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Summary

The CRISPR nuclease systems greatly facilitate targeted genome modifications in mam-

malian cells. The outcome of genome editing depends on the involved DNA double strand

break (DSB) repair pathways. While the classical non-homologous end-joining and the

poorly defined alternative end-joining (alt-EJ) DSB repair pathways can cause imprecise

repair and thus gene inactivations, the homologous recombination (HR) pathway often

introduces precise modifications. Although CRISPR is highly efficient at inactivating

single genes, it is inefficient at introducing precise genome modifications. Moreover, its

efficiency at inactivating multi-locus DNA sequences such as highly repetitive endoge-

nous viral elements also remains limited.

This thesis addressed these limitations by better characterizing DSB repair pathways

in Chinese hamster ovary (CHO) cells – the most widely used production cell host for

therapeutic proteins. In this thesis, I first aimed at identifying rate-limiting factors to

improve HR-mediated genome editing. Second, I strove for studying approaches to inac-

tivate repetitive endogenous retroviruses (ERV) presumably releasing viral particles into

the CHO supernatant.

To identify factors limiting HR, we established two chromosomal CHO assays that

measure HR activity based on the correction of a GFP loss-of-function mutation. By us-

ing knockdown and overexpression studies, we found that efficient HR-mediated genome

editing depended on certain alt-EJ activities. Furthermore, we observed that alt-EJ con-

tribution to HR correlates with the nuclease type and the location of the DSB site relative

to the GFP mutation. These observations suggest that alt-EJ and HR repair pathways

tightly interact and challenges the common perception of alt-EJ opposing HR. Finally,

among the tested repair factors, high Mre11 nuclease and Pari anti-recombinase as well

as low Rad51 recombinase levels were the most rate-limiting factors for HR in CHO cells.
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Counteracting these bottlenecks improved HR efficiency by 75%.

To inactivate repetitive ERVs, we transiently expressed a CRISPR-Cas9 nuclease that

targets the gag gene of a specific transcriptionally active ERV group. Clones bearing

a loss-of-function mutation in one particular ERV locus and corresponding mRNA pro-

duced considerably fewer particles loaded with viral RNA genomes. These findings in-

dicated that a single ERV locus is responsible for the release of most, if not all, viral

particles from CHO cells. Notably, ERV mutagenesis did not compromise cell growth,

cell size or therapeutic protein production. In sum, this work provided novel strategies

to improve HR-mediated genome editing and to inhibit viral particle release from CHO

cells.
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Résumé

Le système de nucléases CRISPR permet d’effectuer des modifications ciblées dans le

génome des cellules de mammifères. Le résultat de l’édition du génome dépend des

voies de réparation de la cassure double brin (CDB) du fragment ADN. Les deux voies

de réparation de la CDB par jonction d’extrémités, la voie jonction d’extrémités non ho-

mologues classiques et la voie de jonction d’extrémités alternatives (alt-EJ) mal définie,

provoquent des réparations imprécises et des inactivations génétiques. Au contraire, la

voie de recombinaison homologue (RH) introduit la plupart du temps des modifications

précises. Bien que le système CRISPR soit très efficace pour inactiver des gènes in-

dividuels, cette approche reste inefficace pour introduire des modifications génomiques

précises. En outre, son efficacité à inactiver des séquences d’ADN multi-locus, telles que

des éléments viraux endogènes hautement répétés, reste également limitée.

Cette thèse a abordé ces limitations en améliorant la compréhension des voies de

réparation de la CDB dans les cellules ovariennes de hamster chinois (CHO), qui est le

système cellulaire le plus utilisé pour la production de protéines thérapeutiques. Pour

ce faire, j’ai premièrement identifié les facteurs limitant la RH pour améliorer l’édition

précise du génome. J’ai ensuite développé des approches visant inactiver les rétrovirus

endogènes répétitifs (ERV) qui sont suspectés de libérer des particules dans le surnageant

des cellules CHO.

Pour identifier les facteurs limitant la RH, nous avons établi deux essais dans les cel-

lules CHO permettant de mesurer l’activité de la RH par la correction d’une mutation

d’une séquence GFP non fonctionnelle. En diminuant ou en augmentant l’expression de

facteurs impliqués dans les voies de réparation, nous avons constaté que l’efficacité de la

RH dépendait de certains facteurs impliqués dans la voie d’alt-EJ. De plus, nous avons

observé que la contribution de l’alt-EJ pour la RH dépendait du type de nucléases utilisés
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et de la localisation de la CDB par rapport à la mutation dans le transgène de la GFP. Ces

observations suggèrent que les voies de réparation de l’alt-EJ et de la RH interagissent

étroitement, et ceci remet en question le consensus selon lequel l’alt-EJ est en compétition

avec la RH. Enfin, parmi les facteurs de réparation testés, nous avons constaté que la RH

était limitée par des niveaux élevés de nucléase Mre11 et d’anti-recombinase Pari ainsi

que par des faibles niveaux de recombinase Rad51. En modifiant le niveau d’expression

de ces éléments limitants, nous avons pu améliorer l’efficacité de la HR de 75%.

Pour inactiver les ERV répétitifs, nous avons exprimé de manière transitoire une

nucléase CRISPR-Cas9 qui cible le gène gag d’un groupe spécifique d’ERV transcrip-

tionnellement actifs. Les clones comprenant une mutation de perte de fonction dans un

locus ERV particulier et dans l’ARNm correspondant montraient une production large-

ment réduite de particules chargées d’ARN génomique viral. Ces constatations indiquent

qu’un seul locus ERV est responsable de la libération de la plupart, sinon de toutes les par-

ticules virales des cellules CHO. Notamment, la mutagenèse d’ERV n’a compromis ni la

croissance cellulaire, ni la taille des cellules, ni la production de protéines thérapeutiques.

Globalement, ce travail propose de nouvelles stratégies permettant d’améliorer l’édition

génomique médiée par la HR, et d’inhiber la libération de particules virales par les cel-

lules CHO.
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Chapter 1

Introduction

Genome editing techniques, such as the CRISPR-Cas9 nuclease system, allow to effi-

ciently introduce targeted genome modifications in many types of cells and organisms.

Genome editing is widely used to study fundamental biological processes and holds great

promise for translational applications, for instance, to cure genetic diseases. The out-

come of genome editing depends on the cellular DNA double strand break (DSB) repair

machinery. In the present thesis, I focused on the interconnection between DNA DSB

repair pathways and CRISPR-Cas9-mediated genome editing in Chinese hamster ovary

(CHO) cells, the most widely used cell system to produce therapeutic proteins. In partic-

ular, I aimed at developing new genome editing strategies to improve precise homologous

recombination-mediated genome modifications as well as to prevent the release of viral-

like particles from endogenous retroviruses (ERVs) embedded in the CHO genome. In the

first section of this chapter, I reviewed the current knowledge of DSB repair mechanisms

in mammalian cells. In the second section, I described genome editing systems and their

current limitations. Finally, in the third section, I summarized the CHO expression system

and the threat of ERVs as source for viral contaminations.

1.1 DNA lesions and the DNA damage response

Cells encounter hundreds to thousands of spontaneous DNA lesions per day [1]. Typical

DNA lesions include modified DNA bases, mispaired or entirely missing nucleotides,

intra- and interstrand crosslinks, as well as single and double strand breaks (SSBs and

1



DSBs, respectively). All these lesions threaten genome stability and integrity as well as

cell viability. To cope with and recover from complex DNA lesions, mammalian cells

possess an intricate network of signaling and repair pathways, termed the DNA damage

response (DDR) [2–5]. The DDR essentially detects and signals the presence of DNA

lesions and activates downstream effectors to induce cell cycle checkpoints, DNA repair

pathways or apoptosis (Fig. 1.1).

Figure 1.1: The DNA damage response is a signaling cascade able to sense and propagate
the damage signals to effector proteins that activate cell cycle checkpoints, DNA repair or
apoptosis (reproduced from [4]).

The key mediators of the DDR are the ataxia-telangiectasia mutated (ATM) and ataxia

telangiectasia and Rad3-related (ATR) kinases [6, 7]. The ATM kinase is activated by

DSBs, which may arise from exposure to ionizing radiation (IR) and are detected by

the primary DSB damage sensor Mre11-Rad50-Nbs1 (MRN) complex. The MRN com-

plex consists of a Mre11-Rad50 heterotetramer, which translocates to the nucleus through

Nbs1, and tethers broken DSB ends together [8]. In contrast, the ATR kinase activity

depends on replication protein A (RPA)-covered single-stranded DNA (ssDNA), which

may emerge from stalling DNA replication forks as well as resected DSB ends.

ATM and ATR phosphorylate a large variety of targets, including checkpoint kinase 1
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and 2 (CHK1 and CHK2), which are mainly phosphorylated by ATR and ATM, respec-

tively [9]. These diffusible kinases spread the DDR signal away from the DNA damage

site and further phosphorylate downstream effectors, such as the p53 transcription factor

or the cell division cycle 25 (CDC25) phosphatases. Phosphorylation of p53 induces the

G1/S checkpoint, while phosphorylation of CDC25 triggers the G1/S, intra-S and G2/M

checkpoints, delaying cell cycle progression to allow time for repair [10].

ATM and ATR also phosphorylate Ser139 of histone variant H2AX, known as γH2AX

[11, 12]. γH2AX induces global changes in the chromatin structure flanking the DSB

site and serves as a “landing runway” for other DDR factors that help to sustain and

amplify the DDR signal [5]. For instance, γH2AX attracts the DNA damage mediator

MDC1 [13], which recruits additional MRN and ATM molecules to the DSB site, and it

promotes recruitment of p53 binding protein 1 (53BP1) and Breast cancer susceptibility

protein 1 (Brca1) to the DNA damage site, which are both also targets of ATM and/or

ATR [7]. 53BP1 and Brca1 further amplify DDR signaling but also contribute to the

classical non-homologous end-joining (C-NHEJ) and homologous recombination (HR)

DNA DSB repair pathways, respectively, as described below in Sections 1.2.1 and 1.2.2.

The accumulation of numerous DDR and repair factors at the DSB creates nuclear foci

visible by fluorescence microscopy.

Severe DNA damage or failure to remove it leads to persistent DDR signaling. This

may trigger apoptosis, mediated by p53-induced transcription of the Bax and Puma pro-

teins [14], or permanent cell cycle arrest, known as cellular senescence [4].

1.2 Double strand break (DSB) repair

DSBs are one of the most cytotoxic DNA lesions since both strands of the DNA double

helix are broken simultaneously. A mammalian cell encounters ∼50 DSBs per cell cycle

[15]. DSBs can occur spontaneously from endogenous and exogenous DNA damaging

agents. The major sources of endogenous DSB are stalled or collapsed DNA replication

forks, reactive oxygen species (ROS) and other cellular metabolites, while exogenous

DSBs generally result from IR and anticancer chemotherapeutic drugs [16, 17]. In addi-

tion, DSBs can arise naturally during meiosis, increasing genetic diversity and ensuring

proper chromosome segregation, as well as during immune system maturation by V(D)J

recombination, class switch recombination, and somatic hypermutations [18–20]. Incor-
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rect or missing repair of DSBs may result in mutations and chromosome rearrangements,

predisposition to cancer, genetic disorders or cell death.

To ensure proper DSBs repair, eukaryotes possess several DSB repair pathways. The

two main DSB repair pathways are classical non-homologous end-joining (C-NHEJ) and

homologous recombination (HR). Moreover, DSBs can be repaired by single strand an-

nealing (SSA) and by a family as of yet poorly described alternative end-joining (alt-EJ)

pathways.

1.2.1 Classical non-homologous end-joining (C-NHEJ)

Classical non-homologous end-joining (C-NHEJ) is the predominant DSB repair pathway

in most mammalian cells. It is the principal DSB repair pathway for IR-induced DNA

damage and for diversification of the antigen receptor during V(D)J recombination [19,

21]. Therefore, mutations in C-NHEJ genes are often associated with radiation sensitivity

and severe immunodeficiency [22]. C-NHEJ is a fast DSB repair pathway, with most C-

NHEJ repair processes being completed within 30 min [23]. It is active in non-dividing

and diving cells throughout the cell cycle but is particularly important in G1/G0 and early

S phase, when HR is not active [21]. Unlike other DSB repair pathways, C-NHEJ relies

on no or only on minimal end processing of broken DNA ends and can ligate the DNA

ends regardless of sequence homology, although short microhomologies (MHs) may be

used to facilitate annealing of broken DNA ends [24, 25].

C-NHEJ is generally described as an error-prone repair pathway [26]. Indeed, most

naturally occurring DSBs produce non-complementary ends (e.g. mismatching over-

hangs, hairpins, damaged or chemically modified bases) that prevent direct end re-ligation.

Hence, to create ligation-compatible DNA ends, C-NHEJ requires minimal end process-

ing by nucleases and/or polymerases to trim the ends and/or to add nucleotides [24, 27,

28]. This processing often results in small heterogeneous insertions and deletions (in-

dels) at the DSB site. However, C-NHEJ can also give rise to accurate repair outcomes

[26]. This is the case for fully compatible DSB ends, such as blunt and cohesive ends

introduced by restriction enzymes, that can be directly ligated, leading to perfectly recon-

stituted DNA sequences [27].

Upon ATM-mediated DSB recognition, accumulation of the DDR protein 53BP1 at

broken DNA ends is a key step towards C-NHEJ repair [29] (Fig. 1.1). Besides DSB
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checkpoint activation and recruitment of other repair factors, 53BP1 acts together with the

downstream factors Rif1 and Rev7 (also known as Mad2l2) to prevent DSB end resection

in the G1 cell cycle phase [29–31]. Hence, 53BP1-mediated end protection favors C-

NHEJ over the resection-dependent HR, SSA and alt-EJ pathways. Moreover, 53BP1

contributes to C-NHEJ repair by bridging the two DSB ends [32].

Subsequently, 53BP1-primed DSB ends are recognized by the Ku heterodimer con-

sisting of the two subunits Ku70 (Xrcc6) and Ku80 (Xrcc5). This further counteracts

DSB end resection (Fig. 1.2). Most cellular Ku70 and Ku80 proteins are bound as stable

Ku70-Ku80 heterodimer complex and deficiency in either Ku70 or Ku80 protein results in

low levels of the other Ku subunit [33, 34]. Ku proteins are highly abundant in eukaryotes

and possess a tight affinity for DSB ends, yet a poor affinity for ssDNA [35–37].

Figure 1.2: Schematic representation of DSB repair by C-NHEJ (reproduced from [38]).

Binding of Ku70-Ku80 facilitates recruitment of other C-NHEJ components, such as

the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to DNA ends, which

forms together with the Ku heterodimer the DNA-PK holoenzyme [39]. Upon DSB bind-

ing, DNA-PKcs autophosphorylates, helps end bridging and activates Artemis, the main
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endonuclease for C-NHEJ [40]. It is currently believed that Artemis or other endonu-

cleases are dispensable for simple end-joining but important for processing damaged or

incompatible DSB ends by resecting 5’ and 3’ overhangs as wells as opening hairpins

[24, 41].

DNA-bound Ku70-Ku80 also serves as scaffold for various DNA polymerases, no-

tably the Pol µ and Pol λ . These polymerases can add nucleotides in a template-dependent

or template-independent (mainly Pol µ) manner and, thus, help to fill the gaps of Artemis-

resected DNA ends [42, 43]. Finally, DNA ligase IV (Lig4) and X-ray repair cross-

complementing protein 4 (Xrcc4) mediate DSB end ligation [44]. They are stimulated by

the two accessory proteins Xrcc4-like factor (Xlf; also known as Cernunnos) as well as

paralog of Xrcc4 and Xlf (Paxx) [45, 46].

1.2.2 Homologous recombination (HR)

Homologous recombination (HR) is the most accurate DSB repair mechanism in mam-

malian cells. It is also involved in the recovery of damaged replication forks, in the final

steps of interstrand crosslink (ICL) repair, telomere maintenance and meiosis [18, 47–49].

HR is an intricate and rather slow DSB repair process [50]. It is the major DSB repair

pathway in yeast, but exhibits only low activity in most mammalian cells [21, 51–53].

Mutations in HR genes, notably in Brca1 and Brca2, are associated with increased risks

of breast and ovarian cancer [54].

Unlike C-NHEJ, HR uses long homologous sequences of at least 200-500 bp in length

as template for error-free repair [55]. These homologous sequences mostly locate in trans

and preferentially on sister chromatids, allowing to reconstitute the missing sequence

with no loss in genetic information [56]. However, HR may also use homologous chro-

mosomes, homologous sequences in non-allelic positions (e.g. repetitive elements) or

exogenous donor DNA as illegitimate repair template which may cause loss of heterozy-

gosity (LOH) and chromosomal rearrangements [57, 58]. Hence, to minimize illegitimate

recombination, HR is predominately active in late S and G2 cell cycle phase, when sister

chromatids are available and paired [59].

The initial step in HR is exposure of long 3’ ssDNA by extensive 5’-3’ DNA end resec-

tion, which commits DSB repair to HR (Fig. 1.3). The transition between end protection

and end resection is believed to be mediated by Brca1, a target of the ATM kinase. Brca1,
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in concert with the Brca1-associated RING Domain 1 (Bard1), promotes end resection by

antagonizing the resection barrier imposed by 53BP1 and by interacting with the MRN-

CtIP nuclease complex [54, 60]. End resection occurs in a two-step bidirectional process:

First, Mre11, the nuclease of MRN, initiates end resection by endonucleolytic incisions in

the 5’ strand proximal to the DSB end, a process that is stimulated by CtIP [61, 62]. The

incised DNA strand is then digested by the 3’-5’ exonuclease activity of Mre11 creating

short 3’ ssDNA overhangs of approximately 100 nt in length [8]. Second, upon initial

resection, long-range resection in the 5’-3’ direction generates 3’ ssDNA tails of kilo-

bases in length. In mammalian cells, this is mediated by the Exonuclease I (Exo1) alone

or by the Dna2 nuclease in conjunction with either the Werner syndrome (Wrn) helicase

and/or the Bloom syndrome (Blm)-Topo3α-Rmi1-Rmi2 helicase-topoisomerase complex

[63]. Resected ssDNA is rapidly bound by RPA, which protects the exposed ssDNA and

contributes to amplifying the DDR via ATR signaling (Fig. 1.1).

Subsequently, the Rad51 recombinase, a key HR protein, replaces RPA bound to the

resected ssDNA. Rad51 (RecA in bacteria) forms helical nucleoprotein filaments on the

ssDNA, which stretches the bound DNA by 50% [65, 66]. In mammalian cells, the forma-

tion of the Rad51-ssDNA complex, termed presynaptic filament, is mediated by the tumor

suppressor Brca2 in cooperation with the Brca1-Bard1-Palb2 complex and possibly the

Rad51 paralogs (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3) [67, 68]. In Brca2-deficient

cells, Rad51 loading depends on the Rad52 protein, the main presynaptic filament medi-

ator in yeast cells [69]. To prevent spontaneous and unscheduled HR, Rad51 presynap-

tic filament formation is regulated by the Kelch-like ECH-associated protein 1 (Keap1)

factor, which prevents Brca1 interaction with Brca2-Palb2 during G1 phase [70]. By

contrast, Rad51 nucleofilament disassembly prior to strand invasion is controlled by anti-

recombinases, including the Proliferating Cell Nuclear Antigen (PCNA)-interacting fac-

tor (Pari), F-box protein 18 (Fbxo18; also known as Fbh1), RecQ-like helicase 5 (Recql5)

and Blm [71–74].

The presynaptic filament orchestrates homology search and pairing with intact homol-

ogous repair templates. Homology search likely occurs through a random three dimension

sampling together with a one dimension sliding mechanism with preference for sequences

in close proximity to the DSB [75, 76]. The closest template is typically located within

sister chromatids, as they are tied together by cohesin molecules [77]. However, it can

also be found within non-allelic sequences, if they colocalize with the DSB due to spatial

genome organization like chromatin loops or clustered highly-transcribed genome loci

7



Figure 1.3: Homologous recombination (HR) repair of DNA double strand breaks
(DSBs) by break-induced replication (BIR), canonical DSB repair (DSBR) and synthesis-
dependent strand annealing (SDSA). The intact homologous sequence (in red) serves as
template for the damaged DNA sequence (in blue). Pairing of red and blue DNA se-
quences generates a heteroduplex DNA. Newly synthesized DNA is depicted with dot-
ted lines. Double Holliday junctions (dHJs) can either be dissolved by helicases into a
hemicatenane (HC) producing non-crossover products or resolved by nucleases creating
non-crossover (positions 1, 2, 3, and 4) or crossover (positions 1, 2, 5, and 6) products
(reproduced from [64]).

