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Abstract. We study a range of cosmological models permitting dimensional reductions in
which subsets of the dimensions of space can expand at different rates. A specific inflationary
model of this sort proposed by Linde and Zelnikov is studied in detail and shown to be
destabilized by the addition of an isotropic radiation field to the magnetic and scalar stresses
which permit anisotropic inflation.

PACS numbers: 9880C, 0450, 0460

1. Introduction

The idea that space contains more than three dimensions, with all but three residing now
in some compactified form, is a persistent one. It played a leading role in the modern
formulation of Kaluza–Klein (Freund 1982, Cremmeret al 1983) and supergravity theories
(Witten 1985, Derendinger 1986), and persists in the context of contemporary superstring
theories (Dineet al 1985, Greenet al 1987, Green and Schwarz 1984), even though specific
mechanisms of dimensional compactification remain undiscovered. Extra spatial dimensions
can only exhibit temporal changes in the very early universe, otherwise they create conflicts
with our observations of the constancy in time of those ‘constants of nature’ that define the
bare strengths of the fundamental forces (Freund 1982, Marciano 1984, Barrow 1987b). It
is expected, but not demanded, that any such changes would have been completed, along
with the process of compactification, very soon after the Planck epoch at an energy close
to 1019 GeV.

A simple description of cosmological models with separate internal and external spaces
can be achieved by studying anisotropic cosmologies with an imposed product space
structure. Although this has the disadvantage of requiring all the cosmological matter
fields and associated interactions to be put in by hand, it allows some aspects of the
stability of particular geometrical configurations to be studied. Some simple examples
have been studied by Chodos and Detweiler (1980), Barrow and Stein Schabes (1985,
1986), and Barrow and Burd (1988), but we are motivated primarily by the study of Linde
and Zelnikov (1988) who present a dimensionally reduced solution to a (5+1)-dimensional
Kantowski–Sachs spacetime containing a single scalar field, a magnetic field and a non-zero
cosmological constant. Inflation occurs in only three dimensions of this solution because
of the slow rolling of the scalar field and creates a cosmology in which three dimensions
of space become large whilst the rest remain small, with constant radius, as a result of the
stresses imposed by the other matter fields. In the context of chaotic or stochastic inflation,
this general pattern could provide a basis for a cosmological evolution in which different
regions of the Universe display different numbers of large and compactified dimensions.
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However, the example given by Linde and Zelnikov relies upon geometric idiosyncrasies of
the Kantowski–SachsS2 × S1 metric which are known from the study of no-hair theorems
for inflation in anisotropic cosmologies with three space dimensions (Moniz 1993, Jensen
and Stein Schabes 1986, Weber 1984). Therefore, it is important to investigate the condition
under which such solutions are stable.

In order to do this we shall consider first the asymptotic stability of (N +1)-dimensional
spacetimes containing a scalar field with an exponential self-interaction potential and then
investigate the stability of the Linde–Zelnikov solution in the presence of other realistic
matter fields.

2. Anisotropic models with a scalar field and an exponential potential

Before we study the examples of Linde and Zelnikov (1988) in which dimensional
segregation occurs, we will consider the fate of universes evolving under the influence
of an exponential scalar-field potential. Since this potential has no minimum there is
simple asymptotic behaviour which is characteristic of the behaviour of potentials with
minima which are exponentially steep over part of their ranges. We have chosen the metric
to illustrate how it is possible for there to exist both solutions in which all directions
inflate towards an isotropic state in accord with the expectations of the no-hair theorems
and solutions in which there occurs the dimensional segregation envisaged by Linde and
Zelnikov. The specific choice of an exponential potential allows us to capture the behaviour
more precisely with exact solutions. Other potentials exhibit the same general behaviour
but we would need to use approximations to describe them.

