
 

Graphical Models for Dialogue Repair in Multimodal Inter-
action with Service Robots 

P. Prodanov1, J. Richiardi2 and A. Drygajlo2 

1Autonomous Systems Lab, Swiss Federal Institute of Technology, Lausanne, Switzerland 
2Signal Processing Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland 

Abstract 

The main task of a voice-enabled service robot is to engage people (users) in dialogue providing an efficient ac-
cess to the services it is designed for within a reasonable (limited) time. In managing service dialogues, extracting 
the user goal (intention) for requesting a particular service at each dialogue state is the key issue. In service ro-
bots deployment conditions speech recognition limitations with noisy audio input and uncooperative users may 
jeopardize user goal identification. In order to reduce the risk of communication failures due to incorrect user 
goals, we introduce sequential dialogue repair techniques motivated by the theory of grounding in conversation, 
and exploiting the inherent multimodality in the perceptual system of a service robot. The error handling method 
is based on Bayesian networks fusing audio and non-audio based modalities during user goal identification and 
serving as input to graphical models known as decision networks. Decision networks allow the definition of dia-
logue repair sequences as actions, and provide an explicit strategy for selecting actions. The paper demonstrates 
how the above graphical models can be used for designing and implementing of repair strategies for avoiding 
communication failures in spoken dialogues with mobile tour-guide robots in mass exhibition conditions. The 
benefits of the proposed repair strategies are tested through experiments with the dialogue system of RoboX, a 
tour-guide robot successfully deployed at the Swiss National Exhibition (Expo.02). 
 
 

1. Introduction 

Mobile service robots are physical agents that act in the 
physical world, using their mobility to perform tasks useful 
for humans. These robots perform some fixed number of 
services. These services can be, e.g. exhibit presentations 
in the case of mobile tour-guide robot or object delivery in 
the case of robot assistants. Depending on the service tasks, 
the robots are equipped with manipulators and sensors 
forming their multimodal perceptual system. To decide 
which service to perform service robots need to communi-
cate with their users. Intuitiveness and usability are among 
the main criteria when designing a communication inter-
face for the perceptual systems of mobile service robots. 
Speech is an intuitive communication means for humans 
and therefore service robots employ automatic speech 
synthesis and recognition in performing their communica-
tion tasks. Speech-based interaction requires speech recog-
nition as one of the main input modalities in the robot’s 
system, while different range finders and video cameras are 
required for safe navigation. The main issue in the spoken 
service-task oriented dialogue with users is to infer, using 
speech recognition, which particular service the user in-
tends to request at each dialogue state. The service robot 
dialogue can then be constructed from a fixed set of states, 
where the number of possible services defines the state 
space. Each dialogue state usually contains a spoken inter-
action in which the robot needs to infer the user goal (e.g. 
its intention of requesting a given service) in order to 
decide what service to perform. 

The robot’s mobility is a generic task for mobile service 
robots, adding challenges as well as advantages in the 
spoken interaction. Most of the service robot applications 
take place in open spaces, where speaking people other 
than the user and the robot equipment itself corrupt the 
audio space with high levels of noise. The speech in the 
input audio signal can originate from users or from other 
people speaking (passers by) causing errors in speech 
recognition. Additionally, the end users can be ordinary 
people lacking any prior robotic experience. They can 
decide to leave the robot at any time, since this type of 
interaction is typically short-term. We argue that in such 
conditions it is preferable that the service robot take the 
initiative in the spoken dialogue [4]. As stated above peo-
ple interacting with service robots do not always act coop-
eratively during the dialogue [21]. Moreover, there are 
reported cases when they even try to confuse the robot for 
fun, e.g. misbehaving visitors in a tour-guiding scenario 
[4], [21]. Such behaviours make visitors’ intentions diffi-
cult to anticipate in robot-guided human-robot interaction, 
causing ambiguity and errors when the robot has to inter-
pret them. Communication failures may arise in dialogue 
due to the above outlined factors. Hence, a service robot 
managing spoken dialogue with people should employ 
special care in handling the acquired audio input in order to 
reduce the effect of unreliable speech recognition, resulting 
from the adverse acoustic conditions or the audio input 
contributed from uncooperative users. 
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In [15], we have outlined the advantages of statistical 
modality fusion for correcting speech recognition errors in 
the process of identifying user goals in a tour-guide dia-
logue scenario. At each dialogue state a Bayesian network 
was used to elicit probabilities over the possible user goals 
including an undefined user goal signalling possibility for a 
dialogue failure. Given the probability distribution over the 
possible user goals and in particular the undefined one, the 
error handling strategy should be used to decide explicitly 
whether to consider the current audio signal unreliable and 
apply a dialogue repair sequence. If dialogue repair se-
quences are defined as actions that the service robot can 
perform, principles from decision theory provide an ex-
plicit way for selecting repair actions, given the robot’s 
preferences and the level of uncertainty in the user goal 
identification at each dialogue state. Based on decision 
theory, we can define action selection strategies relying on 
explicit measures of the robot’s preferences for actions, i.e. 
utilities and the principle of maximum expected utility 
(MEU) [14], [18]. Graphical models related to Bayesian 
networks known as decision networks are used for imple-
menting utility-based decisions.  