[78]. Identification of homology triggers strand invasion of the Rad51 filament into the

dsDNA donor template, mediated by Brac1-Bard1, Rad51 paralogs and Rad54 helicase

[68, 79, 80], and initiates strand exchange [81]. This leads to the formation of a displace-

ment (D)-loop that contains a heteroduplex as well as a displaced ssDNA strand, which

is coated by RPA (Fig. 1.3). If the heteroduplex sequences within the nascent D-loop are

similar but too divergent (homeologous) for recombination, mismatch repair (MMR) can

abort HR via heteroduplex rejection [82].

In order to reconstitute the missing DNA sequence disrupted by the DSB, DNA syn-
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thesis is established within the nascent D-loop. To this end, the Rad54 helicase mediates

the dissociation of the Rad51 recombinase [83] allowing the invading 3’ end to prime

DNA synthesis and extend the D-loop along the homologous template with the help of

DNA polymerase δ [84]. Upon D-loop extension, HR repair branches into three distinct

pathways, that result in different repair products: synthesis-dependent strand annealing

(SDSA), canonical DSB repair (DSBR) and break-induced replication (BIR) (Fig. 1.3).

In case of the DSBR pathway, the displaced strand of the expanded D-loop anneals to

(“captures”) the second broken 3’ ssDNA end [85]. This second-end capture step creates

another region of heteroduplex DNA and is followed by gap filling via DNA synthesis

and end ligation, leading to the formation of a double Holliday Junction (dHJ). This sta-

ble repair intermediate can then be resolved or dissolved. dHJ resolution depends on

structure-specific endonucleases, such as the Gen1 and the Slx1-Slx4-Mus81-Eme1 com-

plex, which introduce symmetric and asymmetric nicks, respectively, into the dHJ [86].

Cleaving both inner dHJ strands maintains the original DSB flanking sequences and pro-

duces non-crossover products (NCO) while cleaving one inner and one outer dHJ strand

switches the DSB flanking sequences and yields crossover products (CO) [64] (Fig. 1.3).

In contrast, the Blm-Topo3α-Rmi1-Rmi2 complex mediates dHJ dissolution. In addition

to its role in end resection, this complex converges the dHJ via branch migration, lead-

ing to the formation of a hemicatenane intermediate followed by its decatenation [64].

Dissolution leads to NCO events only.

In case of the SDSA pathway – the major HR pathway in mitotic cells [87] – the

newly synthesized strand becomes dissociated from the extended D-loop and anneals to

the complementary tail of the second broken 3’ ssDNA end. This creates an additional

heteroduplex region that initiates DNA fill-in synthesis and end ligation. Several anti-

recombinases contribute to the dissociation of the extended D-loop in mammalian cells,

including the Regulator of telomere elongation helicase 1 (Rtel1), Fanconi anemia com-

plementation group M (FancM), and Blm proteins, and, thus, channel HR repair towards

SDSA [88–91]. Unlike DSBR, SDSA results exclusively in NCO events.

The D-loop may proceed to the BIR pathway in the absence of a second homologous

DSB end, which commonly occurs at stalled and broken replication forks or at eroded

telomeres [49]. BIR initiates a long-range extension of the D-loop by DNA replication

to complete replication until the end of the chromosome, which is presumably mediated

by the non-essential Polδ3 (Pold3) polymerase subunit and Pif1 helicase [92, 93]. BIR
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DNA replication is conservative and associated with frequent template switching [94, 95].

This special mode of DNA replication can lead to extensive LOH as well as complex

chromosomal rearrangements and is thus more mutagenic than DSBR and SDSA.

HR subpathways are tightly controlled to ensure appropriate balance of CO and NCO

products. During meiosis, COs occur frequently and promote allelic exchange between

homologous chromosomes and assure their proper segregation [18, 96]. However, they

are suppressed during mitosis as they may cause LOH in the DSB flanking sequence

and chromosome rearrangements between non-allelic sequences [57, 58]. Thus, during

mitosis, NCOs are the preferred repair outcome as they are less mutagenic than COs [97].

Most NCOs arise from SDSA repair.

Both NCO and CO products can result in gene conversion. Gene conversion refers

to a non-reciprocal exchange of genetic material between two homologous sequences,

which can lead to short-range LOH in the converted region. The gene conversion length,

known as gene conversion tract, depends on the extent of the heteroduplex DNA as well

as of the DNA sequence copied from the donor strand to fill the gap and is around five-

fold longer in CO than in NCO products [98]. More precisely, the heteroduplex DNA

sequences formed during HR can consist of mismatched bases when using non-identical

homologous donor templates [97, 99]. Repair of these mismatches by MMR result in

restoration of the original sequence, gene conversion or a mixture of both [99].

1.2.3 Single strand annealing (SSA)

Single strand annealing (SSA) is a DSB repair pathway that occurs in regions of direct

repeat sequences [100]. For instance, SSA has been observed between repetitive elements

in tandem orientation, including long terminal repeats (LTRs) of retroelements or homol-

ogous segments of Alu elements [101, 102]. SSA requires extensive 3’ end resection

to expose complementary ssDNA ends of at least 30 nt in length. Subsequently, RPA-

coated complementary homologous sequences are annealed by Rad52 [103], a process

that resembles the second end annealing during SDSA in HR. Following annealing, pro-

truding non-homologous tails (termed flaps) are removed by Ercc1-Xpf, gaps filled and

ends ligated by presumably Lig1 [104–106]. SSA is a highly mutagenic repair pathway

as annealing of complementary sequences leads to the deletion of one repeat copy as well

as the intervening sequence. As SSA depends on extensive end-resection and the Rad52
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epistasis group, SSA is sometimes classified as HR repair mechanism despite the lack of

Rad51-mediated strand invasion.

1.2.4 Alternative end-joining (Alt-EJ)

In addition to C-NHEJ, HR and SSA, growing evidence suggests the existence of a fourth

incompletely characterized DSB repair pathway family [107–111]. This family of DSB

repair pathways is generally referred to as alternative end-joining (alt-EJ, sometimes ab-

breviated as a-EJ or alt-NHEJ). Occasionally, it is also termed backup non-homologous

end-joining (B-NHEJ) or polymerase θ -mediated end-joining (TMEJ). Alt-EJ activity

was originally discovered in NHEJ-deficient yeast and mammalian cells that still exhib-

ited robust end-joining and V(D)J recombination [112–114]. Although alt-EJ was ini-

tially considered as a backup pathway, current data imply that alt-EJ also operates in cells

proficient for both C-NHEJ and HR repair [114, 115]. Interestingly, many cancer and

immortalized cells possess upregulated alt-EJ levels, likely to compensate for deficient

or insufficient C-NHEJ and HR activities [116–119]. Alt-EJ factors may thus serve as

potential therapeutic target for cancer treatment [120].

Alt-EJ pathways rely on microhomologies (MHs) at or near the DSB to anneal broken

DNA ends together. These MHs usually range from as little as 1 bp to ∼ 25 bp, as opposed

to C-NHEJ and HR, which require no and longer homologous donor templates, respec-

tively [121–123]. Annealing of these MH sequences typically results in the deletion of

one MH copy and the intervening sequences, but insertions templated from nearby DNA

sequences and apparent blunt joins are also common. Thus alt-EJ is often associated with

complex and highly mutagenic mutations including chromosomal translocations, that may

cause cancerogenesis [121, 124, 125].

Alt-EJ occurs throughout the cell cycle but is enhanced in S and G2 phase and func-

tions independently of core C-NHEJ and HR factors [107, 110, 121, 122, 126, 127]. How-

ever, to expose potential MHs, alt-EJ presumably shares the initial end resection step with

HR, relying on the MRN-CtIP nuclease complex for limited 5’ end resection [128]. The

alt-EJ DSB repair family presumably encompasses two distinct subpathways, namely mi-

crohomology–mediated end-joining (MMEJ) and synthesis-dependent microhomology-

mediated end-joining (SD-MMEJ).

MMEJ, probably the major alt-EJ pathway, depends on pre-existing small (5-25 bp)
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MHs and always creates deletions [121] (Fig. 1.4). MMEJ resembles mechanistically

the SSA pathway but has distinct genetic requirements. Poly(ADP-ribose) polymerase 1

(Parp1) is an early MMEJ factor that initially competes with Ku proteins for DSB binding

and thereby antagonizes C-NHEJ repair [129]. Subsequently, it facilitates MRN-CtIP

recruitment which initiates short end resection [130]. In addition, Parp1 is able to anneal

complementary MHs and to recruit other alt-EJ factors, including the Ercc1-Xpf complex

and the translesion DNA polymerase θ (Pol theta) [108, 131, 132]. Ercc1-Xpf is the

major endonuclease to excise flap structures during alt-EJ [107, 133]. However, Artemis,

a nuclease involved in resection-dependent C-NHEJ, together with 53BP1-Rif1 may also

play a role [134]. Pol theta can dissociate both RPA and Rad51 molecules from ssDNA

through its helicase activity and thus counteracts HR [116, 135, 136]. Moreover, Pol theta

contributes to the annealing of MHs as well as to the gap-filling by low fidelity DNA

synthesis [111, 137]. Besides Pol theta, other translesion DNA polymerases, such as the

Pol η and Pol ζ , as well as Pold3 are reported to contribute to alt-EJ repair pathways in

yeast [133, 138]. Finally, the Lig3-Xrcc1 complex, possibly assisted by Wrn, mediates

end ligation [117, 128, 139]. It remains currently unclear in which repair context Parp1

and Pol theta contribute to MH annealing and whether their activities are redundant.

Unlike MMEJ, SD-MMEJ does not rely on pre-existing MHs but creates them de novo

by limited DNA synthesis [122, 140] (Fig. 1.4). SD-MMEJ repair junctions are often

accompanied by templated insertions and deletions but can also lead to apparent blunt

joints. SD-MMEJ is considered to be a salvage pathway for resected ssDNA ends that

fail to expose accessible MH sequences [119, 122]. Circumstantial evidence suggests that

SD-MMEJ could even rescue Rad51-covered ssDNA ends in hamster and human cells in

the absence of long homologous sequences as required for HR [116, 141]. Interestingly,

SD-MMEJ pathways are associated with random plasmid integration in human and rodent

cell genomes [141–143].

Pol theta is believed to be a key enzyme for SD-MMEJ repair, in addition to its pro-

posed function in MMEJ [122, 137, 144, 145]. Pol theta might mediate de novo synthesis

of MH sequences either by using transient secondary structures located in cis and/or min-

imally annealed broken DNA ends, possibly starting from as little as 1 bp homology, to

prime non-processive DNA synthesis or by using its terminal transferase activity to intro-

duce non-templated nucleotides [111, 122, 140, 145–147]. SD-MMEJ is completed by

ligation using Lig3-Xrcc1 and/or Lig1 [148, 149].
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MMEJ SD-MMEJ

Figure 1.4: Model for alternative end-joining (alt-EJ) by microhomology-mediated end-
joining (MMEJ) and synthesis-dependent microhomology-mediated end-joining (SD-
MMEJ). (i) MMEJ uses long (5-25 bp) microhomologous sequences (blue boxes) to
stably bridge the broken DNA ends, resulting in deletions. (ii) SD-MMEJ uses min-
imally (≥1 bp) annealed sequences to prime templated synthesis by translesion DNA
polymerases (yellow). Following unwinding of the initial priming microhomologies, the
inserted nucleotides serve as de novo microhomologies for end bridging, resulting in indel
repair junctions (adapted from [121]).

1.3 DSB repair pathway choice

To maintain genome integrity and cell viability, C-NHEJ, HR, SSA and alt-EJ DSB re-

pair pathways act complementary. However, these pathways also compete for the same

substrate, as deficiency in one pathway usually coincides with upregulation of the re-

maining DSB repair pathways [150–152]. Hence, DSB repair activities need to be strictly

controlled depending on the repair context.

A major factor influencing DSB repair pathway choice is the cell cycle phase. Whereas
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C-NHEJ is active throughout the cell cycle, alt-EJ, SSA and HR preferentially occur in

S and G2 phase [21, 59, 126]. Among others, the phase of the cell cycle determines

the availability of donor sequences. Sister chromatids – the preferred donor template for

HR – are only present following replication in S phase and thus restrict HR to the S and

G2 phase. Moreover, the cell cycle phase is a key determinant for DSB end resection.

For instance, the activity of CtIP, a core factor for end resection, is cell cycle dependent.

It is suppressed in G1 but activated by cyclin-dependent kinases in S and G2 phases,

constraining extensive end resection to S and G2 phase [153–155]. Interestingly, MRN-

CtIP-mediated limited end resection, which might be sufficient for most alt-EJ activities,

remains possible in G1 phase [121, 154]. Therefore, DSB end resection represents a ma-

jor regulation step in channeling DSB repair either towards resection-dependent repair

pathways, i.e. HR, SSA and alt-EJ, or towards pathways that depend on no or little end

resection, i.e. C-NHEJ.

DSB type and structure are other key factors for DSB repair pathway choice. C-NHEJ

is typically used for simple or “clean” DSB ends, as arise upon endonuclease cleavage or

treatment with topoisomerase II inhibitors, while HR is mostly deployed for complex or

“dirty” DSB ends, as induced upon exposure to high-energy carbon ions [50]. In addi-

tion, programmed DSBs are often biased towards a specific repair pathway. For example,

DSBs associated with V(D)J recombination are mostly repaired by C-NHEJ, while DSBs

associated with meiosis are mainly repaired by HR [156, 157]. DSB structure also gov-

erns repair pathway choice, e.g. blunt-ended DSBs tend to C-NHEJ, while overhanging

DSBs rather rely on alt-EJ and HR [158–160]. Further work will be needed to refine how

overhang polarity and length govern alt-EJ and HR pathway choice.

Chromatin state and nuclear localization of the DSB also modulate DSB repair path-

way choice. Unlike transcriptionally active regions (euchromatin), where both HR and C-

NHEJ operate [52, 161], DSBs in heterochromatin are primarily repaired by HR [50, 162],

possibly as the compact heterochromatin is inaccessible for fast repair by C-NHEJ. It has

also been noted that DSB repair is compartmentalized: DSBs at the nuclear center and

inner nuclear membrane are predominantly repaired by error-free HR, while DSBs at the

nuclear periphery and pores undergo error-prone BIR or alt-EJ repair [163]

Finally, DSB repair pathway choice is influenced by the cell type or organism itself,

in spite of the high conservation of repair proteins. As discussed previously, mammalian

cells possess substantially lower HR but higher C-NHEJ levels than yeast cells, suggesting
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that HR is suppressed in highly complex genomes to mitigate the risk of non-allelic re-

combinations leading to deleterious chromosomal rearrangements [51, 53]. Moreover, in-

trinsic differences in DSB repair pathway activities also exist between mammalian model

systems. For instance, rodents possess considerably lower Ku and DNA-PKcs expression

and activity levels, and thus reduced C-NHEJ but elevated alt-EJ activities compared to

human cells [164–166]. Differences have also been observed between stem cells, differ-

entiated cells and cancer cells with an apparent shift towards more error-prone end-joining

pathways along differentiation and immortalization [167–171].

1.4 Involvement of DSB repair proteins in other DNA

repair pathways

In addition to the tight interconnection between the different DSB repair pathways, C-

NHEJ, HR, SSA and alt-EJ also closely interact with and/or co-opt proteins from a mul-

titude of other DNA damage repair pathways, including base excision repair (BER), nu-

cleotide excision repair (NER), mismatch repair (MMR), interstrand crosslink (ICL) re-

pair and single strand break (SSB) repair.

1.4.1 Base excision repair (BER)

Base excision repair (BER) corrects small base lesions arising from alkylation, oxida-

tion and deamination that typically cause little distortion to the DNA double helix [172,

173]. BER is initiated by several DNA glycosylases that recognize specific types of base

damage [174]. Upon recognition of the damaged base, the glycosylase cleaves the N-

glycosidic bond that connects the damaged base with the sugar-phosphate backbone lead-

ing to the removal of the base and creating an abasic site, also known as apurinic or

apyrimidinic (AP) site. An AP endonuclease, mainly Ape1 in mammals, subsequently in-

troduces a nick in the phosphodiester bond 5’ of the abasic site, generating a SSB with a

3’-OH and a 5’-deoxyribose phosphate (dRP) group [175]. This SSB, at least for a subset

of base lesions, is bound by Parp1 to prevent DSB formation [176, 177].

BER subsequently progresses by either short-patch or long-patch BER pathways. In

short-patch BER, DNA polymerase β fills in the single nucleotide gap while it removes
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the 5’-dRP via its phosphodiesterase activity to restore a 5’-phosphate at the termini, as

required for end ligation mediated by the Lig3-Xrcc1 complex [178, 179]. In long-patch

BER, 2-10 nucleotides are replaced and newly inserted by displacing DNA synthesis co-

ordinated by the DNA polymerases β , δ , ε and PCNA [180]. This generates a flap, which

is cleaved by the Fen1 endonuclease [181], followed by Lig1-mediated end ligation [180].

1.4.2 Nucleotide excision repair (NER)

Unlike BER, nucleotide excision repair (NER) removes bulky, helix-distorting DNA le-

sions, such as DNA adducts and pyrimidine dimers, that arise from exposure to UV light,

environmental mutagens and chemotherapeutic agents [182, 183].

NER consists of two subpathways, called transcription-coupled NER (TC-NER) and

global genome NER (GG-NER), which differ in the initial damage recognition but share

the same core NER factors to complete repair [184, 185]. TC-NER recognizes DNA

lesions that interfere with progression of RNA polymerases. Stalled RNA polymerases

initiate TC-NER by recruiting mediator proteins including Cockayne syndrome A and B

(CSA and CSB). GG-NER, on the other hand, is initiated independently of transcription

by the xeroderma pigmentosum complementation group C (XPC)-RAD23B dimer and

the UV-damaged DNA-binding protein (UV-DDB) that scan throughout the genome for

DNA helix distortions.

Following NER initiation, the multi-subunit transcription factor TFIIH localizes to the

DNA damage along with xeroderma pigmentosum complementation group G (XPG) to

unwind the strand DNA around the lesion. This unwinding of the DNA generates a bubble

with a ssDNA stretch of approximately 30 nt. RPA binds shortly after TFIIH to protect the

unwound and undamaged DNA strand. Finally, the Ercc1-Xpf endonuclease complex is

recruited to the TFIIH complex. Ercc1-Xpf and XPG incise the damaged DNA strand up-

stream and downstream of the lesion, respectively, creating a gap of approximately 24-32

nucleotides [183, 186]. Loading of PCNA facilitates gap-filling by the DNA polymerases

Pol δ , Pol ε and/or Pol κ , a translesion DNA polymerase [182]. Lig1 or Lig3-Xrcc1

complex seal the remaining nick [187]
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1.4.3 Mismatch repair (MMR)

Mismatch repair (MMR) recognizes mismatches such as insertion/deletion loops or mis-

paired bases [188, 189]. MMR is mainly active to repair DNA polymerase errors that

escape the polymerase proofreading activity, but is also involved in antibody diversifica-

tion and influences the efficiency and fidelity of DNA recombination. During HR, for

instance, MMR is anti-recombinogenic by suppressing recombination between homeolo-

gous DNA sequences via heteroduplex rejection but also repairs mismatched bases within

heteroduplexes, possibly leading to gene conversion [82, 190]. MMR is usually strand-

specific. This applies to both replication- and recombination-associated repair, which are

biased towards repair of the newly replicated and the invading DNA strand, respectively

[97, 99, 191].

MMR utilizes the Msh2-Msh6 (MutSα) heterodimer for detection of single base mis-

matches and small insertion/deletion loops but the Msh2-Msh3 (MutSβ ) heterodimer for

recognition of larger insertion/deletions loops [192]. The Mlh1-Pms2 heterodimer is sub-

sequently recruited to the Msh2 complexes and translocates along the dsDNA to identify

nicks, such as a gap between Okazaki fragments in the lagging strand [189]. This facil-

itates recruitment of PCNA and Exo1 nuclease leading to the nucleolytic degradation of

the nicked strand across the insertion/deletion loop or mispair [193]. The resulting ssDNA

gap is coated by RPA, filled in by DNA polymerases δ and ε and ligated.

1.4.4 Interstrand crosslink (ICL) repair

Interstrand crosslinks (ICLs) are lesions in which the Watson and Crick strand are co-

valently interconnected. ICLs are highly cytotoxic as they prevent DNA strand separa-

tion and therefore block DNA replication, recombination and RNA transcription. Several

chemotherapeutic drugs are potent ICL-inducing agents, including mitomycin C (MMC)

or cisplatin [48].

Outside of S phase, ICL repair depends on NER and translesion synthesis (TLS) [194].

ICLs are recognized by helix distortion and/or blocked RNA polymerases and incised by

the structure-specific Ercc1-Xpf endonuclease, which creates one nicked DNA strand and

one DNA strand with the ICL adduct, also known as ICL unhooking [48]. Translesion

DNA polymerase Pol ζ fills in the gap across the unhooked ICL lesion followed by the
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removal of the ICL adduct by NER [195].

