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a b s t r a c t

Most traits expressed by organisms, such as gene expression profiles, developmental trajectories, beha-
vioural sequences and reaction norms are function-valued traits (colloquially ‘‘phenotypically plastic
traits”), since they vary across an individual’s age and in response to various internal and/or external fac-
tors (state variables). Furthermore, most organisms live in populations subject to limited genetic mixing
and are thus likely to interact with their relatives. We here formalise selection on genetically determined
function-valued traits of individuals interacting in a group-structured population, by deriving the mar-
ginal version of Hamilton’s rule for function-valued traits. This rule simultaneously gives a condition
for the invasion of an initially rare mutant function-valued trait and its ultimate fixation in the population
(invasion thus implies substitution). Hamilton’s rule thus underlies the gradual evolution of function-
valued traits and gives rise to necessary first-order conditions for their uninvadability (evolutionary sta-
bility). We develop a novel analysis using optimal control theory and differential game theory, to simul-
taneously characterise and compare the first-order conditions of (i) open-loop traits – functions of time
(or age) only, and (ii) closed-loop (state-feedback) traits – functions of both time and state variables. We
show that closed-loop traits can be represented as the simpler open-loop traits when individuals do not
interact or when they interact with clonal relatives. Our analysis delineates the role of state-dependence
and interdependence between individuals for trait evolution, which has implications to both life-history
theory and social evolution.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

All biological organisms are open systems exchanging energy,
matter, and information with their surrounding. As such, most if
not all traits of an organism may vary in response to changes of
its internal factors as well as to changes in its external biotic and
abiotic environmental conditions. Examples include gene expres-
sion profiles, physiological processes, reaction norms, life-history
traits, developmental trajectories, morphological shapes, and
behavioural sequences. We collectively call these traits function-
valued traits by which we mean phenotypes whose expression
depends on some parameter(s) or variable(s) (e.g., time, space,
internal or external biotic and abiotic conditions), and these traits
are often called colloquially as ‘‘phenotypically plastic traits” in
evolutionary biology (p. 33 West-Eberhard, 2003). Formalising
how selection shapes these traits is relevant as it helps to under-
stand their evolution and the mechanistic constraints involved in
their functioning. This has been done for genetically determined
function-valued traits using different theoretical approaches that
consider different biological perspectives on the evolution of these
traits.

First, the evolution of life-history schedules has often been
studied by applying Pontryagin’s maximum principle (e.g., León,
1976; Macevicz and Oster, 1976; Oster and Wilson, 1977; Iwasa
and Roughgarden, 1984; Sibly et al., 1985; Stearns, 1992; Perrin,
1992; Kozłowski, 1992; Perrin et al., 1993; Bulmer, 1994; Irie
and Iwasa, 2005; Parvinen et al., 2013; Lehmann et al., 2013;
Metz et al., 2016). Here, a trait evolves to vary as a function of
the age or time of interaction of individuals, while individual fit-
ness (expected survival and reproduction) can be constrained by
the dynamics of state variables. These state variables are observ-
ables describing internal or external conditions of an individual,
e.g., body size, fat reserves, information, resource availability,
behaviour of others, that in turn depends on trait expression. Mod-
els applying Pontryagin’s maximum principle formalise the evolu-
tion of so-called open-loop traits (Weber, 2011; Liberzon, 2011),
whose name emphasises that the trait itself involves no feedback
loop, since it depends only on time (age). As such, an open-loop
trait can be thought of as an entirely fixed course of phenotypic
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expression from birth to death of an individual (trait expression
happens ‘‘by the clock”); an example would be an age-dependent
growth trajectory. Evolution of open-loop traits has also been for-
malised to include interactions between relatives, which allows to
consider their evolution under limited genetic mixing such as spa-
tially or family-structured populations (Bulmer, 1983; Day and
Taylor, 1997; Day and Taylor, 1998; Day and Taylor, 2000; Wild,
2011; Avila et al., 2019).

Second, in behavioural ecology and evolutionary game theory,
selection on function-valued traits has typically been studied by
using dynamic programming (see Houston and McNamara, 1999;
Mangel and Clark, 1988 for textbook treatments and e.g. Leimar,
1997; Ewald et al., 2007; McNamara and Houston, 1987;
Dechaume-Moncharmont et al., 2005). Here, the trait evolves to
vary not only as a function of time but also as a function of relevant
state variables. This formalises so-called closed-loop traits (Weber,
2011; Liberzon, 2011) as these now involve a feedback between
trait expression and state dynamics (see Fig. 1 for a schematic con-
ceptualisation). A closed-loop trait can thus be thought of as a con-
tingency plan, which specifies a conditional trait expression rule
according to fitness relevant conditions an individual may be in.
An example would be an ontogenetic allocation of resources to
somatic functions depending on fat reserve (by contrast, the corre-
sponding open-loop trait would allocate resources only depending
on age).

Both Pontryagin’s maximum principle and dynamic program-
ming are optimal control theory approaches (e.g., Bryson and Ho,
1975; Basar and Olsder, 1999; Dockner et al., 2000; Sydsaeter
et al., 2005; Weber, 2011; Liberzon, 2011; Kamien and Schwartz,
2012), whose common aim is to identify a schedule of control vari-
ables–a trait–over a period of time that maximises (in the best
response sense) an objective function (fitness in biology). A crucial
result of this literature is that open-loop and closed-loop trait
expression leads to different outcomes when individuals interact
(e.g. Basar and Olsder, 1999; Dockner et al., 2000). This means that
the evolution of a function-valued trait should depend on the
assumptions about its functional dependence as well as the type
of interactions individuals face. Yet the conditions under which it
matters to distinguish between open-and closed-loop traits and
State variable(s):
e.g. body size,

hunger level,

resource level

Trait

Open loop traits:
Age-dependent ontogenetic trajectory

Age-dependent foraging behaviour

Time-dependent seasonal migration

Fig. 1. Open-loop (age/time-dependent) and closed-loop (age/time-dependent and state-
variable(s). Closed-loop traits affect state variable(s) and state-variable(s) affect(s) them
vary over age/time and (ii) state variables affect fitness. Same biological phenomena can
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how this impacts on an evolutionary analysis remains unclear
and has, perhaps surprisingly, not been worked out in evolutionary
biology despite the wide interest in the evolution of phenotypic
plasticity.

Function-valued traits have also been studied in quantitative
genetics theory, where the directional selection coefficient on
function-valued traits has been derived assuming no interactions
between individuals (Kirkpatrick and Heckman, 1989;
Gomulkiewicz and Kirkpatrick, 1992; Gomulkiewicz and Beder,
1996; Beder and Gomulkiewicz, 1998). This selection coefficient
describes selection over short time-scales (time-scales of demo-
graphic changes) and can be decomposed into component-wise
descriptions, which allows to describe the direction of selection
for each component of a function-valued trait. While this selection
coefficient has been connected to long-term evolution and
extended to include interactions between individuals in well-
mixed populations (Parvinen et al., 2006; Dieckmann et al.,
2006), this literature does not distinguish between open-loop
and closed-loop traits and it thus remains unclear how the selec-
tion coefficient on a trait connects to the dynamic state constraints
(that can be physiological or informational) underlying trait evolu-
tion. This is why it would be useful to connect the directional selec-
tion coefficient on function-valued traits to optimal control theory
results, because it provide a way to analyse how selection on traits
depends on inter-dependencies and constraints between different
trait components.

There are thus different approaches to the evolution of
function-valued traits, but the scope of existing results and the
connection between them is not clear. In contrast, for selection
on quantitative scalar traits general results have long been proven
to hold. In particular, for small trait deviations (weak selection),
the selection coefficient on a scalar quantitative trait in a popula-
tion subject to limited genetic mixing can be expressed as a mar-
ginal version of Hamilton’s rule, where the direct and indirect
fitness effects (the ‘‘cost” and ‘‘benefit”) are given by partial deriva-
tives of individual fitness (e.g., Taylor and Frank, 1996; Frank,
1998; Roze and Rousset, 2003; Rousset, 2004; Lehmann and
Rousset, 2014; Van Cleve, 2015). This selection coefficient provides
two useful results about gradual quantitative trait evolution. First,
State variable(s):
e.g. body size,

hunger level,

resource level

Trait

Closed loop traits:
State-dependent ontogenetic trajectory

Hunger-dependent foraging behaviour

State-dependent migration

dependent) conceptualisation of function-valued traits. Open-loop traits affect state
in turn (thus there is a feedback-loop). In both cases: (i) traits and state variables can
be conceptualised as either open-loop or closed-loop traits.
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since the selection coefficient is independent of allele frequency
and is of constant sign (Roze and Rousset, 2003; Roze and
Rousset, 2004; Rousset, 2004; Lehmann and Rousset, 2014), the
marginal Hamilton’s rule subtends gradual evolution of all scalar
traits even when the survival and reproduction of individuals
depend on the behaviour of others, such as under density- and
frequency-dependent selection. Second, when the selection gradi-
ent vanishes, Hamilton’s rule provides the necessary first-order
condition for a strategy to be locally uninvadable; that is, it allows
to determine candidate evolutionary stable strategies, which is
central to characterise long-term evolution (Geritz et al., 1998;
Rousset, 2004). Do these general principles of gradual evolution
in group-structured populations that hold for scalar traits also hold
for function-valued traits?

Our goal in this paper is to formalise the directional selection on
genetically determined function-valued traits when state con-
straints affect trait expression and the evolving population is
group-structured (subject to limited genetic mixing). To achieve
this we develop a two-step analysis. First, it is to formalise the
directional selection coefficient on quantitative function-valued
traits under limited genetic mixing (taking panmictic population
as a special case into account) in order to characterise the gradual
evolution of function-valued traits. Second, from the directional
selection coefficient we derive how state-dependence of trait
expression affects selection on function-valued traits. The rest of
this paper is organised as follows. (1) We derive the selection coef-
ficient acting on a mutant allele coding for a function-valued trait
in the island model of dispersal (group-structured population)
under weak selection, which yields the marginal version of Hamil-
ton’s rule for function-valued traits. We deduce from Hamilton’s
rule the necessary first-order condition for local uninvadability,
which yields the candidate uninvadable function-valued traits
and applies to both continuous and discrete traits. (2) We apply
these results to time-dependent function-valued traits (dynamic
traits) by deriving necessary conditions for uninvadability
expressed in terms of dynamic constraints on state variables and
their (marginal) effects on the reproductive value. This allows us
to compare how selection acts on open-loop versus closed-loop
traits, specifying the role of trait responsiveness. In turn, this
allows to establish the connection between the dynamic program-
ming and the maximum principle type of approaches in the con-
text of gradual phenotypic evolution. (3) We illustrate the
different main concepts of our approach by analysing the evolution
of temporal common pool resource production and extraction
within groups. (4) Finally, we discuss the scope of our results.
2. Model

2.1. Biological scenario

Consider a haploid population subdivided into an infinite num-
ber of homogeneous groups (without division into class structure)
with a fixed number N of individuals, where censusing takes place
at discrete demographic time periods. All groups are subject to the
same environmental conditions and are equally connected to each
other by random dispersal. A discrete demographic time period
spans an entire life cycle iteration where various events can occur
(e.g. growth, reproduction, dispersal) to individuals. The life cycle
may allow for one, several, or all individuals per group to die (thus
including whole group extinction through environmental effects or
warfare). Generations can thus overlap but when this occurs, the
parents are considered equal (in respect to their ‘‘demographic
properties”) to their offspring in each generation (since there is
no within-group class structure). Dispersal can occur before, dur-
ing, or after reproduction, and more than one offspring from the
3

same natal group can establish in a non-natal group (i.e., propagule
dispersal). We refer to this group-structured population where all
individuals within groups are indistinguishable as the homoge-
neous island population (i.e., broadly this corresponds to the infinite
island model of dispersal of Wright (1931), used since at least
Eshel, 1972 under various versions to understand selection on
social traits, e.g., Rousset (2004), and where the specifics of our
demographic assumptions are equivalent to those considered in
Mullon et al. (2016)).

We assume that two alleles segregate in the homogeneous
island population at a locus of interest: a mutant allele with trait
um 2 U T½ � and a resident (wild-type) allele with trait u 2 U T½ �.
Here, U T½ � is the set of feasible traits that individuals can poten-
tially express and is formally defined as the set of real-valued func-
tions with range U and domain T , where T is a space of some index
variable(s) representing, for instance, time, an environmental gra-
dient or cue. We assume here that T is a closed interval over some
discrete or continuous index variable t. If t is discrete, then the ele-
ment u 2 U T½ � is a vector and if t is continuous then the element
u 2 U T½ � is a piece-wise continuous function. Hence, we write
u ¼ u tð Þf gt2T to emphasise that it consists of the (finite or infinite)
collection of all point-wise values u tð Þ of the trait. Namely, u can be
thought of as a continuous or a discrete ‘‘path” (or a schedule, or a
trajectory) on the space T . Note that in Table 1 we have outlined a
list of symbols of key components of our model.

The crucial assumption of this paper is that the mutant trait um

can be expressed in the following form as a small deviation from
the resident trait:

um ¼ uþ �g um tð Þ ¼ u tð Þ þ �g tð Þ point-wise for all t 2 Tð Þ; ð1Þ

where the phenotypic deviation function g ¼ g tð Þf gt2T must satisfy
uþ �g 2 U T½ � for sufficiently small non-negative parameter �.
Because U T½ � may have a boundary, not all phenotypic deviations
generate a mutant strategy um that remains within the bounds of
the feasible trait space um 2 U T½ �, independent of the choice of �
(see Section 2.3.2). Note that we are making a distinction between
a phenotypic deviation g (a function) and the effect size � (a scalar)
of that deviation. In the literature, a (scalar) mutant effect is often
modelled with the notation d ¼ g� (e.g. Rousset, 2004). This distinc-
tion between phenotypic deviation and effect size in the notation is
necessary for analysing selection on function-valued traits.

2.2. Allele frequency change and short-term evolution

Our first aim is to characterise the change in mutant allele fre-
quency in the homogeneous island population under weak selec-
tion (�� 1). To that end, it is useful to follow the direct fitness
approach (Taylor and Frank, 1996; Rousset and Billiard, 2000;
Rousset, 2004) and introduce the individual fitness function

w : U T½ �3 ! Rþ such that w u�;u�; uð Þ gives the expected number
of successful offspring produced over one life cycle iteration by a
focal individual (possibly including self through survival) with trait
u�, when its average neighbour in the focal group has trait u� and
an average individual (from other groups) in the population has
trait u, which is taken here to be the resident trait for simplicity
of presentation. We note that any individual in the population
can be taken to be the focal individual (Rousset and Billiard,
2000; Rousset, 2004) and that the fitness of this individual can
always be expressed in terms of average phenotypes of other indi-
viduals in different roles with respect to the focal (e.g., group
neighbour, cousin, members of other groups, etc.), whenever
mutant and resident phenotypes are closely similar (see the argu-
ment in Appendix A.2 for function-valued traits and a textbook
argument for scalar traits e.g. p. 95 Rousset, 2004). These individ-
uals in different roles, as well as the focal individual itself, are



Table 1
Symbols of key components of the model.

Control variables u;um Resident and mutant trait

(evolving traits) u� Candidate uninvadable trait
u� , u� , u Focal’s trait, average neighbour’s trait, and average trait of individuals in other groups
u� ¼ u�;u�;uð Þ A vector collecting traits from the focal’s perspective
u ¼ u tð Þf gt2T 2 U T½ � All traits considered here (except Section 2.3.1. where we consider scalar traits) belong to a set of real-valued function with

range U and domain T

Decision rules d t; x tð Þð Þ Closed-loop (feedback) control
d tð Þ Open-loop control
d x tð Þð Þ Stationary (closed-loop) control

Components w u�;u�;uð Þ Focal individual’s fitness
describing f t;u� tð Þ; x� tð Þð Þ Rate of fitness increase at time t
Fitness U x� tfð Þð Þ Fitness increase at final time tf (scrap value)

v t; x tð Þ;uð Þ (neutral) reproductive value function
k t; x tð Þ;uð Þ A vector of shadow values of state variables (k 	ð Þ ¼ k� 	ð Þ; k� 	ð Þ; k 	ð Þð Þ); the shadow value of a state variable gives the future

fitness effect from marginally changing the state (k t; x tð Þ;uð Þ ¼ rv t; x tð Þ;uð Þ)
H Hamiltonian function, contribution to individual fitness at time t due to current ‘‘activities”

Components sg uð Þ Selection coefficient
Describing s uð Þ Selection gradient (sg uð Þ ¼ �g 	 s uð Þ)
SSelection � Effect size of the mutant allele (scalar)

g Phenotypic deviation of the mutant allele (function; g ¼ g tð Þf gt2T )
�cg uð Þ; bg uð Þ Direct and indirect fitness effects
�c t;uð Þ; b t;uð Þ Point-wise direct and indirect fitness effects
r uð Þ (neutral) relatedness between two randomly sampled (without replacement) group members

State variables x; xm Resident and mutant state
x� Candidate uninvadable state
x� , x� , x Focal’s state, average neighbour’s state, and average state of individuals in other groups
x ¼ x tð Þf gt2T All state variables x tð Þ 2 R considered are real-valued functions defined over domain T
g u� tð Þ; x� tð Þð Þ The rate of change of a state variable (here for the focal individual)
g u� tð Þ; x� tð Þð Þ A vector collecting the change rates in state variables of the representative individuals, i.e.

g u� tð Þ; x� tð Þð Þ ¼ g u� tð Þ; x� tð Þð Þ; g u� tð Þ; x� tð Þð Þ; g u tð Þ; x tð Þð Þð Þ
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actors on the fitness of the focal. Here, the focal individual is
regarded as the recipient of the trait expressions of different actors
(i.e. focal individual, average neighbour, average individual in other
groups), which corresponds to the direct fitness or recipient-
centred approach (e.g. Rousset, 2004, Chapter 7).

In terms of this definition of individual fitness, we define the di-
rect fitness effect of expressing the mutant allele as

� cg uð Þ ¼ �� lim
�!0

w uþ �g;u;uð Þ �w u; u;uð Þ
�

� �
; ð2Þ

which is the effect that the focal individual has on its own fitness if
it would switch from expressing the resident to the mutant allele
for a small allelic effect. Analogously, we define the indirect fitness
effect of expressing the mutant allele as

bg uð Þ ¼ �� lim
�!0

w u;uþ �g;uð Þ �w u; u;uð Þ
�

� �
; ð3Þ

which is the effect that the whole set of neighbours have on focal’s
fitness if they were to all switch from expressing the resident to the
mutant allele (note that � appears in front of the derivatives in Eqs.
(2)–(3) because it scales the fitness effect of a trait deviation in
direction g and so �cg uð Þ and bg uð Þ are the net fitness effects).
Finally, let us denote by r uð Þ the neutral relatedness between two
randomly sampled group neighbours (Michod and Hamilton,
1980; Frank, 1998; Rousset, 2004) in the homogeneous island pop-
ulation that is monomorphic for the resident; namely, r uð Þ is the
probability that in a neutral process (where all individuals are alike)
the two homologous alleles of these individuals coalesce in the
same common ancestor (e.g., Roze and Rousset, 2003; Rousset,
2004; Lehmann and Rousset, 2014; Van Cleve, 2015). Note that
relatedness defined as such depends only on the resident trait. In
Appendix A, we show that the change Dp in the frequency p of
the mutant allele over one demographic time period (one life cycle
iteration) can be expressed in terms of these quantities as follows.
4

Invasion implies substitution principle result. In the homoge-
neous island population with two alleles, the change in mutant allele
frequency p in the population takes the form

Dp ¼ p 1� pð Þsg uð Þ þ O �2
� �

; ð4Þ

where p 1� pð Þ is the genetic variance at the locus of interest,

sg uð Þ ¼ �cg uð Þ þ r uð Þbg uð Þ ð5Þ

is a selection coefficient of order O �ð Þ that is independent of p, and
O �2
� �

is a remainder of all higher order terms. This entails an ‘‘invasion
implies substitution” property of the mutant allele, which says that if
sg uð Þ > 0, the mutant allele coding for a small function-valued devia-
tion �g is selected for and not only invades but substitutes the (ances-
tral) resident allele [since effects of order O �2

� �
can be neglected in Eq.

(4) whenever sg uð Þ is non-zero].
We have thus formalised an ‘‘invasion implies substitution”-

principle (see Priklopil and Lehmann, 2020 for a review) for
function-valued traits in the homogeneous island population and
which takes the form of Hamilton’s rule: the mutant spreads if
r uð Þbg uð Þ � cg uð Þ > 0. This novel result is a multidimensional gen-
eralisation of previous analogous results for scalar traits (Roze
and Rousset, 2003; Roze and Rousset, 2004; Rousset, 2004;
Lehmann and Rousset, 2014).