In this paper, we report on the use of Bayesian and decision 
networks for modelling multimodal repair strategies fitted 
to the requirements of speech-based interaction with a 
service robot. The paper is structured as follows: Section 2 
reviews work in the field of dialogue repair based on 
grounding in conversation. Section 3 provides background 
information on decision networks. Section 4 and 5 describe 
graphical models fusing different modality information to 
be used for grounding in the context of tour guiding. Sec-
tion 6 presents how the MEU principle can be used to 
resolve communication failures resulting from processing 
audio signal that may be insufficiently grounded (under-
stood) in the tour-guide dialogue. Finally, Section 7 and 8 
concludes the paper. 

      Clark and Schaefer's original grounding model
State 0: R  did not notice that   U  uttered any   u .
State 1: R  noticed that  U  uttered   u 
State 2: R  correctly heard   u 
State 3: R  understood   u 
Grounding model for human-robot interaction
S0: S 0   :   Robot  did not notice any  User
S1.1: S 1.1:  User  present 
S1.2: S 1.2:  User  attending (looking at the robot) 
S2: S 2 : User communicating (correctlyheardby

Robot ) 
S3: S 3  :    Robot identified a valid   User goal  

Figure 1: State model of grounding in conversation 

2. Dialogue repair and grounding theory in 
conversation 

Spoken human-robot interaction is not only a smooth 
process of encoding and decoding well-formed acoustical 
messages. Misunderstandings occur even in the case of 
correct speech recognition in human dialogues and are 
collaboratively resolved by the participants. People coordi-
nate their individual knowledge states by systematically 
seeking and providing evidence about what they say and 
understand, which is known as the process of grounding in 

conversation. In a model for collaborative contributions to 
conversation presented in [2] (Figure 1) there are four 
possible states that an addressee R can attribute to a 
speaker U and an utterance u. In Figure 1 the states after 
[2] are also elaborated to cope with human-robot interac-
tions as well. The need for conversational repair (ground-
ing) arises whenever R has failed to reach one of these 
states given the evidence he has about the other participant. 
In the case of a speech-based dialogue system the audio 
signal itself should provide sufficient evidence for inferring 
the states in Figure 1. All consecutive states have to be 
reached and failure to reach a given state requires a repair 
action. Then, the methods for error handling in the domain 
of human-computer dialogue can be seen as acts of ground-
ing [19] and attributed to states in the model. Traditionally, 
the dialogue error handling methods use recognition scores 
to detect recognition errors, correcting the resulting errors 
through repair dialogues [19], [12], [14].  However, in the 
case of mobile service robots, detecting errors using only 
speech recognition can be difficult and repair dialogues 
may be inefficient in the typical acoustic conditions of 
robot deployment. Alternatively, a “collaborative” service 
robot can benefit from the inherent robot multimodality. 
For example, a “Search for user” repair sequence can be 
attributed to S0 in the Figure 1.  

The evidence for failure or success to reach a given state is 
provided by the robot’s input modalities. For example 
failure to reach state S3 can be attributed to the “undefined 
user goal” (UG=0) modelled by a Bayesian network [15] 
fusing information from the robot sensors. The strength of 
evidence about this event can be quantitatively estimated 
by the posterior distribution of the event “undefined user 
goal” (UG=0), i. e. P(UG=0|E=e), given the evidence E=e 
from the input modalities. Bayesian networks can model all 
the states in Figure 1 and repair actions can be then defined 
for each state. In modelling the actions selection strategy, 
we use concepts from decision theory, i.e. utilities.  

