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ABSTRACT

Mass spectrometry (MS)-based immunopeptidomics
investigates the repertoire of peptides presented at
the cell surface by major histocompatibility complex
(MHC) molecules. The broad clinical relevance of
MHC-associated peptides, e.g. in precision medicine,
provides a strong rationale for the large-scale gener-
ation of immunopeptidomic datasets and recent de-
velopments in MS-based peptide analysis technolo-
gies now support the generation of the required data.
Importantly, the availability of diverse immunopep-
tidomic datasets has resulted in an increasing need
to standardize, store and exchange this type of data
to enable better collaborations among researchers,
to advance the field more efficiently and to establish
quality measures required for the meaningful com-
parison of datasets. Here we present the SysteMHC
Atlas (https://systemhcatlas.org), a public database
that aims at collecting, organizing, sharing, visu-
alizing and exploring immunopeptidomic data gen-
erated by MS. The Atlas includes raw mass spec-
trometer output files collected from several labo-
ratories around the globe, a catalog of context-
specific datasets of MHC class I and class II peptides,
standardized MHC allele-specific peptide spectral li-
braries consisting of consensus spectra calculated
from repeat measurements of the same peptide se-
quence, and links to other proteomics and immunol-
ogy databases. The SysteMHC Atlas project was cre-
ated and will be further expanded using a uniform
and open computational pipeline that controls the
quality of peptide identifications and peptide annota-
tions. Thus, the SysteMHC Atlas disseminates qual-
ity controlled immunopeptidomic information to the
public domain and serves as a community resource
toward the generation of a high-quality comprehen-
sive map of the human immunopeptidome and the
support of consistent measurement of immunopep-
tidomic sample cohorts.

INTRODUCTION

T cells have the ability to eliminate abnormal cells through
recognition of short peptides presented at the cell surface by
major histocompatibility complex (MHC) molecules (hu-
man leukocyte antigen [HLA] molecules in human). In
mammals, cells are decorated by thousands of such pep-
tides, which are collectively referred to as the MHC class

I and class II immunopeptidome (1–3). The MHC class I
immunopeptidome is composed predominantly of peptides
of 8–12 amino acids in length that are presented at the sur-
face of virtually any cell- and tissue-type in the body. The
MHC class II immunopeptidome is composed of peptides
of 10–25 amino acids in length that are mainly found on
a subset of professional antigen presenting cells, reviewed
in (4,5). The amino acid sequence of those peptides is not
random. In fact, individual peptides have the ability to
bind MHC molecules via specific anchor residues that de-
fine a MHC binding motif (6). Such motifs are generally
MHC allele-specific, thereby limiting the pool of peptides
that can be presented on the surface of a specific cell for
scrutiny by T cells. In humans, this limitation is counter-
acted by the very high diversity of HLA alleles. In fact,
each individual can express up to six different HLA class
I allotypes and typically eight different HLA class II al-
lotypes, and more than 16 700 allelic forms are expressed
at the human population level (http://www.ebi.ac.uk/ipd/
imgt/hla/stats.html; May 2017). Thus, the composition of
the human immunopeptidome is tremendously complex (7).
Describing and understanding the complexity of the im-
munopeptidome and its functional implications is a central
and fundamental challenge of immunology with important
clinical implications in precision medicine (8).

Mass spectrometry (MS) is a powerful unbiased method
to explore the composition of the immunopeptidome (9).
Following pioneering work by Hans-Georg Rammensee
(10) and Donald Hunt (11) in the early 90’s, the analyti-
cal performance of this technique has rapidly evolved and
currently enables the identification of thousands of HLA-
associated peptides from a single MS measurement (12–22).
Notably, the use of MS techniques to conduct ‘immunopep-
tidomic’ studies has become increasingly popular over re-
cent years, thanks to technical advances and breakthroughs
in the field of immuno-oncology (23). As a consequence,
huge amounts of immunopeptidomic data have been and
continue to be generated at significant expense.

