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ABSTRACT

Motivation: Combinatorial interactions of transcription factors with

cis-regulatory elements control the dynamic progression through suc-

cessive cellular states and thus underpin all metazoan development.

The construction of network models of cis-regulatory elements, there-

fore, has the potential to generate fundamental insights into cellular

fate and differentiation. Haematopoiesis has long served as a model

system to study mammalian differentiation, yet modelling based on

experimentally informed cis-regulatory interactions has so far been

restricted to pairs of interacting factors. Here, we have generated a

Boolean network model based on detailed cis-regulatory functional

data connecting 11 haematopoietic stem/progenitor cell (HSPC) regu-

lator genes.

Results: Despite its apparent simplicity, the model exhibits surpris-

ingly complex behaviour that we charted using strongly connected

components and shortest-path analysis in its Boolean state space.

This analysis of our model predicts that HSPCs display heterogeneous

expression patterns and possess many intermediate states that can

act as ‘stepping stones’ for the HSPC to achieve a final differentiated

state. Importantly, an external perturbation or ‘trigger’ is required to

exit the stem cell state, with distinct triggers characterizing maturation

into the various different lineages. By focusing on intermediate

states occurring during erythrocyte differentiation, from our model

we predicted a novel negative regulation of Fli1 by Gata1, which we

confirmed experimentally thus validating our model. In conclusion, we

demonstrate that an advanced mammalian regulatory network model

based on experimentally validated cis-regulatory interactions has

allowed us to make novel, experimentally testable hypotheses about

transcriptional mechanisms that control differentiation of mammalian

stem cells.

Contact: j.heringa@vu.nl or ioannis.xenarios@isb-sib.ch or bg200@

cam.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The remarkable power of small combinations of transcription

factors to program and reprogram cellular phenotypes is exerted

through their ability to modulate the expression levels of their

target genes, typically in the range of a few hundred to a few

thousand genes. Despite the power of single transcription factors

to influence cell fate decisions, it is clear that the transcriptional

state of any given cell type is the result of interactions within

wider (transcriptional) regulatory networks. These regulatory

networks are composed of both the transcription factors (TFs)

and the cis-regulatory elements they are bound to (Davidson,

2006). Regulatory network reconstruction, therefore, requires

the identification of cis-regulatory elements, as well as the up-

stream factors that bind them.
Haematopoiesis (blood formation) has long served as a model

process for studying stem cells and represents the best character-

ized adult stem cell system with sophisticated purification strate-

gies and functional stem cell assays. Transcriptional regulation is

a key factor controlling haematopoiesis (Miranda-Saavedra and

Göttgens, 2008), a fact underlined by the large number of TF

genes that play key roles in normal haematopoiesis and/or the

development of leukaemia (Göttgens, 2004). However, relatively

little is known about the way key regulators interact with each

other in forming the transcriptional networks controlling

haematopoiesis.
Identification and subsequent characterization of gene regula-

tory elements is central to the reconstruction of transcriptional

regulatory networks because these elements dictate the connect-

ivity and topology of transcriptional regulatory networks

(Davidson, 2006). Regulatory elements can be analysed using a

variety of assays, such as transfection assays of luciferase re-

porter constructs or chromatin immunoprecipitation (ChIP) ana-

lysis to identify upstream regulators. However, the identification

of true in vivo activities of mammalian regulatory elements re-

quires the use of transgenic mouse systems. Regulatory elements

from 11 gene loci active in haematopoietic stem/progenitor cells

(HSPCs) have been validated using all the aforementioned

assays, including transgenic mice (Donaldson et al., 2005a;

Göttgens et al., 2002; Göttgens et al., 2004; Kobayashi-Osaki

et al., 2005; Landry et al., 2008; Nottingham et al., 2007;

Okuno et al., 2005; Pimanda et al., 2007; Vyas et al., 1999;
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Wilson et al., 2009). This wealth of data, therefore, represents a

unique opportunity to (re)construct transcriptional network

models for developing blood stem cells.

Network modelling is increasingly recognized as a powerful

approach to deal with the complexity of biological processes,

including the intricate interactions between TFs (Georgescu

et al., 2008; Hu et al., 2007; Karlebach and Shamir, 2008;

Krumsiek et al., 2011; Spooner et al., 2009; Thoms et al.,

2011). Most of the current experimental data describing the func-

tion of haematopoietic TFs are of a qualitative nature (e.g.

