+1(X[i− 1], X[i];πi(X))
ν−→ Hi+1(X[i− 1];πi(X))

of the pair (X[i − 1], X[i]) finally implies that ρ ki+1 = ρνλ(κi+1) =
νλ(ρκi+1) = 0.

Because of these equivalences, it is really important to prove finite-
ness results for the order of the k-invariants in algebraic K-theory. For
that purpose, we first need to recall that H. Cartan computed the ho-
mology of Eilenberg-MacLane spaces in [38]; in particular, according to
his calculation (see [38, Théorème 2]), the stable homotopy groups of
Eilenberg-MacLane spaces have a quite small exponent. This can be
formulated as follows.

Definition 7.11. Let L1 := 1, and for k ≥ 2 let Lk denote the prod-
uct of all primes p for which there exists a sequence of non-negative
integers (a1, a2, a3, . . . ) satisfying:

(a) a1 ≡ 0 mod(2p− 2), ai ≡ 0 or 1 mod(2p− 2) for i ≥ 2,
(b) ai ≥ pai+1 for i ≥ 1,
(c)

∑∞
i=1 ai = k.

For example, L2 = 2, L3 = 2, L4 = 6, L5 = 6, L6 = 2, L7 = 2,
L8 = 30, . . . . Observe that Lk divides the product of all primes p ≤ k

2 +1.

Lemma 7.12. For any abelian group G and any pair of integers i and
m with 2 ≤ m < i < 2m, one has Li−mHi(K(G,m); Z) = 0.

Proof: This follows directly from Cartan’s determination of the stable
homology of Eilenberg-MacLane spaces given by Théorème 2 of [38].

This implies the following consequence.
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Corollary 7.13. Let X be a (b−1)-connected CW-complex (with b ≥ 2)
such that there exists an integer t ≥ b with the property that πi(X) = 0
for i > t (in other words, such that X = X[t]). Then

Li−bLi−b−1Li−b−2 · · ·Li−tHi(X; Z) = 0

if t < i < 2b.

Proof: Let i be an integer such that t < i < 2b. If t = b, then X is
an Eilenberg-MacLane space X = K(πb(X), b) and the result is given
by Lemma 7.12. Now, let us suppose t > b. For any integer k with
1 ≤ k ≤ t− b, let us consider the fibration

K(πb+k(X), b + k) −→ X[b + k] −→ X[b + k − 1],

whose Serre spectral sequence provides the exact sequence

Hi(K(πb+k(X), b + k); Z) −→ Hi(X[b + k]; Z) −→ Hi(X[b + k − 1]; Z),

since i < 2b. Observe that for k = 1, X[b+ k− 1] = X[b] = K(πb(X), b)
and consequently that Li−bHi(X[b]; Z)=0 according to Lemma 7.12. For
the same reason, Li−b−kHi(K(πb+k(X), b+k); Z)=0 for 1≤k≤ t−b. We
then conclude by induction that Li−bLi−b−1Li−b−2· · ·Li−tHi(X[t]; Z)=
0 and get the assertion because X[t] = X by hypothesis.

Definition 7.14. Let Rj := 1 for j ≤ 1 and Rj :=
∏j

k=2 Lk for j ≥ 2.
For example, R2 = 2, R3 = 4, R4 = 24, R5 = 144, R6 = 288 R7 = 576,
R8 = 17280, . . . . It turns out that a prime number p divides Rj if and
only if p ≤ j

2 + 1.

This definition enables us to describe universal bounds for the order of
the k-invariants of iterated loop spaces (see [6] and Section 1 of [10]). Let
us emphasize the fact that the next result holds without any finiteness
condition on the space we are looking at.

Theorem 7.15. If X is a (b−1)-connected r-fold loop space (with b ≥ 1,
r ≥ 0), i.e., X � ΩrY for some (b + r − 1)-connected CW-complex Y ,
then

Ri−b+1 k
i+1(X) = 0 in Hi+1(X[i− 1];πi(X))

for all integers i such that 2 ≤ i ≤ r + 2b− 2.

Proof: Since X is (b − 1)-connected, it is clear that ki+1(X) = 0 for
2 ≤ i ≤ b. Thus, we may assume that b+1 ≤ i ≤ r+2b−2, in particular
that r+ b ≥ 3. It follows from the homotopy equivalence X � ΩrY that
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πi(X) ∼= πi+r(Y ) and from Lemma 7.4 that the iterated cohomology
suspension

(σ∗)r : Hi+r+1(Y [i + r − 1];πi(X)) −→ Hi+1(X[i− 1];πi(X))

satisfies

(σ∗)r(ki+r+1(Y )) = ki+1(X).

Since we may assume that Y is (b + r − 1)-connected, we deduce from
Corollary 7.13 that

Lj−b−rLj−b−r−1Lj−b−r−2 · · ·Lj−i−r+1 Hj(Y [i + r − 1]; Z) = 0

for i+ r − 1 < j < 2b+ 2r, in particular for j = i+ r and j = i+ r + 1:

Li−bLi−b−1Li−b−2 · · ·L1︸ ︷︷ ︸
=Ri−b

Hi+r(Y [i + r − 1]; Z) = 0,

Li−b+1Li−bLi−b−1 · · ·L2︸ ︷︷ ︸
=Ri−b+1

Hi+r+1(Y [i + r − 1]; Z) = 0.

Therefore, the universal coefficient theorem shows that the exponent of
the group Hi+r+1(Y [i+r−1];πi(X)) is bounded by lcm(Ri−b, Ri−b+1) =
Ri−b+1. Thus, Ri−b+1 k

i+r+1(Y ) = 0 and

Ri−b+1 k
i+1(X) = Ri−b+1 (σ∗)r(ki+r+1(Y ))

= (σ∗)r(Ri−b+1 k
i+r+1(Y )) = 0.

Corollary 7.16. For any (b− 1)-connected infinite loop space X (with
b ≥ 1),

Ri−b+1 k
i+1(X) = 0 in Hi+1(X[i− 1];πi(X))

for all integers i ≥ 2.

In the case of the K-theory spaces, we get the following result.

Theorem 7.17. For any ring R,
(a) Ri k

i+1(BGL(R)+) = 0 for all i ≥ 2,
(b) Ri−1 k

i+1(BE(R)+) = 0 for all i ≥ 3,
(c) Ri−2 k

i+1(BSt(R)+) = 0 for all i ≥ 4.

Proof: This follows from Corollary 7.16, because BGL(R)+, BE(R)+

and BSt(R)+ are infinite loop spaces which are connected, simply con-
nected and 2-connected respectively.
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Let us look at immediate consequences of this theorem for the Hure-
wicz homomorphism relating the K-groups of any ring R to the homology
of the infinite general linear group over R, respectively of the infinite
special linear group and of the infinite Steinberg group. Remember that
this homomorphism is an isomorphism in the first non-trivial dimension
(see Theorem 6.1). Our next result approximates the exponent of the
kernel of the Hurewicz homomorphism in all dimensions (see also [9]).

Remark 7.18. In [87, Proposition 3], C. Soulé has shown that the kernel
of hi : Ki(R)→ Hi(E(R); Z) is a torsion group that involves only prime
numbers p satisfying p ≤ i+1

2 , but his argument does not imply that this
kernel has finite exponent.

