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Abstract

Ageing is a heterogeneous multisystem process involving different rates of decline in

physiological integrity across biological systems. The current study dissects the

unique and common variance across body and brain health indicators and parses

inter-individual heterogeneity in the multisystem ageing process. Using machine-

learning regression models on the UK Biobank data set (N = 32,593, age range 44.6–

82.3, mean age 64.1 years), we first estimated tissue-specific brain age for white and

gray matter based on diffusion and T1-weighted magnetic resonance imaging (MRI)

data, respectively. Next, bodily health traits, including cardiometabolic, anthropomet-

ric, and body composition measures of adipose and muscle tissue from bioimpedance

and body MRI, were combined to predict ‘body age’. The results showed that the

body age model demonstrated comparable age prediction accuracy to models trained

solely on brain MRI data. The correlation between body age and brain age predictions

was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of

unique variance in brain and bodily ageing processes. Bayesian multilevel modelling

carried out to quantify the associations between health traits and predicted age dis-

crepancies showed that higher systolic blood pressure and higher muscle-fat infiltra-

tion were related to older-appearing body age compared to brain age. Conversely,

higher hand-grip strength and muscle volume were related to a younger-appearing

body age. Our findings corroborate the common notion of a close connection

between somatic and brain health. However, they also suggest that health traits may

differentially influence age predictions beyond what is captured by the brain imaging
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data, potentially contributing to heterogeneous ageing rates across biological systems

and individuals.
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1 | INTRODUCTION

Ageing has been defined as a multisystem and time-dependent pro-

cess involving progressive loss of functional and physiological integrity

(López-Otín et al., 2013). While advanced age is a primary risk factor

for cardiovascular and neurodegenerative diseases, ageing is highly

heterogeneous, with differential ageing rates across biological systems

and individuals (Cevenini et al., 2008). This has motivated a wealth of

research into better understanding the determinants of individual dif-

ferences in ageing and its relevance to diverse disease processes.

Several biomarkers of ageing, including body composition and

health traits, have been proposed (Cole et al., 2019). Changes in blood

lipids, adipose and muscle tissue distribution, blood pressure, heart

rate, hand grip strength, and anthropometric measures such as body

mass index (BMI) and waist-to-hip ratio are all associated with ageing

(Massy-Westropp et al., 2011; Mielke et al., 2010; Rodgers

et al., 2019; Sebastiani et al., 2017). Despite these measures being

classified as markers of normal body function rather than disease-

specific biomarkers, recent studies have highlighted their utility for

risk detection and disease monitoring across cardiovascular disease

and dementia (Brain et al., 2023). For example, research has suggested

that dysregulation in lipid metabolism in Alzheimer's disease may pre-

dict cognitive decline (Wong et al., 2017).

Age prediction using machine learning applied to brain magnetic

resonance imaging (MRI) data has enabled individual-level age predic-

tion with high accuracy based on brain white (WM) and gray matter

(GM) characteristics derived from diffusion and T1-weighted MRI

scans (Beck et al., 2021; Cole et al., 2017; Leonardsen et al., 2022),

providing neuroanatomical markers of brain health and integrity

(Cole & Franke, 2017; Franke et al., 2010). Although bodily health

traits have demonstrated their influence on brain ageing (Beck, de

Lange, Alnæs, et al., 2022; Beck, de Lange, Pedersen, et al., 2022; de

Lange et al., 2020; Franke et al., 2013, 2014; Kolenic et al., 2018;

Ronan et al., 2016), rates of brain and body ageing processes may be

partly distinct at the individual level.

Recent work has demonstrated the relevance of age prediction

based on various organ structures (Tian et al., 2023), reporting that

body- and brain-specific age estimates can be differentially influenced

by lifestyle and environmental factors. However, a comprehensive

understanding of the unique and common variance across body and

brain age models, in addition to the contribution of specific bodily

health traits, warrants further investigation. For example, bodily health

traits such as elevated blood pressure may potentially contribute to a

group-level increase in predicted age estimates relative to predictions

based solely on brain MRI data. However, due to the impact of

elevated blood pressure on the brain (Dintica et al., 2023; George

et al., 2023), this variance may already to some extent be captured by

brain age models. The present study focuses on parsing inter-

individual heterogeneity in the multisystem ageing process by com-

paring age predictions based on models trained separately on indica-

tors of body and brain health. Specifically, we focus on identifying key

health traits that influence age predictions beyond the variance cap-

tured by the brain measures.

Using the UK Biobank (UKB) sample (N = 32,593, mean

age = 64.1, SD = 7.5), we assessed the contributions of specific

health traits to discrepancies between body and brain age predictions.

Bodily health traits included cardiometabolic factors, anthropometric

measures, and body composition measures of adipose and muscle tis-

sue from bioimpedance and body MRI. Based on documented connec-

tions between brain and body health, we anticipated that age

predictions based on bodily health traits would to a large extent

resemble predictions from models trained solely on brain MRI data.