Gata1 and Scl together activate Scl expression), which limits

the choice of possible modelling approaches. However, the accu-

mulated knowledge of regulatory interactions (Foster et al.,

2009; Swiers et al., 2006) contains experimentally validated in-

formation on the topology of regulatory sub-circuits, including

positive and negative feedback loops, which are important for

maintenance of both the stem cell phenotype (Pimanda et al.,

2007) and differentiation into different mature blood cell types

(Sieweke and Graf, 1998). An important challenge for regulatory

network reconstruction is to devise models that can represent the

dynamic interactions between important sub-circuits and repre-

sent the changes in gene expression when cells are undergoing

differentiation.
Importantly, experimentally defined regulatory hierarchies

based on regulatory elements up to now largely represent a

static view, which, in the case of blood stem cell formation is

centred on a single time point in transgenic mouse assays (activ-

ity within the dorsal aorta region and foetal liver of the mid-

gestation mouse embryo). Here, we have generated a network

model based on extensive experimental data with the goal to

better understand how core stem cell network circuits are incor-

porated into the wider dynamic system of blood stem cell

development and differentiation. Through the modelling of

steady-states and dynamic network behaviour, we were able to

identify specific genes and feedback loops within the network

that are likely key players in cellular decision making, such as

the dynamic processes of stem cell maintenance and/or differen-

tiation. Moreover, our analysis revealed heterogeneous gene

expression states within undifferentiated blood stem cells, as

well as accurately captured perturbations required to differenti-

ate HSPCs along a specific lineage. Importantly, based on our

modelling results, we made a hypothesis that Gata1 negatively

regulates Fli1, which we validated experimentally using tran-

scriptional assays, thus providing new insights into the dynamic

nature of regulatory networks controlling differentiation of

blood stem cells into erythroid cells.

2 METHODS

2.1 Experimental

A reporter construct carrying the luciferase gene driven by Fli1 enhancer

was introduced into the HPC7 cells (a murine haematopoietic progenitor

cell line) by electroporation, and luciferase activity measured as described

previously (Göttgens et al., 1997). The Fli1 enhancer reporter construct

has been described previously (Donaldson et al., 2005b). Results of trans-

activation experiments were analysed as described previously (Bockamp

et al., 1998). Individual experiments were performed in triplicates on at

least two different days.

2.2 Boolean modelling

In Boolean modelling of a gene regulatory network (GRN), a gene can

exist in only two expression states: active and inactive (represented by

Boolean 1 and 0, respectively); and the interaction between genes/proteins

is represented using Boolean logic functions, such as AND, OR, BUFF

and NOT (Davidich and Bornholdt, 2008; Davidson et al., 2002; Garg

et al., 2009; Li et al., 2004; Smith et al., 2007). Advantages of Boolean

modelling approach over more traditional continuous modelling

approaches based on ordinary differential equations is that kinetic par-

ameters are not required to define interactions between the genes (or

proteins). However, such a simplification comes at the cost of discret-

ization of the gene expression (or gene activity) to only two expression

levels, namely, present or absent. Nevertheless, Boolean modelling can

efficiently capture the required dynamics of a GRN and has been suc-

cessfully applied in the past to model various biological phenomena, such

as cellular differentiation and embryo development (Davidich and

Bornholdt, 2008; Davidson et al., 2002; Li et al., 2004; Smith et al.,

2007). We used Boolean logic functions AND, OR, BUFF, IAND and

NOT as described previously (Garg et al., 2008, 2009; Kauffman et al.,

2003; Klamt et al., 2006; Mendoza and Xenarios, 2006) to represent the

interactions between the genes in the GRN. A Boolean network corres-

ponding to a sample GRN is shown in Supplementary Figure S1. We use

the Boolean modelling toolbox GenYsis to compute attractors of

Boolean functions mapped GRN and perform in silico gene perturbation

experiments (Garg et al., 2008). In this work, we use the fully asynchron-

ous approach to model the time evolution and compute steady-states of

the haematopoietic gene regulatory network (shown in Fig. 1A). The

following three assumptions are made in the fully asynchronous model-

ling approach: (i) at most one gene can change its state (be updated) in a

single step. (ii) At least one gene changes its state in a single step unless

none of the genes can change their expression levels. (iii) Every gene is

equally likely to change its state in a given step. With these constraints,

every state can have potentially N successor states, N being the number of

genes in the GRN, where each successor state differs from the present

state in only one gene expression. The fully asynchronous models have

been used often in the literature (Mangla et al., 2010; Thomas, 1991;

Thomas et al., 1995).

2.3 State-space analysis

Strongly connected components SCCs in the state space were calculated

using Tarjan’s algorithm. Stable states were identified as terminal SCCs

(TSCCs), i.e. an SCC with no outgoing edges.

