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Chapter 1

Introduction

Recent insurance risk management is encountered with complex dependent risk fac-
tors. Accordingly, one of the main tasks of actuaries is the modelling of the depen-
dence structure between insurance risks in numerous applications such as premiums
calculation, reserving, risk capital quantification and capital allocation. An exten-
sive literature has been developed on multivariate distributions, we refer to Joe [54],
Balakrishnan et al. [10, 59] for a general overview of the existing methods and
their applications. In particular, multivariate parametric distributions are a domi-
nant choice in insurance applications. According to Harry Joe in [54] p.84, an ideal
parametric family of multivariate distributions satisfies the following four desirable
properties:

" A. interpretability, which could mean something like a mixture, stochastic or la-
tent variable representation;
B. the closure property under the taking of margins, in particular the bivariate mar-
gins belonging to the same parametric family (this is especially important if, in
statistical modelling, one thinks first about appropriate univariate margins and se-
quentially to higher -order margins);
C. a flexible and wide range of dependence (with type of dependence structure de-
pending on applications);
D. a closed representation of the cdf and density (a closed-form cdf is useful if the
data are discrete and a continuous latent random vector is used), and if not closed-
form, then a cdf and density that are computationally feasible to work with.

This thesis is concerned with the modelling of dependence among insurance risks
using two families of parametric multivariate distributions, namely the Sarmanov
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Introduction

distribution and the concept of copula. On the one hand, the Sarmanov distribution
has been introduced by Sarmanov [84] in the bivariate case and extended by Lee [62]
for the multivariate framework. One key advantage of the Sarmanov distribution
is its flexibility to join different types of marginal; it also allows to model highly
dependent risks. In insurance applications numerous contributions have been flour-
ished in using the Sarmanov distribution as a dependence model for multivariate
insurance risks, see e.g., Yang and Hashorva [97], Abdallah et al. [1], Vernic [92],
Bahraoui et al. [8], Hashorva and Ratovomirija [49], Ratovomirija [80] among others.

On the other hand, copula models were introduced by Sklar [86] in order to specify
the joint distribution function (df) of a random vector as a function of the df of the
marginals. We refer to Nelsen [74] for a general introduction to copula theory. Due
to its allowance to separate marginals and the dependence structure, copula models
are practically attractive with regard to the modelling of dependence between risk
factors in finance and insurance, see for instance Frees and Valdes [38], Denuit et
al. [25], Tang et Valdes [87], Constantinescu et al. [18] and the special issue of
Insurance Mathematics and Economics [42] and references therein.

This thesis includes results in the area of dependent insurance risks, which are
structured in two parts. The first part (Chapter 2 and Chapter 3) is devoted to
the analysis of multivariate insurance risks using the Sarmanov distribution. In this
regards, with mixed Erlang distribution as a marginal distribution, we address risk
aggregation, capital allocation and diversification effects. The second part (Chapter
4 and Chapter 5) is concerned with multivariate insurance risks using the copula
approach. Specifically, we investigate in Chapter 4 the effect of age difference on the
level of dependence between husband and wife lifetimes. In Chapter 5, we introduce
a new family of multivariate distribution derived from the collective risk model. The
results presented in Chapter 2, Chapter 3 and Chapter 5 are published in actuarial
journals while the content of Chapter 4 is submitted for journal publication.

Next, we discuss a brief insight of the contributions of each chapter.

In the risk management framework, such as Solvency II in the European market,
reinsurance and insurance companies are required to hold a certain amount of cap-
ital, namely the risk capital, in order to be covered from unexpected losses. The
quantification of risk capital involves the aggregation of dependent risks and thus the
choice of an appropriate multivariate model for the dependence structure between
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Introduction

risks. Significant developments have been devoted to the aggregation of dependent
risks, specifically in insurance and finance, see e.g., Alink et al. [2], McNeil et al.
[68], Embrechts et al. [33] and references therein. Motivated by Cossette et al. [20],
in Chapter 2 we introduce the Sarmanov distribution as a model of the dependence
structure between mixed Erlang insurance risks. In particular, the aggregate risk
derived from the convolution of Sarmanov dependent mixed Erlang risks belongs
again to the class of Erlang mixtures. In this respect, we obtain analytical expres-
sions for the risk capital needed for the whole portfolio as well as the contribution
of each individual risk to the risk capital. To demonstrate the flexibility and the
wideness of the dependence range of Sarmanov mixed Erlang distributions, we also
calculate commonly used dependence measures, namely Pearson’s correlation coef-
ficient, Spearman’s rho and Kendall’s tau, .

Chapter 3 is focused on the aggregation of reinsurance risks in which the dependence
among the ceding insurer(s) is governed by the Sarmanov distribution and each in-
dividual risk belongs to the class of Erlang mixtures. The main contribution of this
chapter is the investigation of the effects of the ceding insurer(s) risks dependency
on the reinsurer risk profile which has only stop loss reinsurance portfolios. We de-
rive analytical expression for the df of the aggregate stop loss reinsurance risk. This
allows us to determine the risk capital required for the entire portfolio of the rein-
surer. Diversification effects stemmed from aggregating reinsurance risks are also
examined and a closed expression for the allocated risk capital to each business unit
of the reinsurer are gathered. Furthermore, we illustrate the results with numerical
applications for different Sarmanov distribution families.

The aim of Chapter 4 is to analyse the dependence structure between lifetimes of a
married couple. Life insurance and annuity products insuring numerous lives require
the modelling of the joint distribution of future lifetimes. Commonly in actuarial
practice, the future lifetimes between a group of people are assumed to be indepen-
dent. However, this simplifying hypothesis is not supported by real insurance data.
In this chapter, we model the joint distribution of the future lifetimes of husband
and wife utilizing the concept of copula. Based on a data from a large Canadian in-
surance company we demonstrate that the age difference and the gender of the elder
partner have an impact on the level of dependence. In particular, maximum likeli-
hood approach is implemented for parameters estimation. Not only do the results
show that the correlation decreases with age difference, but also the dependence
between the lifetimes is higher when husband is older than wife. Goodness-of-fit

3
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procedures are performed in order to assess the validity of our model. Additionally,
we consider several products available on the life insurance market to conclude the
chapter with practical illustrations.

In the literature a broad range of methods has been developed with regard to the
construction of multivariate distributions , see e.g., Joe [54], Johnson et al. [56] and
Denuit et al. [25] . In general, multivariate distributions family is elaborated through
methods like stochastic representations and mixtures. With motivation from Zhang
and Lin [100], in Chapter 5 we propose a flexible family of copulas derived from
the joint distribution of the largest claim sizes of two insurance portfolios. In this
respect, we consider the classical collective model over a fixed time period of two
insurance portfolios with (Xi, Yi) modelling the i-th claim sizes of both portfolios
and N the total number of claims. The df F of the maximum claim amount, denoted
by (XN :N , YN :N), in both portfolios is given by

F (x, y) = LΛ(− lnG(x, y)), x, y > 0,

where Λ = N |N > 1, LΛ its Laplace transform and G is the df of (Xi, Yi). We
demonstrate that the distributions F and their copulas have some interesting dis-
tributional and extremal properties. Interestingly, the extremal properties of F are
similar to those of G. We discuss parameter estimation with three applications to
concrete insurance data set and Monte Carlo simulations for parametric families of
bivariate df’s induced by F . We also present two applications of the results, on the
one hand, we quantify stop loss and excess of loss reinsurance premiums of a Swiss
insurance Loss and ALAE data set. On the other hand, we examine by simula-
tion the influence of the sum of largest claims observed in two insurance portfolios
XN :N + YN :N on the distribution of SN =

∑N
i=1(Xi + Yi). Furthermore, using the

covariance capital allocation principle we quantify the impact of XN :N and YN :N

on the total loss SN . The latter application is of importance when designing risk
management and reinsurance strategies especially in proportional reinsurance.
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Chapter 2

Sarmanov Mixed Erlang Risks in
Insurance Applications

This chapter is based on E. Hashorva, G. Ratovomirija: On Sarmanov Mixed Erlang
risks in Insurance applications, published in the Astin Bulletin, 45:175–205, 2015.

2.1 Introduction

Analysis of aggregated risk is important for insurance business, it allows the insurers
to assess and to monitor their risks through the risk management framework. In
the classical framework of independent and identically distributed risks, explicit
analytical formulas for quantities of interest including Value-at-Risk (VaR), Tail
Value-at-Risk (TVaR) or Stop-loss premium formula for the aggregated risk can be
derived explicitly for few tractable cases. For instance Willmot and Lin [94], Lee
and Lin [63, 64] and Cossette et al. [20] have shown that this is the case if we
choose the mixed Erlang distribution as a model for claim sizes. One reason for the
tractability of the mixed Erlang distribution is the fact that the convolution of such
risks is again mixed Erlang, see Klugman et al. [58].

Since insurance data clearly shows that insurance risks are commonly dependent, in
order to be able to get closed-form formulas for quantities of interest, an important
task is the adequate choice of the dependence structure between the risks. Even
for the simple case of the dependence specified by a log-normal framework with
stochastic volatility, as shown in the recent contributions of Embrechts et al. [35] ,
Hashorva and Li [48] and Hashorva and Kortschak [47] only asymptotic results can
be derived.

With motivation from Cossette et al. [20] where the aggregation of FGM mixed

5



Preliminaries Sarmanov Mixed Erlang Risks

Erlang risks is considered, in this contribution we shall investigate the Sarmanov
mixed Erlang risks. The Sarmanov distribution includes the FGM distribution as
a special case. One key advantage of the Sarmanov distribution is its flexibility;
it also allows to model highly dependent risks, see e.g., Lee [62], Bairamov et al.
[9]. The aim of this chapter is to provide analytical results and properties of the
aggregated dependent risks with mixed Erlang marginals by using the Sarmanov
distribution as a model for the dependence structure. This model is promising in
risk aggregation practice as it satisfies the four desirable properties of a multivariate
parametric model mentioned in Joe [54] p.84, namely the interpretability property,
the closure property, the flexibility and the wideness of the range of dependence,
and the representation of the distribution function (df) and the probability density
function (pdf) in analytical form.
The chapter is organised as follows. In Section 2.2, we describe the background of
the Sarmanov mixed Erlang distribution by exploring some definitions and proper-
ties of the Sarmanov distribution as a model for the dependence structure and the
mixed Erlang distribution with a common scale parameter as a model for claim size
distribution in insurance. In Section 2.3, we demonstrate that the distribution of
the aggregated risk belongs to the class of Erlang mixtures; numerical illustrations
and simulation studies are performed to validate the results. In Section 2.4, we de-
rive explicit expressions for the allocated capital to each individual risk Xi, i = 1, 2

under the TVaR and the covariance capital allocation rules. We present some useful
results and properties of the mixed Erlang distribution in Section 2.2.2. In Section
2.6, an extension of the results in the bivariate case to the multivariate framework is
presented with numerical examples. All the proofs are relegated to Section 2.7. In
the Appendix, the flexibility and the wideness of the dependence range of Sarmanov
mixed Erlang distributions are discussed by calculating commonly used dependence
measures, namely Pearson’s correlation coefficient, Sperman’s rho and Kendall’s
tau.

2.2 Preliminaries

2.2.1 Sarmanov Distribution

The Sarmanov distribution introduced in Sarmanov [84] has proved valuable in
numerous insurance applications. For instance Hernandez et al. [51] used the
multivariate Sarmanov distribution to model the dependence structure between risk
profiles for the calculation of Bayes premiums in the collective risk model. Sarabia
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and Gómez-Déniz [83] fitted multivariate insurance count data using the Sarmanov
distribution with Poisson-Beta marginals. As shown in Yang and Wang [98] and
Yang and Hashorva [97] the Sarmanov distribution allows for tractable asymptotic
formulas in the context of ruin probabilities. Referring to Sarmanov [84] a bivariate
risk (X1, X2) has the Sarmanov distribution with joint pdf h given by

h(x1, x2) = f1(x1)f2(x2)
(

1 + α12φ1(x1)φ2(x2)
)
, α12 ∈ R, (2.1)

where fi is the pdf of Xi, i = 1, 2, and φ1, φ2 are two kernel functions, which are
assumed to be bounded and non-constant such that

E {φ1(X1)} = E {φ2(X2)} = 0, 1 + α12φ1(x1)φ2(x2) > 0, (2.2)

is valid. If φi(xi) = 2Fi(xi)−1 with Fi the df ofXi, then h is the joint pdf of the FGM
distribution introduced by Morgenstern [71] for Cauchy marginals and developed by
Gumbel [45] for exponential margins and generalized by Farlie [37]. Lee [62] proposed
some general methods for finding the kernel function φi(xi) with different types of
marginals. Yang and Hashorva [97] considered φi(xi) = gi(xi) − E(gi(Xi)). When
gi(xi) = e−xi the corresponding kernel function coincides with the one explored by
Lee [62] for marginal distributions with support in [0,∞). We have

φi(xi) = e−xi − E
{
e−Xi

}
= e−xi − Li(1), (2.3)

where Li(t) = E
{
e−tXi

}
, t > 0 is the Laplace transform of Xi. In the rest of the

chapter, we set
Li := Li(1), L

′

i := L
′

i(1).

The joint pdf h is thus given by

h(x1, x2) = f1(x1)f2(x2)

(
(1 + γ) + α12(e−x1−x2 − e−x1L2 − e−x2L1)

)
, (2.4)

where γ = α12L1L2.

Remarks 2.2.1. If (X1, X2) has a Sarmanov distribution with kernel functions given
in (2.3), additionally if Xi, i = 1, 2 follows a mixture of Gamma distributions where
the mixture components share the same scale parameter βi ∈ (0,∞), then the joint
df of (X1, X2) follows easily from integrating the pdf in (2.4). Specifically, we have
for H the joint df of (X1, X2)

H(x1, x2) = (1 + γ)F1(x1, β1)F2(x2, β2) + γF1(x1, β1 + 1)F2(x2, β2 + 1)

7
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−γF1(x1, β1 + 1)F2(x2, β2)− γF1(x1, β1)F2(x2, β2 + 1),

where Fi(xi, βi) =
∑∞

k=1 qkWk(xi, βi), i = 1, 2 withWk(xi, βi) is the df of the Gamma
distribution with scale parameter βi and shape parameter k ∈ (0,∞) and qk is the
mixing weight such that

∑∞
k=1 qk = 1.

Compared to the FGM distribution which has [−1/3, 1/3] as the range of Pearson’s
correlation coefficient ρ12 the Sarmanov distribution has a wider range of ρ12, which
is useful in the aggregation of strongly dependent insurance risks. For the Sarmanov
case we have the explicit formula for ρ12, namely

ρ12(X1, X2) =
α12ν1ν2

σ1σ2

, νi = E {Xiφi(Xi)} , σi =
√
V ar(Xi), i = 1, 2. (2.5)

In the particular case that the kernels are given by (2.3), for two positive Sarmanov
risks with finite variances the range of α12 is (see Lee [62])

−1

max{L1L2, (1− L1)(1− L2)}
6 α12 6

1

max{L1(1− L2), (1− L1)L2}
, (2.6)

where νi = −L′i − Liµi and µi = E {Xi} , i = 1, 2. Lee [62] extended the Sarmanov
distribution to the multivariate case by defining the joint pdf h of (X1, . . . , Xn) as

h(x) =
n∏
i=1

fi(xi)(1 +Rφ1,...,φn,Ωn(x)), x := (x1, . . . , xn), (2.7)

where

Rφ1,...,φn,Ωn(x) = 1 +
n−1∑
j1<

n∑
j2

αj1,j2φj1(xj1)φj2(xj2)

+
n−2∑
j1<

n−1∑
j2<

n∑
j3

αj1,j2,j3φj1(xj1)φj2(xj2)φj3(xj3)

+ . . .+ α1,2,...,n

n∏
i=1

φi(xi),

such that

1 +Rφ1,...,φn,Ωn(x) > 0 (2.8)

is fulfilled for all xi ∈ R with Ωn = {αj1,j2 , αj1,j2,j3 , . . . , α1,2,...,n} ∈ R. If the kernel
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functions are specified by (2.3), then h is given by (set ∆(xi) := e−xi − Li)

h(x) =
n∏
i=1

fi(xi)

(
1 +

n−1∑
j1<

n∑
j2

αj1,j2∆(xj1)∆(xj2)

+
n−2∑
j1<

n−1∑
j2<

n∑
j3

αj1,j2,j3∆(xj1)∆(xj2)∆(xj3)

+. . .+ α1,2,...,n

n∏
i=1

∆(xi)

)
. (2.9)

2.2.2 Mixed Erlang Claim Sizes

These last decades, modelling claim size in insurance with the mixed Erlang dis-
tribution with a common scale parameter has been well developed. In risk theory,
Dickson and Willmot [31] and Dickson [30] have explored an analytical form of
the finite time ruin probability, using the mixed Erlang distribution as a claim size
model. Recently, using the EM algorithm, mixed Erlang distribution has been fit-
ted to catastrophic loss data in the United States by Lee and Lin [63] and also to
censored and truncated data by Verbelen et al. [90] .

Moreover, Lee and Lin [64], Willmot and Woo [96] have developed the multivariate
mixed Erlang distribution to overcome some drawbacks of the copula approach while
Badescu et al. [7] have used the multivariate mixed Poisson distribution with mixed
Erlang claim sizes to model operational risks. Furthermore, Cossette et al. [20]
have introduced a risk aggregation in the multivariate set-up with mixed Erlang
marginals and the FGM copula to capture the dependence structure.

In the sequel, we denote respectively

wk(x, β) =
βkxk−1e−βx

(k − 1)!
,

Wk(x, β) =
∞∑
j=k

(βx)je−βx

j!
,

W k(x, β) =
k−1∑
j=0

(βx)je−βx

j!
, x > 0, (2.10)

the pdf, the df and the survival function of an Erlang distribution, where k ∈ N∗ is
the shape parameter and β > 0 is the scale parameter. As its name indicates, the
mixed Erlang distribution is elaborated from the Erlang distribution, its pdf and df

9
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are respectively defined by

fX(x, β, V˜ ) =
∞∑
k=1

qkwk(x, β), FX(x, β, V˜ ) =
∞∑
k=1

qkWk(x, β), (2.11)

where Q˜ = (q1, q2, . . .) is a vector of non-negative weights satisfying
∑∞

k=1 qk = 1.
In the following we write X ∼ME(β,Q˜) if X has pdf given by (2.11).

As discussed in Willmot and Lin [94], Lee and Lin [63, 64] and Cossette et al.
[20], one of the important advantages of employing the mixed Erlang distribution in
insurance loss modelling is the fact that many useful risk related quantities, such as
moments and mean excess function can be calculated explicitly by simple formulas.
For instance, the quantile function (or VaR) of the mixed Erlang distribution can
be easily obtained given the tractable form of the df. From the df (2.11), at a
confidence level p ∈ (0, 1), the VaR of X, denoted by xp, is the solution of

e−βxp
∞∑
k=1

qk

k−1∑
j=0

(βxp)
j

j!
= 1− p,

which can be solved numerically. Further, since for the mean excess function of X,
we have (see Willmot and Lin [94], p.7)

E((X − d)|X > d) =

∑∞
k=0 Q

∗
k

(βd)k

k!

β
∑∞

j=1 Qj
(βd)j−1

(j−1)!

, d > 0, (2.12)

where Q∗k =
∑∞

j=k+1Qj with Qj =
∑∞
k=j qk∑∞
k=1 kqk

, then the TVaR of X at a confidence
level p ∈ (0, 1) is given by the following explicit formula

TV aRX(p) =

∑∞
k=0Q

∗
k

(βxp)k

k!

β
∑∞

j=1Qj
(βxp)j−1

(j−1)!

+ xp. (2.13)

Remark that above we assume that E(X) =
∑∞

k=1 kqk is finite. Additionally, the
mixed Erlang distribution is a tractable marginal distribution for the Sarmanov
distribution. Next we present a result for the 2-dimensional set-up, see Section 2.6
for the same results in higher dimensions.
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2.3 Aggregation of SmE Risks

Let (X1, X2) have a bivariate Sarmanov risk with kernel functions φi(x) = e−xi −
Li for i = 1, 2. We shall assume that both X1 and X2 follow a mixed Erlang
distribution, i.e.,

Xi ∼ME(βi, Q˜ i), i = 1, 2,

where βi is the scale parameter, Q˜ i = (qi,1, qi,2, . . .) denotes the mixing probabilities.
The joint distribution of the random vector (X1, X2) will be referred to as a bivariate
Sarmanov mixed Erlang (SmE) distribution and we shall abbreviate this as

(X1, X2) ∼ SME2(β, Q˜ 1, Q˜ 2),

where β = (β1, β2). The dependence structure of the bivariate random vector
(X1, X2) can be analysed by calculating commonly used dependence measures such
as Pearson’s correlation coefficient or Kendall’s tau, see Appendix 2.8.1. For given
vectors of the mixing probabilities V˜ i = (vi1, vi2, . . .), i = 1, 2 we define in the fol-
lowing π1{V˜ 1, V˜ 2} = 0 and for k > 1

πk{V˜ 1, V˜ 2} =
k−1∑
j=1

v1,jv2,k−j.

The main result in this section is the derivation of the distribution of the aggregated
risk S2 = X1 +X2.

Proposition 2.3.1. If (X1, X2) ∼ SME2(β, Q˜ 1, Q˜ 2) with β1 6 β2, then S2 ∼ME(β2+

1, P˜) where the mixing weights pk are given by (set γ := α12L1L2, βi := βi/(βi + 1))

pk = (1 + γ)πk{Ψ˜1(Q˜ 1),Ψ˜2(Q˜ 2)}+ γπk{Ψ˜1(Θ˜1),Ψ˜2(Θ˜2)}

−γπk{Ψ˜1(Θ˜1),Ψ˜2(Q˜ 2)} − γπk{Ψ˜1(Q˜ 1),Ψ˜2(Θ˜2)}, (2.14)

where for i = 1, 2 the components of Θ˜ i = (θi,1, θi,2, . . .) are defined by

θi,k =
qi,kβi

k∑∞
j=1 qi,jβi

j ,

whereas the components of Ψ˜ i(Q˜ i) = (ψi,1, ψi,2, . . .) are

ψi,k =
k∑
j=1

qi,j

(
k − 1

j − 1

)(
βi

β2 + 1

)j (
1− βi

β2 + 1

)k−j
.
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Example 2.3.1. As an illustration, let

(X1, X2) ∼ SME2

(
β =

(
0.9

0.95

)
, Q˜ 1, Q˜ 2

)
,

with Q˜ 1 = (0.4, 0.2, 0.3, 0.1), Q˜ 2 = (0.3, 0.5, 0.1, 0.1) and α12 = 2.87. According to
(2.11), one can write the pdf of X1 and X2 as follows

f1(x1) = 0.4w1(x1, 0.9) + 0.2w2(x1, 0.9) + 0.3w3(x1, 0.9) + 0.1w4(x1, 0.9),

f2(x2) = 0.3w1(x2, 0.95) + 0.5w2(x2, 0.95) + 0.1w3(x2, 0.95) + 0.1w4(x2, 0.95).

Following (2.4), the joint density of (X1, X2) is given by

h(x1, x2) = f1(x1)f2(x2)(1.22 + 2.87e−x1−x2 − 0.81e−x1 − 0.78e−x2).

Table 2.1 below presents the central moments of the marginals.

Mean Variance Skewness Kurtosis
X1 2.33 4.44 1.38 5.49
X2 2.11 3.10 1.49 6.12

Table 2.1: Central moments of X1 and X2.

It follows that the distribution of S2 is a mixed Erlang distribution with scale pa-
rameter βS2 = 1.95 and mixing probabilities partially shown in 2.2. We notice that
the higher the value of k is, the smaller the value of pk.

k pk k pk k pk k pk k pk

1 0.0000 11 0.0664 21 0.0046 31 8.963E-05 41 9.294E-07
2 0.0675 12 0.0564 22 0.0033 32 5.803E-05 42 5.751E-07
3 0.0839 13 0.0465 23 0.0023 33 3.737E-05 43 3.547E-07
4 0.0645 14 0.0373 24 0.0016 34 2.393E-05 44 2.180E-07
5 0.0700 15 0.0292 25 0.0011 35 1.525E-05 45 1.336E-07
6 0.0740 16 0.0223 26 0.0007 36 9.668E-06 46 8.159E-08
7 0.0811 17 0.0168 27 0.0005 37 6.103E-06 47 4.970E-08
8 0.0840 18 0.0125 28 0.0003 38 3.835E-06 48 3.02E-08
9 0.0816 19 0.0091 29 0.0002 39 2.400E-06 49 1.828E-08
10 0.0753 20 0.0065 30 0.0001 40 1.496E-06 50 1.105E-08

Table 2.2: Mixing probabilities of the distribution of S2 = X1 + X2, with scale
parameter βS2 = 1.95.
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In order to validate our results, SmE risks have been simulated (see in Appendix 2.8.2
the details about the simulation algorithm). In this respect, analytical and simulated
results on the aggregated risk S2 = X1+X2 are presented and analysed. As displayed
in Table 2.3, based on the VaR and TVaR risk measures the comparison of the exact
and the simulated values shows that our results are consistent for different values of
the tolerance level p. Furthermore, it can be seen that VaR is more sensitive to the
change of the tolerance level than TVaR.

Analytical formula Simulated Percentage difference (%)
p (%) V aRS2(p) TV aRS2(p) V aRS2(p) TV aRS2(p) V aRS2(p) TV aRS2(p)
90.00 8.26 10.24 8.22 10.21 0.49 0.29
92.50 8.88 10.80 8.86 10.77 0.23 0.28
95.00 9.71 11.56 9.66 11.53 0.52 0.26
97.50 11.05 12.82 10.98 12.82 0.64 0.00
99.00 12.71 14.41 12.79 14.46 -0.63 -0.35
99.50 13.92 15.56 13.87 15.43 0.36 0.84
99.90 16.57 18.13 16.61 17.86 -0.24 1.51
99.99 20.15 21.62 19.42 20.79 3.62 3.84

Table 2.3: Exact and simulated values of VaR and TVaR of S2 = X1 +X2.

Similarly, by changing the level of the dependence between marginals which is de-
scribed by α12 and for a tolerance level of 99%, the comparison of the exact and the
simulated values of VaR and TVaR is displayed in Table 2.4. Note in passing that
the maximum attainable value of α12, in our example, is 4.87 while the minimum is
−1.91.

Analytical formula Simulated Percentage difference (%)
α12 V aRS2(0.99) TV aRS2(0.99) V aRS2(0.99) TV aRS2(0.99) V aRS2(0.99) TV aRS2(0.99)
-1.91 12.24 13.92 12.26 13.91 -0.16 0.10
-0.87 12.35 14.04 12.38 14.03 -0.25 0.06
0 12.44 14.13 12.48 14.13 -0.31 0.03

0.87 12.53 14.22 12.57 14.22 -0.29 0.01
1.87 12.62 14.31 12.66 14.32 -0.33 -0.02
2.87 12.71 14.41 12.74 14.41 -0.24 -0.05
3.87 12.80 14.49 12.82 14.50 -0.14 -0.08
4.87 12.88 14.57 12.90 14.59 -0.14 -0.10

Table 2.4: Dependence level and sensitiveness of risk measures.
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Figure 2.1: Risk Capital as a function the confidence level and the dependence
parameters.

It can be seen from Figure 2.1 that not only does the risk capital, measured as the
TVaR of the aggregated risk, increase with the confidence level but also with the
level of dependence between individual risks.

2.4 Capital Allocation

In this section, we derive analytical expressions for the amount of capital allocated
to each individual risk under the TVaR and the covariance principles. Evaluating
the economic capital for the entire portfolio that an insurance company needs to
absorb large unexpected losses is of importance in enterprise risk management. In
this respect, the so-called capital allocation consists in determining the contribution
of each individual risk to the aggregate economic capital. This allows the insurance
company to identify and to monitor efficiently their risks. In the literature, many
capital allocation techniques have been developed, see Cummins [21], Tasche [88, 89],
Dhaene et al. [29], McNeil et al. [68] and references therein. In practice, the TVaR
and the covariance allocation principle are commonly used, since they take into
account the dependence structure between risks. More precisely, if Sn =

∑n
i=1 Xi

is the aggregate risk where Xi is a continuous random variable (rv) with finite
mean that represents the individual risk, the amount of capital Ti allocated to each
risk Xi, for i = 1, . . . , n, is defined as ( for a tolerance level p ∈ (0, 1), denote
Ti = Tp(Xi, Sn) under the TVaR allocation principle, Ti = Kp(Xi, Sn) under the
covariance allocation principle)

Tp(Xi, Sn) =
E(Xi1{Sn>V aRSn (p)})

1− p
, (2.15)
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Kp(Xi, Sn) = E(Xi) +
Cov(Xi, Sn)

V ar(Sn)
(TV aRSn(p)− E(Sn)), (2.16)

where we assume that Sn has finite and positive variance. We have

n∑
i=1

Ti =
n∑
i=1

Tp(Xi, Sn) =
n∑
i=1

Kp(Xi, Sn) = TV aRSn(p),

which means that for both allocation principle, based on TVaR as a risk measure, the
capital required for the entire portfolio is equal to the sum of the allocated capital of
each risk within the portfolio. Given some vector V˜ = (v1, v2, . . .) with non-negative
components such that

∑∞
j=1 jvj < ∞ we define the new vector G˜(V˜ ) = (g1, g2, . . .)

where

gk =

{
0 for k = 1,

(k−1)vk−1∑∞
j=1 jvj

for k > 1.