Owing to its simplicity, the function-valued trait nature of our
result is perhaps yet not fully apparent, but is made explicit on not-
ing that the direct and indirect effects (Eqs. (2) and (3)) are both
formally Gâteaux derivatives, which are directional derivatives
(see Section A.1 in Appendix for a formal definition and e.g.,
Troutman, 1991, pp. 45–50; Luenberger, 1997, pp. 171–178) and
represent changes in fitness resulting from a sum of all weighted
component-wise changes in trait expression (over the domain T )
induced by the mutation function g. To outline the component-
wise change in fitness, it is useful to decompose the selection coef-
ficient as
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sg uð Þ ¼ �g 	 s uð Þ ¼ �
Z
T
g tð Þs t;uð Þdt; ð6Þ

where 	 is an inner product on functions (the generalisation of a dot
product, see e.g. Anton and Rorres, 2013 Chapter 6),
s uð Þ ¼ s t;uð Þf gt2T is the selection gradient function, where the com-
ponent s t;uð Þ gives the selection gradient on component u tð Þ of the
trait, i.e. the value of u at time t, holding other components u t0ð Þ (for
all t0 – t 2 T ) of the trait fixed. Each component of the selection gra-
dient function is then given by

s t;uð Þ ¼ �c t;uð Þ þ r uð Þb t;uð Þ; ð7Þ

where

� c t;uð Þ ¼ @w u�;u�;uð Þ
@u� tð Þ

����
u�¼u�¼u

and b t;uð Þ ¼ @w u�;u�;uð Þ
@u� tð Þ

����
u�¼u�¼u

;

ð8Þ

are, respectively, the effect on the focal’s own fitness from changing
marginally component u� tð Þ of its trait, while holding other trait
components u� t0ð Þ (for t0 – t) fixed, while b t;uð Þ is the effect of all
group neighbours on the focal individuals fitness when changing
marginally component u� tð Þ of their traits, while holding other com-
ponents u� t0ð Þ (for t0 – t) of their traits fixed. That is, the costs and
benefits are partial derivatives and s t; uð Þ is the component-wise
inclusive fitness effect. When t is discrete and T finite, Eq. (7)
corresponds to the trait specific inclusive fitness effect derived
previously for a backdrop monomorphic resident homogeneous
island population (Mullon et al., 2016, Eq. (12)).

Eq. (6) shows that the selection coefficient is a weighted change
of trait-specific changes. Note that for continuous index variable t
over the interval T , the partial derivatives �c t;uð Þ and b t;uð Þ in Eq.
(8) are formally functional derivatives (see Eq. (A.3) in Appendix
for a formal definition and see e.g. Appendix A in Engel and
Dreizler, 2013, in particular, Eq. (A.28)). In the absence of interac-
tions between relatives s t;uð Þ reduces to b yð Þ in Eq. (1) of
Gomulkiewicz and Kirkpatrick (1992) for y ¼ t;G að Þ in Eq. (4) of
Parvinen et al. (2006) for a ¼ t, or g a;uð Þ in Eq. (3) in Metz et al.
(2016) for a ¼ t (but see DW incl tð Þ in Eq. (25) of Day and Taylor
(2000), which allows for interactions between relatives).

2.3. Necessary condition for local uninvadability and long-term
evolution

It follows from our ‘‘Invasion implies substitution principle”
result that a necessary first-order condition for a trait u� to be
locally uninvadable (resistant to invasion by any mutant in a small
radius �� 1) is given by a non-positive selection coefficient for all
admissible mutants in the resident u� population, that is

sg u�ð Þ ¼ �g 	 s u�ð Þ 6 0 8um ¼ u� þ �gð Þ 2 U T½ �: ð9Þ

Local resistance to invasion by sets of alternative mutants allows to
characterise candidate long-term evolutionary outcomes (Eshel and
Feldman, 1984; Eshel, 1996; Eshel et al., 1998) and is a first-step
(and often the only directly accessible computational step under
limited genetic mixing) towards characterising uninvadable traits.

A crucial question is whether a locally uninvadable strategy u�

will be approached by gradual evolution from within its neigh-
bourhood and thus be convergence stable (Eshel, 1983; Lessard,
1990; Geritz et al., 1998; Rousset, 2004; Leimar, 2009). Because
characterising convergence stability involves a second order anal-
ysis of the selection coefficient, which is involved for multidimen-
sional traits (Lessard, 1990; Leimar, 2009), it will not be
investigated further in this paper. For the same reason, we will also
not consider sufficient conditions for local uninvadability. In the
remainder of this section, we focus on characterising in more detail
5

the necessary condition of local univadability (Eq. (9)) in terms of
the selection gradient function s uð Þ, which allows removing the
considerations of mutational effect g.

2.3.1. Local uninvadability for scalar-valued traits
Let us first consider the case of scalar quantitative traits, where

the trait of each individual is an element belonging to a bounded
subset U 
 R of the real line. That is, the resident and mutant traits
stay within the feasibility bounds umin 6 u;um 6 umax). For this
case, the index t in Eq. (7) can be dropped and one obtains the stan-
dard selection gradient on a scalar-valued trait for the homoge-
neous island population:

s uð Þ ¼ @w u�;u�;uð Þ
@u�

����
u�¼u�¼u

þ r uð Þ @w u�;u�;uð Þ
@u�

����
u�¼u�¼u

ð10Þ

(Taylor and Frank (1996), Frank (1998), Roze and Rousset (2003),
Roze and Rousset (2004), Rousset (2004), Lehmann and Rousset
(2014), Van Cleve (2015)).

Note that for u ¼ umin an admissible phenotypic deviation g
must be non-negative g P 0 and for u ¼ umax it must be non-
positive g � 0 while for umin 6 u 6 umax the deviation g is unre-
stricted. Substituting this into the first-order condition for unin-
vadability Eq. (9) yields that the necessary condition for
uninvadability for scalar bounded traits can be expressed in the
following form

u� ¼ umin only if s u�ð Þ � 0;
umin < u� < umax only if s u�ð Þ ¼ 0;
u� ¼ umax only if s u�ð Þ P 0:

ð11Þ

Note that if the set of admissible traits is unbounded (i.e. U ¼ R),
then the first-order necessary condition for local uninvadability is
given by the second line of Eq. (11).

2.3.2. Local uninvadability for function-valued traits
Let us return to the general case where the trait of each individ-

ual is an element of U T½ �, being either a vector (T discrete) or a
(bounded and piece-wise continuous) function (T continuous).
More precisely, for all t 2 T the resident and mutant traits stay
within the feasibility bounds umin tð Þ 6 u tð Þ;um tð Þ 6 umax tð Þ, such
that umin ¼ umin tð Þf gt2T and umax ¼ umax tð Þf gt2T . Now, an admissible
deviation g ¼ g tð Þf gt2T must satisfy for all t 2 T similar conditions
as given for the scalar-traits in Section (2.3.1), that is, for
u tð Þ ¼ umin tð Þ an admissible phenotypic deviation g must be non-
negative g tð Þ P 0 and for u tð Þ ¼ umax tð Þ it must be non-positive
g tð Þ � 0 while for umin tð Þ < u tð Þ < umax tð Þ the deviation g tð Þ is unre-
stricted. Substituting the admissible deviations into Eq. (9) yields
that a candidate uninvadable strategy u� ¼ u� tð Þf gt2T 2 U T½ � satis-
fies for all t 2 T :

u� tð Þ ¼ umin tð Þ only if s t;u�ð Þ 6 0
umin tð Þ < u� tð Þ < umax tð Þ only if s t;u�ð Þ ¼ 0
u� tð Þ ¼ umax tð Þ only if s t;u�ð Þ P 0;

ð12Þ

which is thus equivalent to Eq. (11) in a point-wise way.

3. From the selection gradient to candidate optimal controls

The point-wise description of the candidate uninvadable trait u�

given by Eq. (12) is unlikely to be directly useful in solving for u� in
concrete applications because factors characterising the organism
and its environment change over time (e.g. organisms can grow
and the resources in the environment can get depleted). Hence,
solving u� from Eq. (12) would entail simultaneously solving a
large number of equations, while tracking the changes in the rele-
vant time-dependent factors. A more useful characterisation of u�
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can be achieved with the use of the mathematical framework of
optimal control theory, most notably dynamic programming and
Pontryagin’s maximum principle, both of which have been used
abundantly in evolutionary biology and in different contexts (e.g.,
León, 1976; Iwasa and Roughgarden, 1984; Mangel and Clark,
1988; Houston and McNamara, 1999; Stearns, 1992; Perrin,
1992; Perrin et al., 1993; Kozłowski, 1992; Day and Taylor, 1997;
Day and Taylor, 2000; Cichon and Kozlowski, 2000; Irie and
Iwasa, 2005; Lehmann et al., 2013; Priklopil et al., 2015; English
et al., 2016; Metz et al., 2016; Avila et al., 2019).

3.1. Key concepts

3.1.1. Fitness function, control variables and state constraints
For space reasons, we focus on a continuous time formulation

(but parallel developments apply to discrete time), and assume that
a demographic time period is characterised by the time interval
T ¼ 0; tf½ � during which the trait expression is observed. This time
interval can be thought of as the length of the lifespan of organisms
or the time during which behavioural interactions occur between
individuals (e.g. a mating season, winter season), which eventually
leads to reproduction. More specifically, we now assume that the
fitness of the focal individual can be written in the form

w u�;u�;uð Þ ¼
Z tf

0
f t;u� tð Þ; x� tð Þð Þdt þU x� tfð Þð Þ; ð13Þ

where f t;u� tð Þ; x� tð Þð Þ is the rate of increase of individual fitness at
time t and U x� tfð Þð Þ is the so-called scrap value; namely, the contri-
bution to individual fitness at the final time t ¼ tf (formally
f : T � U3 � R3 ! Rþ and U : R3 ! Rþ). Here,

u� tð Þ ¼ u� tð Þ;u� tð Þ;u tð Þð Þ; and x� tð Þ ¼ x� tð Þ; x� tð Þ; x tð Þð Þ ð14Þ

collect, respectively, the trait expression levels u� tð Þ; u� tð Þ, and u tð Þ
at time t of the focal individual, that of an average neighbour, and
an average individual from the population, and the state variables
x� tð Þ; x� tð Þ, and x tð Þ of these respective individuals (note that the
‘‘�” in the subscript of u� and x� emphasises that these controls
and state variables collect those of all actors on the fitness of the
focal recipient). State variables describe some measurable condi-
tions of an individual (e.g. size, stored energy, hunting skill) or that
of its environment (e.g. amount of resource patches, environmental
toxicity). The defining feature of a state variable in our model is that
its time dynamics depends on the evolving trait of one or more indi-
viduals in interaction and we will henceforth from now on call the
elements of u� tð Þ the control variables, which is customary for these
type of models in the evolutionary literature (e.g., Perrin, 1992; Day
and Taylor, 2000).

Because models with both control and state variables become
rapidly notationally complex, we assume that both the controls
and the state variables are one-dimensional real numbers. The
state of every individual is assumed to change according to the
function g : U3 � R3 ! R, such that

dx� tð Þ
dt

¼ g u� tð Þ;u� tð Þ;u tð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
u� tð Þ

; x� tð Þ; x� tð Þ; x tð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
x� tð Þ

0B@
1CA ð15Þ

with initial condition (‘‘i.c.”) x� 0ð Þ ¼ xinit and which is the rate of
change of the state of a focal individual with control u� tð Þ in state
x� tð Þ, when its neighbours have average control u� tð Þ and average
state x� tð Þ in a population where the average control (in other
groups) is u tð Þ and the average state is x tð Þ. Similarly, we can also
express the rate of change of the state of an average neighbour of
the focal and an average individual in the rest of the population,
respectively, as
6

dx� tð Þ
dt

¼ g u� tð Þ; x� tð Þð Þ; dx tð Þ
dt

¼ g u tð Þ; x tð Þð Þ; ð16Þ

where the vectors

u� tð Þ ¼ u� tð Þ;un tð Þ;u tð Þð Þ; x� tð Þ ¼ x� tð Þ; xn tð Þ; x tð Þð Þ;
u tð Þ ¼ u tð Þ;u tð Þ;u tð Þð Þ; x tð Þ ¼ x tð Þ; x tð Þ; x tð Þð Þ ð17Þ

collect the (average) controls and states of actors on the state vari-
ables of an average neighbour of the focal individual (first line), and
on an average individual in the population (second line), respec-
tively (here and throughout all vectors are defined by default as
being column vectors). These actors are thus second-order level
actors on the focal recipient since they affect the state variables of
actors affecting the focal’s fitness. Note that the subscripts of the
control vectors (u� tð Þ and x� tð Þ) and state vectors (u tð Þ and x tð Þ)
emphasise the individual (actor) from who’s perspective the
second-order actors’ control and variables are collected. Accord-
ingly, the vectors in Eq. (17) contain elements

un tð Þ ¼ 1
N � 1

u� tð Þ þ N � 2
N � 1

� 	
u� tð Þ;

xn tð Þ ¼ 1
N � 1

x� tð Þ þ N � 2
N � 1

� 	
x� tð Þ; ð18Þ

which are, for an average neighbour of the focal, the control and
state expressions of average neighbours viewed as actors on the
focal individual. While we have so far explicitly distinguished
between the states of different individuals, which is required if state
represents some property of individual’s condition (e.g. body size or
individual knowledge), nothing prevents the individual state to rep-
resent some environmental condition common to the group or pop-
ulation and which can be influenced by individual behaviour (e.g.
local amount of resources in the group, in which case x� tð Þ ¼ x� tð Þ,
see concrete example in Section 4). Note that while tracking the
dynamics of three state variables (Eqs. (15)–(18)) may appear com-
plicated, it is much simpler than tracking the state of all individuals
in a group separately (which would require as many equations as
there are individuals in the group and is the approach taken in
Day and Taylor (1997), Day and Taylor (2000) and differential game
theory, e.g., Dockner et al. (2000), Weber (2011)).

Finally, we now make a couple of remarks about the properties
of the fitness w u�;u�;uð Þ (Eq. (13)) of the focal individual and its
dynamic constraints (Eqs. (15) and (16)), which is a special case
of a fitness w u�;u�;uð Þ considered in Section 2. First, the fitness
(13) depends on the full trajectories of the control u� ¼ u� tð Þf gt2T
and state x� ¼ x� tð Þf gt2T variables, but since the state variables
are fully determined by the controls (by way of Eqs. (15) and
(16)) and the initial condition xinit (which we assume here to be
fixed), then fitness is determined by the controls. In particular, if
fitness depends only on the state of the system at the final time
tf (w u�;u�;uð Þ ¼ U x� tfð Þð Þ), then fitness still depends critically on
the control variables. We assumed in Section 2 that the fitness
w u�;u�;uð Þ is Gâteaux differentiable (Eqs. (2) and (3)), which
means here that functions f ;U and g are smooth enough with
respect to its arguments (see e.g. Section 3 of Liberzon (2011) for
textbook treatment of assumptions and Clarke (1976) for minimal
assumptions needed). We finally note that in the homogeneous
island population, individual fitness depends in a non-linear way
on various vital rates (e.g., Roze and Rousset, 2003, Eq. (35);
Akçay and Van Cleve, 2012, Eq. (A12); Van Cleve, 2015, Eq. (38);
Mullon et al., 2016, Eq. (box 1a)), which themselves may depend
on integrals depending on the control schedules of the individuals
in interaction. Such situations can be analysed either by defining
state variables whose integrated values represent the integral,
and are covered by the scrap value U x� tfð Þð Þ in Eq. (13), or by
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noting that to the first-order, functions of integrals can be replaced
by integrals of first-order Taylor series of fitness and hence the
f t;u� tð Þ; x� tð Þð Þ fitness component in Eq. (13) may be evaluated as
a first-order Taylor expansion of fitness in its vital rates (e.g., Van
Cleve, 2015, Eq. (39); Mullon et al., 2016, Eqs. (A60)–(A61)).

3.1.2. Concept of neutral reproductive value and shadow value
A central role in our analysis will be played by the neutral

future-value reproductive value

v t; x tð Þ;uð Þ ¼
Z tf

t
f s;u sð Þ; x sð Þð ÞdsþU x tfð Þð Þ ð19Þ

of an individual at time t in a resident population, which gives the
total contribution to fitness from time t onward of a (recipient) indi-
vidual when the current state variables of the actors on its fitness is
x tð Þ. We emphasise that the future-value reproductive value or
residual fitness v t; x tð Þ;uð Þ is connected but not equivalent to Fish-
er’s reproductive value (e.g., Goodman, 1982; Charlesworth, 1994),
which is the residual fitness conditional on reaching a certain age (a
current-value reproductive value). The argument u has been sepa-
rated with the semicolon in order to emphasise that the (future-
value) reproductive value v t; x tð Þ;uð Þ is evaluated assuming a fixed
control trajectory where u is treated as a parameter. Hence, the
reproductive value is formally a function of current time t and state
x tð Þ (v : T � R3 ! Rþ). In Appendix B.1, we show that the reproduc-
tive value satisfies the following partial differential equation (PDE)

� @v t; x tð Þ;uð Þ
@t

¼ f t;u tð Þ; x tð Þð Þ þ g u tð Þ; x tð Þð Þ 1 	 k t; x tð Þ;uð Þð Þ ð20Þ

with final condition (‘‘f.c.”) v tf ; x tfð Þ;uð Þ ¼ U x tfð Þð Þ, where
1 ¼ 1;1;1ð Þ, ‘‘	” is the inner product of vectors and the vector

k t; x tð Þ;uð Þ ¼ rv t; x tð Þ;uð Þ

¼ @v t; x� tð Þ; uð Þ
@x� tð Þ ;

@v t; x� tð Þ; uð Þ
@x� tð Þ ;

@v t; x� tð Þ; uð Þ
@x tð Þ

� 	����
x� tð Þ¼x tð Þ

ð21Þ

is the gradient of the reproductive value with respect to the changes
in the state variables of each individual affecting the focal’s fitness
(and associated with fixed resident control path u). In the last
equality, we use the vector x� tð Þ as an argument of the reproductive
value (which is defined in a resident population), which might be
confusing at first glance, since all individuals in the resident popu-
lation are actually in the same state. However, the reason why we
use the vector x� tð Þ when expressing the partial derivatives is
because we want to emphasise which state (focal individual’s, aver-
age neighbour’s or average in other groups) we are varying.

The ‘‘–” sign on the left-hand-side of Eq. (20) indicates that the
reproductive value of an individual is growing when looking back-
wards in time. Hence, it grows according to the current rate
f t;u tð Þ; x tð Þð Þ of fitness increase and the sum 1 	 k t; x tð Þ;uð Þ of the
effects of the current state change of each type of actor on the future
fitness of the focal individual, weighted by the change g u tð Þ; x tð Þð Þ of
state of the actors that are all the same in a resident population. The
elements of the gradient k t; x tð Þ;uð Þ are called the shadow values of
the states in the optimal control literature (see e.g. Dorfman,
1969; Caputo and Caputo, 2005), since by changing state, there is
no immediate effect on fitness, but only future fitness effects.

3.1.3. Concept of open and closed-loop controls
Because the internal and external conditions of organisms vary,

trait expression can evolve to be functionally dependent on these
conditions (Sibly and McFarland, 1976; McFarland, 1977;
McFarland and Houston, 1981; Houston and McNamara, 1999).
Hence, trait expression can depend on time and state variables.
Focusing on the resident trait u tð Þ, we can conceptualise trait
7

expression in (at least) two different ways that are relevant to evo-
lutionary biology. Namely,

u tð Þ ¼
d t; x tð Þð Þ closed� loop feedbackð Þ control
d tð Þ open� loop control;



ð22Þ

where the function d : T � R3 ! U is the trait expression rule (or
decision rule for short) in the so-called closed-loop (or feedback or
Markovian) form of the control variable (Basar and Olsder, 1999,
p. 221; Dockner et al., 2000, p. 59).

3.2. First-order conditions for closed-loop controls

3.2.1. The first-order condition in terms of dynamic constraints
Let us now evaluate the point-wise fitness effects of Hamilton’s

marginal rule (7) by substituting the fitness function Eq. (13) into
Eq. (8) and taking the derivative with respect to u� tð Þ and u� tð Þ. Cal-
culations displayed in Appendix B (in particular Eqs. (B.16)–(B.36))
then show that the direct effect is

�c t;uð Þ ¼ @f t;u� tð Þ; x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

effect on current fitness

þ @g u� tð Þ; x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

effect on current state change

	 k t; x tð Þ;uð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
state change effect on future fitness

ð23Þ

and the indirect effect is

b t;uð Þ ¼ @f t;u� tð Þ; x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

effect on current fitness

þ @g u� tð Þ; x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

effect on current state change

	 k t; x tð Þ;uð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
state change effect on future fitness

; ð24Þ

where g u� tð Þ; x� tð Þð Þ ¼ g u� tð Þ; x� tð Þð Þ; g u� tð Þ; x� tð Þð Þ; g u tð Þ; x tð Þð Þð Þ are
vectors collecting the rates of state changes at time t. The deriva-
tives are evaluated at u ¼ d xð Þ ¼ d t; x tð Þð Þf gt2T for closed-loop con-
trols and at u ¼ d ¼ d tð Þf gt2T for open-loop controls, where
d t; x tð Þð Þ ¼ d t; x tð Þð Þ; d t; x tð Þð Þ; d t; x tð Þð Þð Þ and d tð Þ ¼ d tð Þ; d tð Þ; d tð Þð Þ
are vectors of closed-loop and open-loop trait expression rules,
respectively, evaluated in a resident population.