Corollary 7.19. Let R be any ring.
(a) For any i ≥ 2, the Hurewicz homomorphism

hi : Ki(R)→ Hi(GL(R); Z)

satisfies Ri(kerhi) = 0.
(b) For any i ≥ 3, the Hurewicz homomorphism

hi : Ki(R)→ Hi(E(R); Z)

satisfies Ri−1(kerhi) = 0.
(c) For any i ≥ 4, the Hurewicz homomorphism

hi : Ki(R)→ Hi(St(R); Z)

satisfies Ri−2(kerhi) = 0.

Proof: Let us start with the 0-connected infinite loop space BGL(R)+.
Because of Proposition 7.10 and of Corollary 7.16, there is a homomor-
phism θi : Hi(GL(R); Z) ∼= Hi(BGL(R)+; Z) → Ki(R) such that the
composition

Ki(R) hi−→ Hi(GL(R); Z) θi−→ Ki(R)

is multiplication by Ri. If x belongs to the kernel of hi, then Ri x =
θihi(X) = 0. The same argument works for BE(R)+ and BSt(R)+.

Remark 7.20. Of course, the assertion (a) is less interesting than the
other ones since it can be improved: for instance, in the case where
i = 2, we know from Theorem 7.8 that h2 : K2(R) → H2(GL(R); Z) is
split injective for any ring R.

Example 7.21. Corollary 7.19 shows that h3 : K3(R) → H3(E(R); Z)
fulfills

2(kerh3) = 0
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for any ring R. This was first observed by A. A. Suslin in [91, Proof of
Proposition 4.5] (no details are given there). Later, C. H. Sah has also
established that 2 kerh3 = 0 for any ring A (see [80, Proposition 2.5]),
but unfortunately, there is a gap in his proof (see [9, Remark 1.9]).

Corollary 7.16 also provides another proof of Corollary 6.11.

Corollary 7.22. Let R be any ring.
(a) For any integer i ≥ 1, the Hurewicz homomorphism

hi : Ki(R; Z(p))→ Hi(GL(R); Z(p))

is a split injection for all primes p ≥ i+3
2 .

(b) For any integer i ≥ 2, the Hurewicz homomorphism

hi : Ki(R; Z(p))→ Hi(E(R); Z(p))

is a split injection for all primes p ≥ i+2
2 .

(c) For any integer i ≥ 3, the Hurewicz homomorphism

hi : Ki(R; Z(p))→ Hi(St(R); Z(p))

is a split injection for all primes p ≥ i+1
2 .

Proof: Let us look again at the composition

Ki(R) hi−→ Hi(GL(R); Z) θi−→ Ki(R)

which is multiplication by Ri. Since Ri is only divisible by primes
p ≤ i+2

2 , the composition

Ki(R; Z(p))
hi−→ Hi(GL(R); Z(p))

θi−→ Ki(R; Z(p))

is an isomorphism and hi is a split injection when p ≥ i+3
2 . The proof

is analogous for the simply connected infinite loop space BE(R)+ (with
p dividing Ri−1 if and only if p ≤ i+1

2 ) and for the 2-connected infinite
loop space BSt(R)+ (with p dividing Ri−2 if and only if p ≤ i

2 ).

Let us conclude this section by mentioning a result on the homotopy
type of the K-theory space of algebraically closed fields (see also [9,
Theorem 2.4]).

Theorem 7.23. Let F be an algebraically closed field and i any positive
even integer. Then,

(a) the Postnikov k-invariant ki+1(BSL(F )+) is trivial in
Hi+1(BSL(F )+[i− 1];Ki(F )),

(b) the Hurewicz homomorphism hi : Ki(F ) → Hi(SL(F ); Z) is split
injective.
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Proof: Since BSL(F )+ is a simply connected infinite loop space, we
may consider an (i − 1)-connected space Y with BSL(F )+ � Ωi−2Y .
By Lemma 7.4, the k-invariant ki+1(BSL(F )+) is then the image of
k2i−1(Y ) under the (i− 2)-fold iterated cohomology suspension

(σ∗)i−2 : H2i−1(Y [2i− 3];Ki(F ))→ Hi+1(BSL(F )+[i− 1];Ki(F )).

Now, look at the universal coefficient theorem

H2i−1(Y [2i− 3];Ki(F )) ∼= Hom(H2i−1(Y [2i− 3]; Z),Ki(F ))

⊕ Ext(H2i−2(Y [2i− 3]; Z),Ki(F )),

and observe that the group Ext(H2i−2(Y [2i − 3]; Z),Ki(F )) vanishes
because A. A. Suslin proved in Section 2 of [92] that Ki(F ) is di-
visible for algebraically closed fields. Moreover, he also obtained in
[92, Section 2], that Ki(F ) is torsion-free if i is an even integer: this
and the fact that H2i−1(Y [2i − 3]; Z) is a torsion group (see Corolla-
ry 7.13) imply that Hom(H2i−1(Y [2i − 3]; Z),Ki(F )) is trivial. Conse-
quently, ki+1(BSL(F )+)=(σ∗)i−2(k2i−1(Y )) vanishes because k2i−1(Y )∈
H2i−1(Y [2i−3];Ki(F )) = 0. Assertion (b) follows from Lemma 7.3.

8. The algebraic K-theory of number fields and rings of
integers

In the remainder of the paper, let us concentrate our attention on a
specific class of rings: we want to investigate the K-groups of number
fields and rings of integers. This plays an important role because of the
various interactions between algebraic K-theory and number theory. Let
F be a number field (i.e., a finite extension of the field of rationals Q)
and OF its ring of algebraic integers. D. Quillen obtained in 1973 the
first result on the structure of the groups Ki(OF ) (see [73, Theorem 1]).

Theorem 8.1 (Quillen). For any number field F and for any integer
i ≥ 0, Ki(OF ) is a finitely generated abelian group.

The corresponding result does not hold for the number field F itself:
the structure of the abelian groups Ki(F ) is much more complicated, and
consequently much more interesting. Of course, the groups Ki(F ) and
Ki(OF ) are strongly related. In order to observe that relation, D. Quillen
constructed in Sections 5 and 7 of [72] (see also [74, Theorem 4]) a
fibration ∏

m

BQP(OF /m) −→ BQP(OF ) −→ BQP(F ),



58 D. Arlettaz

where
∏

is the weak product (i.e., the direct limit of cartesian products
with finitely many factors), where m runs over the set of all maximal
ideals of OF and where the last map is induced by the inclusion OF ↪→ F .
Here, for any ring R, P(R) is the category of finitely generated projec-
tive R-modules and BQP(−) denotes the Q-construction mentioned in
Remark 3.16: in particular, its loop space fulfills the homotopy equiva-
lence ΩBQP(R) � BGL(R)+ ×K0(R). By looping the base space and
the total space of the above fibration and by taking the 0-connected
covers of the the three spaces, we get the fibration

BGL(OF )+ −→ BGL(F )+ −→
∏
m

Ω−1BGL(OF /m)+.

The homotopy exact sequence of that fibration provides the following
long exact sequence.

Theorem 8.2. For any number field F , there is a long exact sequence
(called the localization sequence in algebraic K-theory)

· · · −→ Ki(OF ) −→ Ki(F ) −→
⊕
m

Ki−1(OF /m) −→ Ki−1(OF )

−→ Ki−1(F ) −→ · · · −→ K1(OF ) −→ K1(F )

−→
⊕
m

K0(OF /m) −→ K0(OF ) −→ K0(F ),

where m runs over the set of all maximal ideals of OF .