For notational simplicity we shall also write in the following βi instead of βi/(βi+1).
We derive next an explicit form of Tp(Xi, S2) and Kp(Xi, S2), i = 1, 2, in the case of
SmE type risks.

Proposition 2.4.1. Let (X1, X2) ∼ SME2(β, Q˜ 1, Q˜ 2) with β1 6 β2, further let Θ˜ i
and Ψ˜ i be defined as in Theorem 2.3.1. If for i = 1, 2 both µi := 1

βi

∑∞
k=1 kqi,k

and µ̃i := 1
βi+1

∑∞
k=1 kθi,k are finite, then for any p ∈ (0, 1) the amount of capital

allocated to each risk Xi, i = 1, 2, under the TVaR principle is

Tp(Xi, S2) =
1

1− p

∞∑
k=1

zikW k(V aRS2(p), β2 + 1), (2.17)

where γ = α12L1L2,

zi,k = (1 + γ)µiπk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Q˜ j)}+ γµ̃iπk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Θ˜ j)}
−γµ̃iπk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Q˜ j)} − γµiπk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Θ˜ j)}, i 6= j,

and the contribution of each risk Xi, i = 1, 2 to the economic capital of the entire
portfolio, under the covariance principle, is given by

Kp(Xi, S2) =
∞∑
k=1

Li,k
β2 + 1

,
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where

Li,k = kψi,k + εi,j

(
P ∗k ((β2 + 1)V aRS2(p))k

ϕk!
+ (β2 + 1)V aRS2(p)− kpk

)
, i 6= j,

with

εi,j =

∑∞
m=1(m2 +m)ψim − (

∑∞
m=1mψim)2∑∞

m=1(m2 +m)pm − (
∑∞

m=1 mpm)2

+

(
α12(β2 + 1)2∑∞

m=1(m2 +m)pm − (
∑∞

m=1 mpm)2

)

×

(
1

βi + 1

∞∑
m=1

mqi,mβi
m − 1

βi

∞∑
m=1

qi,mβi
m
∞∑
m=1

mqi,m

)

×

(
1

βj + 1

∞∑
m=1

mqj,mβj
m − 1

βj

∞∑
m=1

qj,mβj
m
∞∑
m=1

mqj,m

)
, (2.18)

ϕ =
∞∑
j=1

Pj((β2 + 1)V aRS2(p))j−1

(j − 1)!
, P ∗k =

∞∑
j=k

Pj, Pj =

∑∞
k=j pk∑∞
k=1 kpk

and pk is given in (2.14).

Example 2.4.1. In this example, we consider the same marginals and dependence
parameters as in Example 2.3.1. For different level of the dependence between X1

and X2, which is described by α12, TVaRs have been calculated on the aggregated
risk S2 = X1+X2 at a tolerance level p = 99%. Furthermore, the allocated capital to
each risk Xi, i = 1, 2, under the TVaR and the covariance capital allocation principle
are also evaluated. Table 2.5 demonstrates that risk measures on the aggregated risk
are sensitive to the level of dependence between individual risks. Actually, due to
the relationship between dependence level and the diversification effect, the more X1

and X2 are dependent, the more the portfolio is risky, hence more capital is needed
to cover the risks. In this respect, more capital is allocated to risk X1 compared to
the amount allocated to risk X2 under the TVaR and the covariance principle.
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α12 TV aRS2(0.99) T0.99(X1, S2) T0.99(X2, S2) K0.99(X1, S2) K0.99(X2, S2)
-1.91 13.92 7.70 6.22 7.69 6.23
-0.87 14.04 7.74 6.30 7.73 6.31
0 14.13 7.77 6.36 7.75 6.38

0.87 14.22 7.80 6.42 7.78 6.44
1.87 14.31 7.84 6.47 7.81 6.50
2.87 14.41 7.87 6.54 7.84 6.57
3.87 14.49 7.90 6.59 7.87 6.62
4.87 14.57 7.93 6.64 7.89 6.68

Table 2.5: Analytical formula: dependence level, TVaR and allocated capital to each
risk Xi, i = 1, 2, under the TVaR and the covariance capital allocation principle.

Figure 2.2: Contribution of X1 and X2 to the risk capital under the TVaR capital
allocation principle with respect to the dependence level.

Figure 2.3: Contribution of X1 and X2 to the risk capital under the covariance
capital allocation principle with respect to the dependence level.

Values from Table 2.5 are depicted in Figure 2.2 and Figure 2.3. The minimum
dependence case, the independence case and the maximum dependence represent
the allocated capital to each individual risk when the dependence parameter α1,2 =

−1.91, α1,2 = −1.91, α1,2 = 4.87, respectively. Under both TVaR and covariance
capital allocation principle the relative contribution ofX2 to the risk capital increases
with the dependence level between X1 and X2. This is due to the fact that the
distribution of X2 is more skewed to the right than the distribution of X1.
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2.5 Auxiliary Results

One of the main features of the mixed Erlang distribution is that its pdf can be used
to derive some results in an analytical way. In this respect, this section presents some
useful properties of the mixed Erlang distribution.

Lemma 2.5.1. If X is a rv from the mixed Erlang distribution with pdf g(x, β,Q˜),
then

gθ(x, β + 1,Θ˜) =
e−xg(x, β,Q˜)

L
,

with L = E
{
e−X

}
, is again a pdf of the mixed Erlang distribution with mixing

probabilities Θ˜ = (θ1, θ2, . . .) and scale parameter β + 1 and we have

gθ(x, β + 1,Θ˜) =
∞∑
k=1

θkwk(x, β + 1),

where θk = qkβ
k∑∞

j=1 qjβ
j with β = β

β+1
.

The results presented in the next two lemmas can be found in Section 2.2 of Willmot
and Woo [95], and Section 7.2 of Lee and Lin [63], respectively.

Lemma 2.5.2. If X ∼ME(β1, Q˜) , then for any positive constant β2 ≥ β1 we have

X ∼ME(β2, Ψ˜(Q˜)),

where the mixing probabilities Ψ˜(Q˜) = (ψ1, ψ2, . . .) and its individual components
are given by

ψk =
k∑
i=1

qi

(
k − 1

i− 1

)(
β1

β2

)i(
1− β1

β2

)k−i
, k ≥ 1.

Lemma 2.5.3. Let X1, X2 be two independent rv. If Xi ∼ME(βi, Q˜ i), i = 1, 2, then
S2 = X1 +X2 ∼ME(β,Π˜{Q˜ 1, Q˜ 2}), provided that β1 = β2 = β with

πl{Q˜ 1, Q˜ 2} =

{
0 for l = 1,∑l−1

j=1 q1,j q2,l−j for l > 1.

Remarks 2.5.4. According to Cossette et al. [19] (Remark 2.1), the results in Lemma
2.5.3 can be extended to Sn =

∑n
i=1Xi, as long as Xi, . . . , Xn are independent, Xi ∼

ME(βi, Q˜ i) and βi = β for i = 1, . . . , n. Specifically, Sn ∼ ME(β,Π˜{Q˜ 1, . . . , Q˜n})
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where the individual mixing probabilities can be evaluated iteratively as follows

πl{Q˜ 1, . . . , Q˜n+1} =

{
0 for l = 1, . . . , n,∑l−1

j=n πj{Q˜ 1, . . . , Q˜n} qn+1,l−j for l = n+ 1, n+ 2, . . . .

2.6 Multivariate SmE Risks

In this section, we assume that the joint distribution of the random vector (X1, . . . , Xn)

will be referred to as a multivariate SmE distribution and we shall abbreviate
this as (X1, . . . , Xn) ∼ SMEn(β, Q˜ 1, . . . , Q˜n) where β = (β1, . . . , βn) with Xi ∼
ME(βi, Q˜ i), i = 1, . . . , n. Furthermore, we shall set

f̃i(xi) := e−xifi(xi).

2.6.1 Distribution of Sn

By decomposing the joint pdf of (X1, . . . , Xn) in (2.9) and using some rules of
integration, we show in the next proposition that the distribution of Sn =

∑n
i=1Xi

belongs to the class of Erlang mixtures.

Proposition 2.6.1. If (X1, . . . , Xn) ∼ SMEn(β, Q˜ 1, . . . , Q˜n) with βi 6 βn, for i =

1, . . . , n − 1, then Sn ∼ ME(βn + 1, P˜). The components of P˜ = (p1, p2, . . .) are
given by

pk =
(

1 +
∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3

+ . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)
π(k)

+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
π

(k)
j1

+
∑
j1

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
π

(k)
j1,j2

+
∑
j1

∑
j2

∑
j3

(
αj1,j2,j3 −

∑
j4

αj1,j2,j3,j4Lj4 +
∑
j4

∑
j5

αj1,j2,j3,j4,j5Lj4Lj5
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+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1,j2}

Li

)
π

(k)
j1,j2,j3

+ . . .+
∑
j1

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1 − α1,2,...,nLjn

)
π

(k)
j1,...,jn−1

+ α1,2,...,nπ
(k)
1,...,n,

(2.19)

where
π(k) = πk{Ψ˜1(Q˜ 1), . . . ,Ψ˜n(Q˜n)},
π

(k)
j1

= Lj1πk{Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Q˜ j2), . . . ,Ψ˜n(Q˜n)},
π

(k)
j1,j2

= Lj1Lj2πk{Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Θ˜ j2),Ψ˜ j3(Q˜ j3) . . . ,Ψ˜n(Q˜n)},
π

(k)
j1,j2,j3

= Lj1Lj2Lj3πk{Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Θ˜ j2),Ψ˜ j3(Θ˜ j3) . . . ,Ψ˜n(Q˜n)},
π

(k)
j1,...,jn−1

= Lj1 · · ·Ljn−1πk{Ψ˜ j1(Θ˜ j1), . . . ,Ψ˜ jn−1(Θ˜ jn−1),Ψ˜ jn(Q˜ jn)},
π

(k)
1,...,n = L1 · · ·Lnπk{Ψ˜1(Θ˜1), . . . ,Ψ˜n(Θ˜n)},

with C = {1, . . . , n}, j1 ∈ C, j2 ∈ C\{j1}, j3 ∈ C\{j1, j2}, . . . , jn ∈ C\{j1, . . . , jn−1}.

Example 2.6.1. Let (X1, X2, X3) ∼ SME3(β, Q˜ 1, Q˜ 2, Q˜ 3) with βi 6 β3, i = 1, 2 then
S3 ∼ ME(β3 + 1, P˜) where the components of P˜ = (p1, p2, . . .) are given by (with
C = {1, 2, 3})

pk = (1 +
∑
j1

∑
j2

αj1,j2Lj1Lj2 − α1,2,3

3∏
i=1

Li)π
(k)

+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3 + α1,2,3

∏
i∈C\{j1}

Li

)
π

(k)
j1

+
∑
j1

∑
j2

(
αj1,j2 − α1,2,3Lj3

)
π

(k)
j1,j2

+ α1,2,3π
(k)
1,2,3

= (1 + α1,2L1L2 + α1,3L1L3 + α2,3L2L3 − α1,2,3L1L2L3)

×πk{Ψ˜1(Q˜ 1),Ψ˜2(Q˜ 2),Ψ˜3(Q˜ 3)}

+(−α1,2L2 − α1,3L3 + α1,2,3L2L3)L1πk{Ψ˜1(Θ˜1),Ψ˜2(Q˜ 2),Ψ˜3(Q˜ 3)}

+(−α1,2L1 − α2,3L3 + α1,2,3L1L3)L2πk{Ψ˜1(Q˜ 1),Ψ˜2(Θ˜2),Ψ˜3(Q˜ 3)}

+(−α1,3L1 − α2,3L2 + α1,2,3L1L2)L3πk{Ψ˜1(Q˜ 1),Ψ˜2(Q˜ 2),Ψ˜3(Θ˜3)}

+(α1,3 − α1,2,3L2)L1L3πk{Ψ˜1(Θ˜1),Ψ˜2(Q˜ 2),Ψ˜3(Θ˜3)}

+(α2,3 − α1,2,3L1)L2L3πk{Ψ˜1(Q˜ 1),Ψ˜1(Θ˜1),Ψ˜3(Θ˜3)}

+(α1,2 − α1,2,3L3)L1L2πk{Ψ˜1(Θ˜1),Ψ˜2(Θ˜2),Ψ˜3(Q˜ 3)}

+α1,2,3L1L2L3πk{Ψ˜1(Θ˜1),Ψ˜2(Θ˜2),Ψ˜3(Θ˜3)}.
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2.6.2 Capital Allocation

The following propositions provide analytical formulas for the allocated capital to
each individual risk Xm, m = 1, . . . , n, under the TVaR and the covariance rules.

Proposition 2.6.2. Let (X1, . . . , Xn) ∼ SMEn(β, Q˜ 1, . . . , Q˜n) with βm 6 βn, form =

1, . . . , n − 1. Provided that both µm = 1
βm

∑∞
k=1 kqm,k and µ̃m = 1

βm+1

∑∞
k=1 kθmk,

m = 1, . . . , n are finite , then for m = 1, . . . , n and p ∈ (0, 1) the amount of capital
allocated to each risk Xm under the TVaR principle is given by (set C := {1, . . . , n})

Tp(Xm, Sn) =
1

1− p

∞∑
k=1

zm,kW k(V aRSn(p), βn + 1),

where

zm,k =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3

+ . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)
µmπ̃

(k)

+
∑
j1 6=m

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
µmπ̃

(k)
j1

+

(
−
∑
j2 6=m

αm,j2Lj2 +
∑
j2 6=m

∑
j3 6=m

αm,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{m}

Li

)
µ̃mπ̃

(k)
m

+
∑
j1 6=m

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
µmπ̃

(k)
j1,j2

+
∑
j2 6=m

(
αm,j2 −

∑
j3 6=m

αm,j2,j3Lj3 +
∑
j3 6=m

∑
j4 6=m

αm,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{m,j2}

Li

)
µ̃mπ̃

(k)
m,j2
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+ . . .+
∑
j1 6=m

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1 − α1,2,...,nLm

)
µmπ̃

(k)
j1,...,jn−1

+
∑
j2 6=m

. . .
∑

jn−1 6=m

(
αm,j2,...,jn−1 − α1,2,...,nLjn 6=m

)
µ̃mπ̃

(k)
m,j2,...,jn−1

+ α1,2,...,nπ̃
(k)
1,...,n,

(2.20)

where
π̃(k) = πk{Ψ˜m(G˜m(Q˜m),Ψ˜1(Q˜ 1), . . . ,Ψ˜n(Q˜n)},
π̃

(k)
j1

= Lj1πk{Ψ˜m(G˜m(Q˜m),Ψ˜ j1(Θ˜ j1), . . . ,Ψ˜n(Q˜n)},
π̃

(k)
m = Lmπk{Ψ˜m(G˜m(Θ˜m), . . . ,Ψ˜n(Q˜n)},
π̃

(k)
j1,j2

= Lj1Lj2πk{Ψ˜m(G˜m(Q˜m),Ψ˜ j1(Θ˜ j1),Ψ˜ j2(Θ˜ j2), . . . ,Ψ˜n(Q˜n)},
π̃

(k)
m,j2

= LmLj2πk{Ψ˜m(G˜m(Θ˜m),Ψ˜ j2(Θ˜ j2), . . . ,Ψ˜n(Q˜n)},
π̃

(k)
j1,...,jn−1

= Lj1· · ·Ljn−1πk{Ψ˜m(G˜m(Q˜m),Ψ˜ j1(Θ˜ j1) . . . ,Ψ˜n(Θ˜ jn−1)},
π̃

(k)
m,j2,...,jn−1

= LmLj2· · ·Ljn−1πk{Ψ˜m(G˜m(Θ˜m),Ψ˜ j2(Θ˜ j2) . . . ,Ψ˜ jn−1(Θ˜ jn−1),Ψ˜ jn(Q˜ jn)},
π̃

(k)
1,...,n = LmL1· · ·Lnπk{Ψ˜m(G˜m(Θ˜m),Ψ˜ j2(Θ˜ j2), . . . ,Ψ˜n(Θ˜ jn}.

Proposition 2.6.3. Let βm 6 βn,m ≤ n− 1, and consider

(X1, . . . , Xn) ∼ SMEn(β, Q˜ 1, . . . , Q˜n).

If Sn has a finite and positive variance, then for any index m ≤ n and p ∈ (0, 1) we
have

Kp(Xm, Sn) =
∞∑
k=1

Lm,k
βn + 1

,

where Kp is defined in (2.16),

Lm,k = kψm,k +
∑
j 6=m

εm,j

(
P ∗k ((βn + 1)V aRSn(p))k

ϕk!
+ (βn + 1)V aRSn(p)− kpk

)
,

with for m 6= j

εm,j =

∑∞
s=1(s2 + s)ψm,s − (

∑∞
s=1 sψ

2
m,s)∑∞

s=1(s2 + s)ps − (
∑∞

s=1 sps)
2

+
n∑
j=1

(
αmj(βn + 1)2∑∞

s=1(s2 + s)ps − (
∑∞

s=1 sps)
2

)
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×

(
1

βm + 1

∞∑
s=1

sqm,sβ
s

m −
∞∑
s=1

qm,sβ
s

m

1

βm

∞∑
s=1

sqm,s

)

×

(
1

βj + 1

∞∑
s=1

sqj,sβ
s

j −
∞∑
s=1

qj,sβ
s

j

1

βj

∞∑
s=1

sqj,s

)
,

ϕ =
∞∑
s=1

Ps((βn + 1)V aRSn(p))s−1

(s− 1)!
, P ∗k =

∞∑
s=k

Ps, Ps =

∑∞
k=s ps∑∞
s=1 sps

,

and ps is given in (2.19).

Proof. The proof is similar to the bivariate case and is therefore omitted.

2.6.3 Trivariate SmE Risks: Numerical Illustrations

Let (X1, X2, X3) have a trivariate SmE risk, with α12 = 2.03, α13 = 3.62, α23 =

−1.54 and α123 = −1.03 the dependence parameters. The parameters have been
chosen so that the condition in (2.8) is fullfilled. Assume β = (0.75, 0.9, 0.95),
Q˜ 1 = (0.2, 0.6, 0.2), Q˜ 2 = (0.4, 0.3, 0.1, 0.2) and Q˜ 3 = (0.6, 0.1, 0.2, 0.1). In view of
(2.9) the joint pdf of (X1, X2, X3) are given by

h(x) =
3∏
i=1

fi(xi)
(

2.03(e−x1 − 0.21)(e−x2 − 0.28) + 3.62(e−x1 − 0.21)(e−x3 − 0.34)

−1.54(e−x2 − 0.28)(e−x3 − 0.34)

−1.03(e−x1 − 0.21)(e−x2 − 0.28)(e−x3 − 0.34)
)
.

In light of Proposition 2.6.1, S3 = X1+X2+X3 follows the mixed Erlang distribution
with scale parameter βS3 = 1.95 and mixing probabilities P˜ = (p1, p2, . . .), the first
50 values of P˜ are given in Table 2.6.
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k pk k pk k pk k pk k pk

1 0.0000 11 0.0670 21 0.0256 31 0.0022 41 8.729E-05
2 0.0000 12 0.0676 22 0.0211 32 0.0017 42 5.751E-05
3 0.0121 13 0.0662 23 0.0172 33 0.0012 43 4.289E-05
4 0.0295 14 0.0631 24 0.0138 34 0.0009 44 2.988E-05
5 0.0366 15 0.0588 25 0.0109 35 0.0006 45 2.019E-05
6 0.0409 16 0.0536 26 0.0086 36 0.0005 46 9.869E-06
7 0.0466 17 0.0478 27 0.0067 37 0.0003 47 9.612E-06
8 0.0533 18 0.0419 28 0.0051 38 0.0002 48 4.635E-06
9 0.0596 19 0.0361 29 0.0039 39 0.0002 49 4.513E-06
10 0.0643 20 0.0307 30 0.0030 40 0.0001 50 3.161E-06

Table 2.6: Mixing probabilities of the distribution of S3 = X1 +X2 +X3, with scale
parameter βS3 = 1.95.

For different tolerance level p, Table 2.7 and Table 2.8 show the TVaR of S3 =

X1 + X2 + X3 and the allocated capital to each risk under the TVaR and the
covariance capital allocation rules, respectively. Furthermore, the corresponding
relative contribution of X1, X2 and X3 are presented in Figure 2.4 and Figure 2.5.

p TV aRS3(p) Tp(X1, S3) Tp(X2, S3) Tp(X3, S3)

90.0 % 14.16 5.53 4.73 3.90
92.5 % 14.84 5.79 4.96 4.09
95.0 % 15.77 6.13 5.29 4.35
97.5 % 17.29 6.70 5.82 4.77
99.0 % 19.20 7.45 6.47 5.28
99.5 % 20.58 8.01 6.94 5.63

Table 2.7: Exact values: TVaR of S3 = X1 +X2 +X3 and allocated capital to each
risk Xi, i = 1, 2, 3, under the TVaR capital allocation principle.
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Figure 2.4: Contribution of X1, X2 and X3 to the risk capital under the TVaR
capital allocation principle with respect to the confidence level.

p TV aRS3(p) Kp(X1, S3) Kp(X2, S3) Kp(X1, S3)

90.0 % 14.16 5.56 4.70 3.90
92.5 % 14.84 5.84 4.93 4.07
95.0 % 15.77 6.20 5.23 4.34
97.5 % 17.29 6.82 5.72 4.75
99.0 % 19.20 7.58 6.35 5.27
99.5 % 20.58 8.13 6.80 5.65

Table 2.8: Exact values: TVaR of S3 = X1 +X2 +X3 and allocated capital to each
risk Xi, i = 1, 2, 3, under the covariance capital allocation principle.
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Figure 2.5: Contribution of X1, X2 and X3 to the risk capital under the covariance
capital allocation principle with respect to the confidence level.

2.7 Proofs

Proof of Proposition 2.3.1 The pdf f of S2 is given in terms of the joint pdf of
(X1, X2) as follows

fS2(s) =

∫ s

0

h(y, s− y)dy.

Taking (2.1) into account the pdf of S2 becomes

fS2(s) = (1 + α12L1L2)

∫ s

0

f1(y)f2(s− y)dy + α12

∫ s

0

e−yf1(y)e−(s−y)f2(s− y)dy

−α12L2

∫ s

0

e−yf1(y)f2(s− y)dy − α12L1

∫ s

0

e−(s−y)f2(s− y)f1(y)dy.

Let A(s), B(s), C(s), D(s) be the four terms of the expression of fS2(s), respectively.
According to Lemma 2.5.2,

A(s) = (1 + α12L1L2)

∫ s

0

fψ1 (s, β2 + 1,Ψ˜1(Q˜ 1))fψ2 (s− y, β2 + 1,Ψ˜2(Q˜ 2))dy,
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and from Lemma 2.5.3, A(s) can be expressed as a pdf of the mixed Erlang distri-
bution as follows

A(s) = (1 + α12L1L2)
∞∑
k=1

πk(Ψ˜1(Q˜ 1),Ψ˜2(Q˜ 2))wk(s, β2 + 1).

In view of Lemma 2.5.1 and Lemma 2.5.2, the expression of B(s) becomes

B(s) = α12

∫ s

0

L1f
θ
1 (s, β1 + 1,Θ˜1)L2f

θ
2 (s− y, β2 + 1,Θ˜2)dy

= α12L1L2

∫ s

0

fψ1 (s, β2 + 1,Ψ˜1(Θ˜1))fψ2 (s− y, β2 + 1,Ψ˜2(Θ˜2))dy.

From Lemma 2.5.3 one can write B(s) as

B(s) = α12L1L2

∞∑
k=1

πk(Ψ˜1(Θ˜1),Ψ˜2(Θ˜2))wk(s, β2 + 1),

which is again a pdf of some mixed Erlang distribution. Similarly to B(s), using
Lemma 2.5.1, 2.5.2 and Lemma 2.5.3 one can express C(s) and D(s) as pdfs of
mixed Erlang distribution as follows

C(s) = α12L1L2

∞∑
k=1

πk(Ψ˜1(Θ˜1),Ψ˜2(Q˜ 2))wk(s, β2 + 1),

D(s) = α12L1L2

∞∑
k=1

πk(Ψ˜1(Q˜ 1),Ψ˜2(Θ˜2)wk(s, β2 + 1),

hence the claim follows. 2

Proof of Proposition 2.4.1 For j 6= i, we have

E(Xi1{S2=s}) =

∫ s

0

yh(y, s− y)dy

= (1 + α12LiLj)

∫ s

0

yfi(y)fj(s− y)dy

+α12

∫ s

0

ye−yfi(y)e−(s−y)fj(s− y)dy

−α12Lj

∫ s

0

ye−yfi(y)fj(s− y)dy

−α12Li

∫ s

0

yfi(y)e−(s−y)fj(s− y)dy.

Let A(s), B(s), C(s), D(s) be the four terms of the expression of E(Xi1{S2=s}), re-
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spectively. In light of Cossette et al. [20] Lemma 2.5, if Xi ∼ ME(βi, Q˜ i) then
xifi(xi,βi,Q˜i)E(Xi)

can be expressed as a pdf of mixed Erlang distribution with mixing prob-
abilities G˜ i(Q˜ i) = (g1, g2, . . .) where the k-th individual mixing probability is given
by

gk =

{
0 for k = 1,

(k−1)qi,k−1∑k−1
j=1 jqi,j

for k > 1.
(2.21)

If we set µi := E(Xi) = 1
βi

∑∞
k=1 kqik, γ := α12L1L2, then using (2.21), Lemma 2.5.1,

2.5.2 and 2.5.3, one can write A(s) as

A(s) = (1 + γ)µi

∞∑
k=1

πk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Q˜ j)}wk(s, β2 + 1).

Setting µ̃i := 1
βi+1

∑∞
k=1 kθik, in light of (2.21), Lemma 2.5.1, 2.5.2 and 2.5.3, simi-

larly to A(s), we get the expression of the last three terms of E(Xi1{S2=s}) as follows

B(s) = γµ̃i
∑∞

k=1 πk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Θ˜ j)}wk(s, β2 + 1),

C(s) = −γµ̃i
∑∞

k=1 πk{Ψ˜ i(G˜ i(Θ˜ i)),Ψ˜ j(Q˜ j)}wk(s, β2 + 1),

D(s) = −γµi
∑∞

k=1 πk{Ψ˜ i(G˜ i(Q˜ i)),Ψ˜ j(Θ˜ j)}wk(s, β2 + 1).

Hence, in view of (2.15)

Tp(Xi, S2) =
1

1− p

∞∑
k=1

zi,kW k(V aRS2(p), β2 + 1),

where zik is given in (2.17). Next, by Lemma 2.5.2, since β1 6 β2 we obtain

E(Xi) =
1

β2 + 1

∞∑
k=1

kψi,k,

V ar(Xi) =
1

(β2 + 1)2

(
∞∑
m=1

(m2 +m)ψi,m −

(
∞∑
m=1

mψi,m

)2)
.