However, we expected to observe individual variation in the differ-

ence between body and brain age, and that this variation would hold

relevant information for better understanding the role of specific

health traits. Finally, we assessed the extent to which specific markers

of bodily health, such as blood pressure, abdominal adiposity, and

muscle volume, contributed to differences in individual age

predictions.

2 | METHODOLOGY

2.1 | Participants and ethical approval

The sample was drawn from the UKB (http://www.ukbiobank.ac.uk).

All participants provided signed informed consent. UKB has IRB

approval from Northwest Multi-centre Research Ethics Committee

and its Ethics Advisory Committee (https://www.ukbiobank.ac.uk/

ethics) oversees the UKB Ethics & Governance Framework (Miller

et al., 2016). Specific details regarding recruitment and data collection

procedures have been previously published (Collins, 2007). The pre-

sent study uses the UKB Resource under Application Number 27412.

Participants were excluded from the present study if they reported

disorders that affect the brain based on ICD10 diagnoses or a long-

standing illness disability, diabetes, or stroke history (N = 210).

To remove poor-quality T1-weighted brain MRI data, participants

with Euler numbers (Rosen et al., 2018) ≥4 standard deviations

below the mean were excluded. For diffusion-weighted (dMRI) data,

quality control was assured using the YTTRIUM algorithm
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(Maximov et al., 2021). A total of N = 160 participants were removed

for T1 and dMRI data. Body MRI measurements were quality checked

by two independent, trained operators visually inspecting the images

prior to upload to UKB and this has been followed by control of all

outliers for anatomical correctness.

For health traits (hereby used as an umbrella term including all

body composition and health markers), outliers (values ±5 SD from

the mean) were excluded (N = 627) from the analysis by converting

the values to NA, thereby keeping the participant in the sample with

their respective non-outlier data. SI Figures 1 and 2 show distributions

of health traits before and after quality control. SI Figure 3 shows the

prevalence of NA/missing data in the final sample. Following cleaning,

the final sample consisted of 32,593 individuals (females: N = 17,200,

mean age = 63.6, SD = 7.37; males: N = 15,393, mean age = 64.71,

SD = 7.63) with T1, dMRI, and body health trait data. Table 1 summa-

rises the health trait descriptive statistics.

2.2 | MRI data acquisition and processing

A detailed overview of the full UKB data acquisition and image proces-

sing protocol is available in Alfaro et al. (2018) and Miller et al. (2016).

Briefly, brain MRI data were acquired on a 3 Tesla Siemens 32-channel

Skyra scanner. T1-weighted MPRAGE volumes were both acquired in

sagittal orientation at 1 � 1 � 1 mm3. Processing protocols followed a

harmonised analysis pipeline, including automated surface-based mor-

phometry and subcortical segmentation using FreeSurfer version 5.3

(Fischl et al., 2002). A standard set of subcortical and cortical summary

statistics was used from FreeSurfer (Fischl et al., 2002), as well as a fine-

grained cortical parcellation scheme (Glasser et al., 2016) to extract GM

cortical thickness, cortical surface area, and volume for 180 regions of

interest per hemisphere. This yielded a total set of 1118 brain imaging

features (360/360/360/38 for cortical thickness/area/volume, as well as

cerebellar/subcortical and cortical summary statistics, respectively) that

were used as input features in the GM-specific age prediction model in

line with recent implementations (de Lange et al., 2019; Kaufmann

et al., 2019; Schindler et al., 2022).

For dMRI, a conventional Stejskal–Tanner monopolar spin-echo

echo-planar imaging sequence was used with multiband factor 3. Dif-

fusion weightings were 1000 and 2000 s/mm2 and 50 non-coplanar

diffusion directions per each diffusion shell. The spatial resolution was

2 mm3 isotropic, and five anterior–posterior versus three anterior–

posterior images with b = 0 s/mm2 were acquired. Data were pro-

cessed using a previously described pipeline (Maximov et al., 2019).

Metrics derived from diffusion tensor imaging (DTI) (Basser, 1995),

diffusion kurtosis imaging (DKI) (Jensen et al., 2005), WM tract integ-

rity (WMTI) (Fieremans et al., 2011) and spherical mean technique

(SMT) (Kaden et al., 2016) were used as input features in the WM-

specific age prediction model, as described in Voldsbekk et al. (2021).