Immunopeptidomics is an expanding field driven
by a rapidly growing community of researchers
and deep technology platforms. In 2015, a Hu-
man Immuno-Peptidome Project (HIPP; https:
//www.hupo.org/Human-Immuno-Peptidome-Project)
was created as a new initiative of the Biology/Disease-
Human Proteome Project (B/D-HPP)––a program un-
der the umbrella of the Human Proteome Organization
(HUPO) (24). The long-term goal of this initiative is
to make the robust analysis of immunopeptidomes ac-
cessible to any immunologist, clinical investigator and
other researchers by the generation and dissemination of
new methods/technologies and informational resources
(25–27). Participants in this initiative recognized the need

https://systemhcatlas.org
http://www.ebi.ac.uk/ipd/imgt/hla/stats.html
https://www.hupo.org/Human-Immuno-Peptidome-Project
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for an open immunopeptidomics repository in which
output files of mass spectrometric measurements of im-
munopeptidome samples would be annotated, stored
and shared without restriction. Here, we introduce the
SysteMHC Atlas project, the first public repository de-
voted to MS-based immunopeptidomics. In brief, the
SysteMHC Atlas uploads raw immunopeptidomics MS
data originally deposited into the PRIDE database along
with the metadata associated with the experiment (Figure
1) (28). Each project is labeled with the HIPP tag as a
B/D-HPP subproject. Raw MS data are then processed
through a uniform computational pipeline for MHC
peptide identification, annotation (29) and statistical vali-
dation (30,31) (Figure 1B). Lists of MHC peptide ligands
as well as sample/context- and allele-specific peptide
spectral libraries (32) are generated and presented in the
Atlas in a way that they can be searched and browsed
by researchers via a web interface. Allele-specific peptide
spectral libraries can be further converted into formats
that are compatible for uploads into the SWATHAtlas
database in order to support immunopeptidomic analyses
by SWATH-MS/DIA (Data-Independent Acquisition)
methods. Importantly, the SysteMHC Atlas aims to be an
open and active repository in which raw MS data can be
periodically reprocessed with more advanced informatics
tools for peptide identification, statistical validation, HLA
peptide annotation and library generation, as these become
available to the community––a procedure that has been
successfully applied in the field of proteomics to ensure
high-quality peptide identification with well-understood
false discovery rates (FDR) and quality controls (33). The
community is expected to benefit from the SysteMHC
Atlas at various levels: (i) basic scientists and clinicians
can navigate within a large catalog of high-quality context-
specific HLA-associated peptides to gain new insights into
the composition of the immunopeptidome, (ii) computa-
tional scientists find a rich source of data to develop or test
new algorithms for immunopeptidomic analyses and (iii)
access to HLA peptide assay spectral libraries facilitates
next-generation MS analysis of immunopeptidomes (i.e.
SWATH-MS/DIA) (34).

CONTENT AND FUNCTIONALITIES OF THE ATLAS

The first version of the SysteMHC Atlas (February 2017)
contains raw and processed MS data derived from 16 pub-
lished human immunopeptidomics projects/datasets (Fig-
ure 2). It also contains information from seven unpublished
datasets that were released by the data producers. The num-
ber of MS output files per project ranges between 1 and 192
for a total of 1184 raw files. All datasets were generated in
data-dependent acquisition (DDA) mode using different in-
struments and fragmentation methods, including collision-
induced dissociation (CID), higher energy collisional dis-
sociation (HCD), electron transfer dissociation (ETD) and
electron transfer and higher energy collision dissociation
(EThcD) (21). Several laboratories used the spiked-in land-
mark indexed Retention Time (iRT) peptides for retention
time normalization (35,36). Each dataset is labeled with a
unique and permanent SYSMHC number. Direct links to
PubMed, PRIDE and Immune Epitope Database (IEDB)

are also provided if applicable (Figure 2). We briefly de-
scribe below the content and functionalities of the Sys-
teMHC Atlas.