In light of (2.26), we know that for i 6= j

Cov(Xi, Xj) = α12

(
1

βi + 1

∞∑
m=1

mqi,mβi
m −

∞∑
m=1

qi,mβi
m 1

βi

∞∑
m=1

mqi,m

)
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×

(
1

βj + 1

∞∑
s=1

sqj,sβj
s −

∞∑
s=1

qj,sβj
s 1

βj

∞∑
s=1

sqj,s

)
,

Furthermore, Proposition 2.3.1 and (2.13) yield

E(S2) =
1

β2 + 1

∞∑
k=1

kpk,

V ar(S2) =
1

(β2 + 1)2

(
∞∑
m=1

(m2 +m)pm −
( ∞∑
m=1

mpm

)2
)
,

TV aRS2(p) =
1

(β2 + 1)ϕ

∞∑
k=0

P ∗k ((β2 + 1)V aRS2(p))k

k!
+ V aRS2(p).

where

ϕ =
∞∑
j=1

Pj((β2 + 1)V aRS2(l))j−1

(j − 1)!
, P ∗k =

∞∑
j=k

Pj, Pj =

∑∞
k=j pk∑∞
k=1 kpk

,

and pk is given in (2.14). Setting

Li,k := kψi,k + εi,j

(
P ∗k ((β2 + 1)V aRS2(p))k

ϕk!
+ (β2 + 1)V aRS2(p)− kpk

)
,

and plugging the value of E(Xi), V ar(Xi), Cov(Xi, Xj), V ar(S2), TV aRS2(p) and
E(S2) in (2.16), we obtain the desired result for Kp(Xi, S2) where εi,j is given in
(2.18). 2

Proof of Lemma 2.5.1 We have

gθ(x, β + 1,Θ˜) =
e−xg(x, β,Q˜)

L

=
∞∑
k=1

qk
βkxk−1e−βx

(k − 1)!

e−x

L

=
∞∑
k=1

qk

(
β
β+1

)k
∑∞

j=1 qj

(
β
β+1

)jwk(x, β + 1)

=
∞∑
k=1

θkwk(x, β + 1).
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2

Proof of Proposition 2.6.1 By definition

fSn(s) =

∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

h(x1, x2, . . . , s− x1 − . . .− xn−1)

dxn−1 . . . dx2dx1. (2.22)

For C = {1, . . . , n}, if we decompose the pdf h in (2.9), we obtain

h(x) =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3

+ . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)
n∏
i=1

fi(xi)

+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
f̃j1(xj1)

∏
i∈C\{j1}

fi(xi)

+
∑
j1

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
f̃j1(xj1)f̃j2(xj2)

∏
i∈C\{j1,j2}

fi(xi)

+
∑
j1

∑
j2

∑
j3

(
αj1,j2,j3 −

∑
j4

αj1,j2,j3,j4Lj4 +
∑
j4

∑
j5

αj1,j2,j3,j4,j5Lj4Lj5

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1,j2}

Li

)
×f̃j1(xj1)f̃j2(xj2)f̃j3(xj3)

∏
i∈C\{j1,j2,j3}

fi(xi)

+ . . .+
∑
j1

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1 − α1,2,...,nLjn

)

×f̃j1(xj1)× . . .× f̃jn−1(xjn−1)fjn(xjn) + α1,2,...,n

n∏
i=1

f̃i(xi), (2.23)

where j1 ∈ C, j2 ∈ C\{j1}, j3 ∈ C\{j1, j2}, . . . , jn ∈ C\{j1, . . . , jn−1}. Hence, using
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(2.23), one can express (2.22) as follows

fSn(s) =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3

+ . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

n−1∏
i=1

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+
∑
j1

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃j1(xj1)
∏

i∈C\{j1}

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+
∑
j1

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃j1(xj1)f̃j2(xj2)
∏

i∈C\{j1,j2}

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+
∑
j1

∑
j2

∑
j3

(
αj1,j2,j3 −

∑
j4

αj1,j2,j3,j4Lj4 +
∑
j4

∑
j5

αj1,j2,j3,j4,j5Lj4Lj5

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1,j2}

Li

)

×
∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃j1(xj1)f̃j2(xj2)f̃j3(xj3)∏
i∈C\{j1,j2,j3}

fi(xi)fn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+ . . .+
∑
j1

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1 − α1,2,...,nLjn

)
∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

f̃1(x1)× . . .× f̃jn−1(xjn−1)fjn(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1

+α1,2,...,n

∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0
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n−1∏
i=1

f̃i(xi)f̃n(s− x1 − . . .− xn−1)dxn−1 . . . dx2dx1.

It can be seen that the pdf of Sn is a sum of convolutions of mixed Erlang dis-
tributions. Thus, as in the case of S2, Sn follows a mixed Erlang distribution
with scale parameter βn + 1 and mixing probabilities P˜ = (p1, p2, . . .), we write
Sn ∼ME(βn + 1, P˜). For k ∈ N∗, the k-th component pk of P˜ is given in (2.19). 2

Proof of Proposition 2.6.2 In view of (2.15) we need to evaluate

E(Xm1{Sn=s}) =

∫ s

0

∫ s−x1

0

. . .

∫ s−x1−...−xn−2

0

xmh(x1, x2, . . . , s− x1 − . . .− xn−1)

dxn−1 . . . dx2dx1.

(2.24)

If we decompose xmh(x), we have

xmh(x) =

(
1 +

∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3

+ . . .+ (−1)nα1,2,...,n

n∏
i=1

Li

)(
xmfm(xm)

∏
i 6=m

fi(xi)

)

+
∑
j1 6=m

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)(
xmfm(xm)f̃j1(xj1)

∏
i∈C\{m,j1}

fi(xi)

)

+

(
−
∑
j2 6=m

αm,j2Lj2 +
∑
j2 6=m

∑
j3 6=m

αm,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{m}

Li

)(
xmf̃m(xm)

∏
i∈C\{m}

fi(xi)

)

+
∑
j1 6=m

∑
j2

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)

×

(
xmfm(xm)f̃j1(xj1)f̃j2(xj2)

∏
i∈C\{j1,j2,m}

fi(xi)

)
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+
∑
j2 6=m

(
αm,j2 −

∑
j3 6=m

αm,j2,j3Lj3 +
∑
j3 6=m

∑
j4 6=m

αm,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{m,j2}

Li

)(
xmf̃m(xm)f̃j2(xj2)

∏
i∈C\{m,j2}

fi(xi)

)

+ . . .+
∑
j1 6=m

∑
j2

. . .
∑
jn−1

(
αj1,j2,...,jn−1 − α1,2,...,nLm

)

×

(
xmfm(xm)

n∏
k=1,jk 6=m

f̃jk(xjk)

)

+
∑
j2 6=m

. . .
∑

jn−1 6=m

(
αm,j2,...,jn−1 − α1,2,...,nLjn 6=m

)

×

(
xmf̃m(xm)fjn(xjn)

n−1∏
k=1,jk 6=m

f̃jk(xjk)

)
+α1,2,...,nxmf̃m(xm)

∏
i 6=m

f̃i(xi). (2.25)

Plugging (2.25) in (2.24) and using (2.21), Lemma 2.5.1, 2.5.2, and 2.5.3, similarly
to the bivariate case one may express (2.24) as follows

E(Xm1{Sn=s}) =
∞∑
k=1

zm,kW k(V aRSn(p), βn + 1),

where zm,k is given in (2.20). Hence, the proof follows easily. 2

2.8 Appendix

2.8.1 Dependence Measures

Pearson’s correlation coefficient has been widely used as a measure of the dependence
between two rv X1 and X2. In this respect, the concept of dependence is assumed to
be the linear relationship between the two rv. However, in practice the dependence
structure is not always linear hence is why the concept of concordance has been
introduced, see e.g., Nelsen [73], McNeil et al. [68] and Denuit et al. [25]. By
definition, a rv X1 is concordant with a rv X2 if they tend to vary together. The
two measures of association of X1 and X2, namely Spearman’s rho and Kendall’s
tau are based on this concept. Probabilistically speaking, if (Y1, Y2) and (Z1, Z2)

are independent copies of the pair of continuous rv (X1, X2), then Kendall’s tau is
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defined as

τ(X1, X2) = P{(X1 − Y1)(X2 − Y2) > 0} − P{(X1 − Y1)(X2 − Y2) < 0},

and Spearman’s rho is defined as

ρS(X1, X2) = 3{P((X1 − Y1)(X2 − Z2) > 0)− P((X1 − Y1)(X2 − Z2) < 0)},

where Y1 and Z2 are independent. If (X1, X2) ∼ SME2(β, Q˜ 1, Q˜ 2) and further
Xi, i = 1, 2 has finite mean, then we have:

1. Pearson’s correlation coefficient:
If we set ηik := 1

βi+1

∑∞
k=1 kqi,kβ

k

i and Γik :=
∑∞

k=1 qi,kβ
k

i µi for i = 1, 2, then
by (2.5) Pearson’s correlation coefficient of the bivariate SmE risks has an
explicit form as

ρ12(X1, X2) =
α12(η1,k − Γ1,k)(η2,k − Γ2,k)

σ1σ2

,

where µi is the expected value of Xi, i = 1, 2 and σi is its standard deviation.

Remarks 2.8.1. According to (2.6), the maximal value of Pearson’s correlation
coefficient of the bivariate SmE risks can be written as follows

ρmax12 (X1, X2) =
(η1,k − Γ1,k)(η2,k − Γ2,k)

max{L1(1− L2), (1− L1)L2}σ1σ2

,

and its minimal value can be expressed as

ρmin12 (X1, X2) =
−(η1,k − Γ1,k)(η2,k − Γ2,k)

max{L1L2, (1− L1)(1− L2)}σ1σ2

.

In the following example, we show that the SmE distribution is flexible as a
model for dependent risks.

Example 2.8.1. Extremal dependence
In this example, we analyse the bounds of Pearson’s correlation coefficient of a
bivariate mixed Erlang distribution with marginals which share the same scale
parameter and consist of 9 Erlang components. The mixture parameters are
summarized in Table 2.9. Figure 2.6 presents the lower and the upper bound of
Pearson’s correlation coefficient as a function of the common scale parameter
β. We can see that ρmax12 and ρmin12 tend to reach the extremal dependence case
which correspond to values of 1 and −1, respectively. The strongest negative
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correlation ρmin12 = −0.87545 is attained for β = 21.5723 while the value of
β = 153.0315 yields the maximal positive correlation ρmax12 = 0.96871. Hence,
not only is the range of the dependence flexible but also wide. Moreover, the
simulated values of ρmax12 and ρmin12 , presented in dotted red lines in Figure 2.6,
correspond well with the exact values, this demonstrates again the robustness
of our results.

Figure 2.6: ρmax12 and ρmin12 as a function the common scale parameter β.

X1 X2

k q1,k k q2,k

1 0.5270 1 0.5050
40 0.0005 8 0.0150
50 0.0020 30 0.0105
75 0.0010 50 0.0020
150 0.0015 70 0.0015
345 0.0005 95 0.0010
902 0.0050 850 0.0055
970 0.4375 995 0.1050
993 0.0250 1000 0.3545

Table 2.9: Mixture parameters of marginals.
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2. Spearman’s Rho: Spearman’s rho of the bivariate SmE risks can be ex-
pressed explicitly as follows

ρS(X1, X2) = 3(1 + γ) + 6α12[2ζ1ζ2 − L1ζ2 − L2ζ1]− 3,

where ζi =
∑∞

k=1 qi,kβi
k∑∞

m=1

∑k−1
j=0 qi,m

(
j +m− 1

m− 1

)
βmi (βi+1)j

(2β+1)m+j , for i = 1, 2.

3. Kendall’s Tau: Kendall’s tau of the bivariate SmE is given by the following
closed formula

τ(X1, X2) = 4 [(1 + γ)12(ρS(X1, X2) + 3) + α12τ1 − α12L2τ2 − α12L1τ3]− 1,

where ρS(X1, X2) is Spearman’s rho,

τ1 = (1 + γ)Z1Z2 + α12T1T2 − α12L1Z1T2 − α12L2Z2T1,

τ2 =
1

2
(1 + γ)Z1 + α12T1ζ2 − α12L1Z1ζ2 −

1

2
α12L2T1,

τ3 =
1

2
(1 + γ)Z2 + α12ζ1T2 − α12L2ζ1Z2 −

1

2
α12L1T2,

with

Zi =
∑∞

k=1 qi,k
∑∞

m=1

∑k−1
j=0 qi,m

(
j +m− 1

m− 1

)(
βi

2βi+1

)m+j

, for i = 1, 2,

Ti =
∑∞

k=1 qi,kβi
k∑∞

m=1

∑k−1
j=0 qi,m

(
j +m− 1

m− 1

)
βmi (βi+2)j

(2βi+2)m+j , for i = 1, 2.

2.8.2 Simulation of SmE Risks

In simulation, in order to remove the dependence between two risks X1 and X2,
the Rosenblatt transform introduced by Rosenblatt [82] is widely used. In fact,
to simulate X2 this approach consists in using the conditional quantile function of
X2 given the value of X1. Hence, the conditional df of X2 is found accordingly.
The following lemma yields how this can be done for the case of the bivariate SmE
distribution.

Lemma 2.8.2. Let (X1, X2) ∼ SME2(β, Q˜ 1, Q˜ 2), for a given value of X1 the condi-
tional df of X2 is described as follows

F2|1(x2|x1) = λF2(x2, β2, Q˜ 2) + α12∆1

∞∑
k=1

q2,kβ
k

2Wk(x2, β2 + 1), (2.26)
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where

λ = 1 + α12L2(L1 − e−x1), ∆1 = (e−x1 − L1).

Proof. For a given value of X1, one can define the conditional distribution function
of X2 as

F2|1(x2|x1) =

∫ x2

0
h(x1, s)ds

f1(x1)
.

According to (2.1)

h(x1, s) = (1 + α12L1L2)f1(x1)f2(s) + α12e
−x1f1(x1)e−sf2(s)

−α12L2e
−x1f1(x1)f2(s)− α12L1e

−sf2(s)f1(x1)

= (1 + α12L1L2 − α12L2e
−x1)f1(x1)f2(s)

+α12(e−x1 − L1)f1(x1)e−sf2(s).

Setting
λ := 1 + α12L2(L1 − e−x1) and ∆1 := e−x1 − L1,

the expression of h(x1, s) becomes

h(x1, s) = λf1(x1)f2(s) + α12∆1f1(x1)e−sf2(s).

Hence

F2|1(x2|x1) =

∫ x2

0
λf1(x1)f2(s) + α12∆1f1(x1)e−sf2(s)ds

f1(x1)

= λ

∫ x2

0

f2(s)ds+ α12∆1

∫ x2

0

e−sf2(s)ds

= λF2(x2, β2, Q˜ 2) + α12∆1

∫ x2

0

e−s
∞∑
k=1

q2k
βk2

(k − 1)!
sk−1e−β2sds

= λF2(x2, β2, Q˜ 2) + α12∆1

∞∑
k=1

q2k

(
β2

β2 + 1

)k
Wk(x2, β2 + 1).

The inverse of F2|1 can be computed numerically and as a result the Rosenblatt
transform can be implemented efficiently. The simulation algorithm can be sum-
marised as follows:

• Simulate two independent rv u1 and u2 uniformly distributed.
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• Simulate X1 using the inverse transform: x1 = F−1
1 (u1).

• Simulate X2 using the Rosenblatt transform: x2 = F−1
2|1 (u2|x1).

• Simulate the aggregate rv S2 = X1 +X2.

Remarks 2.8.3. The result in Lemma 2.8.2 can be generalized for the multivari-
ate case. Specifically, if (X1, . . . , Xn) has a multivariate SmE distribution with
Xi ∼ME(βi, Q˜ i), i = 1, . . . , n, for given values of X1, . . . , Xn−1 one can express the
conditional distribution of Xn as follows (set C := {1, . . . , n})

Fn|1,...,n−1(xn|x1, . . . , xn−1) = λFn(xn, βn, Q˜n) + ∆
∞∑
k=1

qn,kβ
k

nWk(xn, βn + 1),

where

λ =
1

D(x1, . . . , xn−1)

{
(1 + γ) +

∑
j1 6=n

(
−
∑
j2

αj1,j2Lj2 +
∑
j2

∑
j3

αj1,j2,j3Lj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{j1}

Li

)
e−xj1

+
∑
j1 6=n

∑
j2 6=n

(
αj1,j2 −

∑
j3

αj1,j2,j3Lj3 +
∑
j3

∑
j4

αj1,j2,j3,j4Lj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,j2}

Li

)
e−xj1−xj2

+ . . .+ (α1,2,...,n−1 − α1,2,...,nLn)e−x1−...−xn−1

}
,

∆ =
1

D(x1, . . . , xn−1)

{(
−
∑
j2 6=n

αj2,nLj2 +
∑
j2 6=n

∑
j3 6=n

αj2,j3,nLj2Lj3

+ . . .+ (−1)n+1α1,2,...,n

∏
i∈C\{n}

Li

)

+
∑
j2 6=n

(
αj2,n −

∑
j3 6=n

αj2,j3,nLj3 +
∑
j3 6=n

∑
j4 6=n

αj2,j3,j4,nLj3Lj4

+ . . .+ (−1)nα1,2,...,n

∏
i∈C\{j1,n}

Li

)
e−xj2

+ . . .+
∑
j1 6=n

∑
j2 6=n

. . .
∑

jn−1 6=n

(
αj1,...,jn−1 − α1,...,nLl,l∈C\{j1...,jn−1}

)
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e−xj1−...−xjn−2 + α1,2,...,ne
−x1 − . . .− xn−1

}
,

with

D(x1, . . . , xn−1) =

(
1 +

∑
j1 6=n

∑
j2 6=n

αj1,j2(e−xj1 − Lj1)(e−xj2 − Lj2)

+
∑
j1 6=n

∑
j2 6=n

∑
j3 6=n

αj1,j2,j3(e−xj1 − Lj1)(e−xj2 − Lj2)(e−xj3 − Lj3)

+ . . .+ α1,2,...,n−1

n−1∏
i=1

(e−xi − Li)

)
,

γ =
∑
j1

∑
j2

αj1,j2Lj1Lj2 −
∑
j1

∑
j2

∑
j3

αj1,j2,j3Lj1Lj2Lj3 + . . .+ (−1)nα1,2,...,n

n∏
i=1

Li,

j1 ∈ C, j2 ∈ C\{j1}, j3 ∈ C\{j1, j2}, . . . , jn ∈ C\{j1, . . . , jn−1}.
Similarily to the simulation of two dependent SmE risks, one can simulate n depen-
dent SmE risks iteratively.
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Chapter 3

Mixed Erlang Reinsurance Risk:
Aggregation, Capital Allocation and
Default Risk

This chapter is based on G. Ratovomirija: Mixed Erlang reinsurance risk: aggrega-
tion, capital allocation and default risk, published in the European Actuarial Journal,
6(1):149–175, 2016.

3.1 Introduction

Reinsurance companies operate in many regions in the world and insure various
insurance business lines. In this respect, it is well recognised that the ceding in-
surer(s) losses are dependent. This risk dependency can be seen between individual
risks within each insurance portfolio and also across business lines. Furthermore, the
phenomena of dependence also occurs from global risk factors which generate claims
simultaneously to each business line, for instance an hurricane damages buildings
or cars which affect property lines, at the same time, causes people injuries which
influence accident lines. In the risk management framework, for instance the Swiss
Solvency Test (SST), similarly to insurance companies, reinsurance companies are
obliged to hold a certain level of risk capital in order to be protected from unex-
pected large losses. The determination of this capital requires the aggregation of
the losses generated from each reinsurance portfolio whose distribution depends on
the loss distribution of the ceding insurer(s). Meyers et al. [69] is one of the first
contribution which has addressed the aggregation of dependent reinsurance risks
to evaluate risk capital. In this regard, in order to derive explicit formula for the
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measure of risk capital including VaR, TVaR for the aggregated risk, an important
task is the appropriate choice of the marginals and the dependence structure be-
tween risks. For our framework, mixed Erlang distribution has been chosen as a
claim size model for the individual risk of the ceding insurer(s). One of the reason
of the tractability of this distribution is the fact that the convolution of such risks
belongs again to the class of Erlang mixtures, see Klugman et al. [58]. Thus stop
loss and excess of loss premiums have a closed expression which are very usefull in
reinsurance risk modelling, see Lee and Lin [63, 64]. In this contribution, we address
the dependence structure between risks by the Sarmanov distribution. The main
features of this distribution are its flexibility to model the dependence among risks
and its tractable form which allows exact results in calculus.
The aim of this chapter is to analyse the effects of the ceding insurer(s) risk depen-
dencies on the reinsurer risk profile which has only stop loss reinsurance portfolios.
Diversification effects from aggregating reinsurance risks are examined by deriving
a closed expression for the risk capital needed for the whole portfolio and also the
allocated risk capital for each business unit. The effects of the reinsurer default are
also analysed. The chapter is organised as follows: in Section 3.2 we describe the
background of the Sarmanov distribution as a model for the dependence structure
between insurance risks. The risk model of the ceding insurer is explored in Section
3.3, with numerical examples, by deriving the joint tail probability of the aggregated
risk of n portfolios. In Section 3.4, the aggregation of stop loss mixed Erlang risks
of a reinsurer is addressed by determining a closed form for the df of the aggregated
risk. Capital allocation and diversification effects are also presented with numerical
studies. All the proofs are relegated to Section 3.5. Some properties of the mixed
Erlang distribution and closed expressions for the Pearson’s correlation coefficient
are presented in the Appendix.

3.2 Preliminaries

3.2.1 Multivariate Sarmanov Distribution

Due to its flexibility to model the dependence structure between rv, the Sarmanov
distribution, introduced by Sarmanov [84], have been widely used in many fields.
Concerning insurance applications, Abdallah et al. [1] have used the Sarmanov
distribution to deal with the calendar, the accident and the development year effects
in loss reserving framework . Vernic [91] has derived some formulas for the density
of the sum of several rv associated by the Sarmanov distribution with exponential
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marginals. Based on Vernic [91], Vernic [92] has explored analytical formulas in the
context of capital allocation problem. Furthermore, to evaluate the total loss of a
motor insurance line, Zuhair et al. [8] have addressed the dependence between the
cost of property damage and the cost of medical expense using bivariate Sarmanov
distribution with truncated extreme value marginals. In addition, Hashorva and
Ratovomirija [49] have addressed risk aggregation and capital allocation with mixed
Erlang marginals and the Sarmanov distribution.

For the purpose of presentation, it is common to assume αj1,...,jh = 0 for all h > 3

in the joint density of (X1, . . . , Xn) described in (2.7), see e.g., Mari and Kotz [67].
In that particular case the corresponding joint density can be expressed as follows

h(x) =
n∏
i=1

fi(xi)

(
1 +

n−1∑
j<

n∑
h

αj,hφj(xj)φh(xh)

)
, (3.1)

such that

E {φi(Xi)} = 0,

1 +
n−1∑
j<

n∑
h

αj,hφj(xj)φh(xh) > 0, ∀xi ∈ R (3.2)

are fulfilled. Some general methods for finding the kernel function φi were specified
by Lee [62] for different types of marginals. In particular, it is common to choose
φi(xi) = gi(xi)−E {gi(Xi)} for marginal distributions with support in R+ (see e.g.,
Yang and Hashorva [97]). The following three cases are the tractable specifications
of gi(xi):
(i) gi(xi) = 2F i(xi) which corresponds to the Farlie-Gumbel-Morgenstern (FGM)
distribution, where F i is the survival function of Xi,
(ii) gi(xi) = xti such that the t-th moment E {X t

i} of Xi is finite,
(iii) gi(xi) = e−txi where E

{
e−tXi

}
<∞ is the Laplace transform of Xi at t.

Referring to the bivariate risk, provided that E {gi(Xi)} is finite it follows from (2.3)
that the range of α1,2 is (set γi := E {gi(Xi)})

−1

max{γ1γ2, (1− γ1)(1− γ2)}
6 α12 6

1

max{γ1(1− γ2), (1− γ1)γ2}
. (3.3)

Next we present results for the correlated insurance portfolios where the dependence
structure between individual risk is governed by the Sarmanov distribution.
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3.3 Ceding Insurance Risk Model

3.3.1 Joint density of n Aggregate Insurance Risks

One of the main features of the Sarmanov distribution is that its pdf can be used to
derive some results in analytical way. For instance Vernic [91] have derived general
formula for the density of the sum of several rv joined by the Sarmanov distribution.
In this section, we consider n insurance portfolios, each of which consists of k risks
and we denote Si,k =

∑ik
j=(i−1)k+1 Xj, i = 1, . . . , n the aggregated risk of each port-

folio where Xi, i = 1, . . . , nk is a positive continuous rv with finite mean. Below we
derive the joint density of (S1,k, . . . , Sn,k). Furthermore, we assume that the joint
distribution of the multivariate risks (X1, . . . , Xnk) has the Sarmanov distribution
where the joint density is defined in (2.7) with any kernel function satisfying (2.8).

Theorem 3.3.1. The joint density of (S1,k, . . . , Sn,k) is given by

ζ(u1, . . . , un) =
n∏
i=1

fSi,k(ui) +
nk∑
h=2

∑
16j1<j2<...<jh6nk

αj1,...,jh

n∏
i=1

f̃Si,k,Jh(ui),

where
fSi,k(ui) = (f(i−1)k+1 ∗ . . . ∗ fik)(ui),

f̃Si,k,Jh(ui) = (f̃(i−1)k+1,Jh ∗ . . . ∗ f̃ik,Jh)(ui),

with
Jh = {j1, j2, . . . , jh},

for m = 1, . . . , nk

f̃m,Jh(xm) =

{
fm(xm) if m /∈ Jh,
φm(xm)fm(xm) if m ∈ Jh.

3.3.2 Joint density of aggregate mixed Erlang risks

Hereafter, we derive a special case of Theorem 3.3.1 where we assume

Xi ∼ME(βi, Q˜ i),
with Q˜ i = (qi,1, qi,2, . . .), i = 1, . . . , nk. Furthermore, the dependence structure
between individual risks within and across the portfolio is assumed to be governed
by the Sarmanov distribution where the joint density is specified in (3.1) with kernel
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function
φi(xi) = gi(xi)− E(gi(Xi)),

which shall be abbreviated as

(X1, . . . , Xnk) ∼ SMEnk(β, Q˜ 1, . . . , Q˜nk),
where β = (β1, . . . , βnk). In the rest of the chapter we consider for gi one of the
three cases described in (i), (ii) and (iii).
We define two vectors of mixing weights Θ˜(Q˜ i) and Ψ˜(Q˜ i) where their compo-
nents depend on the kernel function φi. In particular, the components of Θ˜(Q˜ i) =

(θi,1, θi,2, . . .) are given by:

• for gi(xi) = 2F (xi),

θi,s =
1

2s−1

s∑
j=1

(
s− 1

j − 1

)
qi,j

∞∑
l=s−j+1

qi,l, s = 1, 2, . . . , (3.4)

• for gi(xi) = e−txi ,

θi,s =
qi,sβ

s∑∞
j=1 qi,jβ

j , (3.5)

with β = β
β+t

, s = 1, 2, . . . ,

• for gi(xi) = xti,

θi,s =

 0 for s 6 t,
qi,s−t

Γ(s)
Γ(s−t)∑∞

j=1 qi,j
Γ(j+t)

Γ(j)

for s > t,
(3.6)

where Γ(.) is the Gamma function,

whilst the components of Ψ˜(Q˜ i) = (ψi,1, ψi,2, . . .) are given by

ψi,s =
s∑
j=1

qi,j

(
s− 1

j − 1

)(
βi

Z(βnk)

)j (
1− βi

Z(βnk)

)s−j
, (3.7)

where

Z(βnk) =


2βnk for gi(xi) = 2F (xi),

βnk for gi(xi) = xti,

βnk + t for gi(xi) = e−txi .
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Moreover, for given mixing weights V˜ i = (vi,1, vi,2, . . .), i = 1, . . . , k we define the
elements of the vector of mixing probabilities Π(V˜ 1, . . . , V˜ k) as follows

πl{V˜ 1, . . . , V˜ k} =

{
0 for l = 1, . . . , k − 1,∑l−1

j=k−1 πj{V˜ 1, . . . , V˜ k−1}vk,l−j for l = k, k + 1, . . . .
(3.8)

We present next the main result of this section.

Proposition 3.3.2. If (X1, . . . , Xnk) ∼ SMEnk(β, Q˜ 1, . . . , Q˜nk) with γi < ∞ and
βnk ≥ βi, i = 1, . . . , nk, then the joint tail probability of (S1,k, S2,k, . . . , Sn,k) is given
by

P(S1,k > u1, S2,k > u2, . . . , Sn,k > un) =
4∑
l=1

ξlF S
(l)
1,k

(u1)F
S

(l)
2,k

(u2)× . . .× F
S

(l)
n,k

(un),

where

ξ1 = 1 +
nk−1∑
j<

nk∑
h

αj,hγjγh, ξ2 = ξ3 = −ξ4 = −
nk−1∑
j<

nk∑
h

αj,hγjγh,

S
(l)
1,k ∼ME(Z(βnk),Π{Ψ˜(Q˜ (l)

1,j,h), . . . ,Ψ˜(Q˜ (l)
k,j,h)}),

S
(l)
2,k ∼ME(Z(βnk),Π{Ψ˜(Q˜ (l)

k+1,j,h), . . . ,Ψ˜(Q˜ (l)
2k,j,h)}),

S
(l)
n,k ∼ME(Z(βnk),Π{Ψ˜(Q˜ (l)

(n−1)k+1,j,h), . . . ,Ψ˜(Q˜ (l)
nk,j,h)}), l = 1, 2, 3, 4,

and for i = 1, . . . , 2k

Q˜ (1)
i,j,h = Q˜ i,

Q˜ (2)
i,j,h =

{
Q˜ i if i 6= j,

Θ˜(Q˜ i) if i = j,

Q˜ (3)
i,j,h =

{
Q˜ i if i 6= h,

Θ˜(Q˜ i) if i = h,

Q˜ (4)
i,j,h =

{
Q˜ i if i /∈ {j, h},
Θ˜(Q˜ i) if i ∈ {j, h},

where the components of Θ˜() are defined in (3.4), (3.5) and (3.6), respectively for
gi(xi) = 2F (xi), gi(xi) = e−txi and gi(xi) = xti and the elements of Ψ˜() and Π˜() are
respectively described in (3.7) and (3.8).

Remarks 3.3.3. A special case of the aggregate mixed Erlang risk S(l)
i,k, i = 1, . . . , n, l =
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1, 2, 3, 4 can be found in Cossette et al. [20] and Hashorva and Ratovomirija [49].