Shortest traversable paths in the state space were calculated using

Dijkstra’s algorithm. A naı̈ve brute force analysis (sufficient to analyse

all �900 000 paths found) was performed to find shortest traversable

paths originating from the experimentally known HSPC expression pat-

tern and leading to the experimentally known cell-type expression pattern

states of interest. A similar analysis was performed for the state nearest to

any of the sub-states in the HSPC TSCC leading to the cell type states.

Supplementary Figure S3 summarizes the procedure taken here in an

overview of our analysis pipeline, starting from the experimental inter-

actions included in the model.

3 RESULTS

3.1 A transcriptional regulatory network model for blood

stem cells

Systematic curation of previously published results on haemato-
poietic regulatory elements allowed us to construct the first com-

prehensive regulatory network model based on 11 fully validated
regulatory elements linking together 11 transcription factors, all

of which are active in early HSPCs (see Supplementary Table S1
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for details on the 11 genes). Figure 1 shows the resulting 11 gene

regulatory network. Importantly, as all 11 regulatory elements

have been studied extensively using DNA/protein-binding

assays, as well as reporter gene assays of wild-type and mutant

elements, both the direction and value of each of the regulatory

interactions is known with certainty. Moreover, protein–protein

interactions curated from the literature were included, such as

the well-characterized Gata1–Pu.1 interactions whenever their

value (activatory/inhibitory) was known (see Supplementary

Table S2 for details).
The resulting network was modelled as logical interactions

encoding the activating and/or inhibitory links, including the

specific combinations in which particular interactions occur

(e.g. Gata2 and Scl together activate Eto2). This logical model

was implemented in advanced Boolean notation, as described in

Section 2 and shown in Figure 1 (see Supplementary Table S2 for

a full network description). Several observations are noteworthy:

(i) a network of 11 genes with three types of possible interactions
(activatory, inhibitory and none) could adopt in excess of 1050

possible network topologies. It would, therefore, simply be un-

feasible to perform modelling analysis using all possible topolo-

gies and then work backwards to identify the likely correct
topology. (ii) At the heart of the network lies the triad of Scl,

Gata2 and Fli1, which is characterized by extensive positive feed-

back loops, but negative regulatory interactions are common out-

side this central triad. (iii) We have 11 genes connected by 47 links
(an average degree of 4.3) forming a densely connected network.

Within this network, we can identify an even more densely con-

nected core consisting of Erg, Gata2, Scl and Fli1 with an average

degree of 8.5. Furthermore, Gata2 and Scl connect out to most
other genes, and nearly always operate together as a dimer.

3.2 Network genes are expressed dynamically during

haematopoiesis

In order for a network model to be useable as a predictive tool,
the behaviour of its component genes needs to be assessed using

available experimental data. We, therefore, explored the expres-

sion patterns of the 11 component genes in primary haematopoi-

etic cell types. To this end, we took advantage of two published
datasets: a single-cell gene expression profiling study comparing

haematopoietic stem with progenitor cells (Ramos et al., 2006)

and the haematopoietic fingerprints database, a collection of ex-

pression profiling data for HSPCs, as well as nine differentiated
lineages (Chambers et al., 2007). Based on the available litera-

ture, all our HSPC network genes except Gata1 should be ex-

pressed in the most immature stem cell population, which is

precisely what we found when interrogating the two expression
profiling datasets. Moreover, Gata1 expression was found in the

immediate progeny of the most immature progenitors, e.g. the

multipotent progenitor population. In contrast to the ubiquitous

expression of our 11 genes in the stem/progenitor compartment,
mature blood lineages only express subsets of the 11 genes that

make up the HSPC network ranging from 2 of 11 in activated

CD8 T-cells to 7 of 11 in granulocytes. Of note, different mature

cell types express different subsets of genes, which prompted us
to investigate whether this variability would be sufficient to at

least partially reconstruct a haematopoietic differentiation tree.

Indeed, clustering based on expression of these 11 genes was

sufficient to capture key aspects of the haematopoietic differen-
tiation tree (Fig. 1B). Our HSPC network model may, therefore,

not only reveal properties of the stem cell state but also allow us

to interrogate potential mechanisms and external stimuli that

direct stem cell differentiation into specific mature lineages.