Moreover, C. Soulé could improve this result by showing that this
long exact sequence breaks into short exact sequences for all positive
integers i (see [86, Théorème 1]):

0 −→ Ki(OF ) −→ Ki(F ) −→
⊕
m

Ki−1(OF /m) −→ 0.

Since OF /m is a finite field, the vanishing of Kj(OF /m) whenever j is
even ≥ 2 (see Corollary 5.9) then implies the following result.

Theorem 8.3. Let F be any number field.

(a) For any odd integer i ≥ 3, the inclusion OF ↪→ F induces an
isomorphism

Ki(OF )
∼=−→ Ki(F ).
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(b) For any even integer i ≥ 2, there is a short exact sequence

0 −→ Ki(OF ) −→ Ki(F ) −→
⊕
m

Ki−1(OF /m) −→ 0,

where m runs over the set of all maximal ideals of OF and where
Ki−1(OF /m) can be determined by Corollary 5.9.

Remark 8.4. Similar results hold for rings of S-integers in F , where S is
any set of places of F (see [86, Théorème 1]).

The following finiteness result follows immediately from Theorems 8.1
and 8.3.

Corollary 8.5. For any number field F and any odd integer i ≥ 3, the
group Ki(F ) is finitely generated.

The next important information on the structure of the K-groups
of number fields and rings of integers was obtained by A. Borel as a
consequence of his study of the real cohomology of linear groups (see
[31] or [32, Section 11]).

Theorem 8.6 (Borel). Let F be a number field and let us write
[F : Q] = r1 + 2r2, where r1 is the number of distinct embeddings of
F into R and r2 the number of distinct conjugate pairs of embeddings of
F into C with image not contained in R.

(a) If R denotes either the number field F or its ring of algebraic
integers OF , then the rational cohomology of the special linear
group SL(R) is given by

H∗(SL(R); Q) ∼=

 ⊗
1≤j≤r1

Aj

⊗
 ⊗

1≤k≤r2

Bk

 ,

where j runs over all distinct embeddings of F into R, k over all
distinct conjugate pairs of embeddings of F into C with image not
contained in R, and where Aj and Bk are the following exterior
algebras:

Aj = ΛQ(x5, x9, x13, . . . , x4l+1, . . . ) and

Bk = ΛQ(x3, x5, x7, . . . , x2l+1, . . . )

with deg(xj) = j.
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(b) If R denotes either the number field F or its ring of algebraic in-
tegers OF , then for any integer i ≥ 2,

Ki(R)⊗Q ∼=


0, if i is even,
Qr1+r2 , if i ≡ 1 mod 4,
Qr2 , if i ≡ 3 mod 4.

As a consequence, we observe:

Corollary 8.7. If R denotes a number field F or its ring of integers OF ,
then Ki(R) is a torsion group for all even integers i ≥ 2.

In order to summarize Theorem 8.1, Corollaries 8.5 and 8.7, we can
formulate the following statement.

Corollary 8.8. Let F be any number field, OF its ring of integers and
i a positive integer.

(a) Ki(F ) is finitely generated if i is odd and Ki(F ) is a torsion group
if i is even.

(b) Ki(F )/torsion is a free abelian group of finite rank (which is known
by Theorem 8.6 (b)) for all positive integers i.

(c) Ki(OF ) is finitely generated if i is odd and Ki(OF ) is finite if i is
even.

However, the structure of the groups Ki(F ) is quite complicated. In
order to illustrate this, let us consider the subgroup Di(F ) of Ki(F )
consisisting of all (infinitely) divisible elements in Ki(F ) (notice that
Di(F ) is not necessarily a divisible subgroup of Ki(F )) and prove the
following surprising assertion.

Theorem 8.9. For any number field F , Di(F ) = 0 if i is an odd integer
≥ 1 and Di(F ) is a finite abelian group if i is an even integer ≥ 2.

Proof: Since Ki(F ) is a finitely generated abelian group when i is odd
according to Corollary 8.5, it does not contain any non-trivial divisible
element and Di(F ) = 0. When i is even, consider again the localization
exact sequence

0 −→ Ki(OF ) −→ Ki(F ) −→
⊕
m

Ki−1(OF /m) −→ 0.

By Corollary 5.9, Ki−1(OF /m) is a finite cyclic group and contains there-
fore no non-trivial divisible elements. Consequently, the same is true
for the direct sum

⊕
m
Ki−1(OF /m). It then follows that all divisi-

ble elements in Ki(F ) actually belong to the image of the homomor-
phism Ki(OF )→ Ki(F ) induced by the inclusion OF ↪→ F . Finally, the
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fact that Ki(OF ) is finite by Corollary 8.8 (c) shows that Di(F ) is finite.
(The elements of Di(F ) can be viewed as elements of Ki(OF ), even if
they are divisible only in Ki(F ).)

Remark 8.10. The situation is indeed quite strange because the
group Di(F ) does not vanish in general. This was proved in a very
precise way by G. Banaszak in [23, Section VIII], and [24, Section II].
For any odd prime p, let us write Di(F )p for the subgroup of p-torsion
divisible elements in Ki(F ) (in other words, Di(F )p is the p-component
of Di(F )). If F is a totally real number field, i = 2m an even integer with
m odd, G. Banaszak, together with M. Kolster, determined the order of
the subgroup D2m(F )p (see [24, Theorem 3]): the order of D2m(F )p is
exactly the p-adic absolute value of

wm+1(F ) ζF (−m)∏
v|p wm(Fv)

,

where ζF (−) is the Dedekind zeta function of F , wm(k) the biggest
integer s such that the exponent of the Galois group Gal(k(ξs)/k) divides
m for any field k (here ξs is an s-th primitive root of unity), and Fv the
completion of F at v. For the case where F is the field of rationals Q,
look at Remark 9.15 for a more explicit description of the order of the
groups D2m(Q)p.

Notice that the knowledge of D2m(F ) is of particular interest since it
is related to the Lichtenbaum-Quillen conjecture in algebraic K-theory
(see Remark 9.16 and [24, Section II.2]) and to étale K-theory (see [25,
Section 3]).

In order to have an almost complete picture of the complexity of
the structure of the algebraic K-groups of number fields, let us try to
get analogous results for integral homology. Of course, the Hurewicz
theorem modulo the Serre class of finitely generated abelian groups (see
[82, Sections III.1 and III.2]) for the space BSL(OF )+ enables us to
deduce from Theorem 8.1 the following structure theorem for the integral
homology of the special linear group over a ring of integers.

Corollary 8.11. For any number field F and any integer i ≥ 0,
Hi(SL(OF ); Z) is a finitely generated abelian group.

The situation is more complicated for the special linear group SL(F )
over the number field F itself: in fact, the structure of the groups
Hi(SL(F ); Z) turns out to be similar to the structure of Ki(F ) described
in Corollary 8.8 (b).
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Theorem 8.12. For any number field F and any integer i ≥ 0, the
group Hi(SL(F ); Z) is the direct sum of a torsion group and a free abelian
group of finite rank (which can be calculated by Theorem 8.6 (a)).