In contrast, in S phase, ICL repair is replication-dependent involving a cascade of

Fanconi anemia (FA), NER, TLS and HR repair mechanisms [194]. Stalled DNA repli-

cation forks are recognized by the FancM protein and stabilized by fork regression, pos-

sibly forming a so-called “chicken foot” structure. FancM recruits the FA core complex,

consisting of at least seven FA proteins, as well as the Slx1-Slx4-Mus81-Eme1 nuclease

complex, Ercc1-Xpf, the Blm-Topo3α-Rmi1-Rmi2 helicase-topoisomerase complex and

other repair proteins [196]. These factors promote nucleolytic ICL unhooking followed

by TLS using Rev1 and Pol ζ , possibly with the help of other translesion DNA poly-

merases, and removal of the ICL by NER [197, 198]. TLS creates a DSB in the second

DNA strand that is repaired by HR using the newly synthesized strand as donor template

[199].

1.4.5 Single strand break (SSB) repair

Single strand breaks (SSBs) are DNA lesions in which only one strand of the DNA double

helix is broken, while the other remains intact. SSBs are generated directly by ROS and

IR or indirectly as intermediates during BER [200]. SSBs can convert into DSBs, either

when they cause replication fork stalling and collapse or when two closely-spaced SSBs

locate in complementary DNA strands [201].

Parp1 is a key sensor for both SSB and DSB repair [129, 176, 177, 202]. During

SSB, it presumably accelerates recruitment of other SSB repair proteins but seems not

to be crucial for all BER-induced SSBs [176, 177, 203]. Upon Parp1 binding, Xrcc1

localizes to SSBs in a Parp-dependent manner and acts as a scaffold for end processing

factors, including polynucleotide kinase 3-phosphatase (PNKP), Ape1 nuclease, Pol β

and aprataxin (APTX) [200]. Following end processing, SSB and BER pathways con-

verge and SSB repair is completed via short- or long-patch BER, as previously described.

1.5 Random and site-specific genome modifications

The ability to genetically modify a genome, also known as genome engineering, is one

of the most widely used technique in molecular biology. Genome engineering deploys
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the cellular DNA repair machinery (see previous sections) to inactivate, insert or correct

genes using both non-targeted (random) and targeted (site-specific) approaches.

1.5.1 Random integration

Traditionally, expression of exogenous DNA sequences, termed transgenes, relies on the

integration of vectors encoding the transgene at undefined and thus random genomic loci.

Such gene transfer vectors are commonly derived from viruses, transposons or bacterial

plasmids [204–206].

The most frequently used vectors for transgene delivery into mammalian cells are

bacterial plasmids. They accept large transgene sizes and are easy to handle and pro-

duce. Unlike viral vectors and transposons that often integrate as single copies, plasmids

integrate as multicopy array at a single or few genomic loci [207–209]. Random plas-

mid integration relies on the cellular repair machinery and the formation of spontaneous

DSBs. Such a recombination event happens on average in one out of 103 mammalian

cells [210].

Random plasmid integration presumably occurs in two steps: The first step involves

the formation of so-called plasmid concatemers – long DNA molecules consisting of an

array of multiple plasmid copies [141, 207]. These concatemers are believed to arise

upon recombination of DNA plasmids using DSB repair pathways. HR, C-NHEJ as well

as alt-EJ repair are associated with plasmid concatemerization, with apparent discrepan-

cies between model systems [207, 208, 211–213]. In hamster cells, this process is inde-

pendent of C-NHEJ, possibly antagonized by HR but relies on Pol theta and Lig3 repair

factors, in line with a MMEJ- and/or SD-MMEJ-like mechanism [141]. The second step

is the integration of plasmid concatemers into the host genome. Although C-NHEJ was

traditionally considered to mediate chromosomal integration, growing evidence suggests

an involvement of SD-MMEJ-like mechanisms with Pol theta as one of the key proteins

in human and rodent cells [142, 143, 214–216]. Consistently, concatemer integration in

hamster cells depends on Pol δ and Lig1 activities, in line with a SD-MMEJ process,

though Rad51 appears also to be involved [141].

Although being relatively efficient, random plasmid integration remains restricted to

transgene insertions and suffers from highly variable transgene expression. The observed

variability in transgene expression is attributed to several parameters, including the vary-
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ing number of integrated transgenes as well as the presence of bacterial sequences, which

can lead to transgene silencing [209, 217]. Another important parameter is the transgene

integration site, which may cause positional effects, such as transgene silencing in het-

erochromatin, and insertional mutagenesis, such as altered endogenous gene expression

including oncogene activation [218].

1.5.2 Gene targeting

The limitations associated with random integration can be circumvented using gene tar-

geting [219]. Gene targeting is a site-specific genome modification approach, allowing

not only to insert but also to inactivate or correct genes in a predefined genetic environ-

ment. Hence, it may be particularly valuable for gene therapy approaches that involve

the repair of gain-of-function disease-causing mutations. Gene targeting relies on precise

HR-mediated recombination between a chromosomal DNA sequence (target site) and a

homologous DNA molecule (donor). The donor is often a linearized DNA plasmid that

shares extensive homology, typically at least 1 kb, with the target sequence [220].

Gene targeting is highly efficient in organisms with naturally high HR activity levels.

This includes yeast, fungi as well as certain mammalian cells, such as mouse embryonic

stem cells, chicken DT40 cells and human Nalm-6 cells [221–224]. However, due to low

HR activity, gene targeting is inherently inefficient in most other mammalian cells with

typical frequencies of 10−6 per cell [210]. Therefore, targeted genome modifications are

usually outnumbered by random integrations by three orders of magnitude, hampering its

broad application. Several strategies have thus been established to augment gene target-

ing. So far the most promising strategy is genome editing.

1.5.3 Genome editing

Genome editing describes genome engineering techniques that utilize synthetic endonu-

cleases to induce site-specific DSBs at the locus to be modified [225, 226]. These DSBs

trigger the cellular DSB repair pathways and thereby boost targeted genome modifications

by several orders of magnitude compared to traditional HR-based gene targeting [226–

229]. The most frequently used endonucleases are meganucleases, zinc finger nucleases

(ZFNs), transcriptional activator-like effector nucleases (TALENs) and the RNA-guided
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clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated

(Cas) nuclease systems [230–233].

1.5.3.1 Meganucleases, ZFNs and TALENs

Meganucleases, also known as homing endonucleases, are sequence-specific endonucle-

ases that recognize DNA target sites, typically between 14 to 40 bp in length [230, 234].

The HO and I-SceI are the most frequently used meganucleases, though only I-SceI has

been extensively tested in metazoans [235]. They were both discovered in budding yeast,

where they mediate mating-type switching and mitochondrial intron mobility, respec-

tively, by introducing DSBs with 4 nt 3’ overhangs [236, 237]. HO and I-SceI recognize

specific 24 bp and 18 bp sequences, respectively. However, both of these meganucle-

ases are difficult to engineer so that they detect non-natural DNA recognition sites, and

they have, thus, primarily been used as a tool to study DNA DSB repair mechanisms

[235, 238].

Unlike meganucleases, ZFNs and TALENs are protein-guided endonucleases that pos-

sess programmable sequence-specific DNA recognition domains linked to non-specific

FokI cleavage domains [226]. The FokI nuclease cleaves 4 nt 5’ overhanging DSBs and

is obligate dimeric. Formation of a functional FokI nuclease thus requires the binding of

two ZFN or TALEN monomers, respectively, on opposite DNA strands in correct orienta-

tion and distance (Figs. 1.5A and 1.5B). Each ZFN monomer consists of a DNA binding

domain composed of 3-4 zinc finger modules [231]. Each zinc finger recognizes 3 bp

yielding a total DNA recognition length of 18-24 bp. On the other hand, the DNA bind-

ing domain of a TALEN monomer consists of 15-18 TALE repeat modules [239]. Each

TALE recognizes a single bp summing up to a 30-36 bp recognition site. Individual zinc

fingers and TALE repeats can be modularly assembled to create customized gene-specific

recognition domains. However, the construction of such engineered recognition domains

remains technically challenging and time-consuming [240].

1.5.3.2 CRISPR-Cas nuclease systems

As alternative to ZFNs and TALENs, the RNA-guided CRISPR-Cas nuclease systems

offer superior ease of design combined with high cleavage efficiency [233, 242, 243].

These nucleases evolved as RNA-based adaptive immune system in bacteria and archaea
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Figure 1.5: Schematic overview of commonly used genome editing nucleases. (A) Zinc
finger nucleases (ZFNs) consist of left and right zinc finger subunits as DNA recognition
sites linked to the obligate dimeric FokI endonuclease. (B) Transcription activator-like
effector nucleases (TALENs) employ TALE repeats for DNA recognition and the dimeric
FokI for cleavage. (C) The CRISPR-Cas9 system recognizes and cleaves a target sequence
using a chimeric single guide RNA (sgRNA) bound to a Cas9 protein in the presence of
a protospacer adjacent motif (PAM) at the 3’ of the 20 nt sgRNA recognition site. The
sgRNA consists of a site-specific CRISPR RNA (crRNA, in blue and dark green) and a
trans-activating crRNA (tracrRNA, in light green) fused by a linker loop (in red). The two
Cas9 nuclease domains (HNH and RuvC) are marked with a tooth-shaped structure. (D
+ E) Paired Cas9 nickases or the obligate dimeric catalytic inactive Cas9 fused to FokI
(FokI-dCas9) enhance Cas9 target specificity (adapted from [241]).

to protect against invading viruses, plasmids and mobile elements and can cleave DNA

as well as RNA sequences [244]. The basis of the CRISPR-mediated immunity is the

CRISPR array consisting of spacer sequences interspaced by identical repeats. These

spacers emerged from foreign nucleic acids acquired during previous infections. Array

transcription produces long precursor CRISPR RNA (pre-crRNA) that can be processed
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by cleaving within the repeat sequence to produce short mature crRNAs containing a sin-

gle sequence-specific spacer flanked by repetitive sequences. Assembly of a crRNA with

a Cas endonuclease forms a functionally active ribonucleoprotein complex, that is able

to recognize and cleave complementary target DNA sequences, known as protospacers,

guided by the crRNA. In comparison to ZFNs and TALENs that require cumbersome

protein engineering, CRISPR-Cas target specificity depends on a short sequence-specific

RNA molecule, which is relatively easy to customize and produce. Despite its prokary-

otic origin, CRISPR-Cas has been successfully used to introduce site-specific modifica-

tions in a wide range of eukaryotes, including rodent and human cells, and is currently

the most frequently used programmable nuclease system for genome editing applications

[243, 245–247].

CRISPR-Cas systems are categorized into class 1 and class 2 depending on whether

they employ a multi-subunit Cas complex or a single Cas protein, respectively, for crRNA

binding and target cleavage [248, 249]. The simpler class 2 is mainly used for genome

editing and consists of types II, V and VI. Type V includes DNA-targeting Cas12 nucle-

ases, which are best suited for A-T rich genomes and introduce 5 and 7 nt 5’ overhanging

DSBs [250]. Type VI contains RNA-targeting Cas13 nucleases, which holds great poten-

tial for gene knockdown, RNA repair and RNA visualization studies [251, 252].

Class 2 Type II CRISPR systems rely on the Cas9 DNA endonucleases to interfere

with invading foreign DNA sequences. Type II Cas9 requires a trans-activating crRNA

(tracrRNA) to process pre-crRNAs into mature crRNAs and to form a crRNA:tracrRNA

duplex which binds and guides the Cas9 nuclease to the target site [253] (Fig. 1.5C). For

genome editing, the crRNA:tracrRNA duplex is often replaced by a chimeric single guide

RNA (sgRNA) that can be easily expressed from a guide RNA expression plasmid with

a customized crRNA and a constant tracrRNA [254]. The Cas9 protein from Streptococ-

cus pyogenes (SpCas9) is the most thoroughly characterized and most frequently used

CRISPR-Cas9 system for genome editing studies. Nevertheless, other Cas9 orthologs

have also been tested successfully [255–257].

SpCas9 target recognition depends on a crRNA:tracrRNA duplex or an engineered

sgRNA that includes a 20 nt guide sequence complementary to a target DNA sequence

(protospacer) as well as a protospacer adjacent motif (PAM) that immediately follows the

3’ end of the protospacer (Fig. 1.5C). The canonical PAM sequence in SpCas9 is 5’-NGG-

3’, but cleavage at non-canonical NAG and NGA PAM sites has also been detected [258,
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259]. The Cas9:sgRNA ribonucleoprotein utilizes the PAM sequence to quickly probe

throughout the genome to identify suitable target sites [260]. The presence of a PAM

sequence initiates complementarity search between the crRNA and protospacer sequence

and can lead to dsDNA unwinding upon formation of a stable RNA-DNA heteroduplex

[260]. This conformational change activates the HNH and RuvC nuclease domains of

SpCas9 to cut the target and non-target DNA strand, respectively, typically generating

blunt-ended but sporadically also 1 nt 5’ DSBs 3 bp upstream of the PAM sequence [261–

263]. The Cas9 protein remains associated with the cleaved target site and only slowly

dissociates, with the help of yet to be uncovered factors [261, 264–267].

A common concern in CRISPR-Cas9 genome editing is mutagenesis at unintended

sites, known as off-target sites, due to the relatively short 20 nt target recognition length.

Although reports are conflicting, off-target mutagenesis is typically considered rare (<

0.5%) but was detected at sites with up to five mismatches and small indels [268–270].

Several new Cas9 variants have thus been engineered to improve Cas9 specificity. This

includes high-fidelity Cas9 variants [271, 272], Cas9 nickases (Cas9n) [247, 273] as well

as catalytically inactive Cas9 (dCas9) fused to the obligate dimeric FokI nuclease (FokI-

dCas9) [274, 275] (Figs. 1.5D and 1.5E). Cas9n and FokI-dCas9 nucleases contain muta-

tions in either the HNH (H840A) or the RuvC (D10A) nuclease domains and in both do-

mains simultaneously, respectively, and thus required the pairing of two Cas9 molecules

with proper orientation and spacing for DSB induction. All these methods impose more

stringent constraints on-target recognition and thus substantially reduce Cas9 off-target

mutagenesis, however, often at the expense of on-target cleavage frequency.

1.5.4 Genome editing outcomes and DSB repair pathways

Genome editing may result in gene inactivations, gene insertions or gene corrections

[276]. However, its outcome considerably depends on the DSB repair pathways that be-

come activated upon the nuclease-mediated DNA cleavage.

Gene inactivations, also known as gene knock-outs, most efficiently arise as a result

of error-prone C-NHEJ and alt-EJ repair (Fig. 1.6A). These repair pathways often intro-

duce variable indel mutations of various length at the DSB site, which may disrupt the

coding sequence. Growing evidence suggests that the sequence flanking the DSB greatly

influences indel mutagenesis and that appropriate sgRNA design might help to obtain
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predictable out-of-frame mutations at frequencies as high as 80% [262, 263, 277–279].

Site-specific gene insertions, termed gene knock-ins, are mediated either through pre-

cise HR or imprecise C-NHEJ and alt-EJ repair pathways. HR-assisted gene insertion

End-joining

Precise
Gene inactivation
Gene insertion
Gene correction

Imprecise
Gene inactivation
Gene insertion

Homology-directed repair

Single-stranded template repair

or

Figure 1.6: DSB repair pathways control genome editing outcomes. (A) End-
joining pathways (i.e. classical non-homologous end-joining (C-NHEJ) and alterna-
tive end-joining (alt-EJ)) mediate imprecise gene inactivations and gene insertions. (B)
Homology-directed repair (HDR) pathways (i.e. homologous recombination (HR) and
single-stranded template repair (SSTR)) mediate precise gene inactivations, gene inser-
tions and gene corrections. HR can proceed either via the double-strand break repair
(DSBR) or the synthesis-dependent strand annealing (SDSA) pathway. Donor DNA con-
sists either of a double-stranded DNA sequence (plasmid or PCR product) or a single-
stranded oligodeoxyribonucleotide (ssODN) (adapted from [249]).
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is the classical approach using targeting vectors that share substantial homology to the

target site, analogously to gene targeting (Fig. 1.6B). However, the inherently low HR

activity in most mammalian cells hampers efficient HR-mediated insertions [21, 23, 171].

Alternatively, the Obligate Ligation-Gated Recombination (ObLiGaRe), the Homology-

Independent Targeted Integration (HITI) or the Precise Integration into Target Chromo-

somes (PITCh) methods exploit the more active but mutagenic C-NHEJ and MMEJ repair

pathways to integrate transgene sequences that share no or ≤ 40 bp MHs, respectively, to

the target site [280–283] (Fig. 1.6A). Although these non-HR methods elevate targeted

insertions, integration is typically orientation-independent and imprecise with frequent

indel mutations at the integration site.

Gene corrections rely exclusively on gene conversions mediated by homology-directed

repair (HDR) pathways, an umbrella term encompassing HR and single-stranded template

repair (SSTR) pathways [284] (Fig. 1.6B). HR uses dsDNA donors (plasmids or PCR

products) with long homology arms to introduce large and/or multiple gene corrections

[285]. Mechanistically, gene conversion using dsDNA donors is likely mediated by the

SDSA repair pathway, but DSBR might also be active depending on the repair context

and/or vector structure [286–289]. HR-mediated gene correction using dsDNA donors is

inefficient in most cell types with typical frequencies of less than 5%, though frequen-

cies can be considerably lower in cells recalcitrant to HR [171, 246, 247, 290, 291]. In

contrast, single-stranded oligodeoxyribonucleotides (ssODNs) that possess only short ho-

mology arms (30-40 nt) are able to efficiently introduce point mutations or small genetic

changes [292, 293]. Gene correction by ssODN donors presumably proceeds either via

SDSA HR repair or SSTR (Fig. 1.6B). SSTR is a novel and poorly defined repair mech-

anism, which resembles the SSA pathway and is likely Rad51- and Brca2-independent

[158, 294–296]. Although ssODNs are easier to produce and less likely to cause ran-

dom integrations than dsDNA donors, they are limited in size (< 200 nt) precluding their

application for larger genetic modifications and can as well cause imprecise HDR edits

[293, 297].

1.6 Limitations of genome editing

Although programmable nucleases, notably the CRISPR-Cas9 nuclease system, have

greatly advanced targeted genome engineering, some limitations remain. I discuss be-
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low the limitations of inefficient HR-mediated genome editing and multi-locus genome

editing. Besides the limitations discussed here, other limitations such as mosaicism,

large deletions and rearrangements, in vivo delivery of engineered nucleases as well as

ethical and regulatory concerns remain also to be addressed prior to clinical translation

[249, 298–300]. However, these limitations are beyond the scope of this thesis.

1.6.1 HR-mediated precise genome editing

One major limitation is the overall low frequency of HR-mediated genome editing in

mammalian cells. The most likely reasons for limited HR-mediated gene conversion are

the relatively high activity of C-NHEJ and alt-EJ and the inherently low activity of HR

in most cell types [51, 53, 171]. This imbalance in repair activity not only leads to a

predominance of indel mutations at the target site but also favors illegitimate donor plas-

mid integrations into the target locus or any random genomic site instead of precise gene

conversion [298, 301]. Thus, various strategies have been tested to overcome the bot-

tlenecks of HR-mediated targeted genome modifications, both in the context of classical

gene targeting and genome editing.

Some strategies have aimed at optimizing donor template design and availability for

HR-mediated repair. Donor design strategies focused on the length and symmetry of ho-

mology arms to increase homology search and pairing, the linearization of donor plasmids

to promote recombination by the free plasmid DNA ends, as well as the presence of pos-

itive and/or negative selection markers to enrich for correctly HR-targeted cells and to

counter-select for illegitimate integrations [171, 222, 264, 268, 293, 302, 303]. Moreover,

DNA repair templates were linked to the Cas9 ribonucleotide complex to locally augment

the donor availability at the DSB site [304, 305].

Other strategies have assessed the effect of DSB structure and timing on HR-mediated

repair. For instance, Cas9n-mediated DNA nicks, which are a poor substrate for C-NHEJ

and alt-EJ but a substrate for HR, considerably reduced indel frequency at the target site,

even if this approach also lowered HR frequency [247]. In addition, DSBs with long 5’

overhangs created by two staggered Cas9n favored HR despite an overall low HR fre-

quency [273, 306]. Furthermore, it was attempted to coordinate delivery and/or expres-

sion of the Cas9 protein so to obtain highest nuclease activity in S/G2 phase, when HR is

active. However, the results were conflicting [307–309]. Finally, base editors were devel-
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oped that circumvent DSB intermediates and rather use BER to catalyze specific single

base pair corrections [290].

