Serveur Académique Lausannois SERVAL serval.unil.ch

Author Manuscript Faculty of Biology and Medicine Publication

This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.

Published in final edited form as:

Title: Genome of the carbapenemase-producing clinical isolate Elizabethkingia miricola EM_CHUV and comparative genomics with Elizabethkingia meningoseptica and Elizabethkingia anophelis: evidence for intrinsic multidrug resistance trait of emerging pathogens. Authors: Opota O, Diene SM, Bertelli C, Prod'hom G, Eckert P, Greub G Journal: International journal of antimicrobial agents Year: 2016 Nov 15

DOI: 10.1016/j.ijantimicag.2016.09.031

In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article.

Université de Lausanne Faculté de biologie et de médecine

Highlights

- MDR clinical isolate *E. miricola* EM_CHUV core genome harbours 40 resistance genes.
- Large majority of the resistance genes are found in other *Elizabethkingia* genomes.
- Identified putative plasmid (pEM_CHUV) did not harbour any resistance genes.
- Limited number of horizontal gene transfers suggested an intrinsic origin of the MDR.

Genome of the carbapenemase-producing clinical isolate *Elizabethkingia miricola* EM_CHUV and comparative genomics with *Elizabethkingia meningoseptica* and *Elizabethkingia anophelis*: evidence for intrinsic multidrug resistance trait of emerging pathogens

Onya Opota ^{a,1}, Seydina M. Diene ^{b,1}, Claire Bertelli ^{a,c}, Guy Prod'hom ^a, Philippe Eckert ^d, Gilbert Greub ^{a,e,*}

^a Institute of Microbiology, University Hospital of Lausanne, Lausanne, Switzerland

^b Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland

^c SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

^d Service of Adult Intensive Medicine, University Hospital of Lausanne, Lausanne, Switzerland

^e Infectious Diseases Service, University Hospital of Lausanne, Lausanne, Switzerland

ARTICLE INFO

Article history:

Received 31 May 2016

Accepted 3 September 2016

Keywords:

Elizabethkingia miricola Comparative genomics Multidrug resistance Carbapenemase Pneumonia Nosocomial infection

* Corresponding author. Present address: Institute of Microbiology, University Hospital of Lausanne, Rue de Bugnon 48, 1010 Lausanne, Switzerland. Tel.: +41 21 314 4979; fax: +41 21 314 4060.

E-mail address: Gilbert.Greub@chuv.ch (G. Greub).

¹ These two authors contributed equally to this work.

ABSTRACT

Elizabethkingia miricola is a Gram-negative non-fermenting rod emerging as a lifethreatening human pathogen. The multidrug-resistant (MDR) carbapenemase-producing clinical isolate E. miricola EM_CHUV was recovered in the setting of severe nosocomial pneumonia. In this study, the genome of *E. miricola* EM CHUV was sequenced and a functional analysis was performed, including a comparative genomic study with Elizabethkingia meningoseptica and Elizabethkingia anophelis. The resistome of EM_CHUV revealed the presence of a high number of resistance genes, including the presence of the *bla*_{GOB-13} and *bla*B-9 carbapenemase-encoding genes. Twelve mobility genes, with only two of them located in the proximity of resistance genes, and four potential genomic islands were identified in the genome of EM_CHUV, but no prophages or CRISPR sequences. Ten restriction-modification system (RMS) genes were also identified. In addition, we report the presence of a putative conjugative plasmid (pEM_CHUV) that does not encode any antibiotic resistance genes. Altogether, these findings point towards a limited number of DNA exchanges with other bacteria and suggest that multidrug resistance is an intrinsic trait of E. miricola owing to the presence of a high number of resistance genes within the bacterial core genome.

1. Introduction

Elizabethkingia miricola, originally identified in 2004 in the Mir Space Station, belongs to the genus *Elizabethkingia* (previously *Chryseobacterium*) that contains four species of ubiquitous Gram-negative non-fermenting rods [1,2]. Elizabethkingia meningoseptica mainly, and more recently E. miricola and Elizabethkingia anophelis, have been incriminated in severe infections in humans. *Elizabethkingia endophytica* is the last identified species of this genera; its pathogenic potential towards humans still remains undetermined [3]. Elizabethkingia meningoseptica has been involved in a broad range of infections in humans, including bacteraemia and meningitis, in particular in newborns and children where a high rate (84%) of meningitis has been documented. Noteworthy, nosocomial infections such as ventilator-associated pneumonia and haemodialysis catheter-related infections are a significant part of *E. meningoseptica*-related infections. *Elizabethkingia anophelis*, initially isolated from the midgut of the mosquito malaria vector Anopheles gambiae [4], has also been associated with similar severe infections (pneumonia, catheter-related infection and central nervous system infections) with high mortality rates [5,6]. *Elizabethkingia miricola* has been recently incriminated in bacteraemia and sepsis both in immunocompetent and immunocompromised patients. supporting the clinical relevance of this strain [7–10]. The strain E. miricola EM CHUV described here was isolated from a lower respiratory tract specimen in the setting of severe nosocomial pneumonia. Antibiotic susceptibility testing of isolate EM CHUV revealed a multidrug-resistant (MDR) profile, a phenotype encountered in most of the previously documented E. miricola strains. To better understand the genetic basis of this multidrug resistance, in this study the genome of EM_CHUV was sequenced and a

genomics analysis was performed, including a comparison with the genomes of *E. meningoseptica* and *E. anophelis.*

2. Materials and methods

2.1. Microbiology procedures

Strain *E. miricola* EM_CHUV was recovered from the endotracheal secretions and bronchoalveolar lavage fluid of a patient. Isolate identification and antibiotic susceptibility testing, including detection of carbapenemase production, were performed as described in the Supplementary materials and methods.

