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Highlights 

- MDR clinical isolate E. miricola EM_CHUV core genome harbours 40 resistance 

genes. 

- Large majority of the resistance genes are found in other Elizabethkingia 

genomes. 

- Identified putative plasmid (pEM_CHUV) did not harbour any resistance genes. 

- Limited number of horizontal gene transfers suggested an intrinsic origin of the 

MDR. 
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ABSTRACT 

Elizabethkingia miricola is a Gram-negative non-fermenting rod emerging as a life-

threatening human pathogen. The multidrug-resistant (MDR) carbapenemase-producing 

clinical isolate E. miricola EM_CHUV was recovered in the setting of severe nosocomial 

pneumonia. In this study, the genome of E. miricola EM_CHUV was sequenced and a 

functional analysis was performed, including a comparative genomic study with 

Elizabethkingia meningoseptica and Elizabethkingia anophelis. The resistome of 

EM_CHUV revealed the presence of a high number of resistance genes, including the 

presence of the blaGOB-13 and blaB-9 carbapenemase-encoding genes. Twelve mobility 

genes, with only two of them located in the proximity of resistance genes, and four 

potential genomic islands were identified in the genome of EM_CHUV, but no 

prophages or CRISPR sequences. Ten restriction–modification system (RMS) genes 

were also identified. In addition, we report the presence of a putative conjugative 

plasmid (pEM_CHUV) that does not encode any antibiotic resistance genes. Altogether, 

these findings point towards a limited number of DNA exchanges with other bacteria 

and suggest that multidrug resistance is an intrinsic trait of E. miricola owing to the 

presence of a high number of resistance genes within the bacterial core genome. 

3 
 



1. Introduction 

Elizabethkingia miricola, originally identified in 2004 in the Mir Space Station, belongs to 

the genus Elizabethkingia (previously Chryseobacterium) that contains four species of 

ubiquitous Gram-negative non-fermenting rods [1,2]. Elizabethkingia meningoseptica 

mainly, and more recently E. miricola and Elizabethkingia anophelis, have been 

incriminated in severe infections in humans. Elizabethkingia endophytica is the last 

identified species of this genera; its pathogenic potential towards humans still remains 

undetermined [3]. Elizabethkingia meningoseptica has been involved in a broad range 

of infections in humans, including bacteraemia and meningitis, in particular in newborns 

and children where a high rate (84%) of meningitis has been documented. Noteworthy, 

nosocomial infections such as ventilator-associated pneumonia and haemodialysis 

catheter-related infections are a significant part of E. meningoseptica-related infections. 

Elizabethkingia anophelis, initially isolated from the midgut of the mosquito malaria 

vector Anopheles gambiae [4], has also been associated with similar severe infections 

(pneumonia, catheter-related infection and central nervous system infections) with high 

mortality rates [5,6]. Elizabethkingia miricola has been recently incriminated in 

bacteraemia and sepsis both in immunocompetent and immunocompromised patients, 

supporting the clinical relevance of this strain [7–10]. The strain E. miricola EM_CHUV 

described here was isolated from a lower respiratory tract specimen in the setting of 

severe nosocomial pneumonia. Antibiotic susceptibility testing of isolate EM_CHUV 

revealed a multidrug-resistant (MDR) profile, a phenotype encountered in most of the 

previously documented E. miricola strains. To better understand the genetic basis of 

this multidrug resistance, in this study the genome of EM_CHUV was sequenced and a 
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genomics analysis was performed, including a comparison with the genomes of E. 

meningoseptica and E. anophelis. 

 

2. Materials and methods 

2.1. Microbiology procedures 

Strain E. miricola EM_CHUV was recovered from the endotracheal secretions and 

bronchoalveolar lavage fluid of a patient. Isolate identification and antibiotic 

susceptibility testing, including detection of carbapenemase production, were performed 

as described in the Supplementary materials and methods. 