Other promising strategies have focused on interfering with DSB repair activities. The

discovery of mammalian cells with high HR activity as well as the apparent competition

between DSB repair mechanisms (see Sections 1.5.2 and 1.3) nurtured the idea that HR

repair may be boosted by altering DBS repair pathway choice. To do so, several stud-

ies tried to overexpressed HR factors, in particular Rad51, or enhance HR using small

molecules leading to modestly elevated intrachromosomal repair and/or gene conversion

frequencies [310–315]. However, one study noticed reduced HR frequencies following

Rad51 or Rad52 overexpression [316]. Many other studies transiently knocked down

and/or knocked out C-NHEJ factors, e.g. Ku and Lig4 proteins, or inhibited C-NHEJ

using small molecules [141, 317–320]. Interestingly, while some studies observed an

increase in gene conversion, others did not, suggesting that alt-EJ rather than HR mech-

anisms compensate for deficiency in C-NHEJ repair. Moreover, activating HR and/or

suppressing C-NHEJ typically did not alter random donor integration levels, in line with

it being alt-EJ-dependent [141, 311, 317]. Comprehensive studies about the contribu-

tion of alt-EJ pathways to HR-mediate precise gene targeting are missing with only two

studies trying to bypass random donor integrations by inactivating C-NHEJ and alt-EJ in

parallel [142, 143].

In sum, these strategies typically increased HR-mediated repair by approximately 2-

to 10-fold, which might still be too low for clinical applications. Furthermore, the effect of

HR stimulation, notably when altering DSB repair activities, was highly variable among

distinct cell types and/or organisms [309, 321], highlighting the intrinsic differences in

activity and/or regulation of DSB repair pathways between model systems.

1.6.2 Multi-locus genome editing

Another challenge is the simultaneous generation of genome modifications at multiple

genomic loci, also termed multiplexing. Multi-locus genome editing comprises mutage-

nesis of multiple alleles in multiploid organisms, multi-copy genes (e.g. ribosomal RNA

genes) and highly repetitive elements (e.g. endogenous viral sequences) using a single

nuclease as well as mutagenesis of multiple distinct genes using several nucleases [322].

Due to the abundance of target sequences, mutagenesis efficiency of an individual locus is
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typically reduced compared to single locus genome editing [323–325]. Stable expression

of the nuclease system helped to partially overcome the inefficient multi-locus editing of

endogenous viral sequences in porcine cells [325]. However, the resulting high nucle-

ase activity introduces a multitude of DSBs in parallel. Therefore, it induces a strong

DDR which possibly provokes cellular stress responses, growth arrest, cytotoxicity and

chromosomal rearrangements [325–328].

1.7 Cells as expression host for biopharmaceuticals

In addition to traditional small-molecule drugs produced by chemical synthesis, protein-

based drugs – also known as biopharmaceuticals – are manufactured in living cells. Typ-

cial biopharmaceutical products include monoclonal antibodies, hormones and cytokines

[329]. There are currently more than 300 biopharmaceuticals on the market and many

more are currently tested in clinical trials [330]. While non-mammalian cells (e.g. bac-

teria and yeast) are used to produce simple therapeutic proteins, mammalian cells are

required to produce large and complex therapeutic proteins with post-translational mod-

ifications (PTMs). PTMs, including glycosylation and disulfide bonds, are required to

ensure proper protein folding, stability and activity of most secreted proteins, such as

antibodies [331].

Chinese hamster ovary (CHO) cells are the most frequently used mammalian cell ex-

pression system [329]. Besides their ability to produce therapeutic proteins with human-

like PTMs, these immortalized cells show high transfection efficiencies, high levels of

random plasmid integrations and are able to grow in suspension culture as well as in

serum-free chemically defined media, allowing for reproducible high-density large-scale

protein production [329]. Moreover, CHO cells seem to be less susceptible to certain viral

infections compared to other mammalian cells [332, 333].

1.7.1 Viral contaminations

Although mammalian cell expression systems, notably CHO cells, allow the production

of therapeutic proteins with human-like PTMs at high yields, they are susceptible to con-

taminations with adventitious agents, in particular viruses. Until today, some incidences

of viral contaminations during biomanufacturing have been reported, with every incidence
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potentially threatening patient safety and/or drug supply [334]. Thus, to ensure absence

of viral contaminations during biomanufacturing as well as in the final biopharmaceutical

product, regulatory bodies require ample precautions, time-consuming and cost-intensive

viral removal and inactivation steps followed by comprehensive testing [335].

Viral contaminations usually arise from exogenous sources. This includes contami-

nated raw material, notably animal-derived components, serum and cell culture medium,

but also inappropriate handling of raw material, cells and bioreactors [336, 337]. How-

ever, the cell itself is also a potential source of viral contamination. More precisely, all

mammalian cells harbor large reservoirs of stably integrated endogenous viruses. These

viruses may produce viral-like particles (VLPs), which can subsequently contaminate the

biopharmaceutical product [338].

1.7.2 Endogenous retroviruses

Endogenous retroviruses (ERVs) are the most abundant endogenous viral elements in

mammals. They can be found in thousands of copies and are estimated to make up to 8%

and 10% of the human and mouse genomes, respectively [339–342]. ERVs are remnants

of previous retroviral integrations into the host germline and therefore transmitted verti-

cally to the offspring. Unlike DNA and other RNA viruses, retroviruses are (+)ssRNA

viruses that naturally integrate into the host genome as part of their viral life cycle [343].

They are able to reverse transcribe their RNA genome into DNA followed by the integra-

tion of this viral DNA intermediate into the host genome using the virally encoded reverse

transcriptase and integrase enzymes, respectively [344] (Fig. 1.7A). The integrated virus

is called provirus.

The size of an ERV genome is ∼7-11 kb and is composed of the gag, pol and env genes

in that order flanked by two long terminal repeats (LTRs) [345]. The gag gene codes for

the matrix, capsid and nucleocapsid that form the structural proteins of the viral core. The

pol gene codes for the protease, reverse transcriptase and integrase, all of which fulfill

key functions during the retroviral life cycle and belong to the most conserved viral genes

[346]. Finally, the env gene encodes the surface and transmembrane proteins located in

the viral envelope that determine viral tropism. Gag, Pol and Env expression is controlled

by the LTRs which encompass enhancer and promoter sequences and the polyadenylation

signal [347]. Gag and Pol proteins are translated from a single full-length Gag-Pol-Env
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Figure 1.7: Retroviral life cycle. (A) Formation of stably integrated retroviruses
(proviruses) requires the virally encoded reverse transcriptase and integrase to produce
a DNA intermediate that can integrate into the DNA of the host. Integration into the
germline yields endogenous retroviruses (ERVs), which may be fixed in the population
(B) Production of infective viral particles depends on expression of gag, pol and env genes
by the host cell (reproduced from [344]).

precursor mRNA. While the Gag protein is highly expressed, Pol RNA is only translated

following termination suppression or ribosomal frameshifting occurring in ∼5% of the

transcripts [348]. Env translation occurs from a spliced mRNA.

Despite the large number of ERV sequences in mammalian genomes, ERVs usually

do not produce infective viral particles. This is due to two reasons. First, most ERVs are

epigenetically silenced, which prevents ERV transcription and thus suppresses further in-

fections [349]. Second, ERVs often accumulate deleterious mutations and recombination

events [341, 350]. For instance, the two LTR sequences frequently recombine by SSA

repair, which deletes the entire ERV coding sequence and creates so-called solo LTRs

[101].

Interestingly, most mammalian genomes, including mouse, pig and hamster, still con-

tain full-length proviruses and/or transcribed ERVs [341, 344, 351–353]. For example,

CHO cells possess one or few ERVs able to form VLPs, which are released in the cell

culture supernatant. However, CHO-derived VLPs have never been shown to be infective

[333, 354]. Unlike CHO cells, porcine cells still contain ERVs that can produce particles
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capable of infecting human cells in vitro [326]. Such infective particles are a major con-

cern for pig-to-human xenotransplantation [326]. To prevent porcine ERV transmission

to humans, genome editing strategies were developed to inactivate the numerous proviral

sequences [325–327]. However, these strategies suffered from the limitations associated

with multi-locus genome editing described in detail in Section 1.6.2.

The uncountable ERV sequences in mammalian cells are a latent danger for the pro-

duction of biopharmaceuticals. Although most of them are currently inactive and/or pro-

duce defective VLPs, ERVs have been shown to be able to form again infective viral

particles. For instance, epigenetically silenced ERVs may awake in response to chemical

treatments, changes in cell culture conditions or novel viral infections [355–358]. More-

over, defective ERVs can acquire gain-of-function mutations or recombine with other

non-allelic ERV sequences, forming chimeric functional ERV sequences [338, 346]. Fi-

nally, reactivation of virus expression may also result from trans complementation of

individually defective ERVs [359].
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Chapter 2

Aim of the thesis

The CRISPR nuclease system is currently revolutionizing the field of genome editing. It

can be easily programmed to introduce site-specific DNA double strand breaks (DSBs)

and thereby considerably boosts targeted genome modifications in mammalian cells. While

CRISPR-mediated mutagenesis is unprecedentedly efficient in inactivating single genes,

precise genome editing mediated by homologous recombination (HR) DSB repair has

remained inefficient, possibly due to competing DNA repair pathways. As of today, no

universal strategy has been discovered to augment HR-mediated repair. This may result

from incomplete characterization of DSB repair pathways as well as possible intrinsic

differences in DSB repair activity and/or regulation in various model systems.

Therefore, the main aim of the thesis was to better understand DSB repair and re-

combination pathways in Chinese hamster ovary (CHO) cells, so as to provide novel

strategies for improving genome editing. Unlike primary cells, CHO cells are believed to

have reduced classical non-homologous end-joining (C-NHEJ) as well as low HR repair

activities [164, 171, 291]. In addition, recent data from our lab indicated that a family

of as yet poorly described alternative end-joining (alt-EJ) DSB repair pathways is highly

active and a key mediator for random genomic integrations of plasmids in CHO cells

[119, 141]. Thus, the predominant alt-EJ activity may explain the moderate increase in

gene targeting previously observed in C-NHEJ-deficient CHO background [318]. Taken

together, this raised the hypothesis that high alt-EJ activities, as observed in these cells,

compete with and ultimately restrict precise HR-mediated genome editing. Interestingly,

comprehensive studies about the potential function of alt-EJ and other competing factors

on HR-mediated genome editing were missing in CHO as well as in other mammalian
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cells.

Hence, this thesis aimed at identifying rate-limiting factors for HR-mediated pre-

cise genome editing in CHO cells. The initial steps towards this aim were to design a

fluorescence-based HR assay and to evaluate the effect of transient depletion of DSB re-

pair factors on HR frequency. These steps also allowed us to test the hypothesis that the

predominance of alt-EJ activities is one of the rate-limiting factors for HR. To further

broaden the understanding of CHO DSB repair pathways, we explored how simultaneous

depletion of multiple repair factors as well as overexpression of rate-limiting factors influ-

ence HR frequency. We also analyzed whether the contribution of repair factors depended

on the CRISPR nuclease type, the HR assay or the cell line.

The secondary goal of this thesis was to establish a genome editing strategy to inac-

tivate repetitive endogenous retroviruses (ERVs) in CHO cells and to prevent them from

producing viral-like particles (VLPs). We hypothesized that the improved understanding

of CHO DSB repair mechanisms may be useful to achieve gene inactivations at multi-

locus ERV sites, thereby allowing to generate CHO cells with an increased safety profile

for biopharmaceutical production. Overall, this thesis constitutes a further step to under-

stand DSB repair mechanisms and to mediate more efficient genome editing in CHO and

possibly other mammalian cells.
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Chapter 3

A role for alternative end-joining

factors in homologous recombination

and genome editing

This chapter is based on a manuscript submitted for publication entitled “A role for

alternative end-joining factors in homologous recombination and genome editing” by

Bosshard S. and Mermod N.
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3.1 Abstract

CRISPR technologies greatly foster genome editing in mammalian cells through site-

directed DNA double strand breaks (DSBs). However, precise editing outcomes, as medi-

ated by homologous recombination (HR) repair, are typically infrequent and outnumbered

by undesired genome alterations. By using knockdown and overexpression studies in Chi-

nese hamster ovary cells as well as characterizing repaired DNA junctions, we found that

efficient HR-mediated genome editing depends on alternative end-joining (alt-EJ) DNA

repair activities, a family of incompletely characterized DNA repair pathways tradition-

ally considered to oppose HR. This dependency was influenced by the CRISPR nuclease

type and the DSB-to-mutation distance, but not by the DNA sequence surrounding the

DSBs or reporter cell line. We also identified elevated Mre11 and Pari, and low Rad51

expression levels as the most rate-limiting factors for HR, and counteracting these three

bottlenecks improved precise genome editing by up to 75%. Altogether, our study pro-

vides novel insights into the complex interplay of alt-EJ and HR repair pathways, high-

lighting their relevance for developing improved genome editing strategies.
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3.2 Introduction

Programmable nucleases, particularly the CRISPR RNA-guided nuclease system, greatly

facilitate targeted genome modifications and thereby revolutionize genome editing in

mammalian cells [233]. While CRISPR-mediated indel mutagenesis and resulting gene

inactivation is highly efficient in most cells lines, precise gene insertion and gene correc-

tion have remained inefficient and highly variable, with typical frequencies of less than

5% [246, 247, 290]. However, the growing interest in accurate and predictable genome

editing for research and translational applications makes the development of strategies for

improved precise genome editing highly desirable.

Genome editing outcomes critically depend on DNA double strand break (DSB) re-

pair pathways, which are activated in response to the CRISPR-mediated cleavage. Gene

inactivation mostly arises from the mutagenic classical non-homologous end-joining (C-

NHEJ) and alternative end-joining (alt-EJ) DSB repair pathways. C-NHEJ, the predomi-

nant DSB repair pathway in most mammalian cells, is a fast repair mechanism that ligates

DSB ends together using no or minimal end processing and generally leads to small 1-4

nt insertions or deletions at the repair site due to non-compatible DSB ends [44]. Core

C-NHEJ proteins include the Ku70-Ku80 heterodimer and the DNA-dependent protein

kinase catalytic subunit (DNA-PKcs) that protect and bridge the DNA strand extremities

prior to end ligation by the Ligase4-Xrcc4 complex.

In addition to C-NHEJ, evidence suggests that many cancer and immortalized cell

lines possess supplementary end-joining pathways, collectively termed alt-EJ, to manage

increased DSB levels [116, 118, 119]. The alt-EJ repair family is incompletely char-

acterized but likely comprises pathways such as microhomology-mediated end-joining

(MMEJ) and synthesis-dependent MMEJ (SD-MMEJ), which utilize microhomologies at

or near the DSB to anneal complementary bases at broken DNA ends [121, 122]. An-

nealing of these microhomologies often results in the deletion of one microhomology

copy and intervening sequences. However, the insertion of bases replicated from nearby

DNA sequences, termed templated inserts, are also commonly observed at alt-EJ repair

junctions, for instance following SD-MMEJ [122]. Moreover, alt-EJ pathways were as-

sociated with random plasmid integration in human and rodent cell genomes [141–143].

Microhomologies required for alt-EJ become exposed after DSB end processing and
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single strand resection, presumably initiated by the Mre11-Rad50-Nbs1 (MRN)-CtIP

complex [128]. These microhomologies can range from as little as 1 bp to 25 bp, but

may also be created de novo by limited DNA synthesis of DNA Polymerase θ (Pol theta)

during SD-MMEJ, if resection fails to expose accessible microhomologies [121–123].

Following end resection, Poly(ADP-ribose) polymerase 1 (Parp1) and Pol theta mediate

the annealing of microhomologies, which typically produces protruding non-homologous

DNA tails, termed flaps [108, 111]. Subsequently, the endonuclease complex Ercc1-Xpf

can excise these flap structures and gaps can be filled by the non-processive polymerase

activity of Pol theta and Polymerase δ subunit 3 (Pold3) [107, 111, 133]. Alt-EJ is com-

pleted by end ligation mediated by Ligase I (Lig1) and the Ligase III (Lig3)-Xrcc1 com-

plex [128, 149].

On the other hand, accurate but infrequent targeted gene insertion and gene correction

rely on the homologous recombination (HR) DSB repair pathway. HR is a relatively error-

free but more complex and tightly regulated DSB repair pathway. It uses long homologous

sequences as template for repair, preferentially from the sister chromatid, and is therefore

mainly active in late S/G2 phase. However, HR accounts for only 15-20% of DSB repair

in G2 phase human cells [52]. This implies that mutagenic end-joining pathways are more

efficient even in the presence of active HR repair. To reveal homologous sequences, HR

relies on end resection initiated by the MRN-CtIP complex – a step shared with the alt-

EJ repair family. However, unlike the limited resection of alt-EJ, HR requires extensive

end resection to expose extended 3’ single-stranded DNA (ssDNA) ends. These ssDNA

ends are coated by the Rad51 recombinase, which mediates homology search and strand

invasion of homologous sequences, as a prerequisite to DNA synthesis. Interestingly,

circumstantial evidence suggested that Rad51-coated ssDNA ends can be directed into alt-

EJ repair pathways in the absence of sufficiently long homologies [116, 141]. Canonical

HR is most frequently completed either by synthesis-dependent strand annealing (SDSA)

or canonical DSB repair (DSBR) pathways, both of which can lead to a nonreciprocal

transfer of the donor template sequence to the damaged chromosome and hence may give

rise to gene conversion events.

The overall low frequency of HR-mediated genome editing in mammalian cells has

been associated with two main factors: one being the prevalence of C-NHEJ- and alt-

EJ-mediated mutations at the CRISPR target site [298], and the other being illegitimate

donor integrations into the target locus or any random genomic site instead of gene con-

version [301]. Thus, numerous studies have described strategies to improve HR-directed
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repair. Some strategies have focused on improving HR donor design and availability

[264, 268, 304], as well as DSB structure and the timing of DSB formation relative to

the cell cycle [247, 307]. Other promising strategies have focused on interfering with

DSB repair activities, either by overexpressing HR factors [310, 313], or by the transient

knockdown or knock-out of C-NHEJ factors [318, 319]. So far, few studies tested the

combination of interfering with specific activities of both alt-EJ and C-NHEJ factors to

bypass random donor integrations [142, 143], and comprehensive analysis of the roles of

these alternative DSB repair activities is lacking. Finally, small molecules were used to

bias DSB repair in favor of HR [314]. While all these strategies improved HR frequency

by approximately 2- to 10-fold, the DSB repair outcome was still limited by the persis-

tent predominance of imprecise editing mechanisms, as well as by an overall low repro-

ducibility when comparing distinct cell types [309, 321]. The lack of universal strategies

to boost HR-mediated repair highlights intrinsic differences between model systems, an

incomplete understanding of DSB repair mechanisms, and a possible interplay of the alt-

EJ and HR pathways. Despite recent progress, improving HR-mediated genome editing

thus remains a major challenge.

Here, we aimed at systematically characterizing the effects and possible interconnec-

tions of alt-EJ and HR repair pathways during precise genome editing in Chinese hamster

ovary (CHO) cells, the most widely used host for recombinant therapeutic protein produc-

tion. CHO cells, as rodent cells in general, show reduced C-NHEJ activities compared to

human cells [164]. In addition, recent evidence suggested that CHO cells have elevated

alt-EJ activities [119, 141], which consequently results in high random integration fre-

quencies, but low HR activities [171, 268, 291]. CHO cells are therefore an ideal model

system to study the hypothesis of whether high alt-EJ activities, as observed in these cells,

compete with and ultimately restrict precise HR-mediated genome editing. Surprisingly,

we find in this study that several alt-EJ factors critically contribute to efficient HR, as

measured by different chromosomal gene correction assays. This contribution was most

evident at staggered DSBs induced by the highly specific FokI-dCas9 nuclease, but it was

also detected from blunt-ended DSBs induced by the wild-type Cas9 nuclease when the

DSB is distant from the mutation. These findings reveal an interplay between alt-EJ and

HR pathways for the repair of various DSB structures that may extend beyond sharing the

initial end resection and Rad51 nucleofilaments. Moreover, this study led to the identifica-

tion of specific rate-limiting factors for HR in CHO cells. Counteracting these limitations

increased gene correction by up to 75%, offering a translatable strategy to increase precise
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genome editing.

3.3 Material and Methods

siRNA and plasmids

Small interfering RNA (siRNA) duplexes were designed to target CHO DNA repair pro-

tein mRNAs and were provided by Microsynth AG (Balgach, Switzerland). For each

target, three siRNAs were designed to increase the efficiency and specificity of the tar-

get mRNA depletion. Three negative non-targeting siRNAs (siNeg) were designed as

controls. The sequences of siRNAs used in this study are listed in Table S3.1 or were

previously published [141].