Example 3.3.4. Joint survival probability for n = k = 2

To illustrate the result presented in Proposition 3.3.2, we assume that the ceding
insurer has two portfolios (n = 2) each of which is made up of two risks (k =

2). Provided that β4 > βi, i = 1, 2, 3, the probability that S1,2 and S2,2 exceed
simultaneously some threshold u1 and u2 is given by (set p(u1, u2) := P(S1,2 >

u1, S2,2 > u2))

p(u1, u2) =
4∑
l=1

ξlF S
(l)
1,2

(u1)F
S

(l)
2,2

(u2),

where

ξ1 = 1 +
3∑
j<

4∑
h

αj,hγjγh, ξ2 = ξ3 = −ξ4 = −
3∑
j<

4∑
h

αj,hγjγh,

S
(l)
1,2 ∼ME(Z(β4),Π{Ψ˜(Q˜ (l)

1,j,h),Ψ˜(Q˜ (l)
2,j,h)}),

S
(l)
2,2 ∼ME(Z(β4),Π{Ψ˜(Q˜ (l)

3,j,h),Ψ˜(Q˜ (l)
4,j,h)}), l = 1, 2, 3, 4.

Example 3.3.5. Numerical illustrations
Assume that the ceding insurer has two portfolios say Portfolio A and Portfolio B.
Concerning the dependence structure between risks, three cases of kernel function
are considered, namely:

• gi(xi) = 2F i(xi) which defines the FGM distribution as explored in Cossette
et al. [20],

• gi(xi) = e−xi introduced by Hashorva and Ratovomirija [49] for mixed Erlang
marginals; in the rest of the chapter we refer to the latter as the Laplace case,

• gi(xi) = xi explored in Lee [62] and Vernic [91], hereafter this will be referred
to as the Moment case.

Table 2.1 presents the parameters of each individual risk Xi, i = 1, . . . , 4 and their
central moments.
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Xi βi Q˜ i Mean Variance Skewness Kurtosis

Portfolio A
X1 0.12 (0.4,0.6) 13.33 127.78 1.55 6.50
X2 0.14 (0.3,0.7) 12.14 97.45 1.49 4.33

Portfolio B
X3 0.15 (0.5,0.5) 10.00 77.78 1.62 6.80
X4 0.16 (0.8,0.2) 7.50 53.13 1.88 8.16

Table 3.1: Parameters and central moments of Xi, i = 1, 2, 3, 4.

Referring to (2.11), one can express the pdf of X1, X2, X3 and X4 respectively as
follows

f1(x1) = 0.4w1(x1, 0.12) + 0.6w2(x1, 0.12),

f2(x2) = 0.3w1(x2, 0.14) + 0.7w2(x2, 0.14),

f3(x3) = 0.5w1(x3, 0.15) + 0.5w2(x3, 0.15),

f4(x4) = 0.8w1(x4, 0.16) + 0.2w2(x4, 0.16).

As demonstrated in Appendix 3.6.2 and the numerical illustrations in Table 3.2,
not only does the dependence level between two risks Xi and Xj, i 6= j depends on
the dependence parameter αi,j but also on the marginals.

αi,j ρ1,2(X1, X2) ρ3,4(X3, X4)

Moment
9E-5 0.0100 0.0057
-5E-5 -0.0056 -0.0032

Laplace
14 0.0403 0.1094
-3 -0.0086 -0.0234

FGM
0.6 0.1653 0.1315
-0.2 -0.0551 -0.0526

Table 3.2: Pearson’s correlation with different αi,j, i 6= j and different marginals.

Hereafter, we consider the dependence parameters between X1, X2, X3 and X4 dis-
played in Table 3.3. We note that these dependence parameters have been chosen
so that (3.2) holds. Note in passing that since the joint density in (3.1) has a
tractable form, the dependence parameters αi,j, i 6= j can be estimated easily with
the maximum likelihood approach for a given dataset, see e.g., Abdallah et al. [1].

α1,2 α1,3 α1,4 α2,3 α2,4 α3,4

FGM 0.6 0.1 0.1 0.1 0.04 0.5
Laplace 16 5 3 5 3 8
Moment 9E-5 9E-5 3E-5 3E-5 1E-3 1.7E-3
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Table 3.3: Dependence parameters of (X1, X2, X3, X4).

Considering the dependence parameters presented in Table 3.3, the Pearson’s corre-
lation between each individual risk of the ceding insurer are gathered in Table 3.4.
In this respect, all the individual risks are positively correlated, this means that the
aggregate portfolio is riskier when taking the dependency into account than with
the independence assumption.

Moment Laplace FGM
ρ1,2(X1, X2) 0.0100 0.0461 0.1653
ρ1,3(X1, X3) 0.0089 0.0205 0.0272
ρ1,4(X1, X4) 0.0024 0.0168 0.0264
ρ2,3(X2, X3) 0.0026 0.0200 0.0274
ρ2,4(X2, X4) 0.0071 0.0165 0.0107
ρ3,4(X3, X4) 0.0109 0.0625 0.1315

Table 3.4: Pearson’s correlation of Xi and Xj, i 6= j.

According to (3.1), considering the FGM case the joint density of (X1, X2, X3, X4)

is given by

h(x1, x2, x3, x4) =
4∏
i=1

fi(xi)(1 + 0.6δ(x1, x2) + 0.1δ(x1, x3) + 0.1δ(x1, x4)

+0.1δ(x2, x3) + 0.04δ(x2, x4) + 0.5δ(x3, x4)),

where δ(xj, xh) = (2F j(xj) − 1)(2F h(xh) − 1), j 6= h. Similarly one can express
the joint density of (X1, X2, X3, X4) for the Laplace case and for the Moment case.
It can be seen from Table 3.5 that the interdependence between the two insurance
portfolios yields high probability for the aggregated risk of each portfolio to exceed
simultaneously some threshold u1 and u2.

Thresholds Independence Moment Laplace FGM
(u1, u2) p(u1, u2) p(u1, u2) p(u1, u2) p(u1, u2)

(20,15) 0.1494 0.1495 0.1601 0.1573
(25,20) 0.0697 0.0698 0.0759 0.0806
(30,25) 0.0304 0.0305 0.0335 0.0386
(35,30) 0.0125 0.0126 0.0140 0.0173

Table 3.5: Joint tail probability of S1,2 = X1 +X2 and S2,2 = X3 +X4.
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3.4 Reinsurance Risk Model

In this section, we denote Rn,k =
∑n

i=1 Ti,k the aggregate reinsurance stop loss risk,
where for i = 1, . . . , n, Ti,k = (Si,k−di)+ represent the stop loss reinsurance portfolios
of the reinsurer with Si,k =

∑ik
j=(i−1)k+1 Xi the ceding insurer aggregated risk and

di some positive deductible.
In the enterprise risk management framework, reinsurers are obliged to hold a certain
amount of capital K > 0, known as the risk capital, in order to be covered from
unexpected large losses. The risk capital is determined so that the reinsurer will
be able to honor its liabilities even in the worst case with high probability. For
instance, in the SST, K is quantified as the TVaR at a tolerance level of 99% of the
aggregated risk Rn,k. This means that for 99% probability the reinsurer has enough
buffer to pay its obligations. However, in case Rn,k > K the reinsurer is in default
and thus the ceding insurers are not protected from losses exceeding K i.e. Rn,k−K.
By analogy to the case between the insurer and the policyholders, see Myers and
Read [72], the quantity (Rn,k −K)+ is called the default option of the reinsurer or
in other words the ceding insurers deficit with U(K) := E {(Rn,k −K)+} the value
of the default option.
Without loss of generality, we present next the results for R2,k. Additionally, for a
given risk X ∼ ME(β, V˜ ) with df F and for a deductible d > 0 we denote in the
rest of the chapter

FX(d+ y) =
∞∑
k=0

∆k(d, β, V˜ )Wk+1(y, β), y > 0,

UX(y, d, β) =

∫ ∞
y

ufX(d+ u)du =
1

β

∞∑
k=0

(k + 1)∆k(d, β, V˜ )W k+2(y, β), y > 0,

with

∆k(d, β, V˜ ) =
1

β

∞∑
j=0

qj+k+1wj+1(d, β).

Furthermore, for Xi ∼ME(β,Q˜ i), with di > 0, i = 1, 2 we define

FX1+X2(d1, d2, y) =
∞∑
k=0

∞∑
j=0

∆k(d1, β,Q˜ 1)∆j(d2, β,Q˜ 2)Wk+j+2(y, β),
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UX1(y, d1, d2, β) =
1

β

∞∑
k=0

∞∑
j=0

(k + 1)∆k(d1, β,Q˜ 1)∆j(d2, β,Q˜ 2)W k+j+3(y, β),

UX2(y, d1, d2, β) =
1

β

∞∑
k=0

∞∑
j=0

(j + 1)∆k(d1, β,Q˜ 1)∆j(d2, β,Q˜ 2)W k+j+3(y, β),

UX1+X2(y, d1, d2, β) =
1

β

∞∑
k=0

∞∑
j=0

(k + j + 2)∆k(d1, β,Q˜ 1)∆j(d2, β,Q˜ 2)W k+j+3(y, β).

3.4.1 Aggregation of Reinsurance Stop Loss Risks

In the next results we show that the df of the aggregated stop loss risk R2,k has a
closed form which allows us to derive analytical formula for its mean excess function
and for U(K).

Proposition 3.4.1. If (X1, . . . , X2k) ∼ SME2k(β, Q˜ 1, . . . , Q˜ 2k) with γi < ∞, β2k ≥
βi, i = 1, . . . , 2k and ds > 0, s = 1, 2, then the df of the aggregated stop loss risk
R2,k is given by

FR2,k
(y) =

{
FS1,k,S2,k

(d1, d2) for y = 0,

FS1,k,S2,k
(d1 + y, d2 + y) for y > 0,

(3.9)

where

FS1,k,S2,k
(d1, d2) =

4∑
l=1

ξlFS(l)
1,k

(d1)F
S

(l)
2,k

(d2),

FS1,k,S2,k
(d1 + y, d2 + y) =

4∑
l=1

ξl

(
F
S

(l)
1,k

(d1)F
S

(l)
2,k

(d2 + y) + F
S

(l)
1,k

(d1 + y)F
S

(l)
2,k

(d2)

+F
S

(l)
1,k+S

(l)
2,k

(d1, d2, y)

)
,

with ξl, S
(l)
1,k, S

(l)
2,k, l = 1, 2, 3, 4 are defined in Proposition 3.3.2.

It follows that the default probability of the reinsurer has a closed form. Specifically,
we have

P(R2,k > K) = 1− FS1,k,S2,k
(d1 +K, d2 +K),

where K > 0 is the risk capital.

Remarks 3.4.2. Given the tractable form of the df in (3.9), many risk related quan-
tities for R2,k have an explicit form, for instance, for c > 0 the mean excess function
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of R2,k is given by (set e(c) := E {R2,k − c|R2,k > c})

e(c) =
1

FR2,k
(c)

4∑
l=1

ξl

(
F
S

(l)
1,k

(d1)U
S

(l)
2,k

(c, d2, Z(β2k)) + F
S

(l)
2,k

(d2)U
S

(l)
1,k

(c, d1, Z(β2k))

+U
S

(l)
1,k+S

(l)
2,k

(c, d1, d2, Z(β2k))

)
− c. (3.10)

In light of (3.10) and Proposition 3.4.1 one can express U(K) analytically as follows

U(K) = E {(R2,k −K)+} = FR2,k
(K)e(K)

=
4∑
l=1

ξl

(
F
S

(l)
1,k

(d1)U
S

(l)
2,k

(K, d2, Z(β2k)) + F
S

(l)
2,k

(d2)U
S

(l)
1,k

(K, d1, Z(β2k))

+U
S

(l)
1,k+S

(l)
2,k

(K, d1, d2, Z(β2k))

)
−KFR2,k

(K),

where FR2,k
= 1− FR2,k

and FR2,k
is defined in (3.9) with K > 0.

Example 3.4.3. In this illustration, we consider the same parameters of each individ-
ual risk of the ceding insurer portfolios as in Table 3.1. Furthermore, we assume that
the ceding insurer re-insures its two portfolios to a reinsurer with stop loss programs
where the deductibles are d1 = 40 and d2 = 30 for Portfolio A and for Portfolio
B, respectively. In practice, it is recognised that risk measures on the aggregated
risk are sensitive to the strength of the dependence between individual risks. Ac-
tually, by taking into account the dependence within and across the ceding insurer
portfolios which is determined by the parameters in Table 3.3, the aggregated risk
R2,2 of the reinsurer is riskier than in the independence case. Therefore, based on
VaR and TVaR as risk measures, the reinsurer needs much more risk capital in the
dependence case. Furthermore, for a different confidence level p, it can be seen that
the deviation from the independence assumption is greater for VaR than for TVaR.

51



Reinsurance Risk Model Mixed Erlang Reinsurance Risk

p (% ) V aRR2,2(p) TV aRR2,2(p)

Independence

95.00 19.47 30.10
97.50 26.97 37.40
99.00 36.64 46.85
99.90 60.08 69.92

Moment

95.00 19.49 30.15
97.50 27.01 37.46
99.00 36.69 46.93
99.90 60.19 70.06

Laplace

95.00 19.91 30.60
97.50 27.45 37.93
99.00 37.17 47.43
99.90 60.71 70.58

FGM

95.00 22.14 33.25
97.50 30.03 40.85
99.00 40.10 50.63
99.90 64.23 74.27

Table 3.6: Deviation of VaR and TVaR from the independence case.

It is well known that risk diversification across portfolios arises from aggregating
their individual risks, see e.g., Tasche [89], Tang and Valdes [87]. In this respect, by
considering the TVaR as a measure for the risk capital, the diversification benefits
Dp are quantified as the relative reduction of the risk capital required for the whole
portfolio of the reinsurer from aggregating the stop loss risk T1,k and T2,k as follows

Dp = 1−
TV aRR2,k

(p)

TV aRT1,k
(p) + TV aRT2,k

(p)
.

As presented in Table 3.7 and Figure 3.1, diversification benefits increase with the
confidence level. Conversely, the deviation from the independence case yields a
reduction of the diversification benefits which is obvious since the full diversification
effects are attained when risks are independent.
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p (% ) TV aRR2,2(p) TV aRT1,2(p) TV aRT2,2(p) Dp (%)

Independence

95.00 30.10 24.87 18.26 30.19
97.50 37.40 32.34 24.26 33.92
99.00 46.85 41.89 31.97 36.56
99.90 69.92 64.84 50.55 39.40

Moment

95.00 30.15 24.89 18.29 30.18
97.50 37.46 32.36 24.31 33.91
99.00 46.93 41.93 32.04 36.54
99.90 70.06 64.90 50.68 39.38

Laplace

95.00 30.60 25.19 18.67 30.13
97.50 37.93 32.66 24.69 33.86
99.00 47.43 42.22 32.40 36.43
99.90 70.58 65.15 50.99 39.22

FGM

95.00 33.25 27.71 18.64 28.27
97.50 40.85 35.40 24.69 32.01
99.00 50.63 45.14 32.44 34.73
99.90 74.27 68.32 51.08 37.80

Table 3.7: Diversification benefits based on TVaR of the aggregate risk R2,2 and the
individual risk Ti,2, i = 1, 2.

Figure 3.1: Diversification benefits as a function of the confidence level.
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3.4.2 TVaR Capital Allocation

In this section, we derive an analytical expression for the amount of capital allo-
cated to each individual risk of the reinsurer under the TVaR principle. In the risk
management framework, the so-called capital allocation consists in attributing the
risk capital to each individual line. This allows the reinsurance company to identify
and to manage conveniently their risks. In practice, it is well known that the TVaR
principle takes into account the dependence structure between risks and satisfies
the full allocation principle. More precisely, if Rn,k =

∑n
i=1 Ti,k is the aggregate risk

where Ti,k is a rv with finite mean that represents the individual risk of the reinsurer,
the amount of capital Tp(Ti,k, Rn,k) required for each risk Ti,k, for i = 1, . . . , n, is
defined as

Tp(Ti,k, Rn,k) =
E(Ti,k1{Rn,k>V aRRn,k,k(p)})

1− p
, (3.11)

where p ∈ (0, 1) is the tolerance level. The full allocation principle implies

TV aRRn,k(p) =
n∑
i=1

Tp(Ti,k, Rn,k),

which means that, based on TVaR as a risk measure for the risk capital, the capital
required for the entire portfolio is equal to the sum of the required capital of each
risk within the portfolio. The following proposition develops an explicit form for
Tp(Ti,k, R2,k), i = 1, 2, in the case of stop loss mixed Erlang type risks. In addition,
we define below ξl, S

(l)
1,k, S

(l)
2,k, l = 1, 2, 3, 4 as in Proposition 3.3.2 and we denote

xp := V aRR2,k
(p).

Proposition 3.4.4. Let (X1, . . . , X2k) ∼ SME2k(β, Q˜ 1, . . . , Q˜ 2k) with γi <∞, β2k ≥
βi, i = 1, . . . , 2k and di > 0, i = 1, 2. If further Ti,k, i = 1, 2 has finite mean then

Tp(T1,k, R2,k) =
1

1− p

4∑
l=1

ξl

(
F
S

(l)
2,k

(d2)U
S

(l)
1,k

(xp, d1, Z(β2k))

+U
S

(l)
1,k

(xp, d1, d2, Z(β2k))

)
.

Example 3.4.5. In this example, we consider the same individual risks and depen-
dence parameters as in Example 3.3.5 and the reinsurance programs as in Example
3.4.3. Based on TV aR as a risk measure for quantifying the risk capital required
for the whole portfolio, the required capital of each stop loss risk Ti,2, i = 1, 2 are
evaluated for different confidence level p. Since T1,2 is riskier than T2,2, as shown in
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Table 3.8 and the relative contribution of each individual risk in Figure 3.2, more
capital is required for T1,2 compared to the amount needed for T2,2.

p (% ) TV aRR2,2(p) Tp(T1,2, R2,2) Tp(T2,2, R2,2)

Independence

95.00 30.10 19.69 10.41
97.50 37.40 25.47 11.93
99.00 46.85 33.35 13.50
99.90 69.92 53.59 16.33

Moment

95.00 30.15 19.70 10.45
97.50 37.46 25.48 11.98
99.00 46.93 33.36 13.57
99.90 70.06 53.56 16.51

Laplace

95.00 30.60 19.91 10.69
97.50 37.93 25.68 12.25
99.00 47.43 33.54 13.89
99.90 70.58 53.63 16.95

FGM

95.00 33.25 22.15 11.10
97.50 40.85 28.25 12.60
99.00 50.63 36.41 14.22
99.90 74.27 56.63 17.64

Table 3.8: TVaR and allocated capital to each stop loss risk Ti,2, i = 1, 2, under the
TVaR capital allocation principle.

Figure 3.2: Contribution of Ti,2, i = 1, 2, to the risk capital under the TVaR capital
allocation principle at a confidence level of 99%.
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In view of the full capital allocation principle, for a given risk capital K required
for the entire portfolio of the reinsurer, if Ki, i = 1, . . . , n is the risk capital needed
for each individual risk then K =

∑n
i=1Ki. Therefore, the value of the default op-

tion U(K) is also defined as the sum of the value of the unpaid losses U(Ki, K) :=

E
{

(Ti,k −Ki)1{Rn,k>K}
}
of each ceding insurer(s) reinsured lines of business, specif-

ically (see e.g., Dhaene et al. [29])

U(K) =
n∑
i=1

U(Ki, K).

Corollary 3.4.1. Let Ki, i = 1, 2 be the capital required for each stop loss reinsur-
ance portfolio of the reinsurer such that K = K1 + K2. Given that the reinsurer is
in default, if (X1, . . . , X2k) ∼ SME2k(β, Q˜ 1, . . . , Q˜ 2k) with γi < ∞, β2k ≥ βi, i =

1, . . . , 2k, di > 0 and Ti,k, i = 1, 2 has finite mean then

U(K1, K) =
4∑
l=1

ξl

(
F
S

(l)
2,k

(d2)U
S

(l)
1,k

(K, d1, Z(β2k)) + U
S

(l)
1,k

(K, d1, d2, Z(β2k))

)
−K1FR2,k

(K).

3.5 Proofs

Proof of Theorem 3.3.1 The joint density of (S1,k, . . . , Sn,k) is determined in
term of the joint density of (X1, . . . , Xnk) as follows

ζ(u1, . . . , un) =

∫
. . .

∫
s1,k=u1,s2,k=u2,...,sn,k=un

h(x)dx1 . . . dxnk−1, (3.12)

with
x = (x1, . . . , xnk),

s1,k = x1 + . . .+ xk,

s2,k = xk+1 + . . .+ x2k,

sn,k = x(n−1)k+1 + . . .+ xnk.

Referring to (2.7),

h(x) =
nk∏
i=1

fi(xi)

(
1 +

nk∑
h=2

∑
16j1<j2<...<jh6nk

αj1,...,jh

h∏
k=1

φjk(xjk)

)
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=
nk∏
i=1

fi(xi) +
nk∑
h=2

∑
16j1<j2<...<jh6nk

αj1,...,jh

h∏
k=1

φjk(xjk)fjk(xjk)
∏
m/∈Jh

fm(xm)

=
nk∏
i=1

fm(xm) +
nk∑
h=2

∑
16j1<j2<...<jh6nk

αj1,...,jh

nk∏
m=1

f̃m,Jh(xm),

where
Jh = {j1, j2, . . . , jh},

for m = 1, . . . , nk

f̃m,,Jh(xm) =

{
fm(xm) if m /∈ Jh,
φm(xm)fm(xm) if m ∈ Jh.

Therefore, one can express (3.12) as a sum of convolutions as follows (set dxik :=

dx(i−1)k+1 . . . , dxik−1, i = 1, . . . , n)

ζ(u1, . . . , un) =
n∏
i=1

∫
Rk−1

∫ ik−1∏
m=(i−1)k+1

fm(xm)fik(ui −
ik−1∑

m=(i−1)k+1

xm)dxik

+
nk∑
h=2

∑
16j1<j2<...<jh6nk

αj1,...,jh

×
n∏
i=1

∫
Rk−1

∫ ik−1∏
m=(i−1)k+1

f̃m,Jh(xm)f̃ik,Jh(uj −
ik−1∑

m=(i−1)k+1

xm)dxik

=
n∏
i=1

fSi(ui) +
nk∑
h=2

∑
16j1<j2<...<jh6nk

αj1,...,jh

n∏
i=1

f̃Si,Jh(ui),

establishing the proof. 2

Proof of Proposition 3.3.2 The joint tail probability of (S1,k, S2,k, . . . , Sn,k) is
determined in terms of the joint density of (X1, . . . , Xnk) as follows

P(S1,k > u1, . . . , Sn,k > un) =

∫
. . .

∫
s1,k>u1,...,sn,k>un

h(x)dx1 . . . dxnk. (3.13)

Refering to (3.1), the joint density of (X1, . . . , Xnk) is given by

h(x) =
nk∏
i=1

fi(xi)

(
1 +

nk−1∑
j<

nk∑
h

αj,h(gj(xj)− γj)(gh(xh)− γh)
)

=
nk∏
i=1

fi(xi)

(
1 +

nk−1∑
j<

nk∑
h

αj,hγjγh −
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αj,hgj(xj)γh − αj,hγjgh(xh) + αj,hgj(xj)gh(xh)

)
= (1 +

nk−1∑
j<

nk∑
h

αj,hγjγh)
nk∏
i=1

fi(xi)−
nk−1∑
j<

nk∑
h

αj,hγjγh

nk∏
i=1

fi,j(xi)

−
nk−1∑
j<

nk∑
h

αj,hγjγh

nk∏
i=1

fi,h(xi) +
nk−1∑
j<

nk∑
h

αj,hγjγh

nk∏
i=1

fi,j,h(xi),

where for i = 1, . . . , nk and a=j,h,

fi,a(xi) =

{
fi(xi) if i 6= a,
g(xi)fi(xi)

γi
if i = a,

fi,h,j(xi) =

{
fi(xi) if i /∈ {j, h},
g(xi)fi(xi)

γi
if i ∈ {j, h}.

By Lemma 3.6.4, g(xi)fi(xi)
γi

, i = 1, . . . , nk is a pdf of a mixed Erlang distribution,
therefore one can write (3.13) as a sum product of convolutions of mixed Erlang
risks as follows

P(S1,k > u1, S2,k > u2, . . . , Sn,k > un)

= (1 +
nk−1∑
j<

nk∑
h

αj,hγjγh)

×
∫ ∞
u1

∫ ∞
u1−x1

. . .

∫ ∞
u1−x1−...−xk−2

k−1∏
i=1

fi(xi)F k(u1 − x1 − . . .− xk−1)dxk−1 . . . dx1

×
∫ ∞
u2

∫ ∞
u2−xk+1

. . .

∫ ∞
u2−xk+1−...−x2k−2

2k−1∏
i=k+1

fi(xi)

F 2k(u2 − xk+1 − . . .− x2k−1)dx2k−1 . . . dxk+1

× . . .×
∫ ∞
un

∫ ∞
un−x(n−1)k+1

. . .

∫ ∞
un−x(n−1)k+1−...−xnk−2

nk−1∏
i=(n−1)k+1

fi(xi)

F nk(un − x(n−1)k+1 − . . .− xnk−1)dxnk−1 . . . dx(n−1)k+1

−
nk−1∑
j<

nk∑
h

αj,hγjγh

∫ ∞
u1

∫ ∞
u1−x1

. . .

∫ ∞
u1−x1−...−xk−2

k−1∏
i=1

fi,j(xi)

F k,j(u1 − x1 − . . .− xk−1)dxk−1 . . . dx1

×
∫ ∞
u2

∫ ∞
u2−xk+1

. . .

∫ ∞
u2−xk+1−...−x2k−2

2k−1∏
i=k+1

fi,j(xi)
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F 2k,j(u2 − xk+1 − . . .− x2k−1)dx2k−1 . . . dxk+1

× . . .×
∫ ∞
un

∫ ∞
un−x(n−1)k+1

. . .

∫ ∞
un−x(n−1)k+1−...−xnk−2

nk−1∏
i=(n−1)k+1

fi(xi)

F nk(un − x(n−1)k+1 − . . .− xnk−1)dxnk−1 . . . dx(n−1)k+1

−
nk−1∑
j<

nk∑
h

αj,hγjγh

∫ ∞
u1

∫ ∞
u1−x1

. . .

∫ ∞
u1−x1−...−xk−2

k−1∏
i=1

fi,h(xi)

F k,h(u1 − x1 − . . .− xk−1)dxk−1 . . . dx1

×
∫ ∞
u2

∫ ∞
u2−xk+1

. . .

∫ ∞
u2−xk+1−...−x2k−2

2k−1∏
i=k+1

fi,h(xi)

F 2k,h(u2 − xk+1 − . . .− x2k−1)dx2k−1 . . . dxk+1

× . . .×
∫ ∞
un

∫ ∞
un−x(n−1)k+1

. . .

∫ ∞
un−x(n−1)k+1−...−xnk−2

nk−1∏
i=(n−1)k+1

fi(xi)

F nk(un − x(n−1)k+1 − . . .− xnk−1)dxnk−1 . . . dx(n−1)k+1

+
nk−1∑
j<

nk∑
h

αj,hγjγh

∫ ∞
u1

∫ ∞
u1−x1

. . .

∫ ∞
u1−x1−...−xk−2

k−1∏
i=1

fi,j,h(xi)

F k,j,h(u1 − x1 − . . .− xk−1)dxk−1 . . . dx1

×
∫ ∞
u2

∫ ∞
u2−xk+1

. . .

∫ ∞
u2−xk+1−...−x2k−2

2k−1∏
i=k+1

fi,j,h(xi)

F 2k,j,h(u2 − xk+1 − . . .− x2k−1)dx2k−1 . . . dxk+1

× . . .×
∫ ∞
un

∫ ∞
un−x(n−1)k+1

. . .

∫ ∞
un−x(n−1)k+1−...−xnk−2

nk−1∏
i=(n−1)k+1

fi(xi)

F nk(un − x(n−1)k+1 − . . .− xnk−1)dxnk−1 . . . dx(n−1)k+1.

(3.14)

Provided that βnk ≥ βi, i = 1, . . . , nk, by Lemma 2.5.2 each i−th mixed Erlang
component of (3.14) can be transformed into a new mixed Erlang distribution with
a common scale parameter Z(βnk).

In addition, according to Remark 2.5.4 the convolution of mixed Erlang distribu-
tions belongs to the class of Erlang mixtures distribution. Therefore (3.14) can be
expressed as a sum product of n mixed Erlang survival functions as follows

59



Proofs Mixed Erlang Reinsurance Risk

P(S1,k > u1, S2,k > u2, . . . , Sn,k > un)

= (1 +
nk−1∑
h<

nk∑
j

αj,hγjγh)F S
(1)
1,k

(u1)F
S

(1)
2,k

(u2). . . F
S

(1)
n,k

(un)

−
nk−1∑
h<

nk∑
j

αj,hγjγhF S
(2)
1,k

(u1)F
S

(2)
2,k

(u2). . . F
S

(2)
n,k

(un)

−
nk−1∑
h<

nk∑
j

αj,hγjγhF S
(3)
1,k

(u1)F
S

(3)
2,k

(u2). . . F
S

(3)
n,k

(un)

+
nk−1∑
h<

nk∑
j

αj,hγjγhF S
(4)
1,k

(u1)F
S

(4)
2,k

(u2). . . F
S

(4)
n,k

(un),

where

S
(l)
1,k ∼ME(Z(βnk),Π{Ψ˜(Q˜ (l)

1,j,h), . . . ,Ψ˜(Q˜ (l)
k,j,h)}),

S
(l)
2,k ∼ME(Z(βnk),Π{Ψ˜(Q˜ (l)

k+1,j,h), . . . ,Ψ˜(Q˜ (l)
2k,j,h)}),

S
(l)
n,k ∼ME(Z(βnk),Π{Ψ˜(Q˜ (l)

(n−1)k+1,j,h), . . . ,Ψ˜(Q˜ (l)
nk,j,h)}), l = 1, 2, 3, 4,

with Q˜ (l)
i,j,h, i = 1, . . . , nk, l = 1, 2, 3, 4 is defined in (3.9). Thus the proof is complete.