2.2. Genome sequencing and analysis

Genomic DNA of *E. miricola* EM_CHUV was sequenced, assembled and annotated as described in the Supplementary materials and methods. The genome sequences of *E. miricola* ATCC 33958 type strain (JRFN00000000.1) [11], *E. anophelis* NUHP1 (CP007547), *E. anophelis* R26 (ANIW00000000), *E. meningoseptica* ATCC 13253 (BARD01000018) and *E. meningoseptica* 502 (AVCQ00000000) were retrieved from the National Center for Biotechnology Information (NCBI) database and were annotated using RAST server [12]. The phylogenetic relationship among the *Elizabethkingia* spp. and closely related bacteria was based on the 16S rRNA genes. The resistome of EM_CHUV was investigated from the RAST annotation and was confirmed by BLASTP analysis against the ARG-ANNOT database [13] as well as information from the CARD database [14] in light of the antibiotic resistance phenotype. To address the putative

foreign origin of resistance genes, we searched for the presence of genes harbouring domains of mobile elements within the annotation (transposase, integrase, insertion sequence and recombinase), genomic islands predicted with IslandViewer 3 [15] and prophages predicted using PHASTER [16] in their close vicinity. The absence of CRISPR domain sequences was identified using CRISPRFinder [17]. Average genome identity was evaluated using JSpecies v.1.2.1 [18]. Furthermore, the core proteomes were compared using GET_HOMOLOGUES [19].

3. Results

3.1. Isolation of Elizabethkingia miricola EM_CHUV

In April 2014, an 82-year-old man was admitted to the intensive care unit (ICU) of University Hospital of Lausanne (Lausanne, Switzerland). The medical history of the patient started a year before with cervical spine surgery complicated by post-operative tetraparesia, which was followed by several hospitalisations for the management of recurrent pneumonia. The patient was initially treated by amoxicillin/clavulanic acid, followed by a combination of moxifloxacin and ceftazidime, and finally by amikacin and imipenem. At admission to our hospital, two pairs of blood bottles were drawn from an arterial catheter and were processed using a BD BACTECTM FX automated blood culture system (Becton Dickinson, Heidelberg, Germany), and a urine sample was collected. In addition, endotracheal secretions and bronchoalveolar lavage fluid were sampled. The urine was negative for detection both of *Legionella* and *Streptococcus pneumoniae* antigens and the urine culture remained sterile. After 28 h in the ICU, the

patient died following treatment withdrawal in the context of a severe neurological disability and nosocomial pneumonia. Cultures of the endotracheal secretions of the patient were positive for two distinct Gram-negative bacteria identified as *Stenotrophomonas maltophilia* and *E. miricola* by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). The *E. miricola* strain was also recovered by culture from the bronchoalveolar lavage fluid (10⁷ bacteria/mL). Blood cultures remained sterile after 5 days of incubation. The recent literature has reported several cases of severe infections in humans owing to this organism, including pulmonary abscess and sepsis [7–10]. These cases as well as the case described here are summarised in Table 1 and support a significant pathogenic potential of this organism.

3.2. Antibiotic susceptibility profile of Elizabethkingia miricola EM_CHUV

Antibiotic susceptibility testing performed on the *S. maltophilia* strain revealed sensitivity to minocycline, trimethoprim/sulfamethoxazole and levofloxacin. *Elizabethkingia miricola* EM_CHUV was found to be resistant to almost all of the antibiotic families tested, including β -lactams (ticarcillin/clavulanic acid, piperacillin/tazobactam, ceftazidime, cefepime, aztreonam, imipenem and meropenem), aminoglycosides (netilmicin and tobramycin) and colistin (Table 2). EM_CHUV was sensitive to the aminoglycosides gentamicin and amikacin and to minocycline. Susceptibility to levofloxacin but resistance to ciprofloxacin was also observed. A carbapenemase was detected using the rapid Carba NP test [20] and was characterised as a metallo- β -lactamase (MBL) using MBL Etest strips (MBL IP/IPI; bioMérieux, Lyon, France) by comparison of

differential inhibition with and without ethylene diamine tetra-acetic acid (EDTA) as chelator in the presence of imipenem (Supplementary Fig. S1) [21]. Thus, EM_CHUV exhibited a MDR phenotype, already documented for other *E. miricola* species, which we investigated through a genomic analysis.