The mammalian codon optimized Streptococcus pyogenes Cas9 nuclease (Addgene

plasmid # 43861) [360] was used as wild-type Cas9 nuclease, and the FokI nuclease fu-

sion to the catalytically inactive Cas9 (FokI-dCas9; Addgene plasmid # 52970) [275]

as high-fidelity nuclease. The GFP-specific single sgRNA (G1, G3, G7) and paired

sgRNA (G1G5, G3G7) expression plasmids were kindly provided by David Liu [275]

(Fig. S3.1A). To construct the GFP gene correction vector (HR reporter), two stop codons

and a 101 bp deletion were introduced into the GFP coding sequence by overlapping

PCR as previously described [361]. In brief, primers HRassay F1 and HRassay R1, and

primers HRassay F2 and HRassay R2, respectively, were used for the first and primers

HRassay F1 and HRassay R2 for the second PCR round (Table S3.2). The insertion of

the second stop codons creates an AflII recognition site (CTTAAG), which is absent in

the corrected GFP sequence. This PCR product was inserted in the HindIII/XbaI sites

from a PiggyBac (PB) transposon vector [362], to contain a puromycin and the mutated

GFP expression cassette surrounded by the PB inverted terminal repeats. Transient trans-

fection of this HR reporter construct does not result in GFP positive (GFP+) cells, even in

the presence of a CRISPR nuclease.

To generate GFP donor vectors, two silent PAM mutations per donor construct were

first introduced into the PB transposon vector using overlapping PCR [361], to prevent

CRISPR cleavage of corrected GFP sequences. Briefly, primers GFP F3 and G1 R, and

primers G1 F and GFP R4h were used to mutate the G1 sgRNA PAM site (GGC>TGC)
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in the first PCR round. These PCR products were then combined using primers GFP F3

and GFP R4h in a second PCR round and used to replace the wild-type GFP sequence

using HindIII/XbaI sites in the PB transposon vector. This mutagenesis procedure was re-

peated to introduce the second silent PAM mutation for the G5 sgRNA (AGG>AAG) and

to create a second GFP donor sequence containing G3 and G7 sgRNA-specific PAM mu-

tations (GGG>GTG and TGG>TCG, respectively) (Fig. S3.1B). These silently mutated

GFP sequences were then digested with HindIII and AgeI, end-filled using Klenow frag-

ment and blunt cloned into the SmaI site of the pUC19 vector. To create a translational

trap, the translation initiation codon was removed by PCR amplification of the PAM-

mutated GFP sequence using GFP Amut KpnI F and GFP Amut R primers followed by

KpnI/NotI digestion to replace the previously inserted GFP sequence in the pUC19 vector.

Protein overexpression vectors were constructed as follows. The Rad51, Ercc1, Pold3,

Lig3, Ku70 and Ku80 CHO cDNAs were inserted instead of the GFP sequence of a previ-

ously described mammalian expression vector that contains a GAPDH promoter upstream

of the coding sequence [363]. The Neomycin expression plasmid was similarly gen-

erated by PCR amplification of the Neomycin cassette from the pCMV-DsRed-Express

plasmid (Clonetech). The dominant-negative Rad51-K133A (AAG>GCC) and Rad51-

K133R (AAG>AGG) expression plasmids were derived from the Rad51 overexpression

vector using overlapping PCR [361]. The empty vector control was generated by GFP

coding sequence excision and consists of the plasmid backbone only. All primers (pur-

chased from Microsynth AG, Balgach, Switzerland) and plasmids used in this study are

listed in Tables S3.2 and S3.3.

Cell lines

Suspension-adapted CHO-K1 cells were maintained in serum-free HyClone SFM4CHO

medium supplemented with HyClone Cell boost 5 supplement (GE Healthcare), with

addition of L-glutamine and HT supplement (Gibco). Antibiotic-antimycotic solution

(Gibco) was added for recovery after cell sorting experiments.

The CHO-K1 HR reporter cell line was established as follows. CHO-K1 cells were

transfected with the HR reporter PB transposon and a PB transposase expression vec-

tor [362] using the Neon electroporation system (Thermo Fisher Scientific), as per the

manufacturer’s instructions. Two days after transfection, cells were transferred to cul-
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ture medium containing 4 µg/ml puromycin and selected for two weeks. 64 cell clones

containing stable HR reporter integrations were isolated by limiting dilution, expanded

and assessed for HR reporter copy number. A cell clone containing approximately four

copies of the HR reporter per diploid genome, as assessed by quantitative PCR (qPCR),

was selected for further experiments and cultured under continuous puromycin selection.

Adherent CHO-DG44 cells were cultivated in DMEM/F-12+GlutaMAX supplemented

with 10% FBS, HT supplement and antibiotic-antimycotic solution (Gibco). The CHO-

DG44 HR reporter cell line was derived from a GFP+ CHO-DG44 clone expressing a low

copy number of the described PB transposon vector (a gift from Solenne Bire). GFP neg-

ative (GFP-) cells were isolated using single cell sorting to obtain GFP loss-of-function

mutations resulting from natural mutagenesis of the GFP sequence. A GFP- cell clone

containing a 215 bp GFP deletion compatible with the wild-type Cas9 and the FokI-dCas9

nuclease systems was selected for further experiments.

PB copy number

To analyze stably integrated PB copy number, total genomic DNA was extracted from

CHO cells using the DNeasy Bood & Tissue Kit (Qiagen). 15 ng of genomic DNA was

used for qPCR assays using the SYBR Green I Master mix for the Roche LightCycler 480

instrument, and each sample was analyzed in triplicate. PB transposon integrations were

quantified using puromycin-specific primers (Table S3.2). Beta-2-microglobulin (B2M),

a housekeeping gene reported to be present in two copies per CHO diploid genome [362],

was used as reference gene. PB copy number was calculated using a previously described

relative quantification method that accounts for different primer efficiencies [364].

sgRNA cleavage efficiency

To assess the cleavage efficiency of the previously published GFP-specific sgRNA [275]

in CHO cells, 700,000 GFP+ CHO-DG44 cells were electroporated with either 690 ng of

a single sgRNA expression plasmid (G1, G3, G7) and 2300 ng of wild-type Cas9 expres-

sion plasmid, or 900 ng of paired sgRNA expression plasmids (G1G5, G3G7) and 2500

ng of FokI-dCas9 expression plasmid, together with 200 ng of pCMV-DsRed-Express

plasmid as transfection control. All CRISPR plasmids were used at equimolar ratio and
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samples were complemented with inert pUC19 plasmid to reach a total plasmid amount

of 5000 ng. For negative CRISPR control experiments, the sgRNA and/or nuclease ex-

pression plasmids were substituted with pUC19 plasmid. Disruption of the GFP coding

sequence, a read-out for efficient CRISPR cleavage, was quantified three days after trans-

fection by flow cytometry and fluorescence microscopy. The sgRNA cleavage efficiencies

were higher using the wild-type Cas9 than the FokI-dCas9 nuclease system, in line with

previously reported frequencies in human cells [275].

HR assays

To characterize HR-mediated genome editing, CHO-K1 HR reporter cells were seeded

at 350,000 cells/ml in puromycin-containing medium one day prior to transfection, and

transferred to puromycin-free medium after transfection. For siRNA transfection, 400,000

cells were electroporated with 100 nM of pooled siRNAs (mix of three siRNA, each

siRNA at 33 nM) for the initial siRNA screen or with 100 nM of single siRNAs for de-

convolution experiments. For combined knockdowns of several targets, 33 nM of the

most efficient siRNAs were used and complemented with siNeg to 100 nM, if needed.

For double siRNA transfections, cells were re-transfected with 100 nM of the previously

transfected siRNA mix two days after the first siRNA transfection. For siRNA knockdown

in CHO-DG44 cells, 200,000 CHO-DG44 HR reporter cells were reverse transfected with

50 nM of pooled siRNAs using Lipofectamine RNAiMAX (Thermo Fisher Scientific), as

per the manufacturer’s instructions. Typical siRNA transfection efficiency in both CHO

cell lines was above 90% as assessed by fluorescently labeled negative siRNA (AllStars

Neg. siRNA AF 647, Qiagen). siRNA-treated cells were used for further experiments two

days after transfection. To induce GFP-specific DSBs, untreated or siRNA-treated CHO-

K1 and CHO-DG44 HR reporter cells were transfected with 690 ng of single sgRNA

expression plasmid (G1, G3, G7) and 2300 ng of wild-type Cas9 expression plasmid, or

900 ng of paired sgRNA expression plasmid (G1G5, G3G7) and 2500 ng of FokI-dCas9

expression plasmid, 1400 ng of GFP donor plasmid, 200 ng of pCMV-DsRed-Express

expression plasmid and complemented with pUC19 to 5000 ng, if necessary. For double

siRNA transfections, sgRNA, nuclease, donor and dsRed expression plasmids were co-

transfected with the second siRNA load. For negative CRISPR control experiments, the

sgRNA, nuclease and/or donor expression plasmids were substituted with pUC19 plas-

mid, or parental CHO-K1 cells were used instead of the CHO-K1 HR reporter cells. GFP
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reconstitution and dsRed expression were analyzed two and three days after CRISPR

transfection in CHO-DG44 and CHO-K1 cells, respectively. Only dsRed+ cells were

analyzed to quantify HR efficiency in order to account for differences in transfection ef-

ficiency. Typical dsRed positive (dsRed+) cell frequencies were 40-60% in CHO-DG44

and 15-30% in CHO-K1 cells.

For protein overexpression experiments, 0.1 to 10 µg of protein expression vectors

were co-transfected with the G3G7 sgRNA, FokI-dCas9 nuclease, GFP donor, and dsRed

expression plasmids into CHO-K1 HR reporter cells as described above, and cells were

analyzed for GFP and dsRed fluorescence three days after transfection. Samples were

either compared to the corresponding control cells treated with the same amount of titrated

empty vector, or alternatively, all samples were complemented with empty vector to reach

the same total plasmid DNA amount and compared to one control sample. The obtained

results were comparable using either method.

HR reporter sequence analysis

To analyze repaired GFP sequences, CHO-K1 reporter cells were bulk-sorted for dsRed+

GFP- and GFP+ cells at least four days after the transfection of the G3G7 sgRNA, FokI-

dCas9 nuclease, GFP donor, and dsRed expression plasmids. 5,000 cells were sorted

per condition, except for Rad51-depleted GFP+ cells, for which only 2000 GFP+ were

sorted due to an overall low GFP+ frequency. Polyclonal populations were expanded for

a minimum of two weeks, to dilute out episomal donor plasmids, prior to DNA extraction

using the DNeasy Blood & Tissue Kit (Qiagen). 100 ng of isolated genomic DNA was

used to PCR amplify the target loci using HotStart HiFidelity Polymerase (Qiagen), ac-

cording to standard protocols, with primers located outside of the donor homology arms

(Table S3.2). The expected amplicon sizes derived from the CHO-K1 HR assay were

2.6 kb and 2.7 kb for the unrepaired and repaired GFP sequences, respectively. To assay

the HR reporter sequence by restriction digest, these PCR amplicons were column puri-

fied, digested with AflII for 1 h at 37 ◦C, and the digestion products were separated on

an agarose gel. Unrepaired GFP sequences are cleaved by AflII yielding a 1.1 kb and a

1.5 kb band, while correctly repaired GFP sequences lack an AflII recognition site. To

analyze the HR reporter sequence by Sanger sequencing, PCR products were either di-

rectly sequenced (polyclonal PCR sequencing) or cloned into plasmid vectors using the

TOPO TA Cloning Kit for Sequencing (Invitrogen). Briefly, PCR products were gel pu-
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rified with the Wizard SV Gel and PCR Clean-Up System (Promega), A-tailed using Taq

Polymerase (Qiagen) followed by cloning into the TOPO vector. Single transformed E.

coli colonies were screened for TOPO vectors with inserts by colony PCR yielding a total

of 228 positive colonies, of which 116 colonies were analyzed by Sanger sequencing. In

CHO-DG44 cells, GFP+ and GFP- cell clones were isolated after G3G7 sgRNA, FokI-

dCas9 nuclease, GFP donor, and dsRed expression plasmid transfections using limiting

dilution. The HR reporter sequence flanking the CRISPR target site were PCR amplified

and amplicons of 21 clones were Sanger sequenced and analyzed. The expected ampli-

con sizes derived from the CHO-DG44 HR assay were 2.5 kb and 2.7 kb for unrepaired

and repaired GFP sequences, respectively. For each condition, transfection and sequence

analysis were performed once.

Gene correction, illegitimate integration and unrepaired GFP

deletion quantifications

The frequency of illegitimate integration of the donor plasmid and unrepaired HR reporter

sequences was quantified by qPCR. For this, 10 ng of DNA extracted from GFP+ and

GFP- CHO-K1 polyclonal populations was used to amplify the GFP donor-derived in-

sert sequence (GFP Insert), the GFP donor-derived plasmid backbone (Donor Backbone)

or the deleted GFP sequence (GFP Deletion) (Table S3.2). The GFP Insert amplicon

quantifies gene corrections and illegitimate integrations, namely plasmid knock-in and

random integration, while the Donor Backbone amplicon quantifies illegitimate integra-

tions only. The GFP Deletion amplicon quantifies uncorrected GFP deletions, while

large CRISPR-derived deletions may also prevent amplification with the GFP Deletion

primers. Puromycin-specific primers were used to quantify PB HR reporter copies and

B2M-specific primers served as normalization control. qPCR experiments were per-

formed using Power SYBR Green PCR Master Mix for the QuantStudio 6 Flex Real-Time

PCR System (Applied Biosystems) and analyzed by relative quantification [364]. The rel-

ative gene correction frequency was calculated by subtracting the relative Donor Backbone

value from the relative GFP Insert value in the same sample.
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siRNA knockdown and overexpression quantifications

For real-time quantitative PCR (RT-qPCR), total RNA was extracted from CHO cells us-

ing the NucleoSpin RNA kit (Macherey Nagel). To assess siRNA-mediated knockdown

efficiency, RNA was extracted two days after transfection, of which 1 µg was reverse

transcribed into cDNA using a mix of oligo(dT)15 and random hexamer primers and the

GoScript Reverse Transcription System (Promega). To estimate repair protein overex-

pression levels, RNA was extracted one day after transfection and 400 ng of RNA was

reverse transcribed into cDNA using the QuantiTect Reverse Transcription Kit (Qiagen)

containing an additional genomic DNA elimination step. The mRNA levels of siRNA tar-

gets, overexpressed cDNAs, FokI-dCas9 nuclease, and the B2M housekeeping gene were

determined in triplicates using the SYBR Green I Master mix for the Roche LightCycler

480 instrument or the Power SYBR Green PCR Master Mix for the QuantStudio 6 Flex

Real-Time PCR System (Applied Biosystems) with primers listed in Table S3.2. For mea-

suring mRNA overexpression levels, RT-minus controls were tested in parallel to confirm

a difference of at least 5 CT between samples and RT-minus controls. Knockdown ef-

ficiency and overexpression levels were assessed by relative quantification as previously

described [364], and they are expressed relative to each siNeg or empty vector control.

siRNA knockdown efficiency in CHO-DG44 cells was previously validated [141].

Cell cycle analysis

To analyze CHO cell cycle progression after siRNA knockdown, 2 x 106 cells were har-

vested two days after transfection, fixed by adding dropwise 500 µl ice-cold 70% EtOH

while vortexing and stained using 500 µl staining solution comprised of 0.5 µg/ml DAPI

and 0.1% Triton X-100 in PBS. Stained cells were stored at 4 ◦C until flow cytometry

analysis.

Flow cytometry and microscopy

To determine the frequency of GFP+ cells (to assess gene correction by HR) and dsRed+

cells (transfection control), CHO-K1 cell suspensions were centrifuged and resuspended

in normal growth medium, while adherent CHO-DG44 cells were trypsinized and re-

suspended in PBS with 2% FBS. Single cell flow cytometry was performed on CyAN
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and Gallios instruments (Beckman Coulter) and analyzed using FlowJo software v10.4.2.

Cells were first gated using side scatter (SSC) versus forward scatter (FSC) to separate the

intact cell population from debris, and then gated for single cells using SSC height versus

SSC width or area and using FSC height vs FSC width or area. This cell population was

then gated for dsRed+ cells, and the transfected dsRed+ cells were further gated for GFP+

cells using the appropriate fluorescent channels with dsRed+ or GFP+ only cells as gating

control. At least 50,000 transfected dsRed+ single cells were analyzed per sample. For

bulk cell sorting, CHO-K1 reporter cells were sorted into 96well plates with prewarmed

medium using the MoFlo Astrios EQ cell sorter (Beckman Coulter), briefly centrifuged to

exchange medium and further cultured for one month. For cell cycle analysis, a minimum

of 40,000 single cells was acquired at a low acquisition rate yielding typical coefficient

of variation mean values below 6%. Cell cycle distribution was analyzed by fitting the

histogram of DNA content, as measured by DAPI intercalation, to the Watson Pragmatic

Model using FlowJo software. Cells with cell contents below the G1/G0 phase and above

the G2/M phase were grouped as apoptotic and polyploid cells, respectively. Fluores-

cence microscopy analysis was carried out on an Axio Observer.A1 microscope (Zeiss,

Germany) and images were analyzed using ImageJ software.

Statistical analysis

R (https://www.r-project.org) and Microsoft Excel were used for statistical analy-

sis of the data. Graphs show mean value, error bars represent standard error of the mean

(s.e.m) and the number of biological replicates is stated per graph. Statistical signifi-

cance was calculated using the two-tailed unpaired Student’s t-test with Benjamini and

Hochberg false discovery rate correction (* P < 0.05, ** P < 0.01). To test for a non-

linear, inverse u-shaped relationship between the amount of the overexpression protein

and the relative HR frequency (GFP+), a non-linear regression model was used with the

following specification:

relativeHRi = β0 +β1 ∗µgProteini +β2 ∗µgProtein2
i + εi,

where i = 1, . . . ,N is the i-th measurement, relativeHRi indicates the relative HR fre-

quency relative to the mean of the empty vector control, µgProteini is the amount in µg

of the corresponding protein applied, and εi is a random error with mean zero compris-
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ing all factors that influence the relative HR frequency but are not taken into account

by the model. The unknown parameters β0, β1 and β2 govern the relationship between

relativeHRi and µgProteini, and need to be estimated with the method of Ordinary Least

Squares (OLS). OLS estimates the best fitting parameters by minimizing the sum of the

squared residuals, that is the part of the variation in relativeHRi which the model cannot

explain. The relationship between the relative transfection efficiency (dsRed+) and the

amount of protein was calculated analogously using the non-linear model

relativeTrans f ectionE f f iciencyi = β0 +β1 ∗µgProteini +β2 ∗µgProtein2
i + εi

For the cluster analysis, the HR repair dissimilarity between different sgRNA target sites

and nuclease types was calculated using the sum of the absolute differences method (Man-

hattan distance).

3.4 Results

3.4.1 Construction of a CHO HR reporter compatible with the

FokI-dCas9 nuclease system

The direct repeat GFP (DR-GFP) assay has been the gold standard to understand intra-

chromosomal HR repair mechanisms in mammalian cells [312]. However, this HR assay

does not rely on an exogenous donor template, as it was not designed to study precise

gene insertions and gene corrections. Alternatively, several gene targeting assays were

established to quantify HR-mediated in-frame insertions of fluorescent marker genes in

human cells [314, 365]. Here, we wished to establish a GFP-based HR assay to specifi-

cally measure targeted gene corrections in CHO cells. In addition, this assay was designed

to allow comparison of the performance of both the highly sequence-specific FokI-dCas9

and the efficient wild-type Cas9 CRISPR nuclease systems.

The established HR assay is based on a chromosomally integrated GFP loss-of-function

mutation and a non-functional GFP donor plasmid. HR-mediated gene conversion can

lead to the restoration of a functional GFP coding sequence which is traceable by GFP

fluorescence (Figs. 3.1A, S3.1A and S3.1B). The genomic non-functional GFP sequence

consists of two in-frame stop codons followed by a 101 bp frame-shifting deletion. This
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truncated GFP sequence is adjacent to previously described GFP-specific sgRNA recogni-

tion sites (G1, G3, G5, G7) [275]. These sgRNAs can be used either individually together

with the wild-type Cas9 nuclease, or as sgRNA pairs (G1G5 or G3G7) together with

the highly specific FokI-dCas9 nuclease, to efficiently cleave the GFP target sequence in

CHO cells (Figs. S3.1C and S3.1D). It also harbors an AflII recognition site overlap-

ping the second stop codon, to screen GFP coding sequences by restriction digest. It is

further flanked by a puromycin resistance selection gene and by two inverted terminal

repeats for PiggyBac (PB) transposase-mediated genomic integration, and it is hereafter

referred to as the HR reporter. The homologous donor template is a non-functional trans-

lational trap plasmid that contains a GFP coding sequence bearing extensive homology

to the truncated GFP target site (382 bp left and 1252 bp right homology arms), but that

lacks a promoter and a translational initiation codon (Fig. 3.1A). GFP expression from

episomal or genome-integrated donor plasmids is further hampered by two in-frame stop

codons upstream of the GFP coding sequence. To avoid CRISPR cleavage of the repaired

product, the donor DNA contains additional silent mutations at the sgRNA PAM sites

(Fig. S3.1B). Targeted HR-mediated GFP gene correction should thus remove the AflII

restriction site and reconstitute GFP fluorescence.