We consider homogeneous anisotropic spacetimes withN space dimensions, of which
d form a sub-space with metricgij , 1 6 i, j 6 d, andD = N − d form a sub-space with
metric gIJ , d + 1 6 I, J 6 N . The metric for the entire spacetime is taken to have the
simple form

ds2 = −dt2 + a2(t)gij dxi dxj + b2(t)gIJ dxI dxJ (1)

wherea(t) andb(t) are the expansion scale factors associated with the internal and external
spaces respectively. We takegij to be a Euclidean metric andgIJ to be aD-dimensional
homogeneous space of constant curvature characterized by a constantk which can be scaled
to take the value 0,+1, or −1 if the space has zero, positive, or negative curvature
respectively. Ifk = 0 then the spacetime is theN -dimensional version of a Bianchi
type I spacetime;k = −1 similarly corresponds to a Bianchi type III spacetime andk = 1
corresponds to a Kantowski–Sachs spacetime. The only matter content is assumed to be a
scalar field,ϕ, which has an exponential potential,V (ϕ), of the form

V (ϕ) = V0 exp(−λϕ) (2)

whereλ andV0 > 0 are constants. The dynamical Einstein equations are (with units such
that 8πG = c = 1)

ä +
[
(d − 1)

ȧ

a
+ D

ḃ

b

]
ȧ + ∂

∂a
Wa(a, ϕ) = 0 (3)

b̈ +
[
d

ȧ

a
+ (D − 1)

ḃ

b

]
ḃ + ∂

∂b
Wb(b, ϕ) = 0. (4)

Here˙= d/dt and the potentialsWa andWb take the form,

Wa(a, ϕ) = − 1

N − 1
(V (ϕ) + 3) a2 (5)
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and

Wb(b, ϕ) = (D − 1)k ln(b) − 1

N − 1
(V (ϕ) + 3)b2 (6)

where3 is a cosmological constant. Use can be made of the first integral

d(d − 1)
ȧ2

a2
+ D(D − 1)

ḃ2

b2
+ 2dD

ȧ

a

ḃ

b
+ D(D − 1)

k

b2
− 23 = 2

(
1

2
ϕ̇2 + V (ϕ)

)
(7)

to eliminatek from the above equations. The first integral can then be replaced by the
conservation equation for the scalar field:

ϕ̈ +
(

d
ȧ

a
+ D

ḃ

b

)
ϕ̇ = − ∂

∂ϕ
V (ϕ). (8)

Using the exponential potential (2), equations (3), (4), and (8) form a closed three-
dimensional system of autonomous equations forȧ, ḃ, and ϕ̇. Equations (3) and (4)
can be viewed as a classical dynamical equation with a damping termγaȧ or γbḃ (where
γa = (d − 1)ȧ/a + Dḃ/b andγb = dȧ/a + (D − 1)ḃ/b) and a potentialWa or Wb. For a
slowly rolling field, |ϕ̇/ϕ| � ȧ/a and |ϕ̇/ϕ| � ḃ/b, and the solutions to these equations
can be viewed as a point ‘rolling’ from the top of the potentialsWa andWb. The general
form of the potentialWb is sketched in figure 1. Fork = 0 and−1 the solution takes a
single form and evolves down the right-hand side of the potentialWb. For the closed case,
k = 1, the potential possesses a maximum and two types of solution are possible. One
corresponds to the left-hand side of the maximum, and the other to the right-hand side (see
curve (a) in figure 1). Solutions rolling down the right-hand side of the potential converge
on thek = 0 solution, and so tend asymptotically to ‘flatness’.

W(b)

(b)

(a)

Scale Factor , b

(c)

Figure 1. The potentialWb, defined by equation (6), for the three possible values ofk and fixed
φ: (a) positive curvature,k = 1, note that a maximum occurs atb2 = (D − 1)(N − 1)/2V (ϕ);
(b) zero curvature,k = 0; (c) negative curvature,k = −1.

By rewriting equations (3) and (4) in terms of the volume expansion (θ ≡ dȧ/a+Dḃ/b)
and the shear (σ ≡ √

dD/2N
(
ȧ/a − ḃ/b

)
), and defining a new time variableτ , via√

V (ϕ)dτ = dt, (9)



2696 J Yearsley and J D Barrow

the Einstein and scalar-field equations become

θ ′ + θ2

N
+ 1

2
θϕ′ ∂

∂ϕ
ln(V (ϕ)) = 2

N − 1

(
1 + 3

V (ϕ)

)
− ϕ′2 (10)

σ ′ + θσ + 1

2
σϕ′ ∂

∂ϕ
ln(V (ϕ)) =

√
d

DN

[(
1 + 3

V (ϕ)

)
+ ϕ′2

2
+ σ 2 − N − 1

2N
θ2

]
(11)

ϕ′′ + θϕ′ = −
(

1

2
ϕ′2 + 1

)
∂

∂ϕ
ln(V (ϕ)) (12)

from which the critical points of the corresponding phase plane can be found when
θ ′ = σ ′ = ϕ′′ = 0, ( ′ = d/dτ ).