3.3. Comparative genomics and phylogeny of the Elizabethkingia spp.

The general features of the genome of EM_CHUV and the other genomes included in this study are given in Supplementary Table S1. The genome size of *E. miricola* EM_CHUV was estimated to be 4 286 503 bp with a GC content of 35.78%. A putative plasmid (pEM CHUV) of 176 107 bp with a GC content of 40.15% was also identified, which encodes two full copies of the conjugative transposon operon tra (11 525 bp and 13 394 bp), likely involved in bacterial plasmid transmission by conjugation [22]. This plasmid showed no similarity to the complete genome of *E. miricola* BM10, but some regions shared similarity with different contigs of *E. miricola* ATCC 33958, suggesting that a similar plasmid could be found in various strains as an epitope or integrated within the genome. Interestingly, no resistance genes were detected on pEM_CHUV. The phylogenetic tree of the 16S rRNA gene revealed that the three *E. miricola* strains constitute a monophyletic cluster distinct from the other *Elizabethkingia* spp. (Fig. 1A). As expected, E. miricola ATCC 33958 was the most closely related strain to EM_CHUV when considering whole-genome nucleotide identity and core proteome identity (Fig. 1A,B; Supplementary Fig. S2). In contrast, E. anophelis, E. meningoseptica and Chryseobacterium meningoseptica strains grouped together, suggesting that the current taxonomy does not appropriately reflect their phylogenetic relationships. The very close

genetic proximity of *E. anophelis* NUPH1, *E. anophelis* R26 and *E. meningoseptica* 502 was confirmed by pairwise genome comparison (>97% identity) as well as by analysis of the core proteomes (>96% identity) (Supplementary Fig. S2). Moreover, the group is paraphyletic due to the deeper branching of *E. meningoseptica* ATCC 13253, which suggests that the latter strain might belong to a different species. This finding was also supported by the low average genome nucleotide identity (78%) and average core proteome identity (84%) of *E. meningoseptica* ATCC 13253 with the other genomes (Fig. 1B; Supplementary Fig. 2). Finally, over three-fold more proteins are shared between *E. miricola* EM_CHUV and *E. anophelis* NUHP1 (448 proteins) than *E. miricola* EM_CHUV and *E. meningoseptica* ATCC 13253 (134 proteins) (see Fig. 1C). In congruence with our findings, the classification of *E. meningoseptica* 502 has been changed to *E. anophelis* 502 in NCBI taxonomy during the revision process of this article.

As depicted in Fig. 1C, the core proteome of *E. miricola* EM_CHUV, *E. anophelis* NUPH1 and *E. meningoseptica* ATCC 13253 consists of 2842 proteins. EM_CHUV encodes 254 strain-specific proteins mainly with an unknown function (214/254; 84.25%). Interestingly, annotated proteins include a type I restriction–modification system (RMS), a DNA mismatch repair (*mutT*) gene, a heavy metal transporter and a gene encoding for a colicin-like protein, a cytotoxin with bactericidal activity.

3.4. Resistome of Elizabethkingia miricola EM_CHUV

The resistome of EM_CHUV revealed a total of 40 antibiotic resistance genes (Table 2; Supplementary Table S2). A high number of genes (n = 20) are involved in resistance to β -lactams, including the *bla*_{GOB-13} and *bla*B-9 genes encoding for class B carbapenemases [23]. The genome of EM_CHUV also contains the aminoglycoside 6adenylyltransferase gene (*ant-6*) associated with tobramycin resistance. Furthermore, four genes associated with resistance to sulfonamides and six genes associated with resistance to macrolides could be identified. Four tetracycline resistance genes were also present. Finally, the resistome of the EM_CHUV isolate contained a chloramphenicol resistance gene. Analysis of the genes associated with resistance to quinolones revealed the mutation T83S of GyrA, M437L of GyrB and M437F/A473L of ParE; no mutation was found in ParC. None of the resistance genes were located on the putative plasmid pEM_CHUV. Noteworthy, the genome of *E. miricola* ATCC 33958 and the other *Elizabethkingia* genomes analysed in this study also contained all these genes, except for four β -lactamase genes (Supplementary Table S2) [11].

We investigated whether the resistance determinants could have been acquired horizontally as part of genomic islands, but very few mobile elements located close to the resistance genes were identified. Indeed, among the 12 mobile elements (transposases, integrases, insertion sequences and recombinases) found in the genome of EM_CHUV, only 2 were located in the proximity of a class C β -lactamase-encoding gene and a chloramphenicol acetyltransferase-encoding gene (at 5.6 kb and

1.1 kb, respectively). The four genomic islands predicted along the chromosome did not contain any resistance genes, and no prophages or CRISPR sequences were found.

Despite the presence of two *tra* operons likely encoding for a conjugative DNA transfer system on the plasmid that could favour genetic exchange, this bacterium could partially limit the integration of exogenous DNA owing to RMSs. Indeed, ten genes belonging to RMSs were identified, including four copies of the type I DNA methyltransferase gene, four copies of the type I specificity domain and two copies of the type I restriction endonuclease gene.