 

2.2. Genome sequencing and analysis 

Genomic DNA of E. miricola EM_CHUV was sequenced, assembled and annotated as 

described in the Supplementary materials and methods. The genome sequences of E. 

miricola ATCC 33958 type strain (JRFN00000000.1) [11], E. anophelis NUHP1 

(CP007547), E. anophelis R26 (ANIW00000000), E. meningoseptica ATCC 13253 

(BARD01000018) and E. meningoseptica 502 (AVCQ00000000) were retrieved from 

the National Center for Biotechnology Information (NCBI) database and were annotated 

using RAST server [12]. The phylogenetic relationship among the Elizabethkingia spp. 

and closely related bacteria was based on the 16S rRNA genes. The resistome of 

EM_CHUV was investigated from the RAST annotation and was confirmed by BLASTP 

analysis against the ARG-ANNOT database [13] as well as information from the CARD 

database [14] in light of the antibiotic resistance phenotype. To address the putative 

5 
 



foreign origin of resistance genes, we searched for the presence of genes harbouring 

domains of mobile elements within the annotation (transposase, integrase, insertion 

sequence and recombinase), genomic islands predicted with IslandViewer 3 [15] and 

prophages predicted using PHASTER [16] in their close vicinity. The absence of 

CRISPR domain sequences was identified using CRISPRFinder [17]. Average genome 

identity was evaluated using JSpecies v.1.2.1 [18]. Furthermore, the core proteomes 

were compared using GET_HOMOLOGUES [19]. 

 

3. Results 

3.1. Isolation of Elizabethkingia miricola EM_CHUV 

In April 2014, an 82-year-old man was admitted to the intensive care unit (ICU) of 

University Hospital of Lausanne (Lausanne, Switzerland). The medical history of the 

patient started a year before with cervical spine surgery complicated by post-operative 

tetraparesia, which was followed by several hospitalisations for the management of 

recurrent pneumonia. The patient was initially treated by amoxicillin/clavulanic acid, 

followed by a combination of moxifloxacin and ceftazidime, and finally by amikacin and 

imipenem. At admission to our hospital, two pairs of blood bottles were drawn from an 

arterial catheter and were processed using a BD BACTECTM FX automated blood 

culture system (Becton Dickinson, Heidelberg, Germany), and a urine sample was 

collected. In addition, endotracheal secretions and bronchoalveolar lavage fluid were 

sampled. The urine was negative for detection both of Legionella and Streptococcus 

pneumoniae antigens and the urine culture remained sterile. After 28 h in the ICU, the 
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patient died following treatment withdrawal in the context of a severe neurological 

disability and nosocomial pneumonia. Cultures of the endotracheal secretions of the 

patient were positive for two distinct Gram-negative bacteria identified as 

Stenotrophomonas maltophilia and E. miricola by matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). The E. 

miricola strain was also recovered by culture from the bronchoalveolar lavage fluid (107 

bacteria/mL). Blood cultures remained sterile after 5 days of incubation. The recent 

literature has reported several cases of severe infections in humans owing to this 

organism, including pulmonary abscess and sepsis [7–10]. These cases as well as the 

case described here are summarised in Table 1 and support a significant pathogenic 

potential of this organism. 

 

3.2. Antibiotic susceptibility profile of Elizabethkingia miricola EM_CHUV 

Antibiotic susceptibility testing performed on the S. maltophilia strain revealed sensitivity 

to minocycline, trimethoprim/sulfamethoxazole and levofloxacin. Elizabethkingia miricola 

EM_CHUV was found to be resistant to almost all of the antibiotic families tested, 

including β-lactams (ticarcillin/clavulanic acid, piperacillin/tazobactam, ceftazidime, 

cefepime, aztreonam, imipenem and meropenem), aminoglycosides (netilmicin and 

tobramycin) and colistin (Table 2). EM_CHUV was sensitive to the aminoglycosides 

gentamicin and amikacin and to minocycline. Susceptibility to levofloxacin but 

resistance to ciprofloxacin was also observed. A carbapenemase was detected using 

the rapid Carba NP test [20] and was characterised as a metallo-β-lactamase (MBL) 

using MBL Etest strips (MBL IP/IPI; bioMérieux, Lyon, France) by comparison of 
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differential inhibition with and without ethylene diamine tetra-acetic acid (EDTA) as 

chelator in the presence of imipenem (Supplementary Fig. S1) [21]. Thus, EM_CHUV 

exhibited a MDR phenotype, already documented for other E. miricola species, which 

we investigated through a genomic analysis. 

