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Copyright ©The authors 2024 Early career members of Assembly 3 (Basic and Translational Sciences) of the European Respiratory Society

) L (ERS) summarise the key messages discussed during six selected sessions that took place at the ERS
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the terms of the Creative International Congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first session covered

Commons Attribution Licence 4.0. 1S “Micro- and macro-environments and respiratory health”, which is followed by a summary of the
“Scientific year in review” session. Next, recent advances in experimental methodologies and new

Received: 9 Nov 2023 technologies are discussed from the “Tissue modelling and remodelling” session and a summary provided of

Accepted: 10 Nov 2023 the translational science session, “What did you always want to know about omics analyses for clinical
practice?”, which was organised as part of the ERS Translational Science initiative’s aims. The “Lost in
translation: new insights into cell-to-cell crosstalk in lung disease” session highlighted how next-generation
sequencing can be integrated with laboratory methods, and a final summary of studies is presented from the
“From the transcriptome landscape to innovative preclinical models in lung diseases” session, which links the
transcriptome landscape with innovative preclinical models. The wide range of topics covered in the selected
sessions and the high quality of the research discussed demonstrate the strength of the basic and translational
science being presented at the international respiratory conference organised by the ERS.

Introduction
a The European Respiratory Society (ERS) International Congress 2023 took place in hybrid form, hosting
BY

more than 20 000 participants who attended either in person (17 309 registrations) in Milan, Italy, or online
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(3215 registrations). The congress focused on tackling key areas of respiratory medicine: pollution, climate
change and sustainable developments. As in previous years [1-3], there were numerous types of sessions
including oral presentations, symposia, hot topics, poster presentations and year in review [4]. In this
article, early career members of ERS Assembly 3 (Basic and Translational Sciences) [5] summarise some
of the most relevant sessions describing the latest state-of-the-art technologies and sessions giving insights
into the future direction of basic and translational respiratory science [6]. Additional content can be
accessed on the virtual platform (https://channel.ersnet.org/programme-live-161) and abstracts at https://erj.
ersjournals.com/content/62/suppl_67.

Oral presentation session: Micro- and macro-environments and respiratory health

The respiratory system is closely linked with the environment. Various elements in the surroundings affect
lung function, ranging from endotypes, the microbiome and the microenvironment up to the
macroenvironment, including indoor and outdoor air pollution and green spaces. This also encompasses the
use of inhaler treatments. These factors interact with one another within a complex network, influencing
respiratory health as assessed by spirometry measurements such as forced vital capacity (FVC), forced
expiratory volume in 1 s (FEV,), fractional exhaled nitric oxide (Fgno), symptom burden, allergic rhinitis,
COPD and the incidence of asthma (figure 1).

Backman and co-workers [7, 8] showed that COPD endotypes can be identified through different lung
function trajectories with unique biomarker profiles. Three trajectories (T1: mean age 65 years,
ever-smokers 72%; T2: mean age 58 years, ever-smokers 100%; T3: mean age 71 years, ever-smokers
78%) were described that exhibit combinations of different values of FEV,, mean high-sensitivity
C-reactive protein, matrix metallopeptidase (MMP)-9 and MMP-9/tissue inhibitor of metalloproteinase
(TIMP)-1 ratio [8, 9]. Cornu HEewrrt et al. [10] presented a study assessing the association between
livestock-related emissions (e.g. bacteria and antimicrobial resistance genes) and the structure of the
oropharyngeal-acquired resistome (defined as an inherited set of genes used to resist infections) in COPD
individuals versus healthy individuals. This study showed that the airway of individuals with COPD
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FIGURE 1 Schematic of the discussed environmental factors that affect lung function, including the
microenvironment level of pathophysiological changes (endotypes) and microbiome, the macroenvironment
level of indoor and outdoor air pollution and green spaces, and the use of inhaler treatment. Created with
BioRender.
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exhibited higher resistome diversity, while Escherichia coli was associated with significant differences in
the oropharyngeal resistome of all individuals in the study [11-14]. R. Bertelsen (Bergen, Norway)
explained the link between the exposure to indoor bacteria and lung function and inflammation in children.
More specifically, higher microbial diversity is associated with better lung function (measured by FVC and
FEV, z-scores) in males and increased inflammation (measured by Fgno) and lower lung function in
females [15].