3.3 Dynamic modelling of the network predicts

heterogeneous HSPC expression states

Having generated a complex vertebrate transcriptional regula-

tory network model based on comprehensive experimental evi-
dence, we next performed dynamic modelling analysis to explore

whether any predicted network behaviour would allow us to gain

new insights into blood stem cell biology. Dynamic modelling

revealed that the experimentally validated network topology
allows for three stable states (Fig. 2A):

(i) All genes are off (S-3-1),

A

B

Fig. 1. A blood stem cell regulatory network model grounded on com-

prehensive cis-regulatory information. (A) Diagram of the haematopoi-

etic gene regulatory network with logical functions between genes

(ellipses) encoded directly by explicit transitions (squares). Activating

interactions are shown as blue arrows, repressing interactions in red

with ’flat heads’. All regulatory information encoded in this model can

be found in Supplementary Table S2. (B) UPGMA (Unweighted Pair

Group Method with Arithmetic mean) dendrogram based on hamming

distance between cell-type–specific gene expression patterns shows that

the 11 network model genes are sufficient to uniquely identify each of the

cell types considered. Labels indicate the cell type names and the corres-

ponding binary expression patterns. Note that this dendrogram should

not be confused with the developmental tree; the latter is shown schemat-

ically in grey lines in Figure 3
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(ii) Only Gata1 and Scl are expressed (S-2-1) and

(iii) An interconnected set of 32 expression states with multiple

genes active but Gata1 always repressed (S-1-1 to 32).

To explore whether these steady-states matched observed cell

states, we next performed clustering of expression patterns

from our stable states together with the expression patterns in

the 10 haematopoietic cell types. The results shown in Figure 2A

indicate that steady-state S-3-1 corresponds to a non-haemato-

poietic cell. The steady-state S-2-1 clusters with the erythroid cell

profile (Fig. 2A), but they are not identical. Importantly, how-

ever, the hamming distance is much smaller if we take into ac-

count the fact that the benchmark expression data of Chambers

et al. (2007) that we used here represents a mixture of mature and

immature erythrocytes. It has been shown that during final mat-

uration, erythrocytes will downregulate Erg, Hhex and Runx1

(Lorsbach et al., 2004; Merryweather-Clarke et al., 2011; Seita

et al., 2012; Wong et al., 2011).

Most interesting, however, is stable state S-1, which is com-

posed of 32 interconnected internal states, including a state that

matches the expected pattern for HSPCs. This suggests that the

precursor HSPC is not a homogeneous cell population, but

rather is composed of cells in different stages of activation.

Furthermore, there is a striking correlation between gene expres-

sion profiling results from single HSPCs (Ramos et al., 2006,

summarized in Fig. 2B) and the heterogeneous states predicted

by our network, as those genes predicted by our model to be

stably present were consistently found expressed in a high

proportion of single-cell profiling experiments, whereas genes

predicted to be variable (or ‘oscillatory’) in this stable state by

our model were consistently found expressed in fewer single cells

(Fig. 2C). This analysis, therefore, not only demonstrates that

our knowledge-driven network topology is compatible with ex-

pression patterns observed in HSPCs in vivo but also suggests

that expression of genes, such as Gata2, Zfpm1, Erg and Eto2 is

heterogeneous in HSPCs and may define intermediate states

within this cell population.

3.4 Modelling state transitions reveals possible

differentiation triggers and a potential role for

expression heterogeneity in stem cell function

Analysis of transitions between different steady-states in the

model can be useful to predict experimental conditions for cells

to differentiate out of the HSPC state. We analysed all possible

state transitions in the context of our model. Most theoretically

possible transitions cannot occur with our experimentally in-

formed network topology; of all 20482¼ 4 194 304 possible

paths between the 2048 states in our model, only 895751

(21%) can be traversed within our network. This result is not

unexpected, as cell types should be stable states, and network

wiring would be expected to constrain flexibility of regulatory

states and thus stabilize cell types. There are no paths out of the

HSPC state, which is consistent with the HSPC being a stable cell

type within the context of a regulatory network based on HSPC

transcription factors.
To further classify the transitions, we next mapped all shortest

paths onto the known paths of the haematopoietic hierarchy

connecting the 10 cell types profiled by Chambers et al. (2007).

This allowed us to classify these permitted transitions in our

model into three categories:

(i) There are 11 transition paths that follow the developmen-

tal tree to the mature cell types, and all start with the

activation or repression of one or more genes by some

external stimulus (i.e. not by any of the other genes in

the network). We call these transitions ‘on path’, and

they are shown in Figure 3. The external activation/repres-

sion out of the HSPC state we call the ‘initial trigger’ or

‘push’, with a ‘push distance’ indicating the number of

genes that need this activation/repression; these are also

shown in Figure 3.