 

3.3. Comparative genomics and phylogeny of the Elizabethkingia spp. 

The general features of the genome of EM_CHUV and the other genomes included in 

this study are given in Supplementary Table S1. The genome size of E. miricola 

EM_CHUV was estimated to be 4 286 503 bp with a GC content of 35.78%. A putative 

plasmid (pEM_CHUV) of 176 107 bp with a GC content of 40.15% was also identified, 

which encodes two full copies of the conjugative transposon operon tra (11 525 bp and 

13 394 bp), likely involved in bacterial plasmid transmission by conjugation [22]. This 

plasmid showed no similarity to the complete genome of E. miricola BM10, but some 

regions shared similarity with different contigs of E. miricola ATCC 33958, suggesting 

that a similar plasmid could be found in various strains as an epitope or integrated 

within the genome. Interestingly, no resistance genes were detected on pEM_CHUV. 

The phylogenetic tree of the 16S rRNA gene revealed that the three E. miricola strains 

constitute a monophyletic cluster distinct from the other Elizabethkingia spp. (Fig. 1A). 

As expected, E. miricola ATCC 33958 was the most closely related strain to EM_CHUV 

when considering whole-genome nucleotide identity and core proteome identity (Fig. 

1A,B; Supplementary Fig. S2). In contrast, E. anophelis, E. meningoseptica and 

Chryseobacterium meningoseptica strains grouped together, suggesting that the current 

taxonomy does not appropriately reflect their phylogenetic relationships. The very close 
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genetic proximity of E. anophelis NUPH1, E. anophelis R26 and E. meningoseptica 502 

was confirmed by pairwise genome comparison (>97% identity) as well as by analysis 

of the core proteomes (>96% identity) (Supplementary Fig. S2). Moreover, the group is 

paraphyletic due to the deeper branching of E. meningoseptica ATCC 13253, which 

suggests that the latter strain might belong to a different species. This finding was also 

supported by the low average genome nucleotide identity (78%) and average core 

proteome identity (84%) of E. meningoseptica ATCC 13253 with the other genomes 

(Fig. 1B; Supplementary Fig. 2). Finally, over three-fold more proteins are shared 

between E. miricola EM_CHUV and E. anophelis NUHP1 (448 proteins) than E. miricola 

EM_CHUV and E. meningoseptica ATCC 13253 (134 proteins) (see Fig. 1C). In 

congruence with our findings, the classification of E. meningoseptica 502 has been 

changed to E. anophelis 502 in NCBI taxonomy during the revision process of this 

article. 

 

As depicted in Fig. 1C, the core proteome of E. miricola EM_CHUV, E. anophelis 

NUPH1 and E. meningoseptica ATCC 13253 consists of 2842 proteins. EM_CHUV 

encodes 254 strain-specific proteins mainly with an unknown function (214/254; 

84.25%). Interestingly, annotated proteins include a type I restriction–modification 

system (RMS), a DNA mismatch repair (mutT) gene, a heavy metal transporter and a 

gene encoding for a colicin-like protein, a cytotoxin with bactericidal activity. 
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3.4. Resistome of Elizabethkingia miricola EM_CHUV 

The resistome of EM_CHUV revealed a total of 40 antibiotic resistance genes (Table 2; 

Supplementary Table S2). A high number of genes (n = 20) are involved in resistance to 