We now make two observations about the direct and indirect
effects. First, the perturbations of the change of the state variables
(@g u� tð Þ; x tð Þð Þ=@u� tð Þ and @g u� tð Þ; x tð Þð Þ=@u� tð Þ) have cascading
downstream effects on fitness growth rate f t;u� tð Þ; x� tð Þð Þ, but
since under a first-order analysis everything else than the original
perturbation needs to be held constant, the downstream effects are
accounted for by the shadow values k t; x tð Þ;uð Þ evaluated in the
resident population. Second, the state dynamics of an average indi-
vidual in the population is not affected from variations in u� and u�

(@g u tð Þ; x tð Þð Þ=@u� tð Þ ¼ @g u tð Þ; x tð Þð Þ=@u� tð Þ ¼ 0, by way of Eq.
(16)).

In order to obtain a full characterisation of the first-order con-
dition taking into account the dynamic constraints brought by
the shadow value, it is useful to introduce the Hamiltonian
function

H t;u� tð Þ; x� tð Þ; k t; x tð Þ;uð Þð Þ ¼ f t;u� tð Þ; x� tð Þð Þ
þ g u� tð Þ; x� tð Þð Þ 	 k t; x tð Þ;uð Þ: ð25Þ

This can be thought of as the contribution to individual fitness of
all current ‘‘activities” (Dorfman, 1969, p. 822); namely, the
(phenotypic) expressions u� tð Þ of all individuals currently in state
x� tð Þ at t, holding everything else fixed in a resident population. It is
thus the sum of the current rate of fitness contribution
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f t;u� tð Þ; x� tð Þð Þ and the changes in states g u� tð Þ; x� tð Þð Þ weighted by
k t; x tð Þ;uð Þ evaluated in the resident population, since the shadow
values do not directly depend on the activities at time t. Our next
result (proved in Appendices B.1 and B.2) establishes the necessary
condition for uninvadability for closed-loop control paths as follows.

Closed-loop control result. Let u� ¼ d� x�ð Þ ¼ d� t; x� tð Þð Þf gt2T be a
candidate uninvadable closed-loop control path with associated state
path x� ¼ x� tð Þf gt2T , where x� tð Þ ¼ x� tð Þ; x� tð Þ; x� tð Þð Þ and shadow
value k� t; x� tð Þð Þ ¼ k t; x� tð Þ;u�ð Þ. The candidate uninvadable control
path d� x�ð Þ has to necessarily satisfy Eq. (12), where the point-wise
selection coefficient s t;u�ð Þ on control component u� tð Þ ¼ d� t; x� tð Þð Þ
can be written for all t 2 T as

s t;u�ð Þ ¼ @H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@u� tð Þ

�
þr u�ð Þ @H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

@u� tð Þ

�
u� tð Þ¼d� t;x� tð Þð Þ

;

ð26Þ

where d� t; x� tð Þð Þ ¼ d� t; x� tð Þð Þ;d� t; x� tð Þð Þ;d� t; x� tð Þð Þð Þ, the state vari-
able satisfies

dx� tð Þ
dt

¼ g d� t; x� tð Þð Þ; x� tð Þð Þ with i:c: x� 0ð Þ ¼ xinit; ð27Þ

and the shadow value k� t; x� tð Þð Þ ¼ rv� t; x� tð Þð Þ is obtained from the
reproductive value v� t; x� tð Þð Þ ¼ v t; x� tð Þ; u�ð Þ that satisfies

� @v� t; x� tð Þð Þ
@t

¼ H t;d� t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

with f :c: v� tf ; x� tfð Þð Þ ¼ U x� tfð Þð Þ: ð28Þ
We now emphasise two points about this result where all quan-

tities are evaluated on the resident control u� ¼ d� x�ð Þ and state x�

paths. First, the dynamic constraints entail solving forward in time
Eq. (27), which is an ODE (ordinary differential equation), and solv-
ing backwards in time Eq. (28), which is a PDE (partial differential
equation). Thus, the Hamiltonian can be thought as the growth rate
of the reproductive value (when looking backwards in time). For a
reader familiar with the dynamic programming literature, the
reproductive value v� t; x� tð Þð Þ is not the so-called value function
of the model and hence Eq. (20) (even when evaluated along the
candidate uninvadable control path u� ¼ u�) is not the eponymous
Hamilton–Jacobi–Bellman equation (e.g., Bryson and Ho, 1975;
Kamien and Schwartz, 2012; Basar and Olsder, 1999; Dockner
et al., 2000; Liberzon, 2011; Weber, 2011). This means that the
above result says nothing about the sufficiency of uninvadability,
like any standard first-order selection analysis. In this regard, our
result provides a weaker, yet simpler and novel condition to char-
acterise closed-loop controls.

Second, by substituting Eq. (25) into (26) yields that any interior
candidate uninvadable strategy satisfying s t; u�ð Þ ¼ 0 (recall
Eq. (12)) must satisfy

� @f t;u� tð Þ; x� tð Þð Þ
@u� tð Þ þ r u�ð Þ @f t;u� tð Þ; x� tð Þð Þ

@u� tð Þ

� �
u� tð Þ¼d� t;x� tð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

current inclusive fitness effect

¼ @g u� tð Þ; x� tð Þð Þ
@u� tð Þ þ r u�ð Þ @g u� tð Þ; x� tð Þð Þ

@u� tð Þ

� �
u� tð Þ¼d� t;x� tð Þð Þ

	 k� t; x� tð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
state-modulated future inclusive fitness effect

;

ð29Þ

This fundamental balance condition says that the current inclusive
fitness effect (on the focal individual) is traded-off (hence the nega-
tive sign) by the state-modulated future inclusive fitness effect result-
ing from the change in state variables. This trade-off is instrumental
in allowing to characterise the candidate uninvadable control
u� tð Þ ¼ d� t; x� tð Þð Þ, which can be typically done in two steps. The
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first step is to determine u� tð Þ satisfying (29), while treating the sys-
tem state x� tð Þ and its shadow value k� t; x� tð Þð Þ as parameters, yield-
ing the implicit expression

u� tð Þ ¼ D t; x� tð Þ; k� t; x� tð Þð Þð Þ; ð30Þ

in terms of some function D (that satisfies Eq. (29)). Essentially, this
step is akin to solving a static (one-dimensional) first-order condi-
tion (and which can in principle also be used whenever
s t;u�ð Þ– 0, Dockner et al., 2000, p. 97). We will refer to this first-
step characterisation as the static characterisation, since it allows
to characterise the general nature of the solution in terms of x� tð Þ
and k� t; x� tð Þð Þ independently of their explicit values. The second
step entails solving for the trajectories of x� tð Þ and v� t; x� tð Þð Þ gener-
ated by Eqs. (27) and (28) under Eq. (30) and then taking the gradi-
ent of rv� t; x� tð Þð Þ to obtain k� t; x� tð Þð Þ. Finally, after solving for
trajectories x� tð Þ and k� t; x� tð Þð Þ we can explicitly characterise the
candidate uninvadable control by substituting these solutions into
Eq. (30). Solving Eq. (28) for v� t; x� tð Þð Þ is the main technical chal-
lenge in finding the candidate uninvadable traits.

It is also often the case in biological models that the Hamilto-
nian is affine in the control variables so that fitness depends lin-
early on the evolving traits (e.g. Macevicz and Oster, 1976;
Perrin, 1992; Perrin et al., 1993; Irie and Iwasa, 2005; Avila et al.,
2019). In such cases, controls do not appear in the selection gradi-
ent (26) and hence, one can not directly determine from it the sta-
tic characterisation (30). These types of controls are known to be
singular arcs (see Kelley, 1964; Kopp and Moyer, 1965; Goh, 1966
for classic developments and see e.g. Sethi and Thompson, 2006;
Bryson and Ho, 1975 for textbook treatments). In order to charac-
terise the candidate uninvadable singular arc, we can take the total
time derivative of the selection gradient s t;u�ð Þ, which (potentially)
provides an additional algebraic equation in the variables (u�; x�; k�)
that can contain the control(s) with a non-zero coefficient. In case
it does not, another time derivative can be taken until expression
for u� can be obtained. Hence, for singular arcs, we can obtain
the static characterisation (30) by applying

d
dt

� 	i

s t;u�ð Þ ¼ 0 8i 2 1;2; . . .f g; ð31Þ

until u� can be obtained. Note that for a candidate uninvadable con-
trol to be a singular arc, Eq. (31) has to hold for a finite interval. If
Eq. (31) does not hold over a finite interval, then u� is known to
be a bang-bang control (see e.g. Sethi and Thompson, 2006;
Bryson and Ho, 1975), meaning that u� takes the values only on
its boundaries (u� tð Þ ¼ umax tð Þ or u� tð Þ ¼ umin tð Þ, owing to Eq. (12)).

3.2.2. Shadow value dynamics and state feedback in a resident
population

From the static (first-step) characterisation of u� tð Þ ¼ d� t; x� tð Þð Þ
(Eq. (30)), we observe that the candidate uninvadable trait is at
most a function of k� t; x� tð Þð Þ, but does not directly depend on
the reproductive value v� itself. Furthermore, taking the partial
derivative of Eq. (28) with respect to x� tð Þ and using the definition
of the Hamiltonian (25) and re-arranging (see Sections B.1.2 and
B.3 in Appendix) yields

�dk� t;x� tð Þð Þ
dt

¼rH t;d t;x tð Þð Þ;x tð Þ;k� t;x� tð Þð Þð Þ
���� x tð Þ¼x� tð Þ
d t;x tð Þð Þ¼d� t;x� tð Þð Þ

¼ @H t;d t;x� tð Þð Þ;x� tð Þ;k� t;x� tð Þð Þð Þ
@x� tð Þ ;

�
@H t;d t;x� tð Þð Þ;x� tð Þ;k� t;x� tð Þð Þð Þ

@x� tð Þ ;

@H t;d t;x� tð Þð Þ;x� tð Þ;k� t;x� tð Þð Þð Þ
@x tð Þ

	
x tð Þ¼x� tð Þ

d t;x� tð Þð Þ¼d� t;x� tð Þð Þ

ð32Þ
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with f.c. k� tf ; x� tfð Þð Þ ¼ rU x� tfð Þð Þ and where d t; x� tð Þð Þ ¼ d t; x� tð Þð Þ;ð
d t; x� tð Þ;d t; x tð Þð Þð . The dynamics of the shadow value, given by Eq.
(32), may at first glance appear to be an ODE (and therefore easier
to solve than Eq. (28), which is clearly a PDE for the reproductive
value v�). This may lead one to hope that it is possible to circumvent
from explicitly determining v�, by simply solving Eq. (32) to directly
obtain k�. But this hope is crushed by the trait dependence on state,
which entails that Eq. (32) depends on the derivatives of the ele-
ments of d t; x� tð Þð Þ with respect to state, which in turn depends
on higher-order derivatives of v t; x� tð Þ;u�ð Þ. This can be seen by
using Eq. (30), whereby

@d t; x� tð Þð Þ
@x� tð Þ

����
x� tð Þ¼x� tð Þ

¼ @D t; x�; k t; x� tð Þ; u�ð Þð Þ
@x� tð Þ

����
x� tð Þ¼x� tð Þ

; ð33Þ

which unveils that Eq. (32) is actually a PDE. This means that in gen-
eral it is not possible to determine the candidate uninvadable trait
from using Eq. (32), which has been repeatedly stressed in optimal
control theory (e.g. Starr and Ho, 1969; Starr and Ho, 1969; Bas�ar,
1977). However, the analysis of the components of Eq. (32) has less
been stressed, but turns out to be informative in highlighting the
main similarities and differences between selection on closed-
loop and open-loop controls.

Lets now decompose Eq. (32) for the component
k�� t; x� tð Þð Þ ¼ @v t; x� tð Þ;u�ð Þ=@x� tð Þjx� tð Þ¼x� tð Þ (similar results hold for
the other shadow values (see Appendix B.3) and and write

�dk�� t;x� tð Þð Þ
dt

¼@H t;d t;x� tð Þð Þ;x� tð Þ;k� t;x� tð Þð Þð Þ
@x� tð Þ

���� x� tð Þ¼x� tð Þ
d t;x� tð Þð Þ¼d� t;x� tð Þð Þ

¼@H t;u� tð Þ;x� tð Þ;k� t;x� tð Þð Þð Þ
@x� tð Þ

����
x� tð Þ¼x� tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

direct effect of state change

þ@H t;d t;x� tð Þð Þ;x� tð Þ;k� t;x� tð Þð Þð Þ
@x� tð Þ

����
d t;x� tð Þð Þ¼d� t;x� tð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

feedback effect of state change

;

ð34Þ

with f.c. k�� tf ; x� tð Þð Þ ¼ @U x� tfð Þð Þ=@x� tfð Þjx� tfð Þ¼x� tfð Þ. This says that the
rate of change of the shadow value is given by a direct effect of state
change on the Hamiltonian (current fitness effect and state-
modulated fitness effect) and a feedback effect on the Hamiltonian,
which arises since closed-loop traits react to changes in the state.
Using the expression for the Hamiltonian in Eq. (25), the expres-
sions for direct and indirect effects in Eqs. (23)–(24), and noting that
@d t; x tð Þð Þ=@x� tð Þ ¼ 0, the trait feedback effect can be further
expanded as

@H t;d t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@x� tð Þ

����
x� tð Þ¼x� tð Þ

¼ �c t;u�ð Þ@d t; x� tð Þð Þ
@x� tð Þ

����
x� tð Þ¼x� tð Þ

þ b t; u�ð Þ@d t; x� tð Þð Þ
@x� tð Þ

����
x� tð Þ¼x� tð Þ

ð35Þ

where the derivatives @d t; x� tð Þð Þ=@x� tð Þ and @d t; x� tð Þð Þ=@x� tð Þ give
the trait sensitivities of the focal individual and its averageneighbour,
respectively, at time t to changes in focal’s state variable x� tð Þ. Hence,
the feedback effect of state change is equal to the trait sensitivities of
all individuals in the groupweighted by their effects on the focal’s fit-
ness (the latter are effectively the direct and indirect fitness effects).

We now make three observations about Eqs. (34)–(35). First,
trait sensitivities result in inter-temporal feedbacks in trait expres-
sions. We can see this by first observing that current trait expres-
sion affects changes in state variables (by way of the second line of
Eq. (29)) which affect future fitness (measured by the shadow
value). In turn, the dynamics of shadow value takes into account
that closed-loop traits respond to changes in state variables (by
way of the second line of Eq. (35)). That is, the shadow value takes
9

into account the effects of current trait expression on future trait
expression. Hence, under closed-loop control, the current trait
expression of one individual is linked to future trait expression of
itself and other individuals in its group. Second, the sign of the
feedback effect of state change (sign of Eq. (35)) determines the
direction of the effect of trait sensitivities on the shadow values.
This means that the sign of the feedback effect balances the
trade-off between current and future (state-modulated) fitness
effects (by way of Eq. (29)). For positive feedback effect, trait sen-
sitivity increases future (inclusive) fitness gains (second line of Eq.
(29)), while for negative feedback effect, trait sensitivity decreases
future (inclusive) fitness gains. Third, the shadow value dynamics
given by Eqs. (34)–(35) is different from that in classical results
from dynamic game theory (first developed by Starr and Ho
(1969), Starr and Ho (1969)), where the feedback effect through
the focal’s own trait variation does not appear due to the absence
of interactions between relatives, whereby �c t;u�ð Þ ¼ 0 at
s t;u�ð Þ ¼ 0. By contrast, in our model with interactions between
relatives one has �c t;u�ð Þ þ r u�ð Þb t;u�ð Þ ¼ 0 at s t;u�ð Þ ¼ 0. Thus,
we recover the classical result for the feedback effect from dynamic
game theory when r u�ð Þ ¼ 0.

We now consider three scenarios (which are relevant for biol-
ogy) under which the feedback term (given by Eq. (35)) that
describes the dynamics of k�� t; x� tð Þð Þ vanishes (similar arguments
also hold for the feedback term k�� t; x� tð Þð Þ and recall that we do
not need to consider the dynamics k� t; x� tð Þð Þ here, because
k� t; x� tð Þð Þ does not affect the selection gradient). That is, we con-
sider scenarios for which Eq. (32) is a system of ODE’s (for compo-
nents k�� t; x� tð Þð Þ and k�� t; x� tð Þð Þ) and therefore solving a PDE (28)
for v� t; x� tð Þð Þ is not necessary to determine the candidate unin-
vadable trait. These three scenarios are as follows.

1. Open-loop u tð Þ ¼ d� tð Þ controls. Because the traits do not
depend on the state variables, @d� tð Þ=@x� tð Þ ¼ 0 and
@d� tð Þ=@x� tð Þ ¼ 0, which implies that Eq. (35) vanishes.

2. No social interactions in the group, meaning that fitness compo-
nents of individuals do not depend on traits and states of other
individuals in the group, i.e. the fitness components f ;U and g of
the focal individual do not depend on u� and x�, hence
b t;u�ð Þ ¼ 0. It then further follows from Eq. (26) that in order
for s t;u�ð Þ ¼ 0 to be satisfied, we need c t;u�ð Þ ¼ 0. It then fol-
lows directly that Eq. (35) vanishes.

3. In a population of clonal groups (r u�ð Þ ¼ 1) that share a com-
mon state variable (x� tð Þ ¼ x� tð Þ, e.g. common resource in the
group). Two observations can be made for this scenario. First,
from Eq. (26) it follows that �c t;u�ð Þ þ b t;u�ð Þ ¼ 0 for clones
at s t;u�ð Þ ¼ 0. Second, since x� tð Þ ¼ x� tð Þ, then e.g.
@d t; x� tð Þð Þ=@x� tð Þ ¼ @d t; x� tð Þð Þ=@x� tð Þ. Combining these two
observations directly leads to conclude that the feedback term
Eq. (35) vanishes.

There are a two implications that follow for these three cases. First,
open-loop and closed-loop evolutionary equilibria are in general
different, since the state-feedback effect causes inter-temporal
feedbacks between trait expressions of locally interacting individ-
uals under closed-loop controls, which are not possible under
open-loop controls. However, if individuals do not locally interact
or if they interact in clonal groups, then closed-loop and open-
loop representation of controls produces the same candidate unin-
vadable trait and state trajectories. Second, since the feedback
effect (Eq. (35)) vanishes for open-loop controls, the sign of the
feedback effect is crucial in comparing closed-loop and open-loop
controls. Most importantly, the sign of the feedback effect allows
to compare the balance of the trade-off between current versus
future (inclusive) fitness effects between open-loop and closed-
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loop controls (by way of Eq. (29)). If the feedback effect is positive,
then the (inclusive) fitness gain from future (second line of Eq.
(29)) is higher under closed-loop control than under open-loop
control. If the feedback effect is negative, then the (inclusive) fit-
ness gain from future is lower under closed-loop control than
under open-loop control.

3.3. First-order conditions for open-loop controls

We now focus specifically on open-loop controls by pointing
out the simplifications that arise when the decision rule depends
only on time:

u tð Þ ¼ d tð Þ: ð36Þ

As we showed in the previous section, for open-loop controls the
state-feedback term in Eq. (35) for the dynamics of the shadow
value k�� t; x� tð Þð Þ vanishes since @d� tð Þ=@x� tð Þ ¼ 0 and
@d� tð Þ=@x� tð Þ ¼ 0 (similarly it vanishes also for k�� t; x� tð Þð Þ and
k� t; x� tð Þð Þ), which implies that Eq. (32) is a system of ODE’s). Hence,
we can characterise the necessary condition for an open-loop con-
trol paths as follows.

Open-loop control result. Let u� ¼ d� ¼ d� tð Þf gt2T be the candi-
date uninvadable open-loop control path with associated state path
x� ¼ x� tð Þf gt2T and shadow value k� tð Þ ¼ k� t; x� tð Þð Þ. The candidate
uninvadable control path u� ¼ d� has to necessarily satisfy Eq. (12),
where the point-wise selection coefficient s t;u�ð Þ on a control compo-
nent u� tð Þ ¼ d� tð Þ can be written for all t 2 T as

s t;u�ð Þ ¼ @H t;u� tð Þ;x� tð Þ;k� tð Þð Þ
@u� tð Þ þ r u�ð Þ@H t;u� tð Þ;x� tð Þ;k� tð Þð Þ

@u� tð Þ

� �
u� tð Þ¼d� tð Þ

ð37Þ

where d� tð Þ ¼ d� tð Þ;d� tð Þ;d� tð Þð Þ, the state variable satisfies

dx� tð Þ
dt

¼ g d� tð Þ; x� tð Þð Þ with i:c: x� 0ð Þ ¼ xinit; ð38Þ

and the shadow values satisfy

�dk� tð Þ
dt

¼ rH t;d� tð Þ; x tð Þ; k� tð Þð Þjx tð Þ¼x� tð Þ

with f :c: k� tfð Þ ¼ rU x tfð Þð Þjx tfð Þ¼x� tfð Þ: ð39Þ

This result is Pontryagin’s weak principle for interactions between
relatives (since only small mutant deviations are considered,
Speyer and Jacobson (2010), p. 74) and only requires consideration
of the shadow value. It has been derived previously (Day and Taylor,
1997; Day and Taylor, 2000), for a slightly less general model,
where individuals locally play the field (fitness only depends on
the traits of individuals in the focal group) or interact in a pairwise
way (see also Day and Taylor, 1998; Wild, 2011 for related work).
Yet this result covers both group-structured and panmictic popula-
tions and thus covers the first-order condition result of Metz et al.
(2016) as well as those of classical life-history models (e.g., Perrin
and Sibly, 1993 for a review). We here re-derived this result as a
corollary of the closed-loop result of the previous section when
the feedback-terms describing the dynamics of the shadow value
k tð Þ vanish (i.e, Eq. (35) vanishes). Hence, we closed the loop
between the selection gradient on function-valued traits, invasion
implies substitution, Hamilton’s rule, dynamic programming, and
Pontryagin’s (weak) maximum principle.