3. Decision theory  

In decision theory and artificial intelligence the principle of 
maximum expected utility (MEU) is used for modelling the 
strategy of action selection of an intelligent utility-driven 
agent [18]. Such an agent maintains an internal state 
(model) of its environment given its sensors’ information. 
A utility function is used to model the agent’s preferences 
for the different actions through which the agent can ma-
nipulate its environment. The utility function assigns a 
numerical value to each agent’s action, given the current 
state of the environment. Finally, the process of action 
selection is modelled by combining principles from prob-
ability and utility theory. Probability theory is used to 
model the agent’s internal state, given the information 
(evidence) extracted from its sensors. Utility theory is used 
to model the agent’s preferences between the states of the 
external environment resulting from a decision taken 
(executed action). These preferences are captured by the 
utility function as mentioned above. We use utility function 
U(s, a) to denote the utility of an action a given that the 
agent is in a state s. P(S=s|E=e) denotes the probability of 
each state value, given the current evidence E=e from the 
sensor data. Then the maximum expected utility is defined 
by the following equation [17], [14]: 
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The maximum expected utility principle in decision theory 
states that an intelligent agent should choose the action that 
maximizes the expected utility of that action, given the 
sensor evidence for the state of the world at the instant of 
decision-making. This kind of utility-driven decisions can 
be implemented with the help of decision networks [14]. In 
a decision network (DN) there are three types of nodes, i. e. 
chance nodes (ovals), decision nodes (rectangles) and 
utility nodes (diamonds). An example of a decision net-
work is shown in Figure 3. The chance nodes represent 
random variables. The agent is usually uncertain about the 
exact values of these variables. Some of the chance nodes 
can represent features extracted from the agent sensors; 
others can represent different aspects of the agent internal 
state. Decision nodes represent possible choice of actions. 
The utility nodes represent the utility function. Since the 
utility function depends on the agent’s internal state and 
the actions, utility nodes usually have one or more chance 
nodes and the decision node as parents. Bayesian networks 
are often used to model the probabilistic dependences 
between the chance nodes and serve as an input to the 
decision network. A Bayesian Network (BN) [13], [17] is a 
graphical model used to describe dependences in a multi-
variate probability distribution function (pdf) defined over 
a set of random variables.  The topology of the network is 
defined by a Directed Acyclic Graph (DAG), consisting of 
nodes corresponding to the variables and arcs representing 
the conditional dependence assumptions between the 
variables. The arcs point in the direction from the cause to 
the consequence or from the parent variable to its children. 
Thus, Bayesian networks specify a family of statistical 
models, equipped with a unified set of efficient algorithms 
for inference [13], e. g. computing posterior probability 
over set of “query variables”, given an assignment for 
some set of observed (evidential) variables in the network. 
Therefore, Bayesian networks can produce the probability 
values on the state variables, i. e. P(S=s|E) for the utility-
driven agent. Then applying (1) will result in selecting the 
action with MEU, given the set of possible actions. To 
construct a decision network for a particular decision 
problem a precise definition of the agent’s internal state, 
actions and preferences (utilities) is derived from the re-
quirements of the agent’s task.  

4. Service robot dialogue 

We assume that service robot dialogue systems offer a 
limited set of services that are among the possible commu-
nicative goals of the user. The dialogue is organized as a 
sequence of question/answer states in which the service 
robot takes the initiative. In the rest of this paper we take as 
an example the service robot RoboX [7]. This robot was 
designed to provide tour-guiding services and it was suc-
cessfully deployed at the Swiss National Exhibition 
(Expo.02) [4], [8]. For the purpose of human-robot interac-
tion, RoboX is equipped with the following modalities: 
speech recognition system, interactive buttons, and video 
camera as input modalities, and LED matrix animations, 
expressive face, speech synthesis system as output modali-
ties. For the purposes of navigation and obstacle avoidance 
the robot is additionally equipped with two laser scanners 