Proof: (See also [5, Section 2].) The proof is based on the results on the
Postnikov invariants described in Section 7. Let C denote the Serre class
of all abelian torsion groups. Because BSL(F )+ is a simply connected
infinite loop space, Corollary 7.16 implies that all Postnikov k-invariants
of BSL(F )+ are cohomology classes of finite order. Therefore, Proposi-
tion 7.10 (b) provides a map

f : BSL(F )+ −→
∞∏
j=2

K(Kj(F ), j)

which induces multiplication by the (finite) order of the corresponding
k-invariant ki+1(BSL(F )+) on each homotopy group πi(BSL(F )+) ∼=
Ki(F ), i ≥ 2. In particular, f induces a C-isomorphism on each homo-
topy group. Now, let us compose f with the natural map

∞∏
j=2

K(Kj(F ), j) −→
∞∏
j=2

K(Kj(F )/torsion, j)

which induces the quotient map (and thus a C-isomorphism) on each
homotopy group. If we denote by Y this later space, this composition is
a map

ψ : BSL(F )+ −→ Y =
∞∏
j=2

K(Kj(F )/torsion, j)

inducing a C-isomorphism on all homotopy groups and therefore also a
C-isomorphism

ψ∗ : Hi(BSL(F )+; Z)→ Hi(Y ; Z)

on all integral homology groups because of the mod C Whitehead
theorem (see [82, Section III.4]). On the other hand, since πi(Y ) ∼=
Ki(F )/torsion is finitely generated for all integers i ≥ 1 by Corol-
lary 8.8 (b), the homology groups Hi(Y ; Z) of Y are also finitely gen-
erated. Consequently, the group Hi(BSL(F )+; Z)/ kerψ∗ ∼= imageψ∗ is
also finitely generated and kerψ∗ belongs to C. If Ti is written for the tor-
sion subgroup of Hi(BSL(F )+; Z), it follows that Hi(BSL(F )+; Z)/Ti
is finitely generated, i.e., free abelian of finite rank, since it is a quo-
tient of Hi(BSL(F )+; Z)/ kerψ∗. Finally, this implies the vanishing of
Ext(Hi(BSL(F )+; Z)/Ti, Ti) and the splitting of the extension

0 −→ Ti −→ Hi(BSL(F )+; Z) −→ Hi(BSL(F )+; Z)/Ti −→ 0.
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The assertion then follows from the isomorphism

Hi(SL(F ); Z) ∼= Hi(BSL(F )+; Z).

Because of Theorem 8.3 (b), the groups Ki(F ) are in general not fi-
nitely generated. By Serre class theory (see [82, Chapitre I]), this implies
that the homology groups Hi(SL(F ); Z) are in general not finitely gen-
erated. However, this only happens because of their torsion subgroups.
The next step would be to investigate the structure of the torsion sub-
groups of the groups Hi(SL(F ); Z). In particular, let us look at the
subgroup Di(F ) of divisible elements in Hi(SL(F ); Z). Here again, an
argument similar to the proof of Theorem 8.12 shows that this subgroup
is relatively small in the following sense.

Theorem 8.13. For any number field F and any integer i ≥ 0, the
abelian group Di(F ) is of finite exponent.

Proof: See [17, Theorem 1.1].

Remark 8.14. Observe that for any number field F , the homomorphism
Ki(OF ) → Ki(F ) induced by the inclusion OF ↪→ F is always injec-
tive according to Theorem 8.3. The analogous assertion for the in-
duced homomorphism Hi(SL(OF ); Z) → Hi(SL(F ); Z) is not true (see
Remark 2.7 of [18]). However, one can prove (see Theorem 1.4 of
[18]) the injectivity of the induced homomorphism Hi(SL(OF ); Z(p))→
Hi(SL(F ); Z(p)) in small dimensions, more precisely for 2 ≤ i ≤
min(2p − 2, dp(F ) + 1), where dp(F ) denotes the smallest positive in-
teger j for which Kj(F ) contains non-trivial p-torsion divisible elements
(dp(F ) is an even integer according to Theorem 8.9 and we say that
dp(F ) = ∞ if there are no p-torsion divisible elements in Kj(F ) for all
j ≥ 1).

9. The algebraic K-theory of the ring of integers Z

If we apply the results of the previous sections to the special case of
the ring of integers Z, we first know that E(Z) = SL(Z) by Theorem 2.10
and we may deduce from Section 8 the following result on the structure
of the abelian groups Ki(Z).

Theorem 9.1. For any positive integer i,

Ki(Z) =

{
Z⊕ finite group, if i ≡ 1 mod 4, i ≥ 5,
finite group, otherwise.
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Proof: Theorem 8.1 asserts that the groups Ki(Z) are finitely generated
abelian groups for all i ≥ 0. Moreover, the rank of the free abelian
group Ki(Z)/torsion is given by Theorem 8.6 (b), with r1 = 1 and
r2 = 0.

In low dimensions, the K-groups of Z have been computed for i ≤ 4
and partially determined for i = 5.

Theorem 9.2. K0(Z) ∼= Z, K1(Z) ∼= Z/2, K2(Z) ∼= Z/2, K3(Z) ∼=
Z/48, K4(Z) = 0 and K5(Z) ∼= Z⊕ (3-torsion finite group).

Proof: See Theorem 1.2, Theorem 2.10 and Example 2.29 for the calcu-
lation of K0(Z), K1(Z) and K2(Z), [55] for the determination of K3(Z),
[76], [88], [77], [99] and [95] for the vanishing of K4(Z), and [56] and
[84] for the description of K5(Z).

Remark 9.3. The cyclic groups of order 2 in Ki(Z) for i = 1 and i =
2 occur actually in all dimensions i ≡ 1 or 2 mod 8, as observed by
D. Quillen in [75].

Let us also look at the unstable Hurewicz homomorphisms

hi : Ki(Z) ∼= πi(BSL(Z)+)

−→ Hi(BSL(Z)+; Z) ∼= Hi(SL(Z); Z) for i ≥ 2

and

hi : Ki(Z) ∼= πi(BSt(Z)+)

−→ Hi(BSt(Z)+; Z) ∼= Hi(St(Z); Z) for i ≥ 3.

Theorem 9.4. The following sequences are exact:

(a) · · · −→ K4(Z) h4−→ H4(SL(Z); Z) −→ Z/4 −→ K3(Z) h3−→
H3(SL(Z); Z) −→ 0, where kerh3

∼= K2(Z) 2 K1(Z) ∼= Z/2,
(b) · · · −→ K5(Z) h5−→ H5(St(Z); Z) −→ K3(Z)⊗K1(Z)︸ ︷︷ ︸

∼=Z/2

 −→

K4(Z) h4−→ H4(St(Z); Z) −→ 0.

Proof: The unstable Whitehead exact sequence (see [102]) of the simply
connected space BSL(Z)+ is

· · · −→ K4(Z) h4−→ H4(BSL(Z)+; Z) −→ Γ3(BSL(Z)+)

−→ K3(Z) h3−→ H3(BSL(Z)+; Z) −→ 0
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and

Γ3(BSL(Z)+) ∼= Γ(π2(BSL(Z)+)) ∼= Γ(K2(Z)) ∼= Γ(Z/2) ∼= Z/4,

where Γ(−) is the quadratic functor defined on abelian groups by
J. H. C. Whitehead in Section 5 of [102] (see also [4, Satz 1.5]). This
gives the exact sequence (a) and Theorem 6.15 shows that the kernel
of h3 is exactly the image of the product K2(Z) ⊗ K1(Z)  −→ K3(Z).
Assertion (b) follows directly from Theorem 6.16.

Of course, this also produces (co)homological results. According to
Remark 7.9 (or Lemma 1.2 of [4]), we have the homotopy equivalence

BGL(Z)+ � BSL(Z)+ ×BZ/2

and it is therefore sufficient to investigate the homology of the universal
cover BSL(Z)+ of BGL(Z)+. Let us first recall Theorem 8.6 (a) on the
rational cohomology of SL(Z).