Yu and co-workers [16—18] showed an association between air pollution exposure and long COVID
symptoms. This study combined an estimation of particulate matter <2.5 um (PM;;5), <10 um (PMy),
black carbon and nitrogen oxide levels with an evaluation of long COVID symptoms acquired via
questionnaires from 753 participants. Exposure to PM, 5 was linked to long COVID, dyspnoea and altered
smell/taste [17—-19]. VaLencia-HErNANDEZ et al. [20] presented the association of urban green spaces with
lung function in children aged from 6 to 16 years in three European birth cohorts. Despite the high
heterogeneity between the studies, the presence of green spaces was linked to a small increase in FEV; and
FVC values, although analysis of further cohorts is ongoing. Paciéncia and co-workers [21, 22] explained
the role of exposure to air pollution as a modifier of the association between access and exposure to green
spaces and development of allergic rhinitis. Their study, which included 2568 participants, demonstrated
the beneficial role of green spaces, which is more important in cases of high air pollution exposure. So
et al. [23] explained the risk of COPD and asthma in relation to air pollution. Their study investigated the
Danish population and the annual mean levels of PM, 5, NO, and black carbon. Higher exposure was
related to higher asthma and COPD incidence defined by hospital contact [23-26].

J. Heinrich (Munich, Germany) presented a study on long-term exposure to ambient ozone in 3014 adults
from 17 centres in nine countries [27]. Higher exposure was associated with faster lung functional decline
estimated by spirometry [28, 29]. KotHE et al. [30] explained the impact of cooking methods on indoor air
pollution and lung function in rural Rwanda. Replacing traditional cooking with improved cookstoves
resulted in a reduction in indoor air pollution and an improvement in lung function. Finally, Soriano et al. [31]
showed the estimated economic burden and carbon footprint in metric tons of CO, equivalent of the
change of inhalers for non-clinical reasons and the consequent lack of adherence to treatment in Spain,
which is responsible for a great economic and environmental cost.

Scientific year in review

In this “Scientific year in review” session, the speakers summarised the latest advances in translational
respiratory science made by laboratories from across the world over the last year. R. Faner Canet
(Barcelona, Spain) discussed the importance of gene—environment interactions in the pathogenesis of
COPD. Being born severely preterm (<28 weeks gestational age) is associated with a 7-fold increased risk
of developing COPD by age 30-50 years [32]. This links to another study of preterm children who
underwent COPD polygenic risk scoring. Those who had the highest risk scores developed reduced FEV,
at the age of 5 years, which shows that COPD-associated genes may play a role in preterm children
developing obstructive airways disease [33].

R. Faner Canet also discussed the role of epigenetics in COPD. A study focusing on ethnically diverse
children living in low-income areas identified a genetic variant that was partly mediated by DNA
methylation changes associated with smoking history. This variant was associated with reduced FEV; [34].
In addition, studies continue to show the importance of telomere shortening in the development of
COPD [35]. This led to an insightful conversation among the panellists about the potential to screen for
individuals at risk of COPD using telomere length and polygenic risk scores.

M. Sauler (New Haven, CT, USA) presented the latest research into alveolar defects in obstructive lung
disease. He explained that proinflammatory macrophages are associated with ferroptosis of alveolar type 2
(AT?2) epithelial cells in lungs exposed to cigarette smoke [36]. In addition, recent data show that the loss
of zinc transporter ZIP8 results in impaired AT2 cell function and subsequent lung fibrosis. Exogenous
zinc then renewed the activity of AT2 cells, indicating the potential of zinc as a therapeutic target in
idiopathic pulmonary fibrosis (IPF) [37]. Previous studies have shown that transfection with specific
miR-200 family members (including miR-200c-3p) restores trans-differentiation of AT2 cells obtained
from people with IPF to alveolar type 1 (AT1) cells [38]. More recent research showed that this is through
downregulation of the endothelial Fms-related receptor tyrosine kinase 1 (Fltl) receptor [39]. Fltl
knockout mice were protected from lung fibrosis upon exposure to bleomycin, and fibrosis was even
reversed in these mice [39].
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M. Sauler showed research focusing on small airway disease in COPD. Single-cell RNA sequencing
(scRNAseq) identified a new cell type found in distal airways, termed terminal airway-enriched secretory
cells (TASCs), which secrete surfactant. There is a loss of TASCs in the distal airways of individuals with
end-stage COPD, which may contribute to the loss of distal airways seen in COPD [40].

M. Konigshoff (Pittsburgh, PA, USA) focused on anti-ageing targets in IPF (figure 2). Airway basal cells
in IPF are reprogrammed to a keratin 17 (KRT17)"" and phosphatase and tensin homolog (PTEN)'®" cell
type. These cells contributed to fibrosis development when implanted into mouse lungs, changes that were
attenuated by the Src kinase inhibitor saracatinib [41]. Saracatinib, initially developed as an oncological
treatment, reverses several fibrotic pathways [42].