A catalog of context- and allele-specific MHC class I and
class II peptides

The SysteMHC Atlas contains mainly naturally presented
human MHC class I and class II peptides. Natural MHC-
associated peptides were extracted by immunoaffinity pu-
rification or mild acid elution from cell lines, primary
cells and tissues––i.e. peripheral blood mononuclear cells
(PBMCs), T cells, B cells, dendritic cells, macrophages,
fibroblasts, colon carcinoma, breast cancer and glioblas-
toma. All biological sources were HLA typed and peptides
from 67 HLA class I and 27 HLA class II alleles are rep-
resented in the current version of the database (February
2017). A full listing of all the samples and correspond-
ing metadata (i.e. organism, tissue and cell type, culture
conditions, disease state, HLA type, antibody used for im-
munoaffinity purification, LC-MS/MS parameters etc.) can
be found next to the raw MS files at the project website.

In May 2017, ∼29.5 million MS/MS spectra were
searched using a uniform and well-tested computational
pipeline and yielded 250, 768 and 1458, 698 distinct peptides
with iProphet probability P ≥ 0.9 and P > 0.0, respectively.
After applying strict confidence filters for the identification
of class I and class II peptides, 119 073 high-confidence
HLA class I peptides (peptide FDR 1%, 8–12 amino acids)
were identified and annotated to specific HLA-A, -B or -C
alleles using an automated annotation strategy as described
(34) (see Supplementary Figure S1 for statistics). For class II
molecules, 73 465 high-confidence peptides were identified
(peptide FDR 1%, 10–25 amino acids, belonging to groups
of two or more peptides with an overlap of at least four
amino acids). Of note, the assignment of peptides to spe-
cific HLA class II alleles will be considered in the future as
soon as robust bioinformatics tools for class II peptide an-
notation become openly available (26). The high-confidence
class I and class II peptides were mapped onto 13, 132 and
7704 of the human UniProtKB/Swiss-Prot proteins, respec-
tively.

An important goal in MS-based immunopeptidomics is
to assess the size of the human immunopeptidome at the
population level. To answer this question, we plotted the cu-
mulative number of distinct HLA class I peptides as a func-
tion of the addition of identified spectra at FDR 1% (Figure
3). Each data point on the curve represents an added exper-
iment, and the experiments are presented in chronological
order of data acquisition. When looking at the combined
data from all HLA class I alleles in the Atlas, our analysis
suggests that for the presently available technology the satu-
ration level might already be reached (Figure 3A). However,
this observation might be biased given the limited number
of HLA alleles as well as the limited number of cell and tis-
sue types that were sampled until now. In addition, when
individual HLA class I alleles were considered, the number
of distinct peptides continued to steeply increase for several
HLA class I allele such as -A02, -C02 and C16 (Figure 3B)
indicating that for these alleles, saturation had not yet been
achieved as the curves are expected to reach saturation only
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Figure 1. Overview of the SysteMHC Atlas project. (A) The SysteMHC Atlas aims to be a long-term data-driven project that serves the community.
It is linked to other repositories of proteomic data and consists of two main components: (i) a uniform computational pipeline for processing raw MS
files and (ii) a web interface with storage, searching and browsing capabilities. First, shotgun/DDA-MS experimental data generated for specific projects
are submitted by the data producers to PRIDE. Raw MS data are then uploaded into the SysteMHC Atlas and processed through a consistent and
open computational pipeline (B) that controls the quality of peptide identification and peptide annotation to specific HLA alleles. Spectral libraries are
generated and can be converted into high-quality HLA allele-specific peptide assay libraries, also available at SWATHAtlas. All the results generated by
the computational pipeline are made available to the public domain via the SysteMHC Atlas web-based interface, which provides links to the Immune
Epitope Database (IEDB) for accessing lists of peptides originally identified and published by the data producers. (B) Current computational pipeline
used for generating the immunopeptidome- and spectral database for different HLA allotypes. MS output files generated from several types of instruments
are first converted into mzXML file format and then searched using several open-source database search engines. The resulting peptide identifications are
combined and statistically scored using PeptideProphet and iProphet within the Trans-Proteomic Pipeline (TPP) (30,31). The identified peptides are next
annotated to their respective HLA allele in a fully automated fashion using the stand-alone software package of NetMHCcons 1.1 (29). Spectral libraries
are generated using SpectraST (32). Allele-specific peptide spectral libraries are generated from multiple samples––an example for HLA-A03 is highlighted
in red. Each HLA peptide is labeled with a unique and permanent library identifier (LibID). Details regarding the computational pipeline and how the
data were processed are available at the SysteMHC Atlas website in the ‘ABOUT’ section.
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Figure 2. Immunopeptidomics datasets used for building the first version of the SysteMHC Atlas. Data from 23 projects that collectively generated 1184
raw MS files constitute the initial contents of the SysteMHC Atlas. Each project is labeled with a unique SYSMHC identifier and linked to its corresponding
PubMed, PRIDE and IEDB ID. For unpublished projects, IDs are not applicable (NA).