(laser range finders SICK), emergency stop button, and 
bumpers for avoiding collision with obstacles that cannot 
be detected by the laser scanner beam [7]. During Expo.02 
eleven robots interacted with individual visitors as well as 
crowds of people. The question/response pair in the case of 
RoboX is at the beginning of each exhibit’s presentation 
and consists of yes/no question from the robot and answer 
from visitor. One complete tour during Expo.02 was lim-
ited to five question/response pairs (user goal/actions 
decision points). Given the main task of the tour guide, e.g. 
presenting exhibit information, the average number of 
exhibit presentations, resulting from correctly recognized 
responses, can be used as a measure for successful interac-
tion. 
During Expo.02 there were often cases when people did 
not follow the choice suggested by the robot, using out-of-
vocabulary words and even giving both yes and no answers 
or providing no answer at all [4]. Therefore, the speech 
recognition system of RoboX was designed to distinguish 
between the keywords yes, no and out-of-vocabulary 
words, fillers, coughs, laughs and general acoustic phe-
nomena different from the keywords, called garbage words 
(GB). The Observed Recognition Result ORR={yes, no, 
GB} is then mapped into three possible user goals (UG), 
accounting for the visitor intention: “the user is willing to 
see the next exhibit” (ORR=yes then UG=1); “the visitor is 
unwilling to see the next exhibit” (ORR=no then UG=2) 
and “user goal is undefined” (ORR=GB then UG=0). Dur-
ing Expo.02 background “babble-like” acoustic noise and 
uncooperative visitor’s behaviour caused significant errors 
in recognizing the GB word.  This was the case for exam-
ple when initially interested visitors were leaving the robot 
to respond to other people speaking to them. When this 
behaviour was coinciding with the question/response pair, 
the GB word was often misrecognized for yes or no answer 
by the robot. In order to infer the right user goal (UG=0) in 
this case auxiliary information from the laser scanner 
signal revealing presence of visitors in close distance with 
respect to the robot’s microphone array (<1.5m), proved to 
be beneficial [4]. It should be noted however that the laser 
scanner data provide insufficient information as far as 
presence of a communicating user is concerned. For exam-
ple, different objects in the environment, such as for exam-
ple chairs or the back of a user who is not interested in the 
robot at all can cause particular patterns that can be easily 
interpreted as legs. In such cases information from the 
robot’s camera can be very useful. 

5. Bayesian networks in the grounding model 
for service robots 

The above Expo.02 experiences showed that in the case of 
cooperative user behaviour during interaction a particular 
sequential pattern in the robot input modalities was ob-
served First, the laser modality provides a particular “leg 
pattern”, while at the same time the attention of the user is 
grabbed and detected by a presence of a frontal face in the 
video modality, and finally speech is detected by the 
speech modality and the recognition system detects a 
“valid” user goal (UG={1,2}). This sequence serves as 
motivation for constructing the grounding state sequence 
S0-S3 in Figure 1. We associate the binary event UR=1 to 
the state S1.1 and UR=0 to S0, where UR=1 means “User 
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in Range” as detected by the laser modality in the underly-
ing Laser Scanner Signal LSS). The event UA=1 (User 
Attending as detected by the video and laser modality) to 
state S1.1. UC=1 (User Communicating as detected by 
speech, video and laser modality) to state S2. At the end 
the binary event “valid User Goal” (UG={1,2} is associ-
ated to S3. The speech recognition result (ORR) can be 
seen as the “acoustics-related” aspect of the user goal. On 
the other hand, to define the influence of the acoustic 
environment on the speech recognition reliability we define 
the binary event SDR “data reliability” (SDR=1 acoustic 
data is reliable meaning that UG=ORR, SDR=0 acoustic 
data is unreliable). To infer the state of SDR the tour guide 
robot needs additional evidence about changes in the envi-
ronment that can affect the reliability of the incoming data 
and in particular the effect of acoustic noise on the speech 
signal. The likelihood (Lik) of the observed recognition 
result along with an estimate of the speech-to-noise ratio 
(SNR) of the captured acoustic signal can provide informa-
tion about the environmental acoustic conditions [5]. 