A

B C

Fig. 2. Steady-state analysis and comparison with expression patterns in 10

haematopoietic cell types. (A) The relation between the expression patterns

of the 10 major cell types and the steady-states from the network model is

shown by means of hierarchical clustering. Cell types are identified by their

names. Steady-states are labelled with ‘S’ and two numbers; the first indi-

cates the steady-state (1, 2 or 3) and the second the sub-states within the

steady-state (up to 32 for steady-state ‘S-1’). Red, expression present; blue,

expression absent. (B) Heterogeneous gene expression observed in single-

cell microarray experiments of 12 individual HSPCs for all genes in our

network except Erg (from Ramos et al., 2006). Red, expression present;

blue, expression absent; magenta, marginal expression. (C) A near-linear

correlation of averaged gene expression activity from the 12 single-cell

profiles from (B) compared with average gene activity from the modelled

HSPC steady-state individually for each of the 10 genes included in (B)
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(ii) There are a further 11 transition paths in the reverse dir-

ection, which we call ‘upstream’; these reach the HSPC

state without requiring a ‘push’ (Supplementary Table S3).

(iii) There are an additional 18 transition paths that make

direct connections between differentiated cell types.

These transition paths may provide a way to cross-differ-

entiate between mature cell types without first having to

de-differentiate into a stem cell as an intermediate step. We

call this third category of transitions ‘cross-path’

(Supplementary Table S3).

This analysis, therefore, demonstrates that our network topology

constrains the majority of transitions to be either ‘on path’ or

‘cross-path’; just over half of these transitions are between bio-

logically similar/related cell types, such as monocytes and

granulocytes.

We determined for our model, which states closest to the

HSPC state connect to each of the mature cell types. For ex-

ample, for the erythrocyte state, there is a state at a distance of

two from HSPC that can differentiate into an erythroblast in

another five steps (Fig. 3 and Supplementary Table S3). This

observation corresponds to the notion that the transition from

HSPC to erythrocyte would need a ‘push’ or ‘trigger’ of repress-

ing Fli1 and activating Gata1, thereby shifting the state two steps

away from the HSPC, from which point the system can progress

without further interventions into erythrocyte. Examining the

other transitions in the development tree, it turns out that all

transitions out of HSPC towards a mature cell type need a

‘push’ ranging from þ1 (Granulocyte) to þ4 (CD4 T-cells and

NK cells) as is shown in Figure 3 (Supplementary Table S3 for

details). We performed the same analysis for stable state S-1,

using as a starting point any of its 32 sub-states (including the

HSPC; see also Fig. 2A). Interestingly, for each target mature

cell-type state, we found there exists a transition path involving

either a shorter ‘push’ distance, or a shorter transition path after

the ‘push’ (see Supplementary Table S3 for details). The hetero-

geneous stem cell state in our model thus enables more efficient

transitions towards different mature cell types. This observation

is consistent with a role for expression heterogeneity in stem cells

in terms of mediating multi-lineage differentiation potential.
Supplementary Table S3 shows that for specific differentiation

directions different transition states can be involved, but at each

‘push distance’, þ1, þ2, þ3 and þ4 from the HSPC state, only a

single-transition state is used. For example, monocyte, CD8 and

B-cell share the same transition state (at þ3 from the HSPC), as

do NK and CD4 (þ4). Taken together, this analysis supports the

notion that the HSPC state is highly stabilized when encoded

using our experimentally informed network topology, and that

the system first needs to be perturbed to initiate differentiation

into specific lineages. Intriguingly, this notion of destabilization

has also been put forward in the experimental study of Pina et al.

(2012), who observe that early exit of HSPCs from the self-re-

newal state is not yet linked with specific gene expression changes

that would commit the cell to differentiate down a single trajec-

tory. The analysis of dynamic transitions in a regulatory network

model, such as ours, permits the formulation of hypotheses on

how this destabilization may be triggered, and how it may lead to

subsequent entry into commitment towards the different

lineages.

3.5 Increasing the ‘power’ of Gata1 results in a ‘one-step’

trigger for differentiation towards erythrocyte

We chose the differentiation pathway towards erythroid cells for

further investigation because (i) the pathway is well characterized

at the experimental level; (ii) it has been the subject of

modelling approaches based on simple two-gene interactions

(Chickarmane et al., 2009; Roeder and Glauche, 2006); and

(iii) it connects two stable states in our modelling based on our

11 gene network.

Of note, experimental evidence suggests that a single ‘trigger’