Theorem 9.5. H∗(SL(Z); Q) ∼= ΛQ(x5, x9, x13, . . . , x4l+1, . . . ), where
deg(x4l+1) = 4l + 1.

We may determine the homology of SL(Z) and St(Z) in small dimen-
sions from Theorems 9.2 and 9.3 (see also [7] for the relations between
H∗(SL(Z); Z) and H∗(St(Z); Z)).

Theorem 9.6. H2(SL(Z); Z) ∼= Z/2, H3(SL(Z); Z) ∼= Z/24,
H4(SL(Z); Z) ∼= Z/2, H3(St(Z); Z) ∼= Z/48, H4(St(Z); Z) = 0,
H5(St(Z); Z) ∼= Z ⊕ (3-torsion finite group) and there is a short exact
sequence

0 −→ K5(Z) h5−→ H5(St(Z); Z) −→ Z/2 −→ 0,

in which h5 is an isomorphism on the torsion subgroup of K5(Z) and
multiplication by 2 on the infinite cyclic summand of K5(Z).

Proof: Theorems 6.1 and 9.2 imply that H2(SL(Z); Z) ∼= K2(Z) ∼= Z/2
and that H3(St(Z); Z) ∼= K3(Z) ∼= Z/48. It follows from the vanishing
of K4(Z) and Theorem 9.4 that H3(SL(Z); Z) ∼= Z/24 (see also [4, Satz
1.5]), H4(SL(Z); Z) ∼= Z/2 and H4(St(Z); Z) = 0. Finally, it is possible
to show that the term Q(Z) occuring in Theorem 6.16 is trivial (see
[13, Theorem 3], or [14, Proposition 5.1]). Consequently, h5 : K5(Z)→
H5(St(Z); Z) is injective because K4(Z) = 0 and we get the desired
exact sequence. Finally, the effect of h5 on the infinite cyclic summand
of K5(Z) is explained by Theorem 1.5 of [7].
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The first more general result on the torsion of the the algebraic
K-groups of Z has been obtained by D. Quillen in 1976 (see [75]). Re-
member that he had already computed the K-theory of finite fields. By
studying the map Ki(Z)→ Ki(Fp) induced by the reduction mod p : Z→
Fp for various primes p, he could prove the following relationship between
the order of the torsion subgroups of the K-groups of Z and the denom-
inators of the Bernoulli numbers.

Definition 9.7. The Bernoulli numbers are the rational numbers Bm

occuring in the power series

t

et − 1
= 1 +

∞∑
m=1

Bm

m!
tm

of the complex function f(t) =
t

et − 1
. It is not hard to check that

B1 = −1
2

and Bm = 0 for m odd ≥ 3.

The first Bernoulli numbers are

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42

,

B8 = − 1
30

, B10 =
5
66

, B12 = − 691
2730

,

B14 =
7
6
, B16 = −3617

510
, B18 =

43867
798

.

Definition 9.8. For any positive even integer m, let

Em = denominator
(Bm

m

)
.

For instance,

E2 = 12, E4 = 120, E6 = 252,
E8 = 240, E10 = 132, E12 = 32760,
E14 = 12, E16 = 8160, E18 = 14364.

It turns out that the numbers Em are completely determined by the
following property observed by K. von Staudt in 1845.

Lemma 9.9. Let p be a prime and m a positive even integer. Then, for
s ≥ 1, ps divides Em if and only if (p− 1)p(s−1) divides m.

Proof: See [34, p. 410, Satz 4], [98, p. 56, Theorem 5.10], or [66, Ap-
pendix B, Theorem B.4].
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D. Quillen exhibited the following torsion classes in the algebraic
K-theory of Z.

Theorem 9.10 (Quillen). For any positive even integer j, the group
K4j−1(Z) contains a cyclic subgroup Q4j−1 of order 2E2j. If j is even,
Q4j−1 is a direct summand of K4j−1(Z). If j is odd, the odd-torsion
part of Q4j−1 is a direct summand of K4j−1(Z) and the 2-torsion part
of Q4j−1 (which is ∼= Z/8) is contained in a cyclic direct summand of
order 16 of K4j−1(Z).

Proof: See [75] for the detection of the subgroup Q4j−1 of order 2E2j in
K4j−1(Z) and the discussion of the case where j is even, and Theorem 4.8
of [36] for the case j odd.

We then may conclude the next consequence from Lemma 9.9 and
Theorem 9.10.

Corollary 9.11. The group Ki(Z) contains a cyclic subgroup of or-
der 16 if i ≡ 3 mod 8 and of order 2(i+1)2 if i ≡ 7 mod 8, where (i+1)2
denotes the 2-primary part of the integer (i + 1).

Another very surprising result was proved by C. Soulé in 1979 when
he explained that in fact the numerators of the Bernoulli numbers also
play a role in the investigation of the torsion in the groups Ki(Z). Recall
the following definition.

Definition 9.12. A prime number p is called irregular if there exists a

positive even integer m such that p divides the numerator of
Bm

m
(see [34,

p. 393–414], or [98, p. 6 and Section 5.3], for more details). For instance,

691 is an irregular prime since
B12

12
= − 691

32760
. It turns out that p is

irregular if and only if p divides the class number of the cyclotomic
field Q(ξp), where ξp is a p-th primitive root of unity; moreover, an
irregular prime p is called properly irregular if p does not divide the
class number of the maximal real subfield of Q(ξp) (see [98, p. 39 and
p. 165]). A regular prime is a prime number which is not irregular.
Notice that there are infinitely many irregular primes but that it is still
not known whether there are finitely or infinitely many regular primes.

Theorem 9.13 (Soulé). If p is a properly irregular prime number and
if m is a positive even integer < p such that p divides the numerator of
Bm+1

m + 1
, then the algebraic K-theory group K2m(Z) contains an element

whose order is equal to the p-primary part of
Bm+1

m + 1
.
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Proof: See [85, Section IV.3, Théorème 6], where the argument is based
on the investigation of the relationships between algebraic K-theory and
étale cohomology.

Example 9.14. The group K22(Z) contains 691-torsion.

Remark 9.15. Consider again the short exact sequences

0 −→ K2m(Z) −→ K2m(Q) −→
⊕

p prime

K2m−1(Z/p) −→ 0

given by Theorem 8.3 for all positive integers m. The torsion elements of
K2m(Z) detected by C. Soulé and presented in Theorem 9.13 also belong
to the group K2m(Q) and play a special role in that group with respect to
the subgroup D2m(Q) of divisible elements in K2m(Q) (see Theorem 8.9
and Remark 8.10). In fact G. Banaszak determined the precise order
of the p-primary component D2m(Q)p of D2m(Q) as follows (see [24,
Theorem 3]): if m is an odd integer and p an odd prime, then the order
of D2m(Q)p is equal to the p-adic absolute value of the numerator of
Bm+1

m + 1
. For example, D22(Q) is cyclic of order 691.

Remark 9.16. The torsion in the groups Ki(Z) is really mysterious and
contains a lot of number theoretical information. It is the object of the
following (still open) conjecture due to S. Lichtenbaum and D. Quillen: if
m is a positive even integer, then the quotient of the order of K2m−2(Z)

by the order of K2m−1(Z) should be equal to the absolute value of
Bm

m
,

up to a power of 2 (see [57], [85, Section I.1], or [58, p. 102–103]).