Besides the case whenλ = 0, there are two other cases which need to be investigated
according to whether the cosmological constant,3, is zero or non-zero (solutions are valid
whilst (1 + V (ϕ)/3)−1 � θϕ′ + 1). For positive semi-definite values of the scalar field
each case exhibits two solutions given by
3 = 0; λ = 0

a(t) = a(t0) exp

(
t

t0

)
b(t) = b(t0) exp

(
t

t0

)
(13a)

ϕ − ϕ(t0) = 0

3 = 0; λ 6= 0

a(t) = a(t0)

(
t

t0

)p

b(t) = b(t0)

(
t

t0

)q

ϕ − ϕ(t0) = 2

λ
ln

t

t0

3 6= 0; λ 6= 0 (for 3/(3 + V (ϕ)) � θϕ′ + 1)

a(t) = a(t0)

[
cosh

Cλ

2
√

3
(t − t0)

]p

b(t) = b(t0)

[
cosh

Cλ

2
√

3
(t − t0)

]q

ϕ − ϕ(t0) = 2

λ
ln

t

t0

where

p = q = 4

λ2(N − 1)

C2 = 2λ2(N − 1)

4N − λ(N − 1)
(13b)

or

p = 4

λ2(N − 1)
q = 1 (13c)

C2 = 2λ2(N − 1)

λ2(N − 1)(D − 1) − 4d
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and wheret0 is an integration constant. The critical points given by equations (13a)–(13c)
are the stationary solutions of equations (10)–(12). Two types of solution behaviour can
occur around each critical point. Either all solutions as they evolve forward in time approach
the point, in which case the critical point is stable, or some solutions diverge away from
the point, in which case the critical point is unstable. If a critical point solution is stable
then it is an attractor in the space of solutions. Thus a stable critical point is to some extent
(depending upon the attractors domain of attraction) a generic behaviour for the system’s
asymptotic time development.

The solution given by equation (13a) displays the usual (N + 1) version of de Sitter
inflation, in accordance with no-hair theorems. Sinceσ = 0 the solution is isotropic and
thus corresponds to a metric withk = 0.

The solution given by equations (13b) also hasσ = 0, so the solution is isotropic and
corresponds to a metric withk = 0. For 3 = 0, andλ2 6 4/(N − 1), this solution is the
(N + 1)-dimensional generalization of the usual isotropic power-law inflationary solution
studied by Barrow (1987a), Halliwell (1987), and Barrow and Burd (1988). This is as
expected from no-hair theorems. Non-zero3 values create a solution which asymptotes
towards (N + 1)-dimensional de Sitter expansion at larget .

The solutions given by equations (13c) are anisotropic and correspond to a metric
whose curvature depends upon the value ofλ. If the cosmological constant is zero
(3 = 0) both scale factors,a(t) andb(t), exhibit power-law expansion. Ifa(t) is inflating
(λ2 = 4/(N − 1)) the curvature is positive (k = +1) whilst if a(t) is non-inflating the
curvature is negative (k = −1). Howeverb(t) in general does not have the same behaviour
as a(t). The exponent fora(t) depends uponλ, whereas the exponent forb(t) is always
1. Thereforeb(t) decouples from thea(t) evolution and always exhibits critical power-law
inflation, contrary to the expectations of the no-hair theorem. This is not a contravention of
the theorem though, since the positive curvature case is always excluded from such theorems
(Wald 1983, Jensen and Stein Schabes 1986, Barrow and Götz 1989). The exception is
whenλ2 = 4/(N − 1), thena(t) ∝ b(t) and this ‘anisotropic’ solution is isotropic. In this
special case the curvature of the space is zero. This anisotropic inflationary behaviour is
characteristic of the geometrical structure of Kantowski–Sachs universes. It will not occur
in Bianchi type IX closed universes because of the SO(N ) symmetry.

The scale factorb(t) is required to be proportional tot to compensate the accelerating
affect of the curvature. Thus the behaviour ofb(t) is ‘driven’ by the curvature of the space
and is independent ofλ and the scalar-field potential. Since the behaviour ofb(t) is fixed,
the shear can be used to determine the behaviour ofa(t). Positive curvature increases the
shear, and thus requiresa(t) to be inflating (negative curvature decreases the shear and
requiresa(t) to be non-inflating).