To generate a chromosomal HR reporter cell line, suspension-adapted CHO-K1 cells

were transfected with the HR reporter construct and a PB transposase expression vec-

tor. Cells having stably integrated the HR reporter in their genome were selected for

puromycin resistance. PB transposon vectors preferably integrate as single copies in

separate loci and at a low copy number per genome [362]. After isolating single cells,

we quantified the number of stably integrated HR reporter constructs relative to a two-

copy CHO cell gene using quantitative PCR [362]. A clone containing four integrated

HR reporter copies was selected, allowing to mimic genome editing of multi-locus sites

(Figs. 3.1B and S3.2A). Reconstitution of a functional GFP coding sequence in the HR

reporter cell line required the co-transfection of the G3G7 sgRNA, FokI-dCas9 nuclease

and GFP donor expression plasmids. This yielded approximately 0.25% of GFP positive

(GFP+) cells among the entire cell populations, and 0.74% of GFP+ cells among the trans-

fected dsRed+ cell population three days after transfection (Figs. 3.1C and S3.3), whereas

dsRed+ cell frequencies ranged around 15-30%. A HR frequency under 1% is within the

expected range for CHO cells, which have inherently low HR activity [171, 268, 291].

GFP+ cells were below 0.01% when transfecting the parental CHO-K1 cells devoid of

the reporter construct, implying that the majority of GFP fluorescence arises from repair
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Figure 3.1: Construction of a CHO-K1 GFP gene correction assay. (A) Schematic
overview of the newly established HR assay. The chromosomal HR reporter construct,
stably integrated into the CHO-K1 cell genome using PiggyBac (PB) transposition, con-
tains two-in frame stop codons (X signs) followed by a 101 bp GFP frame-shifting dele-
tion (red dotted line) downstream of several CRISPR target sites. An AflII restriction site
overlaps with the second stop codon in the truncated GFP sequence. The homologous
donor template is a circular plasmid containing a non-functional GFP coding sequence
that provides the missing GFP sequence (dark green) but lacks a promoter and transla-
tion initiation codon, and that shares homology arms to the deleted chromosomal GFP
sequence on either side (horizontal bracket lines with homologous sequence length indi-
cated). Two silent PAM mutations (purple bars) as well as two upstream stop codons (X
signs) are present in the donor plasmid vector. Following CRISPR-mediated DSB induc-
tion, HR-mediated GFP correction results in a functional GFP coding sequence and in cel-
lular GFP fluorescence. (B) qPCR assay of the number of HR reporter copies per genome
chromosomally integrated in the selected CHO-K1 reporter cell line using primers spe-
cific to the puromycin selection gene located on the PB transposon, as shown in Figure
S3.2A (n = 3, error bars represent s.e.m). (C) Flow cytometry quantification of the per-
centage of GFP expressing cells among the transfected dsRed+ cell population of either
HR reporter construct-containing cells (HR reporter) or parental CHO-K1 cells trans-
fected with different combinations of the GFP-specific G3G7 sgRNA, the FokI-dCas9
nuclease, and the GFP donor expression plasmids, as indicated (n=2, error bars represent
s.e.m).
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of the chromosomal HR reporter sequence rather than episomal repair or donor plasmid

integration.

3.4.2 GFP reconstitution relies on the HR repair pathway

To confirm that GFP fluorescence reconstitution quantifies canonical HR repair, we next

evaluated the GFP expression stability. HR repair is expected to result in permanent GFP

correction of the chromosomal HR reporter and hence it should lead to sustained GFP

expression. In agreement with HR-mediated GFP repair, unsorted and bulk-sorted GFP+

cell populations retained stable GFP expression levels (Fig. 3.2A and data not shown).

Among GFP+ sorted cells, less than 0.03% co-expressed dsRed and GFP, implying that

co-integration of the dsRed transfection control plasmid and GFP sequence restoration are

infrequent events (data not shown). We further assessed that GFP+ cells were devoid of

the AflII recognition site in the HR reporter sequence. The HR reporter cassette was PCR

amplified using primers located outside of the homologous donor arms and digested with

AflII (Fig. S3.2A). Whereas the amplicons from untreated and GFP- cells were cleaved

by AflII, they were not when assessing GFP+ cells. This implies that the anticipated

chromosomal GFP sequence correction causes GFP fluorescence and that most or all HR

reporter alleles were corrected (Fig. S3.2B).

To assess whether HR pathway components are required to generate GFP+ cells, we

transiently knocked down various DSB repair factors in the CHO-K1 HR assay. For

siRNA knockdown assays, each target gene was silenced with a pool of three siRNAs,

and proper knockdown of the mRNA level was validated experimentally by RT-qPCR

(Fig. S3.4). To assess siRNA specificity, siRNA pools were deconvoluted to substantiate

the knockdown efficiency, consistency and reproducibility of the individual siRNAs (Fig.

S3.5). Transfecting the HR assay with siRNAs targeting Rad51 – a key recombinase for

HR repair – decreased the occurrence of GFP+ cells to the background levels observed

from non-targeting negative control siRNA (siNeg), whereas knockdown of other repair

pathway components (Ku80, Lig3) had little effect (Fig. 3.2A). In contrast, knockdown

of Pari, which opposes Rad51 nucleation and HR [71], rather increased the occurrence of

GFP+ cells. This data further corroborated an HR-dependent reconstitution of the GFP

coding sequence in this assay.
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Figure 3.2: Characterization of GFP reconstitution events in the CHO-K1 HR reporter
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Figure 3.2: This was followed by the transfection of a second load of siRNA pools to-
gether with G3G7 sgRNA, FokI-dCas9 nuclease and/or donor expression plasmids, as
indicated. (A) Quantification of cellular GFP fluorescence was performed by flow cy-
tometry 3 d and 30 d after cell transfection and is expressed as percentage of the entire
cell population (n=1, see Figure 3.3A for extended data). (B) Polyclonal populations
of siRNA-treated cells expressing (GFP+) or not (GFP-) a functional GFP sequence fol-
lowing the HR assay were sorted by flow cytometry. The chromosomal HR reporter
sequences were amplified using primers located outside of the donor plasmid homology
arms (Fig. S3.2A) and processed by Sanger sequencing. Mutations present in the donor
GFP sequence, depicted by purple lines, consist of a C to A substitution (Donor Muta-
tion 1) and a G to C substitution (Donor Mutation 2). The schemes depict the most fre-
quently detected outcome of the assays as deduced from DNA sequence analysis, where
a grey line indicates a mix of the donor-derived mutation and wild-type sequence, and
a blue line indicates the most frequent occurrence of the donor-derived G to C substitu-
tion. The sequencing electropherograms corresponding to the Donor Mutation 1 and 2
loci of GFP+ cells are shown for each experimental condition. (C) Primers specific to the
GFP donor sequence (GFP Insert) and donor plasmid backbone (Donor Backbone), as
depicted in Figure S3.2A, were used to quantify the co-occurrence of correctly repaired
GFP sequences and illegitimate integration events (open bars), or of illegitimate integra-
tion events solely (closed bars), respectively. The number of events was normalized to the
copy number of the chromosomal HR reporter constructs.

To further substantiate the occurrence of HR-mediated repair, we sequenced PCR am-

plicons of the HR reporter sequences from GFP- and GFP+ cell populations. PCR prod-

ucts from polyclonal GFP- cells maintained the original GFP deletion but GFP+ cells

displayed the corrected GFP sequence and donor-derived PAM mutations (Fig. 3.2B). In-

triguingly, all sequencing reads obtained from GFP+ cells contained the deletion-proximal

downstream donor-derived mutation C (Donor mutation 2), whereas, at the position of the

distal upstream Donor mutation 1, we observed a mix between the donor-derived A and

the chromosomal GFP-derived C allele. In addition to polyclonal PCR product sequenc-

ing, we sequenced 116 HR reporter sequences cloned into plasmid vectors. Among 24

GFP- colonies, all possessed the original chromosomal GFP deletion, whereas five had ad-

ditional indel mutations around the CRISPR DNA cleavage site (Fig. S3.6). As expected,

we did not observe such CRISPR-derived indel mutations in the absence of a functional

CRISPR system (siNeg nosgRNA), but they occurred in the absence of a GFP donor

plasmid (siNeg noDonor). The majority of these additional mutations showed MMEJ-

or SD-MMEJ-specific repair signatures, substantiating high alt-EJ activities in CHO cells

(Table S3.4). Among the 88 DNA sequences derived from GFP+ cells, 83 no longer dis-

played the GFP deletion and were converted to the donor sequence, among which 75%

and 100% contained the upstream and downstream donor-specific mutations, respectively,
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consistent with the percentages observed from polyclonal PCR sequencing.

This particular mutation pattern observed among the GFP+ repair junctions may be

explained by DNA mismatch repair (MMR) and protruding DNA sequences occurring

during HR. Indeed, following extensive 5’-3’ end resection, HR repair requires that at

least one of the resected 3’ ssDNA chromosomal ends invades a homologous donor tem-

plate. In the HR assay described here, the GFP donor plasmid contains two silent PAM

mutations. Thus, invasion of the upstream 3’ ssDNA end into the donor plasmid, for in-

stance, creates a one base pair mismatch at the PAM site upstream of the DSB site (Fig.

S3.7, boxed green cone and purple bar). The mismatched bases activate MMR, which

can lead to the incorporation of the upstream donor-derived PAM mutation in the repaired

product (Fig. S3.7, grey bar). The observation that more than 50% of the repaired GFP

sequences obtained from GFP+ cells contained the upstream donor mutation indicates a

preference of the MMR to correct the invading DNA strand, as noted previously [190].

Following MMR, GFP gene conversion is then mediated by the SDSA or DSBR pathway.

Notably, during both the SDSA or DSBR repair pathways, a protruding non-homologous

3’ flap arises at the downstream 3’ ssDNA end, as a consequence of the distance between

the CRISPR cleavage site and the GFP deletion (Fig. S3.7, yellow box). To complete

HR repair, this protruding flap must be removed. However, since this flap derives from

the chromosomal GFP sequence, and thus lacks a PAM mutation, the downstream donor-

derived PAM mutation should become fixed in all GFP repair products (Fig. S3.7, purple

bar), as observed here.

Among the GFP+ colonies, five out of 88 (6%) showed no evidence of gene correction.

Thus, we further quantified the amount of unrepaired GFP alleles by qPCR using primers

surrounding the deletion site (Fig. S3.2A). Among GFP- cells, around 80-90% of the

chromosomal GFP alleles still contained the original deletion, while on average only 8%

of the GFP+ cells did (Fig. S3.2C). The finding that 6-8% of the GFP alleles remain

unrepaired in the polyclonal GFP+ cell population indicated that most cells must have

successfully corrected all their GFP alleles, possibly due to co-conversion.

When screening a total of 228 bacterial colonies for donor plasmid-containing HR

reporter sequences, we noted that two GFP- and two GFP+ cell-derived sequences (2%)

contained visibly shorter inserts than expected. Indeed, these inserts harbored large dele-

tions ranging from 333 to 678 bp, likely resulting from alt-EJ-mediated repair (Table

S3.4). While these large deletions were located close to the predicted DSB site observed
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from GFP- cells, they occurred more than 50 bp up- or downstream of the DSB site and

even outside of the GFP coding sequence in GFP+ colonies. These large mutations in-

dicate that resection length and homology search may extend over several hundred base

pairs and that HR-mediated GFP reconstitution may co-occur with other repair mecha-

nisms at the same DSB end in CHO cells.

Given that GFP reconstitution may be accompanied by illegitimate donor plasmid in-

tegrations, we sought to quantify their occurrence. Illegitimate integration events include

donor plasmid knock-ins at chromosomal GFP alleles (Fig. S3.7), as well as random

integrations. Such integration events are considered as undesired by-products of gene

correction, as they introduce unwanted sequences, often from bacterial origin, leading

to possible transgene silencing [217]. We first quantified the total number of gene cor-

rection and illegitimate integration events using primers specific to the GFP sequences

provided by the donor plasmid and required for reconstitution of a functional GFP coding

sequence by HR (Fig. S3.2A). Donor-derived GFP inserts were detected at background

levels in polyclonal GFP- cell populations, as expected for unrepaired GFP sequences,

but they were present at levels slightly above the estimated HR reporter copy number in

polyclonal GFP+ cell populations (Fig. 3.2C, open bars). Next, we quantified the amount

of illegitimate recombination events solely, using donor backbone-specific primers (Figs.

3.2C, closed bars, and S3.2A). For instance, in a polyclonal cell population treated with

negative control siRNA, we observed 1.28 copies of the donor-derived GFP insertion per

chromosomal HR reporter copy, among which 0.37 correspond to illegitimate plasmid

integrations (Fig. 3.2C, siNeg column, open vs. closed bars, respectively). Similar fre-

quencies were also observed in samples depleted in Ku80, Lig3 and Pari. However, we

measured only 0.1 backbone integrations per HR reporter copy in the Rad51 knockdown

samples, in line with the previously reported Rad51-dependent mechanism for illegiti-

mate plasmid integration in CHO cells [141]. We infer that the difference between the

total number of donor-derived insertions and illegitimate integrations corresponds to GFP

gene correction events only. Hence, among the tested siRNA conditions, at least 70%

of GFP inserts are true gene corrections events, while the remaining inserts result from

knock-ins or random integrations. This identifies gene correction as the predominant re-

combination mechanism in various polyclonal GFP+ cell populations. Taken together,

we concluded that this novel chromosomal HR assay primarily detects HR-mediated GFP

gene correction.
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3.4.3 Knockdown of alt-EJ factors reduces HR frequency

We hypothesized that efficient HR repair in CHO cells may be hindered by its competition

with highly active DSB repair pathways, especially alt-EJ pathways. In line with this

hypothesis, alt-EJ factors were found to contribute to plasmid end-joining and random

genomic integration [119, 141]. Moreover, mRNA levels of alt-EJ factors are elevated in

CHO cells compared to those of other DSB repair factors, particularly HR factors (Fig.

S3.8A). To systematically identify possibly rate-limiting or competing activities for HR in

CHO-K1 cells, we transiently knocked down DNA repair factors involved in the various

DSB repair pathways using validated siRNAs (Figs. S3.4 and S3.5). Targeted DSB repair

was subsequently induced by transfecting the GFP-specific G3G7 sgRNA, FokI-dCas9

nuclease, GFP donor and dsRed expression plasmids.

In line with previous assays, the knockdown of the Rad51 recombinase yielded a

decrease in the GFP reconstitution frequency of more than 50% compared to the non-

targeting negative control siRNA (Fig. 3.3A). Depleting the MRN-CtIP complex com-

ponents Nbs1 and CtIP resulted in a moderately lower HR frequency, consistent with the

role of the MRN-CtIP in DSB recognition and initial end resection [8]. Unexpectedly,

knockdown of the Mre11 nuclease, another component of the MRN-CtIP complex, sig-

nificantly increased HR frequency. This implied that MRN-CtIP constituents might be

required at a proper ratio for optimal DSB end processing during HR, and that the knock-

down of Mre11 may restore a stoichiometric balance among MRN components, leading

to improved HR frequency.

As the knockdown of Rad51 did not fully prevent GFP reconstitution, although being

essential for HR, we wondered whether the Rad51 siRNA effect on GFP gene correc-

tion could be enhanced. Indeed, when a second load of Rad51 siRNAs was transfected

together with the G3G7 sgRNA, FokI-dCas9 nuclease, GFP donor and dsRed expres-

sion plasmids, GFP reconstitution was nearly abolished (Fig. 3.3B). Conversely, HR was

increased 2-fold after two Mre11 siRNA transfections, while it was increased 1.4-fold

after a single siRNA transfection. Therefore, double siRNA transfection offers a simple

approach to extend siRNA-mediated effects and to further elevate HR efficiency.
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Figure 3.3: Effect of repair protein knockdowns on GFP reconstitution. (A) CHO-K1
HR reporter cells treated with validated siRNA pools targeting various DNA repair pro-
teins were re-transfected with the G3G7 sgRNA, FokI-dCas9 nuclease, donor and dsRed
expression plasmids. Cells were then analyzed by flow cytometry for GFP fluorescence
reconstitution and the frequency of GFP+ cells among transfected dsRed+ cells was nor-
malized to the frequency obtained with cells treated with negative non-targeting control
siRNA pool (siNeg). (B) Single siRNA transfections were performed as described in
panel A. For double siRNA transfections, the cells were transfected again with the same
siRNA pools together with the G3G7 sgRNA, FokI-dCas9 nuclease, donor and dsRed
expression plasmids. (C and D) The effect of combined knockdown of HR (Rad51), C-
NHEJ (Ku80) and several alt-EJ (Ercc1, Pol theta, Pold3, Lig3) factors was tested either
using a double (C) or a single (D) siRNA transfection using the most efficient singu-
lar siRNA from each siRNA pool. Single protein knockdowns were complemented with
negative siRNA to maintain a constant total siRNA amount. The frequency of GFP+ cells
among the transfected dsRed+ cells are shown relative to the non-specific siNeg negative
control (n ≥ 2, error bars represent s.e.m.). For Figure 3.3C and 3.3D, brackets indicate
one-to-one comparison performed in addition to the statistics done against siNeg. P val-
ues (* P < 0.05, ** P < 0.01) were calculated using the two-tailed unpaired Student’s
t-test with Benjamini and Hochberg false discovery rate correction.
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Knockdown of C-NHEJ factors did not significantly affect HR frequency. This sug-

gests that C-NHEJ does not substantially compete with HR, in agreement with its overall

low activity in CHO cells [119, 141]. However, depletion of the DNA damage response

(DDR) protein 53BP1 diminished HR frequency. This could be explained by 53BP1’s

ability to protect DSB ends from hyper-resection, which is considered to oppose produc-

tive HR repair [366].

Interestingly, HR reporter cells deficient in alt-EJ factors showed on average 40% re-

duced HR frequency levels. This drop was most significant for the Ercc1, Xpf, Pold3,

Lig1, and Lig3 knockdowns. Pol theta-depleted cells showed also reduced HR frequen-

cies, despite a relatively low and variable siRNA knockdown efficiency (Fig. S3.4). These

data suggest that alt-EJ factors, although generally being considered as HR competitors,

are limiting for – and positively contribute to – efficient HR-mediated gene correction in

CHO cells.

To ascertain that siRNA effects do not result from clone-specific biases, we knocked

down Rad51 and Lig3 in three independent CHO-K1 clones bearing the chromosomal

HR reporter construct at similar copy number. We noticed that deficiency in Rad51 and

Lig3 yielded consistent results between the different HR reporter clones, indicating that

the observed siRNA effects are likely not linked to the particular HR reporter cell line

used (Fig. S3.8B).

Proteins that oppose HR, such as MMR factors and helicases, were also tested for

their effect on HR activity [124]. Knockdown of the MMR factors Msh2 or Mlh1 as well

as the helicases Fbxo18, Recql5 or Wrn exhibited no detectable effect on HR activity

(Fig. 3.3A). However, depletion of the helicase Pari moderately enhanced HR by 1.4-

fold, as seen before (Fig. 3.2A). Depletion of the Blm exonuclease and helicase reduced

HR frequency, which may result from diminished end resection and/or from fewer DSBR

dissolution events (Fig. S3.7).

Given that single C-NHEJ and alt-EJ knockdowns did not elevate HR, we hypothe-

sized that multiple concomitant and possibly redundant repair pathways might prevent ef-

ficient HR-mediated gene correction. To test this hypothesis, we simultaneously knocked

down Ku80, a representative C-NHEJ protein, and various alt-EJ factors in the CHO-K1

HR assay using a double siRNA transfection approach, to inhibit these end-joining path-

ways altogether. Surprisingly, we first noticed that a double siRNA transfection of Ku80,

unlike a single siRNA transfection, led to a weak reduction in the frequency of GFP+
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cells, suggesting that early C-NHEJ factors may play a role in HR in CHO cells (Fig.

3.3C). Second, GFP reconstitution did not increase for all combined C-NHEJ and alt-EJ

knockdown conditions. HR repair was even significantly decreased upon combined Ku80

and Pold3 knockdowns compared to Pold3 knockdown alone (Fig. 3.3C). Similarly, HR

frequency did not increase when Ku70 was knocked down in combination with alt-EJ

factors (data not shown). Overall, we concluded that the knockdown of C-NHEJ or alt-EJ

factors, either alone or in combination, did not increase HR frequency, suggesting the

occurrence of other competing repair pathways and/or insufficient overall HR activity.