Figure 2 depicts a causal model for the above events (UR, 
UA, UC, UG, SDR). The real state of each of the events is 
never known with certainty by the robot.  Hence, the causal 
influences depicted in the figure should be seen as prob-
abilistic. Bayesian networks are widely agreed to provide 
optimal probabilistic representation for quantifying causal 
influences and providing inference about probabilistically 
related events. The cause-effect ordering UR, UA, UC, UG, 
accounts for the state ordering in the grounding model for 
human-robot interaction (Figure 1) as well as the actual 
time sequential ordering between the events. In order to 
have any conversation, first the event “user in range” 
(UR=1) has to appear. It precedes the event “user is attend-
ing” (UA=1) and user is communicating (UC=1). Similarly 
UC=1 precedes the event valid or undefined user goal 
UG={2,1,0}. The observed recognition result ORR is the 
effect of UG={1,2} or can be a result from environmental 
conditions causing unreliable speech recognition (SDR=0).  
Since the variables (UR, UA, UC, UG, SDR) are not ob-
served during the robot operation, we need to provide 
additional sources of information that can be observed and 
can provide evidence in favour of a particular variable 
state. The laser scanner reading LSS can provide evidence 
in favour of UR=1, the result of a frontal Face Detection  
(FD) system can be seen as the effect from UA=1, while in 
addition the event UC=1 will need evidence from an indi-
cator of “Acoustic Signal Detected” ASD. It was already 
stated that the likelihood (Lik) of speech recognition and a 
speech-to-noise related measure SNR can carry information 
correlated with the event SDR={0,1}. We add to its eviden-
tial variables the ASD indicator as well.  

LSS ASDFD

UR

Lik SNR

ORRUC UGUA SDR

 

Figure 2: Final Bayesian network (BN) 

The full set: E={LSS, FD, ASD, Lik, SNR, ORR} of the 
observed (evidence) variables is shaded in Figure 2. The 
BN arcs represent the cause/effect relations as outlined 

above. In order to perform consistent inferences given the 
set E, the parameters of the conditional probability distri-
bution for the network variables have to be learned from 
training examples. The Bayesian network conditional 
probability distributions in our case are probability tables 
for the discrete variables and single conditional Gaussians 
for the continuous ones. Since video data from Expo.02 
were not available, to collect data for all the three modali-
ties we have designed a new dialogue scenario similar to 
the ones at Expo.02. In this scenario RoboX is playing the 
role of an interactive Lab tour-guide in the corridor of the 
Autonomous System Lab (ASL) at EPFL providing presen-
tation of the laboratory activities using posters in an infor-
mal conversation.  

Multimodal dataset: During each question/answer pair the 
E={LSS, FD, ASD, Lik, SNR, ORR} values were acquired. 
The data acquisition sequence is done in 3 phases. First, a 
recording of 16 bits PCM audio at sampling rate of 16 kHz 
and RGB video signal at resolution of 320x240 for 2 s (2 s 
is the assumed duration of the visitor’s answer) is per-
formed. The frame rate of the video signal is approximately 
15 fps. After the initial audio-visual acquisition phase a 
laser scanner reading is acquired from the SICK scanner 
and the speech recognition is run in the final phase. In that 
way values for the observed variables E={LSS, FD, ASD, 
Lik, SNR, ORR} in the Bayesian network are acquired. LSS 
is a continuous value derived after accumulating and nor-
malizing the laser reading samples within a sector of 200 
with respect to the robot’s front. FD and ASD are binary 
variables accounting for the event of detected face during 6 
consecutive frames (FD=1) and an audio signal detected 
(ASD=1) as reported by a speech activity detector. The face 
detector in our case is based on the modified algorithm of 
Viola and Jones [20], while the speech activity detection 
and subsequent SNR calculation was done in a similar way 
as in [17]. The data were gathered on-line during real 
communication with people and hidden variables were 
manually tagged afterwards. To avoid confusion it should 
be noted that due to implementation issues the data acquisi-
tion sequence does not directly correspond to the actual 
(physical) order of appearing of the events (UR, UA, UC, 
UG, SDR) as described in the causal model (Figure 2). 

Normal dataset: 33 individual users (21 male, 12 female) 
were recorded in normal “collaborative” sessions and 18 
“non-collaborative” sessions, resulting in 408 ques-
tion/answer data samples of the form V={UG, SDR, UC, 
UA, UR, LSS, FD, ASD, Lik, SNR, ORR}. During the “non-
collaborative” sessions we have simulated typical uncoop-
erative user behaviours matching failures to reach the 
different states in Figure 1. We have recorded “empty” 
scenarios (failure in S0 Figure 1) in which the robot was 
circulating in the corridor acquiring data samples without 
any user at all. Other scenarios corresponded to failures in 
states S1.1 and S1.2 (Figure 1) such as users that are pre-
senting their backs to the robot during the data acquisition 
or users that stay and look at the robot without speaking. 
Finally users were encouraged to use out-of-vocabulary 
words or speak to others using yes/no answers that might 
mislead the speech recognizer. 