Tract-based spatial statistics (TBSS) was used to extract diffusion met-

rics in WM (Smith et al., 2006) (see Voldsbekk et al. (2021) for full

pipeline). For each metric, WM features were extracted based on John

Hopkins University (JHU) atlases for WM tracts and labels (with

0 thresholding) (Mori et al., 2006), yielding a total of 910 WM fea-

tures, including mean values and regional measures for each of the

diffusion model metrics, which were used as input features in

the WM-specific age prediction model (Beck et al., 2021;

Subramaniapillai et al., 2022; Voldsbekk et al., 2021). The diffusion

MRI data passed TBSS post-processing quality control using the

YTTRIUM algorithm (Maximov et al., 2021), and were residualised

with respect to scanning site using linear models.

The methods used to generate the body MRI-derived measure-

ments have been described and evaluated in more detail elsewhere

(Borga et al., 2018, 2020; Karlsson et al., 2015; Linge et al., 2018;

West et al., 2018). Briefly, the process for fat and muscle compart-

ments includes the following steps: (1) calibration of fat images using

fat-referenced MRI, (2) registration of atlases with ground truth labels

for fat and muscle compartments to the acquired MRI data set to pro-

duce automatic segmentation, (3) quality control by two independent

trained operators including the possibility to adjust and approve the

final segmentation, and (4) quantification of fat volumes, muscle vol-

umes and muscle-fat infiltration within the segmented regions. For

liver proton density fat fraction (PDFF), nine regions of interest (ROIs)

were manually placed, evenly distributed in the liver volume, while

avoiding major vessels and bile ducts. The total set of features

included in the body age prediction model included 40 variables.

2.3 | Body composition and health traits

Table 1 summarises the descriptive statistics of the health traits used

in the study. A detailed description of each variable can be found in

Supplementary Information (SI) Section 1.

2.4 | Age prediction models

Age prediction was carried out using XGBoost regression (eXtreme

Gradient Boosting; https://github.com/dmlc/xgboost) in Python 3.8.0,

which is based on a decision-tree ensemble algorithm (Chen &

Guestrin, 2016) used in several recent age prediction studies (Beck

et al., 2021; Beck, de Lange, Alnæs, et al., 2022; Beck, de Lange,

Pedersen, et al., 2022; de Lange et al., 2020; Kaufmann et al., 2019;

Subramaniapillai et al., 2022; Voldsbekk et al., 2021). XGboost uses

advanced regularisation to reduce overfitting, has shown superior per-

formance in machine learning competitions (Chen & Guestrin, 2016),

and accommodates the combination of health traits and brain imaging

features based on FreeSurfer and FSL-derived values.

Age prediction models were first run using only brain MRI data for

WM and GM features separately. Next, we ran a prediction model com-

bining all health traits (Table 1). This resulted in three age prediction

models used in the current study: T1 brain age, dMRI brain age, and body

age. Parameters were tuned in nested cross-validations with five inner

folds for randomised search and 10 outer folds for validating model per-

formance using Scikit-learn (Pedregosa et al., 2011). R2, root mean

squared error (RMSE), mean absolute error (MAE), and Pearson's
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correlations between predicted and true values were calculated to evalu-

ate prediction accuracy. For each model, 10-fold cross-validation was

used to obtain brain age and body age for each individual in the full sam-

ple. SI Figure 4 shows the feature importance (weight) of the variables in

each age prediction model, indicating the relative contribution of the cor-

responding feature to the prediction model. SI Table 1 shows each of the

variables included in the prediction models.

2.5 | Difference in age predictions by bodily health
traits

To investigate the degree to which each of the health traits influenced

differences in body and brain age predictions, Bayesian multilevel

models were carried out in Stan (Stan Development Team, 2024)

using the brms (Bürkner, 2017, 2018) R-package, where multivariate

TABLE 1 Descriptive statistics pertaining to each health trait, including mean ± standard deviation (SD).

Health trait Abbreviation Full sample (N = 32,593) Female (N = 17,200) Male (N = 15,393)

Adipose and muscle tissue from body MRI

Visceral adipose tissue, L VAT 3.62 ± 2.20 2.58 ± 1.48 4.78 ± 2.27

Abdominal subcutaneous adipose tissue, L ASAT 6.81 ± 3.10 7.79 ± 3.30 5.72 ± 2.42

Anterior thigh muscle volume, L ATMV 1.70 ± 0.48 1.34 ± 0.23 2.11 ± 0.35

Posterior thigh muscle volume, L PTMV 3.36 ± 0.80 2.75 ± 0.38 4.10 ± 0.55

Anterior thigh muscle-fat infiltration, % ATMFI 7.24 ± 1.78 7.73 ± 1.77 6.68 ± 1.62

Posterior thigh muscle-fat infiltration, % PTMFI 10.85 ± 2.33 11.43 ± 2.26 10.18 ± 2.22