2

Proof of Proposition 3.4.1 Similarly to the independence case described in
Lemma 3.6.2, the df of R2,k is of mixed distribution and can be expressed in terms
of the joint df of (T1,k, T2,k) as follows

FR2,k
(y) =


P(T1,k = 0, T2,k = 0) for y = 0

P(T1,k = 0, 0 < T2,k 6 y) + P(0 < T1,k 6 y, T2,k = 0)

+P(T1,k + T2,k 6 y, 0 < T1,k 6 y, 0 < T2,k 6 y) for y > 0

=:

{
FS1,k,S2,k

(d1, d2) for y = 0,

FS1,k,S2,k
(d1 + y, d2 + y) for y > 0.

By Proposition 3.3.2 and Lemma 3.6.2, FR2,k
(y) can be written in two terms as

follows:

• the discrete term

FS1,k,S2,k
(d1, d2) = ξ1FS(1)

1,k
(d1)F

S
(1)
2,k

(d2) + ξ2FS(2)
1,k

(d1)F
S

(2)
2,k

(d2)

+ξ3FS(3)
1,k

(d1)F
S

(3)
2,k

(d2) + ξ4FS(4)
1,k

(d1)F
S

(4)
2,k

(d2),
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• the continuous term

FS1,k,S2,k
(d1 + y, d2 + y)

=

ξ1(F
S

(1)
1,k

(d1)F
S

(1)
2,k

(d2 + y) + F
S

(1)
1,k

(d1 + y)F
S

(1)
2,k

(d2) + F
S

(1)
1,k+S

(1)
2,k

(d1, d2, y))

+ξ2(F
S

(2)
1,k

(d1)F
S

(2)
2,k

(d2 + y) + F
S

(2)
1,k

(d1 + y)F
S

(2)
2,k

(d2) + F
S

(2)
1,k+S

(2)
2,k

(d1, d2, y))

+ξ3(F
S

(3)
1,k

(d1)F
S

(3)
2,k

(d2 + y) + F
S

(3)
1,k

(d1 + y)F
S

(3)
2,k

(d2) + F
S

(3)
1,k+S

(3)
2,k

(d1, d2, y))

+ξ4(F
S

(4)
1,k

(d1)F
S

(4)
2,k

(d2 + y) + F
S

(4)
1,k

(d1 + y)F
S

(4)
2,k

(d2) + F
S

(4)
1,k+S

(4)
2,k

(d1, d2, y)).

This completes the proof. 2

Proof of Proposition 3.4.4 In view of (3.11)

TV aRp(T1,k, R2,k) =
E(T1,k1{R2,k>V aRR2,k

(p)})

1− p

=
1

1− p

∫ ∞
V aRR2,k

(p)

E(T1,k1{R2,k=s})ds.

(3.15)

First, we need to calculate E(T1,k1{R2,k=s}) as follows

E(T1,k1{R2,k=s}) =

∫ ∞
0

ufT1,k,T1,k+T2,k=s(u)du.

Let

f
S

(l)
1,k+S

(l)
2,k

(d1, d2, u) :=
d

du
F
S

(l)
1,k+S

(l)
2,k

(d1, d2, u), l = 1, 2, 3, 4.

As in Proposition 3.4.1, one can express E(T1,k1{R2,k=s}) as follows

E(T1,k1{R2,k=s})

=

ξ1

(
F
S

(1)
2,k

(d2)

∫ s

0

uf
S

(1)
1,k

(d1 + u)du+

∫ s

0

uf
S

(1)
1,k+S

(1)
2,k

(d1, d2, u)du

)
+ξ2

(
F
S

(2)
2,k

(d2)

∫ s

0

uf
S

(2)
1,k

(d1 + u)du+

∫ s

0

uf
S

(2)
1,k+S

(2)
2,k

(d1, d2, u)du

)
+ξ3

(
F
S

(3)
2,k

(d2)

∫ s

0

uf
S

(3)
1,k

(d1 + u)du+

∫ s

0

uf
S

(3)
1,k+S

(3)
2,k

(d1, d2, u)du

)
+ξ4

(
F
S

(4)
2,k

(d2)

∫ s

0

uf
S

(4)
1,k

(d1 + u)du+

∫ s

0

uf
S

(4)
1,k+S

(4)
2,k

(d1, d2, u)du

)
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=
4∑
l=1

ξl

(
F
S

(l)
2,k

(d2)

∫ s

0

uf
S

(l)
1,k

(d1 + u)du+

∫ s

0

uf
S

(l)
1,k+S

(l)
2,k

(d1, d2, u)du

)
.

(3.16)

By Lemma 3.6.1, for Xi ∼ME(β,Q˜ i) and di > 0, i = 1, 2

∫ s

0

ufXi(di + u)du =
1

β

∞∑
k=0

(k + 1)∆k(di, β,Q˜ i)Wk+2(s, β) =: UXi(s, di, β).

(3.17)

∫ ∞
s

ufXi(di + u)du =
1

β

∞∑
k=0

(k + 1)∆k(di, β,Q˜ i)W k+2(s, β) =: UXi(s, di, β).

Similarly, by Lemma 3.6.2∫ s

0

ufX1+X2(d1, d2, u)du =
1

β

∞∑
k=0

∞∑
j=0

(k + 1)∆k(d1, β,Q˜ 1)∆j(d2, β,Q˜ 2)Wk+j+3(s, β)

=: UX1(s, d1, d2, β).

(3.18)

∫ ∞
s

ufX1+X2(d1, d2, u)du =
1

β

∞∑
k=0

∞∑
j=0

(k + 1)∆k(d1, β,Q˜ 1)∆j(d2, β,Q˜ 2)W k+j+3(s, β)

=: UX1(s, d1, d2, β).

Taking (3.17) and (3.18) into account, one may write (3.16) as follows

E(T1,k1{R2,k=s}) =
4∑
l=1

ξl

(
F
S

(l)
2,k

(d2)U
S

(l)
1,k

(s, d1, Z(β2k)) + U
S

(l)
1,k

(s, d1, d2, Z(β2k))

)
.

(3.19)

Therefore, refering to (3.15) (set xp := V aRp(R2,k))

TV aRp(T1,k, R2,k) =
1

1− p

4∑
l=1

ξl

(
F
S

(l)
2,k

(d2)

∫ ∞
xp

U
S

(l)
1,k

(s, d1, Z(β2k))ds

+

∫ ∞
xp

U
S

(l)
1,k

(s, d1, d2, Z(β2k))ds

)
.
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Hence, the result follows easily. 2

Proof of Corollary 3.4.1 The unpaid losses of the ceding insurer line of business
is defined as follows

U(K1, K) = E
{

(T1,k −K1)1{R2,k>K}
}

=

∫ ∞
K

E(T1,k1{R2,k=s})ds−K1FR2,k
(K).

In light of (3.19)

U(K1, K) =
4∑
l=1

ξl

∫ ∞
K

(
F
S

(l)
2,k

(d2)U
S

(l)
1,k

(s, d1, Z(β2k)) + U
S

(l)
1,k

(s, d1, d2, Z(β2k))

)
ds

=
4∑
l=1

ξl

(
F
S

(l)
2,k

(d2)U
S

(l)
1,k

(K, d1, Z(β2k)) + U
S

(l)
1,k

(K, d1, d2, Z(β2k))

)
−K1FR2,k

(K).

Hence the proof is complete. 2

3.6 Appendix

3.6.1 Properties of Mixed Erlang Distribution

Lemma 3.6.1. For a deductible d > 0, ifX ∼ME(β, V˜ ) then the df of Y := (X−d)+

is given by

FY (y) =

{
FX(d) for y = 0,

FX(d+ y) for y > 0,
(3.20)

where

FX(d+ y) =
∞∑
k=0

∆k(d, β, V˜ )Wk+1(y, β),

with

∆k(d, β, V˜ ) =
1

β

∞∑
j=0

qj+k+1wj+1(d, β). (3.21)

Lemma 3.6.2. LetX1 andX2 be two independent risks such thatXi ∼ME(β,Q˜ i), i =

1, 2. If Yi = (Xi − di)+ with di > 0, i = 1, 2 then R2 = Y1 + Y2 has a df

FR2(s) =

{
FX1(d1)FX2(d2) for s = 0,

FX1(d1)FX2(s+ d2) + FX2(d2)FX1(s+ d1) + FX1+X2(d1, d2, s) for s > 0,
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where

FX1+X2(d1, d2, s) =
∞∑
k=0

∞∑
j=0

∆k(d1, β,Q˜ 1)∆j(d2, β,Q˜ 2)Wk+j+2(s, β).

Remarks 3.6.3. Given the tractable expression of the df of R2, its VaR at a confidence
level p ∈ (0, 1) is the solution of

FX1(d1)FX2(d2) + FX1(d1)FX2(V aRR2(p) + d2)

+FX2(d2)FX1(V aRR2(p) + d1) + FT2,k
(V aRR2(p)) = p,

which can be solved numerically. In addition, the TVaR of R2 at a confidence level
p ∈ (0, 1) is given by (set xp := V aRR2(p))

TV aRR2(p) =
1

1− p

(
FX2(d2)UX1(xp, d1, β)

+FX1(d1)UX2(xp, d2, β) + UX1+X2(xp, d1, d2, β)

)
,

where

UXi(xp, di, β) =
1

β

∞∑
k=0

(k + 1)∆k(di, β,Q˜ i)W k+2(xp, β),

UX1+X2(xp, d1, d2, β) =
1

β

∞∑
k=0

∞∑
j=0

(k + j + 2)∆k(d1, β,Q˜ 1)

×∆j(d2, β,Q˜ 2)W k+j+3(xp, β).

Proof. Since Y1 and Y2 are independent risks which have mixed distribution, the
df of R2 can also be expressed as a df of a mixed distribution which depends on the
value of s as follows:

• the discrete part of FR2 is obtained for s = 0, specifically we have

FR2(0) = P(Y1 + Y2 6 0) = P(Y1 + Y2 = 0)

= P(Y1 = 0, Y2 = 0) = FX1(d1)FX2(d2), (3.22)

• for s > 0 the continious part of FR2 is given by

FR2(s) = P(Y1 + Y2 6 s)
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= P(Y1 + Y2 6 s, Y1 = 0, 0 < Y2 6 s)

+P(Y1 + Y2 6 s, 0 < Y1 6 s, Y2 = 0)

+P(Y1 + Y2 6 s, 0 < Y1 6 s, 0 < Y2 6 s)

= P(Y1 = 0, 0 < Y2 6 s) + P(0 < Y1 6 s, Y2 = 0)

+P(Y1 + Y2 6 s, 0 < Y1 6 s, 0 < Y2 6 s)

= FX1(d1)FX2(s+ d2) + FX2(d2)FX1(s+ d1)

+

∫ s

0

FX1(s− u+ d1)fX2(u+ d2)du. (3.23)

Let FT2,k
(s) :=

∫ s
0
FX1(s− u + d1)fX2(u + d2)du, by Lemma 3.6.1 this can be

written as

FT2,k
(s) =

∞∑
k=0

∞∑
j=0

∆k(d1, β1, Q˜ 1)∆j(d2, β2, Q˜ 2)

×
∫ s

0

Wk+1(s− u, β)wj+1(u, β)du. (3.24)

It can be seen that
∫ s

0
Wk+1(s−u, β)wj+1(u, β)du is a convolution of two independent

Erlang risks with a common scale parameter β, which is again an Erlang risk with
shape parameter k + j + 2 and scale parameter β. Thus combining (3.22), (3.23)
and (3.24) the claim follows easily.

Lemma 3.6.4. Let X ∼ME(β, V˜ ) with pdf f(x, β, V˜ ), if g is some positive function

such that E {g(X)} <∞, then c(x, β, V˜ ) =
g(x)f(x,β,V˜)

E{g(X)} is again a pdf of mixed Erlang
distribution with scale parameter Z(β) and mixing weights Θ˜(V˜ ) = (θ1, θ2, . . .), with

c(x, β, V˜ ) =
∞∑
k=1

θkwk(x, Z(β)),

where

• Z(β) = 2β and θk = 1
2k−1

∑k
j=1

(
k − 1

j − 1

)
qj
∑∞

l=k−j+1 ql, for g(x) = 2F (x),

• Z(β) = β and

θk =

 0 for k 6 t,
qk−t

Γ(k)
Γ(k−t)∑∞

j=1 qj
Γ(j+t)

Γ(j)

for k > t,

for g(x) = xt with t ∈ R,
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• Z(β) = β + t and θk = qkβ
k∑∞

j=1 qjβ
j with β = β

β+t
, for g(x) = e−tx with t ∈ N.

Proof. We have

c(x, β, V˜ ) =
g(x)f(x, β, V˜ )

E {g(X)}
=

1

E {g(X)}

∞∑
k=1

qk
βk

(k − 1)!
g(x)xk−1e−βx. (3.25)

For g(x) = xt one can write (3.25) as follows

c(x, β, V˜ ) =
1

E {X t}

∞∑
k=1

qk
βk

(k − 1)!
xt+k−1e−βx

=
∞∑
k=1

(
qk

Γ(k+t)
Γ(k)∑∞

j=1 qj
Γ(j+t)

Γ(j)

)
wk+t(x, β)

=
∞∑

s=t+1

(
qs−t

Γ(s)
Γ(s−t)∑∞

j=1 qj
Γ(j+t)

Γ(j)

)
ws(x, β)

=
∞∑
s=1

θsws(x, β),

with

θs =

 0 for s 6 t,
qs−t

Γ(s)
Γ(s−t)∑∞

j=1 qj
Γ(j+t)

Γ(j)

for s > t.

For g(x) = e−tx, (3.25) can be expressed as follows (set β := β
β+t

)

c(x, β, V˜ ) =
1

E {e−tX}

∞∑
k=1

qk
βk

(k − 1)!
xk−1e−(β+t)x

=
∞∑
k=1

(
qkβ

k∑∞
j=1 qjβ

j

)
wk(x, β + t)

=
∞∑
k=1

θkwk(x, β + t).

For g(x) = 2F (x), see Cossette et al. [20] for the proof.
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3.6.2 Pearson’s Coefficient of a Bivariate Sarmanov Mixed

Erlang Risk

Pearson’s coefficient ρ1,2 is one of the most commonly used dependence measures
between two risks X1 and X2. In this regards, X1 and X2 are assumed to be linearly
correlated. Following (2.5), we show next that when (X1, X2) ∼ SME2(β, Q˜ 1, Q˜ 2),
the closed expressions for ρ1,2 depend on the dependence parameter α1,2 and the
choice of kernel functions as follows:

• for φi(xi) = xti − E {X t
i} , t > 0

ρ1,2(X1, X2) =
α1,2(mt+1

1 −mt
1m

1
1)(mt+1

2 −mt
2m

1
2)

σ1σ2

,

where σi is the standard deviation of Xi and

ms
i = E {Xs

i } =
1

βsi

∞∑
j=1

qi,j
(s+ j − 1)!

(j − 1)!
, i = 1, 2, with s > 0,

in particular for t = 1

ρ1,2(X1, X2) = α1,2σ1σ2,

• for φi(xi) = e−txi − E
{
e−tXi

}
, t > 0

ρ1,2(X1, X2) =
α1,2(η1,t − Γ1,t)(η2,t − Γ2,t)

σ1σ2

,

where ηi,t = 1
βi+t

∑∞
j=1 jqi,j

(
βi
βi+t

)j
and Γi,t = m1

i

∑∞
j=1 qi,j

(
βi
βi+t

)j
, i = 1, 2,

• for φi(xi) = 2F i(xi)− 1, see Cossette et al. [20]

ρ1,2(X1, X2) =
α1,2

β1β2σ1σ2

∞∑
j=1

∞∑
k=1

jk(θ1,j − q1,j)(θ2,k − q2,k),

where θ1,j and θ2,k are defined in (3.4).
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Chapter 4

On Age Difference in Joint Life
Modelling with Life Insurance
Applications

This Chapter is based on F. Dufresne, E. Hashorva, G. Ratovomirija and Y. Touk-
ourou: On age Difference in Joint Life Modelling with Life Insurance Applications.
Submitted.

4.1 Introduction

Insurance and annuity products covering several lives require the modelling of the
joint distribution of future lifetimes. Commonly in actuarial practice, the future
lifetimes among a group of people are assumed to be independent. This simplifying
assumption is not supported by real insurance data as demonstrated by numerous
investigations. Joint life annuities issued to married couples offer a very good illus-
tration of this fact. It is well known that husband and wife tend to be exposed to
similar risks as they are likely to have the same living habits. For example, Parkes
et al. [77] and Ward [93] have brought to light the increased mortality of widowers,
often called the broken heart syndrome. Many contributions have shown that there
could be a significant difference between risk-related quantities, such as risk premi-
ums, evaluated according to dependence or independence assumptions. Denuit and
Cornet [23] have measured the effect of lifetime dependencies on the present value
of a widow pension benefit. Based on the data collected in cemeteries, not only
do their estimation results confirm that the mortality risk depends on the marital
status, but also show that the amounts of premium are reduced approximately by
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10 per cent compared to model which assumes independence. According to data
from a large Canadian insurance company, Frees et al. [39] have demonstrated that
there is a strong positive dependence between joint lives. Their estimation results
indicate that annuity values are reduced by approximately 5 per cent compared to
the model with independence.
Introduced by Sklar [86], copulas have been widely used to model the dependence
structure of random vectors. In the particular case of bivariate lifetimes, frailty
models can be used to describe the common risk factors between husband and wife.
Oakes [76] has shown that the bivariate distributions generated by frailty models
are a subclass of Archimedean copulas. This makes this particular copula family
very attractive for modelling bivariate lifetimes. We refer to Nelsen [74] for a general
introduction to copulas.

The Archimedean copula family has been proved valuable in numerous life insurance
applications, see e.g., Frees et al. [39], Brown and Poterba [13], Carriere [16]. In
Luciano et al. [65], the marginal distributions and the copula are fitted separately
and, the results show that the dependence increases with age.
It is known that the level of association between variables is characterized by the
value of the dependence parameter. In this chapter, a special attention is paid to this
dependence parameter. Youn and Shemyakin [99] have introduced the age difference
between spouses as an argument of the dependence parameter of the copula. In ad-
dition, the sign of the age difference is of great interest in our model. More precisely,
we presume that the gender of the older member of the couple has an influence on
the level of dependence between lifetimes. In order to confirm our hypothesis, four
families of Archimedean copulas are discussed namely, Gumbel, Frank, Clayton and
Joe copulas, all these under a Gompertz distribution assumption for marginals. The
parameter estimations are based on the maximum likelihood approach using data
from a large Canadian insurance company, the same set of data used by Frees et
al. [39]. Following Joe and Xu [55] and Oakes [76], a two-step technique, where
marginals and copula are estimated separately, is applied. The results make clear
that the dependence is higher when husband is older than wife.
Once the marginal and copula parameters are estimated, one needs to assess the
goodness of fit of the model. For example, the likelihood ratio test is used in Car-
riere [16] whereas the model of Youn and Shemyakin [99] is based on the Akaike
Information Criterion (AIC). In addition to likelihood ratio test, following Gribkova
and Lopez [44] and Lawless [61], we implement a whole goodness of fit procedure to
validate the model. Based on the Cramèr-von Mises statistics, the Gumbel copula,
whose dependence parameter is a function of the age difference and its sign gives
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the best fit.
The rest of the chapter is organized as follows. Section 4.2 describes the dataset and
provides some key facts that motivate our study. Section 4.3 describes the maximum
likelihood procedure used to estimate the marginal distributions. The dependence
models are examined in Section 4.4. In a first hand, we describe the copula mod-
els whose parameter are estimated. Secondly, a bootstrap algorithm and likelihood
ratio test are proposed for assessing the goodness of fit of the model. Considering
several products available on the life insurance market, numerical applications with
real data, including best estimate of liabilities, risk capital and stop loss premiums
are presented in Section 4.5. Section 4.6 concludes the chapter.

4.2 Motivation

As already shown in Maeder [66], being in a married couple can significantly influence
the mortality. Moreover, the remaining lifetimes of male and female in the couple
are dependent, see e.g., Carriere [16], Frees et al. [39]. In this contribution, we
aim at modelling the dependence between the lifetimes of a man and a woman
within a married couple. Common dependence measures, which will be used in our
study, are: the Pearson’s correlation coefficient r, the Kendall’s Tau τ , and the
Spearman’s Rho ρ. In order to develop these aspects, data 1 from a large Canadian
life insurance company are used. The dataset contains information from policies
that were in force during the observation period, i.e. from December 29, 1988 to
December 31, 1993. Thus, we have 14′947 contracts among which 14′889 couples
(one male and one female) and the remaining 58 are contracts where annuitants are
both male (22 pairs) or both female (36 pairs). The same dataset has been analysed
in Frees et al. [39], Carriere [16], Youn and Shemyakin [99], Gribkova and Lopez
[44] among others, also in the framework of modelling bivariate lifetime. Since we
are interested in the dependence within the couple, we focus our attention on the
male-female contracts.
We refer the readers to Frees et al. [39] for the data processing procedure. The
dataset is left truncated as the annuitant information is recorded only from the date
they enter the study; this means that insured who have died before the beginning of
the observation period were not taken into account in the study. The dataset is also
right censored in the sense that most of the insured were alive at the end of the study.
Considering our sample as described above, some couples having several contracts

1I wish to thank the Society of Actuaries, through the courtesy of Edward (Jed) Frees and
Emiliano Valdez, for allowing the use of the data in this thesis.

70



Bivariate Lifetime Modelling Motivation

could appear many times. By considering each couple only once, our dataset consists
of 11′457 different couples for which, we can draw the following information:

• the age at the beginning of the observation xm and xf for male and female,
respectively,

• the lifetimes under the observation period tm and tf for male and female,
respectively,

• the binary right censoring indicator δm and δf for male and female, respectively,

• the couple benefit in Canadian Dollar (CAD) amount within a last survivor
contract.

The entry age is the age at which, the annuitant enters the study. The lifetime at
entry age corresponds to the lapse of time during which the individual was alive over
the period of study. Therefore, for a male (resp. female) aged xm (resp. xf ) at entry
and whose data is not censored i.e. δm = 0 (resp. δf = 0), xm + tm (resp. xf + tf )
is the age at death. When the data is right censored i.e. δm = 1 (resp. δf = 1),
the number xm + tm (resp. xf + tf ) is the age at the end of the period of study
(December 31, 1993). The lifetime is usually equal to 5.055 years corresponding to
the duration of the study period; but it is sometimes less as some people may entry
later or die before the end of study. Benefit is paid each year until the death of the
last survivor. Its value will be used as an input for the applications of the model
to insurance products in Section 4.5.2. Some summary statistics of the age distri-
bution of our dataset are displayed in Table 4.1. It can be seen that the average

Males age Females age
Statistics Entry Death Entry Death
Number 11′457 1′269 11′457 454

Mean 67.87 74.40 64.91 73.81
Std 6.34 7.19 7.16 7.81
Median 67.60 74.10 65.10 73.15
10thpercentile 60.20 64.00 55.70 64.20
90thpercentile 75.60 83.50 73.50 84.10

Table 4.1: Summary of the univariate distribution statistics.

entry age is 66.4 for the entire population, 67.9 for males and 64.9 for female; 90%

of annuitants are older than 57.9 at entry and males are older than females by 3

years on average. Among the 11′457 couples considered there are 193 couples where
both annuitants are dead. Based on these 193 couples, the empirical dependence
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measures are displayed in the last row of Table 4.2. The values show that the ages
at death of spouses are positively correlated.

Dependence measures
Samples r ρ τ

xm ≥ xf 133 0.90 0.89 0.74

xm < xf 60 0.89 0.87 0.71

Total 193 0.82 0.80 0.62

Table 4.2: Empirical dependence measures with respect to the gender of the elder
partner.

From the existing literature, see e.g., Denuit and Cornet [23], Youn and Shemyakin
[99], Denuit et al. [24], Ji and al. [53], Hougaard [52], the dependence within a
couple is often influenced by three factors:

• the common lifestyle that husband and wife follow, for example their eating
habits, this is referred to as the long-term dependence,

• the short-term dependence or the broken-heart factor where the death of
one would precipitate the death of the partner, often due to the vacuum caused
by the passing away of the companion,

• the common disaster that affects simultaneously the husband and his wife,
as they are likely to be in the same area when a catastrophic event occurs,
this dependence factor is considered as the instantaneous dependence.

Based on the common disaster and the broken-heart, Youn and Shemyakin [99] have
introduced the age difference between spouses. Their results show that the model
captures some additional association between lifetime of the spouses that would not
be reflected in a model without age difference. It is also observed that, the higher
the age difference is, the lower is the dependence. Referring to the same dataset,
Table 4.3 confirms their results, with |d| the absolute value of d and d = xm − xf .

Dependence measures
Samples r ρ τ

0 ≤ |d| < 2 59 0.98 0.97 0.93

2 ≤ |d| < 4 53 0.93 0.93 0.78

|d| ≥ 4 81 0.74 0.68 0.53
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Table 4.3: Empirical dependence measures with respect to the age difference.

Our study follows the same lines of idea as these authors. In addition to the age
difference, we believe that the gender of the elder partner may have an impact on
their lifetimes dependencies. Indeed, the fact that the husband is older than the
wife may influence their relationship, and indirectly, the dependence factors cited
above. Despite the smallness of the sizes of the uncensored data does not allow
us to conclude on the dependence structure of the 11’457 couples, it highlights well
our hypothesis which will be verified with the whole dataset. In this regards, the
results displayed in Table 4.2 clearly show that the spouse lifetime dependencies are
higher when d is positive, i.e. when husband is older than wife. The variable gender
of the elder member is measured through the sign of the age difference d. Table
4.4 displays the empirical Kendall’s τ with respect to the age difference and to the
gender of the elder partner. One can notice that the coefficients can vary for more
than 30% depending on who is the older member of the couple.

xm ≥ xf Samples τ xm < xf Samples τ
0 ≤ d < 2 27 0.89 −2 ≤ d < 0 32 0.88
2 ≤ d < 4 38 0.84 −4 ≤ d < −2 15 0.87
d ≥ 4 68 0.72 d ≥ −4 13 0.61
Total 133 0.74 Total 60 0.71

Table 4.4: Kendall’s Tau correlation coefficients by age and gender of the elder
partner.

In what follows, a bivariate lifetime model will verify our hypothesis. To this end,
marginal distributions for each of the male and female lifetimes are firstly defined
and secondly the copula models are introduced. The estimation methods will be
detailed in the Section 4.3 and Section 4.4.

4.3 Marginal Distributions

4.3.1 Background

The lifetime of a newborn shall be modelled by a positive continuous random vari-
able, say X with df F and survival function S. The symbol (x) will be used to
denote a live aged x and T (x) = (X − x)|X > x is the remaining lifetime of (x).
The actuarial symbols tpx and tqx are, respectively, the survival function and the
df of T (x). Indeed, the probability, for a live (x), to remain alive t more years is

73



Marginal Distributions Bivariate Lifetime Modelling

given by

tpx = P (X > x+ t | X > x) =
P (X > x+ t)

P (X > x)
=
S (x+ t)

S (x)
.

When X has a pdf f , then T (x) has a pdf given by

fx (t) = tpx µ (x+ t) .

where µ(.) is the hasard rate function, also called force of mortality.
Several parametric mortality laws such as De Moivre, constant force of mortality,
Gompertz, Inverse-Gompertz, Makeham, Gamma, Lognormal and Weibull are used
in the literature; see Bowers et al. [12]. The choice of a specific mortality model is
determined mainly by the caracteristics of the available data and the objective of the
study. It is well known that the De Moivre law and the constant force of mortality
assumptions are interesting for theoretical purposes whereas Gompertz and Weibull
are more appropriate for fitting real data, especially for population of age over 30.
The dataset exploited in this chapter regroups essentially policyholders who are at
least middle-aged. That is why, in our study, the interest is on the Gompertz law
whose caracteristics are defined as follows

µ (x) = Bcx and S (x) = exp

(
− B

ln c
(cx − 1)

)
with B > 0, c > 1, x ≥ 0.

In addition, Frees et al. [39] and Carriere [16] have shown that the Gompertz
mortality law fits our dataset very well, see Figures 4.1-4.2. For estimation
purposes the Gompertz law has been reparametrized as follows (see [15])

e−m/σ =
B

ln c
and e1/σ = c,

from which we obtain

µ (x+ t) =
1

σ
exp

(
x+ t−m

σ

)
,

tpx = exp
(
e
x−m
σ

(
1− e

t
σ

))
,

fx(t) = exp
(
e
x−m
σ

(
1− e

t
σ

)) 1

σ
exp

(
x+ t−m

σ

)
,

Fx(t) = 1− exp
(
e
x−m
σ

(
1− e

t
σ

))
, (4.1)

where the mode m > 0 and the dispersion parameter σ > 0 are the new parameters
of the distribution.
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4.3.2 Maximum Likelihood Procedure

In what follows, we will use the following notation:

• the index j indicates the gender of the individual, i.e. j = m for male and
j = f for female.