β-lactams, including the blaGOB-13 and blaB-9 genes encoding for class B 

carbapenemases [23]. The genome of EM_CHUV also contains the aminoglycoside 6-

adenylyltransferase gene (ant-6) associated with tobramycin resistance. Furthermore, 

four genes associated with resistance to sulfonamides and six genes associated with 

resistance to macrolides could be identified. Four tetracycline resistance genes were 

also present. Finally, the resistome of the EM_CHUV isolate contained a 

chloramphenicol resistance gene. Analysis of the genes associated with resistance to 

quinolones revealed the mutation T83S of GyrA, M437L of GyrB and M437F/A473L of 

ParE; no mutation was found in ParC. None of the resistance genes were located on 

the putative plasmid pEM_CHUV. Noteworthy, the genome of E. miricola ATCC 33958 

and the other Elizabethkingia genomes analysed in this study also contained all these 

genes, except for four β-lactamase genes (Supplementary Table S2) [11]. 

 

We investigated whether the resistance determinants could have been acquired 

horizontally as part of genomic islands, but very few mobile elements located close to 

the resistance genes were identified. Indeed, among the 12 mobile elements 

(transposases, integrases, insertion sequences and recombinases) found in the 

genome of EM_CHUV, only 2 were located in the proximity of a class C β-lactamase-

encoding gene and a chloramphenicol acetyltransferase-encoding gene (at 5.6 kb and 
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1.1 kb, respectively). The four genomic islands predicted along the chromosome did not 

contain any resistance genes, and no prophages or CRISPR sequences were found. 

 

Despite the presence of two tra operons likely encoding for a conjugative DNA transfer 

system on the plasmid that could favour genetic exchange, this bacterium could partially 

limit the integration of exogenous DNA owing to RMSs. Indeed, ten genes belonging to 

RMSs were identified, including four copies of the type I DNA methyltransferase gene, 

four copies of the type I specificity domain and two copies of the type I restriction 

endonuclease gene. 

 

4. Discussion 

In this study, the genome of the clinical isolate E. miricola EM_CHUV was sequenced 

and analysed with the aim of identifying the genetic basis of the MDR phenotype of this 

emerging pathogen. Such a MDR phenotype, including resistance to carbapenems, has 

also recently been documented for several other E. miricola strains incriminated in 

human infections [8–10]. Genome analysis of E. miricola EM_CHUV revealed the 

presence of a high number of genes involved in resistance to antibiotics (β-lactamases, 

aminoglycoside 6-adenylyltransferase, and sulfonamide, tetracycline and 

chloramphenicol resistance genes) that were not associated with mobile elements. 

Moreover, all except four resistance genes were found to be conserved and most 

similar to orthologues in other E. miricola strains and other Elizabethkingia spp. 

Altogether, these data suggested that the observed MDR phenotype of E. miricola 
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EM_CHUV might be an intrinsic characteristic of this species and might be common 

within the Elizabethkingia genera. 

 

Isolation of E. miricola EM_CHUV in the setting of nosocomial pneumonia in this study, 

together with two other documentations of E. miricola occurring in the setting of severe 

infections (bacteraemia and sepsis) involving respiratory tract infections [8,9], raises the 

question of a pulmonary tropism of this micro-organism. Similar to what is being 

described for E. meningoseptica and E. anophelis, such a tropism might be associated 

with increased risk of nosocomial pneumonia and more generally of nosocomial 

infection, which is further supported by the fact that in most reported cases the patient 

becomes colonised by E. miricola following broad-spectrum antibiotic treatment. 

 

Overall, this study supports that E. miricola be considered as a potential pathogen with 

significant nosocomial risk based on frequent MDR phenotypes. Novel accurate 

identification methods such as MALDI-TOF/MS might reveal the true incidence of this 

bacterium. As a consequence, particular attention should be paid to this pathogen when 

isolated from clinical samples, and antibiotic susceptibility testing should be 

systematically performed. 

 

Sequence accession no. 