3.4. Special case controls

We nowwork out further simplifications that arises in the char-
acterisation of the first-order condition when more specific biolog-
ical assumptions are made.
10
3.4.1. Stationary controls
For instance, under several biological situations, the individual

fitness function (Eq. (13)) can be expressed in the simpler form

w u�;u�;uð Þ ¼
Z 1

0
e�lt~f u� tð Þ; x� tð Þð Þdt: ð40Þ

Here, the time horizon is large (tf ! 1), there is no scrap value
(U x� tfð Þð Þ ¼ 0), l is a constant mortality (or discount) rate so that
e�lt can be interpreted as the probability of survival until time t,

and ef u� tð Þ; x� tð Þð Þ ¼ eltf t;u� tð Þ; x� tð Þð Þ is the current rate of fitness
increase at time t, which is assumed to not explicitly dependent
on the time variable t (in game theory, fitness functions like Eq.
(40) cover the so-called infinite-horizon autonomous differential
games, Dockner et al., 2000; Weber, 2011).

The relevant feature of this setting is that, conditional on reach-
ing a certain time (or age), the remaining fitness is the same as the
original fitness; future fitness is thus time invariant. This can be
seen more explicitly by considering the reproductive value. Indeed,
conditional on reaching time t, which occurs with probability e�lt ,
the conditional reproductive value starting at t–the current-value
reproductive value–is given by

~v t; x tð Þ;uð Þ ¼ eltv t; x tð Þ;uð Þ ¼
Z 1

t
e�l s�tð Þ~f u sð Þ; x sð Þð Þds; ð41Þ

and this is Fisher’s reproductive value under the present assump-
tions (e.g., Goodman, 1982; Charlesworth, 1994). It takes exactly
the same functional form starting at any time t 2 0;1½ Þ (in game-
theory terms it is said that ‘‘fundamentals of the game do not
change over time” Dockner et al., 2000, p. 97). Owing to this time
invariance, trait expression could be taken to be time invariant as
well and we now let the control take the following form

u tð Þ ¼ d x tð Þð Þ; ð42Þ

which we call a (closed-loop) stationary control (called a stationary
feedback control or a stationary Markov strategy in game theory,
e.g., Dockner et al., 2000; Weber, 2011). On substituting the station-
ary control (42) into Eq. (41), we see that the current-value repro-
ductive value is independent of time and thus stationary

~v t; x tð Þ;uð Þ ¼ ~v x tð Þ;uð Þ for all t 2 0;1½ Þ: ð43Þ

This means that given some fixed initial value x tð Þ ¼ xinit, the
current-value reproductive value is the same regardless of the time
the process is started. So any variation in the initial value has a
time-independent effect on ~v t; x tð Þ;uð Þ, which, more formally
owing to Eq. (43) satisfies

@ ~v t; x tð Þ;uð Þ
@t

¼ @ ~v x tð Þ;uð Þ
@t

¼ 0 and

r ~v t; x tð Þ;uð Þ ¼ r ~v x tð Þ;uð Þ ¼ ~k x tð Þ;uð Þ ð44Þ

where ~k x tð Þ;uð Þ ¼ eltk t; x tð Þ;uð Þ is the current-value shadow value
that depends on time only indirectly through x tð Þ.

This feature of stationary controls allows to markedly simplify
their first-order characterisation (as shown by many examples of
the game theory literature e.g., Dockner et al., 2000; Weber,
2011, p. 97). In order to carry out this characterisation explicitly
it is useful to use the notion of current-value Hamiltonian
(Weber, 2011, p. 111), which in our setting is defined as

eH u� tð Þ;x� tð Þ;~k x tð Þ;uð Þ
� �

¼ eltH t;u� tð Þ;x� tð Þ;k t;x tð Þ;uð Þð Þ

¼~f u� tð Þ;x� tð Þð Þþg u� tð Þ;x� tð Þð Þ 	~k x tð Þ;uð Þ:
ð45Þ

Applying Eqs. (41)–(45) to Eqs. (26)–(28) establishes the necessary
condition for uninvadability of stationary controls as follows.
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Stationary (closed-loop) control result. Let
u� ¼ d� x�ð Þ ¼ d� x� tð Þð Þf gt2T be a candidate uninvadable stationary
(closed-loop) control path with associated state path x� ¼ x� tð Þf gt2T
and stationary current-value shadow value ~k� x� tð Þð Þ ¼ r ~v � x� tð Þð Þ
with current-value reproductive value ~v � x� tð Þð Þ ¼ ~v x� tð Þ;u�ð Þ. The
candidate uninvadable control path d� x�ð Þ has to necessarily satisfy
Eq. (12), where the point-wise selection coefficient s t;u�ð Þ on control
component u� tð Þ ¼ d� x� tð Þð Þ can be written for all t 2 T as

s t;u�ð Þ ¼ elt
@ eH u� tð Þ; x� tð Þ; k� x� tð Þð Þð Þ

@u� tð Þ

"

þr u�ð Þ @
eH u� tð Þ; x� tð Þ; k� x� tð Þð Þð Þ

@u� tð Þ

#
u� tð Þ¼d� x� tð Þð Þ

;

ð46Þ

where d� x� tð Þð Þ ¼ d� x� tð Þð Þ; d� x� tð Þð Þ; d� x� tð Þð Þð Þ, the state variable
satisfies

dx� tð Þ
dt

¼ g d� x� tð Þð Þ; x� tð Þð Þ with i:c: x� 0ð Þ ¼ xinit; ð47Þ

and the current-value reproductive value satisfies

~v � x� tð Þð Þ ¼ 1
l
eH d� x� tð Þð Þ; x� tð Þ; ~k� x� tð Þð Þ
� �

: ð48Þ

Here, Eq. (48) follows from taking the (partial) time derivative of
(first two equalities of) Eq. (41) and using Eq. (44) to obtain
@ ~v x tð Þ;uð Þ=@t ¼ leltv t;x tð Þ;uð Þ þ elt@v t;x tð Þ;uð Þ=@t ¼ l ~v x tð Þ;uð Þþ
elt@v t;x tð Þ;uð Þ=@t ¼ 0 and then using Eqs. (28) and (45). Since,
1=l is the average length of an interaction (or lifespan), Eq.
(48) says that total expected fitness ~v � is equal to the expected

fitness gain eH from current phenotypic expression (a fitness flow)
multiplied by the average length of time that fitness gain can
accrue (and this holds for each state). By contrast to Eq. (28),
Eq. (48) does not involve any partial derivatives with respect to
time. Furthermore, if x� tð Þ is one-dimensional then ~k� x� tð Þð Þ is
also one-dimensional, and in this case Eq. (48) is an ordinary dif-
ferential equation. Hence, the analysis of stationary controls is
generally more tractable.
3.4.2. Constant controls
We finally turn to a type of control that that is not analysed

in the optimal control theory literature, yet is relevant to evolu-
tionary biology. This is the case of constant control u tð Þ ¼ uc 2 R

for all t 2 T , where the subscript c emphasises that the control is
independent of time. While constant controls are essentially sca-
lar traits, these traits may nevertheless affect the dynamics of
state variables that in turn affect fitness, and this makes the
analysis of the necessary first-condition for uninvadability to
involve time-dependencies. We finally provide this characterisa-
tion as a corollary of the ‘‘Open-loop control result” result as
follows.

Constant control result. Let u�
c 2 R be a candidate uninvadable

constant control (a scalar trait) with associated state path
x� ¼ x� tð Þf gt2T and shadow value k� tð Þ. The candidate uninvadable
control u� has to satisfy Eq. (10) with the (scalar) selection coefficient

s u�
c

� �
¼
Z tf

0

@H t;u� tð Þ; x� tð Þ; k� tð Þð Þ
@u� tð Þ

�
þr u�

c

� � @H t;u� tð Þ; x� tð Þ; k� tð Þð Þ
@u� tð Þ

�
u� tð Þ¼u�

c

dt;
ð49Þ
11
where u�
c ¼ u�

c;u
�
c;u

�
c

� �
, the state variable satisfies

dx� tð Þ
dt

¼ g u�
c; x

� tð Þ
� �

with i:c: x� 0ð Þ ¼ xinit; ð50Þ

and the shadow values satisfy

�dk� tð Þ
dt

¼ rH t;u�
c; x tð Þ; k� tð Þ

� ���
x tð Þ¼x� tð Þ

with f :c: k� tfð Þ ¼ rU x tfð Þð Þjx tfð Þ¼x� tfð Þ: ð51Þ

The key difference between this result and the ‘‘Open-loop control
result” is Eq. (49), which says that the selection coefficient depends
on the derivatives of the Hamiltonian integrated over the interac-
tion period T . This follows directly from the fact that the control
is a scalar and a mutant schedule is deviated in the same direction
at all time points (hence there are no differences in point-wise devi-
ations). Rather surprisingly, this or closely related results do not
seem to have appeared previously in the optimal control nor evolu-
tionary biology literature, even for the special cases of no interac-
tions between individuals. However, this result may be useful for
example in connecting our approach with various previous models
(see Discussion and Box 1 for a concrete example).
4. Examples

4.1. Common pool resource production

4.1.1. Biological scenario
We here present an application of our results to the production

of common pool resource that returns fitness benefits to all group
members but is produced at a personal fitness cost. The evolving
trait we consider is the schedule u ¼ u tð Þf gt2T of effort invested
into resource production during an interaction period T 2 0; tf½ �
and we will hereinafter refer to the control u tð Þ as the production
effort at time t. Let u� tð Þ;u� tð Þ;u tð Þ denote the production efforts
at time t of the focal individual, average neighbour in the focal
group, and average individual (from other groups) in the popula-
tion, respectively. Let xc tð Þ and x tð Þ be the resource level at time t
(the total amount of resources produced) in the focal group and
the average group in the population, respectively. Note that here
we have a common state variable xc tð Þ ¼ x� tð Þ ¼ x� tð Þ between
individuals in the same group and individuals interact through
the state only locally (resources produced in other groups does
not directly affect the fitness of individuals in the focal group).

We study the evolution of the production effort under two dif-
ferent scenarios: (i) individuals can adjust their production effort
according to the (local) resource level xc tð Þ (closed-loop control)
and (ii) individuals are committed to a fixed schedule of produc-
tion effort (open-loop control). One difficulty in analysing the evo-
lution of such traits is that limited genetic mixing generates
relatedness between group members but also competition
between them, which leads to kin competition (e.g., Taylor,
1988; Frank, 1998; Rousset, 2004; Van Cleve, 2015). Since we want
to highlights the key effects of the evolution of open-loop and
closed-loop controls in the context of interactions between rela-
tives in a simple way, we want to avoid the complexities brought
by kin competition and thus assume implicitly a life cycle that
entails no kin competition and that relatedness is independent of
the control r uð Þ ¼ r.

In particular, we assume that individual fitness takes the form

w u�;u�;uð Þ ¼ xc tfð Þ � ceffort

Z tf

0
u� tð Þ2dt; ð52Þ



Fig. 2. Static characterisation u� tð Þ ¼ D t; x� tð Þ; k�c t; x� tð Þð Þ
� �

(Eq. (61)) of the candi-
date uninvadable production effort as a function of resource x� tð Þ for fixed values of
k�c t; x� tð Þð Þ ¼ 0:002 and for different values of relatedness between individuals in the
group. Parameter values: N ¼ 10; a ¼ 1; ceffort ¼ 0:01. Note that characterisation
holds for both open-loop and closed-loop controls.
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which depends on the resource level xc tfð Þ in the group at the
end of interaction period tf and on the accumulated (personal)
cost of producing the common resource for the group (the second
term in Eq. (52)). Here ceffort is a parameter scaling the personal
cost. The resource level xc tfð Þ and ceffort are measured in units
of the number of offspring to the focal individual and scaled such
that they inherently take into account the proportional effect of
density-dependent competition (proportional scaling of fitness
does not affect the direction of selection). We assume that xc tð Þ
depends on the total amount of production effort that individuals
in the focal’s group invest into producing it and that the return
from this effort decreases exponentially with the current level
of resource

dxc tð Þ
dt

¼ a u� tð Þ þ N � 1ð Þu� tð Þð Þe�xc tð Þ xc 0ð Þ ¼ 0; ð53Þ

where the parameter a > 0 is the efficiency of producing the com-
mon resource.

We now make two observation about this model. First,
neglecting the effects of kin competition in Eq. (52) does not
lead to any loss of generality in our forthcoming analysis, since
taking kin competition into account would only affect the final
results by re-scaling the value of relatedness (e.g., Van Cleve,
2015; Mullon et al., 2016). Second, the mathematical properties
and thus the structure of the game embodied in Eqs. (52)–(53)
are equivalent to those of the parental investment game model
of Ewald et al. (2007) from which we took inspiration. However,
biologically Eqs. (52)–(53) have a different interpretation, since
our model considers interactions between relatives (Ewald
et al., 2007 considers pair-wise interactions of non-relatives)
and we will compare open-loop and closed-loop controls
(Ewald et al., 2007 compares static traits with closed-loop traits).
The forthcoming analysis will also conceptually depart from that
of Ewald et al. (2007), because it will be based on the (neutral)
reproductive value function (28), while their analysis is based on
solving the Hamilton–Jacobi-Bellman equation for the optimal
value function (see Ewald et al., 2007, p. 1456) with which the
present n-player scenario cannot be obtained as a trivial exten-
sion of the approach used in Ewald et al. (2007).

4.1.2. Static characterisation of the production effort
From Eq. (52), the reproductive value (Eq. (19)) for this model is

v t; x tð Þ;uð Þ ¼ x tfð Þ � ceffort

Z tf

t
u tð Þ2dt

� �
ð54Þ

We denote the corresponding shadow value with
kc t; x; uð Þ ¼ @v t; xc tð Þ; uð Þ=@xc tð Þjxc tð Þ¼x tð Þ. Eq. (52) also entails that
the fitness components f and U (as defined in Eq. (13)) take the
form

f t;u� tð Þ; xc tð Þð Þ ¼ �ceffortu� tð Þ2 and U xc tfð Þð Þ ¼ xc tfð Þ; ð55Þ

while the rate of change of the state variable xc tð Þ is given by

gc u� tð Þ; xc tð Þð Þ ¼ a u� tð Þ þ N � 1ð Þu� tð Þð Þe�xc tð Þ: ð56Þ

On substituting Eqs. (55)–(56) into the Hamiltonian (25) produces

H t;u� tð Þ; xc tð Þ; kc t; x tð Þ;uð Þð Þ ¼
� ceffort u� tð Þð Þ2 þ a u� tð Þ þ N � 1ð Þu� tð Þð Þe�xc tð Þkc t; x tð Þ;uð Þ; ð57Þ

which gives the direct fitness effect

�c t;u�ð Þ ¼
@H t;u� tð Þ; x� tð Þ; k�c t; x� tð Þð Þ
� �

@u� tð Þ

����
u� tð Þ¼u� tð Þ

¼ �2ceffortu� tð Þ þ ak�c t; x� tð Þð Þe�x� tð Þ ð58Þ

and the indirect fitness effect
12
b t;u�ð Þ ¼
@H t;u� tð Þ; x� tð Þ; k�c t; x� tð Þð Þ
� �

@u� tð Þ

����
u� tð Þ¼u� tð Þ

¼ N � 1ð Þak�c t; x� tð Þð Þe�x� tð Þ; ð59Þ

where k�c t; x� tð Þð Þ ¼ kc t; x� tð Þ;u�ð Þ. Hence, the balance condition (29)
for this model reads

2ceffortu� tð Þ ¼ aþ ra N � 1ð Þ½ �e�x� tð Þk�c t; x� tð Þð Þ: ð60Þ

This says that the net effect on accumulated personal cost due to
spending effort to produce a unit resource must balance out the
inclusive fitness benefit associated with that unit resource. Solving
Eq. (60) for u� tð Þ yields

u� tð Þ ¼ ce�x� tð Þk�c t; x� tð Þð Þ; ð61Þ

where

c ¼ a 1þ N � 1ð Þrð Þ
2ceffort

ð62Þ

scales the benefit to cost ratio of producing the resource, note also
that c > 0. Eq. (61) says that (candidate uninvadable) production
effort u� tð Þ decreases exponentially with the resource level x� tð Þ,
increases linearly with the shadow value and relatedness, and is
not directly dependent on time. This general nature of the solution
applies to both open-loop and closed-loop controls and is depicted
in Fig. 2.

4.1.3. Closed-loop production effort
We now turn to analyse u� tð Þ explicitly as a function of time

when the control is the closed-loop u� tð Þ ¼ d� t; x� tð Þð Þ, which
requires to evaluate x� tð Þ and v� t; x� tð Þð Þ ¼ v t; x� tð Þ;u�ð Þ. To that
end, we evaluate the dynamic Eq. (53) for xc tð Þ along u� ¼ u� and
xc ¼ x� and substituting the expression for u� tð Þ from Eq. (61),
whereby

dx� tð Þ
dt

¼ aNck�c t; x� tð Þð Þe�2x� tð Þ with i:c: x� 0ð Þ ¼ 0: ð63Þ

Substituting Eqs. (57) and (61) into Eq. (28) and simplifying yields

� @v� t; x� tð Þð Þ
@t

¼ c1e�2x� tð Þ v�
x t; x� tð Þð Þ

� �2
with f :c: v� tf ; x� tfð Þð Þ ¼ x� tfð Þ; ð64Þ

where
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c1 ¼ c aN � ceffortcð Þ ¼ ac
2

2N � 1þ N � 1ð Þr u�ð Þð Þð Þ > 0: ð65Þ

Using the method of characteristics, Ewald et al. (2007) showed that
the partial differential Eq. (64) has the following solution

v� t; x� tð Þð Þ ¼ log
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c1 tf � tð Þ þ exp 2x� tð Þð Þ

p
þ exp x� tð Þð Þ

2

� 	
� c1 tf � tð Þ

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c1 tf � tð Þ þ exp 2x� tð Þð ÞÞ

p
þ exp x� tð Þð Þ

2

� 
2
ð66Þ

(our Eq. (64) corresponds to Eq. (21) of Ewald et al. (2007) where
c1 ¼ 3=2k and their solution is presented on page 1459 of their
paper, where c1 ¼ c ¼ 3=2k). Taking the derivative with respect to
x� tð Þ and upon simplifying yields the expression for the shadow
value

k�c t; x� tð Þð Þ ¼ 2 exp x� tð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c1 tf � tð Þ þ exp 2x� tð Þð Þ

p
þ exp x� tð Þð Þ

: ð67Þ

Substituting this into the static characterisation Eq. (61) shows that

u� tð Þ ¼ d� t; x� tð Þð Þ

¼ 2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c1 tf � tð Þ þ exp 2x� tð Þð Þ

p
þ exp x� tð Þð Þ

� � ; ð68Þ

where the state variables is the solution of

dx� tð Þ
dt

¼ 2aNc
exp �x� tð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8c1 tf � tð Þ þ exp 2x� tð Þð Þ
p

þ exp x� tð Þð Þ
with i:c: x� 0ð Þ ¼ 0; ð69Þ

which was obtained by substituting Eq. (67) into Eq. (63) and for
which we were not able to find a closed form expression.

4.1.4. Open-loop production effort
We turn to derive the candidate uninvadable open-loop trait

u� tð Þ ¼ d� tð Þ. Substituting Eq. (57) and Eq. (61) into Eq. (39), we
arrive, by using Eq. (63), at the following two-point boundary value
system

_x� tð Þ ¼ aNck�c tð Þe�2x� tð Þ with i:c: x� 0ð Þ ¼ 0

� _k�c tð Þ ¼ �aNc k�c tð Þ
� �2e�2x� tð Þ with f :c: k�c tfð Þ ¼ 1:

ð70Þ

This system has one real-valued solution

x� tð Þ ¼ log
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aNctfþ1

p
�1

� �
2tf

þ 1
� 	

k�c tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aNctfþ1

p
�1

� �
t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aNctfþ1

p
�1

� �
þ2tf

� �
4aNct2

f
;

ð71Þ
Fig. 3. Candidate uninvadable production effort (panel a) and resource level (panel b) fo
values of average relatedness r. Parameter values: N ¼ 10; a ¼ 1; ceffort ¼ 0:01, T ¼ 100. N
traits coincide.
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and substituting this solution back into Eq. (61) produces

u� tð Þ ¼ d� tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aNctf þ 1

p
� 1

2aNtf
; ð72Þ

which turns out to be constant in time.