• θj = (mj, σj) denotes the vector of unknown Gompertz parameters for a given
gender j,

• n is the total number of couples in our dataset. Hereafter, a couple means a
group of two persons of opposite gender that have signed an insurance contract
and i is the couple index with 1 ≤ i ≤ n,

• for a couple i, tij is the remaining lifetime observed in the collected data.
Indeed, for an individual of gender j aged xj, the remaining lifetime T ij (x) is
a random variable such that

T ij (xj) = min
(
tij, B

i
j

)
and δij = 1{tij≥Bij},

where Bi
j is a random censoring point of the individual of gender j in the

couple i.

Consider a couple i where the male and female were, respectively, aged xm and xf at
contract initiation date. For each gender j = m, f , the contribution to the likelihood
is given by

Lij (θj) =
[
Bij
pxj (θj)

]δij [
f ixj
(
tij, θj

)]1−δij
. (4.2)

We recall that the dataset is left truncated that is why likelihood function in (4.2)
has therefore to be conditional on survival to the entry age xj, see e.g., Carriere [16].
Therefore, the overall likelihood function can be written as follows

Lj (θj) =
n∏
i=1

Lij (θj) , j = m, f. (4.3)

By maximizing the likelihood function in (4.3) using our dataset, the MLE estimates
of the Gompertz df are displayed in Table 4.5.
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θ̂ Estimate Std. error
m̂m 85.472 0.294
m̂f 91.569 0.623
σ̂m 10.448 0.439
σ̂f 8.134 0.416

Table 4.5: Gompertz parameter estimates.

Standard errors are relatively low and estimation shows that the modal age at death
is larger for females than for males. This latter can be explained by the fact that
women have a longer life expectancy than men. A good way to analyse how well the
model performs is to compare with the Kaplan-Meier (KM) product-limit estimator
of the dataset. We recall that the KM technique is an approach which consists in
estimating non-parametrically the survival function from the empirical data. Fig-
ures 4.1-4.2 compare the KM estimator of the survival function to the ones obtained
from the Gompertz distribution estimated above. Since almost all the annuitants
are older than 40 at entry, all the distributions are conditional on survival to age 40.
The survival functions are plotted as a function of age x (for x = 40 to x = 110).
The Gompertz curve is smooth whereas the KM is jagged. The figures clearly show
that the estimated Gompertz model is a valid choice for approximating the KM
curve.
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Figure 4.1: Gompertz and Kaplan-Meier fitted female distribution functions
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Figure 4.2: Gompertz and Kaplan-Meier fitted male distribution functions

4.4 Dependence Models

4.4.1 Background

Copula models were introduced by Sklar [86] in order to specify the joint df of a
random vector by separating the behavior of the marginals and the dependence
structure. Without loss of generality, we focus on the bivariate case. We denote
by T (xm) and T (xf ) the future lifetime respectively for man and woman. Follow-
ing Carriere [16], we couple the lives at the time when they start being observed.
Specifically, if T (xm) and T (xf ) are positive and continuous, there exists a unique
copula C : [0, 1]2 → [0, 1] which specifies the joint df of the bivariate random vector
(T (xm), T (xf )) as follows

P(T (xm) 6 t1, T (xf ) 6 t2) = C (P (T (xm) 6 t1) ,P (T (xf ) 6 t2)) = C(t1qxm , t2qxf ).
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Similarly, the survival function of (T (xm), T (xf )) is written in terms of copulas and
marginal survival functions. This is given by

P(T (xm) > t1, T (xf ) > t2) = C̃(t1pxm , t2pxf )

= t1pxm + t2pxf − 1 + C(t1qxm , t2qxf ). (4.4)

A broad range of parametric copulas has been developed in the literature. We refer
to Nelsen [74] for a review of the existing copula families. The Archimedean
copula family is very popular in life insurance applications, especially due to its
flexibility in modelling dependent random lifetimes, see e.g., Fress et al. [39], Youn
and Shemyakin [99] . If φ is a convex and twice-differentiable strictly increasing
function, the df of an Archimedean copula is given by

Cφ(u, v) = φ−1(φ(u) + φ(v)),

where φ : [0, 1] → [0,∞] is the generator of the copula satisfying φ(1) = 0 with
u, v ∈ [0, 1]. In this chapter, four well known copulas are discussed. Firstly, the
Gumbel copula generated by

φ(t) = (− ln(t))−α, α > 1,

which yields the copula

Cα(u, v) = exp

(
−[(− ln(u))α + (− ln(v))α]1/α

)
, α > 1. (4.5)

Secondly, we have the Frank copula

Cα(u, v) = − 1

α
ln

(
1 +

(e−αu − 1)(e−αv − 1)

(e−α − 1)

)
, α 6= 0, (4.6)

with generator

φ(t) = − ln

(
e−αt − 1

e−α − 1

)
, α 6= 0.

Thirdly, the Clayton copula is associated to the generator

φ(t) = t−α − 1, α > 0,

and is given by

Cα(u, v) = (u−α + v−α − 1)−1/α, α > 0. (4.7)

78



Bivariate Lifetime Modelling Dependence Models

Finally, the Joe copula

Cα(u, v) = 1−
(

(1− u)α + (1− v)α − (1− u)α(1− v)α
)1/α

, α > 1, (4.8)

has generator φ(t) = − ln(1− (1− t)−α), α > 1.

Clearly, the parameter α in (4.5)-(4.8) determines the dependence level between
the two marginal distributions. In our case, that would be the lifetimes of wife
and husband. Youn and Shemyakin [99] have utilized a Gumbel copula where the
association parameter α depends on d as follows

α(d) = 1 +
β0

1 + β2d2
, β0, β2 ∈ R, (4.9)

where d = xm − xf with xm and xf the ages for male and female, respectively.
In our model for α, in addition to this specification, the gender of the elder partner,
represented by the sign of d, is also taken into account. This latter is captured
through the second term of the denominator β1d in equations (4.10) and (4.11).
Thus, for our model the copula association parameter for the Frank and the Clayton
is expressed by

α(d) =
β0

1 + β1d+ β2|d|
, β0, β1, β2 ∈ R. (4.10)

Since the copula parameter α in the Gumbel and Joe copulas is restricted to be
greater than 1, the corresponding dependence parameter in (4.11) is allowed to have
an intercept of 1 and we write

α(d) = 1 +
β0

1 + β1d+ β2|d|
, β0, β1, β2 ∈ R. (4.11)

It can be seen that if β1 < 0, the dependence parameter is lower when husband is
younger than wife, i.e. d < 0. Also provided that d tends to infinity and in addition
if (β1 < 0, β2 > 0, d < 0) or (β1 > 0, β2 > 0, d > 0) or (β1 < 0, β2 < 0, d > 0) or
(β1 < 0, β2 < 0, d > 0), the dependence parameter goes to 0 for Frank and Clayton
and 1 for the Gumbel copula, thus tending towards the independence assumption.
Note in passing that instead of taking d2 as in equation (4.9), we use |d| in both
(4.10) and (4.11) for the representation of the absolute age difference.
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4.4.2 Estimation of Parameters

The maximum likelihood procedure has been widely used to fit lifetime data to
copula models, see e.g., Lawless [61], Shih and Louis [85], Carriere [16]. A priori,
this method consists in estimating jointly the marginal and copula parameters at
once. However, given the huge number of parameters to be estimated at the same
time, this approach is computationally intensive. Therefore, we adopt a procedure
that allows the determination of marginal and copula parameters, separately. In
this respect, Joe and Xu [55] have proposed a two step technique which, firstly
estimates the marginal parameters θj, j = m, f, and the copula parameter α(d)

in the second step. This is referred to as the inference functions for margins
(IFM) method. Specifically, the survival function of each lifetime is evaluated by
maximazing the likelihood function in (4.3). For each couple i with xim and xif , let
ui := tim

pxim(θ̂m) and vi := tif
pxif (θ̂f ) be the resulting marginal survival functions for

male and female, respectively. Considering the right-censoring feature of the two
lifetimes as indicated by δim and δif , the estimates α̂(d) of the copula parameters are
obtained by maximizing the likelihood function

L(α(d)) := L(α) =
n∏
i=1

[
∂2C̃α(ui, vi)

∂ui∂vi

](1−δim)(1−δif) [
∂C̃α(ui, vi)

∂ui)

](1−δim)δif

×

[
∂C̃α(ui, vi)

∂vi

]δim(1−δif) [
C̃α(ui, vi)

]δimδif
. (4.12)

A similar two-step technique, known as the Omnibus semi-parametric procedure or
the pseudo-maximum likelihood, was also introduced by Oakes [76]. In this proce-
dure, the marginal distributions are considered as nuisance parameters of the copula
model. The first step consists in estimating the two marginals survival functions
non-parametrically using the KM method. After rescaling the resulting estimates
by n

n+1
, we obtain the pseudo-observations (Ui,n, Vi,n) where

Ui,n =
Ŝm(xim + tim)

Ŝm(xim)
and Vi,n =

Ŝm(xif + tif )

Ŝm(xif )
.

In the second step, the copula estimation is achieved by maximizing the following
function

L(α(d)) := L(α) =
n∏
i=1

[
∂2C̃α(Ui,n, Vi,n)

∂Ui,n∂Vi,n

](1−δim)(1−δif) [
∂C̃α(Ui,n, Vi,n)

∂Ui,n

](1−δim)δif
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×

[
∂C̃α(Ui,n, Vi,n)

∂Vi,n

]δim(1−δif) [
C̃α(Ui,n, Vi,n)

]δimδif
. (4.13)

Genest et al. [40] and Shih and Louis [85] have shown that the stemmed estimators of
the copula parameters are consistent and asymptotically normally distributed. Due
to their computational advantages, the IFM and the Omnibus approaches are used
in our estimations. By comparing the results stemming from the two techniques, we
can analyze to which extent a certain copula is a reliable model for bivariate lifetimes
within a couple. Table 4.6 and Table 4.7 display the copula estimations based on our
dataset. The number in bracket under each estimate represents the standard error
of the estimation. The estimated values from the IFM and the omnibus estimations
are quite close for the Gumbel, the Frank and the Joe copulas. The important
difference observed in the Clayton case indicates that this copula is probably not
appropriate for modelling the bivariate lifetimes in our dataset. The negative sign
of β̂1 in all cases demonstrates that if husband is older than wife (i.e. d > 0), their
lifetimes are more likely to be correlated. The positive sign of β̂2 suggests that the
higher the age difference is, the lesser is the level of dependence between lifetimes.
The parameters β̂1 and β̂2 have opposing effects on α̂ (d). In this regards, since
|β̂2| > |β̂1| , the maximum level of dependence is attained when d = 0, i.e. when
wife and husband have exactly the same age.

α(d) α

β̂0 β̂1 β̂2 α̂(−2) α̂(0) α̂(2) α̂

Gumbel 1.040 -0.042 0.052 1.875 2.040 2.019 1.955
(0.033) (0.010) (0.013) (0.019 )

Frank 7.262 -0.014 0.018 6.826 7.262 7.201 7.026
(0.175) (0.006) (0.008) (0.108)

Clayton 2.249 -0.277 -0.408 0.949 2.249 1.784 1.206
(0.236) (0.110) (0.123) (0.077)

Joe 1.475 -0.054 0.059 2.203 2.475 2.461 2.362
(0.046) (0.011) (0.014) (0.028)

Table 4.6: IFM method: copula parameters estimate α(d) and α.
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α(d) α

β̂0 β̂1 β̂2 α̂(−2) α̂(0) α̂(2) α̂

Gumbel 1.006 -0.043 0.048 1.851 2.006 1.995 1.936
(0.032) (0.009) (0.012) (0.019)

Frank 7.004 -0.014 0.016 6.609 7.004 6.978 6.831
(0.168) (0.006) (0.007) (0.105)

Clayton 1.903 -0.201 0.361 0.936 1.903 1.545 1.120
(0.199) (0.091) (0.104) (0.069)

Joe 1.440 -0.055 0.056 2.180 2.440 2.438 2.347
(0.045) (0.011) (0.013) (0.028)

Table 4.7: Omnibus approach: copula parameters estimate α(d) and α.

Our estimate of α(d) under the Gumbel copula is quite similar to the results in
the model of Youn and Shemyakin [99] where β̂0 = 1.018, β̂1 = 0 and β̂2 = 0.021.
Column 8 contains the estimation output when the dependence parameter α does
not depend on d. When d = 0, α (0) = β0 (or 1 + β0 for Gumbel and Joe) and that
is equivalent to the case where the dependence parameter is not in function of the
age difference.

4.4.3 Goodness of Fit

A goodness of fit procedure is performed in order to assess the robustness of our
model. For this purpose, the model, including age difference and gender of the elder
member within the couple with α (d), is compared to two other types, namely the
one where the copula parameter does not depend on d and the model of Youn and
Shemyakin [99]. Many approaches for testing the goodness of fit of copula models are
proposed in the litterature, see e.g., Genest et al. [43], Berg [11]. We refer to Genest
et al. [43] for an overview of the existing methods. There are several contributions
highlighting the properties of the empirical copula, especially when the data are right
censored, the contributions of Dabrowska [22], Prentice [79], Gribkova and Lopez
[44] are some examples. In our framework, the goodness of fit approach is based on
the non parametric copula introduced by Gribkova and Lopez [44] as follows

Cn(u1, u2) =
1

n

n∑
i=1

(1− δim)(1− δif )Win1{T (xim)6F̂−1
m,n(u1),T (xif )6F̂−1

f,n(u2)}, (4.14)

where Win = 1
SBm (max(T im,T

i
f−εi)−)

and SBm is the survival function of the right

censored random variable Bm that is estimated using KM approach; εi = Bi
f −Bi

m.
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The term F̂−1
j,n is the KM estimator of the quantile function of T (xij), j = m, f .

The particularity of equation (4.14) is that, the uncensored observations are twice
weighted (with 1/n and Win) unlike the original empirical copula where the same
weight 1/n is assigned to each observation. The weightWin is devoted to compensate
right censoring. Based on the p-value, the goodness of fit test indicates to which
extent a certain parametric copula is close to the empirical copula Cn. We adopt
the Cramèr-von Mises statistics to assess the adequacy of the hypothetical copula
to the empirical one, namely

Vn =

∫
[0,1]2

Kn(v)dKn(v), (4.15)

where Kn(v) =
√
n(Cn(v)− Cα̂(d)(v)) is the empirical copula process. Genest et al.

[43] have proposed an empirical version of equation (4.15) which is given by

V̂n =
n∑
i=1

(Cn(u1i, u2i)− Cα̂(d)(u1i, u2i))
2. (4.16)

The assertion, the bivariate lifetime within the couple is described by the studied
copula, is then tested under the null hypothesis H0. Since the Cramèr-von Mises
statistics V̂n does not possess an explicit df, we implement a bootstrap procedure to
evaluate the p-value as presented in the following pseudo-algorithm. For some large
integer ξ, the following steps are repeated for every k = 1, . . . , ξ:

• Step 1 Generate lifetimes from the hypothetical copula, i.e. (U b
i , V

b
i ), i =

1, . . . , n is generated from Cα̂(d). If the IFM method is used to determine α̂(d),
then the two lifetimes are produced from the Gompertz distribution

(tb,im = F−1
xm (U b

i , θ̂m), tb,if = F−1
xf

(V b
i , θ̂f )),

where θ̂j, j = m, f are taken from Table 4.5, while, for the omnibus, the
corresponding lifetimes are generated with the KM estimators of the quantile
functions of T (xj) , j = m, f

(tb,im = F̂−1
m,n(U b

i ), t
b,i
f = F̂−1

f,n(V b
i )).

• Step 2 Generate the censored variables Bb,i
m and Bb,i

f , i = 1, . . . , n from the
empirical distribution of Bm and Bf respectively.

• Step 3 Considering the same data as used for the estimation, replicate the
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insurance portfolio by calculating

T b(xim) = min(tb,im , B
b,i
m ), δb,im = 1{tb,im >Bb,im },

T b(xif ) = min(tb,if , B
b,i
f ), δb,if = 1{tb,if >Bb,if }

,

for each couple i of ages xim and xif .

• Step 4 If the IFM approach is chosen in Step 1, the parameters of the
marginals and the hypothetical copula parameters are estimated from the
bootstrapped data (T b(xim), T b(xif ), δ

b,i
m , δ

b,i
f ) by maximizing (4.2) and (4.12)

whereas under the omnibus approach, the hypothetical copula parameters are
estimated from the bootstrapped data as well by maximizing equation (4.13).

• Step 5 Compute the Cramèr-von Mises statistics V̂bn,k using (4.16).

• Step 6 Evaluate the estimate of the p-value as follows

p̂ =
1

K + 1

ξ∑
k=1

1{V̂bn,k>V̂n}.

Based on 1000 bootstrap samples, the results of the goodness of fit is summarized
in Table 4.8. It can be seen that for both IFM and Omnibus, our model have a
greater p-value than the model without age difference, showing that age difference
between spouses is an important dependence factor of their joint lifetime. Under
the Gumbel model in Youn and Shemyakin [99] where β1 = 0, the p-value is evalu-
ated at 0.672. For the Gumbel copula in Table 4.8, the p-value in the model with
α (d) is slightly higher, strengthening the evidence that the sign of d captures some
additional association between spouses.

IFM Omnibus
Copula parameters α α(d) α α(d)

Gumbel 0.643 0.675 0.640 0.673
Frank 0.510 0.530 0.520 0.531
Clayton 0.114 0.150 0.115 0.167
Joe 0.319 0.339 0.313 0.327

Table 4.8: Goodness of fit test: p-value of each copula model.

At a critical level of 5%, the three copula families are accepted, even though the
Clayton copula performs inadequately. Actually, as pointed out in Gribkova and
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Lopez [44], the important percentage of censored data in the sample results in a huge
loss of any GoF test. Therefore, these results can not efficiently assess the lifetime
dependence within a couple. Nevertheless, the calculated p-values may give an idea
about which direction to go. In this regards, since the Gumbel and Frank copulas
have the highest p-value, they are good candidates for addressing the dependence
of the future lifetimes of husband and wife in this Canadian life insurer portfolio.

Furthermore, since the copula parameter without age difference is nested by the one
with age difference, likelihood ratio test can be used to verify if the two parameters
β1 and β2 in (4.10) and (4.11) are significant. Specifically, introduced by Neyman
and Pearson [75] the likelihood ratio test compares two nested hypothesis: the null
hypothesis H0 with constrained parameters and the alternative hypothesis H1 with
unconstrained parameters. Clearly, the model with constraints β1 = β2 = 0 in (4.10)
and (4.11) corresponds to H0 and the one with age difference corresponds to H1. Let
L0, L1 be the maximum likelihood function values based on H0 and H1, respectively,
the test statistic is given by

λ = 2(ln(L1)− ln(L0)).

The null hypothesis is rejected at a significance level α if λ > χ2
r,1−α, with r the

number of restricted parameters, r = 2 in our case, and χ2
r,1−α is the 1− α quantile

of a Chi-squared distribution with r degrees of freedom. At a significance level of
5%, all the test statistics of the copula families presented in Table 4.9 are greater
than χ2

2,0.95 = 5.991, which means that the null hypothesis is rejected. Thus, the
models allowing age difference in the copula parameter give a better fit than the
models without age difference. This justifies the significance of β1 and β2 in (4.10)
and (4.11).

λ IFM Omnibus
Gumbel 30.20 30.98
Frank 8.66 8.26
Clayton 56.72 43.94
Joe 41.68 43.62

Table 4.9: Likelihood ratio statistic of each copula model.
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4.5 Insurance Applications

4.5.1 Joint Life Insurance Contracts

Multiple life actuarial calculations is common in the insurance practice. Hereafter,
(x) stands for the husband aged x whereas (y) is the wife. Considering a couple
(xy), T (xy) describes the remaining time until the first death between (x) and (y)

and, it is known as the joint-life status. Conversely, T (xy) is the time until death
of the last survivor. The variables T (xy) and T (xy) are random and we can write

T (xy) = min (T (x) , T (y)) whereas T (xy) = max (T (x) , T (y)) .

As in the single life model, the survival probabilities are given by

tpxy = P (T (xy) > t) and tpxy = P (T (xy) > t) . (4.17)

Clearly, if T (x) and T (y) are independent, then

tpxy = tpx tpy and tpxy = 1− tqx tqy.

The curtate life expectancies, for T (xy) and T (xy) respectively, are given by

exy = E (T (xy)) =
∞∑
t=1

tpxy and exy = E (T (xy)) =
∞∑
t=1

tpxy,

with the following relationship

exy = ex + ey − exy.

Figures 4.3 and 4.4 compare the evolution of exy as a function of the age difference
d = x− y, under the following models:

• Model A: T (x) and T (y) are independent;

• Model B: T (x) and T (y) are dependent with a constant copula parameter
α = α0;

• Model C: T (x) and T (y) are dependent with a copula parameter α (d) as
described in (4.10) and (4.11).

On the left (resp. right), the graphs were constructed under the assumption of
x = 65 (resp. y = 65) for the husband (resp. wife) and the age difference d ranges
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from −20 to 20 as more than 99% of our portfolio belongs to this interval. The fixed
age is set to 65 because this is the retirement age in many countries. The analysis was
made under the four families of copula described in Section 4.4. In general, it can
be seen that the life expectancy of the last survivor exy increases when exy = e65:65−d

whereas it decreases when exy = e65+d:65. This result strengthens the evidence that
the sign of d has an effect on annuity values. For example, when |d| = 10 under the
Gumbel copula,

e65:55 = 32.62 ≥ e55:65 = 28.82.
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(a) Gumbel copula: x = 65
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(b) Gumbel copula: y = 65
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(d) Frank copula: y = 65

Figure 4.3: Comparison of exy under model A, B and C: Gumbel and Frank copulas
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(a) Clayton copula: x = 65
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(c) Joe copula: x = 65
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(d) Joe copula: y = 65

Figure 4.4: Comparison of exy under model A, B and C: Clayton and Joe copulas

When comparing the models A, B and C, it can be seen that the life expectancy exy is
clearly overvalued under the model A of independence assumption, thus confirming
the results obtained in Frees et al. [39], Youn and Shemyakin [99], Denuit and
Cornet [23]. Now, let us focus our attention on models B and C considering only
Gumbel, Frank and Joe copulas as it has been shown in the previous section that
the Clayton copula might not be appropriate for the Canadian insurer’s data. In all
graphs, the life expectancy is always lower or equal under model B and the rate of
decreases may exceed 2%. The largest decrease is observed when d < 0, i.e. when
husband is younger than wife.
In order to illustrate the importance of these differences, we consider four types of
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multiple life insurance products. Firstly, Product 1 is the joint life annuity which
pays benefits until the death of the first of the two annuitants. For a husband (x)

and his wife (y) who receive continuously a rate of 1, the present value of future
obligations and its expectation are given by

aT (xy) =
1− exp (−δT (xy))

δ
and axy = E

(
aT (xy)

)
,

where δ is the constant instantaneous interest rate (also called force of interest).
The variable aT (xy) can be seen as the insurer liability regarding (xy). Product 2 is
the last survivor annuity which pays a certain amount until the time of the second
death T (xy). In that case, the present value of future annuities and its expectation
are given by

aT (xy) =
1− exp (−δT (xy))

δ
and axy = E

(
aT (xy)

)
.

In practice, payments often start at a higher level when both beneficiaries are alive.
It drops at a lower level on the death of either and continues until the death of
the survivor. This case is emphasized by product 3 where the rate is 1 when both
annuitant are alive and reduces to 2

3
after the first death. Product 3 is actually a

combination of the two first annuities. Thus, the insurer liabilities and its expecta-
tion are given by

V (xy) =
1

3
aT (xy) +

2

3
aT (xy) and E (V (xy)) = Vxy =

1

3
axy +

2

3
axy,

where E
(
aT (xy)

)
= axy.

Fourthly, imagine a family or couple whose income is mainly funded by the husband.
The family may want to guarantee its source of income for the eventual death of the
husband. For this purpose, the couple may buy the so called reversionary annuity
for which the payments start right after the death of (x) until the death of (y). No
payment is made if (y) dies before (x). As for Product 3, the reversionary annuity
(Product 4) is also a combination of some specific annuity policies and the total
obligations of the insurer and its expectation are computed as follows

aT (x)|T (y) = aT (y) − aT (xy) and ax|y = E
(
aT (x)|T (y)

)
= ay − axy. (4.18)

In what follows, considering each of the insurance products 1, 2, 3 and 4, comparison
of models A, B and C will be discussed. The analysis will include the valuation
of the best estimate (BE) of the aggregate liability of the insurer as well as the
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quantification of risk capital and stop-loss premiums.

4.5.2 Risk Capital & Stop-loss Premium

In the enterprise risk management framework, insurers are required to hold a certain
capital. This amount, known as the risk capital, is used as a buffer against unex-
pected large losses. The value of this capital is quantified in a way that the insurer
is able to cover its liabilities with a high probability. For instance, under Solvency
II, it is the VaR at a tolerance level of 99.5% of the insurer total liability, while for
the Swiss Solvency Test (SST), it is the Expected Shortfall (ES) at 99%. Let L be
the aggregate liability of the insurer. At a confidence level α, the VaR is given by

V aRL(α) = inf {l ∈ R : P (L ≤ l) ≥ α} ,

whilst the ES is
ESL(α) = E (L|L > V aRL(α)) .

These risk measures will serve to compare models A, B and C for each type of
product. As the insurance portfolio is made of n policyholders, we define

L =
n∑
i=1

Li,

where Li represents the total amount due to a couple i of (xi) and (yi). The dataset
used in the calculations is the same as those used for the model estimations and
described in Section 4.2. In principle, the couple i receives the amount bi at the
beginning of each year until the death of the last survivor. However, in our appli-
cations, bi will be the continuous benefit rate in CAD for each type of product. For
example, in the particular case of Product 3,

Li = biV (xiyi) = bi

(
1

3
aT (xi,yi)

+
2

3
aT (xi,yi)

)
.

Since there is no explicit form for the distribution of L, a simulation approach will
serve to evaluate the insurer aggregate liability. The pseudo-algorithm used for
simulations is presented in the following steps:

• Step 1 For each couple i, generate (Ui, Vi) from the the copula model (model
A or model B or model C).

• Step 2 For each couple i with xi and yi, generate the future lifetime T (xi), T (yi)
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from the Gompertz distribution as follows

T (xi) = F−1
xi

(Ui, θ̂m) and T (yi) = F−1
yi

(Vi, θ̂f ), (4.19)

where θ̂j, j = m, f are taken from Table 4.5.

• Step 3 Evaluate the liability Li for each couple i = 1, . . . , n.

• Step 4 Evaluate the aggregate liability of the insurer L =
∑n

i=1 Li.

Due to its goodness of fit performance, the Gumbel copula will be used in the
calculations for Model B and C. Mortality risk is assumed to be the only source
of uncertainty and we consider a constant force of interest of δ = 1%. For each
product described in Subsection 4.5.1, Step 1-4 are repeated 1000 times in order to
generate the distribution of L. In addition to the risk capital measured as under the
Solvency II and the SST framework, the BE of the aggregate liability of the insurer
(i.e. BE = E (L)), the Coefficient of Variation (CoV) and the stop-Loss premium
SL = E((L− ζ)+) are also evaluated, where ζ is the deductible. For the portfolio of
Product 1, Product 2, Product 3 and Product 4, the amount of ζ in millions CAD
are respectively 4, 4.5, 4.2, 1.7. Results are presented in Table 4.10− 4.13 according
to each product. For the ease of understanding all values have been converted to a
per Model A basis (the corresponding amounts are presented in the Appendix). As
we could expect, the Model A with independent lifetime assumption misjudges the
total liability of the insurer. The highest differences are observable with Product 4
where it reaches 17% for the BE, 25% for the risk capitals and 49% for the stop-loss
premiums. By comparing Model B and Model C, the findings tell minor differences.
The variation noticed in Figure 4.4 (when d < 0) are practically non-existent in the
aggregate values for most of the products under investigation. In other words, while
the effects of the age difference and its sign are noticeable on the individual liability
(see Subsection 4.5.1), the effects on the aggregate liability are merely small. This
is due to the law of large number and to the high proportion of couple with d > 0 in
our portfolio (70%). Actually, the compensation of the positive and negative effects
of the age difference on the lifetimes dependency in the whole portfolio mitigates
its effects on the aggregate liability. However, it should be noted that the relative
difference exceeds 1% for the stop-loss premium in Table 4.13.

Product 1 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 0.7499 1.0000 1.0000 1.0000
Model B 1.0991 0.7271 1.3032 1.0552 1.0529
Model C 1.0988 0.7272 1.3024 1.0553 1.0529
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Table 4.10: Relative BE and risk capital for the joint life annuity portfolio.