Muscle-fat infiltration, % MFI 7.24 ± 1.78 7.73 ± 1.78 6.68 ± 1.62

Weight-to-muscle ratio, kg/L WMR 7.59 ± 1.32 8.34 ± 1.21 6.73 ± 0.82

Abdominal fat ratio, % AFR 0.49 ± 0.11 0.54 ± 0.11 0.44 ± 0.10

Liver proton density fat fraction, % LPDFF 4.03 ± 3.69 3.61 ± 3.49 4.50 ± 4.84

Total thigh muscle volume, L TTMV 10.11 ± 2.52 8.19 ± 1.16 12.32 ± 1.73

Total adipose tissue volume, L TAT 10.43 ± 4.45 10.37 ± 4.55 10.50 ± 4.32

Total abdominal adipose tissue index, L/m2 TAATi 3.64 ± 1.59 3.90 ± 1.71 3.36 ± 1.38

VAT index, L/m2 VATi 1.24 ± 0.71 0.98 ± 0.56 1.54 ± 0.73

ASAT index, L/m2 ASATi 2.42 ± 1.19 2.95 ± 1.25 1.84 ± 0.77

ATMV index, L/m2 ATMVi 0.59 ± 0.12 0.51 ± 0.07 0.68 ± 0.10

PTMV index, L/m2 PTMVi 1.63 ± 0.19 1.04 ± 0.12 1.31 ± 0.15

TTMV index, L/m2 TTMVi 3.50 ± 0.60 3.09 ± 0.36 3.97 ± 0.46

TAT index, L/m2 TATi 3.67 ± 1.60 3.93 ± 1.73 3.39 ± 1.39

Body composition by bioimpedance

Body fat, % BFP 30.85 ± 8.13 35.91 ± 6.63 25.21 ± 5.51

Whole body fat mass, kg BFM 23.50 ± 8.50 25.33 ± 8.95 21.47 ± 7.44

Whole body fat-free mass, kg BFFM 52.08 ± 11.03 43.35 ± 4.68 61.79 ± 7.32

Body-mass index body composition, kg/m2 BMI-BC 26.34 ± 4.23 25.93 ± 4.57 26.80 ± 3.76

Impedance whole body, Ω IWB 609.40 ± 88.94 665.90 ± 72.2 546.60 ± 58.57

Trunk fat, % TFP 30.48 ± 7.59 33.20 ± 7.54 27.45 ± 6.40

Cardiometabolic and anthropometric

Waist circumference, cm WC 87.77 ± 12.41 82.41 ± 11.61 93.73 ± 10.38

Hip circumference, cm HC 100.60 ± 8.46 100.70 ± 9.52 100.60 ± 7.09

BMI, kg/m2 BMI 26.32 ± 4.23 25.90 ± 4.57 26.78 ± 3.76

Hand grip strength, kg HG 30.08 ± 10.18 23.04 ± 5.69 37.92 ± 8.14

Pulse, bpm Pulse 68.52 ± 11.93 70.26 ± 11.35 66.59 ± 12.25

Systolic blood pressure, mmHg SBP 140.5 ± 19.66 137.80 ± 20.49 143.40 ± 18.27

Diastolic blood pressure, mmHg DBP 78.67 ± 10.64 76.96 ± 10.57 80.56 ± 10.39

Forced vital capacity, L FVC 3.63 ± 0.93 3.05 ± 0.58 4.30 ± 0.80

Note: Bodily health traits extracted from the UKB, including adipose and muscle tissue from body MRI, body composition by bioimpedance, and

cardiometabolic and anthropometric traits from physical examinations. Units are in litres (L), kilograms (kg), per cent (%), centimetres (cm), height in metres

(m), ohms (Ω), beats per minute (bpm) and millimetres of mercury (mmHg). For body age prediction, the model was trained with all the listed measures.
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models are fitted in familiar syntax to comparable frequentist

approaches such as a linear mixed effects model using the lme4 (Bates

et al., 2015). We assessed the relationships between age prediction

difference scores (predicted brain age minus predicted body age) and

each health trait (bar body MRI index scores to reduce redundancy).

For each individual, a positive difference score reflects a brain age

that is higher than body age, while a negative difference score reflects

a body age that is higher than brain age. The difference score (for T1

and dMRI separately) was entered as the dependent variable, with

each health trait separately entered as the independent fixed effects

variable along with age and sex, with subject ID as the random effect:

Ageprediction difference score�Health traitþAgeþSex 1ð jSubjectIDÞ
ð1Þ

To prevent false positives and to regularise the estimated associa-

tions, we defined a standard prior around zero with a standard devia-

tion of 0.3 for all coefficients, reflecting a baseline expectation of

effects being small but allowing for sufficient flexibility in estimation.

All variables, bar sex were standardised before running the analyses.

Each model was run with 8000 iterations, including 4000 warmup

iterations, across four chains. This setup was chosen to ensure robust

convergence and adequate sampling from the posterior distributions.