For a non-zero cosmological constant the solutions give anisotropic de Sitter expansion
at late times.

Now by linearizing about these stationary solutions the eigenvalues for the particular
solutions can be found and their stability properties established. Their character depends
upon the value of the parameterλ defining the slope of the scalar-field potential in
equation (2) and by the total space dimension,N , as follows:

(i) λ = 0. The two time variablest and τ are proportional and the solution given
by equation (13b) reduces toa(t) ∝ b(t) ∝ exp(t

√
2V0/[N(N − 1)]), which is de Sitter

expansion (3 = 0). The potential in equation (2) is constant,V (ϕ) = V0, and plays the role
of a cosmological constant (if3 6= 0 thenV0 in the above equation should be replaced by
V0 + 3). All the eigenvalues are real and negative definite so the critical point is a stable
node and the isotropic solution is asymptotically stable ast → ∞ in accordance with the
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expectation of the cosmic no-hair conjecture.
For the solution given by equation (13c) the eigenvalues have different signs and thus

the critical point is a saddle point. The solution, which is anisotropic with a non-zero
cosmological constant and positive curvature, is unstable. The shear,σ , has a value√

DV0/[N(N − 1)]; the scale factors evolve such thata(t) ∝ exp(t
√

2V0/[d(N − 1)])
andb(t) = constant.

(ii) 0 < λ < 2/
√

N − 1. For this range ofλ the eigenvalues for the isotropic solution
given by equation (13b) are once again real and negative, so the critical point remains a
stable node and the model approaches isotropy ast → ∞. For 3 = 0 the scale factors
have a power-law evolution where the exponent is greater than 1. This specifies power-law
inflation, and therefore this model solves the horizon and flatness problems. The curvature
of the sub-space with scale factorb is zero.

The anisotropic solution given by equation (13c) still has eigenvalues of different signs
and is a saddle point in the phase plane. The curvature is positive and decelerates the scale
factor b.

(iii) λ = 2/
√

N − 1. In this case the two solutions coalesce to one isotropic solution and
the scale factors evolve witha(t) ∝ b(t) ∝ t if 3 = 0. The eigenvalues are all real: two are
negative definite, whilst one is zero, and hence the stability is determined at second order.
Using a standard Lyapunov procedure outlined in Barrow and Sonoda (1986), the solution
is found to be unstable. The zero eigenvalue, which is associated with the shear, is due to
the curvature and the energy density of the scalar field evolving at the same rate. The scalar
field tries to isotropize the space, whilst the curvature tries to produce an anisotropy. The
combination of the two gives a logarithmic decay of the shear and hence a zero eigenvalue
in the linear perturbation about the critical point. The metric has zero curvature.

(iv) 2/
√

N − 1 < λ <
√

4N/(N − 1). In this range the isotropic solution given by
equation (13b) is no longer stable since the eigenvalues are complex and have different
signs. The critical point is therefore an unstable spiral. The metric is still flat.

The anisotropic solution given by equation (13c) is stable since its complex eigenvalues
have positive definite real parts. The critical point is therefore a stable spiral. The curvature
of the space for the scale factorb is now negative and accelerates the scale factorb.

(v) λ = √
4N/(N − 1). At this value ofλ the solution given by equation (13b) becomes

singular, and the critical point goes off to infinity. The remaining anisotropic solution again
is stable and the critical point is a stable spiral. The curvature of the model is negative.

These stability results are summarized in table 1. These examples display the possibility
of obtaining different amounts of inflation in different sub-dimensions of space. In models
where the isotropic (de Sitter or power-law) inflationary behaviour is a stable attractor, all
dimensions inflate at a similar rate towards isotropy, and there is no possibility of leaving
some dimensions small whilst others enlarge by inflation. In contrast, where the anisotropic
expansion remains a stable attractor, it is possible for a subset of the dimensions to inflate
to large size whilst others remain relatively small. Since the model we have considered is
very simple we shall now consider some further generalizations obtained by adding further
matter fields.

3. Anisotropic solutions with a cosmological magnetic field

We have seen how the particular geometrical structure of the closed anisotropic universes of
Kantowski–Sachs form permits a violation of the expectations of the cosmic no-hair theorem.
Different groups of dimensions can expand at different rates, so creating a segregation of
dimensions. Having seen this explicitly in the simplest soluble case we now consider the
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Table 1. A summary of the stability results discussed in the text. The model contains only a
scalar field and a cosmological constant,3. The scalar field has an exponential potential of the
form V (ϕ) = V0 exp(−λϕ). Scale factors take the forma(t) ∝ tp andb(t) ∝ tq . Inflation of
a(t) occurs when̈a > 0.