The Whole Genome Shotgun project of E. miricola EM_CHUV has been deposited at 

DDBJ/EMBL/GenBank under the accession no. LIQC00000000. 
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Fig. 1. Phylogenetic relationship of Elizabethkingia spp. and comparative genomics of 

Elizabethkingia miricola EM_CHUV with other Elizabethkingia spp. (A) Phylogenetic 

relationship of Elizabethkingia spp. and closely related bacteria based on 16S rRNA 

sequences. The tree was constructed using the free Clustal X software [24] v.2.0 and 

MEGA software v.6.06 [25] using the neighbour-joining method with the model Kimura 

2-parameter and 1000 bootstrap replicates. Bootstrap values are expressed by 

percentage of the 1000 replicates, and only those up to 60% are shown at branch 

points. (B) Pairwise comparison of the average nucleotide identity of the genomes 

performed using the JSpecies v.1.2.1 program [18]. (C) Proteome comparison between 

E. miricola EM_CHUV, Elizabethkingia anophelis NUPH1 and Elizabethkingia 

meningoseptica ATCC 13253. 
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Table 1 

Summary of Elizabethkingia miricola infections reported to date 

Year Age 

(years)/ 

sex 

Underlying 

condition(s) 

Clinical manifestation(s) Clinical sample Treatments Outcome Reference 

2008 55/M Stage IV mantle cell 

lymphoma, salvage 

chemotherapy 

Febrile neutropenia, 

pulmonary nodule, 

sepsis 

Tracheal aspirate, 

blood cultures 

Tigecycline, 

levofloxacin 

(consecutive to 

ceftazidime, 

vancomycin, 

meropenem) 

Persistent 

pulmonary 

colonisation, 

sepsis 

[8] 

2015 34/F Alcohol consumption Acute alcoholic 

pancreatitis, respiratory 

distress requiring non-

invasive ventilation, 

lung atelectatic areas 

Blood cultures Ciprofloxacin, 

imipenem, 

(consecutive to 

imipenem alone) 

Favourable [7] 

2016 31/F Arterial hypertension Worsening of general 

state, dry cough, fever 

dyspnoea, lung 

abscess and pleural 

effusion, dilated 

cardiomyopathy with 

left ventricular 

thrombus 

Blood cultures TZP, gentamicin 

(consecutive to 

TZP alone) 

Favourable [9] 
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2016 2/M Spina bifida, bladder 

exstrophy, 

atelectasis, 

tracheostomy, 

chronic kidney 

insufficiency, 

Mitrofanoff stoma 

fistula 

Fever and severe 

clinical conditions 

Urine collected 

from an 

intermittent 

catheter 

Unknown Unknown [10] 

2016 82/M Status post bone 

marrow surgery, 

recurrent 

pneumonia 

Severe nosocomial 

pneumonia 

Bronchoalveolar 

lavage fluid and 

tracheal aspirate 

Amikacin, 

imipenem 

(consecutive to 

moxifloxacin, 

ceftazidime) 

Death a This study 

TZP, piperacillin/tazobactam;  

a Treatment withdrawal in the context of tetraparesia and nosocomial pneumonia. 
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Table 2 

Antibiotic resistance pattern and resistance genes of Elizabethkingia miricola EM_CHUV 

Antibiotic class Tested antibiotics Inhibition 

diameter (mm) 

Etest MIC 

(mg/L) 

Interpretation Resistance genes identified in the 

genome a 

β-Lactams Ticarcillin/clavulanic acid 6 >256 R β-Lactamase (n = 16) 

MBL fold metallo-hydrolase (n = 

2) 

Class B carbapenemase blaGOB-

13 

Class B carbapenemase blaB-9 

Piperacillin/tazobactam 6 32 R 

Ceftazidime 6 >256 R 

Cefepime 11 24 R 

Imipenem 6 >32 R 

Meropenem 6 >32 R 

Aztreonam 6 >256 R 

Aminoglycosides  Amikacin 21 8 S Aminoglycoside 6-

adenylyltransferase Gentamicin 22 4 S 

Netilmicin 15 24 R 

Tobramycin 6 32 R 

Tetracyclines Minocycline ND 1 S Tetracycline resistance protein 

TetX 

Tetracycline efflux protein TetA 

Transmembrane efflux protein 

Antibiotic transporter 

Tigecycline ND 1 NA 

Polymyxins Colistin 6 >256 R  

1 
 



Sulfonamides Trimethoprim/sulfamethoxazole 13 3 I Dihydrofolate reductase DHFR 

Dihydrofolate reductase FolA 

Bifunctional deaminase-

reductase protein 

Dihydropteroate synthase FolP 

(EC 2.5.1.15) 