For each coefficient of interest, we report the mean estimated value

of the posterior distribution (β) and its 95% credible interval (the range

of values that with 95% confidence contains the true value of the

association), and calculated the Bayes Factor (BF)—provided as evi-

dence ratios in the presented figures—using the Savage-Dickey

method (Wagenmakers et al., 2010). Briefly, BF can be interpreted as

a measure of the strength of evidence (extreme, very strong, strong,

moderate, anecdotal and none) in favour of the null or alternative

hypothesis. For a pragmatic guide on BF interpretation, see SI Table 2.

3 | RESULTS

3.1 | Brain age and body age prediction

Table 2 summarises descriptive and model validation statistics per-

taining to each age prediction model. Figure 1 shows the distributions

of the age prediction difference scores (predicted T1/dMRI brain age

minus predicted body age). SI Figure 5 shows the correlation between

the T1 and dMRI-based brain age versus body age difference scores.

Figure 2 shows a correlation matrix including the three models' pre-

dicted ages and age gaps. See SI Figure 6 for correlation matrix show-

ing the association between health traits and SI Figure 7 for predicted

age as a function of chronological age for each age prediction model.

3.2 | Bayesian multilevel models

Bayesian multilevel modelling tested the associations between each

bodily health trait and the difference score (brain-predicted age minus

body-predicted age). Due to the large number of included health traits,

we present associations between (1) age prediction difference and body

MRI measures and (2) age prediction difference and cardiometabolic,

anthropometric and bioimpedance measures separately below. The full

results are available in SI Tables 3 and 4. For estimated credible intervals,

see SI Figures 8 and 9. See SI Table 5 for full and partial linear regres-

sions between age and each of the health trait adjusted for brain-

predicted age. See SI Figures 10 and 11 for scatterplots and Pearson's

R reflecting each of the associations between health traits and difference

scores between brain age and body age models and SI Figure 12 for scat-

terplots reflecting associations between health traits and body age gap.

Sensitivity analyses using linear mixed-effects models showing the

results with age-bias corrected scores versus uncorrected scores but

with age as a covariate are provided in SI Figures 13 and 14.

3.2.1 | Difference scores and body MRI features

Figure 3 shows posterior distributions reflecting the associations

between each body MRI feature and the age prediction difference

scores. Values increasing from 0 to 1 show evidence of a positive

association (where higher values on health traits relate to lower body

age relative to brain age) and values decreasing 0 to �1 show evi-

dence of a negative association (where higher values on health traits

relate to higher body age relative to brain age).

For both dMRI and T1 age difference scores, the tests revealed

evidence of a positive association with predicted age difference score

(calculated as brain age—body age) for ATMV (dMRI: BF <0.001,

β = .48; T1: BF <0.001, β = .46), TTMV (dMRI: BF <0.001, β = .33;

T1: BF <0.001, β = .33), PTMV (dMRI: BF <0.001, β = .22; T1:

BF <0.001, β = .22), ASAT (dMRI: BF <0.001, β = .07; T1: BF <0.001,

β = .08), TAT (dMRI: BF <0.001, β = .03; T1: BF <0.001, β = .05) and

LPDFF (dMRI: BF <0.001, β = .03; T1: BF <0.001, β = .04), indicating

TABLE 2 Average R2, root mean square error (RMSE), mean absolute error (MAE) ±standard deviation and Pearson's correlations between
predicted and true age (r) for each age prediction model.

T1 brain age dMRI brain age Body age

r 0.76 [0.755, 0.764] 0.77 [0.765, 0.773] 0.78 [0.778, 0.786]

r2 0.57 ± 0.015 0.62 ± 0.007 0.59 ± 0.044

RMSE 4.93 ± 0.058 4.67 ± 0.120 4.70 ± 0.151

MAE 3.94 ± 0.054 3.70 ± 0.070 3.73 ± 0.113

Note: 95% confidence intervals on r are calculated using Fisher's z-transformation, adjusted for sample size and back-transformed to the original scale.
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that higher levels of muscle volume in the thighs, especially anterior,

is associated with a positive difference score (i.e., higher predicted

brain age than body age; high muscle volume relations with younger-

appearing body ageing).

The tests also revealed evidence of a negative association with

predicted age difference score for ATMFI (dMRI: BF <0.001,

β = �.23; T1: BF <0.001, β = �.20), PTMFI (dMRI: BF <0.001,

β = �.16; T1: BF <0.001, β = �.14), MFI (dMRI: BF <0.001, β = �.23;

F IGURE 1 Age difference score
distribution (density) for T1 (Diff T1) and
dMRI (Diff dMRI) weighted age models.
Mean difference scores = 0.028
(T1) and �4.33 (dMRI), with standard
deviation (SD) of 4.78 and 4.58,
respectively.