Degraded dataset: In addition to the normal dataset, we 
acquired degraded data containing babble-type additive 
noise for 2 male users in 51 different sessions. This dataset 
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has sessions where users are in range or not (UR=1 or 0), 
facing the robot or not (UA=1 or 0), speaking or remaining 
silent (UC=1 or 0), and finally using either yes/no answers, 
or staying silent or using out-of-vocabulary answers 
(UG={1,2} or 0). In all cases, during the sampling of the 
user's answer the robot's loudspeakers were used to play 
back babble-like crowd noise recorded during real use of 
the robot at Expo.02. The average SNR for the degraded 
dataset was computed to be 1.4 dB. 

BN training and testing: The BN was trained on 2/3 of 
the data samples using maximum likelihood technique 
[13], and tested with the remaining ones. A cross-
validation technique similar to the one used in [17] was 
used to randomly select mutually exclusive parts of the 
data for training and testing. To test the accuracies of the 
individual grounding state predictor variables (UR, UA, 
UC, SDR and UG) we ran 2 sets of 50 cross-validation 
tests, where the training and testing portions of the datasets 
were chosen at random each time. Values for the posteriors 
P(UR|E), P(UA|E), P(UC|E), P(SDR|E) and P(UG|E) were 
obtained from the Bayesian network (Figure 2) for each 
testing sample E. Values for the corresponding state pre-
dictor variables were assigned using argmax criteria on the 
corresponding posterior probabilities. Tests were done for 
the events UR=1, UA=1, UC=1, SDR=1, UG={1,2} (valid 
user goal) computing corresponding accuracies. The accu-
racy of ORR={yes/no} (baseline speech recognizer) was 
also calculated and compared with that of UG={1,2}. 
Results can be seen in Table 1.  

Predictor Acc % std % Predictor Acc % std %
UR=1 81.9 4.3 UR=1 78.1 3
UA=1 85.7 2.5 UA=1 85.1 2.8
UC=1 84.4 3.6 UC=1 64.4 3.5

SDR=1 82.7 3.5 SDR=1 68.4 3.2
UG={1,2} 84.3 3.5 UG={1,2} 66.6 3.3

ORR={Y/N} 77.2 5.4 ORR={Y/N} 35.7 2.9  
(a)   (b) 

Table 1: Accuracies for the grounding state predictors with the 
normal dataset (a) and the combined dataset (b). 

As can be seen in Table 1 (a), the baseline recognizer 
output (ORR) has slightly lower accuracy than the UG 
(user goal) predictor. This can be explained by the fact that 
the UG predictor is better at classifying “garbage” cases 
(UG=0). The second set of tests was performed on the 
combined dataset consisting of normal and degraded data-
sets, where training and testing samples could come ran-
domly from any dataset (Table 1 (b)). Still, the UR, UA, 
UC and SDR indicators function above chance level in 
these noisy conditions and can be put to use in managing a 
repair sequence. On the combined dataset, the baseline 
recogniser's performance drops significantly. In this case, 
the use of UG inference will provide more reliable data 
than straight speech recogniser output. 

6. Decision networks for tour-guide repair 
strategies 

In the context of a utility driven tour-guide robot the tour-
guide dialogue can then be seen as a process of decision-
making, where each state in dialogue is considered as a 
decision point. At each decision point the “ques-
tion/response” pair is used to probe the external environ-

ment and elicit a probability distribution over the robot’s 
internal states - P(S|E). In the previous section we have 
equipped the tour-guide robot with models for its internal 
states, e.g. a Bayesian network for estimating P(S|E), 
where S=UG, and E={LSS, FD, ASD, Lik, SNR, ORR}. In 
order to apply (1), we still need to define precisely the set 
of robot’s actions and the utility function. 