Quinolones Ciprofloxacin 32 2 R DNA gyrase GyrA subunit A 

mutation T83S 

DNA gyrase GyrB subunit A 

mutation M437L 

Levofloxacin 31 1 S 

Rifampicin Rifampicin ND 0.75 NA   

Resistance genes for untested classes of antibiotics 

Macrolides – – – – Macrolide resistance, ABC 

transporter 

Macrolide efflux protein, MFS 

transporter DHA3 

Erythromycin resistance, 

EmrB/QacA (n = 3) 

Erythromycin esterase 

Chloramphenicol – – – – Chloramphenicol 

acetyltransferase CatB 

Bcr/CflA family drug resistance 

efflux pump 

2 
 



MIC, minimum inhibitory concentration; ND, not done; R, resistant; S, sensitive; NA, not applicable (no interpretation criteria); I, 

intermediate; MBL, metallo-β-lactamase. 

a Details of the resistance genes as well as their locus tag and their presence/absence in E. miricola ATCC 33958 are presented in 

Supplementary Table S2. 
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Supplementary materials and methods 

Microbiology procedures 

The Elizabethkingia miricola strain EM_CHUV and the Stenotrophomonas maltophilia isolate 

grew on blood agar plates and MacConkey plates and were lactose-negative and oxidase-

positive. Identification to species level was performed by matrix-assisted laser 

desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS) (Bruker Daltonics, 

Bremen, Germany) with a score above 2. Minimum inhibitory concentrations (MICs) were 

determined by Etest (bioMérieux, Lyon, France) and their interpretations were achieved using 

the criteria of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 

(http://eucast.org/). For E. miricola EM_CHUV, the antibiotics commonly analysed for non-

fermenting bacteria were tested; however, in the absence of specific criteria, the EUCAST 

criteria for Pseudomonas spp. were used for categorical interpretation as susceptible or resistant. 

Production of carbapenem-degrading enzymes was determined using the Carba NP test [1] and 

by metallo-β-lactamase (MBL) Etest strips (MBL IP/IPI; bioMérieux). 

 

Genomic sequencing, assembly and annotation 

Genomic DNA of E. miricola EM_CHUV was extracted and purified using a Wizard Genomic 

DNA Purification Kit (Promega, Dübendorf, Switzerland). Purified genomic DNA was subjected 

to whole-genome shotgun sequencing using 2 × 150 bp paired-end sequencing on a MiSeq 

sequencer (Illumina, San Diego CA) from a single library. The quality of the raw sequence data 

was checked using the FastQC program 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The paired-end reads were filtered 

http://eucast.org/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


according to quality values and sizes using the Fastq-Mcf program (Ea-utils: command-line tools 

for processing biological sequencing data; https://expressionanalysis.github.io/ea-utils/). Genome 

assembly of the 1 707 522 filtered reads was performed using the SPAdes v.3.5.0 program [2] 

with different Kmer values (from 51 to 109). The assembly with lowest number of contigs (n = 

24) and highest N50 (374 739 bp) was kept for subsequent genome analysis. The 24 contigs 

ranged in size from 1038 bp to 671 192 bp with a mean coverage of 25-fold. The genome of E. 

miricola EM_CHUV contained 4 286 503 bp with a GC content of 35.78%, and a plasmid of 176 

107 bp with a GC content of 40.15%. All of the assembled contigs were submitted to the RAST 

server [3] for automatic annotation that predicted 4006 coding sequences (CDS), 46 tRNA genes 

and 6 ribosomal RNAs (rRNAs). 