Isotropy and Inflation Inflation
p q λ curvature Stability bya(t) by b(t)

4
λ2(N−1)

4
λ2(N−1)

0 6 λ <

√
4

N−1 Isotropic,k = 0 Stable Yes Yes

4
λ2(N−1)

1 0 6 λ <

√
4

N−1 Anisotropic,k = +1 Unstable Yes No

1 1 λ =
√

4
N−1 Isotropic,k = 0 Unstable No No

4
λ2(N−1)

4
λ2(N−1)

√
4

N−1 < λ <

√
4N

N−1 Isotropic,k = 0 Unstable No No

4
λ2(N−1)

1
√

4
N−1 < λ <

√
4N

N−1 Anisotropic,k = −1 Stable No No

1
N

1 λ =
√

4N
N−1 Anisotropic,k = −1 Stable No No

more complicated scenario created by Linde and Zelnikov, in which a magnetic field is
included to contribute an anisotropic pressure and the potential of the scalar field is left
unspecified (assuming only that it is shallow enough to create slow roll inflation). We
shall extend this model by adding an isotropic radiation field to show that the dimensional
segregation found by Linde and Zelnikov is destabilized by its presence. The phase plane
analysis presented in the last section can be extended to models containing both a source-
free magnetic field and an isotropic perfect fluid. In terms of the expansion and shear, the
Einstein and conservation equations for this case are:

θ ′ + θ2

N
+ 1

2
θϕ′ ∂

∂ϕ
ln(V (ϕ))

= 2

N − 1

(
1 + 3

V (ϕ)

)
− ϕ′2 − Nγ − 2

N − 1

ρ

V (ϕ)
− 2

N − 1

ρm

V (ϕ)
(14)

σ ′ + θσ + 1

2
σϕ′ ∂

∂ϕ
ln(V (ϕ))

= 1

D

√
dD

2N

[
2

(
1 + 3

V (ϕ)

)
+ ϕ′2 + 2σ 2 − N − 1

N
θ2

+ 2

V (ϕ)
(ρ + ρm + pd − pD)

]
(15)

ϕ′′ + θϕ′ = −
(

1

2
ϕ′2 + 1

)
∂

∂ϕ
ln(V (ϕ)) (16)

ρ ′ + 2 − γ

V (ϕ)
θρ = 0 (17)

ρ ′
m + N − 1

V (ϕ)

θ

N
ρm =

√
2dD

N
(pD − pd)σ (18)

where ′ = d/dτ = V (ϕ)−
1
2 d/dt , ρ is a perfect fluid density with pressurep which obeys

an equation of statep = (γ − 1)ρ; ρm is the energy density of the magnetic field,pd is
its pressure in thed-dimensional sub-space andpD is its pressure in theD-dimensional
sub-space. The critical points of the five-dimensional system (14)–(18) can be calculated
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for 3 = 0 and for 3 6= 0 if the assumption thatV (ϕ)/3 ≈ constant holds, as it does
once de Sitter inflation begins. The general results are lengthy and will not be presented
here. Instead we confine our attention to a (5+ 1)-dimensional Kantowski–Sachs model
containing only a scalar and magnetic field. The results can be compared with the work
of Linde and Zelnikov (1988). They considered a spacetime with space-like hypersurfaces
M3 × S2, where the magnetic field has a monopole configuration (i.e. its vector potential
has only one component, which is purely azimuthal in theS2 space,Aφ = f (1 − cosθ),
where f is a constant andθ is the poloidal coordinate in theS2 space). This gives an
electromagnetic field tensor

Fij = 0 (19)

FIJ = f
√

| detgIJ |εIJ (20)

whereεIJ = −εJI . Such a configuration gives a homogeneous source-free magnetic flux
only in the M3 space. The topology of theS2 space forbids a source-free magnetic field
from having non-zero components there. IfV (ϕ) = 0 at its minimum then3 = 8/f 2 and
a ‘radius of compactification’b0 can be defined for the compact space as

b0 = f

2
=

√
2

3
. (21)

This value for the scale factor,b(t), is the critical stability case identified by Moniz (1993)
for the Kantowski–Sachs model containing a scalar field with an exponential potential of
the form (2) and a positive cosmological constant.