4.1.5. Comparison between closed-loop and open-loop production
efforts

This example illustrates our generic result that in a population
of clonal groups (r ¼ 1) closed-loop and open-loop equilibria coin-
cide (Fig. 3). In a population of non-clonal groups (r < 1) the pro-
duction effort u� tð Þ and the resulting amount of resource x� tð Þ
tend to be lower under the closed-loop equilibrium than under
the open-loop equilibrium (Fig. 3). Overall, the production effort
monotonically increases over time for the closed-loop control
and stays constant under the open-loop control (Fig. 3).

The difference between closed-loop and open-loop (non-clonal)
equilibria arises from the difference in the shadow value dynamics
(recall Section 3.2.2). We find that the shadow value is lower under
closed-loop control than under open-loop control when r < 1
(Fig. 4). This is so because of the feedback effect of state change
(Eq. (35)), which for our example is

@H d t; xc tð Þð Þ; x� tð Þ; k�c t; x� tð Þð Þ
� �

@xc tð Þ

����
xc tð Þ¼x� tð Þ

¼ b t;u�ð Þ � c t;u�ð Þð Þ@d t; xc tð Þð Þ
@xc tð Þ

����
xc tð Þ¼x� tð Þ

< 0: ð73Þ

Since this is negative, the shadow value declines faster backwards in
time than under the closed-loop equilibrium. In order to understand
why the feedback effect is negative, we need to consider the signs of
b t;u�ð Þ � c t;u�ð Þ and the trait sensitivity @d t; xc tð Þð Þ=@xc tð Þ (which is
here the same for all group members). The term b t;u�ð Þ � c t;u�ð Þ is
positive when groups are non-clonal and zero when they are clonal
(Fig. 5, panel a). This means that if everyone in the group produces
more of the resource, then the focal’s fitness increases under the
non-clonal equilibrium and is unaffected under the clonal equilib-
rium. The trait sensitivity is always negative (Fig. 5, panel b). Hence,
individuals will reduce their production effort in response to an
increase in the resource level and themagnitudeof this effect is larger
for higher values of relatedness.

In conclusion, investment effort is lower for closed-loop traits
than for open-loop traits in a population of non-clonal groups
(r < 1), because closed-loop trait expression takes into account
that other individuals will reduce their production effort in
response to the focal individual increasing its production effort.
In a population of clonal groups where the focal individual
r closed-loop (CL) (solid lines) and open-loop (OL) traits (dashed lines) for different
ote that if individuals in the group are clones (r ¼ 1), the closed-loop and open-loop



Fig. 4. Shadow value k�c t; x� tð Þð Þ over time t for closed-loop (CL) and open-loop (OL)
control and for different values of relatedness between individuals in the group.
Parameter values: N ¼ 10; a ¼ 1; ceffort ¼ 0:01; T ¼ 100. Note that characterisation
holds for both open-loop and closed-loop characterisation of the trait expression
rule.
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increases its trait expression, the response from other individuals
will not affect the fitness returns to the focal. For open-loop con-
trols, the response from other individuals can never affect the fit-
ness returns, because open-loop control trajectories are pre-
determined at birth (full commitment to control trajectory) and
trait expression can not be adjusted in response to changes in
the resource level. For clonal groups, trait sensitivity to changes
in the resource level does not alter individual behaviour, because
everyone’s interests in the group are aligned.

4.2. Common pool resource extraction

4.2.1. Biological scenario
We finally present an application for a stationary (closed-loop)

control, which involves the same demographic assumption as the
previous example but with fitness given by Eq. (40). And we now
let u� tð Þ;u� tð Þ;u tð Þ denote the extraction rates of a given resource
with abundance xc tð Þ at time t in the focal group, which is again
taken as a common state variable among group members (xc tð Þ ¼
x� tð Þ ¼ x� tð Þ). This resource is assumed to follow the dynamics

dxc tð Þ
dt

¼� u� tð Þþ N�1ð Þu� tð Þð Þ with i:c: xc 0ð Þ¼ xinit >0; ð74Þ

and is thus depleted at a rate given by the sum of the extraction
rates within the focal’s group. We assume that the resources
extracted by the focal individual translates into current-value fit-
ness according to
Fig. 5. Group feedback effect on focal’s fitness (panel a) and trait sensitivity (panel b) fo
Parameter values: N ¼ 10; a ¼ 1; ceffort ¼ 0:01; T ¼ 100.
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~f u� tð Þ; xc tð Þð Þ ¼ a
u� tð Þ1�r

1� r
; ð75Þ

where the parameter a > 0 is the efficiency of turning extracted
resources into producing offspring and r 2 0;1ð Þ is a parameter
shaping the concavity of the production function, which thus exhi-
bits diminishing returns (we used Eq. (75) instead of the perhaps
biologically more realistic Holling type 2 functional response for
ease of calculations). The model defined by Eqs. (74)–(75) recasts
into the homogeneous island model the standard baseline resource
extraction game of environmental economics (Dockner et al., 2000,
chapter 12.1; Weber, 2011, chapter 4.3).

4.2.2. Static characterisation of the extraction rate
On substituting Eqs. (74)–(75) into the current-value Hamilto-

nian (45) and considering only a current-value shadow value
~kc� x� tð Þð Þ ¼ etlk�c t; x� tð Þð Þ (since we have common state variable)
produces

eH u� tð Þ; xc tð Þ; ~kc x tð Þ;uð Þ
� 


¼ a
u� tð Þ1�r

1� r
� ~kc x tð Þ;uð Þ u� tð Þ þ N � 1ð Þu� tð Þð Þ:

ð76Þ

This yields the direct fitness effect

�c t;u�ð Þ ¼
@ eH u� tð Þ; x� tð Þ; ~kc� x� tð Þð Þ
� 


@u� tð Þ

������
u� tð Þ¼u� tð Þ

¼ au� tð Þ�r � ~kc� x� tð Þð Þ

ð77Þ

and the indirect fitness effect

b t;u�ð Þ ¼
@ eH u� tð Þ; x� tð Þ; ~kc� x� tð Þð Þ
� 


@u� tð Þ

������
u� tð Þ¼u� tð Þ

¼ � N � 1ð Þ ~kc� x� tð Þð Þ: ð78Þ

For this model, the balance condition reads

au� tð Þ�r ¼ 1þ r N � 1ð Þ½ � ~kc� x� tð Þð Þ: ð79Þ

This says that the net current personal benefit of a unit extracted
resource must balance out the future inclusive fitness cost resulting
from depleting that unit resource, and yields the equilibrium
extraction rate

u� tð Þ ¼ 1þ r N � 1ð Þ½ � ~kc � x� tð Þð Þ
a

 !� 1=rð Þ

: ð80Þ
r closed-loop (CL) control for different values of average relatedness r in the group.
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4.2.3. Stationary (closed-loop) extraction rate
Let us now analyse u� tð Þ explicitly as a function of time when

the control is stationary u� tð Þ ¼ d� x� tð Þð Þ. Substituting Eq. (76)
and Eq. (80) into Eq. (48), simplifying and dropping the time index
on the state variables yields

lv� x� tð Þð Þ ¼ c1v�
x x� tð Þð Þ r�1ð Þ=r

; ð81Þ

which is a differential equation for v� x�ð Þ where
v�

x x� tð Þð Þ ¼ ~kc � x� tð Þð Þ and

c1 ¼ 1þ r N � 1ð Þ
a

� 	�1=r 1þ r N � 1ð Þ
1� rð Þ � N

� 	
ð82Þ

is a constant that we assume to be positive (which thus requires
that 1þ r N � 1ð Þ > N 1� rð Þ). Following Dockner et al. (2000), p.
325 and arguments therein, the solution to Eq. (81) under the given
constraints is

v� x� tð Þð Þ ¼ l
c1

� 	�r x� tð Þ
1� r

� 	1�r

: ð83Þ

Owing to the fact that ~kc � x� tð Þð Þ ¼ l=c1ð Þ�r x� tð Þ=1� rð Þ�r, the sta-
tionary control (80) written explicitly as a function of time becomes

u� tð Þ ¼ d x� tð Þð Þ ¼ jx� tð Þ; ð84Þ

where

j ¼ l
1þ r N � 1ð Þ þ N r� 1ð Þ ð85Þ

can be interpreted as the equilibrium extraction rate of a unit
resource by an individual, since x� tð Þ such units are available at t.
Substituting Eq. (84) into Eq. (74) and solving the latter gives the
candidate uninvadable control and state path explicitly as

u� tð Þ ¼ e�tNjjxinit
x� tð Þ ¼ e�tNjxinit:

ð86Þ

When r ¼ 0, we thus recover the standard result for the stationary
control established in the game theory literature [the symmetric
stationary Markov Nash equilibrium (Dockner et al., 2000, Eq.
(12.38)), while when r ¼ 1 we recover the game theory cooperative
solution (Dockner et al., 2000, Eq. (12.7)).

4.2.4. Open-loop extraction rate
We now work out an open-loop control for this model and to

this end it is useful to express the static characterisation (80) in
terms of the original shadow value k�c tð Þ (not the current value sha-
dow value ~kc � tð Þ), which, on recalling that ~kc � tð Þ ¼ etlk�c tð Þ, yields

u� tð Þ ¼ e�tl=r 1þ r N � 1ð Þ½ �k�c tð Þ
a

� 	� 1=rð Þ

: ð87Þ

Note that _k�c tð Þ ¼ 0 in Eq. (39) because the partial derivative of the

current-value Hamiltonian eH with respect to the second argument

is zero (by way of Eq. (76)) and recall also that eH ¼ etlH (hence the
partial derivative of Hamiltonian with respect to its third argument
is also zero). From this it follows that k�c tð Þ ¼ K for some constant
K > 0 (positive since otherwise no resources will be extracted).
Inserting this into Eq. (87) and then substituting the resulting
expression for u� tð Þ into the state dynamic (74) gives

_x� tð Þ ¼ �Ne�tl=r 1þ r N � 1ð Þ½ �K
a

� 	� 1=rð Þ

with i:c: xc 0ð Þ ¼ xinit; ð88Þ

whose solution is

x� tð Þ ¼ xinit � 1� e�tl=r� � 1þ r N � 1ð Þ½ �K
a

� 	� 1=rð Þ Nr
l

: ð89Þ

We now seek an open-loop solution u� tð Þ that satisfies

lim
t!1

x� tð Þ ¼ 0: ð90Þ
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That is, we assume that all the resources will be depleted asymptot-
ically. In game-theory terms, this corresponds to the case of a
strictly feasible open-loop control (see Dockner et al., 2000, p.
319–320), which implies that we do not allow for individuals to
extract all the resources in finite time (see Dockner et al., 2000, p.
321–323 for alternative open-loop controls when this is allowed).
Now substituting Eq. (89) into Eq. (90) and taking the limit yields

that K ¼ a Nr
xinitl

� 
r
= 1þ r N � 1ð Þð Þ. In turn, using the value of this con-

stant in Eq. (87) and Eq. (89) allows us to determine explicitly the
candidate equilibrium control and state paths as

u� tð Þ ¼ e�tl=r lxinit
Nr

x� tð Þ ¼ e�tl=rxinit:
ð91Þ

[Note that formally this solution also satisfies open-loop solution
with a terminal condition limt!1x� tð Þ P 0, which implies a
transversality condition given by Note 3 by Sydsaeter et al.
(2005), p. 349 and were their x1 ¼ 0 and k tð Þ ¼ etlk� tð Þ > 0 for our
problem, which leads together with Note 4 that the terminal condi-
tion limt!1x� tð Þ P 0 simplifies to (90)].

4.2.5. Comparison between closed-loop and open-loop resource
extraction rate

Resource extraction crucially depends on relatedness r under
the (stationary) closed-loop control and resources are extracted
much faster when relatedness is low (see Fig. 6). Interestingly,
under open-loop control resource extraction is independent of
relatedness and corresponds, regardless of population structure,
exactly to the open-loop control established for this model in the
game theory literature (Dockner et al., 2000, Chapter 12.1), which
itself corresponds to the so-called ‘‘cooperative solution” maximis-
ing group payoff (Dockner et al., 2000, Theorem 12.1, p. 320).
Hence, relatedness can have no impact on slowing down the
extraction rate, which already takes the optimal path from the per-
spective of the group. Intuitively, one thus expects that the closed-
loop equilibrium coincides with the open-loop equilibrium when
groups are clonal (r ¼ 1), which is indeed the case and again
instantiates our broad result that state-feedback has no effect
when interacting individuals are clonal.
5. Discussion

We formalised the directional selection coefficient on a geneti-
cally determined function-valued trait when interactions occur
between individuals in a group-structured population subject to
limitedgeneticmixing. This selectioncoefficientdescribes thedirec-
tional evolution of a quantitative function-valued trait and determi-
nes three relevant evolutionary features. First, it gives the invasion
condition of a mutant allele coding for a multidimensional pheno-
typic deviation (the deviation of a whole function) of small magni-
tude and takes the form of Hamilton’s marginal rule �c þ rb > 0,
where themarginal direct fitness effect�c and themarginal indirect
fitnesseffectbaregivenbydirectionalderivatives (formallyGâteaux
derivatives). Second, the selection gradient is frequency-
independent (same for all allele frequencies) and thus underlies
gradual evolution of function-valued traits, since �c þ rb > 0
implies not only initial invasion of the mutant function-valued
deviation, but also substitution of the resident ancestral type in
the population. Finally, the stationary selection gradient (i.e. when
�c þ rb ¼ 0) gives the necessary first-order condition for uninvad-
ability and allows to characterise long-term evolutionary outcomes.
While these three features are well known to hold for scalar traits
(e.g., Rousset, 2004; Lehmann and Rousset, 2014; Van Cleve, 2015),
our derivation of Hamilton’s marginal rule for multidimensional
traits generalises them to traits of arbitrary complexity.



(a) Candidate uninvatable extraction rate u*(t) (b) Candidate uninvatable resource level x*(t)

Fig. 6. Candidate uninvadable extraction rate (panel a) and resource level (panel b) for closed-loop (CL) and open-loop (OL) traits for different values of average relatedness r.
Parameter values: N ¼ 10;l ¼ 0:01;r ¼ 0:95; xinit ¼ 100, T ¼ 100. Note that if individuals are clones (r ¼ 1), the closed-loop and open-loop traits coincide and for open-loop
traits extraction rate does not depend on relatedness r.
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Connecting Hamilton’s marginal rule with optimal control and
differential game theory, we developed an approach to charac-
terise the necessary first-order condition for the uninvadability of
dynamic traits, which applies to both open-loop controls, whose
expression is only time-dependent, and closed-loop controls,
whose expression is dependent on dynamic state variables as well.
We showed that Hamilton’s rule in this context can be decom-
posed into current inclusive fitness effect, on one side, and future
inclusive fitness effect, on the other. The latter effect arises through
changes in the states of interacting individuals and depends on the
(neutral) shadow values of the states. The shadow value of a state
measures how a current change in that state variable affects all
future fitness contributions in a population at a demographic equi-
librium in the absence of selection, which is given by the neutral
current-value reproductive value (or residual fitness). The shadow
values are thus central in balancing the trade-off between current
and future fitness effects and thus in shaping inter-temporal trade-
offs; a feature well-know for open-loop controls (e.g., Perrin and
Sibly, 1993 for a review) and that we showed applies equally well
to closed-loop traits, which is a result that seems to have neither
appeared previously in the differential game theory literature.

Open-loop and closed-loop trait characterisations have some-
times been used in the literature to analyse the same biological phe-
nomena. Our analysis allows for a direct comparison between these
two different modes of trait expression. While the selection coeffi-
cient takes the same form (Hamilton’s rule) for both, the dynamic
constraints are different and this is captured by differences in the
dynamics of the shadow value. For open-loop traits, the shadow
value dynamics for a given state depends only on how variation in
that state variable affects current fitness and state dynamics. For
closed-loop traits, the shadow value dynamics depends additionally
on the state feedback effect, which captures how a variation in the
state variable brings forth variations in traits of all individuals in
interactionand this in turnaffects currentfitnessand statedynamics
(Eq. (35)). This causes inter-dependencies between the states of dif-
ferent individuals and inter-temporal effects between trait expres-
sions that are absent under open-loop controls. Analysis of the
feedback effect leads to two insights about the role of state-
dependence of trait expression in shaping trait evolution. First, the
signof the feedback effect (the signof Eq. (35)) determines if the sha-
dow value is larger (for positive feedback effect) or smaller (for neg-
ative feedback effect) for closed-loop traits than for open-loop traits.
Second, state-dependence of trait expression plays no role if there
are no social interactions between individuals or interactions occur
only between clones (r ¼ 1), in which cases the candidate uninvad-
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able open-loop and closed-loop trait expressions coincide (and the
state-feedback term is zero). This means that the use of closed-
loop controls appearing in life-history models without interactions
between individuals (e.g., Houston and McNamara, 1999) do not
lead to different results if instead an open-loop representation of
traits would have been used.

We worked out two examples to illustrate these concepts, one
of common pool resource production and the other of common
pool resource extraction. Interactions under closed-loop trait
expression cause individuals to invest less into common pool
resource production (and more in extraction) at an evolutionary
equilibrium. These results are in line with the literature of eco-
nomic game theory, where ‘‘period commitments” lead to higher
levels of cooperation in common pool situations (Meinhardt,
2012). Indeed, an open-loop control can be viewed as a trait (or
strategy) committing to its expression over the entire interaction
time period, since it cannot be altered in response to some change
experienced by individuals. A closed-loop control has no commit-
ment over time since it is expressed conditional on state. Depend-
ing on the nature of the interaction between individuals, closed-
loop trait expression can then also lead to higher levels of cooper-
ation. A concrete example is an analysis of the repeated prisoner’s
dilemma game, where open-loop controls lead to defection, while
closed-loop controls can sustain cooperation (e.g., Weber, 2011).
The reason why closed-loop strategies are able to sustain coopera-
tion under repeated prisoner’s dilemma is that they allow to con-
dition trait expression on the actions of others, and thus take
into account the future threat of punishment. In other words, for
closed-loop traits current actions are linked to future ones. Hence,
only closed-loop strategies can sustain the reciprocity principle of
repeated games by giving rise to incentives that differ fundamen-
tally from those of unconditional trait expression (see Binmore,
2020, p. 87 for a characterisation of this principle).

We finally discuss the scope and limitations of our formalisa-
tion. First, concerning scopes, we focused explicitly on the two
main types of controls, but also worked out the simplifications that
arise under special cases of these controls. In particular, under
(closed-loop) stationary controls, where trait expression depends
only on state and not on time and the time horizon of the interac-
tion period becomes large, the PDE for the (current-value) repro-
ductive value function no longer depends on time and becomes
easier to solve (see ‘‘Stationary control result”). Stationary controls
have been considered in evolutionary biology and conservation
biology, e.g. to model foraging strategies (McNamara et al., 1991;
Mangel and Clark, 1988), web-building behaviour (Venner et al.,



Box 1: Hamilton’s indicators of the force of selection as selec-
tion on constant controls.

Assume that individual fitness takes the form of the basic

reproductive number w u�;u�;uð Þ ¼
R1
0 l tð Þ~f u� tð Þ; x� tð Þð Þdt,

where controls are constant (u�;u�;u 2 R), ~f u� tð Þ; x� tð Þð Þ is

the fecundity at age t and l tð Þ is the probability of surviving

until age t treated as an additional state variable satisfying

the dynamics dl tð Þ=dt ¼ �l u� tð Þ; x� tð Þð Þl tð Þ, where

l u� tð Þ; x� tð Þð Þ is the mortality rate of the focal individual.

Then, it follows from our Constant Control Result that under

these assumptions, the selection coefficient on a constant

control that acts only at time t can be written as

s t;ucð Þ ¼ @H u� tð Þ; x tð Þ; l tð Þ; kl tð Þ; k tð Þð Þ
@u� tð Þ

�
þr ucð Þ @H u� tð Þ; x tð Þ; l tð Þ; kl tð Þ; k tð Þð Þ

@u� tð Þ

�
u� tð Þ¼u� tð Þ¼uc

;

ð92Þ

with Hamiltonian

H u� tð Þ; x� tð Þ; l tð Þ; kl; k tð Þð Þ ¼ l tð Þ~f u� tð Þ; x� tð Þð Þ
� kl tð Þl u� tð Þ; x� tð Þð Þl tð Þ þ g u� tð Þ; x� tð Þð Þ 	 k tð Þ: ð93Þ

Here, kl tð Þ ¼ @v tð Þ=@l tð Þ ¼ ~v tð Þ is the shadow value of the

cumulative survival probability evaluated at the resident

population, which is precisely the neutral current-value

reproductive value; namely, Fisher’s reproductive value,

since by definition ~v tð Þ ¼ v tð Þ=l tð Þ, where l tð Þ is evaluated

at the resident population (see also Goodman, 1982;

Perrin, 1992 for making this connection and Perrin, 1992;

Perrin et al., 1993 for writing the Hamiltonian as in Eq. (93)

by treating l tð Þ as a distinguished state variable).