  

https://expressionanalysis.github.io/ea-utils/


 

 

Supplementary Fig. S1. Carbapenemase detection in Elizabethkingia miricola EM_CHUV. (A) 

Carbapenemase detection using the rapid Carba NP test based on hydrolysis of the β-lactam ring 

of the carbapenem imipenem associated with a colour change induced by a pH indicator in the 

presence of a carbapenemase [1]. Strain 1, Klebsiella pneumoniae ATCC BAA-1705, which 

served as a carbapenemase-positive control; strain 2, K. pneumoniae ATCC BAA-1706, which 

served as a negative control strain; and strain 3, E. miricola EM_CHUV. (B) Characterisation as 

metallo-β-lactamase (MBL) using MBL Etest strips (MBL IP/IPI; bioMérieux, Lyon, France) 

with comparison of differential inhibition with (IP = 0.1 mg/L) and without ethylene diamine 

tetra-acetic acid (EDTA) as chelator (IPI = 64 mg/L) in the presence of imipenem. 

 



 

Supplementary Fig. S2. Pairwise comparison of the core proteomes of Elizabethkingia spp. 

This comparison was performed using a published code ‘get_homologues.pl’ [4]. Values shown 

in the boxes refer to the average percentage identity of each pair of proteomes. 

 



Supplementary Table S1 

General features the Elizabethkingia miricola EM_CHUV genome and all of the other Elizabethkingia genomes studied 

Name Sources 
Number 

of contigs 

Genome 

size (Mbp) 

%GC 

content 

No. of 

genes 

No. of 

proteins 
tRNAs 

Genome 

identity (%) 

E. miricola EM_CHUV Human 
24 4.29 35.78 4058 4006 46 – 

1 (plasmid) 0.176 40.15 171 171 0 – 

E. miricola ATCC 33958 Collection 75 4.58 35.35 4501 4454 47 92.30 

E. anophelis NUHP1 Human 64 4.34 35.6 4178 4130 48 91.30 

E. anophelis R26 Gut of mosquitoes 66 4.03 35.4 3879 3839 40 91.96 

E. meningoseptica ATCC 13253 Human 34 3.84 36.4 3612 3571 41 79.08 

E. meningoseptica 502 Human 21 3’96 35.5 3765 3714 51 91.64 
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Supplementary Table S2 

Antibiotic resistance genes identified in the genome of Elizabethkingia miricola EM_CHUV, their best BLAST hit in the non-
redundant (nr) database and their presence (+) or absence (–) in the genomes of other Elizabethkingia spp. 

Locus number 
Gene in E. 
miricola 
EM_CHUV 

Putative function Gene size 
(bp) 

Identity 
(%) 

E-value Organism with the best hit in 
NCBI database 

Gene in 
Elizabethkingia 

spp. a 
 β-LACTAM RESISTANCE GENES 

AMC91_07925 – β-Lactamase 1047 90 0 Chryseobacterium sp. OV715 – 

AMC91_08300 blaGOB-13 Class B carbapenemase BlaGOB-13 879 99 0 E. meningoseptica + 

AMC91_03610 – β-Lactamase 1134 95 0 E. miricola + 

AMC91_08990 – β-Lactamase (EC 3.5.2.6) 1083 93 0 E. meningoseptica + 

AMC91_09070 blaACME β-Lactamase (BlaACME) VEB-1-like 891 94 0 E. meningoseptica + 

AMC91_09240 – β-Lactamase (EC 3.5.2.6) 1089 42 2e-144 Colwellia psychrerythraea – 

AMC91_09510 – β-Lactamase (EC 3.5.2.6) 1428 93 0 E. anophelis + 

AMC91_09825 blaB BJP β-Lactamase 723 95 2e-166 E. anophelis + 

AMC91_05755 blaA Class A β-lactamase (EC 3.5.2.6) 891 98 0 E. anophelis + 

AMC91_11605 ampC Class C AmpC β-lactamase 348 47 1e-19 Mariniradius saccharolyticus – 

AMC91_11615 – β-Lactamase (EC 3.5.2.6) 873 83 1e-180 E. miricola BM10 + 

AMC91_00570 – MBL fold metallo-hydrolase 999 92 0 E. miricola + 

AMC91_04315 – β-Lactamase (EC 3.5.2.6) 1491 93 0 E. anophelis + 

AMC91_07385  β-Lactamase (EC 3.5.2.6) 1293 44 5e-103 Chryseobacterium sp. YR561 – 