Dysfunction of the endothelial transcription factor E-26 transformation-specific-related gene (ERG)
occurs during ageing, and was associated with increased systemic inflammation, vascular remodelling
and impaired lung fibrosis recovery following bleomycin administration [43]. Lower levels of another
endothelial transcription factor, forkhead box F1 (FOXF1), were observed in endothelial cells obtained
from people with IPF. FOXF1-deficient endothelial cells were associated with accelerated lung fibrosis
and inflammation, and lung delivery of FOXF1 cDNA via nanoparticles attenuated lung fibrosis
development in mice treated with bleomycin, showing the potential of this finding as a treatment strategy
in IPF [44]. These results emphasise the importance of the lung endothelium in ageing and the
pathogenesis of IPF.

W. Kiibler (Berlin, Germany) presented advances in the understanding of tissue barrier dysfunction in
pathogen-associated respiratory failure. It has been found that the matrikine endostatin is increased in the
lungs of patients with acute respiratory distress syndrome (ARDS), including COVID-19-related ARDS,
and this increase promotes thrombin-induced epithelial barrier dysfunction and platelet and neutrophil
activation [45]. Loss of the endothelial aryl hydrocarbon receptor (AHR) also increases tissue barrier
dysfunction and subsequent movement of inflammatory cells into alveoli following influenza infection. A
diet rich in AHR ligands (indoles) protects against tissue barrier dysfunction, demonstrating the importance
of the gut-lung axis in viral infections [46].

W. Kiibler furthermore described novel targets for pneumonia-related acute lung injury. Cystic fibrosis
transmembrane conductance regulator (CFTR), the membrane channel involved in the pathogenesis of
cystic fibrosis, was downregulated following Streptococcus pneumoniae infection. This led to endothelial
barrier dysfunction through various mechanisms, including the activation of voltage-gated calcium
channels and transient receptor potential vanilloid 4 (TRPV4). The CFTR potentiator ivacaftor reduced
endothelial permeability following S. pneumoniae infection [47]. Vasculotide, agonist of the angiopoietin
receptor Tie2, reduced lung permeability and acute lung injury when used with ampicillin in mechanically
ventilated mice infected with S. pneumoniae [48].

This session highlighted the breadth and quality of translational respiratory research over the last year,
covering many causes of impaired tissue regeneration and lung function in lung disease (figure 2).

Changes in endothelial
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FIGURE 2 Causes of impaired tissue regeneration and lung function in lung disease. AT1/2: alveolar type 1/2.
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Oral presentation session: Tissue modelling and remodelling

Tissue remodelling occurs due to aberrant repair responses to tissue damage, leading to the loss of tissue
integrity, disrupted extracellular matrix homeostasis and replacement with disorganised structural cells [49].
Alongside fibrosis, tissue remodelling is a common feature in many respiratory diseases, e.g. asthma,
COPD and IPF [50]. In this session, speakers used experimental methodologies that included murine
models, human ex vivo/in vitro cell culture models and single-cell-omics technologies to model diseased
tissues and tease out the mechanisms underlying tissue remodelling.

Murine models

Mutations in the surfactant protein C (SP-C) gene (SFTPC) in AT2 epithelial cells have been linked to
sporadic and familial IPF and a fibrotic lung phenotype [51, 52]. Using a murine model of lung fibrosis
where mutant SftpcI73T (I*R-SP-C'73T) was inducibly expressed, Robricuez et al. [53] showed a role for
epithelial metabolic dysfunction in IPF mediated by AT2 glycolytic reprogramming, mitochondrial
dysfunction and altered 5’AMP-activated protein kinase (AMPK) signals which could be rescued by
metformin, an indirect AMPK agonist. Next, JANcIAUSKIENE WALLMARK and colleagues [54, 55] showed the
beneficial effects of plasma-purified o1-antitrypsin therapy in preventing the development of obliterative
bronchiolitis and attenuating acute rejection in an orthotopic model (Balb/C mice as donors and C57BL/6
as recipients) for lung transplantation.