4. Discussion

In this study, the genome of the clinical isolate *E. miricola* EM_CHUV was sequenced and analysed with the aim of identifying the genetic basis of the MDR phenotype of this emerging pathogen. Such a MDR phenotype, including resistance to carbapenems, has also recently been documented for several other *E. miricola* strains incriminated in human infections [8–10]. Genome analysis of *E. miricola* EM_CHUV revealed the presence of a high number of genes involved in resistance to antibiotics (β -lactamases, aminoglycoside 6-adenylyltransferase, and sulfonamide, tetracycline and chloramphenicol resistance genes) that were not associated with mobile elements. Moreover, all except four resistance genes were found to be conserved and most similar to orthologues in other *E. miricola* strains and other *Elizabethkingia* spp. Altogether, these data suggested that the observed MDR phenotype of *E. miricola*

EM_CHUV might be an intrinsic characteristic of this species and might be common within the *Elizabethkingia* genera.

Isolation of *E. miricola* EM_CHUV in the setting of nosocomial pneumonia in this study, together with two other documentations of *E. miricola* occurring in the setting of severe infections (bacteraemia and sepsis) involving respiratory tract infections [8,9], raises the question of a pulmonary tropism of this micro-organism. Similar to what is being described for *E. meningoseptica* and *E. anophelis*, such a tropism might be associated with increased risk of nosocomial pneumonia and more generally of nosocomial infection, which is further supported by the fact that in most reported cases the patient becomes colonised by *E. miricola* following broad-spectrum antibiotic treatment.

Overall, this study supports that *E. miricola* be considered as a potential pathogen with significant nosocomial risk based on frequent MDR phenotypes. Novel accurate identification methods such as MALDI-TOF/MS might reveal the true incidence of this bacterium. As a consequence, particular attention should be paid to this pathogen when isolated from clinical samples, and antibiotic susceptibility testing should be systematically performed.

Sequence accession no.

The Whole Genome Shotgun project of *E. miricola* EM_CHUV has been deposited at DDBJ/EMBL/GenBank under the accession no. <u>LIQC00000000</u>.

Acknowledgments: The authors are grateful to all of the technicians of the Diagnostic Microbiology Laboratory of the University Hospital of Lausanne (Lausanne, Switzerland) for their technical contribution. In particular, the authors thank Maria Senra-Ortiz, Myriam Corthesy, Christian Durussel and Sebastien Aeby for technical assistance. The computations were performed at the Vital-IT (http://www.vital-it.ch) Center for highperformance computing of the SIB Swiss Institute of Bioinformatics (Lausanne, Switzerland).

Funding: None.

Competing interests: None declared.

Ethical approval: Not required.

References

- [1] Kim KK, Kim MK, Lim JH, Park HY, Lee ST. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 2005;55:1287–93.
- [2] Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H, Huang X, et al. *Chryseobacterium miricola* sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 2003;26:523–8.
- [3] Kämpfer P, Busse HJ, McInroy JA, Glaeser SP. *Elizabethkingia endophytica* sp. nov., isolated from *Zea mays* and emended description of *Elizabethkingia anophelis* Kämpfer et al. 2011. Int J Syst Evol Microbiol 2015;65:2187–93.
- [4] Kämpfer P, Matthews H, Glaeser SP, Martin K, Lodders N, Faye I. Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. Int J Syst Evol Microbiol 2011;61:2670–5.
- [5] Frank T, Gody JC, Nguyen LB, Berthet N, Le Fleche-Mateos A, Bata P, et al. First case of *Elizabethkingia anophelis* meningitis in the Central African Republic. Lancet 2013;381:1876.
- [6] Lau SK, Chow WN, Foo CH, Curreem SO, Lo GC, Teng JL, et al. *Elizabethkingia* anophelis bacteremia is associated with clinically significant infections and high mortality. Sci Rep 2016;6:26045.
- [7] Rossati A, Kroumova V, Bargiacchi O, Brustia D, Luigi Garavelli P. *Elizabethkingia miricola* bacteriemia in a young woman with acute alcoholic pancreatitis. Presse Med 2015;44:1071–2.

- [8] Green O, Murray P, Gea-Banacloche JC. Sepsis caused by *Elizabethkingia miricola* successfully treated with tigecycline and levofloxacin. Diagn Microbiol Infect Dis 2008;62:430–2.
- [9] Gonzalez C, Coolen-Allou N, Allyn J, Esteve JB, Belmonte O, Allou N. Severe sepsis and pulmonary abscess with bacteremia due to *Elizabethkingia miricola* [in French]. Med Mal Infect 2016;46:49–51.
- [10] Colapietro M, Endimiani A, Sabatini A, Marcoccia F, Celenza G, Segatore
 B, et al. *bla*B-15, a new BlaB metallo-β-lactamase variant found in an
 Elizabethkingia miricola clinical isolate. Diagn Microbiol Infect Dis 2016;85:195–
 7.
- [11] Matyi SA, Hoyt PR, Ayoubi-Canaan P, Hasan NA, Gustafson JE. Draft
 genome sequence of strain ATCC 33958, reported to be *Elizabethkingia miricola*.
 Genome Announc 2015;3:pii: e00828-15.
- [12] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.
- [13] Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 2014;58:212–20.
- [14] McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother 2013;57:3348–57.