when most peptides observable with the applied technol-
ogy will have been cataloged. Altogether, our current anal-
ysis suggests that the Atlas data are not yet comprehensive.
In the future, collecting additional MS/MS data from new
experiments––including from new HLA alleles, new cell ori-
gins, new experimental conditions, new protocols and new
MS technologies––will be necessary to properly assess the
size and complexity of the human immunopeptidome.

In additional to naturally processed ligands, the Sys-
teMHC Atlas also contains data for synthetic peptides
predicted to bind specific HLA alleles. Datasets gener-
ated from synthetic peptides might be particularly use-
ful for benchmarking new software tools (37) and to ex-
tend the contents of libraries derived from native pep-
tides for targeted analysis of immunopeptidomes (3,38,39).
To date, SysteMHC Atlas contains four datasets com-
posed of synthetic peptides: SYSMHC00001 contains
data generated from a large collection of synthetic HLA
class II peptides encoded by Mycobacterium tuberculo-
sis (Mtb) (34,40); SYSMHC00020, SYSMHC00021 and
SYSMHC00022 contain data obtained from synthetic HLA
class I peptides encoded by Mtb (41,42), Epstein–Barr virus
(EBV) and Homo sapiens, respectively.

The SysteMHC Atlas user interface

Researchers can browse, search and download informa-
tion using query interfaces available at the website (https:
//systemhcatlas.org). In particular, the ‘EXPLORE’ link

leads to a page where immunopeptidomic data are search-
able on numerous levels, including peptide sequence, source
protein, as well as HLA class and type. For instance, the user
can query the data to specifically identify (i) all class I pep-
tides derived from a specific source protein (e.g. BIRC6 in
Figure 4), (ii) the repertoire of peptides presented by a spe-
cific HLA type and/or (iii) in which tissues or experimental
conditions have specific peptides been observed etc. Thus,
the SysteMHC user interface enables large immunopep-
tidomics datasets to be explored in a user-specifiable fash-
ion.

An important function of the SysteMHC Atlas is to serve
as a repository devoted to immunopeptidomics MS-related
data at several levels of processing. Specifically, we provide
raw and converted mzXML files, iProphet results and HLA
peptide spectral libraries, all available for download at the
website (Figure 5). In the current version of the Atlas, a
total of 539 sample/context- and 37 HLA allele-specific
peptide spectral libraries were made available and can be
visualized using the respective links from the web inter-
face. Three new allele-specific spectral libraries (i.e. HLA-
B15, -C03 and -C07) were also converted into TraML files
for SWATH-MS/DIA analysis of immunopeptidomes, as
previously described (34,36). These standardized libraries
contained the iRT peptides for retention time normaliza-
tion and data analysis. TraML files are directly available for
download at SWATHAtlas.