Human ex vivo/in vitro culture models

It has been postulated that fibroblast-derived MMPs drive extensive lung tissue destruction and remodelling
during Mycobacterium tuberculosis (Mtb) infection [56]. Using primary human lung fibroblasts treated with
control or Mtb-infected monocytes, Cusman et al. [57] showed that MMP-1 and MMP-3 were elevated in
fibroblasts treated with Mtb-infected monocytes, and that inhibiting glycolysis with 2-deoxy-p-glucose
resulted in a dose-dependent reduction in MMP-1 and reduction in TIMP-1 gene expression. These results
suggest that fibroblast MMP and TIMP-1 secretion are monocyte-dependent and indicate that host-directed
strategies targeting metabolic pathways may decrease lung fibrosis in tuberculosis. Using nasal epithelial
cells obtained from people with severe asthma, SoENDERGAARD et al. [58] explained that people who are
unable to down-titrate anti-interleukin (IL)-5 tended to have impaired wound healing (determined by a
wound/scratch test), suggesting that epithelial dysfunction could be a marker of incomplete remission on
treatment. In this study, complete responders to anti-IL-5 had better results on lung function tests and
improved symptoms compared to non-complete responders.

This session also included work on human induced pluripotent stem cell (hiPSC)-derived lung cells, such
as a study on Birt-Hogg—Dubé syndrome (BHD), a rare autosomal dominant disorder caused by germline
mutations in the tumour suppressor gene FLCN, encoding for the protein folliculin [59]. RopriGuez Ruiz
et al. [60] generated a BHD in vitro model by deleting FLCN in hiPSCs using CRISPR-Cas9 and
differentiating those cells into iPSC-derived AT2 (iAT2) epithelial cells. Together with primary AT2 cells
obtained from people with BHD, which were used to validate the in vitro model, the group used a
lung-on-chip model to expose these cells to breathing related-stresses, as previously used for primary
alveolar cell cultures [61]. Additionally, hiPSCs were used by ScHWEIKERT et al. [62] to generate iAT2 cells
to investigate whether oestradiol affects the development of pulmonary fibrosis in non-diseased organoids.
Epidemiological data on disease onset in IPF, as well as data in a bleomycin mouse model, suggest a role
for sex hormones in disease pathogenesis [63]. Even though no significant differences were found in AT2
markers or selected proinflammatory or fibrotic genes in response to oestradiol, it would be interesting to
further investigate the effect of sex hormones in diseased iAT2 and AT2 cells to understand potential
sex-specific differences in the disease.

Single-cell-omics

Lanc et al. [64] observed an induction of multilineage conserved fibrogenic cell states by 1) coupling ex
vivo cytokine and drug perturbations of human precision-cut lung slices (hPCLS) with scRNAseq to study
early lung fibrogenesis directly in human tissue and 2) comparing the data against an in vivo multicohort
single-cell atlas from pulmonary fibrosis individuals. Using micro-computed tomography (CT) staged
human tissues, the authors characterised the appearance and interaction of CTHRCI™ myofibroblasts,
KRT17'/KRT5~ basaloid epithelial cells and an ectopic PLVAP"/VWAI" endothelial cell state in the
thickened alveolar septum of early-stage pulmonary fibrosis. This supports the use of hPCLS for drug
testing and provides a framework for in-tissue perturbational single-cell genomics [65]. Utilising a multiple
iterative labelling by antibody neodeposition (MILAN) methodology on tissue sections of COPD and IPF
explanted lungs, Cortest et al. [66] found five distinct cell clusters (basal, AT1, AT2, intermediate
AT2-to-AT1 and macrophages) based on nine phenotypic markers. They also demonstrated increased levels
of leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) in basal cells, AT2 cells and
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intermediate alveolar progenitor populations located in fibrotic regions and in areas of inflammatory
infiltration in COPD and IPF lungs that were associated with increased levels of p21 senescence marker.
Next, Istam et al. [67] demonstrated a role for human antigen R (HuR) in lung fibroblast differentiation
during IPF [68] by analysing transforming growth factor-B-treated HuR small interfering RNA (siRNA)
knockdown and vector control-treated normal fibroblasts and IPF fibroblasts using concomitant RNAseq and
mass spectrometry-based proteomics techniques. Lastly, Menta et al. [69] provided late-breaking data from
single-cell transcriptomic and T-cell receptor profiles of bronchoalveolar lavage (BAL) cells obtained from
people with post-COVID-19 (>3 months from acute disease) who have residual lung abnormalities with
predominantly 1) inflammatory or 2) fibrotic radiological appearance on a CT scan. They showed that the
two participant groups were transcriptionally similar and exhibited clonal expansion and high T-cell receptor
clustering without enrichment for SARS-CoV-2 reactive sequences, indicating that the purported radiological
sub-phenotypes in such groups may well be a different manifestation of the same disease. Therefore,
T-cell-directed therapies might be beneficial for these people regardless of radiological appearance.