- [15] Dhillon BK, Laird MR, Shay JA, Winsor GL, Lo R, Nizam F, et al. IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res 2015;43:W104–8.
- [16] Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16–21.
- [17] Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 2007;35:W52–7.
- [18] Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126–31.
- [19] Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013;79:7696–701.
- [20] Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemaseproducing *Pseudomonas* spp. J Clin Microbiol 2012;50:3773–6.
- [21] Walsh TR, Bolmstrom A, Qwarnstrom A, Gales A. Evaluation of a new Etest for detecting metallo-β-lactamases in routine clinical testing. J Clin Microbiol 2002;40:2755–9.
- [22] Lawley TD, Gilmour MW, Gunton JE, Tracz DM, Taylor DE. Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27. J Bacteriol 2003;185:581–91.

- [23] Yum JH, Lee EY, Hur SH, Jeong SH, Lee H, Yong D, et al. Genetic diversity of chromosomal metallo-β-lactamase genes in clinical isolates of *Elizabethkingia meningoseptica* from Korea. J Microbiol 2010;48:358–64.
- [24] Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA,
 McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics.
 2007;23:2947-8.
- [25] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular biology and evolution.
 2013;30:2725-9.

Fig. 1. Phylogenetic relationship of *Elizabethkingia* spp. and comparative genomics of *Elizabethkingia miricola* EM_CHUV with other *Elizabethkingia* spp. (A) Phylogenetic relationship of *Elizabethkingia* spp. and closely related bacteria based on 16S rRNA sequences. The tree was constructed using the free Clustal X software [24] v.2.0 and MEGA software v.6.06 [25] using the neighbour-joining method with the model Kimura 2-parameter and 1000 bootstrap replicates. Bootstrap values are expressed by percentage of the 1000 replicates, and only those up to 60% are shown at branch points. (B) Pairwise comparison of the average nucleotide identity of the genomes performed using the JSpecies v.1.2.1 program [18]. (C) Proteome comparison between *E. miricola* EM_CHUV, *Elizabethkingia anophelis* NUPH1 and *Elizabethkingia meningoseptica* ATCC 13253.

0.005

Table 1

Voor	A a a	Underlying	Clinical manifestation(a)		Traatmanta	Outcomo	Deference
rear	Age	Underlying	Clinical manifestation(s)	Clinical sample	Treatments	Outcome	Relefence
	(years)/	condition(s)					
	sex						
2008	55/M	Stage IV mantle cell	Febrile neutropenia,	Tracheal aspirate,	Tigecycline,	Persistent	[8]
		lymphoma, salvage	pulmonary nodule,	blood cultures	levofloxacin	pulmonary	
		chemotherapy	sepsis		(consecutive to	colonisation,	
					ceftazidime,	sepsis	
					vancomycin,		
					meropenem)		
2015	34/F	Alcohol consumption	Acute alcoholic	Blood cultures	Ciprofloxacin,	Favourable	[7]
			pancreatitis, respiratory		imipenem,		
			distress requiring non-		(consecutive to		
			invasive ventilation,		imipenem alone)		
			lung atelectatic areas				
2016	31/F	Arterial hypertension	Worsening of general	Blood cultures	TZP, gentamicin	Favourable	[9]
			state. drv cough. fever		(consecutive to		
			dvspnoea, lung		TZP alone)		
			abscess and pleural				
			effusion dilated				
			cardiomyopathy with				
			thrombus				

Summary of *Elizabethkingia miricola* infections reported to date

2016	2/M	Spina bifida, bladder	Fever and severe	Urine collected	Unknown	Unknown	[10]
		exstrophy,	clinical conditions	from an			
		atelectasis,		intermittent			
		tracheostomy,		catheter			
		chronic kidney					
		insufficiency,					
		Mitrofanoff stoma					
		fistula					
2016	82/M	Status post bone	Severe nosocomial	Bronchoalveolar	Amikacin,	Death ^a	This study
		marrow surgery,	pneumonia	lavage fluid and	imipenem		
		recurrent		tracheal aspirate	(consecutive to		
		pneumonia			moxifloxacin,		
					ceftazidime)		

TZP, piperacillin/tazobactam;

^a Treatment withdrawal in the context of tetraparesia and nosocomial pneumonia.

Table 2

Antibiotic resistance pattern and resistance genes of *Elizabethkingia miricola* EM_CHUV

Antibiotic class	Tested antibiotics	Inhibition	Etest MIC	Interpretation	Resistance genes identified in the
		diameter (mm)	(mg/L)		genome ^a
β-Lactams	Ticarcillin/clavulanic acid	6	>256	R	β -Lactamase (<i>n</i> = 16)
	Piperacillin/tazobactam	6	32	R	MBL fold metallo-hydrolase (<i>n</i> =
	Ceftazidime	6	>256	R	2)
	Cefepime	11	24	R	Class B carbapenemase bla _{GOB} .
	Imipenem	6	>32	R	13
	Meropenem	6	>32	R	Class B carbapenemase bla _{B-9}
	Aztreonam	6	>256	R	
Aminoglycosides	Amikacin	21	8	S	Aminoglycoside 6-
	Gentamicin	22	4	S	adenylyltransferase
	Netilmicin	15	24	R	
	Tobramycin	6	32	R	
Tetracyclines	Minocycline	ND	1	S	Tetracycline resistance protein
	Tigecycline	ND	1	NA	TetX
					Tetracycline efflux protein TetA
					Transmembrane efflux protein
					Antibiotic transporter
Polymyxins	Colistin	6	>256	R	