Thus, apart from some classes of order 2, the known torsion classes
in the algebraic K-theory of Z which occur in odd degrees, respectively
in even degrees, are related to the denominators, respectively to the
numerators, of the Bernoulli numbers.

The next attempt to understand the K-theory of Z was made by
M. Bökstedt in 1984 (see [30]): he tried to construct a model for the
algebraic K-theory space BGL(Z)+ and proved that this model detects
the known torsion classes at the prime 2. His idea was simple and ex-
cellent: he considered the classifying space BO of the orthogonal group,
the classifying space BU of the unitary group and, for a prime p, the
K-theory space BGL(Fp)+. Then, he introduced a space J(p) which is
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defined as the pull-back of the following diagram:

J(p) θ′−−−−→ BO�f ′
p

�c

BGL(Fp)+
b−−−−→ BU,

where c is the complexification and b the composition of the plus
construction of the Brauer lift BGL(Fp) → FΨp with the inclu-
sion ϕ : FΨp ↪→ BU (see Definitions 5.1 and 5.7). Observe that the ho-
motopy fiber of both horizontal maps in the above diagram is ΩBU � U .
A direct calculation shows that π1J(p) ∼= Z ⊕ Z/2 and we know that
K1(Z) ∼= Z/2. Consequently, let us write JK(Z, p) for the covering space
of J(p) corresponding to the factor Z/2. It turns out that JK(Z, p) is
the pull-back of the following diagram:

JK(Z, p) θ′−−−−→ BO�f ′
p

�c

BSL(Fp)+
b−−−−→ BSU,

where the bottom arrow is the universal cover of the corresponding line
in the previous diagram. In order to approximate the 2-torsion of the
K-groups of Z, M. Bökstedt chose a prime p ≡ 3 or 5 mod 8, completed
all spaces at 2, and constructed a map ψ : (BGL(Z)+)∧2 → JK(Z, p)∧2
for which he was able to prove:

Theorem 9.17 (Bökstedt). The map Ωψ : Ω(BGL(Z)+)∧2→ΩJK(Z, p)∧2
is a retraction. In particular, the map ψ : (BGL(Z)+)∧2 → JK(Z, p)∧2
induces a split surjection on all homotopy groups.

Proof: See [30, Theorem 2].

Observe at that point that it is easy to compute the homotopy groups
of the space JK(Z, p): consequently, Bökstedt’s theorem provides actu-
ally a direct summand of each group Ki(Z)⊗Z∧

2 , where Z∧
2 denotes the

ring of 2-adic integers. Notice that ψ induces a map

ψ : (BGL(Z)+ × S1)∧2 → J(p)∧2
and that the localization exact sequence (see Theorem 8.3 and Re-
mark 8.4) gives the following short exact sequence for all integers i ≥ 1:

0 −→ Ki(Z) −→ Ki(Z[ 12 ]) −→ Ki−1(F2) −→ 0.



70 D. Arlettaz

However, Ki−1(F2) ⊗ Z∧
2 is always trivial according to Corollary 5.9

except if i = 1, where K0(F2)⊗Z∧
2
∼= Z∧

2 . Therefore, (BGL(Z)+×S1)∧2 ∼=
(BGL(Z[ 12 ])+)∧2 and ψ is actually a map (BGL(Z[ 12 ])+)∧2 → J(p)∧2 which
induces also a split surjection on all homotopy groups.

A very significant step was made by V. Voevodsky in 1997, when
he proved the Milnor conjecture [95] which asserts that if F is a field
of characteristic �= 2, then KM

i (F )/2KM
i (F ) ∼= Hi

ét(F ; Z/2) (see Defin-
ition 2.33). This fundamental theorem has many deep consequences.
In particular, J. Rognes and C. Weibel were then able to use it in
order to calculate the E2-term of the Bloch-Lichtenbaum spectral se-
quence Es,t

2 =⇒ K−s−t(Q; Z/2) and, after a very tricky study of its
differentials, to determine the groups Ki(Q; Z/2). They could then de-
duce from the localization exact sequence the calculation of Ki(Z; Z/2)
for all integers i. At that point, they were very lucky since all elements
of the groups Ki(Z; Z/2) were detected by the elements of Ki(Z) which
were already known by Theorem 9.2, Remark 9.3, Theorem 9.10 and
Corollary 9.11. Consequently, they obtained the following complete cal-
culation of the 2-torsion of the groups Ki(Z).

Theorem 9.18 (Voevodsky, Rognes-Weibel). K1(Z) ∼= Z/2 and for
i ≥ 2,

Ki(Z) ∼=



Z⊕ Z/2⊕ finite odd torsion group, if i ≡ 1 mod 8,
Z/2⊕ finite odd torsion group, if i ≡ 2 mod 8,
Z/16⊕ finite odd torsion group, if i ≡ 3 mod 8,
Z⊕ finite odd torsion group, if i ≡ 5 mod 8,
Z/(2(i + 1)2)⊕ finite odd torsion group, if i ≡ 7 mod 8,
finite odd torsion group, otherwise.

Proof: See [99, Table 1], and [77, Theorem 0.6].

Remark 9.19. W. Browder had already observed in [36, Theorem 4.8],
that the cyclic factor of order 16 comes periodically in all groups Ki(Z)
with i ≡ 3 mod 8.

This theorem has an immediate crucial topological consequence. Con-
sider any prime p ≡ 3 or 5 mod 8 and the above map

ψ : (BGL(Z)+)∧2 → JK(Z, p)∧2

which induces a split surjection on all homotopy groups. It is easy
to check that Theorem 9.18 shows that the homotopy groups of
(BGL(Z)+)∧2 and of JK(Z, p)∧2 are the same. Therefore, Theorem 9.17
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implies that the induced homomorphism

ψ∗ : πi((BGL(Z)+)∧2 )→ πi(JK(Z, p)∧2 )

is an isomorphism for all positive integers i. This and a similar argument
for the map

ψ : (BGL(Z[ 12 ])+)∧2 → J(p)∧2

imply the following result.

Corollary 9.20. There are homotopy equivalences

(BGL(Z)+)∧2 � JK(Z, p)∧2

and

(BGL(Z[ 12 ])+)∧2 � J(p)∧2 .

Consequently, we may deduce the following theorem.

Theorem 9.21. For any prime p ≡ 3 or 5 mod 8, one has the following
commutative diagrams in which the rows are fibrations and where the
right square is a pull-back square:

U∧
2

λ−−−−→ (BGL(Z[ 12 ])+)∧2
θ−−−−→ BO∧

2�

�fp

�c

U∧
2 −−−−→ (BGL(Fp)+)∧2

b−−−−→ BU∧
2

and
SU∧

2
λ−−−−→ (BGL(Z)+)∧2

θ−−−−→ BO∧
2�


�fp

�c

SU∧
2 −−−−→ (BSL(Fp)+)∧2

b−−−−→ BSU∧
2 .

Here, the maps θ, fp, θ and fp are the compositions of the homotopy equi-
valence ψ : (BGL(Z[ 12 ])+)∧2


−→ J(p)∧2 , respectively ψ : (BGL(Z)+)∧2

−→

JK(Z, p)∧2 , with the maps θ
′
, f ′

p, θ
′ and f ′

p. Moreover, θ and θ are the
maps induced by the inclusions Z[ 12 ] ↪→ R and Z ↪→ R, and fp and fp
are induced by the reduction mod p.