or ‘push’ (e.g. ectopic expression of Gata1) would be sufficient to

drive immature blood progenitors towards an erythroid fate

(Heyworth et al., 2002; Kulessa et al., 1995). However, as

noted earlier in the text, our modelling results suggest that

HSPC cells need to undergo two-state changes or ‘pushes’ as a

trigger to differentiate into erythroid cells. We considered that

there might be two possible explanations for this discrepancy

with our model: (i) Gata1 regulates a protein not present in

our network, and this can generate this second ‘push’ or

(ii) there is a missing link in our wiring diagram, which when

introduced would increase the ‘power’ of Gata1 so that its

ectopic expression would become a single push differentiation

trigger. Interrogating the first of these two possibilities is poten-

tially rather speculative, but the second could be readily

explored.
We therefore considered potentially missing network links

from our current topology. In particular, we extended our

model by introducing the possible repression of Fli1 by Gata1

based on the rationale that the Fli1 regulatory element is

Fig. 3. Analysis of state transitions. Developmental routes (in grey) be-

tween the major cell types in the developmental tree, with corresponding

‘on path’ transitions (leading to mature cell types) observed in the mod-

elled network state space indicated as arrows (in colours; numbers indi-

cate path lengths). The ‘on path’ transitions all start with an external

trigger from the HSPC cell-type state; this trigger, or ‘push’, changes

the state of one (‘þ1’) or more (‘þ2’, ‘þ3’ and ‘þ4’) genes. Similar

‘pushes’ are needed for transitions out of the CD4 and CD8 cell type

to their respective activated cell types
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structurally similar to the Gata2 element, which is known to be

repressed by Gata1 (Grass et al., 2003). Interestingly, just intro-

ducing this single additional repressive link elevated Gata1 to a

‘single push’ trigger for erythroid differentiation. Following on

from this modelling result, we investigated whether Gata1 was

indeed able to repress activity of the Fli1 enhancer in blood stem/

progenitor cells. To test this, the haematopoietic progenitor cell

line HPC7 was electroporated with a luciferase reporter con-

struct containing the Fli1 enhancer together with either an

empty control plasmid or a Gata1 overexpression construct. As

shown in Figure 4A, co-transfection of the Gata1 expression

plasmid resulted in significant repression of the activity of the

Fli1 enhancer construct, thus demonstrating that Gata1 is indeed

able to negatively regulate expression of Fli1. Furthermore, ana-

lysis of Gata1 ChIP-Seq data in primary fetal liver blood pro-

genitor cells co-expressing Gata1 and Fli1 (NCBI GEO

Accession GSM923586) showed direct binding of Gata1 to the

þ12kb HSPC enhancer region, as well as the Fli1 promoter

(Supplementary Fig. S2).

Network transition modelling, therefore, allowed us to predict

a previously unrecognized network link, which we were able to

validate experimentally. The revised network diagram is shown

in Figure 4B with the new repressive link indicated by dashed
lines. Interestingly, including repression of Fli1 by Gata1 did not

alter the steady-states of our model, illustrating how some net-

work links specifically influence transitions between states rather

than the states themselves.

4 DISCUSSION

The construction of accurate regulatory network models is an

essential prerequisite towards gaining a systems-level understand-

ing of the transcriptional control of complex cellular behaviour.

Here, we have generated a regulatory network model for HSPCs

based on comprehensive experimental data, which represents the

most complex mammalian network model to date anchored on

cis-regulatory functional data. This experimentally validated net-

work topology generated three stable states, one of which was

composed of 32 interconnected internal states, including the one

that matched the stem cell expression pattern. Binary on/off ex-

pression of an 11 gene network could theoretically generate 2048

possible expression states. The fact that we identify only 34 states

thus highlights how network modelling based on experimental

data can serve to reduce the complexity of analysing multi-gene

interactions. Analysis of state-space transitions identified poten-

tial triggers that might mediate exit from the stem cell state and

highlighted a previously unrecognized inhibition of Fli1 byGata1,

which was subsequently validated experimentally.

4.1 Experimentally validated network models—insights

and open questions

Regulatory network topology determines the nature of possible

regulatory states, as well as the possible transitions paths be-

tween them. The experimental evidence used for model construc-

tion is, therefore, critical. Previous studies in lower model

organisms have made extensive use of comprehensive gene regu-

latory experimental data anchored on the interactions of up-

stream regulators with specific gene regulatory sequences

(Davidson, 2006; Davidson et al., 2002; Smith et al., 2007). By

contrast, recent network models for mammalian systems, includ-

ing blood (Krumsiek et al., 2011) relied on less explicit experi-

mental data. Direct experimental knowledge of the interactions

within our network model not only provides high confidence in

the modelling but also offers an opportunity to consider the

possible consequences if our experimental knowledge was more

limited. For example, without the repression of Erg by Scl there

would only be 16 rather than 32 internal sub-states in steady-

state 1. Importantly, introducing the novel interaction generates

internal states that are closer to some of the differentiated states.

Consequently, the number of internal states that a stem cell can

‘explore’ increases with a concurrent decrease in the number of
external triggers required to move out of the HSPC state to

differentiate.