Sulfonamides	Trimethoprim/sulfamethoxazole	13	3	I	Dihydrofolate reductase DHFR
					Dihydrofolate reductase FolA
					Bifunctional deaminase-
					reductase protein
					Dihydropteroate synthase FoIP
					(EC 2.5.1.15)
Quinolones	Ciprofloxacin	32	2	R	DNA gyrase GyrA subunit A
	Levofloxacin	31	1	S	mutation T83S
					DNA gyrase GyrB subunit A
					mutation M437L
Rifampicin	Rifampicin	ND	0.75	NA	
Resistance genes f	for untested classes of antibiotics				
Macrolides	-	-	_	-	Macrolide resistance, ABC
					transporter
					Macrolide efflux protein, MFS
					transporter DHA3
					Erythromycin resistance,
					EmrB/QacA (n = 3)
					Erythromycin esterase
Chloramphenicol	-	-	-	_	Chloramphenicol
					acetyltransferase CatB
					Bcr/CfIA family drug resistance
					efflux pump

MIC, minimum inhibitory concentration; ND, not done; R, resistant; S, sensitive; NA, not applicable (no interpretation criteria); I, intermediate; MBL, metallo-β-lactamase.

^a Details of the resistance genes as well as their locus tag and their presence/absence in *E. miricola* ATCC 33958 are presented in Supplementary Table S2.

Supplementary materials and methods

Microbiology procedures

The *Elizabethkingia miricola* strain EM_CHUV and the *Stenotrophomonas maltophilia* isolate grew on blood agar plates and MacConkey plates and were lactose-negative and oxidase-positive. Identification to species level was performed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) (Bruker Daltonics, Bremen, Germany) with a score above 2. Minimum inhibitory concentrations (MICs) were determined by Etest (bioMérieux, Lyon, France) and their interpretations were achieved using the criteria of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://eucast.org/). For *E. miricola* EM_CHUV, the antibiotics commonly analysed for non-fermenting bacteria were tested; however, in the absence of specific criteria, the EUCAST criteria for *Pseudomonas* spp. were used for categorical interpretation as susceptible or resistant. Production of carbapenem-degrading enzymes was determined using the Carba NP test [1] and by metallo-β-lactamase (MBL) Etest strips (MBL IP/IPI; bioMérieux).

Genomic sequencing, assembly and annotation

Genomic DNA of *E. miricola* EM_CHUV was extracted and purified using a Wizard Genomic DNA Purification Kit (Promega, Dübendorf, Switzerland). Purified genomic DNA was subjected to whole-genome shotgun sequencing using 2×150 bp paired-end sequencing on a MiSeq sequencer (Illumina, San Diego CA) from a single library. The quality of the raw sequence data was checked using the FastQC program

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The paired-end reads were filtered

according to quality values and sizes using the Fastq-Mcf program (Ea-utils: command-line tools for processing biological sequencing data; <u>https://expressionanalysis.github.io/ea-utils/</u>). Genome assembly of the 1 707 522 filtered reads was performed using the SPAdes v.3.5.0 program [2] with different Kmer values (from 51 to 109). The assembly with lowest number of contigs (*n* = 24) and highest N50 (374 739 bp) was kept for subsequent genome analysis. The 24 contigs ranged in size from 1038 bp to 671 192 bp with a mean coverage of 25-fold. The genome of *E. miricola* EM_CHUV contained 4 286 503 bp with a GC content of 35.78%, and a plasmid of 176 107 bp with a GC content of 40.15%. All of the assembled contigs were submitted to the RAST server [3] for automatic annotation that predicted 4006 coding sequences (CDS), 46 tRNA genes and 6 ribosomal RNAs (rRNAs).

Supplementary Fig. S1. Carbapenemase detection in *Elizabethkingia miricola* EM_CHUV. (A) Carbapenemase detection using the rapid Carba NP test based on hydrolysis of the β -lactam ring of the carbapenem imipenem associated with a colour change induced by a pH indicator in the presence of a carbapenemase [1]. Strain 1, *Klebsiella pneumoniae* ATCC BAA-1705, which served as a carbapenemase-positive control; strain 2, *K. pneumoniae* ATCC BAA-1706, which served as a negative control strain; and strain 3, *E. miricola* EM_CHUV. (B) Characterisation as metallo- β -lactamase (MBL) using MBL Etest strips (MBL IP/IPI; bioMérieux, Lyon, France) with comparison of differential inhibition with (IP = 0.1 mg/L) and without ethylene diamine tetra-acetic acid (EDTA) as chelator (IPI = 64 mg/L) in the presence of imipenem.

Supplementary Fig. S2. Pairwise comparison of the core proteomes of *Elizabethkingia* spp. This comparison was performed using a published code 'get_homologues.pl' [4]. Values shown in the boxes refer to the average percentage identity of each pair of proteomes.