(a)

(b)

Scale Factor , b

W(b)

Figure 2. The general form of the effective potentialW(b) at constantϕ, when (a)V (ϕ) = 0,
and (b)V (ϕ) > 3/3, as found by Linde and Zelnikov. The depth of the minimum has been
exaggerated in case (a).

As before, the Einstein equations can be written in the form of classical dynamical
equations for the scale factors. The potentialWb becomes,

W(b, ϕ) = 3

8

(
b0

b

)2

+ ln
b

b0
− 1

8

(
1 + V (ϕ)

3

)
b2

b2
0

. (22)
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This potential is shown in figure 2. For a slow-rolling field, as defined in the previous
section, Linde and Zelnikov found two solutions, one isotropic and the other anisotropic.
The anisotropic solution, which exists whenV (ϕ)/3 < 3, lets the scale factorb(t) ‘sit’ in
the minimum of the potentialW(b, ϕ), so b(t) asymptotically approachesb0 as t → ∞.
Perturbing the scale factors byα(t) andβ(t) such that

a(t) −→ a(t)(1 + α(t)) (23)

b(t) −→ b(t)(1 + β(t)) (24)

and then linearizing the equations gives the stability criterion(
b

b0

)2

6 3

2
(25)

for this anisotropic solution. This inequality is satisfied for the anisotropic solution, provided
thatV (ϕ) < 3/3. Thus the anisotropic solution is stable to metric perturbations of the form
(23)–(24) whenever the solution exists.
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Figure 3. The anisotropic evolution of the Linde–Zelnikov solution. Line (a) is the scale factor
of the three flat dimensions, whilst line (b) is the scale factor for the remaining two-dimensional
compact space.3 = 0.005, ϕ̇(t = 1) = 0.06, ρm(t = 1) = 0.005, ḃ(t = 1) = 0 (all units are
appropriate Planck units).

The stability can be studied more generally using the phase plane analysis. Although
this requires an exponential scalar field potential whilst the work of Linde and Zelnikov
assumed no particular form for the potential, it does not rely upon a slow-roll condition,
and can be used for any value ofλ. For smallλ whenV (ϕ)/3 < 3 the eigenvalues of the
critical point, corresponding to the anisotropic solution, are complex with negative definite
real parts. Thus the solution for a slowly rolling field is asymptotically stable. For large
values ofλ (λ & 1) one eigenvalue has a positive definite real part, and thus the anisotropic
solution becomes unstable. Within the constraints imposed by Linde and Zelnikov their
anisotropic solution is asymptotically stable. A numerical evolution of the model is shown
in figure 3 for the scale factorsa andb, and in figure 4 for the shear and energy densities.
Figure 4 shows the shear oscillating about the minimum of the potentialW(b, ϕ) before
finally settling down such that the compact space has a compactification radius of several
Planck lengths. Recall that there is no perfect fluid present in this case (ρ = p = 0).
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Figure 4. The anisotropic solution of Linde and Zelnikov for a (5+1)-dimensional Kantowski–
Sachs spacetime. Curve (a) shows the co-moving shear (on the left-hand scale). Curves (b)–(e)
correspond to the right-hand axis. Curve (b) shows(σ/θ)2. Curve (c) shows the curvature.
Curve (d) shows the magnetic density and curve (e) shows the scalar field energy density. There
is no perfect fluid present.3 = 0.005, ϕ̇(t = 1) = 0.06, ρm(t = 1) = 0.005, ḃ(t = 1) = 0 (all
units are appropriate Planck units).
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Figure 5. The isotropic evolution of the Linde–Zelnikov solution. Line (a) is the scale factor of
the three flat dimensions, whilst line (b) is the scale factor for the remaining two-dimensional
compact space. Initial scale factors give Kasner behaviour.3 = 0.005, ϕ̇(t = 1) = 0.06,
ρm(t = 1) = 0.005 (all units are appropriate Planck units).