Product 2 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 0.5621 1.0000 1.0000 1.0000
Model B 0.9418 0.6111 0.9152 0.9969 0.9971
Model C 0.9419 0.6109 0.9149 0.9970 0.9972

Table 4.11: Relative BE and risk capital for the last survivor annuity portfolio.

Product 3 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 0.5728 1.0000 1.0000 1.0000
Model B 0.9775 0.6255 1.0415 1.0330 1.0314
Model C 0.9774 0.6255 1.0414 1.0331 1.0316

Table 4.12: Relative BE and risk capital for the last survivor annuity portfolio.

Product 4 BE CoV SL V aRL(99.5%) ESL(99%)

Model A 1.0000 1.1877 1.0000 1.0000 1.0000
Model B 0.8248 1.0260 0.5250 0.7365 0.7468
Model C 0.8251 1.0200 0.5199 0.7345 0.7456

Table 4.13: Relative BE and risk capital for the contingent annuity portfolio.

4.6 Conclusion

In this chapter, we propose both parametric and semi-parametric techniques to
model bivariate lifetimes commonly seen in the joint life insurance practice. The de-
pendence factors between lifetimes are examined namely the age difference between
spouses and the gender of the elder partner in the couple. Using real insurance
data, we develop an appropriate estimator of the joint distribution of the lifetimes
of spouses with copula models in which the association parameters have been allowed
to incorporate the aforementioned dependence factors. A goodness of fit procedure
clearly shows that the introduced models outperform the models without age fac-
tors. The results of our illustrations, focusing on valuation of joint life insurance
products, suggest that lifetimes dependence factors should be taken into account
when evaluating the best estimate of the annuity products involving spouses.
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Appendix: Measures for the Aggregate Liability of

the Insurer

Product 1 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 2’506’318 0.7499 306’254 8’867’772 9’137’217
Model B 2’754’587 0.7271 399’114 9’357’382 9’620’839
Model C 2’753’894 0.7272 398’871 9’358’352 9’620’876

Table 4.14: Risk capital for the joint life annuity portfolio in CAD.

Product 2 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 4’275’139 0.5621 877’391 11’456’016 11’757’270
Model B 4’026’500 0.6111 803’022 11’421’070 11’723’580
Model C 4’026’615 0.6109 802’752 11’422’159 11’724’355

Table 4.15: Risk capital for the last survivor annuity portfolio in CAD.

Product 3 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 3’685’532 0.5728 649’259 10’146’042 10’420’385
Model B 3’602’529 0.6255 676’185 10’481’095 10’748’088
Model C 3’602’375 0.6255 676’123 10’481’720 10’749’342

Table 4.16: Risk capital for the last survivor annuity (Product 3) portfolio in CAD.

Product 4 Mean CoV SL V aRL(99.5%) ESL(99%)

Model A 1’415’591 1.1877 545’202 8’005’644 8’292’725
Model B 1’167’629 1.0260 286’231 5’896’485 6’193’339
Model C 1’167’949 1.0200 283’466 5’880’191 6’182’959

Table 4.17: Risk capital for the life contingent annuity portfolio in CAD.
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Chapter 5

New Dependence Models derived
from Multivariate Collective Models
in Insurance Applications

This Chapter is based on E. Hashorva, G. Ratovomirija and M. Tamraz: On some
new Dependence Models derived from Multivariate Collective Models in Insurance
Applications, published in the Scandinavian Actuarial Journal, In press.

5.1 Introduction

Modelling the dependence structure between insurance risks is one of the main tasks
of actuaries. For instance, the determination of a risk capital in the risk manage-
ment framework needed to cover unexpected losses of an insurance portfolio and the
allocation of the latter to each line of business is of importance when choosing the
best model of dependence for multivariate insurance risks. As discussed in Nelsen
[73], copulas are a popular multivariate distribution when modelling the dependency
between insurance risks as they separate the marginals from the dependence struc-
ture, see Embrechts [32], Genest et al. [41] and references therein. With motivation
from Zhang and Lin [100], in this contribution we propose a flexible family of cop-
ulas derived from the joint distribution of the largest claim sizes of two insurance
portfolios.
Next, in order to introduce our model, we consider the classical collective model over
a fixed time period of two insurance portfolios with (Xi, Yi) modelling the ith claim
sizes of both portfolios and N the total number of such claims. If N = 0, then there
are no claims, so the largest claims in both portfolios are equal to 0. When N ≥ 1,
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then (XN :N , YN :N) denotes the maximal claim amounts in both portfolios. Com-
monly, claim sizes are assumed to be positive, however here we shall simply assume
that (Xi, Yi), i ≥ 1 are independent with common distribution function (df) G and
N is independent of everything else. Such a model is common for proportional rein-
surance. In that case Yi = cXi with c being a positive constant. Another instance
is if Xi’s model claim sizes and Yi’s model the expenses related to the settlement of
Xi’s, see Denuit et al. [26] for statistical treatments and further applications. The
df of (XN :N , YN :N) denoted by F ∗ is given by

F ∗(x, y) = LN(− lnG(x, y)), x, y ≥ 0, (5.1)

with LN the Laplace transform of N . Clearly, F ∗ is a mixture df given by

F ∗(x, y) = P {N = 0}+ P {N ≥ 1}F (x, y), x, y ≥ 0,

where

F (x, y) = LΛ(− lnG(x, y)), x, y ≥ 0, (5.2)

with Λ = N |N ≥ 1 and LΛ its Laplace transform.
Since both distributional and asymptotic properties of F ∗ can be easily derived from
those of F , in this chapter we shall focus on F assuming throughout that Λ ≥ 1 is
an integer-valued random variable.
When the df G is a product distribution, F above corresponds to the frailty model,
see e.g., Denuit et al. [26], whereas the special case that Λ is a shifted geometric
random variable is dealt with in Zhang and Lin [100]. We mention three tractable
cases for Λ:
Model A: In Zhang and Lin [100], Λ is assumed to have a shifted Geometric dis-
tribution with parameter θ ∈ (0, 1) which leads to

F (x, y) =
θG(x, y)

1− (1− θ)G(x, y)
, x, y ≥ 0. (5.3)

Model B: Λ has a shifted Poisson distribution with parameter θ > 0, i.e., Λ = 1+K

with K being a Poisson random variable with mean θ > 0, which implies

F (x, y) = G(x, y)e−θ[1−G(x,y)], x, y ≥ 0. (5.4)
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Model C: Λ has a truncated Poisson distribution with

P {Λ = k} = e−θθk/(k!(1− e−θ)), k ≥ 1,

and thus

F (x, y) =
e−θ

1− e−θ
[eθG(x,y) − 1], x, y ≥ 0. (5.5)

Since the distributions F and their copulas are indexed by an unknown parameter
θ, the new mixture copula family has several interesting properties. In particular, it
allows to model highly dependent insurance risks and therefore our model is suitable
for numerous insurance applications including risk aggregation, capital allocation
and reinsurance premium calculations.

In this contribution we investigate first the basic distributional and extremal proper-
ties of F for general Λ. As it will be shown in Section 5.3, interestingly the extremal
properties of F are similar to those of G.

With some motivation from Zhang and Lin [100], which investigates Model A
and its applications, in this chapter, we shall discuss parameter estimation and
Monte Carlo simulations for parametric families of bivariate df’s induced by F . In
particular, we apply our results to actuarial modelling of concrete datasets from
actuarial literature. Moreover we shall consider the implications of our findings for
a new real dataset from a Swiss insurance company. In several cases Model B and
Model C give both satisfactory fit to the data. For the case of Loss and ALAE
dataset we model further the stop loss and the excess of loss reinsurance premium.
One of the applications of the joint distribution of the largest claims (XN :N , YN :N) of
two insurance portfolios is the analysis of the impact of their sum on the risk profile
of the portfolios. Over the last decades, many contributions have been devoted
on the study of the influence of the largest claims on aggregate claims, see e.g.,
Peng [78], Asimit and Chen [4] for an overview of existing contributions on the
topic. This analysis is important when designing risk management and reinsurance
strategies especially in non proportional reinsurance. Ammeter [3] is one of the first
contribution which addressed the impact of the largest claim XN :N on the moments
of the total loss of an insurance portfolio

∑N
i=1 Xi, see also Asimit and Chen [4]

for recent results. In this chapter we demonstrate by simulation the influence of
the sum of the largest claims observed in two insurance portfolios XN :N + YN :N on
the distribution of SN =

∑N
i=1(Xi + Yi). Moreover, using the covariance capital

allocation principle we quantify the impact of XN :N and YN :N on the total loss
SN . The chapter is organised as follows. We discuss next some basic distributional
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properties of F . An investigation of the coefficient of upper tail dependence and the
max-domain of attractions of F is presented in Section 5.3. Section 5.4 is dedicated
to parameter estimation and Monte Carlo simulation with special focus on the cases
covered by Model A-C above. We present three applications to concrete insurance
dataset in Section 5.5. All the proofs are relegated to Appendix.

5.2 Basic Properties of F

Let G denote the df of (X1, Y1) and write G1, G2 for its marginal df’s. Suppose that
Gi’s are continuous and thus the copula Q of G is unique. For Λ = N |N ≥ 1, we
have that the marginal df’s of F are

Fi(x) = LΛ(− lnGi(xi)), i = 1, 2, x ∈ R.

Hence, the generalised inverse of Fi is

F−1
i (q) = G−1

i (e−L
−1
Λ (q)), q ∈ (0, 1),

where G−1
i is the generalised inverse of Gi, i ≤ d. Consequently, since the continuity

of Gi’s implies that of Fi’s, the unique copula C of F is given by

C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2))

= LΛ

(
− lnG(G−1

1 (v1), G−1
2 (v2))

)
= LΛ

(
− lnQ(v1, v2)

)
, u1, u2 ∈ [0, 1], (5.6)

where we set
vi = e−L

−1
Λ (ui).

Remarks 5.2.1. The df of the bivariate copula in (5.6) can be extended to the mul-
tivariate case. Let X(i)

j be the j-th claim sizes of the portfolio i, i = 1, . . . , d and
j = 1, . . . , N . Thus, the df of (X

(1)
N :N , . . . , X

(d)
N :N) is given by

F (z1, . . . , zd) = LΛ

(
− lnG(z1, . . . , zd)

)
, z1, . . . , zd ∈ R,

where G is the df of (X
(1)
1 , . . . , X

(d)
1 ). Similarly to the bivariate case one may express

the copula of F as follows

C(u1, . . . , ud) = LΛ

(
− lnQ(v1, . . . , vd)

)
, u1, . . . , ud ∈ [0, 1],
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where Q is the copula of G. Without loss of generality, we present in the rest of the
chapter the results for the bivariate case.

Next, if G has a pdf g, then Q has a pdf q given by

q(u1, u2) =
g(G−1

1 (u1), G−1
2 (u2))

g1(G−1
1 (u1))g2(G−1

2 (u2))
, u1, u2 ∈ [0, 1],

with g1, g2 the marginal pdf’s. Consequently, the pdf c of C is given by (set t =

− lnQ(v1, v2))

c(u1, u2) =
∂v1

∂u1

∂v2

∂u2

Q2(v1, v2)

((
L′Λ(t) + L′′Λ(t)

)∂Q(v1, v2)

∂v1

∂Q(v1, v2)

∂v2

−L′Λ(t)Q(v1, v2)q(v1, v2)

)
, (5.7)

where L′Λ(s) = −Λe−sΛ and L′′Λ(s) = E
{

Λ2e−sΛ
}
. The explicit form of c for tractable

copulas Q and Laplace transform LΛ is useful for the pseudo-likelihood method of
parameter estimation treated in Section 5.4.

To this end, we briefly discuss the correlation order and its implication for the
dependence exhibited by F . Clearly, for any x, y non-negative

F (x, y) ≤ G(x, y).

Consequently, in view of the correlation order, see e.g., Denuit et al. [26] we have
that Kendall’s tau τ(XΛ:Λ, YΛ:Λ), Spearman’s rank correlation ρS(XΛ:Λ, YΛ:Λ) and the
correlation coefficient ρ(XΛ:Λ, YΛ:Λ) (when it is defined) are bounded by the same
dependence measures calculated to (X1, Y1) with df G, respectively.
Moreover, if E {Λ} <∞, then by applying Jensen’s inequality (recall Λ ≥ 1 almost
surely) for any x, y non-negative

Ga(x, y) ≤ GE{Λ}(x, y) = eE{Λ} lnG(x,y) ≤ E
{
eΛ lnG(x,y)

}
≤ F (x, y), (5.8)

with a the smallest integer larger than E {Λ}. Since Ga is a df, say of (S, T ), then
again the correlation order implies that τ(XΛ:Λ, YΛ:Λ) ≥ τ(S, T ), and similar bounds
hold for Spearman’s rank correlation and the correlation coefficient. In the following
we shall write also τ(C) and τ(Q) (if a = 1) instead of τ(XΛ:Λ, YΛ:Λ) and τ(S, T ),
respectively. Similarly, we denote ρS(C) and ρS(Q) instead of ρS(XΛ:Λ, YΛ:Λ) and
ρS(S, T ), respectively.
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5.3 Extremal Properties of F

In this section, we investigate the extremal properties of F and its copula. Assume
that Λ = Λn depends on n and write Cn instead of C. Suppose for simplicity that
E {Λn} = n and G has unit Fréchet margins. Assume additionally the following
convergence in probability

Λn

n

p→ 1, n→∞. (5.9)

The above conditions can be easily verified in concrete examples, in particular it
holds if Λn = n almost surely.
In order to understand the dependence of Cn, we can calculate Kendall’s tau τ(Cn) as
n→∞. For instance, as shown in the simulation results in Table 5.1, if the copula
Q of G has a coefficient of upper tail dependence µQ = 0, then limn→∞ τ(Cn) = 0.
Note that by definition if µQ exists, then it is calculated by

µQ = 2− lim
u↓0

u−1[1−Q(1− u, 1− u)] ∈ [0, 1]. (5.10)

The following result establishes the convergence of both Kendall’s tau for Cn and
Spearman’s rank correlation ρS(Cn) to the corresponding measures of dependence
with respect to an extreme value copula QA which approximates Q, i.e.,

lim
n→∞

sup
u1,u2∈[0,1]

∣∣∣∣(Q(u
1/n
1 , u

1/n
2 ))n −QA(u1, u2)

∣∣∣∣ = 0, (5.11)

where

QA(u1, u2) = (u1u2)A(y/(x+y)), x = lnu1, y = lnu2 (5.12)

for any (u1, u2) ∈ (0, 1]2 \ (1, 1), with A : [0, 1] → [1/2, 1] a convex function which
satisfies

max(t, 1− t) ≤ A(t) ≤ 1, ∀t ∈ [0, 1]. (5.13)

In the literature, see e.g., Folk et al. [36], Molchanov [70], Bücher and Segers [14],
Aulbach et al. [5, 6], A is referred to as the Pickands dependence function.

Proposition 5.3.1. If the copula Q satisfies (5.11) and further (5.9) holds, then

lim
n→∞

τ(Cn) = τ(QA), lim
n→∞

ρS(Cn) = ρS(QA). (5.14)
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If QA is different from the independence copula, and therefore A(t) < 1 for any
t ∈ (0, 1), then we have (see e.g., Molchanov [70])

τ(QA) =

∫ 1

0

t(1− t)
A(t)

dA′(t), ρS(QA) = 12

∫ 1

0

1

(1 + A(t))2
dt− 3. (5.15)

To illustrate the results stated above, we compare by simulations the dependence
properties of both C and Q. To this end, we simulate random samples from both
copulas and compute the empirical dependence measures. Specifically, we generate
a random sample from C in which Step 1-Step 4 in Subsection 5.4.2 are repeated
10′000 times. Also, we simulate Λ from Model B and two cases of Q namely, a
Gumbel copula with parameter 10 and a Clayton copula with parameter 10. Table
5.1 describes the simulated empirical Kendall’s tau and Spearman’s rho for the ran-
dom samples generated from C and Q.

Q: Gumbel copula with α = 10 Q: Clayton copula with α = 10

E {Λ} τ(C) τ(Q) ρS(C) ρS(Q) τ(C) τ(Q) ρS(C) ρS(Q)

10 0.9059 0.9022 0.9871 0.9862 0.3533 0.8343 0.5030 0.9588
100 0.8980 0.9002 0.9848 0.9854 0.0518 0.8348 0.0775 0.9589
1’000 0.9007 0.9004 0.9856 0.9856 0.0043 0.8334 0.0064 0.9577
10’000 0.9016 0.9018 0.9857 0.9859 0.0019 0.8324 0.0027 0.9573
100’000 0.8997 0.8996 0.9851 0.9854 -0.0104 0.8316 -0.0156 0.9569

Table 5.1: Empirical Kendall’s Tau and Spearman’s rho according to E {Λ}.

The table above shows that for the Gumbel copula case, the level of dependence of a
bivariate risk governed by C is lower or approximately equal to the one corresponding
to Q when E {Λ} increases. For the case of Clayton copula, the bigger E {Λ}, the
weaker the dependence associated with C. In particular, for a copula Q with no
upper tail dependence, Clayton copula in our example, it can be seen that when
E {Λ} increases, C tends to the independence copula. However, when Q is an
extreme value copula, Gumbel copula in our illustration, the rate of decrease in the
level of dependence with respect to E {Λ} is small. These empirical findings are
due to the correlation order demonstrated in (5.8). To verify the results obtained
from simulations, we show that, under (5.15), for α = 10, we obtain τ(QA) = 0.9

and ρS(QA) = 0.9855 for the Gumbel copula which are in line with the simulation
results presented in Table 5.1.
It should be noted that for the Gumbel copula, the Pickands dependence function
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can be written as follows

A(t) = (t1/α + (1− t)1/α)α, t ∈ (0, 1), α ∈ (0, 1)

leading to a closed form for τ(QA) given by

τ(QA) = 1− 1

α
.

Also, it is well-known that for Clayton copula (5.11) holds with QA being the
independence copula, hence for this case by (5.14) we have limn→∞ τ(Cn) = 0,
which confirms the findings in Table 5.1.

This section is concerned with the extremal properties of the df F introduced in (5.1)
in terms of G and Λ. The natural question which we want to answer here is whether
the extremal properties of G and F are the same. Therefore, we shall assume that
G is in the max-domain of attraction of some max-stable bivariate distribution H.
Without loss of generality we shall assume that H has unit Fréchet marginal df’s.
Hence, our assumption is that

lim
n→∞

Gn(nx, ny) = H(x, y), x, y ∈ [0,∞). (5.16)

The max-stability of H and the fact that its marginal df’s are unit Fréchet imply

H t(tx, ty) = H(x, y), ∀x, y, t ∈ (0,∞) (5.17)

see e.g., Falk et al. [36]. In case Λ is a shifted geometric random variable as inModel
A, then the above assumptions imply for any x, y non-negative (set q := 1− θ)

n[1− F (nx, ny)] = n
[
1− θG(nx, ny)

1− qG(nx, ny)

]
= n

1−G(nx, ny)

1− qG(nx, ny)

→ −1

θ
lnH(x, y), n→∞.

Hence

lim
n→∞

F n(nx, ny) = H1/θ(x, y) (5.18)
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or equivalently, using (5.17)

lim
n→∞

F n(nx/θ, ny/θ) = H1/θ(x/θ, y/θ) = H(x, y), x, y ∈ (0,∞) (5.19)

and thus F is also in the same max-domain of attraction as G.

Our result below shows that the extremal properties of G are preserved for the
general case when E {Λ} is finite. This assumption is natural in collective models,
since otherwise we cannot insure such portfolios.

Proposition 5.3.2. If E {Λ} is finite then µQ = µC . Moreover, if (5.16) holds, then

lim
n→∞

F n(anx, any) = H(x, y), x, y ∈ (0,∞), (5.20)

where an = E {Λ}n.

Remarks 5.3.3. i) It is well-known, see e.g., Falk et al. [36] that if G is in the max-
domain of attraction of H, then the coefficient of upper tail dependence µQ of G
with copula Q exists and

µQ = 2 + lnH(1, 1) = 2− 2A(1/2).

By the above proposition, F is also in the max-domain of attraction of H, and thus

µC = 2− 2A(1/2) = µQ ∈ [0, 1]. (5.21)

ii) Although F and G are in the same max-domain of attraction, the above propo-
sition shows that the normalising constant an = E {Λ}n for F is different that for
G (here an = n) if E {Λ} 6= 1.

5.4 Parameter Estimation & Monte Carlo Simula-

tions

5.4.1 Parameter Estimation

This section focuses on the estimation of the parameters of the new copula C i.e.,
θ of N and α of the copula Q. Hereafter, we denote Θ = (θ, α). There are three
widely used methods for the estimation of the copula parameters. The classical one
is the maximum likelihood estimation (MLE). Another popular method is the in-
ference function for margins (IFM), which is a step-wise parametric method. First,
the parameters of the marginal df’s are estimated and then the copula parameter Θ
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are obtained by maximizing the likelihood function of the copula with the marginal
parameters replaced by their first-stage estimators. Typically, the success of this
method depends upon finding appropriate parametric models for the marginals, see
Kim et al. [57].
Finally, the pseudo-maximum likelihood (PML) method, introduced by Oakes [76]
consists also of two steps. In the first step, the marginal df’s are estimated non-
parametrically. The copula parameters are determined in the second step by max-
imizing the pseudo log-likelihood function. Specifically, let X ∼ G1 and Y ∼ G2

where G1 and G2 are the unknown marginals df’s of X and Y . For instance, if the
data is not censored, a commonly used non-parametric estimator of G1 and G2 is
their sample empirical distributions which are specified as follows

Ĝ1(x) =
1

n

n∑
i=1

1(Xi ≤ x), Ĝ2(y) =
1

n

n∑
i=1

1(Yi ≤ y). (5.22)

Therefore, in order to estimate the parameter Θ, we maximize the following pseudo
log-likelihood function

l(Θ) =
n∑
i=1

ln cΘ(U1i, U2i), U1i =
n

n+ 1
Ĝ1(xi), U2i =

n

n+ 1
Ĝ2(yi), (5.23)

where cΘ denotes the pdf of the copula. This rescaling is used to avoid difficulties
arising from the unboundedness of the pseudo log-likelihood function in (5.23) as
Ĝ1(xi) or Ĝ2(yi) tends to 1, see Genest et al. [40].
Kim et al. [57] show in a recent simulation study that the PML approach is better
than the well-known IFM and MLE methods when the marginal df’s are unknown,
which is almost always the case in practice. Moreover, it is shown in Genest et
al. [40] that the resulting estimators from the PML approach are consistent and
asymptotically normally distributed.
Therefore, for our study, we shall use the PML method for the estimation of Θ

which takes into account the empirical counterparts of the marginal df’s to find the
parameter estimators.
As described in the Introduction, we consider three types of distributions for the
random variable Λ:

• Model A: Λ follows a shifted Geometric distribution with parameter θ ∈
(0, 1).
The pdf of the Geometric copula is given by
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cΘ(u1, u2) = W (v1, v2)

(
(1− (1− θ)v1)2(1− (1− θ)v2)2

θ(1− (1− θ)Qα(v1, v2))3

)
, (5.24)

where vi = ui
θ+(1−θ)ui , i = 1, 2 and

W (v1, v2) = (1− (1− θ)Qα(v1, v2))
(∂2Qα(v1, v2)

∂v1∂v2

))
+2(1− θ)

(∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

)
,

which yields the following pseudo log-likelihood function

l(Θ) =
n∑
i=1

(
2 ln(1− (1− θ)v1i) + 2 ln(1− (1− θ)v2i)− ln(θ)

−3 ln(1− (1− θ)Qα(v1i, v2i)) + lnW (v1i, v2i)
)
. (5.25)

• Model B: Λ follows a Shifted Poisson distribution with parameter θ > 0.
The pdf of the shifted Poisson copula is of the form

cΘ(u1, u2) = W (v1, v2)

(
eθ(Qα(v1,v2)+1−v1−v2)

(1 + θv1)(1 + θv2)

)
, (5.26)

where vj = f−1(uj) with f(x) = x exp(θ(x− 1)) and

W (v1, v2) = (1 + θQα(v1, v2))
(∂2Qα(v1, v2)

∂v1∂v2

)
+θ(2 + θQα(v1, v2))

(∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

)
.

The corresponding pseudo log-likelihood of the above copula is thus given by

l(Θ) =
n∑
i=1

(
θ(Qα(v1i, v2i) + 1− v1i − v2i)− ln(1 + θv1i)

− ln(1 + θv2i) + lnW (v1i, v2i)
)
.

• Model C: Λ follows a Truncated Poisson distribution with parameter θ > 0.
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The joint density of the truncated Poisson copula is given by

cΘ(u1, u2) =
1

θ
(1− e−θ)W (v1, v2)eθ(1−v1−v2+Qα(v1,v2)), (5.27)

where
W (v1, v2) = θ

∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+
∂2Qα(v1, v2)

∂v1∂v2

,

vj =
1

θ
ln

(
1 +

uj(1− e−θ)
e−θ

)
, j = 1, 2.

The resulting pseudo log-likelihood of the above copula can be written as
follows

l(Θ) =
n∑
i=1

(
ln
(1− e−θ

θ

)
+ θ(1− v1i − v2i)

+θQα(v1i, v2i) + lnW (v1i, v2i)
)
. (5.28)

Remarks 5.4.1. The copula Cθ of Model A and Model B include the corresponding
original copula Q. In particular, if θ = 1 the pdf cθ in (5.24) becomes the pdf of
the original copula Q, see e.g., Zhang and Lin [100], while the copula Cθ of Model
B reduces to the original copula Q when θ = 0.

Next, we generate random samples from the proposed copula models C.

5.4.2 Monte Carlo Simulations

Based on the distributional properties of F derived in Section 5.2, we have the
following pseudo-algorithm for the simulation procedure which depends on the choice
of Λ and Q:

• Step 1: Generate a value λ from Λ.

• Step 2: Generate λ random samples (U1,i, U2,i), i = 1, . . . , λ, from the original
copula Q.

• Step 3: Calculate (M1,M2) as follows

Mj = max
i=1,...,λ

Uj,i, j = 1, 2.

105



Parameter Estimation & Monte Carlo Simulations New Dependence Models

• Step 4: Return (V1, V2), such that

Vj = LΛ(− lnMj), j = 1, 2.

Simulation results are important for exploring the dependence of F . The simulation
results in the table below complete those presented already in Table 5.1. In this
regard, we generate random samples from the Joe copula with parameter α = 10.

Q: Joe copula with α = 10

E {Λ} τ(C) τ(Q) ρS(C) ρS(Q)

10 0.8982 0.8194 0.9849 0.9504
100 0.9005 0.8190 0.9857 0.9509
1’000 0.8997 0.8164 0.9855 0.9492
10’000 0.9004 0.8209 0.9857 0.9520
100’000 0.8999 0.8206 0.9852 0.9513

Table 5.2: Empirical Kendall’s Tau and Spearman’s rho according to E {Λ}.

For the Joe copula, the Pickands dependence function can be written as follows

A(t) = 1− ((ψ1(1− t))−α + (ψ2t)
−α)−

1
α ,

where ψ1, ψ2 ≤ 1 , t ∈ (0, 1) and α ∈ (0, 1).
By using (5.15) and for α = 10 and ψ1 = ψ2 = 1, we obtain τ(QA) = 0.9066 and
ρS(QA) = 0.9874 which are in line with the simulation results observed in Table 5.2
for τ(C) and ρS(C) as E {Λ} increases.

Another benefit of our simulation algorithm is that we can assess the accuracy of
our estimation method proposed above. Therefore, we simulate random samples
of size n from the copula C with different distributions for Λ: Model A, Model
B and Model C and two types of copula for Q: the Gumbel copula and the Joe
copula. Hereof, the parameters θ of Λ and α of Q are estimated from the dataset
described in Subsection 5.5.1 and are presented in Table 5.3 .

Q: Joe copula Q: Gumbel copula
Model for Λ θ α θ α

Model A 0.3254 2.3727 0.7630 2.2758
Model B 0.9537 2.6634 0.1490 2.3276
Model C 1.8660 2.5885 0.3133 2.3240
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Table 5.3: Parameters used for sampling from C.

Model A Model B Model C
n θ̂ Diff. α̂ Diff. θ̂ Diff. α̂ Diff. θ̂ Diff. α̂ Diff.
100 0.2461 -24% 2.2255 -6% 1.0765 13% 2.6597 0% 1.7400 -7% 2.2535 -13%
1’000 0.3353 3% 2.3262 -2% 0.9906 4% 2.6999 1% 1.9238 3% 2.6491 2%
10’000 0.3304 2% 2.3260 -2% 0.9795 3% 2.6651 0% 1.8996 2% 2.5999 0%
100’000 0.3285 1% 2.3462 -1% 0.9541 0% 2.6600 0% 1.8721 0% 2.5877 0%

Table 5.4: Parameters used for sampling from C where Q is the Joe Copula.