Assuming no interactions between relatives and that

the control affects only fecundity and survival, Eq. (92)

becomes

s t;ucð Þ ¼ l tð Þ @ f
~ u� tð Þ; x tð Þð Þ
@u� tð Þ � v tð Þ @l u� tð Þ; x tð Þð Þ

@u� tð Þ

" #
u� tð Þ¼u� tð Þ¼uc

:

ð94Þ

This is consistent with Hamilton’s indicators of the force of

selection (Hamilton, 1966). Indeed, for a modifier of fecun-

dity, the first term in Eq. (94) is consistent to that of Hamil-

ton’s analysis (e.g., Ronce and Promislow, 2010, Eq. (3.3)).

For a modifier of survival, the second term in Eq. (94) is

consistent that of Hamilton’s analysis (e.g., Ronce and

Promislow, 2010, Eq. (3.2), where l tð Þ ¼ � log p tð Þð Þ and

p tð Þ is the survival probability at t and their generation

time T is a scaling factor that coverts the first-order pertur-

bation of the basic reproductive number into that of the

geometric growth rate, and explains why T does not

appear in (94) but appears in previous formulations of

Hamilton’s indicators of the force of selection on age-

specific modifier traits derived from the geometric growth

rate of a mutant, e.g. Charlesworth, 1994, chapter 5.1).

Finally, we note that in the presence of interaction between

relatives, Eq. (92) is consistent with results of kin selection

in age-structured populations (e.g. Charlesworth, 1994,

chapter 5.3.5). Note that the vital rates in Eq. (94) can

depend in a non-linear way on phenotypic effects and

may be time-dependent since they depend on state.
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2006), adaptive management plans (Chadès et al., 2017). Finally,
under (open-loop) constant controls, where trait expression
depends neither on state nor on time, the ODEs’ for the shadow
values and state dynamics become autonomous, which makes it
the simpler case to analyse (see ‘‘Constant control result”). Several
concrete biological situations fall into this category. For instance,
neural networks are dynamical systems whose output is controlled
by a finite number of scalar weights (Haykin, 2009), the selection
on which is an example of a situation with constant control if
weights are taken to be traits evolving genetically (see Ezoe and
Iwasa, 1997 for an application to evolutionary biology). Likewise,
phenomena as different as gene expression profiles and learning
during an individual’s lifespan can be regarded as the outcomes
of dynamical systems controlled by a finite number of constant
traits (e.g. see respectively Alon, 2020; Dridi and Akçay, 2018).
The case of constant control is thus likely to be widespread in mod-
els in evolutionary biology and it would be interesting to work out
more explicitly the connection between models for the evolution
of learning and those based on control theory. Owing to the pres-
ence of both a state dynamics and a decision rule, the control the-
ory approach to trait expression has a universal character (Haykin,
2009, chapter 15), which should thus in principle be able to cover
all types of trait expression.

Concerning limitations, we considered deterministic state
dynamics but stochastic state dynamics may be interesting to con-
sider in the future by way of applying stochastic optimal control
theory (e.g. Kamien and Schwartz, 2012). Perhaps more impor-
tantly, we modelled a population reproducing in discrete time,
where within each time period individuals can interact for a fixed
time interval. As such, the vital rates of individuals can change over
this interaction period, but not between interaction periods. Hence,
our model with limited dispersal and time-dependent vital rates
applies to semelparous species, which covers models with conflict
between relatives in annual organisms (Day and Taylor, 2000;
Avila et al., 2019). Furthermore, if we allow for complete dispersal
between groups (r ¼ 0), then our framework can be used to address
the evolution of function-valued traits under overlapping genera-
tions with time-dependent vital rates as in continuous time classi-
cal life history models with and without social interactions (e.g.
León, 1976; Schaffer, 1983; Stearns, 1992; Perrin, 1992), but we
add the possibility of considering the evolution of closed-loop con-
trols. This scenario is encapsulated in our formalisation because the
individual fitness function we used to analyse dynamic trait evolu-
tion (Eq. (13)) takes the same functional form as the basic reproduc-
tive number in age-structured populations (and which is sign
equivalent to the Malthusian or the geometric growth rate, e.g.,
Karlin and Taylor, 1981, pp. 423–424). As such, our results on
closed-loop controls (Section 3.2) allow to characterise long-term
evolutionary outcomes when the fitness of an individual takes the
form of the basic reproductive number. For this situation, our
results for open-loop controls (Section 3.3) reduce to the standard
Pontryagin’s weak principle used in life-history models (e.g.
Schaffer, 1983; Stearns, 1992; Perrin, 1992). In order to cover
time-dependent vital rates with overlapping generations within
groups under limited dispersal, one needs to track the within-
group age structure (e.g. Ronce et al., 2000), which calls for an
extension of our formalisation. Finally, we did not consider
between-generation fluctuations in environmental conditions,
which certainly affect the evolution of function-valued traits and
it would be interesting to investigate this case. Hence, while our
results are not demographically general, our hope is that the
present formalisation is nevertheless helpful in providing broad
intuition about the nature and conceptualisation of directional
selection on phenotypically plastic traits.
17
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Appendix A. Derivation of Hamilton’s rule for function-valued
traits

In this Appendix, we prove the gradient version of Hamilton’s
rule for function-valued traits and show that this provides an inva-
sion implies substitution principle under weak selection (Eqs. (4)–
(8)). A central concept used in our proof is the notion of a Gâteaux
derivative.

A.1. Gâteaux derivative and point-wise functional derivative

Let F : Y T½ � ! R be some functional where Y T½ � is a (topologi-
cal) vector space over a domain T and assume that for some y 2
Y T½ � the limit

dF yþ �gð Þ
d�

����
�¼0

¼ lim
�!0

F yþ �gð Þ � F yð Þ
�

¼ dgF yð Þ
dgy

ðA:1Þ

exists for all deviations g that satisfy yþ �g 2 Y T½ � for a sufficiently
small non-negative parameter �. Then, the function F is said to be
Gâteaux differentiable at y, and dgF yð Þ=dgy is the shorthand nota-
tion for a Gâteaux derivative at y in the direction of g (Hille and
Phillips, 1957, Section 3). The Gâteaux derivative can thus be
thought of as a generalisation of the directional derivative familiar
from finite dimensional spaces. Most rules that hold for ordinary
derivatives also hold for Gâteaux derivatives, e.g. Taylor’s theorem
and the chain rule (e.g. see Section 2.1C in Berger, 1977, or, Appen-
dix A of Engel and Dreizler, 2013). The Gâteaux derivative can be
expressed in terms of point variations (e.g. see Engel and Dreizler,
2013, Eqs. (A.15) and (A.28)) as

dgF yð Þ
dgy

¼
Z
T

@F yð Þ
@y tð Þ g tð Þdt; ðA:2Þ

where

@F yð Þ
@y tð Þ ¼ lim

�!0

F yþ �dtð Þ � F yð Þ
�

; ðA:3Þ

is the point-wise functional derivative of F with respect to y tð Þ and
dt ¼ dt sð Þf gs2T is the Dirac delta function peaked at t with dt sð Þ
being the value of the function at s (dt sð Þ ¼ 0 for all s– t). That
is, Eq. (A.3) is the partial derivative of F with respect to y tð Þ and
hence we use the more familiar ‘‘partial derivative” notation from
finite dimensional spaces for it. The representation in Eqs. (A.2)–
(A.3) is useful because it allows, for instance, to take a functional
derivative of fitness with respect to the trait, and partition it into
a deviation g tð Þ and a marginal fitness effect at a specific (single)
time point t 2 T ; @F yð Þ=@y tð Þ (i.e. a point-wise marginal fitness
effect), and only then integrate over the domain T .

A.2. Dynamics of mutant-frequency

Consider that the mutant allele coding for trait um and the res-
ident coding for trait u, segregate in the homogeneous island pop-
ulation as described in the main text. Because no individual-level
demographic heterogeneity is assumed withing groups (i.e., no
18
class structure), each group can be characterised, from a popula-
tion genetic state perspective, by the number of mutants that inha-
bit a given group and we denote the set of all group genetic states
with I ¼ 0;1;2; . . . ;Nf g. The state of the entire homogeneous
island population can thus be described with the vector
/s ¼ /i;s

� �
i2I where /i;s is the frequency of groups with i mutants

at demographic time s. Since population size is constant in the
homogeneous island population (mean fitness is one), the change
in the average frequency Dps ¼ psþ1 � ps of the mutant allele from
demographic time s to sþ 1 (over one life-cycle iteration) can be
expressed as

Dps ¼ W um;u;/sð Þps � ps; ðA:4Þ

where W um;u;/sð Þ is the marginal fitness (or lineage fitness) of the
mutant allele. Namely, this is the expected number of offspring (in-
cluding the surviving self) produced by a randomly sampled mutant
individual from the collection of all mutants in the population when
the distribution of mutants across groups is /s. This fitness can be
written as the average

W um;u;qsð Þ ¼
X
i2I

ŵ um;ui;u/

� �
qi;s; ðA:5Þ

where qi;s ¼ i/i;s=
P

k2Ik/k;s is the probability that a randomly sam-
pled mutant resides in a group with i mutants (whence

P
iqi;s ¼ 1)

and where ui ¼ um;u; i� 1ð Þ and u/ ¼ um; u;/sð Þ are vectors that
describe, from the perspective of a mutant sampled in a group with
i mutants, the distribution of traits among group neighbours (local
individuals) and in the groups in the population at large (non-local
individuals), respectively. The function ŵ : U � U2 � I�
U2 � D Ið Þ ! Rþ is the individual fitness where D Ið Þ denotes the
space of frequency distributions on I (i.e. the simplex in RNþ1),
and as such, ŵ um;ui;u/

� �
gives the fitness of a mutant when among

its neighbours i� 1 individuals have trait um and N � i� 1ð Þ have
trait u, and in the groups in the population at large, mutant and res-
ident traits follow the /s distribution. When the mutant is rare, Eq.
(A.5) reduces to the invasion fitness of the mutant allele in the
homogeneous island population (Mullon et al., 2016, Eq. (1)).

A.3. Weak-selection approximation

We now study mutant gene frequency change Dps assuming
small � (but where 0 P ps 6 1). To that end, it is useful to note that
the fitness of a mutant in a group in state i can be approximated by
writing it in terms of average traits as

ŵ um;ui;u/

� �
¼ ŵ um; �ui; �u/

� �
þ O �2

� �
; ðA:6Þ

where �ui ¼ �ui; �ui; i� 1ð Þ specifies that all group neighbours have the
same group average trait �ui ¼ uþ �gpi with pi ¼ i� 1ð Þ= N � 1ð Þ½ �
being the frequency of mutants among neighbours, while
�u/ ¼ �u; �u;/sð Þ specifies that all non-local individuals have the same
average population trait �u ¼ uþ �gps with ps ¼

P
i2I i=Nð Þqi;s being

the average mutant frequency in the population. Eq. (A.6), which
has been used for scalar traits (Rousset, 2004, p. 95), follows by Tay-
lor expanding ŵ um;ui;u/

� �
to the first-order about � ¼ 0 and using

the chain rule (which applies to Gâteaux derivatives, e.g. Eq. (A.38)
in Engel and Dreizler, 2013) to see that the coefficients of the Taylor
series involve (at most) Gâteaux derivatives weighted by average
allele frequencies. This is an instantiation of the so-called gener-
alised law of mass action (Meszéna et al., 2005; Dercole, 2016)
and is secured by the assumption that all individuals within a group
that have the same trait are exchangeable (individuals are demo-
graphically homogeneous).

Because all non-local (mutant and resident) individuals are con-
sidered to have the same average trait (the same is true for group
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neighbours), ŵ um; �ui; �u/

� �
is de facto independent of /s. This allows

us to further simplify the right-hand side of Eq. (A.6) by writing

ŵ um; �ui; �u/

� �
¼ w um; �ui; �uð Þ; ðA:7Þ

where the function w : U3 ! Rþ is the (average) fitness function
introduced in Section 2 of the main text, where we do not need to
detail mutant distributions. Hence, w um; �ui; �uð Þ is the fitness of an
individual with trait um in terms of only the average trait �ui of its
group-neighbours and the average trait �u of individuals in the
population.

A.3.1. Allele frequency change
Substituting Eq. (A.5)–(A.7) into Eq. (A.4), we can express the

change in allele frequency as

Dps ¼
X
i2I

w um; �ui; �uð Þqi;sps � ps þ O �2
� �

: ðA:8Þ

Taylor expanding the fitness function to the first-order about � ¼ 0
yields

Dps ¼
X
i2I

w um; �ui; �uð Þj�¼0 þ �
dw um; �ui; �uð Þ

d�

����
�¼0

þ O �2
� �� �

qi;sps

� ps þ O �2
� �

;

ðA:9Þ

where w um; �ui; �uð Þj�¼0 ¼ 1 (fitness in a monomorphic population is
one), whereby

Dps ¼
X
i2I
�
dw um; �ui; �uð Þ

d�

����
�¼0

qi;sps þ O �2
� �

: ðA:10Þ

We now apply Eq. (A.1) and use the chain rule for Gâteaux deriva-
tives (see e.g. Eq. (A.38) in Engel and Dreizler, 2013), which
produces

dw um; �ui; �uð Þ
d�

����
�¼0

¼ dgw um; �ui; �uð Þ
dgum

����
um¼�ui¼�u¼u

þ dgw um; �ui; �uð Þ
dg�ui

����
um¼�ui¼�u¼u

pi;s

þ dgw um; �ui; �uð Þ
dg�u

����
um¼�ui¼�u¼u

ps; ðA:11Þ

where all partial derivatives here and henceforth are evaluated at
the resident value u. Since all the partial derivatives are indepen-
dent of any allele frequency, they give the effects on any individ-
ual’s fitness stemming, respectively, from itself, its average
neighbour, and an average population member by varying (in-
finitesimally) trait expression. Hence, the type of the actor is not
relevant when evaluating the fitness effects and we can equiva-
lently write Eq. (A.11) as

dw um; �ui; �uð Þ
d�

����
�¼0

¼ dgw u�;u�;uð Þ
dgu�

����
u�¼u�¼u

þ dgw u�;u�;uð Þ
dgu�

����
u�¼u�¼u

pi;s

þ dgw u�;u�;uð Þ
dgu

����
u�¼u�¼u

ps ðA:12Þ

where we replaced the variables um; �ui, and �uwith u�, u�, and u (note
that we have already substituted the resident trait into the final
argument). This will be useful subsequently as it makes clear that
fitness effects are independent of individual types and thus allows
us to focus attention on the fitness of a focal individual.

Substituting Eq. (A.12) into Eq. (A.10) gives
19
Dps ¼ �
X
i2I

dgw u�;u�;uð Þ
dgu�

1� psð Þqi;sps þ
dgw u�;u�;uð Þ

dgu�
pi;s � ps
� �

qi;sps

� �
þO �2

� �
ðA:13Þ

where we took into consideration that the sum of partial derivatives
of the fitness function with respect to all of its arguments is zero
(since population size is constant, see e.g. Rousset, 2004, p. 96 for
scalar traits).

Because
P

i2Ipi;sqi;s ¼ pmjm;s is the probability that, conditional
on being a mutant, a randomly sampled neighbour is also a
mutant, and pmjm;sps ¼ pmm;s is the probability that two randomly
sampled individuals are both mutants (i.e., frequency of mutant
pairs), Eq. (A.13) can be written

Dps ¼ �
dgw u�;u�;uð Þ

dgu�
ps 1� psð Þ þ dgw u�;u�;uð Þ

dgu�
pmm;s � p2

s
� �� �

þ O �2
� �

:

ðA:14Þ

Hence, to the first order in �, the dynamics of Dps is a function of
only direct and indirect fitness effects evaluated in the resident
population, and the average frequency ps and mutant-pair fre-
quency pmm;s. Further, we only need to study the dynamics of
pmm;s under neutrality (� ¼ 0) because any higher order terms con-
tribute to O �2

� �
in Eq. (A.14). Eq. (A.14) thus generalises to function-

valued traits, a standard result for scalar traits (first detailed in Roze
and Rousset, 2003 and re-derived a number of times since, e.g., Roze
and Rousset, 2004; Rousset, 2004; Roze and Rousset, 2008;
Lehmann and Rousset, 2014).
A.3.2. Mutant-pair dynamics and relatedness
Using standard population genetic arguments for writing recur-

sions of moments of allelic state (e.g., Jacquard, 1974; Nagylaki,
1992; Roze and Rousset, 2008), we have

pmm;sþ1 ¼ P1 uð Þps þ P2 uð Þpmm;s þ 1� P1 uð Þ � P2 uð Þð Þp2
s ; ðA:15Þ

where P1 uð Þ is the fraction of pairs within groups (of two randomly
sampled individuals in the same group without replacement) that
descended from the same individual in the previous demographic
time step (so that possibly one individual in the pair is the parent
of the other in the presence of survival). The quantity P2 uð Þ is the
fraction of pairs that have descended from two distinct individuals
in the previous demographic time period, and where all these coef-
ficients are constant since they are evaluated under � ¼ 0 and thus
depend at most on the resident trait u. The steady state can be
solved explicitly and one gets

p̂mm ¼ r̂ uð Þpþ 1� r̂ uð Þð Þp2; ðA:16Þ

where we used the fact that for � ¼ 0 ps ¼ p is a constant, (see
Section A.4 for a formal argument) and where

r̂ uð Þ ¼ P1 uð Þ
1� P2 uð Þ ðA:17Þ

is the relatedness in a patch at the steady state, i.e., the fraction of
pairs at the steady state that have a common ancestor in the patch.
Owing to neutrality, this is also the probability that a randomly
sampled neighbour of a randomly sampled focal individual, carries
the same allele as the focal. Moreover, the steady state r̂ uð Þ changes
continuously with a resident trait whenever P1 uð Þ and P2 uð Þ change
continuously.
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A.4. Timescale separation and the invasion implies substitution –
principle

We can observe that the dynamics of mutant frequency ps,
given by Eq. (A.14), is dominated by terms of order O �ð Þ, while
the mutant-pair frequency ps;mm, given by Eq. (A.15), is dominated
by terms of order O 1ð Þ. Hence, when � is small, the variable pmm;s

undergoes significant fluctuations over the demographic time step
Ds ¼ sþ 1ð Þ � s ¼ 1 (one iteration of a life cycle) while ps is
(nearly) constant. By contrast, ps changes significantly over a
slower time interval Ds� ¼ �Ds while pmm;s is near its equilibrium
value. We will refer to Ds� as the evolutionary time step and the
phenotypic effect � scales the relationship between evolutionary
and demographic time (i.e. one evolutionary time step contains 1

�

demographic time steps, and equivalently we can write 1
Ds ¼ � 1

Ds�).
Combining Eq. (A.14) and Eq. (A.15), we see that the dynamics

of the mutant frequency is thus fully described by the coupled sys-
tem in demographic time

Dps ¼ � dgw u� ;u� ;uð Þ
dgu�

ps 1� psð Þ þ dgw u� ;u� ;uð Þ
dgu�

pmm;s � p2
s

� �h i
þ O �2

� �
Dpmm;s ¼ P2 uð Þ � 1ð Þpmm;s þ P1 uð Þps þ 1� P1 uð Þ � P2 uð Þð Þp2

s þ O �ð Þ;
ðA:18Þ

and by a change of variables the system in Eq. (A.18) can be equiv-
alently expressed in slow evolutionary time as

�Dps�
Ds� ¼ � dgw u� ;u� ;uð Þ

dgu�
ps� 1�ps�ð Þþ dgw u� ;u� ;uð Þ

dgu�
pmm;s� �p2

s�
� �h i

þO �2
� �

�D�pmm;s�
Ds� ¼ P2 uð Þ�1ð Þpmm;s� þP1 uð Þps� þ 1�P1 uð Þð Þ�P2 uð Þð Þp2

s� þO �ð Þ:
ðA:19Þ

We now separate the demographic and evolutionary timescales (i.e.
the timescales of ps;mm and ps) by letting �! 0 and the two last sys-
tems above reduce, respectively, to

Dps
Ds ¼ 0
Dpmm;s

Ds ¼ P2 uð Þ � 1ð Þpmm;s þ P1 uð Þps þ 1� P1 uð Þ � P2 uð Þð Þp2
s

ðA:20Þand
Dps�
Ds� ¼ dgw u� ;u� ;uð Þ

dgu�
ps� 1� ps�ð Þ þ dgw u� ;u� ;uð Þ

dgu�
pmm;s� � p2

s�
� �

0 ¼ P2 uð Þ � 1ð Þpmm;s� þ P1 uð Þps� þ 1� P1 uð Þð Þ � P2 uð Þð Þp2
s�

ðA:21Þ

(Van Horssen and ter Brake, 2009, see also Hoppensteadt and
Miranker, 1977). Eq. (A.20) says that in a purely fast demographic
time (� ¼ 0) the mutant frequency ps ¼ p stays constant (‘‘frozen
in time”), while mutant-pair frequency ps;mm changes. Eq. (A.21)
says that in a purely slow evolutionary time (� ¼ 0) the mutant-
pair frequency has reached the steady state p̂mm uð Þ (its solution
given in Eqs. (A.16) and (A.17)), while the mutant frequency
ps� ¼ p changes (thus p is in a so-called quasi-steady state – it
changes so slowly that it is considered a steady state in one time-
scale but a fluctuating variable in another). By performing the sub-
stitution pmm;s� ¼ p̂mm uð Þ and ps� ¼ p in Eq. (A.21) the dynamics of
mutant frequency in slow evolutionary time is
Dp
Ds�

¼ p 1� pð Þ dgw u�;u�;uð Þ
dgu�

þ dgw u�;u�;uð Þ
dgu�

r̂ uð Þ
� �

; ðA:22Þ

where r̂ uð Þ is given in Eq. (A.17). Because r̂ uð Þ in Eq. (A.17) persists
under small perturbation of the resident phenotype u (Sec-
tion A.3.2), we can approximate Eq. (A.22) with an equation in fast
demographic time whenever � is sufficiently small, i.e.