Hot topic: What did you always want to know about omics analyses for clinical practice?

Rapid advances in omics technologies have provided us with the tools to dissect biological processes at
single-cell resolution. Integration of omics data (multi-omics) can reveal clinically important endotypes and
phenotypes, with the potential to identify new therapeutic targets.

M. Nawijn (Groningen, the Netherlands) explained that the use of transcriptomics is key to understanding
how cellular activity is related to its genetic information. He focused on the transition from bulk to
scRNAseq, which has revolutionised pathogenesis studies by providing in-depth analysis of differences in
cell-type composition, activity and (sub)phenotype within complex samples, and information on cell—cell
interactions and transitions in cell state [70]. The first study presented using scRNAseq in asthma
identified a novel mucous ciliated cell state, and dominance of type 2 T helper (Th2) cell signalling [71].
Further work utilising scRNAseq showed heterogeneity within Th2 cell populations and identified a subset
of pathogenic IL-9-expressing Th2 cells that was increased in allergic asthmatic individuals compared to
allergic individuals without asthma [72]. Strikingly, post-allergen challenge, Th2 cells were only present in
the airways in asthma, and airway epithelial cells demonstrated a dramatically altered transcriptional
response in subjects with asthma but not in those with allergy alone [73]. The online resource Human
Lung Cell Atlas integrates multiple scRNAseq respiratory system datasets, facilitating disease comparisons
at the single-cell level with the potential to identify novel targets for intervention [74].

I. Adcock (London, UK) discussed the increasing sophistication of proteomic techniques, enabling
selective quantification of proteins within a complex sample. Mass cytometry by time-of-flight (CyTOF)
uses heavy metal isotope-labelled antibodies to detect and quantify multiple proteins in single cells [75].
Thus, CyTOF can identify distinct cell populations, e.g. lung adenocarcinoma-associated immune cells [76]
and various immune cell populations, in interstitial lung diseases [77]. Proteomic signatures can also be
used to identify clinical phenotypes: sputum proteome clusters in asthma represent discrete molecular
sub-phenotypes and identify candidate protein biomarkers [78]. It was emphasised that identifying protein
“hits” requires validation over time, and it is still challenging to relate cell subtype to functionality and to
demonstrate disease relevance. Using machine learning, nasal fluid protein signatures were mapped to
transcriptomic datasets, identifying subsets of patients with severe asthma [79]. Further, differentially
expressed gene/protein pathway analysis in this study revealed potential novel therapeutic targets.

Digital spatial profiling is a complementary technique that adds a crucial layer of information, linking
transcriptomics and proteomics to imaging. F. Polverino (Houston, TX, USA) described spatial omics as a
cutting-edge tool that allows structural navigation of the lung by digitally selecting regions of interest [80].
Identifying gene and protein enrichments within a specific spatial context using the same input material
can predict pathologies associated with specific lung regions. The first digital spatial profiling study in
COPD demonstrated that the immune checkpoint programmed death-ligand 1 (PD-L1) was spatially
clustered with protein markers of activated T-cells, as well as genes involved in cancer progression. In
bronchioles, PD-L1 expression was associated with functionally active alveolar macrophages and directly
correlated with lung function [81].

To fully understand heterogeneity in disease, it is vital to combine multiple omics platforms. R. Faner
Canet (Barcelona, Spain) illustrated different multi-omic integration approaches to inform clinical
medicine. One approach is to use clinical phenotypes to identify underlying biological mechanisms
(endotypes): COPD clusters, identified by spirometry and imaging, revealed differential protein and gene
expression associated with distinct clinical outcomes [82]. Alternatively, multi-omics can expose
mechanistic links that identify clinical phenotypes: integration of the sputum transcriptome, proteome and
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metabolome with the serum proteome demonstrated that airway microbiota metabolites may mediate
COPD pathophysiology [83]. Ultimately, the approach used for multilevel integration depends on the
research question, and the selection of platforms may influence the endotype uncovered.

In conclusion, this session highlighted the power of omics to reveal novel disease mechanisms and lead us
towards precision medicine. Collaboration is vital, both for robustness and validation by increasing cohort
size, and for multidisciplinary interpretation of outcomes. The challenge is to integrate clinical and
multi-omic data longitudinally for therapeutic translation.