Another notable observation is that most repressive inter-

actions in the network (Fig. 1) arise from pairs of genes. A

common theme here is that co-regulators, such as Eto2 and

Zfpm1, are thought to bind DNA indirectly through interactions

B

A

Fig. 4. Gata1 inhibits activity of the Fli1 HSPC enhancer. (A) Co-trans-

fection of the Fli1 enhancer construct with a Gata1 expression vector

results in significant reduction of the Fli1 enhancer activity. Co-transfec-

tion studies were performed in the HSPC cell line HPC7. The data shown

represent the average fold change of four individual experiments, each

performed in triplicate. (B) Diagram of the gene regulatory network,

compare Figure 1 showing the predicted and experimentally validated

inhibition of Fli1 by Gata1 (dashed lines)
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with conventional transcription factors, such as Scl and Gata1,

and by doing so convert the latter from activators to repressors.

Interestingly, in our network, these negative co-regulators are

themselves activated by the conventional TFs, thus generating

an abundance of incoherent feed-forward loops within the wider

network. Simple negative feedback loops have previously been

proposed to result in oscillatory expression of important cell fate

regulators (Hirata et al., 2002; Lahav et al., 2004). To better

understand the potential for oscillatory behaviour in increasingly

complex networks, future developments might need to include

building more fine-grained models, such as the use of Petri nets,

which can be readily adapted to move from a Boolean range of

values towards discrete multi-valued expression levels (Bonzanni

et al., 2009a, b).
Within the context of our 11 gene HSPC network topology,

several expression states that correspond to the differentiated cell

types shown in Figure 3 can automatically revert to the stem cell

state, suggesting a potential for spontaneous reversion of differ-

entiated cells to the immature stem cell phenotype (details in

Supplementary Table S3). In a sense, this may merely be a

reflection of the fact that our experimentally informed HSPC

network topology generated a stable HSPC attractor.

However, it also suggests that ‘commitment features’ that

would block these regressions, may be missing from our network.

A recent model of the myeloid lineage (Krumsiek et al., 2011),

which did not include the stem cell state, found the mature cell

types (erythroid, megakaryocyte, monocyte and granulocyte) to

be attractor states. A likely explanation for the contrast between

this study and our findings may be that rather than excluding the

stem cell state, we explicitly focused on regulatory interactions

within HSPCs. Multiple positive feedback loops, therefore, sta-

bilize the HSPC state in our model, whereas the external triggers

that ‘break’ some of these feedback loops and thus induce dif-

ferentiation remain unknown. It is likely that some of these com-

mitment events will transmit extracellular signals to the nucleus,

to modulate epigenetic processes that regulate the availability of

regulatory regions for transcription factor binding. For example,

epigenetic silencing of a given regulatory element could prevent

access of upstream factors with the consequence of ‘locking in’

the differentiated state.

4.2 The ‘stem cell state’—a moving target?

Comprehensive exploration of the state space dictated by our

experimentally validated HSPC network topology resulted in a

set of 32 interconnected states, which together constitute a stable

state with a gene expression pattern consistent with HSPCs.

However, only a single internal state in the HSPC attractor

matched expression levels of all HSPC associated genes, whereas

all others expressed different subsets of genes, suggesting possible

heterogeneity between discrete expression states. The heteroge-

neous steady-state predicted by our model might at first have

been considered an artefact because of either the unavoidably

partial knowledge we have about the system, or introduced by

the high level of discretization used (i.e. from potentially continu-

ous expression levels to Boolean values). However, we believe

that on the contrary, our results may provide potentially import-

ant new insights into the nature of transcriptional control of stem

cells and differentiation as outlined below: first, the striking

correlation between gene expression profiling results from
single HSPCs and the heterogeneous states predicted by our net-
work (Fig. 2C). Moreover, single-cell analysis of highly purified

murine HSPCs using digital polymerase chain reaction (PCR)
assays (Warren et al., 2006) also showed heterogeneous tran-
scription factor expression in individual HSPCs. Taken together,

these observations suggest that the stem cell state is composed of
a discrete set of sub-states with a substantial degree of oscilla-
tions in gene expression, which includes genes thought of as cen-

tral regulators of stem cell fate. Of note, this concept is largely
consistent with the recently introduced theory of non-genetic
micro-heterogeneity in multi-potential stem cell populations