Although the solution is stable, it is very dependent upon the initial conditions chosen.
The local minimum of the potentialW(b, ϕ), shown in figure 2 is extremely shallow, and
even very small perturbations can push the model into the isotropic solution, shown in
figure 5. The analysis can be extended to a model containing an isotropic perfect fluid
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obeying the equation of statep = (γ − 1)ρ. The effect of this extra matter field adds
another term to the potentialW(b, ϕ), which becomes forγ 6= 1,

W(b, ϕ) = 3

8

(
b0

b

)2

+ ln
b

b0
− 1

8

(
1 + V (ϕ)

3

)
b2

b2
0

+ 1

8a3γ

2 − γ

γ − 1
b2(1−γ ) (26)

(if γ = 1 (dust) then the last term on the right isa−3/8 ln(b)). This extra term adds a ‘tilt’
to the potentialW(b, ϕ). If the perfect fluid is stiff (γ = 2), then the extra term is zero, and
it has no effect upon results. This is to be expected since aγ = 2 fluid mimics a free-scalar
field with V (ϕ) = 0. For all other possible values ofγ (1 6 γ < 2) the perfect fluid
contributes an expanding force to the scale factorb(t). The most interesting case isγ = 4

3,
where it describes the ambient medium of radiation fields expected from asymptotically free
relativistic particles in thermal equilibrium. In this case the extra term evolves proportional
to b− 2

3 a−4. In general, the effect of the extra isotropic stress term is twofold. First, it mixes
the scale factora(t) into the dynamics forb(t), so that any stationary solution forb(t)

cannot exist whilsta(t) is evolving (it is a special property of the magnetic field chosen
by Linde and Zelnikov that its density is only a function of the scale factorb(t); a more
general matter configuration will have a density which is a function of both scale factors
and therefore incorporates a mixing of the scale factors in the matter sector of the model).
Second, it reduces or eliminates the minimum inW(b, ϕ) even at fixeda(t). Since the
original minimum is very weak, the amount of isotropic fluid required before the minimum
no longer exists need not be appreciable. For initial conditions where the starting energy
densities of the perfect isotropic fluid and the magnetic field are of the same order, as would
be required by an equipartition principle near the Planck time (Barrow 1994), the effect of
the additional matter is to remove the minimum in the potentialW(b, ϕ). Looking at the
eigenvalues (see appendix A for more details), one is now positive definite for all values of
λ and thus the solution is no longer asymptotically stable. The destabilizing effect of the
radiation can be viewed as an additional stochastic feature adding to the likelihood that this
type of dimensional segregation would occur in different ways in different places in a chaotic
or self-reproducing inflationary universe as envisaged by Linde and Zelnikov. We also note
that any collisionless radiation present in all dimensions, for example gravitons, would have
a strong isotropizing effect on theN -dimensional dynamics and would oppose dimensional
segregation at very early times. These effects will be examined in more detail elsewhere.

4. Discussion

We have considered a number of anisotropic general-relativistic cosmologies withN space
dimensions that allow simple models to be constructed for a cosmological evolution that
allows a subset of these dimensions (which can have any number, including 3) to inflate
to large size whilst the remainder expand more slowly or remain static. In order for this
to occur during an inflationary phase theN -dimensional de Sitter or power-law inflationary
asymptotes, which occur when inflation is driven by a scalar field with an exponential
potential, must not be global attractors. This is possible in metrics with the Kantowski–
Sachs form, for which exceptional counter-examples to the cosmic no-hair conjecture
are known in(3 + 1)-dimensional spacetimes. However, such behaviour is special. In
order to test the stability of the simplest cosmological models which exhibit this form
of dimensional segregation we first examined models containing only a scalar field with
exponential potential and found (see table 1) that if the scalar field gives rise to inflation
then the asymptote exhibiting anisotropic dimensional segregation is unstable. Only the
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isotropic solution is stable. The situation is reversed if the solution is non-inflationary. We
then considered more general models containing a scalar field stress and a magnetic field in
order to encompass the models considered earlier by Linde and Zelnikov. These solutions
exhibit dimensional segregation in the presence of slow-roll inflation. The compact sub-
space is kept static whilst a flat three-dimensional sub-space is allowed to expand. So
long as the field always obeys such a slow-roll approximation and the scalar field potential
and the cosmological constant always obey the inequality 3V (ϕ) < 3 this solution is
asymptotically stable. For the exponential potential studied, the solution becomes unstable
once the gradient of the potential becomes too great. The addition of an isotropic perfect
fluid with initial density comparable to that of the magnetic field also made the solution
unstable. The addition of a perfect fluid with a changing equation of state, as would be
more realistic for such an anisotropic model, would be expected to have an even stronger
isotropizing effect than the perfect fluid (Lukash and Starobinskǐi 1974).
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Appendix. Stability of the critical solutions

To study the stability of the critical solutions discussed in the main text we examine the
behaviour of the system in the local domain of each critical solution. This is a standard
technique in studies of dynamical systems, and here we present some more details of the
steps we have used to arrive at the results discussed in sections 2 and 3.