F IGURE 2 Correlation matrix
showing the associations between the
predicted ages and age gaps of the
three models.
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T1: BF <0.001, β = �.20), WMR (dMRI: BF <0.001, β = �.11; T1:

BF <0.001, β = �.08) and AFR (dMRI: BF <0.001, β = �.06;

T1: BF <0.001, β = �.04), indicating that higher fat infiltration in the

muscles, especially the anterior thighs, were associated with a nega-

tive difference score (i.e., higher predicted body age than brain age).

There was also evidence of a negative association for dMRI VAT

(BF <0.001, β = �.03) and no association for T1 VAT

(BF = 0.30, β = �.02).

3.2.2 | Difference scores and cardiometabolic,
anthropometric and bioimpedance

Figure 4 shows posterior distributions reflecting the associations

between cardiometabolic, anthropometric and bioimpedance traits

and the age prediction difference scores.

For both dMRI and T1 age difference scores, the tests revealed

evidence of a positive association with age prediction difference

scores for HC (dMRI: BF <0.001, β = .03; T1: BF <0.001, β = .05), dia-

stolic blood pressure (DBP) (dMRI: BF <0.001, β = .09; T1: BF <0.001,

β = .04), BFP (dMRI: BF = 0.05, β = .03; T1: BF <0.001, β = .04), HG

(dMRI: BF <0.001, β = .23; T1: BF <0.001, β = .19), BFM (dMRI:

BF <0.001, β = .05; T1: BF <0.001, β = .07) and BMI

(dMRI: BF <0.001, β = .04; T1: BF <0.001, β = .06). There was also a

positive association for dMRI Pulse (BF = 0.006, β = .03), T1 WC

(BF <0.001, β = .03) and T1 TFP (BF = 0.015, β = .02), but not for

corresponding T1 Pulse (BF = 0.455, β = .02), dMRI WC (BF <2.798,

β = .02) and dMRI TFP (BF <7.783, β = .01).

In terms of negative associations with age prediction difference

scores, effects were found for systolic blood pressure (SBP) for both

modalities (dMRI: BF <0.001, β = �.15; T1: BF <0.001, β = �.19) and

T1 IWB (BF <0.001, β = �.04), but not dMRI IWB (BF = 1.226,

F IGURE 3 Associations between body MRI features and difference scores between brain-age models and body-age models (dMRI and T1).
The figure shows posterior distributions of the estimates of the standardised coefficient. Estimates for each body MRI feature on dMRI difference
score on the left and T1-weighted difference score on the right. Colour scale follows the directionality of evidence, with positive (blue) values
indicating evidence in favour of positive associations (i.e., larger brain than body age) and negative (red) values indicating evidence in favour of
negative associations (i.e., larger body than brain age). The width of the distribution represents the uncertainty of the parameter estimates. For a
list of unabbreviated words, see Table 1.

F IGURE 4 Associations between cardiometabolic, anthropometric and bioimpedance traits and difference score between brain age models
(dMRI and T1) and body age model. The figure shows posterior distributions of the estimates of the standardised coefficient. Estimates for each
health trait on dMRI difference score on the left and T1-weighted difference score on the right.
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β = �.02). The results indicate that high levels of various measures of

adiposity and hand grip strength are associated with a higher brain

age than body age, with beta coefficients showing the strongest

effect for hand grip strength. SBP is implicated as the largest contribu-

tor to higher body predicted age.

4 | DISCUSSION

Evidence of differential ageing rates across different biological sys-

tems in the same individual (Cevenini et al., 2008) has led us to con-

ceptualise ageing as a mosaic and heterogeneous construct. One

implication is that individual biomarkers studied in isolation may not

accurately reflect the risk of disease or outcome (Sebastiani

et al., 2017), and the use of multiple models in coherence has been

recommended (Cevenini et al., 2008; Cole et al., 2019; Kuo

et al., 2021). Our analyses revealed that an age prediction model

trained on bodily health traits rendered comparably high prediction

accuracy compared to the models trained solely on brain MRI data.

However, only moderate correlations between body age and brain

age predictions were found, indicating a degree of unique variance in

brain and bodily ageing processes. Multilevel modelling showed that

several elevated body health risk traits differentially contributed to a

group level increase or decrease in predicted age, potentially revealing

unique and common influences of bodily health traits on body and

brain ageing systems.

We ran Bayesian multilevel modelling to quantify the associations

between the predicted age difference score and each of the health

traits. The results are largely in line with our expectations of measures

related to poorer and better somatic health having differential contri-

butions to our age models, whereby poor health is manifested as

older-appearing body age and better health as younger-appearing

body age. In parsing unique and common influences of different

health traits on brain and bodily ageing, we interpret traits with mod-

erate effects on the age prediction difference scores as likely having

more of a unique contribution to brain or bodily ageing. For example,

the results indicate that thigh muscle volume and hand grip strength

showed a larger effect on younger-appearing body ages relative to

brain ages, as compared to liver fat, subcutaneous fat, DBP, BMI, hip

and waist circumference, which showed negligible beta coefficients

(see Figures 3 and 4 and SI Tables 3 and 4). The latter measures may

thus represent health traits that are less likely to uniquely influence

brain or bodily ageing, while measures related to muscular fitness

have a larger impact on a younger body age. Conversely, muscle-fat

infiltration and SBP have a larger effect on older-appearing body ages

relative to brain ages.