3.4.4 Overexpression of rate-limiting alt-EJ factors increases

HR efficiency

Having shown that alt-EJ components may positively contribute to HR, we aimed to

strengthen this finding by overexpressing some of the most HR rate-limiting factors, in

order to reverse the effect elicited by their knockdown. Rad51, Ercc1, Pold3 and Lig3

were selected to be overexpressed, as their knockdown lowered HR frequency the most

(Fig. 3.3A). Although previous studies have already attempted to improve HR by Rad51

overexpression, their results were contrasting or inconclusive, possibly due to variable

Rad51 overexpression levels [310, 316].

To identify the optimal expression level to leverage HR, we transfected the HR re-

porter cells with increasing amounts of Rad51, Ercc1, Pold3 and Lig3 expression plas-

mids. Under these conditions, mRNA levels were increased between 1.3- to 299-fold

on average for the lowest and highest plasmid amounts, respectively, as assessed by RT-

qPCR (Fig. S3.9). Overexpression conditions tended to affect HR in a dose-dependent

manner: lower expression plasmid amounts moderately stimulated HR (with an increase

of up to 1.5-fold for Rad51), while higher expression plasmid amounts decreased HR

(Fig. S3.10A). Hence, the HR frequency upon overexpression of HR rate-limiting fac-

tors seemed to follow an inverse u-shaped curve. Indeed, a non-linear regression model

pooling together all HR rate-limiting factors provided statistical support for such a non-

linear, inverse u-shaped relationship between the amount of protein and the relative HR

frequency (Table S3.5). Further analysis revealed that this inverse u-shaped relationship is

not caused by a change in the relative frequency of dsRed+ transfected cells (Fig. S3.10B,

Table S3.6).
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To exclude that this effect may be non-specific, we used the neomycin resistance pro-

tein as a control, and indeed, its overexpression did not elicit such a dose-dependent in-

crease of HR frequency (Figs. S3.10C and S3.10D). Nevertheless, we cannot rule out a

toxic effect of the highest levels of overexpression of some of these proteins, as we noted a

decrease of dsRed+ cells upon Rad51 and Ercc1 overexpression. Interestingly, Ku70 and

Ku80 overexpression appeared to leverage HR repair at specific doses without affecting

the frequency of dsRed+ cells, implying that unbalanced levels of the two subunits of the

Ku70-Ku80 heterodimer might favor HR rather than C-NHEJ. Cells overexpressing the

dominant-negative Rad51 mutants Rad51-K133R and Rad51-K133A, which are deficient

in ATP hydrolysis and ATP binding, respectively [367], showed reduced HR frequencies

even at the lowest plasmid amount, providing additional evidence that GFP reconstitution

requires Rad51-mediated HR repair. Altogether, moderate overexpression of specific alt-

EJ factors, but not control proteins, tended to stimulate HR in a dose-dependent manner,

in line with alt-EJ factors being one of the bottlenecks for efficient HR-mediated precise

genome editing in CHO cells.

3.4.5 Alt-EJ contribution to HR is cell line independent

We next assessed whether the observed HR dependency on alt-EJ activities could be re-

produced using another CHO cell line. For this purpose, we established a HR assay based

on the adherent CHO-DG44 cell line, a CHO cell line that diverged from the suspension-

adapted CHO-K1 cell line more than 40 years ago, and thus differs genetically [368].

The CHO-DG44 HR assay consists of a non-fluorescent GFP sequence lacking a 215 bp

fragment of the GFP C-terminus coding sequence and the polyA signal and is present at

low copy number (Figs. S3.11A and S3.11B). The GFP deletion is located 270 bp down-

stream of the CRISPR target sites and it shares around 400-500 bp homology on either

side with the donor template. Similarly to the CHO-K1 HR reporter cell line, GFP recon-

stitution in CHO-DG44 cells required co-transfection of G3G7 sgRNA, the FokI-dCas9

nuclease, and GFP donor expression plasmids. This yielded 0.28% and 0.40% of GFP+

cells among all and transfected dsRed+ cells, respectively (Fig. S3.11C).

For HR reporter sequence analysis, we isolated GFP+ and GFP- CHO-DG44 HR re-

porter cell clones following treatment with different siRNAs, to avoid a potential bias

generated by PCR amplification of polyclonal cell populations. Subsequently, the GFP se-

quences of single clones were PCR amplified and sequenced, as performed before. Out of
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32 clones (6x GFP+, 2x GFP- per siRNA condition), 21 yielded single amplicons whose

sequence could be determined, although with variable amplicon sizes (Fig. S3.11D).

This indicated that the clones with non-amplifiable HR reporter sequences may contain

plasmid knock-ins or other CRISPR-mediated large chromosomal rearrangements. As ex-

pected, among eight GFP- clones, none yielded a corrected chromosomal GFP sequence.

However, two clones showed mutations at the CRISPR target site compatible with an alt-

EJ DNA repair mechanism (Fig. S3.11E, Table S3.7). Among the fourteen GFP+ clones,

eight clones displayed only the longer corrected GFP alleles containing the donor-derived

missing GFP sequence, while six clones still contained the shorter GFP deletion sequence

(Fig. S3.11F). Since illegitimate donor integrations do not lead to GFP expression at a

detectable frequency (Fig. S3.11C), we infer that the shorter amplicons are preferentially

PCR amplified when only a fraction of the alleles are corrected. Similar to the CHO-K1

repair junctions, 75% and 100% of the correctly repaired clones displayed the upstream

and downstream PAM donor mutations, respectively. Furthermore, we observed in three

clones that a 800 bp deletion occurred between two direct repeats downstream of the GFP

coding sequence, independently of the repair status of the 270 bp GFP deletion, suggest-

ing a single strand annealing (SSA)-like repair mechanism (Fig. S3.11F, Table S3.7).

Overall, we concluded that this CHO-DG44 assay measures mainly HR, but that large

chromosomal rearrangements occur more frequently than in the CHO-K1 reporter cells.

Knocking down DNA repair factors in CHO-DG44 HR reporter cells had similar ef-

fects on GFP reconstitution as in CHO-K1 cells. As before, the strongest inhibitory effect

on HR frequency occurred upon Rad51 depletion (Figs. S3.11G). Unlike in CHO-K1

cells, knockdown of the MRN-CtIP proteins Mre11, Rad50, and CtIP, but not Nbs1, re-

duced HR frequency (Figs. 3.3A and S3.11G). Thus, there were some different responses

to knockdowns when comparing the two cell lines, which may relate to possible differ-

ences in the levels or activities of their DNA repair factors. However, as seen in CHO-K1

HR reporter cells, knockdown of C-NHEJ factors had little effect, while knockdown of

53BP1 as well as most alt-EJ factors prevented GFP reconstitution. Interestingly, Pol

theta-depleted CHO-DG44 cells showed HR levels similar to the control cells despite an

efficient protein knockdown in this cell line [141]. Altogether, we concluded that the

interconnection between HR and alt-EJ factors is mostly conserved and not limited to a

given reporter cell line or to a particular truncated GFP HR reporter construct. As the

interplay between the repair pathways cannot be explained by a simple competition for

DSB structures, we conclude that Alt-EJ components may rather promote efficient HR.
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3.4.6 Alt-EJ factors do not modulate cell cycle distribution and act

distinctly from the HR pathway

One possible mechanism by which alt-EJ factors could influence HR may be by altering

cell cycle progression. For instance, their knockdown might arrest cells in G1 phase, when

HR is not favored. Based on DNA content analysis, the percentage of control CHO-K1

cells in the G1/G0, S, and G2/M phase was on average 32%, 40%, and 17%, respectively,

and only few cells were apoptotic or polyploid (Fig. S3.12 and data not shown). Rad51

knockdown cells showed an increased proportion of G2 phase as well as of apoptotic cells,

as expected for a repair factor involved in the G2/M checkpoint [369]. While a moderate

increase of G2 phase cells was also detected following Mre11 knockdown, especially

following Mre11 knockdown using the most efficient siRNA (siMre11 1), the cell cycle

distribution was not altered in alt-EJ knockdowns. Hence modulation of the cell cycle

cannot explain the observed contribution of alt-EJ factors to HR repair.

The inhibition of GFP reconstitution by alt-EJ and HR factor knockdowns might result

from partially overlapping or fully distinct alt-EJ and HR repair pathways. While partially

overlapping pathways typically have epistatic interactions, distinct repair pathways often

show additive effects upon combined knockdowns. Combining Rad51 with Pold3 knock-

down further diminished HR activity as compared to the knockdown of Rad51 or Pold3

alone, using both single and double siRNA transfections (Figs. 3.3C and 3.3D). Com-

bined knockdown of Rad51 with other alt-EJ factors such as Ercc1, Pol theta or Lig3

followed the same trend, notably for single siRNA transfections, although the reduction

in HR activity was not statistically significant when compared to Rad51 knockdown alone

(Figs. 3.3C and 3.3D). Thus, the presence of additive effects for siRad51+siPold3 knock-

downs as well as the absence of identifiable epistasis in the other tested conditions suggest

that alt-EJ and HR factors have at least partially independent functions in HR repair.

3.4.7 Alt-EJ factor contribution to HR depends on the nuclease type

and DSB-to-mutation distance

Previous studies have shown that the choice of sgRNA can significantly impact the repair

pathway activities and outcomes following CRISPR-induced DSBs [262, 277]. We thus

tested whether other sgRNAs as well as the CRISPR nuclease type might influence HR
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repair and the interplay between the HR and alt-EJ pathways in CHO-K1 HR reporter

cells. To do so, we combined various GFP-targeting sgRNAs with either the wild-type

Cas9 or the FokI-dCas9 CRISPR nuclease systems. Depending on the DSB location,

these sgRNAs should generate protruding flaps ranging between 17 nt (G7 sgRNA) to 94

nt (G1 sgRNA) during HR (Figs. S3.1 and S3.7, Table S3.8). These different sgRNAs and

nucleases mediated HR repair in around 0.4-1.0% of the cells, irrespective of whether we

used the wild-type Cas9 or Fokl-dCas9 nuclease, although the latter exhibited an overall

lower nuclease activity (Figs. S3.1 and S3.13A). This implies that short 5’ overhanging

DSBs, as generated by FokI-dCas9, are better substrates for HR repair than the blunt-

ended DSBs of wild-type Cas9, as previously noted for long 5’ overhanging DSBs [306,

370].

To assess whether the HR-mediated repair of staggered DSBs introduced by FokI-

dCas9 depends on alt-EJ factors regardless of the sgRNAs used, the G1G5 and G3G7

sgRNA pairs were tested in cells transfected twice with a selection of siRNAs. Overall,

the responses to specific siRNAs were similar using either sgRNA pair, i.e. a strong

reduction in HR frequency for Rad51 and most alt-EJ knockdowns and an increase upon

Mre11 and Pari knockdowns (Figs. S3.13B and S3.13C).

Given that alt-EJ factors appeared to stimulate HR repair from two distinct FokI-

dCas9 DNA cleavage sites, we assessed whether this could reflect a nuclease- and/or

DSB structure-specific effect. Therefore, we compared HR repair induced by the wild-

type Cas9 and G3 sgRNA with the FokI-dCas9 and G1G5 sgRNA. These two nuclease

systems mediate DNA cleavage at the same DNA site but generate either blunt or stag-

gered DSBs, respectively (Fig. S3.1A). Intriguingly, HR repair elicited the wild-type

Cas9 and G3 sgRNA did not rely on alt-EJ factors, unlike FokI-dCas9-mediated staggered

ends (Figs. S3.13C and S3.13D). The response to most other knockdowns remained un-

changed. This indicated that the alt-EJ implication in HR does not depend on the DNA

sequence surrounding the DSB, but that it may rather relate to the nuclease and/or to the

DSB structure.

To further assess whether the HR repair of wild-type Cas9-mediated DSBs depends

on alt-EJ factors in other DSB contexts, the HR reporter cell line was transfected with

two other sgRNAs, namely G1 or G7, and the wild-type Cas9 expression vector. These

sgRNAs target the non-template and template GFP strand, respectively, and introduce

DSBs located at different distances from the GFP deletion (Fig. S3.1A, Table S3.8).
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Using the deletion-proximal G7 sgRNA, knockdown of alt-EJ factors did not impede

GFP reconstitution, as observed with the G3 sgRNA (Fig. S3.13E). Using the deletion-

distal G1 sgRNA, which creates a 94 nt long protruding flap, deficiency of alt-EJ factors

restricted HR frequency to levels similar to those observed from the FokI-dCas9 nuclease

(Figs. S3.13B, S3.13C and S3.13G). Hence, it appears that the distance between the

DSB and mutation site, which correspondingly affects the length of the protruding flap,

modulates the involvement of alt-EJ factors in wild-type Cas9-mediated HR repair.

To better visualize similarities and differences between all tested sgRNA, nuclease and

cell line conditions, we performed a heat map and clustering analysis. This analysis high-

lighted conserved knockdown responses, as observed for instance in Rad51, Mre11 and

Pari (Fig. 3.4A). However, cluster analysis divided the experimental conditions into two

distinct groups, which correlated with the observed HR dependency on alt-EJ factors. The

first group consists of wild-type Cas9 and G3 as well as G7 sgRNA-mediated DSBs which

did not rely on alt-EJ factors for gene correction, or were even antagonized by the alt-EJ

Pol theta factor. The second group comprises all other DSBs which strongly depended on

the alt-EJ activities, e.g. staggered DSBs induced by the FokI-dCas9 with paired sgRNA

G3G7 or blunt-ended DSBs induced by the wild-type Cas9 with G1 sgRNA. We therefore

concluded that alt-EJ contribution to efficient HR repair may be influenced by both the

CRISPR nuclease system as well as by the DSB-to-mutation distance, and that specific

favorable effects – as obtained from Mre11 or Pari knockdown – can be observed across

a wide range of experimental conditions.
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Figure 3.4: siRNA knockdown effects on GFP reconstitution using different sgRNAs,
CRISPR nucleases, and HR reporter cell lines, and amelioration of GFP reconstitution by
HR. The heat map colors indicate a decrease (purple) or increase (green) in GFP recon-
stitution among the transfected dsRed+ cells as a consequence of a specific knockdown
relative to the corresponding siNeg control. G1, G3, G7 sgRNAs were used with the wild-
type Cas9 nuclease, which creates mostly blunt-ended DSBs (abbreviated as B), whereas
the G1G5 and G3G7 sgRNAs were used with the FokI-dCas9 nuclease, which creates 4 nt
5’ staggered DSBs (abbreviated as S). The DSB-to-mutation distance varies and depends
on the sgRNA, as indicated in Figure S3.1A. Stars denote knockdown experiments using
a single siRNA treatment only in CHO-K1 and CHO-DG44 reporter cells (Figs. 3.3A
and S3.11G). The remaining conditions were obtained from double siRNA transfections,
for which the raw data plots are shown in Figs. S3.13B-S3.13F. siMre11 and siMre11 1
indicate transfections using the siRNA pool and the most efficient singular siRNA target-
ing Mre11, respectively. All other samples were treated with siRNA pools. Clustering
analysis uses Manhattan distance metric (NA: not available). (B-C) GFP reconstitution
frequency after transfection of the G3G7 sgRNA, FokI-dCas9 nuclease, donor and dsRed
expression plasmids in the CHO-K1 reporter cell line. The reporter cells were doubly
transfected with siRNA targeting Mre11 and Pari without (B) or with varying amount of
Rad51 expression plasmids (C). Data show frequency of GFP+ cells among the trans-
fected dsRed+ cells expressed relative to siNeg control. For panel C, data is normalized
to the siNeg control without Rad51 overexpression (0 µg). siRNA transfections were per-
formed using the most efficient singular siRNA from each siRNA pool and complemented
with negative siRNA, while overexpression samples were complemented with empty vec-
tor, to keep a constant siRNA and plasmid amount (n ≥ 3, error bars represent s.e.m.). P
values (* P < 0.05, ** P < 0.01) were calculated using the two-tailed unpaired Student’s
t-test with Benjamini and Hochberg false discovery rate correction.
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3.4.8 Counteracting HR rate-limiting steps improves GFP

reconstitution

The identification of various limiting or competing activities that may prevent efficient

GFP reconstitution implies that several bottlenecks need to be removed simultaneously

to ameliorate HR efficiency in CHO cells. In CHO-K1 cells, limited Rad51 and elevated

Mre11 and Pari activities appeared to antagonize productive HR, thus raising the question

of their possible interplay or synergism. While the knockdown of Mre11 or Pari individ-

ually increased the frequency of GFP+ cells by 25-35%, combined knockdowns led to an

additive increase in GFP reconstitution by 60%, thus further optimizing HR activity (Fig.

3.4B). As the rate-limiting activity of HR proteins could also constitute a bottleneck, we

overexpressed Rad51, the most rate-limiting HR factor among all tested conditions, in

combination with Mre11 and Pari knockdowns, to assess GFP reconstitution frequency.

As shown in Figure 3.4C, HR repair efficiency increased up to 75% when combining

Mre11 and Pari knockdown with low to medium Rad51 overexpression, substantiating

the previously described dose-dependent effect of overexpressing rate-limiting HR fac-

tors (Fig. S3.10A). Cells exposed to this optimized HR booster treatment showed no sign

of increased cellular toxicity, with similar frequencies of dsRed+ cells than the control

sample (data not shown). Moreover, the higher HR frequency obtained upon combined

knockdowns and Rad51 overexpression did not increase the illegitimate integration fre-

quency, as based on the occurrence of less than 0.01% of dsRed+GFP+ cells after one

month. This implies that the established tailored treatment specifically increased HR but

not other repair pathways that mediate illegitimate recombination.

3.5 Discussion

The advent of programmable site-specific nucleases has opened up unique opportunities

to simplify HR-mediated precise genome editing, notably in cell lines with low endoge-

nous HR levels. However, the supremacy of DNA repair pathways mediating mutagenic

end-joining repair creates a major bottleneck for precise editing in most cells. In this

study, we investigated the role of alt-EJ factors as potential modulators of HR-mediated

gene correction in CHO cells. To do so, we designed novel chromosomal GFP HR assays

allowing the comparison of the repair of FokI-dCas9 and wild-type Cas9 generated DSBs
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next to GFP loss-of-function deletions. We also assessed the effect of varying the distance

between the CRISPR target sites and the GFP mutation, as this leads to the formation of

protruding non-homologous flaps of variable length during HR repair.

Interestingly, the knockdown of several alt-EJ factors, such as the Ercc1-Xpf endonu-

clease, the Pold3 DNA polymerase as well as the Lig3 DNA ligase, diminished HR in

both CHO-K1 and CHO-DG44 HR assays, contrary to what one would expect from

competing pathways. Furthermore, we observed reduced HR efficiency in alt-EJ factors-

depleted cells when using various sgRNA target sequences and CRISPR nuclease sys-

tems. Taken together, our results imply that efficient HR repair in CHO cells relies on

subsets of alt-EJ factors in specific experimental settings. This evokes the intervention

of non-canonical alt-EJ activities in HR pathways, in addition to their well-established

function in microhomology-driven repair.

These CHO cell-based findings that certain alt-EJ factors may be involved in HR re-

pair may explain or support previous observations made using other model systems. For

instance, Parp1 was observed to mediate gene conversion of the immunoglobulin genes

in chicken cells, besides its well-documented activities in base excision repair and sin-

gle strand break repair [371]. The Ercc1-Xpf endonuclease (Rad1-Rad10 in yeast) was

also associated with removing flap structures during HR and SSA in both yeast and mam-

malian cells [372–374]. Although the Ercc1-Xpf complex is as well a key nuclease during

nucleotide excision repair, no other nucleotide excision repair factor seems to contribute

to alt-EJ and/or HR repair [373]. Moreover, Pold3 is not only critical in break-induced

replication, a HR subpathway at one-ended DSBs, but it may also play a role in gene con-

version in yeast [92]. Finally, Lig1, Lig3 and Xrcc1 may also contribute to the ligation of

DNA ends during HR repair, in addition to their roles in excision and single strand break

repair [375].

Therefore, overall evidence suggests that alt-EJ factors non-canonically engage in pro-

cessing HR intermediates. More specifically, alt-EJ factors may favor the pairing and an-

nealing of short homologous regions, contribute to removing the flaps at both the invading

and non-invading DNA ends, promote strand extension and end ligation using a MMEJ-

like mechanism, until bona fide HR mechanisms can resume (Fig. 3.5, yellow ellipses).