(Huang, 2009).
It might at first glance seem difficult to reconcile such oscilla-

tions and the resultant transcriptional heterogeneity with the
model of multi-lineage priming. This latter concept was founded

on the observation that some HSPCs display low-level co-expres-
sion of cytokine receptor genes affiliated with divergent differen-
tiation pathways (Hu et al., 1997). Consequently, HSPCs have

widely been thought of as highly promiscuous with widespread
co-expression rather than only expressing subsets of genes.
However, in addition to demonstrating the potential for multi-

lineage priming, the original article in 1997 (Hu et al.) also found
heterogeneous expression of stem cell affiliated genes when ana-
lysed at the single-cell level. Both multi-lineage priming of cyto-

kine receptor genes and expression of HSPC affiliated
transcription factors, therefore, show cellular heterogeneity con-
sistent with oscillating expression in individual HSPCs. Based on

the results presented in this article, cellular heterogeneity of
multi-lineage priming may, therefore, be hardwired into HSPC
regulatory networks rather than being a consequence of low-

level, non-specific gene expression noise as had been speculated
previously. This in turn would suggest that characterization of
the underlying mechanisms will provide novel insights into the

functional role of multi-lineage priming as a key mediator of
differentiation. Rather than there being a ‘stem cell continuum’,
the regulatory space within which a stem cell can move may be

constrained where a given differentiation trajectory requires pas-
sage through a number of specific intermediate states.
Other recent work also challenges the notion of a stem cell

continuum in multi-potential stem cell populations and multi-
lineage priming, but instead offers a scenario with multiple
‘discordant’ entries into lineages and subsequent ‘coalescence’

into mature expression patterns (Pina et al., 2012). In analogy
to this, we see a heterogeneous stem cell state that offers several
routes into distinct lineage-specific transition states, which would

be consistent with the notion of ‘multiple discordant entries’. Our
model also suggests the possibility of triggering cross-lineage
transitions, which may be exceedingly rare in normal cells but

have been observed experimentally (Di Tullio et al., 2011) and in
leukaemias (van Wering et al., 1995). For example, a leukaemia
may be of myeloid phenotype when a patient first presents, but

of lymphoid phenotype at relapse (Chucrallah et al., 1995; Stass
et al., 1984). A better understanding of cross-lineage transition
paths may, therefore, aid to develop therapies for relapsed pa-

tients, who currently have a poor prognosis. Cross-lineage tran-
sitions may also be exploited in the field of regenerative medicine,
where protocols are being developed to for example make

macrophages out of B-cells (Bussmann et al., 2009).
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The lack of explicit commitment in the mature cell types in our

model, as discussed earlier in the text, is consistent with the

notion that entry into a lineage may at first be reversible. This

is in line with findings from a recent model of the myeloid lineage

that exhibits a heterogeneous entry into mature cell type attrac-

tor states (Krumsiek et al., 2011). In many cases, the particular

order of external triggers applied in our model to exit the HSPC

state seems not to be critical. That is, along the ‘pushes’ to dif-

ferent distances we do not observe overlap, except for where both

lead to the same intermediate state (Supplementary Table S3).

Similarly multiple transition paths to mature cell type states

show order-independence of individual genes switched, consist-

ent with the notion of network coalescence (Tipping et al., 2009).

Thus, the emerging picture seems to be that, starting from a

heterogeneous HSPC stable state, external stimuli may trigger

different initial responses within individual cells in a heteroge-

neous stem cell population, but ultimately resolve into a clearly

demarcated mature cell state.

4.3 Discrete stem cell states and differentiation triggers

As the stem cell state space is composed of a set of regulatory

states with inter-conversions between them dictated by the net-

work topology, the question arises to what extent knowledge of

network wiring may increase our ability to manipulate stem cell

fate choices. In this study, we show that specific differentiation

triggers can be modelled successfully and inform specific hypoth-

eses for subsequent experimental testing. Importantly, specific

sub-states within the stem cell state are closer to certain down-

stream cellular fates than others; indeed fewer activating triggers

(‘pushes’) are needed and shorter transition paths exist when

starting from these sub-states. This in turn suggests that the dis-

tribution of stem cell internal states has the potential to influence

the propensity of a stem cell to choose between divergent differ-

entiation choices. A mechanistic understanding of the underlying

processes would have important scientific and clinical implica-

tions. For example, altering the levels of Gata2 has recently been

shown to affect the ratio between cycling and quiescent HSPCs

(Tipping et al., 2009), providing direct experimental evidence that

levels for one of the factors shown to be oscillating in our net-

work model are associated with phenotypically identifiable sub-

states of HSPCs. From a translational point of view, in vitro

production of specific blood cell types from HSPCs has the po-

tential to provide safer and cheaper alternatives to blood trans-

fusions. However, directed differentiation in vitro remains

disappointingly inefficient, suggesting that knowledge of the

underlying regulatory networks is critical for the development

of new protocols. Finally, treatment responses for patients carry-

ing the same leukaemogenic mutations can be different. As many

leukaemia oncogenes cause a differentiation block of early

progenitors, it is possible that this block may occur in different

‘sub-states’ of the stem cell compartment in different patients,

suggesting that a deeper understanding of these sub-states may

provide novel treatment options.
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