Oral presentation session: Lost in translation: new insights into cell-to-cell crosstalk in lung disease
This session showcased how integration of next-generation sequencing with laboratory methods could be
used to investigate cell-to-cell crosstalk (figure 3). First, L. De Sadeleer (Munich, Germany) introduced
epithelial-mesenchymal crosstalk. This process is vital in lung regeneration and repair after injury, and of
particular interest in IPF [84, 85]. Using single-nuclei RNA sequencing (snRNAseq), laser capture
microdissection, spatial transcriptomics and multiplexed immunofluorescence, novel injury-associated
profibrotic cell states were successfully identified. Importantly, further analysis revealed niche
ligand-specific cell-to-cell interactions distinct between normal and early stages of IPF.

Next, Mansourt et al. [86] focused on the role of basophils in regulating tumours. Combining multilevel
analyses of scRNAseq with complex laboratory models enabled an exploration of the role of understudied
basophils and their interaction with regulatory T-cells (Tregs). Clinically relevant interventions
(antihistamines) disturbed the interactions between basophils/Tregs, promoting tumour progression in mice.
This work highlighted a surprising role of cell-to-cell crosstalk that directly impacted the risk of metastasis
in humans.
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FIGURE 3 Cell crosstalk in the airways is highly complex; thus, there is a need to integrate basic laboratory techniques, multi-omics and
bioinformatic analyses to holistically understand these interactions. Created with BioRender.
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A. Oliver (Cambridge, UK) shared a recent integrated cell atlas of healthy and diseased lungs [74]. The
value of this database was demonstrated by combining scRNAseq and spatial transcriptomics to reveal
novel circuits of cell communication between epithelial cells and CD4" T-cells [87]. They highlighted
increased abundance and activation of resident memory T-cells in asthma patients, an important cell type
in the lung [88]. This integrated multi-omics approach identified increased interactions of goblet cells with
other epithelial cells, and with CD4 T-cells, which is mediated via the major histocompatibility complex in
people with persistent asthma. This work provides valuable insights into targetable mechanisms behind
regulatory networks of T-cell activation in asthma.

TEE et al. [89] presented valuable insight into the anti-inflammatory role of isthmin-1 (ISM1) in allergic
asthma, whose function has been described for other conditions [90, 91]. A knockout mouse model
showed that ISM1 reduces eosinophil numbers in BAL fluid and reduces adiponectin secretion from AT2
epithelial cells. The multicellular effect of ISM1 deficiency directly correlated with intensified
inflammation, necroptosis and airway hyperresponsiveness. This presents ISM1 as a mediator of cellular
interaction and a potential therapeutic tool in allergic asthma [92].

Next, Paroczar et al. [93] presented findings on extracellular neutrophil traps (NETs) in airway
inflammation. Charcot-Leyden crystals (CLCs), known to induce neutrophil recruitment and NET
formation [94], were demonstrated to have diminished effects in complement protein-depleted mice.
Granulocyte-macrophage colony-stimulating factor increased uptake of CLCs, increasing NET formation
and complement proteins C3 and C5aR1. These findings reveal a novel therapeutic target in people with
unresponsive asthma via NET-based anti-inflammatory pathways.

K. Bracke (Ghent, Belgium) used RNAseq to explore cellular crosstalk in COPD using B-cells co-cultured
with fibroblasts [95]. Together with immunohistochemical co-staining for B-cells and stromal cell markers,
the localisation of B-cells was discovered to affect the inflammatory and remodelling pathways of COPD,
building upon previous findings [96]. As such, B-cells, lymphoid follicles and fibroblasts have dynamic
roles as critical regulators of COPD [97, 98]. ZimermaM et al. [99] explored the complex immune cell
communication networks. Dendritic cells have a protective role in tumour microenvironments [100, 101].
The findings of this work show ineffective dendritic cell function in the tumoural front area. This was
specific to adenocarcinoma as opposed to squamous cell carcinoma. Therefore, cell interactions are disease
subtype-specific, informing therapeutic interventions.

Returning to COPD, Owtes et al. [102] focused on IL-36y and its effects on lung macrophages [103].
Supernatants from IL-36y-stimulated small airway fibroblasts were exposed to monocyte-derived
macrophages. Increased levels of IL-36y impaired macrophage phagocytosis in COPD. Notably, IL-36y
expression/release is increased by viral infection [104], making this novel cell-to-cell crosstalk relevant for
acute COPD exacerbations.