From equations (14)–(18) critical solutions are found by requiringθ ′ = σ ′ = ϕ′ =
ρ ′ = ρ ′

m = 0. Since the explicit solutions are often long, we will write them asθ = θ0,
σ = σ0, ϕ′ = ϕ′

0, ρ = ρ0 andρm = ρm0. Whenonly a scalar field is present, as discussed
in section 2, the solutions are more manageable, and can be written:

Isotropic solutions:

θ0 =
√

2

N − 1

2N√
4N − λ2(N − 1)

(A1)

σ0 = 0 (A2)

(ϕ′
0)

2 = 2λ2(N − 1)

4N − λ2(N − 1)
. (A3)

Anisotropic solutions:

θ0 =
√

1

2(N − 1)

4d + λ2D(N − 1)√
4d + λ2(N − 1)(D − 1)

(A4)

σ0 =
√

dD

4N(N − 1)

4 − λ2(N − 1)√
4d + λ2(N − 1)(D − 1)

(A5)

(ϕ′
0)

2 = 2λ2(N − 1)

4d − λ2(N − 1)(D − 1)
. (A6)

To study the stability of a critical solution the standard method is to define new variables
such that the solution of interest is moved to the origin, and then to look at the linearized
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dynamical equations in these new variables. We have chosen the following new variables,

θ̃ = θ − θ0 (A7)

σ̃ = σ − σ0 (A8)

ỹ = ϕ′ − ϕ′
0 (A9)

ũ = ρ

V (ϕ)
− ρ0

V (ϕ0)
(A10)

ṽ = ρm

V (ϕ)
− ρm0

V (ϕ0)
. (A11)

Looking at the linear terms of equations (14)–(18) in these new variables, and taking
3/V (ϕ) ≈ constant, we obtain

d

dτ
θ̃ =

(
λ

2
ϕ′

0 − 2θ0

N

)
θ̃ +

(
λ

2
θ0 − 2ϕ′

0

)
ỹ − Nγ − 2

N − 1
ũ − 2

N − 1
ṽ (A12)

d

dτ
σ̃ = −

[√
2d

DN

(
N − 1

N

)
θ0 + σ0

]
θ̃ +

(
2σ0

√
2d

DN
σ̃ + λ

2
ϕ′

0 − θ0

)
σ̃

+
[

λ

2
σ0 +

√
2d

DN
ϕ′

0

]
ỹ +

√
2d

DN
[ũ + (1 + µd − µD)ṽ] (A13)

d

dτ
ỹ = −ϕ0θ̃ + (λϕ′

0 − θ0)ỹ (A14)

d

dτ
ũ = −(2 − γ )

ρ0

V (ϕ0)
θ̃ − (2 − γ ) θ0ũ (A15)

d

dτ
ṽ = −N − 1

N

ρm

V (ϕ0)
θ̃ +

√
2dD

N
(µD − µd)ρm0σ̃ +

[√
2dD

N
(µD − µd)σ0 − N − 1

N
θ0

]
ṽ

(A16)

where µd = pd/ρm and µD = pD/ρm and all other variables are defined previously.
Eigenvalues of the linear equations (A12)–(A16) have been found using the algebraic
mathematical package Maple. For a critical solution to be time asymptotically stable at
first order, and hence for it to be of interest to cosmology, all the eigenvalues are required
to be negative (the stability when one or more eigenvalues are zero cannot be decided at
first order).

General expressions for these eigenvalues are cumbersome, but specific examples can be
given for the situations looked at in section 3, where the solution of Linde and Zelnikov was
considered with the addition of radiation. TakingN = 5, d = 3, D = 2, µd − µD = −2,
γ = 4/5, λ = 0.5, and3 = 0.005 (Planck units), the eigenvalues are calculated to be,

E1 = 0.45 (A17)

E2 = −1.59 (A18)

E3 = −1.42 (A19)

E4 = −1.70 (A20)

E5 = −0.41. (A21)

The appearance of the positive eigenvalue shows that in this case the anisotropic solution
whereρm0 6= 0 is unstable. Thus such a solution is not going to be a generic solution for a
cosmological model.
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