Defining actions and repair strategies: The dialogue 
sequences presenting the exhibits in one complete tour can 
be seen as valid dialogue actions for the case of UG=1. We 
will refer to these sequences as “Present exhibit” actions. 
On the other hand, the question/response pairs offering 
exhibit presentations to the visitors can be seen as valid 
actions for the case of UG=2. We will refer to these actions 
as “Offer another exhibit” actions. Due to uncooperative 
visitors and the adverse acoustic conditions during dia-
logue the visitor’s intentions cannot always be classified 
into meaningful user goals in the context of tour guiding 
(e.g. simple accept/reject responses in the case of RoboX). 
In this case, using an “undefined” user goal (UG=0) is well 
motivated and requires “repair” actions for avoiding com-
munication failures. To define the “repair” actions, we take 
into account the tour-guiding dialogue requirements, i.e.: 
provide exhibit information through efficient speech-based 
interaction in limited time, where the number of presented 
exhibits, after correct user goal identification, can be used 
as a measure for efficient interaction. Dialogue repair 
sequences generally occur as unexpected sequence in the 
normal process of human robot interaction and may lead to 
delays in communication. Given the tour-guide task re-
quirements the “repair” actions should avoid unnecessary 
repetitive patterns that might arise using speech recognition 
in noisy acoustic conditions. Therefore in building “time-
saving” repair sequences using alternative input and output 
robot modalities can be very beneficial. For example, in the 
case of an absence of communicating visitor (UR=0, S0 in 
Figure 1) the most appropriate repair sequence should 
involve the robot mobility to search for a visitor. We define 
such a repair sequence as the “Search for visitor” action. In 
the case of (UR=1, UA=0 S1.1 in Figure 1) we perform an 
“Attract visitor” repair, e.g. moving the camera and/or 
rotating the robot in order to attract the attention and detect 
the face of the user. Whenever (UR=1, UA=1, UC=0 S1.2. 
in Figure 1) we define a “Hint User” action in which the 
user who is estimated to be attending but not contributing 
any audio input is provided with a hint, e.g. the possible 
ways of answering to the robot. Finally, if the user is com-
municating (UC=1) a “Repeat repair” action, e.g. asking 
the user for repeated input trial would be the fastest possi-
ble repair sequence. However knowing that UC=1 and 
SDR=0 would give less motivation to the use of speech-
based “Ask for repeat” repair action, compared with an 
alternative use of the interactive buttons through the “Offer 
buttons” repair action. In real conditions however the states 
of UG, UC, UA, UR and SDR are never known with full 
certainty. Hence, UG, UC, UA, UR and SDR are seen as 
chance nodes and decision networks can be used as a state 
transition models for selecting valid actions using the 
principle of maximum expected utility (MEU - Equation 
(1)). 

Decision networks for tour-guide repair strategies: 
Figure 3 depicts the decision networks DN1, DN2, …,DN5 
that can be used for selecting actions in the five decision 
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levels of the tour-guide dialogue in Figure 1. The same 
Bayesian network (Figure 2) is used as an input for the 
three decision networks to output values for the corre-
sponding posterior distributions needed for equation (1), 
e.g. P(S|E)=P(UG|E ) in the main dialogue sequence case 
DN1, P(S|E)=P(UR|E) for the 1st level; DN2, 
P(S|E)=P(UA|E) for the 2nd level DN3, etc. and finally 
DN5, P(S|E)=P(SDR|E) for the 4th level of dialogue repair, 
given the evidence E={LSS, FD, ASD, Lik, SNR, ORR}. 
The utility functions associated with the utility nodes in the 
five decision networks that are used in calculating the 
corresponding actions’ expected utilities are defined as real 
valued tables, indexed by actions and user goals. The 
numerical values of utilities in general are mathematically 
unique up to a positive affine transformation [14]. The 
particular U(s, a) values in the utility tables for the above 
decision networks represent the tour-guide preferences 
over its actions, given the user goal values and are moti-
vated by the tour-guiding requirements. For example, due 
to the time limit during interaction the most preferable 
action for a “rational” tour-guide robot would be to “Pre-
sent next exhibit” in the case of UG=1, and the least pref-
erable one would be the “Repair” action, since it might 
lead to unjustifiable delays in interaction. However, in the 
case of UG=0 performing the “Repair” action would be 
much more relevant in order to prevent communication 
failure. Given the utility tables, formula (1) can be used by 
the five decision networks in the order specified in Figure 3 
to select the actions that maximize the expected utility of 
that action, given the distribution over the values of the 
corresponding chance nodes {UG, UC, UA, UR, SDR}. 