Finally, Livpo et al. [105] discussed using surgical lung tissue samples to reveal the relationship between
eosinophils, microbes and immune cell patterns. Combining in situ hybridisation, multiplexed
immunohistochemistry and spatial analysis enabled an investigation of immune infiltration patterns. No
spatial correlation was found in the infiltration with bacteria, viruses or fungi. However, spatially distinct
cell niches were revealed. Eosinophils and type 2 inflammatory features were linked with basophils,
indicating spatial correlation [103]. This patchy pattern of immune cell niches results in a complex mix of
inflammatory signatures, which impacts treatment effectiveness [106].

Oral presentation session: From the transcriptome landscape to innovative preclinical models in
lung diseases

This session highlighted a variety of state-of-the-art, innovative approaches to explore complex aspects of
lung diseases, providing valuable insights into chronic airway diseases, pulmonary fibrosis, post-infection
complications and conditions like COPD that result in skeletal muscle wasting.

A. Bourdin (Montpellier, France) presented a novel model combining the bronchial epithelium and
submucosa, both playing an important role in many chronic airway diseases including asthma [107]. The
model consists of human bronchial fibroblasts seeded on a collagen-chitosan matrix, iPSC-derived
bronchial epithelial cells (forming basal, goblet, club and neuroendocrine cells) [108] and iPSC-derived
neurons. To facilitate axonal integration into the existing airway epithelium, Schwann cells were added
(previously described to improve nerve regeneration [109]), resulting in improved innervation of the
airway epithelium that can be used to model chronic airway diseases.
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Ultra-strong exercise induces physiological responses in the human body. A. Smolinska (Maastricht, the
Netherlands) reported that volatile organic compounds (VOCs), which can be measured in exhaled breath
using high-resolution thermo-desorption gas chromatography mass spectrometry, change after running an
ultra-marathon [110]. Breath was collected pre- and post-ultra-marathon from 24 healthy participants. They
found that 811 VOCs were differentially regulated, with 12 being significantly decreased and
51 significantly increased post-ultra-marathon. Seven of the significantly upregulated compounds after the
ultra-marathon suggest physiological responses like fatty acid oxidation, inflammation and altered gut
microbiome activity.

Lung explants mostly recapitulate the end stage of IPF, limiting the outcome of these models.
Additionally, scRNAseq studies of lung explants are lacking spatial information [111-114]. A. Justet
(Caen, France) applied high-resolution spatial transcriptomics to earliest clinical-grade IPF samples to
recapitulate the architecture of the human airways. Early disease was characterised by a change in cell type
proportions (decreased AT1, AT2 cells and general capillaries) and increased collagen XV venous and
ectopic airway cells, suggesting respiratory unit loss. Thus, spatial transcriptomic analysis allows the
investigation of cellular changes of the alveolar niches.

A. Valverde (Nottingham, UK) used a hiPSC-derived model with a SFTPC mutation generated from an
individual with TPF and a CRISPR gene-edited wild-type control [115, 116] to investigate the impact of the
SFTPC mutation on the iAT2 cell response to infection with influenza A virus subtype HIN1 [117, 118].
Bulk RNAseq revealed, in addition to top genes involved in IPF and infection, that wild-type cells mainly
show Gene Ontology (GO) terms associated with the antibacterial defence response, while the mutant cell
line mainly displayed GO terms associated with the cell reaction to its environment. This model demonstrates
the potential of gene-edited iAT2s as in vitro platforms for human respiratory infection modelling.

Yamamorto et al. [119] presented an IPF model composed of healthy iPSC-derived alveolar organoids
co-cultured with lung fibroblasts. scRNAseq showed that this model, after treatment with bleomycin,
recapitulated key mechanisms of fibrosis, sharing 76.3% of upregulated pathways with IPF human-derived
lung samples. Treating these fibrotic organoids with HL0O1, a lysophosphatidic acid 1 (LPA1) antagonist
[120], showed a restorative effect with a decrease in fibrosis and an increase in AT2 cell marker.
Consistent with a previous report [121], murine and human organoid models proved the effectiveness of
HLO001 in IPF.

By combining hPCLS generated from lung tissue from IPF donors with snRNAseq, Decaris et al. [122]
investigated bexotegrast, a dual aVB6/aVB1 integrin inhibitor in the fibrotic lung models. They showed
that bexotegrast reduces extracellular matrix-related gene expression in fibroblasts, attenuates the collagen
triple helix repeat containing 1 (CTHRC1)" pro-fibrotic fibroblast subpopulation and reduces fibrogenic
gene expression pathways in aberrant basaloid cells.