AMC91_04980 – β-Lactamase 684 94 2e-159 E. meningoseptica + 
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AMC91_05565 – β-Lactamase (EC 3.5.2.6) 1062 93 0 E. anophelis + 

AMC91_17770 – β-Lactamase (EC 3.5.2.6) 1131 97 0 E. miricola BM10 + 

AMC91_18185 – MBL fold metallo-hydrolase 867 100 0 E. miricola BM10 + 

AMC91_06520 blaB-9 Class B carbapenemase BlaB-9 747 100 2e-180 E. meningoseptica + 

AMC91_02425 – β-Lactamase (EC 3.5.2.6) 1545 98 0 E. meningoseptica + 

 AMINOGLYCOSIDE RESISTANCE GENES 

AMC91_13030 ant-6 Aminoglycoside 6-adenylyltransferase 867 91 0 E. miricola BM10 + 

 CHLORAMPHENICOL RESISTANCE GENES 

AMC91_05240 catB Chloramphenicol acetyltransferase CatB 861 95 9e-135 E. miricola + 

AMC91_14995 bcr/cflA 
Bcr/CflA family drug resistance efflux 

pump 
1146 92 0 E. anophelis + 

 SULFONAMIDE RESISTANCE GENES 

AMC91_17570 dhfR Dihydrofolate reductase DHFR 525 100 6e-123 E. miricola + 

AMC91_06105 folA Dihydrofolate reductase FolA 558 95 9e-122 E. miricola + 

AMC91_07670 – Bifunctional deaminase-reductase protein 570 96 1e-130 E. meningoseptica + 

AMC91_05240 folP 
Dihydropteroate synthase FolP (EC 

2.5.1.15) 
861 99 2e-180 E. miricola BM10 + 

 TETRACYCLINE RESISTANCE GENES 

AMC91_04870 tetX Tetracycline resistance protein TetX 1131 91 0 E. meningoseptica + 

AMC91_01490 tetA Tetracycline efflux protein TetA 1212 98 0 E. anophelis + 

AMC91_18395 – Transmembrane efflux protein 1409 97 0 E. miricola BM10 + 

AMC91_07415 – Antibiotic transporter 1386 99 0 E. anophelis + 

 MACROLIDE RESISTANCE GENES 
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NCBI, National Center for Biotechnology Information. 

a Presence in the genomes of the E. miricola ATCC 33958, Elizabethkingia anophelis NUHP1, E. anophelis R26, Elizabethkingia 

meningoseptica ATCC 13253 and E. meningoseptica 502: +, present in all of the genomes; –, absent in all of the genomes. 

b These mutations were determined with respect to those from Pseudomonas aeruginosa PAO1.

AMC91_17220 lolD Macrolide resistance, ABC transporter 693 100 8e-163 E. anophelis + 

AMC91_00700 dhA3 
Macrolide efflux protein, MFS transporter 

DHA3 
1248 97 0 E. miricola + 

AMC91_05800 emrB Erythromycin resistance, EmrB/QacA 1551 96 0 E. meningoseptica + 

AMC91_08945 emrB Erythromycin resistance, EmrB/QacA 1410 99 0 E. anophelis + 

AMC91_13070 emrB Erythromycin resistance, EmrB/QacA 1578 99 0 E. anophelis + 

AMC91_07245 – Erythromycin esterase 1269 96 0 E. miricola BM11 + 

 QUINOLONE RESISTANCE GENES b 

AMC91_00350 gyrA DNA gyrase GyrA subunit A (T83S) 2573 100 0 E. miricola + 

AMC91_00615 gyrB DNA gyrase GyrB subunit A (M437L) 1934 99 0 E. miricola + 

AMC91_00940 parE 
DNA topoisomerase IV subunit B 

(M437F/A473L) 
1896 100 0 E. miricola + 
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