Supplementary Table S1

General features the *Elizabethkingia miricola* EM_CHUV genome and all of the other *Elizabethkingia* genomes studied

Name	Sources	Number of contigs	Genome size (Mbp)	%GC content	No. of genes	No. of proteins	tRNAs	Genome identity (%)
E miricola EM CHUV	Haman	24	4.29	35.78	4058	4006	46	_
	Human	1 (plasmid)	0.176	40.15	171	171	0	_
E. miricola ATCC 33958	Collection	75	4.58	35.35	4501	4454	47	92.30
E. anophelis NUHP1	Human	64	4.34	35.6	4178	4130	48	91.30
E. anophelis R26	Gut of mosquitoes	66	4.03	35.4	3879	3839	40	91.96
E. meningoseptica ATCC 13253	Human	34	3.84	36.4	3612	3571	41	79.08
E. meningoseptica 502	Human	21	3'96	35.5	3765	3714	51	91.64

Supplementary Table S2

Antibiotic resistance genes identified in the genome of *Elizabethkingia miricola* EM_CHUV, their best BLAST hit in the non-redundant (nr) database and their presence (+) or absence (-) in the genomes of other *Elizabethkingia* spp.

Locus number	Gene in <i>E. miricola</i> EM_CHUV	Putative function	Gene size (bp)	Identity (%)	E-value	Organism with the best hit in NCBI database	Gene in <i>Elizabethkingia</i> spp. ^a
	β-LACTAM R	ESISTANCE GENES					
AMC91_07925	-	β-Lactamase	1047	90	0	Chryseobacterium sp. OV715	-
AMC91_08300	$bla_{\rm GOB-13}$	Class B carbapenemase Bla _{GOB-13}	879	99	0	E. meningoseptica	+
AMC91_03610	-	β-Lactamase	1134	95	0	E. miricola	+
AMC91_08990	-	β-Lactamase (EC 3.5.2.6)	1083	93	0	E. meningoseptica	+
AMC91_09070	$bla_{\rm ACME}$	β -Lactamase (Bla _{ACME}) VEB-1-like	891	94	0	E. meningoseptica	+
AMC91_09240	-	β-Lactamase (EC 3.5.2.6)	1089	42	2e-144	Colwellia psychrerythraea	-
AMC91_09510	-	β-Lactamase (EC 3.5.2.6)	1428	93	0	E. anophelis	+
AMC91_09825	bla _B	BJP β-Lactamase	723	95	2e-166	E. anophelis	+
AMC91_05755	bla _A	Class A β-lactamase (EC 3.5.2.6)	891	98	0	E. anophelis	+
AMC91_11605	ampC	Class C AmpC β-lactamase	348	47	1e-19	Mariniradius saccharolyticus	-
AMC91_11615	-	β-Lactamase (EC 3.5.2.6)	873	83	1e-180	E. miricola BM10	+
AMC91_00570	_	MBL fold metallo-hydrolase	999	92	0	E. miricola	+
AMC91_04315	-	β-Lactamase (EC 3.5.2.6)	1491	93	0	E. anophelis	+
AMC91_07385		β-Lactamase (EC 3.5.2.6)	1293	44	5e-103	Chryseobacterium sp. YR561	_
AMC91_04980	-	β-Lactamase	684	94	2e-159	E. meningoseptica	+