Proof: This follows from the two diagrams introduced above and from
Corollary 9.20. A careful study of Bökstedt’s construction implies the
identification of the maps θ, θ, fp, fp.
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This result provides a very complete knowledge of the homotopy type
of the K-theory space BGL(Z)+ at the prime 2. First of all, the ho-
motopy groups Ki(Z) = πi(BGL(Z)+) of this space are known (after
2-completion) by Theorem 9.18. Then, it is also possible to determine
at the prime 2 the Hurewicz homomorphism hi : Ki(Z)→ Hi(GL(Z); Z).
If i ≡ 1 mod 4 and i ≥ 5, then Ki(Z) ∼= Z⊕(finite group) by Theorem 9.1.
Let us call bi a generator of the infinite cyclic summand of Ki(Z). On
the other hand, it follows from Theorem 9.5 that H∗(GL(Z); Q) ∼=
ΛQ(x5, x9, x13, . . . , x4l+1, . . . ), where the elements x4l+1 are primitive
generators of degree 4l+1. Thus, for any integer i ≡ 1 mod 4 (with i ≥ 5)
there exists a generator ai of an infinite cyclic summand of Hi(GL(Z); Z)
with the property that

hi(bi) = ±µiai + (torsion element),

where µi is a positive integer. By using the fact that the Hurewicz ho-
momorphism πi(SU)→ Hi(SU ; Z) acts in some sense as multiplication
by ±( i−1

2 )! (see [40, Théorème 6]) and the map λ : SU∧
2 → (BGL(Z)+)∧2

provided by Theorem 9.21, it is not difficult to compute the 2-primary
part (µi)2 of these integers µi.

Corollary 9.22. For all integers i ≡ 1 mod 4 with i ≥ 5, (µi)2 =

((
i− 1

2
)!)2.

Proof: See [21, Théorème 4.17].

Remark 9.23. In a similar way, one can compute the effect of the
Hurewicz homomorphism on the 2-torsion classes of K∗(Z) (see [21,
Théorème 4.22]).

In order to understand the homotopy type of BGL(Z)+, one also needs
to know its Postnikov k-invariants

ki+1(BGL(Z)+) ∈ Hi+1(BGL(Z)+[i− 1];Ki(Z))

(see Section 7). We know from Theorem 7.17 that all k-invariants
ki+1(BGL(Z)+) are cohomology classes of finite order.

Definition 9.24. For any i ≥ 2, let ρi denote the order of the k-invari-
ant ki+1(BGL(Z)+) in Hi+1(BGL(Z)+[i− 1];Ki(Z)).
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Corollary 9.25. For all integers i ≥ 2, the 2-primary part (ρi)2 of the
integer ρi is given by

(ρi)2 =



((
i− 1

2
)!)2, if i ≡ 1 mod 4,

2, if i ≡ 2 mod 8 and i ≥ 10, or if i = 3 or 7,
16, if i ≡ 3 mod 8 and i ≥ 11, or if i = 15,
2(i + 1)2, if i ≡ 7 mod 8 and i ≥ 23,
1, otherwise.

Proof: This follows directly from Proposition 7.10 and the description of
the Hurewicz homomorphism at the prime 2 provided by Corollary 9.22
and Remark 9.23 (see [21, Théorème 5.15] for more details).

The fibration

SU∧
2

λ−→ (BGL(Z)+)∧2
θ−→ BO∧

2

given by Theorem 9.21 enables us to deduce two other important proper-
ties of the algebraic K-theory space of Z. Let us first completely compute
the 2-adic product structure of K∗(Z).

Definition 9.26. The 2-adic product map in K∗(Z) is the composition

2 : Ki(Z)⊗Kj(Z) −→ Ki+j(Z) −→ Ki+j(Z)⊗ Z∧
2 ,

where the first arrow is the usual K-theoretical product defined in Defin-
ition 4.5 and the second the tensor product of Ki+j(Z) with the inclusion
of Z into the ring of 2-adic integers Z∧

2 (i, j ≥ 1). We continue to denote
this product by the symbol 2.

Theorem 9.27. The 2-adic product

2 : Ki(Z)⊗Kj(Z) −→ Ki+j(Z)⊗ Z∧
2

is trivial for all positive integers i and j, except if i ≡ j ≡ 1 mod 8 or
i ≡ 1 mod 8 and j ≡ 2 mod 8 (or i ≡ 2 mod 8 and j ≡ 1 mod 8), where
its image is cyclic of order 2. In both exceptional cases the non-trivial
element in the image of the 2-adic product map is the product of two
elements of order 2.
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Proof: The 2-adic product 2 : Ki(Z)⊗Kj(Z) −→ Ki+j(Z)⊗Z∧
2 is clearly

trivial for dimension reasons (see Theorem 9.18) whenever i and j do not
belong to one of the following six cases:

i ≡ 1 mod 8 and j ≡ 1 mod 8,
i ≡ 1 mod 8 and j ≡ 2 mod 8,
i ≡ 2 mod 8 and j ≡ 5 mod 8,
i ≡ 2 mod 8 and j ≡ 7 mod 8,
i ≡ 3 mod 8 and j ≡ 7 mod 8,
i ≡ 5 mod 8 and j ≡ 5 mod 8.

In order to compute these six products, let us consider the following
commutative diagram induced by the inclusion Z ↪→ R:

Ki(Z)⊗Kj(Z) θ∗⊗θ∗−−−−→ πiBO ⊗ πjBO� 

�
πi+jSU ⊗ Z∧

2
λ∗−−−−→ Ki+j(Z)⊗ Z∧

2
θ∗−−−−→ πi+jBO ⊗ Z∧

2 ,

where the right vertical arrow is the composition of the product map in
π∗BO with the tensor product with Z∧

2 and where the bottom sequence is
the homotopy exact sequence of the top fibration of the second diagram
in Theorem 9.21. If i + j is even, θ∗ is injective since πi+jSU = 0.
Consequently, this diagram detects the 2-adic product Ki(Z) 2 Kj(Z)
when i+j is even. This produces the calculation of the product in three of
the above six cases. The 2-adic product turns out to be trivial in the last
two cases. For the case i ≡ j ≡ 1 mod 8, recall that Ki(Z) ∼= Z⊕ Z/2⊕
(finite odd torsion group) if i ≡ 1 mod 8 (and i ≥ 9) and that Ki(Z) ∼=
Z/2⊕ (finite odd torsion group) if i ≡ 2 mod 8 (see Theorem 9.18). Let
us denote by yi, respectively by zi, the element of order 2 in Ki(Z) when
i ≡ 1 mod 8, respectively when i ≡ 2 mod 8. Our argument shows that if
i ≡ j ≡ 1 mod 8, the 2-adic product 2 : Ki(Z)⊗Kj(Z)→ Ki+j(Z)⊗ Z∧

2

satisfies

yi 2 yj = zi+j

(where zi+j is also written for the image of the element zi+j of Ki+j(Z)
under the homomorphism Ki+j(Z) → Ki+j(Z) ⊗ Z∧

2 ) and vanishes on
other elements. In particular, we get the isomorphism

Ki(Z)⊗ Z∧
2
∼= (K1(Z) 2 Ki−1(Z))⊗ Z∧

2 ,
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for i ≡ 2 mod 8, which is useful in order to calculate the 2-adic product
in the three remaining cases of the above list (see [14, Theorems 5.6,
5.7, 5.8 and 5.9] for the details of all these computations).