https://systemhcatlas.org
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Figure 3. Cumulative number of MS/MS spectra versus cumulative number of distinct peptides for HLA class I alleles at FDR 1%. (A) All HLA class
I peptides were combined. (B) HLA class I alleles that were frequently found in various datasets. Eventually, the curves are expected to reach saturation
when most observable peptides will have been cataloged at 1% peptide FDR.
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Figure 4. Explore page in the SysteMHC Atlas web-based interface. HLA allele-specific peptide spectral libraries can be downloaded here. The web
interface can also be used to query the SysteMHC Atlas and find specific information. (A) As an example the source protein BIRC6 was searched and
the Atlas returned back all HLA-associated peptides originating from this protein as well as the context (i.e. SysteMHC ID, Sample ID, iProphet score,
HLA annotation score, spectral counts, assigned HLA type and class) in which this peptide was observed. Then, the user can click on a specific Sample ID
hyperlink and be redirected to the corresponding raw MS files and metadata (e.g. tissue type, cell type, culture condition, purification method, antibody
used, mass spectrometer used etc). (B) The peptide RLLDYVATV was searched and the Atlas returned back the datasets in which this peptide was
observed. By clicking on the peptide sequence hyperlink, the user is redirected to a new page in which the LibID information is available for MS/MS
spectra visualization. Information can be downloaded as .csv files for further analysis.
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Figure 5. Data storage and visualization. To access information about specific datasets, the user selects a specific SYSMHC ID/Project name (e.g.
SYSMHC00005) and clicks on ‘view dataset’ at the bottom left of the screen. The samples related to this project are then listed and linked to the number
of replicates, organism, tissue and cell type of origin as well as the HLA typing information (upper panel). The user can then click on a specific Sample
ID to visualize the metadata and to download the raw or converted mzXML MS files (red squares). A list of sample-specific HLA-associated peptides
can be visualized at 1% peptide-level FDR (green squares). Sample-specific spectral libraries, including consensus fragment ion spectra, can be visualized
and downloaded (orange and blue squares). Heat maps (black squares) are used to visualize the annotation of individual peptides to their respective HLA
allele (dark blue peptides are predicted to be strong HLA binders according to NetMHCcons).
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FUTURE DIRECTIONS

Data sharing, public resources and large-scale/community
projects are growing in popularity and necessity in life
sciences (43–48), and specifically in proteomics (49,50)
where public data sharing is growing exponentially in re-
cent years. Along this line, the SysteMHC Atlas repre-
sents the first community-driven resource devoted to col-
lect, store, organize and share large immunopeptidomics
datasets generated by MS methods––an important contri-
bution to the Human Immuno-Peptidome Project (25,27).
The SysteMHC Atlas will be further developed and en-
hanced to enable public dissemination of uniform and high-
quality immunopeptidome data generated by an open and
ever-improving computational pipeline. To this end, raw
MS data will be reprocessed periodically using novel high-
performance software tools as they are made available to the
community. Future software tools are expected to outper-
form current algorithms for (i) MHC peptide identification,
(ii) MHC peptide FDR estimation in large immunopep-
tidomic datasets and (iii) class I and class II peptide an-
notation to specific HLA alleles, as described (http://www.
biorxiv.org/content/early/2017/05/13/098780) (51). In the
near future, we aim at providing the necessary tools to re-
trieve information on post-translationally modified MHC-
associated peptides: phosphopeptides, Arg-methylated pep-
tides and proteasome-generated spliced peptides in par-
ticular, as those might be of particular relevance for the
rational design of immunotherapeutic interventions (52–
56). We also plan to identify the potential for large-scale
integration and interoperability of all immunopeptidomic
data with PRIDE (28), IEDB (57) and SWATHAtlas (34).
Thus, we intend the SysteMHC Atlas to become a grow-
ing community-driven database and an interoperable, high-
performance infrastructure for systematic analysis of ter-
abytes of immunopeptidomic big data. If successful in
longer term, we anticipate that the SysteMHC Atlas project
will provide key insights to the immunology community and
will foster the development of vaccines and immunother-
apies against various immune-related diseases such as au-
toimmunity, allergies, infectious diseases and cancers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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