Testing: The combined dataset has been used to train the 
BN in Figure 2. Overall 544 examples were used for train-
ing and 272 unseen examples were provided to the BN in 
Figure 2 for inference with roughly half of the cases (154) 
being undefined user goal (UG=0). In order to test the 
benefits of the proposed repair strategies, we have per-
formed tests with only the data for UG=0. We have used 
the posteriors P(UG|E), P(UR|E), P(UA|E), P(UC|E)  and 
P(SDR|E) calculated by the BN in Figure 2 for 154 cases of 
an undefined user goal (UG=0). The decision network DN1 
was used initially to decide if a repair action is needed. In 
that case the rest of the decision networks (DN2, DN3, 
DN4 and DN5) were used to decide if there is a visitor in 
front of the robot, if the visitor is attending and communi-

cating (speaking to the robot) and consequently if the audio 
input was reliable (correctly heard). Repair actions were 
taken according to Figure 3. The results from the experi-
ment are shown in Table 2. 

7. Discussion 

As can be seen from Table 2 in 96% of the cases the net-
work DN1 has correctly assigned a repair action, and 65% 
of the repair actions correspond to “Search for visitors” 
actions. At the end there are 3 cases in which the user was 
estimated to be present and he/she is reoffered to use the 
speech modality as a repair action in the final repair level. 
Given that visitors might utter out-of vocabulary words at 
that point the “Ask for repeat” action may lead to delays in 
conversation. To handle this issue making the utilities 
dependent on the number of times an action is executed 
(e.g. Ut < Ut-1) might be beneficial [14]. Finally, in 148 out 
of 154 cases the mobility of the tour-guide robot provides 
an efficient way to avoid sure communication failure due 
to the absence of visitor during interaction. 

Main sequence (DN1) MEU action corr %
Actions: 1 Present next exhibit 6 4.6%

2 Offer new exhibit 0 0.0%
3 Repair 148 96.1%

1st level repair (DN2) MEU action
Actions: 1 Next state 96 64.9%

2 Search for visitors 52 35.1%
3rd level repair (DN3) MEU action
Actions: 1 Next state 62 65%

2 Attract visitors 34 35%
4th level repair (DN4) MEU action
Actions: 1 Next state 49 79%

2 Hint User 13 21%
5th level repair (DN5) MEU action
Actions: 1Repromt User 3 6%

2 Offer buttons 46 94%  

Table 2: Experimental results: Main sequence correctness, 1st 
…5th level repair action percentage 

Decision theoretic repair strategies provide substantial 
degrees of freedom in modelling the tour-guide behaviour. 
Given equally likely user goals the MEU principle will 
select the action with the maximal sum of the utilities 
across all user goals (the sum of the rows in the utility 
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Figure 3: Decision networks (DN1, DN2, DN3, DN4, DN5) for the tour-guide dialogue transition diagram. 
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tables). In that sense the individual U(a, s) values also 
contribute to the global importance (preference) on actions. 
Following such global preferences the behaviour of the 
tour-guide robot during interaction can be adapted to be 
more or less conservative in performing the repair actions. 
For example the global importance of presenting exhibits 
can be adjusted to be higher compared with the one of 
offering a new exhibit or the repair option. Since searching 
for visitors might encourage the visitors around the robot to 
join the interaction, the global preference is in the favour of 
the “Search for visitors” action in the first level of the tour-
guide repair strategy. In the decision network correspond-
ing to the last repair level (Figure 3), i.e. “Ask for repeat” 
vs. “Offer buttons” the second action can be seen as glob-
ally more preferable. Since buttons input during speech-
based interaction is not affected by the acoustic noise, it is 
considered as more reliable at high levels of acoustic noise. 

8. Conclusion  

In this paper, we presented a methodological concept for 
designing and implementing repair strategies for avoiding 
communication failures in spoken dialogues with mobile 
service robots. The repair strategies were motivated by 
general principles from the theory of grounding in conver-
sation and fitted to the requirements of a particular service 
robot task, a tour-guide robot in mass exhibition condi-
tions. In these conditions the non-collaborative visitors’ 
behaviour and the adverse acoustic conditions were shown 
to be among the main factors for communication failures in 
speech-based interaction. The problem of tour-guide dia-
logue management was shown to depend on a robust infer-
ence of the user goal at each dialogue state, where the 
chance for communication failure can be explicitly mod-
elled through an “undefined user goal”. Bayesian and 
decision networks were used to elicit dialogue repair se-
quences in accordance with the tour-guide requirements, 
exploiting the potential benefit of different input and output 
robot modalities. Decision network implementing the MEU 
principle allowed us to model complex task-oriented tour-
guide behaviours through manipulation of the utility func-
tion values. It was shown that decision networks could be 
used for modelling a variety of tour-guide repair strategies, 
taking into account different aspects of the user goal. 
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