Dp ¼ �p 1� pð Þ dgw u�;u�;uð Þ
dgu�

þ dgw u�;u�;uð Þ
dgu�

r̂ uð Þ
� �

þ O �2
� �

; ðA:23Þ
20
where we used Ds ¼ 1. This gives us the invasion implies substitu-
tion - principle on the time of the demographic process we began
with (e.g., Eq. (A.4)). Therefore, we can re-write Eq. (A.23) as

Dp ¼ p 1� pð Þsg uð Þ þ O �2
� �

; ðA:24Þ

with

sg uð Þ ¼ �cg uð Þ þ bg uð Þr̂ uð Þ; ðA:25Þ

and by using the definition of Gâteaux derivatives in Eq. (A.1) we
can explicitly write

� cg uð Þ ¼ �
dgw u�;u�;uð Þ

dgu�

����
u�¼u�¼u

¼ �� lim
�!0

w uþ �g;u;uð Þ �w u;u;uð Þ
�

� �
; ðA:26Þ

which is the effect a focal individual has on itself if it were to
express the mutant phenotype and

bg uð Þ ¼ �
dgw u�;u�;uð Þ

dgu�

����
u�¼u�¼u

¼ �� lim
�!0

w u;uþ �g;uð Þ �w u;u;uð Þ
�

� �
; ðA:27Þ

which is the effect that all local individuals have on the focal indi-
vidual if they were to express the mutant phenotype (where we
have likewise substituted u in the second equality). Hence, we have
derived Eqs. (4)–(5) of the main text. In the main text and the sub-
sequent part of the Appendix we denote r̂ uð Þ � r uð Þ.
Appendix B. First-order condition for state-dependent models

In this Appendix we derive the results of main text Section 3.
These derivation are based on standard approach of calculus of
variations as used in optimal control theory (Liberzon, 2011;
Weber, 2011), but our argument will somewhat differ from stan-
dard approaches insofar as we will not make use of the
Hamilton–Jacobi-Bellman equation, since we are interested only
in the necessary first-order conditions (as opposed to necessary
conditions in the standard approach). As such, it is important to
stress that throughout Sections B.1 and B.3, where we derive the
dynamics of the (neutral) reproductive value v t; x tð Þ;uð Þ and the
shadow value k t; x tð Þ;uð Þ ¼ rv t; x tð Þ;uð Þ, we evaluate all the traits
u� tð Þ ¼ u� tð Þ ¼ u tð Þ and states x� tð Þ ¼ x� tð Þ ¼ x tð Þ at some resident
values. Only in Section B.2 we look at small deviations from the
resident population, by analysing the Gâteaux derivatives of the
fitness function w u�;u�;uð Þ, where we show that we only need to
analyse the (neutral) reproductive value v t; x tð Þ;uð Þ.

For conciseness of notation, we also use the following short-
hand notation: for total derivatives w.r.t. time t we write

df t; x tð Þð Þ=dt � _f t; x tð Þð Þ, for partial derivatives we write
@f t; x tð Þð Þ=@x tð Þ � f x t; x tð Þð Þ, and second-order partial derivatives
we write @2f t; x tð Þð Þ=@x tð Þ@x tð Þ � f xx t; x tð Þð Þ. As in the main text,
we always use the gradient r notation for gradient with respect
to state variables x tð Þ.
B.1. Reproductive value dynamics in a resident population

We here derive the dynamic equations for the reproductive
value, Eq. (20) of the main text by following the same line of argu-
ment as that developed in Metz et al. (2016) see Eq. (71), and then
we derive an associated equation for the reproductive value that is
useful for the other derivations.
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B.1.1. Partial differential equation for the reproductive value
Recall from Eq. (19) of the main text that the reproductive value

at time t is defined as

v t; x tð Þ;uð Þ ¼
Z tf

t
f s;u sð Þ; x sð Þð ÞdsþU x tfð Þð Þ: ðB:1Þ

where we recall that the argument u has been separated with the
semicolon in order to emphasise that the controls have been
fixed. Hence, for a given u and initial condition x tð Þ at time t
the state trajectory x is fully determined (i.e. the solution to
the ODE in Eq. (16) exists and is unique). Because both functions
u and x are now given functions, the reproductive value in Eq.
(B.1) is considered to be a function of time t and the initial con-
dition x tð Þ only (strictly speaking it should be a function also of
the final time tf ).

In order to derive a dynamic equation of v t; x tð Þ;uð Þ, we con-
sider a very small (but positive) time interval Dt and write Eq.
(B.1) as

v t; x tð Þ;uð Þ ¼
Z tþDt

t
f s;u sð Þ; x sð Þð Þds

þ
Z tf

tþDt
f s;u sð Þ; x sð Þð ÞdsþU x tfð Þð Þ

¼
Z tþDt

t
f s;u sð Þ; x sð Þð Þds

þ v t þ Dt; x tð Þ þ Dx tð Þ; uð Þ; ðB:2Þ

where Dx tð Þ ¼ x t þ Dtð Þ � x tð Þ is the change in the state variables
over Dt and v t þ Dt; x tð Þ þ Dx tð Þ;uð Þ is the reproductive value at
t þ Dt and all arguments have been noted accordingly. Using a
first-order Taylor expansion around t, we approximate the second
term in the second line of Eq. (B.2) as

v t þ Dt; x tð Þ þ Dx tð Þ;uð Þ ¼ v t; x tð Þ; uð Þ þ v t t; x tð Þ;uð ÞDt
þrv t; x tð Þ;uð Þ 	 Dx tð Þ þ O Dt2

� �
; ðB:3Þ

where

v t t; x tð Þ;uð Þ ¼ @v t; x tð Þ; uð Þ
@t

ðB:4Þ

is the partial derivative with respect to the first-argument while

rv t; x tð Þ;uð Þ ¼ @v t; x� tð Þ;uð Þ
@x� tð Þ ;

@v t; x� tð Þ;uð Þ
@x� tð Þ ;

@v t; x� tð Þ;uð Þ
@x tð Þ

� 	
x� tð Þ¼x tð Þ

ðB:5Þ

is the vector of partial derivatives with respect to the last argument.
Now approximating the first term on the right-hand-side of Eq.
(B.2) by f u tð Þ; x tð Þ; tð ÞDt, we can write Eq. (B.2) as

v t; x tð Þ;uð Þ ¼ f t;u tð Þ; x tð Þð ÞDt þ v t; x tð Þ;uð Þ
þ v t t; x tð Þ; uð ÞDt þrv t; x tð Þ; uð Þ 	 Dx tð Þ
þ O Dt2

� �
ðB:6Þ

Subtracting v t; x tð Þ;uð Þ from both sides, dividing by Dt, letting
Dt ! 0, noting that Dx tð Þ=Dt ! g u tð Þ; x tð Þð Þ (as Dt ! 0), and rear-
ranging leads to

�v t t; x tð Þ;uð Þ ¼ f t;u tð Þ; x tð Þð Þ þ rv t; x tð Þ;uð Þ 	 g u tð Þ; x tð Þð Þ ðB:7Þ

which is a PDE for v t; x tð Þ;uð Þ with a final condition (f.c.)
v tf ; x tfð Þ;uð Þ ¼ U x tfð Þð Þ for the fixed control path u. Eq. (B.7) takes
the same form as Eq. 71 of Metz et al. (2016), which was derived
under an open-loop control life-history evolution context for a pan-
mictic population and differs with respect to Eq. (B.7) in terms of
the definition of the arguments.
21
It is important to stress here that Eq. (B.7) is not a form of
the so-called Hamilton–Jacobi–Bellman equation for the value
function evaluated on the optimal control path of optimal control
theory (e.g., Eq. (3.7) Dockner et al., 2000, chapter 3.2, or Eq.
(5.10) in Liberzon, 2011 or Eq. (3.16) in Weber, 2011), even
though it has a similar structure. This is because (i) the repro-
ductive value v is here defined to hold for any resident control
schedule u (and is not evaluated at optimality like the value
function), and (ii) the value function for our model cannot be
computed from the reproductive value of the focal individual,
but needs to be computed from the invasion fitness of the
mutant, which is the value function in an evolutionary model
(invasion fitness is given by Eq. (A.5) when the mutant becomes
rare or Eq. (38) in Day and Taylor (2000), but in the latter case
only open-loop traits were allowed).

B.1.2. Dynamic equation for the shadow value
Recall that the controls u tð Þ ¼ d t; xð Þ are functions of x. We now

derive the dynamic equation for the shadow value (gradient of
reproductive values), which will be useful in later proofs. Taking
the gradient of Eq. (B.7) with respect to x tð Þ, we have

�rv t t; x tð Þ;uð Þ ¼ rf t;u tð Þ; x tð Þð Þ þ r rv t; x tð Þ;uð Þ 	 g u tð Þ; x tð Þð Þ½ �
ðB:8Þ

with f.c. rv tf ; x tfð Þ;uð Þ ¼ rU x tfð Þð Þ, where

rf t;u tð Þ;x tð Þð Þ ¼ @f t;d t;x� tð Þð Þ;x� tð Þð Þ
@x� tð Þ ;

@f t;d t;x� tð Þð Þ;x� tð Þð Þ
@x� tð Þ ;

�
@f t;d t;x� tð Þð Þ;x� tð Þð Þ

@x tð Þ

	
x� tð Þ¼x tð Þ

d t;x� tð Þð Þ¼d t;x tð Þð Þ¼u tð Þ

;
ðB:9Þ

rU x tfð Þð Þ ¼ @U x� tfð Þð Þ
@x� tfð Þ ;

@U x� tfð Þð Þ
@x� tfð Þ ;

@U x� tfð Þð Þ
@x tfð Þ

� 	
x� tfð Þ¼x tfð Þ

; ðB:10Þ

are (column) vectors. Bringing all the terms to the same side and
using the chain in rule to expand rrv t; x tð Þ;uð Þ 	 g u tð Þ; x tð Þð Þ½ �, we
obtain

rv t t; x tð Þ;uð Þ þ rf t;u tð Þ; x tð Þð Þ
þ H v t; x tð Þ;uð Þð Þg u tð Þ; x tð Þð Þ
þ rg u tð Þ; x tð Þð Þrv t; x tð Þ;uð Þ
¼ 0; with f :c: rv tf ; x tfð Þ;uð Þ ¼ rU x tfð Þð Þ; ðB:11Þ

where 0 ¼ 0;0;0ð Þ is a zero (column) vector and

H v t; x tð Þ;uð Þð Þ ¼

@2v t;x� tð Þ;uð Þ
@ x� tð Þð Þ2

@2v t;x� tð Þ;uð Þ
@x� tð Þ@x� tð Þ

@2v t;x� tð Þ;uð Þ
@x tð Þ@x� tð Þ

@2v t;x� tð Þ;uð Þ
@x� tð Þ@x� tð Þ

@2v t;x� tð Þ;uð Þ
@ x� tð Þð Þ2

@2v t;x� tð Þ;uð Þ
@x tð Þ@x� tð Þ

@2v t;x� tð Þ;uð Þ
@x� tð Þ@x tð Þ

@2v t;x� tð Þ;uð Þ
@x� tð Þ@x tð Þ

@2v t;x� tð Þ;uð Þ
@ x tð Þð Þ2

0BBBB@
1CCCCA

x� tð Þ¼x tð Þ

;

ðB:12Þ

is the Hessian matrix of the reproductive value function and

rg u tð Þ;x tð Þð Þ

¼

@g d t;x� tð Þð Þ;x� tð Þð Þ
@x� tð Þ

@g d t;x� tð Þð Þ;x� tð Þð Þ
@x� tð Þ

@g d t;x tð Þð Þ;x tð Þð Þ
@x� tð Þ

@g d t;x� tð Þð Þ;x� tð Þð Þ
@x� tð Þ

@g d t;x� tð Þð Þ;x� tð Þð Þ
@x� tð Þ

@g d t;x tð Þð Þ;x tð Þð Þ
@x� tð Þ

@g d t;x� tð Þð Þ;x� tð Þð Þ
@x tð Þ

@g d t;x� tð Þð Þ;x� tð Þð Þ
@x tð Þ

@g d t;x tð Þð Þ;x tð Þð Þ
@x tð Þ

0BBB@
1CCCA

x� tð Þ¼x tð Þ
d t;x� tð Þð Þ¼d t;x� tð Þð Þ

¼d t;x tð Þð Þ¼u tð Þ

ðB:13Þ

is the gradient of vector g.
Now total differentiating rv t; x tð Þ;uð Þ with respect to time and

using the property that u is fixed along a path, we get



P. Avila, T. Priklopil and L. Lehmann Journal of Theoretical Biology 526 (2021) 110602
drv t; x tð Þ;uð Þ
dt

¼ rv t t; x tð Þ;uð Þ

þ H v t; x tð Þ; uð Þð Þg u tð Þ; x tð Þð Þ; ðB:14Þ

which, on substitution into Eq. (B.11), and noting that the order of
taking partial derivatives can be changed yields

� drv t;x tð Þ;uð Þ
dt ¼ rf t;u tð Þ; x tð Þð Þ þ rg u tð Þ; x tð Þð Þrv t; x tð Þ;uð Þ

with f :c: rv tf ; x tfð Þ;uð Þ ¼ rU x tfð Þð Þ;
ðB:15Þ

which will be used in the next section.

B.2. First-order condition and the Hamiltonian

We now turn to deriving the (point-wise) direct effect
�c t;u tð Þð Þ and the indirect effect b t;u tð Þð Þ, given by Eqs. (23) and
(24), as well as the point-wise selection gradient for closed-loop
traits, Eq. (26), and the dynamic equation for the shadow value,
Eq. (32).

In Appendix A we showed that we can express the direct effect
(A.26) and indirect effect (A.27) as Gâteaux derivatives

�cg uð Þ ¼ �dgw u� ;u� ;uð Þ
dgu�

���
u�¼u

;

bg uð Þ ¼ �dgw u� ;u� ;uð Þ
dgu�

���
u�¼u

ðB:16Þ

In order to compute these Gâteaux derivatives we first re-write the
fitness function w u�;u�;uð Þ by augmenting to it a zero quantity con-
taining of adjoint systemof constraints (see e.g. Liberzon, 2011, p. 97)
andwe thenwe show how to decompose the direct effect�cg uð Þ and
indirect effect bg uð Þ into point-wise direct effects �c t;u tð Þð Þ and
point-wise indirect effects b t;u tð Þð Þ, respectively, which allows to
characterise the point-wise first-order condition (26).

B.2.1. Augmenting the fitness function with an adjoint system of
constraints

Recall expression Eq. (13) for individual fitness of the main text
and let us append to it a zero term

w u�;u�;uð Þ ¼
Z
T
f t;u� tð Þ; x� tð Þð Þdt þU x� tfð Þð Þ

¼
Z
T
f t;u� tð Þ; x� tð Þð Þdt þU x� tfð Þð Þ

þ
Z
T

k t; x tð Þ; uð Þ 	 g u� tð Þ; x� tð Þð Þ � _x� tð Þð Þ½ �dt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

; ðB:17Þ

where recalling (Eq. (21) of the main text) that
k t; x tð Þ;uð Þ ¼ rv t; x tð Þ;uð Þ (gradient of the reproductive value func-
tion). We can integrate the last term in Eq. (B.17) by parts

�
Z
T
k t; x tð Þ;uð Þ 	 _x� tð Þdt ¼

Z
T
_k t; x tð Þ;uð Þ 	 x� tð Þdt

� k tf ; x tfð Þ;uð Þ 	 x� tfð Þ þ k 0; x 0ð Þ;uð Þ 	 x� 0ð Þ;
ðB:18Þ

and hence Eq. (B.17) becomes

w u�;u�;uð Þ ¼
Z
T

f t;u� tð Þ; x� tð Þð Þ þ k t; x tð Þ; uð Þ 	 g u� tð Þ; x� tð Þð Þð

þ _k t; x tð Þ;uð Þ 	 x� tð Þ
�
dt � k tf ; x tfð Þ;uð Þ 	 x� tfð Þ

þ k 0; x 0ð Þ;uð Þ 	 x� 0ð Þ þU x� tfð Þð Þ: ðB:19Þ

In order to simplify this equation, let us define

waug t;u� tð Þ; x� tð Þð Þ ¼ f t;u� tð Þ; x� tð Þð Þ þ k t; x tð Þ; uð Þ
	 g u� tð Þ; x� tð Þð Þ þ _k t; x tð Þ;uð Þ 	 x� tð Þ ðB:20Þ
22
and

Uaug tf ; x� tfð Þð Þ ¼ U x� tfð Þð Þ � k tf ; x tfð Þ;uð Þ 	 x� tfð Þ; ðB:21Þ

whereby individual fitness Eq. (B.17) becomes

w u�;u�;uð Þ ¼
Z
T
waug t;u� tð Þ; x� tð Þð Þdt þUaug tf ; x� tfð Þð Þ

þ k 0; x 0ð Þ;uð Þ 	 x� 0ð Þ: ðB:22Þ
B.2.2. Computing the Gâteaux derivatives of fitness
Using Eq. (A.2) in Eq. (B.16), we get

�cg uð Þ ¼ �
dgw u�;u�;uð Þ

dgu�

����
u�¼u

¼ �
Z
T
�c t;uð Þg tð Þdt;

bg uð Þ ¼ �
dgw u�;u�;uð Þ

dgu�

����
u�¼u

¼ �
Z
T
b t;uð Þg tð Þdt;

ðB:23Þ

where

�c t;uð Þ ¼ @w u�;u�;uð Þ
@u� tð Þ u�¼u�¼u

and b t;uð Þ ¼ @w u�;u�;uð Þ
@u� tð Þ

���� ����
u�¼u�¼u

:

ðB:24Þ

Substituting Eq. (B.22) into Eq. (B.24) and taking the derivatives
yields

c t;uð Þ ¼
Z
T

@waug s;u� sð Þ; x sð Þð Þ
@u� sð Þ

����
u� sð Þ¼u sð Þ

@u� sð Þ
@u� tð Þ

 

þrwaug s;u sð Þ; x sð Þð Þ 	 @x� sð Þ
@u� tð Þ

	
ds

þrUaug tf ; x tfð Þð Þ 	 @x� tfð Þ
@u� tð Þ ðB:25Þ

and

b t;uð Þ ¼
Z
T

@waug s;u� sð Þ; x sð Þð Þ
@u� sð Þ

����
u� sð Þ¼u sð Þ

@u� sð Þ
@u� tð Þ

 

þrwaug s;u sð Þ; x sð Þð Þ 	 @x� sð Þ
@u� tð Þ

	
dsþrUaug tf ; x tfð Þð Þ 	 @x� tfð Þ

@u� tð Þ ;

ðB:26Þ

where

rwaug s;u sð Þ; x sð Þð Þ ¼ rf u sð Þ; x sð Þð Þ
þ rg u sð Þ; x sð Þð Þk s; x sð Þ;uð Þ
þ _k s; x sð Þ;uð Þ ðB:27Þ

is evaluated at u� sð Þ ¼ u sð Þ and x� sð Þ ¼ x sð Þ and

rUaug tf ; x tfð Þð Þ ¼ rU x tfð Þð Þ � k tf ; x tfð Þ;uð Þ ðB:28Þ

is evaluated at u� tfð Þ ¼ u tfð Þ and x� tfð Þ ¼ x tfð Þ, and note that the
derivatives of the last term in Eq. (B.22) (k 0; x 0ð Þ;uð Þ 	 x� 0ð Þ) have
vanished in Eqs. (B.25)–(B.26) because the initial state variables
are fixed x� 0ð Þ ¼ x� 0ð Þ ¼ x 0ð Þ ¼ xinit. Finally,

@x� sð Þ
@u� tð Þ ¼

@x� sð Þ
@u� tð Þ ;

@x� sð Þ
@u� tð Þ ;

@x sð Þ
@u� tð Þ

� 	
u�¼u
x�¼x

and

@x� sð Þ
@u� tð Þ ¼

@x� sð Þ
@u� tð Þ ;

@x� sð Þ
@u� tð Þ ;

@x sð Þ
@u� tð Þ

� 	
u�¼u
x�¼x

ðB:29Þ

are partial derivatives of state variables x� sð Þ at time s with respect
to u� tð Þ and u� tð Þ at time t, respectively.