Finally, the fibration

SU∧
2

λ−→ (BGL(Z)+)∧2
θ−→ BO∧

2

also provides the determination of the Hopf algebra structure of the
mod 2 cohomology of the infinite general linear group GL(Z) as a module
over the Steenrod algebra.

Theorem 9.28. There is an isomorphism of Hopf algebras and of mod-
ules over the Steenrod algebra

H∗(GL(Z); Z/2) ∼= H∗(BGL(Z)+; Z/2)
∼= H∗(BO; Z/2)⊗H∗(SU ; Z/2)
∼= Z/2[w1, w2, w3, . . . ]⊗ ΛZ/2(u3, u5, u7, . . . ),

where the wj’s are the Stiefel-Whitney classes of degree j (j ≥ 1) and
the classes u2k−1 are exterior classes of degree 2k − 1 (k ≥ 2).

Proof: The recent paper [15] contains the proof of this assertion (see
Theorem 1 of [15]) and an explicit definition of the exterior classes u2k−1∈
H2k−1(BGL(Z)+; Z/2) (see [15, Definition 10 and Remark 14]). The
classes wj are the images under θ∗ : H∗(BO; Z/2)→ H∗(BGL(Z)+; Z/2)
of the universal Stiefel-Whitney classes in H∗(BO; Z/2) (see [66, Chap-
ter 7]). Notice that an additive version of the above isomorphism has
been conjectured in [42, Corollary 4.3], and that the statement of the
theorem can also be deduced from Theorem 4.3 and Remark 4.5 of [68]
together with Corollary 9.20.

All these results provide a very deep knowledge of the homotopy type
of the K-theory space BGL(Z)+ at the prime 2. At odd primes, the
situation is more difficult. If we would like to understand BGL(Z)+ at
an odd prime l, we still have Bökstedt’s space JK(Z, p) for all primes p.
It is even possible to prove that if p is well chosen, i.e., if p generates
the multiplicative group (Z/l2)∗, then the l-completion JK(Z, p)∧0 of
JK(Z, p) does not depend on p (see [21, Proposition 3.24]): we shall
denote it by JKZ∧

0 .



76 D. Arlettaz

Definition 9.29. An odd prime l is called a Vandiver prime if it does
not divide the class number of the maximal real subfield of the cyclotomic
field Q(ξl), where ξl denotes an l-th primitive root of unity. It is known
that all odd primes≤ 4′000′000 are Vandiver primes and it is a conjecture
that all odd primes are Vandiver primes (see [98, Section 8.3]).

Theorem 9.30. For any Vandiver prime l, the space JKZ∧
0 is a direct

factor of (BGL(Z)+)∧0 .

Proof: This theorem is due to C. Ausoni (see [21, Théorème 3.47]) and
its proof is based on the result by W. G. Dwyer and S. A. Mitchell which
asserts that (U/O)∧0 is a retract of (BGL(Z[ 1l ])

+)∧0 for Vandiver primes l
(see [43, Example 12.2]).

Again, it is easy to compute the homotopy groups of JKZ∧
0 : they

contain the elements of infinite order given by Theorem 9.1 and the
torsion classes detected by D. Quillen using the K-theory of finite fields
(see Theorem 9.10).

Remark 9.31. If l is a regular prime, the Lichtenbaum-Quillen conjecture
(see Remark 9.16) is equivalent to the conjecture saying that there is a
homotopy equivalence (BGL(Z)+)∧0 � JKZ∧

0 . However, at irregular
primes, this cannot be true since the even dimensional homotopy groups
of JKZ∧

0 do not contain the irregular torsion discovered by C. Soulé (see
Theorem 9.13).

Nevertheless, Theorem 9.30 helps us to understand the homotopy
type of BGL(Z)+ since it implies the three following results (see [21,
Théorèmes 4.17 and 5.14 and Proposition 5.18]).

Corollary 9.32. For any integer i ≡ 1 mod 4 (i ≥ 5), the l-primary part
(µi)l of the integer µi (see Corollary 9.22) which describes the effect
of the Hurewicz homomorphism on the elements of infinite order bi ∈
Ki(Z) has the following property: if l is a Vandiver prime, then (µi)l =

((
i− 1

2
)!)l.

Corollary 9.33. For any integer i ≡ 1 mod 4 (i ≥ 5), the l-primary
part (ρi)l of the order ρi of the k-invariant ki+1(BGL(Z)+) satisfies: if

l is a Vandiver prime, then (ρi)l ≥ ((
i− 1

2
)!)l.
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Corollary 9.34. If l is a regular prime and if the Lichtenbaum-Quillen
conjecture is true at l (see Remark 9.31), then the integers (ρi)l can be
exactly determined:

(ρi)l =


((
i− 1

2
)!)l, if i ≡ 1 mod 4,

l(i + 1)l, if 2(l − 1) is a proper divisor of (i + 1),
1, otherwise,

except for (ρ11)3 which is equal to 3.

10. Further developments

The goal of this paper was to show how some topological methods can
provide very general and deep results on the algebraic K-theory of rings.
We especially emphasized the use of the infinite loop space structure of
the K-theory space BGL(R)+ of any ring R, of cohomological calcula-
tions for linear groups, of the relationships between K-theory and linear
group homology, and of the study of homotopical approximations. Of
course, the arguments presented here do not represent all the topological
considerations which can give interesting K-theoretical information.

It is not our purpose to describe these other ideas in details in this
paper, but we just want to mention some of them. W. Browder ap-
plied in [36] the techniques of homotopy theory with finite coefficients
(see [69]) in order to investigate the algebraic K-groups with coeffi-
cients in Fp for any prime p and to deduce nice theorems on the ordi-
nary algebraic K-theory: in particular, he could exhibit a periodicity
result for the groups Ki(Z) (see Theorem 9.10, Theorem 9.18 and Re-
mark 9.19). F. Waldhausen introduced the S-construction which enabled
him to present K-theoretical notions and results in a very general way
over suitable categories (see for instance [97, Section 1.3], and [62]).
W. G. Dwyer and E. M. Friedlander constructed in [41] another spec-
trum associated with a ring R, the étale K-theory spectrum of R, whose
homotopy groups are called the étale K-groups of R: they are in prin-
ciple easier to calculate and some strong results are known on their
relationships with the ordinary algebraic K-groups of R; however, the
homomorphism relating these two K-theories is still the object of sev-
eral difficult conjectures (see [41] and [42] for example). Some other
impressive progress has been made by using techniques from stable ho-
motopy theory (see for instance the works by M. Bökstedt, W. G. Dwyer,
R. McCarthy, S. A. Mitchell, J. Rognes and C. Weibel).
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Let us finally recall that the definition of the algebraic K-theory of a
ring R is based on the Q-construction over the category P(R) of finitely
generated projective R-modules (see Remark 3.16): of course, this can
also be done if we replace the category of finitely generated projective
modules over a ring by another nice category. This shows that the main
specificity of algebraic K-theory comes from its interaction with other
areas of mathematics. Therefore, many K-theoretical results are conse-
quences of methods from algebraic geometry, arithmetic, number theory,
algebra, cyclic homology, operator theory, and so on. This explains also
why almost all problems in algebraic K-theory are quite complicated
and why many conjectures are still unsolved. However, this is obviously
a sign of the great role that algebraic K-theory will play in the future.
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fini, Math. Ann. 268(3) (1984), 317–345.
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