However, some findings remain difficult to interpret. For example,

we found opposite associations for SBP versus DBP. Previous

research has also reported inconsistent effects, with a UKB study

reporting higher SBP and DBP associations with greater and lower

risk of dementia, respectively (Gong et al., 2021). There are also sev-

eral adiposity-related health traits with positive associations (indicat-

ing older-appearing brain age than body age). While these have

negligible beta coefficients, the results may be counterintuitive and,

based on an extensive literature on the negative effects of obesity,

we would typically expect higher adiposity to be related to older-

appearing body age relative to the brain. However, other studies have

reported similar findings, for example greater scores on anthropomet-

ric measures associated with better health outcomes—often referred

to as ‘the obesity paradox’ (Amundson et al., 2010; Tutor

et al., 2023). While such findings might be influenced by different adi-

posity measures used across studies (Bosello & Vanzo, 2021) as well

as selection biases (Golomb et al., 2012; Masters et al., 2013), future

research might focus on variations in body–brain relationships across

age, sex, and health status (Kivimäki et al., 2018; Subramaniapillai

et al., 2022) to better understand these relationships.

An individual may have a brain-predicted age closely aligned with

their chronological age but a body age that exceeds it. One theoretical

explanation for this may be the involvement of brain maintenance

(Nyberg, 2017), where brain health may to some extent be preserved

irrespective of bodily health status through a moderating variable such

as good muscular fitness. Furthermore, individual differences in cogni-

tive reserve (Stern, 2009, 2012), or resilience to neuropathological

changes typically associated with ageing, could influence differences

in age-prediction scores. Future studies might therefore aim to inves-

tigate these difference scores in the context of cognitive functions

known to change with age, such as memory and reaction time

(Grady, 2012), as well as reserve-related mechanisms including educa-

tion, socioeconomic status, and lifestyle (Anatürk et al., 2021).

Although speculative, higher body age than brain age may reflect

worsening bodily health that has not yet manifested in the brain,

which may represent a window of opportunity for intervention. This

emphasises the importance of future longitudinal studies. Moreover,

it is important to note that a high brain and body age discrepancy

does not necessarily mean an old brain and a young body or vice

versa, but rather that the brain age is higher or lower relative to the

body age. Hence, both brain and body age could be higher or lower

than individual's chronological age. Future studies may test the rele-

vance of different brain and body age configurations, with the aim to

characterise distinct risk profiles related to neural and cardiometabolic

health.

Previous studies have demonstrated that variation in predicted

brain age is partly explained by individual differences in body compo-

sition and health traits, including abdominal fat (Beck, de Lange,

Pedersen, et al., 2022; Schindler et al., 2022; Subramaniapillai

et al., 2022), muscle-fat infiltration (Beck, de Lange, Alnæs,

et al., 2022), hand-grip strength (Cole et al., 2018; Sanders

et al., 2021) and muscle volume (Beck, de Lange, Alnæs, et al., 2022).

Our findings support these previous reports, but also suggest that

health traits may differentially influence age predictions beyond what

is captured by the brain imaging measures. However, it could also be

the case that the health trait variables do not influence the estimated

age in a specific direction on their own, but rather, that the variation

reflects the extent to which the given variable is already integrated

into the individual's brain health. Consequently, the difference score

would represent a value indicative of the individual in question rather
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than providing a generalised insight about the health trait itself. There

is also a wide range of related health, lifestyle and environmental fac-

tors that our study did not include such as diet, physical activity,

socioeconomic status, education, social support, and access to health-

care, which may mitigate the effects of our results or reveal larger dis-

crepancies. Future research might consider these aspects by

stratifying samples based on different levels of education and lifestyle

behaviours, or adjust for the effects of these variables in follow-up

analyses.

Further, the correlation (SI Figure 5) between the difference

scores in T1- and dMRI-based models indicates that the differences

in predictions are related but not identical. As evidenced by Fig-

ures 3 and 4, most of our findings related to difference scores were

similar across brain MRI modalities. However, for a few select vari-

ables, the results suggest there may be some tissue-specific effects.