Eqs. (B.25) and (B.26) can be simplified by noting that

@u� sð Þ
@u� tð Þ ¼

@u� sð Þ
@u� tð Þ ¼ dt sð Þ: ðB:30Þ
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Furthermore, from the definition of the shadow value
k t; x tð Þ;uð Þ ¼ rv t; x tð Þ;uð Þ and from Eqs. (B.14) and (B.15) we have

� _k t; x tð Þ;uð Þ ¼ rf t;u tð Þ; x tð Þð Þ þ rg u tð Þ; x tð Þð Þk t; x tð Þ;uð Þ ðB:31Þ

with f.c. k tf ; x tfð Þ; uð Þ ¼ rU x tfð Þð Þ, which, upon substitution into
Eqs. (B.27) and (B.28), implies that

rwaug t;u tð Þ; x tð Þð Þ ¼ 0;0; 0ð Þ for all t 2 T
and rUaug tf ; x tfð Þð Þ ¼ 0; 0;0ð Þ: ðB:32Þ

Using Eqs. (B.30) and (B.32) in Eqs. (B.25)–(B.26) we obtain

�c t;uð Þ ¼
Z
T

@waug s;u� sð Þ; x sð Þð Þ
@u� sð Þ

����
u� sð Þ¼u sð Þ

dt sð Þds

¼ @waug t;u� tð Þ; x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

ðB:33Þ

and

�b t;uð Þ ¼
Z
T

@waug s;u� sð Þ; x sð Þð Þ
@u� sð Þ

����
u� sð Þ¼u sð Þ

dt sð Þds

¼ @waug t;u� tð Þ; x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

ðB:34Þ

Substituting Eq. (B.20) into the r.h.s. of Eq. (B.33)–(B.34), we obtain

�c t;uð Þ¼@f t;u� tð Þ;x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

þ@g u� tð Þ;x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

	k t;x tð Þ;uð Þ

ðB:35Þ

and

b t;uð Þ¼ @f t;u� tð Þ;x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

þ@g u� tð Þ;x tð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

	k t;x tð Þ;uð Þ

ðB:36Þ

are partial derivatives of w u�; u�;uð Þ with respect to u� tð Þ and u� tð Þ
(recall Eq. (A.2)) and with this we have derived Eqs. (23) and (24)
of the main text. Recalling the definition of Hamiltonian given by
Eq. (25) of the main text

H t;u� tð Þ; x� tð Þ; k t; x tð Þ;uð Þð Þ ¼ f t;u� tð Þ; x� tð Þð Þ
þ g u� tð Þ; x� tð Þð Þ 	 k t; x tð Þ;uð Þ;

ðB:37Þ

we can express Eqs. (B.35) and (B.36) as

�c t;uð Þ ¼ @H t;u� tð Þ; x tð Þ; k t; x tð Þ;uð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

and b t;uð Þ ¼ @H t;u� tð Þ; x tð Þ; k t; x tð Þ; uð Þð Þ
@u� tð Þ

����
u� tð Þ¼u tð Þ

: ðB:38Þ

Let us now consider that the resident control is evaluated along the
candidate uninvadable control path u ¼ u� (whereby
u� ¼ d� x�ð Þ;d� x�ð Þ ¼ d� t; x� tð Þð Þ;d� t; x� tð Þð Þ;d� t; x� tð Þð Þð Þ and
x� ¼ x�; x�; x�ð Þ) and then substituting Eq. (B.38) into Eq. (7) of the
main text yields

s t;u�ð Þ ¼ @H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@u� tð Þ

����
u� tð Þ¼u� tð Þ

þ r u�ð Þ@H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@u� tð Þ

����
u� tð Þ¼u� tð Þ

; ðB:39Þ

where k� t; x� tð Þð Þ ¼ rv t; x� tð Þ;u�ð Þ and the evaluation is expressed
as u� tð Þ ¼ d� t; x� tð Þð Þ for closed-loop traits and as u� tð Þ ¼ d� tð Þ for
open-loop traits. Now recall that the dynamics of x� tð Þ can be
obtained from Eq. (16) when evaluating it along u�, which yields

_x� tð Þ ¼ g u� tð Þ; x� tð Þð Þ; x� 0ð Þ ¼ xinit: ðB:40Þ
23
The dynamics of k� t; x� tð Þð Þ ¼ rv t; x� tð Þ; u�ð Þ can be obtained from
Eq. (B.15) and taking into account the Hamiltonian function and
evaluating along u� we obtain for closed-loop control u� ¼ d� x�ð Þ
path

� _k� t; x� tð Þð Þ ¼ rH t;d t; x tð Þð Þ; x tð Þ; k� t; x� tð Þð Þð Þj x tð Þ¼x� tð Þ
d t;x tð Þð Þ¼d� t;x� tð Þð Þ

;

with f :c: k� tf ; x� tfð Þð Þ ¼ rU x tfð Þð Þjx tfð Þ¼x� tfð Þ

ðB:41Þ

and open-loop control u� ¼ d� path

� _k� t; x� tð Þð Þ ¼ rH t;d� tð Þ; x tð Þ; k� t; x� tð Þð Þð Þjx tð Þ¼x� tð Þ;

with f :c: k� tf ; x� tfð Þð Þ ¼ rU x tfð Þð Þjx tfð Þ¼x� tfð Þ
ðB:42Þ

In conclusion, we have derived the point-wise direct and indirect
effects, given by Eqs. (23) and (24) of the main text (given here
by Eqs. B.35 and B.36, respectively). In addition we derived the
point-wise selection gradient Eq. (26) of the main text (here, Eq.
(B.39)) along with the dynamic Eqs. (32) and (39) on the shadow
value k� t; x� tð Þð Þ (here, Eqs. (B.41) and (B.42)) for closed-loop con-
trols and open-loop controls, respectively. With this we have
derived the first-order condition of uninvadability for closed-loop
and open-loop controls.

B.3. Shadow value dynamics and the state feedback

In this section we derive (34)–(34) of the main text; namely, we
show that the components of the shadow value dynamics and it
depends on higher order derivatives of v� t; x� tð Þð Þ. To that end, it
will turn out to be useful to explicitly express the control in
closed-loop form u tð Þ ¼ d t; x tð Þð Þ, unless we are explicitly evalu-
ated at singular path u� ¼ d� x�ð Þ. Substituting the Hamiltonian
(B.37) into Eq. (B.15) yields

� _k� t;x� tð Þð Þ ¼rH t;d t;x tð Þð Þ;x tð Þ;k� t;x� tð Þð Þð Þj x tð Þ¼x� tð Þ
d t;x tð Þð Þ¼d� t;x� tð Þð Þ

¼rH t;d� t;x� tð Þð Þ;x tð Þ;k t;x� tð Þð Þð Þjx tð Þ¼x� tð Þ

þrH t;d t;x tð Þð Þ;x� tð Þ;k� t;x� tð Þð Þð Þjd t;x tð Þð Þ¼d� t;x� tð Þð Þ;

ðB:43Þ
where

rH t;d t; x tð Þð Þ; x tð Þ; k� t; x� tð Þð Þð Þ

¼ @H t;d t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@x� tð Þ ;

�
@H t;d t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

@x� tð Þ ;

@H t;d t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@x tð Þ

	
;

ðB:44Þ

rH t;d� t; x� tð Þð Þ; x tð Þ; k� t; x� tð Þð Þð Þ

¼ @H t;d� t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@x� tð Þ ;

�
@H t;d� t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

@x� tð Þ ;

@H t;d� t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@x tð Þ

	
; ðB:45Þ

rH t;d t; x tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

¼ @H t;d t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@x� tð Þ ;

�
@H t;d t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

@x� tð Þ ;

@H t;d t; x� tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@x tð Þ

	
: ðB:46Þ
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We can express the last gradient (B.46) as

rH t;d t; x tð Þð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

¼ @d t; x tð Þð Þ
@x

@H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@u� tð Þ

����
u� tð Þ¼d� t;x� tð Þð Þ

; ðB:47Þ

where

@d t; x tð Þð Þ
@x

¼

@d t;x� tð Þð Þ
@x� tð Þ

@d t;x� tð Þð Þ
@x� tð Þ

@d t;x tð Þð Þ
@x� tð Þ

@d t;x� tð Þð Þ
@x� tð Þ

@d t;x� tð Þð Þ
@x� tð Þ

@d t;x tð Þð Þ
@x� tð Þ

@d t;x� tð Þð Þ
@x tð Þ

@d t;x� tð Þð Þ
@x tð Þ

@d t;x tð Þð Þ
@x tð Þ

0BBB@
1CCCA

x� tð Þ¼x tð Þ
d t;x� tð Þð Þ¼d� t;x� tð Þð Þ

ðB:48Þ

gives all the components of the feedback effect of state variables on
trait expressions and

@H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@u� tð Þ

¼ @H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@u� tð Þ ;

@H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ
@u� tð Þ ;

�
@H t;u� tð Þ; x� tð Þ; k� t; x� tð Þð Þð Þ

@u tð Þ

	
: ðB:49Þ

Lets now further explore the elements of a matrix (B.48). From Eq.
(17) it follows that @d t; x tð Þð Þ=@x� tð Þ ¼ @d t; x tð Þð Þ=@x� tð Þ ¼ 0. From
Eqs. (17) and (18) it also follows that

@d t;x� tð Þð Þ
@x� tð Þ

���
x� tð Þ¼x tð Þ

¼ 1
N�1

@d t;x� tð Þð Þ
@xn tð Þ

���
x� tð Þ¼x tð Þ

¼ 1
N�1

@d t;x� tð Þð Þ
@x� tð Þ

���
x� tð Þ¼x tð Þ

;

@d t;x� tð Þð Þ
@x� tð Þ

���
x� tð Þ¼x tð Þ

¼ @d t; x� tð Þ;x tð Þ;x tð Þð Þð Þ
@x� tð Þ

���
x� tð Þ¼x tð Þ

þ N�2
N�1

@d t; x tð Þ;xn tð Þ;x tð Þð Þð Þ
@xn tð Þ

���
x� tð Þ¼x tð Þ

¼ @d t;x� tð Þð Þ
@x� tð Þ

���
x� tð Þ¼x tð Þ

þ N�2
N�1

@d t;x� tð Þð Þ
@x� tð Þ

���
x� tð Þ¼x tð Þ

;

@d t;x� tð Þð Þ
@x tð Þ

���
x� tð Þ¼x tð Þ

¼ @d t;x� tð Þð Þ
@x tð Þ

���
x� tð Þ¼x tð Þ

ðB:50Þ

Hence, we can express all the non-zero derivatives in matrix (B.48)
as effects of the different actors changing their state on the focal
recipient trait expression. Recall the static characterisation (30)
from the main text, which holds for interior solutions (when selec-
tion gradient (B.39) vanishes)

d� t; x� tð Þð Þ ¼ D t; x� tð Þ; k� t; x� tð Þð Þð Þ: ðB:51Þ

Thus, from Eq. (B.51) it follows we can express all the derivatives of
closed-loop controls d in terms of derivatives of function D, i.e.

@d t;x� tð Þð Þ
@x� tð Þ

���
x� tð Þ¼x� tð Þ

¼ @D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ
@x� tð Þ

���
x� tð Þ¼x� tð Þ

;

@d t;x� tð Þð Þ
@x� tð Þ

���
x� tð Þ¼x� tð Þ

¼ @D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ
@x� tð Þ

���
x� tð Þ¼x� tð Þ

;

@d t;x� tð Þð Þ
@x tð Þ

���
x� tð Þ¼x� tð Þ

¼ @D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ
@x tð Þ

���
x� tð Þ¼x� tð Þ

;

ðB:52Þ

Substituting Eqs. (B.50) and (B.52) into Eq. (B.48) yields

@d t; x tð Þð Þ
@x

����
d t;x tð Þð Þ¼d� t;x� tð Þð Þ

¼

@D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ
@x� tð Þ

1
N�1

@D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ
@x� tð Þ 0

@D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ
@x� tð Þ

@D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ
@x� tð Þ þ N�2

N�1
@D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ

@x� tð Þ 0
@D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ

@x tð Þ
@D t;x� tð Þ;k t;x� tð Þ;u�ð Þð Þ

@x tð Þ
@D t;x tð Þ;k t;x tð Þ;u�ð Þð Þ

@x tð Þ

0BBB@
1CCCA:

ðB:53Þ

where all the derivatives in the matrix are evaluated at
x� tð Þ ¼ x tð Þ ¼ x� tð Þ. We can observe from Eq. (B.53) that all the
non-zero elements of matrix (B.53) depend on higher-order deriva-
tives of v� t; x� tð Þð Þ and hence Eq. (B.43) is not and ODE for
k t; x� tð Þð Þ ¼ rv� t; x� tð Þð Þ.
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Metz, J.A.J., Staňková, K., Johansson, J., 2016. The canonical equation of adaptive

dynamics for life histories: from fitness-returns to selection gradients and
Pontryagin’s maximum principle. J. Math. Biol. 72, 1125–1152.

Michod, R.E., Hamilton, W.D., 1980. Coefficients of relatedness in sociobiology.
Nature 288, 694–697.

Mullon, C., Keller, L., Lehmann, L., 2016. Evolutionary stability of jointly evolving
traits in subdivided populations. Am. Natural. 188, 175–195.
25
Nagylaki, T., 1992. Introduction to Theoretical Population Genetics. Springer-Verlag,
Berlin.

Oster, G., Wilson, E.O., 1977. Caste and Ecology in the Social Insects. Princetion
University Press, Princeton, NJ.

Parvinen, K., Dieckmann, U., Heino, M., 2006. Function-valued adaptive dynamics
and the calculus of variations. J. Math. Biol. 52, 1–26.

Parvinen, K., Heino, M., Dieckmann, U., 2013. Function-valued adaptive dynamics
and optimal control theory. J. Math. Biol. 67, 509–533.

Perrin, N., 1992. Optimal resource allocation and the marginal value of organs. Am.
Natural. 139, 1344–1369.

Perrin, N., Sibly, R., Nichols, N., 1993. Optimal growth strategies when mortality and
production rates are size-dependent. Evol. Ecol. 7, 576–592.

Perrin, N., Sibly, R.M., 1993. Dynamic models of energy allocation and investment.
Annu. Rev. Ecol. Syst. 24.

Priklopil, T., Kisdi, E., Gyllenberg, M., 2015. Evolutionarily stable mating decisions
for sequentially searching females and the stability of reproductive isolation by
assortative mating. Evolution 69, 1015–1026.

Priklopil, T., Lehmann, L., 2020. Invasion implies substitution in ecological
communities with class-structured populations. Theor. Popul. Biol. 134, 36–52.

Ronce, O., Gandon, S., Rousset, F., 2000. Kin selection and natal dispersal in an age-
structured population. Theor. Popul. Biol. 58, 143–159.

Ronce, O., Promislow, D., 2010. Kin competition, natal dispersal and the moulding of
senescence by natural selection. Proc. R. Soc. B Biol. Sci. 277, 3659–3667.

Rousset, F., 2004. Genetic Structure and Selection in Subdivided Populations.
Princeton University Press, Princeton, NJ.

Rousset, F., Billiard, S., 2000. A theoretical basis for measures of kin selection in
subdivided populations: finite populations and localized dispersal. J. Evol. Biol.
13, 814–825.

Roze, D., Rousset, F., 2003. Selection and drift in subdivided populations: a
straightforward method for deriving diffusion approximations and applications
involving dominance, selfing and local extinctions. Genetics 165, 2153–2166.

Roze, D., Rousset, F., 2004. The robustness of Hamilton’s rule with inbreeding and
dominance: kin selection and fixation probabilities under partial sib mating.
Am. Natural. 164, 214–231.

Roze, D., Rousset, F., 2008. Multilocus models in the infinite island model of
population structure. Theor. Popul. Biol. 73, 529–542.

Schaffer, W.M., 1983. The application of optimal control theory to the general life
history problem. Am. Natural. 121, 418–431.

Sethi, S.P., Thompson, G.L., 2006. Optimal Control Theory: Applications to
Management Science and Economics. Springer Science & Business Media.

Sibly, R., Calow, P., Nichols, N., 1985. Are patterns of growth adaptive? J. Theor. Biol.
112, 553–574.

Sibly, R., McFarland, D., 1976. On the fitness of behavior sequences. Am. Natural.
110, 601–617.

Speyer, J.L., Jacobson, D.H., 2010. Primer on Optimal Control Theory. Siam,
Phildadelphia, PA.

Starr, A., Ho, Y.-C., 1969. Further properties of nonzero-sum differential games. J.
Optim. Theory Appl. 3, 207–219.

Starr, A.W., Ho, Y.-C., 1969. Nonzero-sum differential games. J. Optim. Theory Appl.
3, 184–206.

Stearns, S., 1992. The Evolution of Life Histories. Oxford University Press, Oxford.
Sydsaeter, K., Hammond, P., Seierstad, A., Strom, A., 2005. Further mathematics for

economics analysis.
Taylor, P.D., 1988. An inclusive fitness model for dispersal of offspring. J. Theor. Biol.

130, 363–378.
Taylor, P.D., Frank, S.A., 1996. How to make a kin selection model? J. Theor. Biol.

180, 27–37.
Troutman, J.L., 1991. Variational Calculus and Optimal Control: Optimization with

Elementary Convexity. Springer-Verlag, New York, NY.
Van Cleve, J., 2015. Social evolution and genetic interactions in the short and long

term. Theor. Popul. Biol. 103, 2–26.
Van Horssen, W.T., Ter Brake, MC., 2009. On the multiple scales perturbation

method for difference equations. In: Nonlinear Dynamic 55(4). Springer, pp.
401–418.

Venner, S., Chadès, I., Bel-Venner, M.-C., Pasquet, A., Charpillet, F., Leborgne, R.,
2006. Dynamic optimization over infinite-time horizon: web-building strategy
in an orb-weaving spider as a case study. J. Theor. Biol. 241, 725–733.

Weber, T.A., 2011. Optimal Control Theory with Applications in Economics. MIT
press Cambridge, Cambridge, MA.

West-Eberhard, M.J., 2003. Developmental Plasticity and Evolution. Oxford
University Press.

Wild, G., 2011. Direct fitness for dynamic kin selection. J. Evol. Biol. 24, 1598–1610.
Wright, S., 1931. Evolution in Mendelian populations. Genetics 16, 97.

http://refhub.elsevier.com/S0022-5193(21)00024-2/h0200
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0200
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0205
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0205
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0210
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0210
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0215
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0215
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0220
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0220
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0222
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0222
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0222
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0225
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0225
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0230
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0230
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0235
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0235
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0240
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0240
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0245
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0245
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0245
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0250
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0250
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0255
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0255
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0260
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0260
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0260
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0265
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0265
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0270
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0270
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0275
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0275
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0280
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0280
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0285
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0285
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0290
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0290
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0295
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0300
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0300
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0305
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0305
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0310
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0310
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0315
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0315
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0315
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0320
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0320
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0325
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0330
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0330
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0335
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0335
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0340
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0340
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0345
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0345
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0350
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0350
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0355
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0355
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0355
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0360
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0360
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0365
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0365
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0370
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0370
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0375
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0375
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0380
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0380
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0385
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0385
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0390
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0390
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0395
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0395
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0400
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0400
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0405
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0405
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0405
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0410
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0410
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0415
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0415
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0420
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0420
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0425
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0425
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0430
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0430
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0430
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0435
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0435
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0435
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0440
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0440
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0440
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0445
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0445
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0455
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0455
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0460
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0460
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0465
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0465
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0470
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0470
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0475
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0475
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0480
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0480
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0485
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0485
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0490
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0499
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0499
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0500
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0500
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0505
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0505
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0510
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0510
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0515
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0515
http://refhub.elsevier.com/S0022-5193(21)00024-2/h9005
http://refhub.elsevier.com/S0022-5193(21)00024-2/h9005
http://refhub.elsevier.com/S0022-5193(21)00024-2/h9005
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0520
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0520
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0520
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0525
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0525
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0530
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0530
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0535
http://refhub.elsevier.com/S0022-5193(21)00024-2/h0540

	Hamilton’s rule, gradual evolution, and the optimal (feedback) control ofphenotypically plastic traits
	1. Introduction
	2. Model
	3. From the selection gradient to candidate optimal controls
	4. Examples
	5. Discussion
	6. Declaration of Competing Interest
	Acknowledgements
	Appendix A. Derivation of Hamilton’s rule for function-valuedtraits
	Appendix B. First-order condition for state-dependent models
	References