Model A Model B Model C
n θ̂ Diff. α̂ Diff. θ̂ Diff. α̂ Diff. θ̂ Diff. α̂ Diff.
100 0.9565 25% 2.3595 4% 0.1712 15% 2.4308 4% 0.3164 1% 2.3675 2%
1’000 0.7376 -3% 2.3076 1% 0.1563 5% 2.3458 1% 0.3084 -2% 2.3126 0%
10’000 0.7660 0% 2.3083 1% 0.1545 4% 2.3476 1% 0.3136 0% 2.3185 0%
100’000 0.7596 0% 2.2639 -1% 0.1506 1% 2.3232 0% 0.3279 5% 2.3063 -1%

Table 5.5: Parameters used for sampling from C where Q is the Gumbel Copula.

It can be seen from Table 5.4 and Table 5.5 that the estimated parameters from
the simulated samples tend to the true value of the parameters as the sample size n
increases, thus indicating the accuracy of our proposed models.

5.4.3 Influence of XN :N + YN :N on Total Loss

In this subsection, we focus on the distribution of the aggregate claim of two in-
surance portfolios by excluding the largest claim of each portfolio. Specifically, we
analyse the aggregate influence of MN := XN :N + YN :N on some risk measures of
the total loss SN =

∑N
i=1(Xi + Yi). Moreover, by considering the joint distribution

of (XN :N , YN :N) we quantify the individual impact of XN :N and YN :N on the distri-
bution of SN . Let S∗N be the aggregate claim excluding the largest claims, based on
some risk measure ρ(.) and suppose that Xi, Yi’s have a finite second moment, the
influence of the largest claims on the aggregate claim is evaluated as follows

I∗ = ρ(SN)− ρ(S∗N).

By the covariance capital allocation principle, the contribution of XN :N on the
change of the distribution of SN is given by

I(XN :N ,MN) =
cov(XN :N ,MN)

var(MN)
I∗.

To illustrate our results we have implemented the following simulation pseudo-
algorithm:
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• Step 1: Generate the number of claims N from Λ.

• Step 2: GenerateN random samples (u1,i, u2,i), i = 1, . . . , N, from the original
copula Q.

• Step 3: For each portfolio, simulate N claim sizes by using the inverse method
as follows

Xb
i = F−1

1 (u1,i), Y b
i = F−1

2 (u2,i), i = 1, . . . , N,

where Fi, i = 1, 2, is the df of X and Y , respectively.

• Step 4: Evaluate the total loss with and without the largest claims, respec-
tively

SbN =
N∑
i=1

(Xb
i + Y b

i ), S∗bN .

To obtain the simulated distribution of SN and S∗N Step 1-4 are repeated B times.
The results presented in Table 5.6 is in million and is obtained from the following
assumptions:

• number of simulations B = 100′000,

• the original copula is a Gumbel copula with dependence parameter α = 2.324,

• the number of claims follows the Shifted Poisson (Model B) with parameter
θ = 1000,

• the claim sizes are Pareto distributed as follows

Xi ∼ Pareto(10000, 2.2), Yi ∼ Pareto(50000, 2.5).

Risk measures (ρ) SN S∗N I∗ I∗ (in %) I(XN :N ,MN) I(YN :N ,MN)

Mean 101.77 100.21 1.57 1.54 0.38 1.19
Standard deviation 4.41 3.91 0.50 11.24 0.15 0.35

VaR (99 %) 112.75 109.65 3.10 2.74 0.90 2.20
TVaR (99 %) 117.08 111.03 6.05 5.17 1.75 4.30

Table 5.6: Influence of the largest claims on the total loss.

It can be seen that a significant proportion of the aggregate claims is consumed
by XN :N + YN :N . For instance, based on the standard deviation as risk measure,
11.24% of the total loss is driven by the largest claims. In this regards, XN :N
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has more important contribution to I∗ than YN :N . This result is helpful for the
insurance company when choosing the appropriate reinsurance treaty in the sense
that the main source of volatility of the correlated portfolios is quantified.

5.5 Real Insurance Data Applications

In this section, we illustrate the applications of the new copula families in the mod-
elling of three real insurance data. Specifically, we shall consider four copula families
for Qα: Gumbel, Frank, Student and Joe and three mixture copulas in which Λ with
parameter θ follows one of the three distributions: Shifted Geometric, Shifted Pois-
son and Truncated Poisson. The AIC criteria is used to assess the quality of each
model fit relative to each of the other models.

5.5.1 Loss ALAE from Accident Insurance

We shall model real insurance data from a large insurance company operating in
Switzerland. The dataset consists of 33’258 accident insurance losses and their cor-
responding allocated loss adjustment expenses (ALAE) which includes mainly the
cost of medical consultancy and legal fees. The observation period encompasses the
claims occuring during the accident period 1986-20141.

Let Xi be the ith loss observed and Yi its corresponding ALAE.
Some statistics on the data are summarised in Table 5.7.

Loss ALAE

Min 10 1
Q1 13’637 263
Q2 32’477 563
Q3 95’880 1’509
Max 133’578’900 2’733’282

No. Obs. 33’258 33’258
Mean 292’715 5’990
Std 2’188’622 42’186

Table 5.7: Statistics for Loss ALAE data from accident line.

1dataset can be downloaded here http://dx.doi.org/10.13140/RG.2.1.1830.2481
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The scatterplot of (ALAE, loss) on a log scale is depicted in Figure 5.1. It can be
seen that large values of loss is likely to be associated with large values of ALAE. In
addition, the empirical estimator of some dependence measures in Table 5.8 suggests
a positive dependence between Xi and Yi. For instance, the empirical estimator of
the upper tail dependence of 0.6869 indicates that there is a strong dependence in
the tail of the distribution of Xi and Yi.

Figure 5.1: Scatterplot for log ALAE and log Loss: accident insurance data.

Pearson’s Correlation 0.7460
Spearman’s Rho 0.7465
Kendall’s Tau 0.6012

Upper tail dependence 0.6869

Table 5.8: Empirical dependence measures for Loss ALAE data from accident line.

Referring to the marginal’s estimator in (5.22), the estimation results for each cop-
ula model are found by maximizing (5.23) and are summarized in Table 5.9 below.
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Model θ α m AIC
Gumbel - 2.3876 - -32’073
Gumbel Geometric 0.7630 2.2758 - -32’128
Gumbel Truncated Poisson 0.3133 2.3240 - -32’104
Gumbel Shifted Poisson 0.1490 2.3276 - -32’059
Frank - 8.0774 - -30’137
Frank Geometric 0.9999 8.0772 - -30’134
Frank Truncated Poisson 0.0001 8.0773 - -30’135
Frank Shifted Poisson 0.0001 8.0773 - -30’135
Student - 0.8142 1.9805 -32’909
Student Geometric 0.1137 0.5492 1.9992 -38’088
Student Truncated Poisson 0.0001 0.7841 9.6744 -28’672
Student Shifted Poisson 0.0001 0.7885 8.7113 -29’042
Joe - 3.0967 - -30’655
Joe Geometric 0.3254 2.3727 - -33’015
Joe Truncated Poisson 1.8660 2.5885 - -32’578
Joe Shifted Poisson 0.9537 2.6634 - -32’411

Table 5.9: Copula families parameters estimates.

It can be seen that the model which best fits the data is the Student Geometric
copula followed by the Joe Geometric copula. We note in passing that the Student
copula Qα has an additional parameter m which is the degree of freedom.

5.5.2 Loss ALAE from General Liability Insurance

This dataset describes the general liability claims associated with their ALAE re-
trieved from the Insurance Services Office available in the R package. In this respect,
the sample consists of 1’466 uncensored data points and 34 censored observations.
We refer to [27] for more details on the description of the data. Let Xi be the ith

loss observed and Yi the ALAE associated to the settlement of Xi. Each loss is
associated with a maximum insured claim amount (policy limit) M . Thus, the loss
variable Xi is censored when it exceeds the policy limit M . We define the censored
indicator of the loss variable by

δi =

{
1 if Xi 6M,

0 if Xi > M, i = 1, . . . , 1′500.
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Next, we shall use the Kaplan-Meir estimator ĜX to estimate G1 and the empirical
distribution ĜY for G2 as in (5.22). In particular, the corresponding pseudo log-
likelihood function is given by

l(Θ) =
n∑
i=1

(
δi ln(cΘ(U1i, U2i) + (1− δi) ln

(
1− CΘ(U1i, U2i)

∂U2i

))
, (5.29)

where U1i = n
n+1

ĜX(xi) and U2i = n
n+1

ĜY (yi) for i = 1, . . . , n, see Denuit et al.
[27]. By maximizing (5.29), the resulting estimators of Θ for the considered copula
models are presented in Table 5.10.

Model θ α m AIC
Gumbel - 1.4284 - -210.18
Gumbel Geometric 0.5425 1.3127 - -278.23
Gumbel Truncated Poisson 0.0001 1.4422 - -360.49
Gumbel Shifted Poisson 0.1410 1.4083 - -361.20
Frank - 3.0440 - -321.44
Frank Geometric 0.7800 2.7464 - -174.40
Frank Truncated Poisson 0.0001 3.0375 - -306.40
Frank Shifted Poisson 0.0001 3.0375 - -306.41
Student - 0.4642 10.0006 -180.99
Student Geometric 0.7095 0.4252 9.1897 -228.82
Student Truncated Poisson 1 0.4094 13.9922 -271.40
Student Shifted Poisson 1 0.4016 13.9983 -295.42
Joe - 1.6183 - -179.00
Joe Geometric 0.4379 1.3864 - -292.41
Joe Truncated Poisson 0.0607 1.6356 - -331.21
Joe Shifted Poisson 0.8075 1.4629 - -361.76

Table 5.10: Copula families parameters estimates.

Since the Joe Shifted Poisson copula has the the smallest AIC it represents the best
model for describing the dependence in the dataset followed by the Gumbel Shifted
Poisson copula.

5.5.3 Danish Fire Insurance Data

The corresponding dataset describes the Danish fire insurance claims collected from
the Copenhagen Reinsurance Company for the period 1980-1990. It can be retrieved
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from the following website: www.ma.hw.ac.uk/ ∼ mcneil/. This dataset has first
been considered by Embrechts et al. [34] (Example 6.2.9) and explored by Haug
et al. [50]. It consists of three components: loss to buildings, loss to contents and
loss to profit. However, in this case, we model the dependence between the first two
components. The total number of observations is of 1’501. We only consider the
observations where both components are non-null. As indicated by the empirical
dependence measures in Table 5.11, the level of dependence between these two losses
is low.

Pearson’s Correlation 0.1413
Spearman’s Rho 0.1417
Kendall’s Tau 0.0856

Upper tail dependence 0.1998

Table 5.11: Dependence measures for the Danish fire insurance.

The estimation results for each copula is summarized in Table 5.12 below.

Model θ α m AIC
Gumbel - 1.1762 - -133.18
Gumbel Geometric 0.9999 1.1762 - -131.17
Gumbel Truncated Poisson 0.0001 1.1762 - -131.18
Gumbel Shifted Poisson 0.0001 1.1762 - -131.17
Frank - 0.8807 - -29.12
Frank Geometric 0.9999 0.8804 - -27.12
Frank Truncated Poisson 0.0001 0.8806 - -27.12
Frank Shifted Poisson 0.0001 0.8805 - -27.12
Student - 0.1574 9.5998 -47.86
Student Geometric 0.9999 0.1576 10.0063 -45.84
Student Truncated Poisson 0.0001 0.1570 9.0048 -45.81
Student Shifted Poisson 0.0001 0.1562 8.9833 -45.42
Joe - 1.3585 - -204.85
Joe Geometric 0.9999 1.3585 - -202.83
Joe Truncated Poisson 0.0001 1.3585 - -202.84
Joe Shifted Poisson 0.0001 1.3585 - -202.83

Table 5.12: Copula families parameters estimates.
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It can be seen that the model that best fits the data is the Joe copula followed by
the Joe Truncated Poisson copula. The Frank mixture copulas and Student mixture
copulas are not a good fit for the data as their AIC is higher by far compared to the
Gumbel and Joe mixture copulas families.

5.5.4 Reinsurance Premiums

In this section, we examine the effects of the dependence structure on reinsurance
premiums by using the proposed copula models. In practice, it is well known that
insurance risks dependency has an impact on reinsurance. For instance, Dhaene and
Goovaerts [28] have shown that stop loss premium is greater under the dependence
assumption than under the independence case. In what follows, we consider the
insurance claims data described in Subsection 5.5.1 where we denote X the loss
variable, Y the associated ALAE and K the number of claims for the next accident
year. In addition, two types of reinsurance treaties are analyzed namely:

• Excess-of-loss reinsurance, where the claims from Yi ’s are attributed propor-
tionally to the insurer and the reinsurer. For a given observation (Xi, Yi) the
payment for the reinsurer is described as follows, see Cebrian et al. [17]

g(Xi, Yi, r) =

 0 if Xi 6 r,

Xi − r +

(
Xi−r
Xi

)
Yi if Xi > r

leading to a reinsurance premium of the form

κ(r) = E {K}E {g(Xi, Yi, r)} , (5.30)

where r > 0 is the retention level.

• Stop loss reinsurance, where the premium is given by

π(d) = E

{( K∑
i=1

(Xi + Yi)− d
)

+

}
(5.31)

and d is a positive deductible.

In order to calculate the reinsurance premiums defined above, Monte Carlo simu-
lations have been implemented. Hereof, we assume that K is Poisson distributed
with a mean of 156.2, representing the expected number of claims estimated by
the insurance company. Additionally, we use the empirical distributions of Xi and
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Yi for the simulation of the claims amount. Regarding the dependence model, the
following copulas are considered: independent copula, Joe copula, Geometric Joe
Copula, Truncated Poisson Joe copula and the Shifted Poisson Joe copula where
the parameters are summarized in Table 5.9. The following steps summarize the
implemented pseudo-algorithm:

• Step 1: Generate the number of claims K ∼ Poisson(156.2).

• Step 2: Simulate (ui, vi), i = 1, . . . , K from the considered copula C.

• Step 3: Generate the loss and ALAE claims as follows

(xi = F̂−1
X,n(ui), yi = F̂−1

Y,n(vi)), i = 1, . . . , K,

where F̂−1
X,n and F̂

−1
Y,n are the inverse of the empirical df of X and Y respectively,

with

F̂X,n(x) =
1

n

n∑
i=1

1(Xi ≤ x), F̂Y,n(y) =
1

n

n∑
i=1

1(Yi ≤ y).

• Step 4: Calculate the reinsurance premiums κb(r) and πb(d) as in (5.30) and
(5.31) respectively.

• Step 5: Step 1 -Step 4 are repeated B times and the estimators of the
reinsurance premiums are given by

κ̂(r) =
1

B

B∑
b=1

κb(r), π̂(d) =
1

B

B∑
b=1

πb(d).

The estimation results presented in Table 5.13 are obtained from repeating Step 1
-Step 4 100’000 times. These amounts are expressed in CHF million.

κ̂(r) π̂(d)

Copula model r = 1 r = 5 r = 10 d = 10 d = 20 d = 30

Independent 13.1137 6.5692 3.0971 14.7530 7.5145 3.5738
Joe 13.6950 6.7776 3.1619 15.1056 7.7691 3.8233
Joe Geometric 13.4776 6.7365 3.1319 14.9250 7.6797 3.7177
Joe Truncated Poisson 13.4483 6.7183 3.1241 14.8975 7.6698 3.6702
Joe Shifted Poisson 13.4038 6.6789 3.1081 14.8016 7.6266 3.6493

Table 5.13: Reinsurance premiums with respect to copula models.
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Figure 5.2: Comparison of Excess of Loss premiums with respect to different copula
models.

Figure 5.3: Comparison of Stop-Loss premiums with respect to different copula
models.

Table 5.13 and Figure 5.2-5.3 show that the reinsurance premiums κ̂(r) and π̂(d)

are lower under the independence hypothesis. Hence, the portfolio is less risky when
the loss variable Xi and the ALAE variable Yi are assumed to be independent.
Furthermore, when the retention limit r increases for the excess of loss treaty, the
reinsurance premiums estimates κ̂(r) under the copula models tend to the estimated
values under the independence assumption. Conversely, for the stop loss treaty, the
higher the deductible d the higher the deviation from the independence hypothesis.
Furthermore, by comparing the results for each copula model, it can be seen that
the Joe copula generates the highest reinsurance premiums. This result is expected
given that the strongest dependence structure is obtained under the Joe copula.
On the other hand, the weakest dependence model for this data is observed under
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the Joe Shifted Poisson copula as the reinsurance premiums κ̂(r) and π̂(d) are the
smallest for different values of r and d.

5.6 Appendix

5.6.1 Proofs

Derivation of (5.26)-(5.27): We show first (5.7). The corresponding joint density c
of the df C is given by

c(u1, u2) =
∂C(u1, u2)

∂u1∂u2

=
∂LΛ(− lnQα(v1, v2))

∂u1∂u2

, (5.32)

where
C(v1, v2) = LΛ(− lnQα(v1, v2)), vi = e−L

−1
Λ (ui), i = 1, 2.

In view of (5.32), the partial derivative of C with respect to u1 is

∂LΛ(− lnQα(v1, v2))

∂u1

=
1

Qα(v1, v2)
L′Λ(− lnQα(v1, v2))

−∂Qα(v1, v2)

∂v1

∂v1

∂u1

leading to

c(u1, u2) =
∂

∂v2

(
∂LΛ(− lnQα(v1, v2))

∂u1

)
∂v1

∂u1

∂v2

∂u2

=
∂v2

∂u2

(
L′′Λ(− lnQα(v1, v2))

∂Qα(v1,v2)
∂v1

∂Qα(v1,v2)
∂v2

Q2
α(v1, v2)

+L′Λ(− lnQα(v1, v2))

−∂2Qα(v1,v2)
∂v1∂v2

Qα(v1, v2) + ∂Qα(v1,v2)
∂v1

∂Qα(v1,v2)
∂v2

Q2
α(v1, v2)

)

=
∂v1

∂u1

∂v2

∂u2

Q2
α(v1, v2)

((
L′′Λ(− lnQα(v1, v2))

+L′Λ(− lnQα(v1, v2))
)∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

−L′Λ(− lnQα(v1, v2))Qα(v1, v2)
∂2Qα(v1, v2)

∂v1∂v2

)
.

We derive next the pdf cΘ in (5.26): In this case, Λ follows a shifted Poisson distri-
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bution. In view of (5.7), we need to compute at first the following components:

L′Λ(− lnQα(v1, v2)) = −e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + θQα(v1, v2)),

L′′Λ(− lnQα(v1, v2)) = e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + 3θQα(v1, v2) + θ2Q2
α(v1, v2)),

where for i = 1, 2, vi = e−L
−1
Λ (ui) which implies ui = vie

−θ(1−vi) and thus ∂vi
∂ui

=
e−θ(1−vi)

1+θvi
. By replacing these components into (5.7), we have

cΘ(u1, u2) =
1

Qα(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

((
e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + 3θQα(v1, v2) + θ2Q2

α(v1, v2))

−e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + θQα(v1, v2)
)∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+e−θ(1−Qα(v1,v2))Qα(v1, v2)(1 + θQα(v1, v2))Qα(v1, v2)
∂2Qα(v1, v2)

∂v1∂v2

)

=
1

Qα(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

(
e−θ(1−Qα(v1,v2))Qα(v1, v2)

×
(

1 + 3θQα(v1, v2) + θ2Q2
α(v1, v2)− 1− θQα(v1, v2)

)
×∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+e−θ(1−Qα(v1,v2))Q2
α(v1, v2)(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)

=
1

Q(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

(
e−θ(1−Qα(v1,v2))Qα(v1, v2)

(
2θQα(v1, v2) + θ2Q2

α(v1, v2)
)

×∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+e−θ(1−Qα(v1,v2))Q2
α(v1, v2)(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)

=
1

Q(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

(
e−θ(1−Qα(v1,v2))Q2

α(v1, v2)
(

2θ + θ2Qα(v1, v2)
)∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+e−θ(1−Qα(v1,v2))Q2
α(v1, v2)(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)
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=
e−θ(1−Qα(v1,v2))Q2

α(v1, v2)

Q(v1, v2)2

eθ(2−v1−v2)

(1 + θv1)(1 + θv2)

×

(
θ
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

(
2 + θQα(v1, v2)

)
+(1 + θQα(v1, v2))

∂2Qα(v1, v2)

∂v1∂v2

)

=
eθ(2−v1−v2)eθ(Qα(v1,v2)−1)

(1 + θv1)(1 + θv2)

(
∂2Qα(v1, v2)

∂v1∂v2

(1 + θQα(v1, v2))

+θ
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

(2 + θQα(v1, v2))

)
.

Next, we show (5.27): Since Λ follows a truncated Poisson distribution, in light of
(5.7), the joint density cΘ is expressed in terms of (set ηθ = e−θ/(1− e−θ))

L′Λ(− lnQα(v1, v2)) = −ηθθQα(v1, v2)eθQα(v1,v2),

L′′Λ(− lnQα(v1, v2)) = ηθθQα(v1, v2)eθQα(v1,v2)(1 + θQα(v1, v2)),

where for i = 1, 2, vi = e−L
−1
Λ (ui) and ui = e−θ

1−e−θ (vθi − 1) with ∂vi
∂ui

= 1−e−θ
θ

eθ(1−vi). By
substituting the above components in the joint density expressed in (5.7), we obtain

cΘ(u1, u2) =

(
1− e−θ

θ

)2
eθ(2−v1−v2)

Q2
α(v1, v2)

((
ηθθQα(v1, v2)eθQα(v1,v2)(1 + θQα(v1, v2))

−ηθθQα(v1, v2)eθQα(v1,v2)

)
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+ηθθQα(v1, v2)eθQα(v1,v2)Qα(v1, v2)
∂2Qα(v1, v2)

∂v1∂v2

)
= (1− e−θ)eθ[1−v1−v2+Qα(v1,v2)]

×

(
∂Qα(v1, v2)

∂v1

∂Qα(v1, v2)

∂v2

+
1

θ

∂2Qα(v1, v2)

∂v1∂v2

)
.

2Proof of Proposition 5.3.1 Since G has Fréchet marginals, by assumption
(5.11), we have that

lim
n→∞

Gn(nx, ny) = G(x, y), x, y ∈ (0,∞),

where G has copula QA and thus τ(G) = τ(QA). We have thus with Fn(x, y) =
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E
{
GΛn(x, y)

}
using further (5.9)

lim
n→∞

Fn(nxn, nyn) = lim
n→∞

E
{
GnΛn

n (nxn, nyn)
}

= G(x, y), x, y ∈ (0,∞) (5.33)

for any xn, yn such that limn→∞ xn = x and limn→∞ yn = y. Consequently,

τ(Cn) = 4

∫
(0,∞)2

Fn(x, y) dFn(x, y)− 1

= 4

∫
(0,∞)2

Fn(nx, ny) dFn(nx, ny)− 1

→ 4

∫
(0,∞)2

G(x, y) dG(x, y)− 1, n→∞

= τ(G),

where the convergence above follows by Lemma 4.2 in Hashorva [46] (see also
Resnick and Zeber [81] and Kulik and Soulier [60] for more general results). Next,
the convergence in (5.33) implies

lim
n→∞

Fni(nsn) = lim
n→∞

E
{
G
nΛn
n

i (nsn)
}

= Gi(s), s ∈ (0,∞), i = 1, 2

for any sn, n ≥ 1 such that limn→∞ sn = s, where Fni, Gi,Gi is the ith marginal df
of Fn, G, and G, respectively. Hence, with similar arguments as above, we have

ρS(Cn) = 12

∫
(0,∞)2

Fn(x, y) dFn1(x)dFn2(y)− 3

= 12

∫
(0,∞)2

Fn(nx, ny) dFn1(nx)dFn2(nx)− 3

→ 12

∫
(0,∞)2

G(x, y) dG1(x)dG2(x)− 3, n→∞

= ρS(G)

establishing the proof. 2

Proof of Proposition 5.3.2 For v = e−L
−1
Λ (1−u) we have

1− LΛ(− ln v) ∼ u, u ↓ 0, lim
u↓0

v = 1.

By the assumption that E {Λ} is finite we have

1− LΛ(t) ∼ −L′Λ(0)t = E {Λ} t, t→ 0. (5.34)
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Since further

µQ = 2− lim
u↓0

Q(1− u, 1− u)

u
= 2− lim

v↑1

lnQ(v, v)

ln v

and limv↑1Q(v, v) = 1, then using (5.6) and (5.34) we obtain

µC = 2− lim
u↓0

u−1[1− C(1− u, 1− u))]

= 2− lim
u↓0

u−1
[
1− LΛ

(
− lnQ(v, v)

)]
= 2− lim

u↓0

1− LΛ

(
− lnQ(v, v)

)
1− LΛ(− ln v)

= 2− lim
v↑1

lnQ(v, v)

ln v

= 2− [2− µQ] = µQ,

hence the first claim follows. Next, in view of (5.16) we have

lim
n→∞

n[1−G(nx, ny)] = − lnH(x, y), x, y ∈ (0,∞),

hence as n→∞

n[1−G(nx, ny)] ∼ 1−G(nx, ny)

1−G(n, n)
∼ − lnH(x, y), x, y ∈ (0,∞).

Let an, n ≥ 1 be non-negative constants such that limn→∞ an = ∞. By the above
and (5.34)

n[1− F (anx, any)] = n[1− LΛ(− lnG(anx, any))] ∼ E {Λ}n(− lnG(anx, any))

as n→∞. Setting now an = E {Λ}n we have thus as n→∞

n[1− F (anx, any)] ∼ an
1− F (anx, any)

E {Λ}

= an
1− LΛ(− lnG(anx, any))

E {Λ}
∼ an(− lnG(anx, any))

∼ an[1−G(anx, any)[

∼ E {Λ}
(
− lnH(xE {Λ} , yE {Λ})

)
= − lnH(x, y)

establishing the proof. 2
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For our study, we consider several copula families for Qα, which are described here-
after.

5.6.2 Gumbel Copula

The df of a Gumbel copula with a dependence parameter α ≥ 1 is given by

Qα(v1, v2) = exp

(
−
(

(− ln v1)α + (− ln v2)α
) 1
α

)
by differentiating Qα(v1, v2) with respect to v1 we have

∂Qα(v1, v2)

∂v1

=
1

v1

(− ln v1)α−1

(
(− ln v1)α + (− ln v2)α

) 1
α−1

e
−
(

(− ln v1)α+(− ln v2)α

) 1
α

,

and the corresponding joint density is expressed as follows

qα(v1, v2) =
(− ln v1)α−1(− ln v2)α−1

v1v2

(
a

2
α
−2 + (α− 1)a

1
α
−2
)
e−a

1
α ,

where a = (− ln v1)α + (− ln v2)α.

5.6.3 Frank Copula

The df of a Frank copula with a dependence parameter α 6= 0 is of the form

Qα(v1, v2) =
−1

α
ln
(

1 +
(e−αv1 − 1)(e−αv2 − 1)

e−α − 1

)
,

which yields the partial derivative of Qα(v1, v2) with respect to v1 as follows

∂Qα(v1, v2)

∂v1

=
e−αv1(e−αv2 − 1)

(e−α − 1) + (e−αv1 − 1)(e−αv2 − 1)

and the associated pdf is given by

qα(v1, v2) =
α(1− e−α)e−α(v1+v2)(

(1− e−α)− (1− e−αv1)(1− e−αv2)
)2 .
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5.6.4 Joe copula

The Joe copula with dependence parameter α ≥ 1 has df

Qα(v1, v2) = 1−
(

(1− v1)α + (1− v2)α − (1− v1)α(1− v2)α
) 1
α
.

Deriving Qα(v1, v2) with respect to v1 we obtain

∂Qα(v1, v2)

∂v1

= (1− v1)α−1(1− (1− v2)α)
(

(1− v1)α + (1− v2)α − (1− v1)α(1− v2)α
) 1
α
−1

.

The associated pdf is obtained by differentiating Qα(v1, v2) with respect to v1 and
v2 leading to

qα(v1, v2) = (1− v1)α−1(1− v2)α−1
(
α− 1 + b

)
b

1
α
−2,

where b = (1− v2)α − (1− v1)α(1− v2)α.

5.6.5 Student Copula

Let tm be the df of a Student random variable with degree of freedom m and write
t−1
m for its inverse. The df of the Student copula, with correlation α ∈ (−1, 1) and
degree of freedom m > 0 can be expressed as follows

Qα,m(v1, v2) = tα,m(t−1
m (v1), t−1

m (v2))

=

∫ t−1
m (v1)

−∞

∫ t−1
m (v2)

−∞

1√
2π(1− α2)

(
1 +

s2 − 2αst+ t2

m(1− α2)

)−(m+2)/2

dsdt.

Its partial derivative with respect to v1 is given by

∂Qα(v1, v2)

∂v1

= tm+1

(
t−1
m (v2)− αt−1

m (v1)√
(m+(t−1

m (v1))2)(1−α2)
m+1

)
,

whereas the corresponding pdf is

qα,m(v1, v2) =
1

2π
√

1− α2

1

k(t−1
m (v1))k(t−1

m (v2))

×
(

1 +
t−1
m (v1)

2
+ t−1

m (v2)
2 − 2αt−1

m (v1)t−1
m (v2)

m(1− α2)

)−m+2
2
,
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where for i = 1, 2

k(t−1
m (vi)) =

Γ(m+1
2

)

Γ(m
2

)
√
πm

(
1 +

t−1
m (vi)

2

m

)−m+1
2
.
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