For example, dMRI-Pulse, T1-WC and T1-TFP revealed positive

associations, while there were no effects for their counterparts

(T1-Pulse, dMRI-WC and dMRI-TFP). Similarly, there were negative

associations for dMRI-VAT and T1-IWB but no effects for T1-VAT

or dMRI-IWB. While these results could reflect subtle, differential

discrepancies between tissue-specific neural ageing processes and

body age, it is important to note that these discrepancies between

imaging modalities may be trivial, as the reported findings for these

variables reflect anecdotal evidence. In addition, the large sample

size (�40k) and power of the study which may lead to even trivial

differences and small effects being detected as statistically signifi-

cant. As such, we focus on the beta coefficients and strength of

evidence derived from those values to make more practical conclu-

sions. Future studies may consider more comprehensive investiga-

tions of tissue-specific and regional MRI phenotypes that may be

uniquely associated with discrepancies in brain and body age

predictions.

Some strengths and limitations of the study must be discussed.

The UKB offers a rich and comprehensive data set enriched with

health-related information, including lifestyle and health factors uti-

lised in the current study. However, selection biases (Brayne &

Moffitt, 2022; Tyrrell et al., 2021) such as overall relatively higher

education and overrepresentation by individuals of white European

descent make the sample less representative of the wider population.

One argument in favour of recruiting relatively healthy individuals at

baseline is that some will develop illnesses over the course of the

study period, allowing researchers to track changes over time and

identify predictors of health decline and therefore targets for inter-

vention strategies. However, our cross-sectional study may be influ-

enced by healthy-volunteer bias, limiting the representativeness of

the sample in terms of cardiovascular risk in midlife and older age. A

further limitation of the UKB is the limited age range, with participants

involved being between 44 and 82 years of age. Given the importance

of tracking changes over time and the potential differences in how

bodily health traits may relate to brain health across the lifespan

(Kivimäki et al., 2018), this may also vary between males and females

(Subramaniapillai et al., 2022), future research should include sex-

specific models, wider age ranges and preferably longitudinal data on

more diverse and representative samples.

In terms of age prediction, all three models performed comparably

well, both in terms of r values and MAE and RSME. However, while

brain-based age models had approximately 1000 features, the body

age model only included 40. This variation in features warrants cau-

tion in interpreting model differences as being driven strictly by bio-

logical mechanisms. That said, while prediction accuracies can

improve with a larger number of features included, this is not always

the case. For example, in Tian et al. (2023), the least accurate organ-

specific model included the largest number of features (n = 33) and

the best-performing model including 11 features. Similarly, our previ-

ous studies show that the age-dependency of features may be more

indicative of model performance than the sheer number of features

included (Anatürk et al., 2021; de Lange et al., 2020), highlighting the

importance of feature relevance over quantity in predictive accuracy.

This underscores the need for further research to validate age predic-

tion models related to bodily health and organ systems, assessing the

optimal balance and significance of feature number versus their age-

related associations.

Although we employed nested cross-validation and k-folding to

limit overfitting and generate predictions for the full sample in a held-

out manner, our models may not generalise due to the lack of external

data sets for validation. Moreover, investigating which body-age fea-

tures drive the discrepancy between brain and body age predictions,

whereby the same set of health traits were used to train the body age

model, may introduce circularity. Future research may improve gener-

alisability by including independent samples for validation, as well as

more comprehensive approaches to assessing brain- versus

body-related age predictions and model feature importance. While we

provide feature importance based on model weight scores for transpar-

ency, inherent limitations in assessing feature importance limit the gen-

eralisability of these rankings (Haufe et al., 2014). For example, weight

and gain metrics may be biased towards features with higher cardinal-

ity, or exclude equally age-dependent features from the model due to

multicollinearity (Adler & Painsky, 2022). Additionally, these methods

often overlook complex feature interactions and the non-linear nature

of models like XGBoost, leading to potential misinterpretation (Goyal

et al., 2020). To enhance model transparency and interpretability,

future studies might aim to address these challenges by incorporating

permutation feature importance, SHAP values and partial dependence

plots (Altmann et al., 2010; Lundberg & Lee, 2017), alongside external

validation on independent data sets as well as pre-modelling strategies

like principal component analysis to mitigate multicollinearity. Finally,

deep neural network models for age prediction have shown superior

performance in recent years (Leonardsen et al., 2022) and should be

considered to improve the robustness of the methodology.

To summarise, we found that age prediction using bodily health

traits performed comparably well to models using brain MRI data

alone, and that specific health traits may differentially influence brain

and body ageing systems. Our results emphasise the relevance of con-

sidering both body and brain measures for a more comprehensive
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understanding of biological ageing. The current study thus contributes

to the dissection of the unique and common variance across body and

brain health indicators, which is key towards the aim of parsing inter-

individual heterogeneity in the multisystem ageing process. Future

research should attempt to better understand the clinical relevance of

individual-level discrepancies between different age prediction

models in relation to early life exposures, lifestyle factors, genetic

architecture, and their relation to risk for cardiovascular disease and

age-related neurodegenerative and cognitive disorders.
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