AMC91_05565	_	β-Lactamase (EC 3.5.2.6)	1062	93	0	E. anophelis	+
AMC91_17770	-	β-Lactamase (EC 3.5.2.6)	1131	97	0	E. miricola BM10	+
AMC91_18185	-	MBL fold metallo-hydrolase	867	100	0	E. miricola BM10	+
AMC91_06520	blaB-9	Class B carbapenemase BlaB-9	747	100	2e-180	E. meningoseptica	+
AMC91_02425	-	β-Lactamase (EC 3.5.2.6)	1545	98	0	E. meningoseptica	+
	AMINOGLYC	OSIDE RESISTANCE GENES					
AMC91_13030	ant-6	Aminoglycoside 6-adenylyltransferase	867	91	0	E. miricola BM10	+
	CHLORAMPH	IENICOL RESISTANCE GENES					
AMC91_05240	catB	Chloramphenicol acetyltransferase CatB	861	95	9e-135	E. miricola	+
AMC91 14995	bcr/cflA	Bcr/CflA family drug resistance efflux	1146	92	0	F anophelis	+
	<i>berreju</i>	pump	1110	2	0	L. unopricus	·
	SULFONAMI	DE RESISTANCE GENES					
AMC91_17570	dhfR	Dihydrofolate reductase DHFR	525	100	6e-123	E. miricola	+
AMC91_06105	folA	Dihydrofolate reductase FolA	558	95	9e-122	E. miricola	+
AMC91_07670	-	Bifunctional deaminase-reductase protein	570	96	1e-130	E. meningoseptica	+
AMC91_07670	– folP	Bifunctional deaminase-reductase protein Dihydropteroate synthase FolP (EC	570 861	96 99	1e-130 2e-180	E. meningoseptica E. miricola BM10	+
AMC91_07670 AMC91_05240	– folP	Bifunctional deaminase-reductase protein Dihydropteroate synthase FolP (EC 2.5.1.15)	570 861	96 99	1e-130 2e-180	E. meningoseptica E. miricola BM10	+ +
AMC91_07670 AMC91_05240	- folP TETRACYCL	Bifunctional deaminase-reductase protein Dihydropteroate synthase FolP (EC 2.5.1.15) INE RESISTANCE GENES	570 861	96 99	1e-130 2e-180	E. meningoseptica E. miricola BM10	+
AMC91_07670 AMC91_05240 AMC91_04870	– folP TETRACYCL tetX	Bifunctional deaminase-reductase protein Dihydropteroate synthase FolP (EC 2.5.1.15) INE RESISTANCE GENES Tetracycline resistance protein TetX	570 861 1131	96 99 91	1e-130 2e-180 0	E. meningoseptica E. miricola BM10 E. meningoseptica	+ + +
AMC91_07670 AMC91_05240 AMC91_04870 AMC91_01490	- folP TETRACYCL tetX tetA	Bifunctional deaminase-reductase protein Dihydropteroate synthase FolP (EC 2.5.1.15) INE RESISTANCE GENES Tetracycline resistance protein TetX Tetracycline efflux protein TetA	570 861 1131 1212	96 99 91 98	1e-130 2e-180 0 0	E. meningoseptica E. miricola BM10 E. meningoseptica E. anophelis	+ + + +
AMC91_07670 AMC91_05240 AMC91_04870 AMC91_01490 AMC91_18395	- folP TETRACYCL tetX tetA -	Bifunctional deaminase-reductase proteinDihydropteroate synthase FolP (EC2.5.1.15)INE RESISTANCE GENESTetracycline resistance protein TetXTetracycline efflux protein TetATransmembrane efflux protein	570 861 1131 1212 1409	96 99 91 98 97	1e-130 2e-180 0 0 0	E. meningoseptica E. miricola BM10 E. meningoseptica E. anophelis E. miricola BM10	+ + + + +
AMC91_07670 AMC91_05240 AMC91_04870 AMC91_01490 AMC91_18395 AMC91_07415	- folP TETRACYCL tetX tetA -	Bifunctional deaminase-reductase proteinDihydropteroate synthase FolP (EC2.5.1.15)INE RESISTANCE GENESTetracycline resistance protein TetXTetracycline efflux protein TetATransmembrane efflux proteinAntibiotic transporter	570 861 1131 1212 1409 1386	96 99 91 98 97 99	1e-130 2e-180 0 0 0 0	E. meningoseptica E. miricola BM10 E. meningoseptica E. anophelis E. miricola BM10 E. anophelis	+ + + + + + +

MACROLIDE RESISTANCE GENES

AMC91_17220	lolD	Macrolide resistance, ABC transporter	693	100	8e-163	E. anophelis	+
AMC91 00700	dhA3	Macrolide efflux protein, MFS transporter	1248	97	0	E miricola	+
1101091_00700	una lo	DHA3	1210	<i></i>	Ũ	2	·
AMC91_05800	emrB	Erythromycin resistance, EmrB/QacA	1551	96	0	E. meningoseptica	+
AMC91_08945	emrB	Erythromycin resistance, EmrB/QacA	1410	99	0	E. anophelis	+
AMC91_13070	emrB	Erythromycin resistance, EmrB/QacA	1578	99	0	E. anophelis	+
					-		
AMC91_07245	—	Erythromycin esterase	1269	96	0	E. miricola BM11	+
AMC91_07245	QUINOLONE I	Erythromycin esterase RESISTANCE GENES ^b	1269	96	0	E. miricola BM11	+
AMC91_07245 AMC91_00350	- QUINOLONE I gyrA	Erythromycin esterase RESISTANCE GENES ^b DNA gyrase GyrA subunit A (T83S)	1269 2573	96 100	0	E. miricola BM11 E. miricola	+ +
AMC91_07245 AMC91_00350 AMC91_00615	- QUINOLONE I gyrA gyrB	Erythromycin esterase RESISTANCE GENES ^b DNA gyrase GyrA subunit A (T83S) DNA gyrase GyrB subunit A (M437L)	1269 2573 1934	96 100 99	0 0 0 0	E. miricola BM11 E. miricola E. miricola	+ + + +
AMC91_07245 AMC91_00350 AMC91_00615	- QUINOLONE I gyrA gyrB parE	Erythromycin esterase RESISTANCE GENES ^b DNA gyrase GyrA subunit A (T83S) DNA gyrase GyrB subunit A (M437L) DNA topoisomerase IV subunit B	1269 2573 1934	96 100 99	0 0 0 0	E. miricola BM11 E. miricola E. miricola	+ + + +

NCBI, National Center for Biotechnology Information.

^a Presence in the genomes of the *E. miricola* ATCC 33958, *Elizabethkingia anophelis* NUHP1, *E. anophelis* R26, *Elizabethkingia*

meningoseptica ATCC 13253 and E. meningoseptica 502: +, present in all of the genomes; -, absent in all of the genomes.

^b These mutations were determined with respect to those from *Pseudomonas aeruginosa* PAO1.

References

[1] Dortet L, Poirel L, Nordmann P. Rapid detection of carbapenemase-producing Pseudomonas spp. Journal of clinical microbiology. 2012;50:3773-6.

[2] Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of computational biology : a journal of computational molecular cell biology. 2013;20:714-37.

[3] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC genomics. 2008;9:75.

[4] Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Applied and environmental microbiology. 2013;79:7696-701.