Lung tissue biopsies may aid the diagnosis of fibrotic interstitial lung diseases; however, less invasive
alternatives are needed. UNTERMAN et al. [123] used scRNAseq to investigate novel biomarkers in BAL by
characterising differences in BAL composition between fibrotic hypersensitivity pneumonitis (fHP) and
IPF [124, 125]. They found that the proportions of non-fatty acid binding protein 4 (FABP4)"
macrophages, Tregs and C-type lectin domain containing 9A (CLEC9A)" dendritic cells are significantly
increased in fHP versus IPF. In addition, fHP macrophages showed a proinflammatory activation pattern.
These findings may help to differentiate IPF from fHP without the need for invasive techniques.

At et al. [126] delved into the molecular underpinnings of the severe post-infection complication known
as post-COVID pulmonary fibrosis (PCPF) [127]. This was achieved by comparing BAL samples obtained
from people with PCPF with those obtained from individuals without interstitial lung disease. Analyses of
Kyoto Encyclopedia of Genes and Genomes and QIAGEN Ingenuity Pathway Analysis pathways unveiled
the involvement of pathways associated with the nervous system in PCPF, and identified that key
regulators play a crucial role in the cytoskeleton organisation. The insights gained from this molecular
investigation enhance our comprehension of PCPF and present potential therapeutic targets.

Next, HenroT et al. [128] explored the involvement of C-X-C motif chemokine receptor 4 (CXCR4)" cells
[129] in skeletal muscle wasting among people with COPD [130]. Using an early COPD mouse model
with a CXCR4 deletion, the study found that this deletion prevented a decrease in muscle endurance and
the loss of oxidative myofibers. P. Henrot intends to employ snRNAseq to further analyse the
inflammatory infiltrate and dysregulated pathways.
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TABLE 1 Summary of the presented innovative approaches to model lung diseases presented as part of the “From the transcriptome landscape to

innovative preclinical models in lung diseases” oral presentation session

Models used Transbronchial hPCLS BAL Exhaled breath iPSC-derived models Mouse model
cryobiopsy
Diseases/ IPF IPF IPF, fHP, PCPF Ultra-strong Asthma, IPF COPD
conditions exercise
investigated
Purpose Investigate cellular Test drug Investigate biomarkers Investigate Create novel innervated  Investigate role
changes of the bexotegrast to characterise physiological airway epithelium of CXCR4 in
alveolar niche in IPF [122] differences between response [110] model [107]; model skeletal muscle
[131] fHP and IPF [123]; respiratory infection wasting [128]
investigate molecular with HIN1 [118]; test
basis of PCPF [126] drug HLOO1 [132]
Read-out High-resolution snRNAseq scRNAseq High-resolution Bulk RNAseq and Functional tests
spatial TD-GC-MS scRNAseq and whole
transcriptomics tissue
proteomics

hPCLS: human precision-cut lung slices; BAL: bronchoalveolar lavage; iPSC: induced pluripotent stem cell; IPF: idiopathic pulmonary fibrosis; fHP:
fibrotic hypersensitivity pneumonitis; PCPF: post-COVID pulmonary fibrosis; CXCR4: C-X-C motif chemokine receptor 4; snRNAseq: single-nuclei RNA
sequencing; scRNAseq: single-cell RNA sequencing; TD-GC-MS: thermo-desorption gas chromatography mass spectrometry.

Collectively, this session showcased innovative approaches in using transcriptomics (table 1) to advance
our understanding of disease mechanisms and identify potential drug targets. This emphasises the
significance of continued research in this field.

Concluding remarks

The selected sessions summarised in this review article showcased the diversity in basic and translational
respiratory science and the remarkable progress presented at the ERS Congress 2023. The studies delved
into the intricate interplay of micro- and macro-environmental factors impacting respiratory health,
emphasising the urgency for comprehensive strategies addressing both environmental influences and
individual behaviours. They illuminated the transformative potential of omics technologies, revealing
cellular states and interactions that were previously unseen and paving the way for precision medicine. The
exploration of cell-to-cell crosstalk provided deep insights into the complex networks underlying lung
diseases, offering promising avenues for targeted interventions. Additionally, innovative preclinical models
and advanced molecular analyses unveiled novel aspects of various lung conditions, laying the groundwork
for future research and therapeutic development. The topics discussed at the ERS Congress 2023
collectively underscored the collaborative efforts and interdisciplinary approaches driving the
advancements in respiratory science, offering hope for improved treatments and a healthier respiratory
future for people worldwide.
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