Such an alt-EJ mechanism would make DSB repair more efficient at donor sequences with

short homologies and/or more tolerant to long non-homologous flaps, as seen here for G1

sgRNA-mediated wild-type Cas9 cleavage. These alt-EJ activities may be less important
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for the repair of blunt-ended DSBs with short protruding flaps. Ultimately, the interplay

between alt-EJ and HR factors would favor conservative SDSA and DSBR pathways over

mutagenic end-joining pathways.

short resection long resection

long homologyshort homology

SD-MMEJ

no homology

MMEJ

short homology 1st DSB end

no resection

C-NHEJ

SD-MMEJ

no homology

SDSA

long homologyshort homology 2nd DSB end

DSBR

long homologyshort homology 2nd DSB end

C-NHEJ alt-EJ HR

Rad51

MRN-CtIP resection

5'
3'5'

3'

5'
3'5'

3'

5'
3'5'

3'

wild-type Cas9

5'
3' 5'

3'

5'
3' 5'

3'

5'
3' 5'

3'

FokI-dCas9 Non-canonical alt-EJ activities during DSB repair

DSB recognition and processing

HR intermediate processing

Figure 3.5: Model for alt-EJ factor contribution to HR in CHO cells. Besides the pre-
viously suggested functions of alt-EJ factors in MMEJ and SD-MMEJ end-joining path-
ways, alt-EJ factors may have additional non-canonical alt-EJ activities during DSB repair
which stimulate productive HR repair at two stages. First, at an early stage, alt-EJ factors
may be required to promote DSB recognition and processing at overhanging DSB ends,
notably at staggered FokI-dCas9-induced DSBs (orange ellipses). Alt-EJ factors are not
necessarily required for the repair of blunt DSBs induced by wild-type Cas9 nuclease at
this early stage. Second, at a later stage, DNA repair may involve the alt-EJ family of
DNA repair mechanisms when Rad51 filaments are formed upon long strand resection
but fail to locate long homologous sequences (yellow ellipses). In the presence of a short
microhomology and/or a protruding non-homologous flap, alt-EJ factors may then con-
tribute to end annealing, flap removal, strand extension and end ligation in a MMEJ-like
mechanism to allow DSB repair completion via bona fide HR mechanisms, such as SDSA
and DSBR. In the absence of even a short homology, the DNA polymerase-dependent
SD-MMEJ pathway may duplicate a short sequence to allow for a sufficiently long mi-
crohomologous sequence at the broken DNA end, resulting in the templated insertion of
the duplicated sequence at the repaired junction [116, 141]. PAM and CRISPR cleavage
sites are shown in blue rectangles and red triangles, respectively. Triangles in the DSBR
pathway represent nucleases.
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As such, this model of the alt-EJ contribution to HR does not suffice to explain the

finding that HR repair arising from FokI-dCas9-mediated DSBs consistently depended

on Ercc1-Xpf, Pold3 and Lig3 alt-EJ factors, unlike wild-type Cas9-induced DSBs. This

suggests that alt-EJ factors may have other non-canonical activities at an early DSB repair

stage. They could, for instance, assist in DSB recognition and processing, i.e. before

C-NHEJ, alt-EJ and HR repair pathways diverge (Fig. 3.5, orange ellipses). The alt-EJ

factors may be recruited specifically to FokI-dCas9, but not wild-type Cas9 cleavage sites,

possibly because of the distinct nuclease dynamics and/or DSB end structures elicited by

these two nuclease types.

In contrast to the obligate dimeric FokI-dCas9 nuclease, where weak FokI-FokI inter-

actions between two catalytically dead Cas9 proteins mediate DNA cleavage [275], the

monomeric wild-type Cas9 remains tightly bound to the cleaved DNA sequence. It also

releases the DSB ends asymmetrically, starting with the PAM-distal site of the non-target

DNA strand [264]. We therefore hypothesize that, when compared to wild-type Cas9,

the nuclease dynamic of FokI-dCas9 may facilitate DSB end release, making the cleaved

DNA sequence more readily accessible to DSB repair proteins, and notably to alt-EJ fac-

tors.

In addition to distinct nuclease kinetics, elevated alt-EJ factor recruitment to FokI-

dCas9 cleavage sites could be associated with the DSB end structure. While the wild-type

Cas9 nuclease creates mostly blunt-ended and occasionally 1 nt 5’ overhanging DSBs

[262], the FokI-dCas9 nuclease produces 4 nt 5’ overhanging DSBs. A preference of

alt-EJ factors for 5’ overhanging versus blunt-ended DSBs is consistent with previous ob-

servations that DSBs with ssDNA overhangs seem to attract overall more types of repair

proteins than blunt-ended DSBs [376] and that 5’ overhangs appear to favor alt-EJ repair

at chromosomal DSBs [159]. In support of an augmented alt-EJ activity at DSBs cleaved

by the FokI-dCas9 nuclease, non-HR GFP repair junctions obtained using this nucle-

ase often displayed alt-EJ-specific repair signatures, while they were devoid of C-NHEJ-

characteristic 1-4 bp indel mutations typically observed after wild-type Cas9 cleavage

[377]. Together with the finding that the more specific, albeit less active, FokI-dCas9 in-

duces HR as efficiently as wild-type Cas9, these observations indicate that alt-EJ and HR

pathways may preferentially repair FokI-dCas9-mediated DSBs, while C-NHEJ repair is

mainly active at wild-type Cas9-mediated DSBs. However, it remains to be established

whether the different DSB pathway activities observed between blunt and overhanging

DBSs might also depend on the formation of local secondary structures and thereby in-
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fluence recruitment of repair factors [140]. The proposed involvement of alt-EJ factors in

DSB recognition and processing further suggests that alt-EJ factors may directly or indi-

rectly contribute to the DDR signal, for instance by recruiting upstream signaling factors

[378], and/or that they may assist in dislodging the dCas9 protein from the target DNA

sequence [261].

Consistent with this model, evidence is mounting that a priori competitive DSB repair

pathways may need to be coupled to mediate timely and proper repair, and hence to en-

sure conservation of the genome integrity. For instance, when homologous sequences are

too short to accommodate efficient HR, then alt-EJ factors may direct DSB repair to sal-

vage SD-MMEJ or MMEJ pathways, some of which being Rad51-dependent [116, 141].

Moreover, previous studies proposed that end-joining factors assist in completing HR

events, especially during long-tract gene conversion, by annealing the invading DNA end

to the second non-invading chromosomal end [293, 379]. Coupling of HR and end-joining

pathways is commonly believed to cause mutations and complex inversions/duplications

[379]. However, here we find that a collaboration between alt-EJ and HR activities can be

crucial to achieve more efficient precise genome editing in CHO cells.

DSB repair pathway activity and/or regulation can vary between different cell types

and/or organisms [164, 166, 167]. Indeed, we and others have noticed that CHO cells in-

herently differ in their DSB repair capacities as compared to primary and non-malignant

cells, as they possess high alt-EJ but low C-NHEJ and HR activities [141, 171, 291].

Distinct C-NHEJ mechanisms in CHO cells may possibly explain the unexpected obser-

vation that knockdown of C-NHEJ factors did not alter and under some conditions even

reduced HR activity. Although these findings contrast other studies in mouse and human

cells, they are coherent with other CHO cell-based studies [141, 317–320]. In addition to

their canonical C-NHEJ function, Ku70 and Ku80 are associated with apoptotic signal-

ing, base excision repair and interaction with other repair proteins, such as Parp1 and Wrn

[380, 381]. Whether the lack of increased HR efficiency in C-NHEJ-deficient background

relates to such additional roles of Ku70 and Ku80 and/or to the overall low C-NHEJ ac-

tivity in CHO cells remains to be established.

Another interesting observation is that Mre11 knockdown increased HR frequency in

the CHO-K1 assays. Mre11 together with Rad50 forms the heterotetramer core of the

MRN-CtIP complex – a pivotal complex responsible for tethering broken ends as well as

initiating end resection [8]. Therefore, Mre11 knockdown is expected to block initial end
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resection and strongly reduce HR frequency [382], which agrees with the CHO-DG44

model but is inconsistent with the CHO-K1 data. This suggests that a proper ratio of

the MRN subunits might be required for optimal HR activity and that Mre11 may be

expressed at higher levels than other MRN subunits in CHO-K1 cells. Indeed, CHO-K1

RNA sequencing experiments revealed that the mRNA levels of Mre11 are higher than

those of Rad50 and Nbs1. Excess Mre11 protein could sequester Rad50 and Nbs1 proteins

and thereby prevent proper MRN complex formation. This stoichiometric imbalance may

be restored by knocking down Mre11, leading to improved HR activity. In support for this

hypothesis, yeast cells expressing a nuclease-deficient Mre11 mutant were not impaired in

HR [383], unlike Mre11 knockout cells, suggesting that MRN complex formation rather

than Mre11 nuclease activity facilitates HR repair. However, we cannot exclude that

Mre11 knockdown might also affect the stability and localization of other DNA repair

factors, as Mre11 depletion can lead to the co-degradation of Rad50 and Nbs1, as well as

Fancd2, a factor involved in interstrand crosslink repair [384].

Of special interest is the finding that most if not all four GFP reporter allelic copies

underwent concomitant HR-mediated GFP correction in the CHO-K1 cell line. Such

an “all-or-nothing” GFP reconstitution mechanism was not anticipated, given the low

efficiency of HR in CHO cells. One explanation is that cells being in a HR-compatible

state are more likely to deploy HR repair at multiple distinct CRISPR target sites in the

genome, leading to GFP co-conversion. These co-conversions presumably result from

independent repair events and not from one corrected allele acting as donor template for

other unrepaired alleles [385]. Consistently with the frequent co-conversion observed, the

percentage of GFP+ cells did not correlate with the number of HR reporter copies when

using various CHO-K1 HR reporter clones (data not shown).

Overall, this work contributes to revealing the factors governing the tight regulation of

DSB repair pathways. It uncovers alt-EJ factors as a potential bottleneck for efficient pre-

cise genome editing, thus providing novel avenues to more efficient, predictable and less

mutagenic gene correction approaches. This highlights the importance of the functional

characterization of as yet poorly understood alt-EJ DNA repair pathways and deciphering

how they might promote genome stability in CHO and possibly other cancer or immor-

talized cells lines.
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3.6 Supplementary Data
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Figure S3.1: Recognition sites and GFP cleavage efficiency of different sgRNAs and
nuclease systems. (A) Sequence, location, and orientation of the tested sgRNAs targeting
the GFP sequence of the CHO-K1 HR reporter construct. All listed sgRNAs can be used
individually with the wild-type Cas9 nuclease or in combination (sgRNA G1 with sgRNA
G5 as depicted with orange arrows or sgRNA G3 with sgRNA G7 as pastel pink arrows)
with the FokI-dCas9 nuclease [275]. PAM sites are indicated by blue color-lettered bases.
Predicted CRISPR cleavage sites are marked with red (wild-type Cas9), orange (G1G5
sgRNA + FokI-dCas9) or pastel pink (G3G7 sgRNA + FokI-dCas9) triangles. Caption
continued next page. 72



Figure S3.1: The AflII recognition and cleavage sites are shown in grey letters and trian-
gles, respectively. GFP truncation results from two in-frame stop codons (yellow boxes)
and a 101 bp GFP deletion (red), and is used as chromosomal HR reporter. The indicated
black lines denote the distance in base pairs between the GFP deletion start site and the
predicted sgRNA cleavage sites (upstream) and as well as the additional 9 bp mismatch
arising from the stop codon insertions (downstream). (B) Detailed view of the donor se-
quences used to repair different sgRNA-induced DSBs. The two silent PAM mutations
are shown in purple (Donor Mutation 1 and Donor Mutation 2) and the portion of the
GFP sequence required to correct the GFP deletion in the HR reporter is depicted in dark
green (GFP insert). (C-D) CRISPR cleavage efficiency was assessed by flow cytome-
try analysis of CHO-DG44 cells bearing functional chromosomal GFP coding sequences
following the transfection of the indicated sgRNA and nuclease expression plasmids. It
was quantified as the frequency of loss-of-function GFP mutations among the entire cell
population (C) or among the transfected dsRed+ cells only (D) (n=1 or n=2, error bars
represent s.e.m.).
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Figure S3.2: Detection and quantification of repaired and unrepaired GFP sequences.
(A) End-point and qPCR primer strategies used to amplify the GFP coding sequence
of the HR reporter (GFP Junction amplicon, as generated using the GFP Junction F
and GFP Junction R primers) and to quantify total donor plasmid integration plus
proper GFP correction events (GFP Insertion primer pair), donor plasmid integra-
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GFP coding sequence of polyclonal cell populations sorted to display (GFP+) or not
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and GFP Junction R primers), as shown in panel A. PCR products were digested with-
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untreated CHO-K1 HR reporter was estimated by qPCR using the GFP Deletion primer
pair, as depicted in panel A. Repair protein knockdown was performed using siRNA pools.
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Figure S3.3: Assessment of GFP reconstitution in CHO-K1 HR reporter and parental
CHO-K1 cells. Flow cytometry profiles and microscopy images represent GFP reconsti-
tution in either HR reporter construct-containing cells (HR reporter) or parental CHO-K1
cells transfected with different combinations of the GFP-specific G3G7 sgRNA, the FokI-
dCas9 nuclease, and the GFP donor expression plasmids, as indicated (Scale bar 300 µm).
A co-transfected dsRed expression plasmid serves as transfection control. Flow cytometry
profiles show GFP expression among the transfected dsRed+ cells only.
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Figure S3.4: siRNA knockdown effect on target mRNA level. siRNA knockdown ef-
ficiency of siRNA pools as quantified by RT-qPCR with target-specific primers. Data
represent mRNA levels of indicated siRNA-treated cells relative to those of siNeg-treated
control cells. Black points show data from independent experiments, whereas bars depict
mean values (n ≥ 2). siRNA pools targeting Rad50, DNA-PKcs, Lig4, Xrcc4, Rad52,
Rtel1, and Keap1 were excluded from further knockdown assays, as they did not reduce
their target mRNA level by 50% in CHO-K1 cells and/or yielded inconsistent inhibitory
effects (dark grey bars), whereas the most efficient Pol theta-targeting siRNA and/or the
siRNA pool were used in subsequent assays (Fig. S3.5).

76



●●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Rad51

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●

●●

●

●

12

3
3x

12

3
3x

12

3
3x

12

3
3x

12

3
3x

12

3
3x

12

3
3x

12

3
3x

12

3
3x

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Mre11

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●

●

●

●

●

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

● ●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

53BP1

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

● ● ●
●

●

1 2
3
3x 1 2

3
3x 1 2

3
3x 1 2

3
3x 1 2

3
3x 1 2

3
3x 1 2

3
3x 1 2

3
3x 1 2

3
3x

●
●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Ku70

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

● ●
●

● ●
1

2

3 3x 1
2

3 3x 1
2

3 3x 1
2

3 3x 1
2

3 3x 1
2

3 3x 1
2

3 3x 1
2

3 3x 1
2

3 3x
●● ●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Ku80

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●
●● ●

●

12 3
3x

12 3
3x

12 3
3x

12 3
3x

12 3
3x

12 3
3x

12 3
3x

12 3
3x

12 3
3x

● ●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Xrcc4

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●

● ●

●

●
1 2

3

3x

1 2

3

3x

1 2

3

3x

1 2

3

3x

1 2

3

3x

1 2

3

3x

1 2

3

3x

1 2

3

3x

1 2

3

3x

●●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Ercc1

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

● ●●
●

●
12

3
3x 12
3
3x 12
3
3x 12
3
3x 12
3
3x 12
3
3x 12
3
3x 12
3
3x 12
3
3x

●

●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Poltheta

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

● ●

●
●

●
1

2
3

3x 1
2

3

3x 1
2

3

3x 1
2

3

3x 1
2

3

3x 1
2

3

3x 1
2

3

3x 1
2

3

3x 1
2

3

3x

●

● ●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Pold3

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●
●

● ●
● 1
2 3
3x 1
2 3
3x 1
2 3
3x 1
2 3
3x 1
2 3
3x 1
2 3
3x 1
2 3
3x 1
2 3
3x 1
2 3
3x

●
●

●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Lig1

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●●
● ●●

12 33x12 33x12 33x12 33x12 33x12 33x12 33x12 33x12 33x

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Lig3

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●

●

●

●

●

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

1

2

3

3x

●

●

● ●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Pari

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●●

●

● ●

1

2

3 3x1

2

3 3x1

2

3 3x1

2

3 3x1

2

3 3x1

2

3 3x1

2

3 3x1

2

3 3x1

2

3 3x

●

●
●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0

0.5

1.0

1.5

2.0

Blm

relative mRNA level

 r
el

at
iv

e 
G

F
P

+
 fr

eq
ue

nc
y

●
●

●
●●

1

2
33x

1

2
33x

1

2
33x

1

2
33x

1

2
33x

1

2
33x

1

2
33x

1

2
33x

1

2
33x

Figure S3.5: Deconvolution of siRNA pools. Single siRNAs (labeled 1, 2, 3, open cir-
cles) were assessed for their individual knockdown efficiency by target mRNA RT-qPCR
quantification and for their effect on GFP reconstitution by flow cytometry in comparison
to their corresponding three siRNA pools (3x, closed circles). siRNAs were used at 33
nM each for the siRNA pool and at 100 nM for single siRNA assays (n=1 or n=2, error
bars represent s.e.m.).

77



G
FP

- 
(n

=
2

4
)

G
FP

+
 (

n
=

8
8

)

DSB

75% A;25% C 100% C

GFP deletion

Figure S3.6: Sequence alignment of the chromosomal GFP coding sequence of GFP- or
GFP+ sorted cells. GFP coding sequence products of GFP- and GFP+ sorted CHO-K1
HR reporter cells were amplified using primers located outside of the homology arms
(Fig. S3.2A), cloned into plasmid vectors, transformed into bacteria, and individual bac-
terial colonies were Sanger sequenced. A total of 116 sequences were analyzed, of which
24 GFP- and 88 GFP+ sequences are shown. Four sequences with large genomic rear-
rangements are not included in this alignment but listed in Table S3.4. Donor-derived
PAM mutations are marked with red (C to A substitution, Donor Mutation 1) and blue
bars (G to C substitution, Donor Mutation 2). siRNA pools were used for repair protein
knockdown.
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Figure S3.8: Repair protein gene expression in CHO-K1 cells and HR assay clonal re-
producibility. (A) Boxplot showing mRNA expression levels of repair protein-encoding
genes categorized by DNA repair pathway or function. mRNA expression is shown as
log2 of the transcripts’ read number per kilobase million (TPM) from a CHO-K1 RNA
sequencing assay. The mRNAs of the following proteins were considered for analysis:
53BP1, Rif1, Rev7, Ku70, Ku80, DNA-PKcs, Lig4, Xrcc4 for C-NHEJ-associated activ-
ities; Mre11, Rad50, Nbs1, CtIP are grouped under the term MRN-CtIP for the strand
resection functions involved in HR and alt-EJ pathways; Rad51, Brca1, Brca2, Rad51B,
Rad51C, Rad51D, Xrcc2, Xrcc3, Rad54 for HR-involved activities, and Parp1, Ercc1,
Xpf, Pol theta, Pold3, Lig1, Lig3, Xrcc1, Rad52 for alt-EJ pathways. Activities that may
antagonize homology-directed repair mechanisms, such as the Msh2 and Mlh1 mismatch
repair factors, as well as the Blm, Wrn, Fbxo18, Recql5, Rtel, Keap1, Pari helicases are
grouped under the term Antagonists. (B) Effect of Rad51 and Lig3 knockdown on GFP
reconstitution of three independent CHO-K1 HR reporter cell lines containing compara-
ble copy numbers of the chromosomal HR reporter PB transposon. Knockdown of Rad51
and Lig3 was performed using siRNA pools. Clone1 was selected for subsequent exper-
iments. Data shows GFP reconstitution frequency among the transfected dsRed+ cells
from a single experiment.
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Figure S3.9: mRNA levels of FokI-dCas9 nuclease and overexpressed DNA repair path-
way proteins. 0.3 µg, 1 µg, 2 µg, 3 µg, 5 µg or 10 µg DNA repair protein expression
plasmids, as indicated, were co-transfected with the G3G7 sgRNA, FokI-dCas9 nuclease,
donor, and dsRed expression plasmids. RNA was collected 24h after the transfection and
mRNA levels were analyzed by RT-qPCR. (A) Graphs show relative mRNA expression of
the DNA repair protein (closed circles) and FokI-dCas9 nuclease (grey crosses) separately
per repair protein. (B) Protein (left) and FokI-dCas9 (right) mRNA expression data, as
shown in A, were pooled together to calculate the average increase in mRNA expression
for each DNA plasmid amount (written above each boxplot). Data are shown relative to
the empty vector control (n=1).
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Figure S3.10: Overexpression of rate-limiting HR factors. GFP and dsRed expression
was quantified by flow cytometry after the transfection of the indicated DNA repair pro-
tein and nuclease expression plasmids, as in Figure S3.9. Graphs show HR frequency as
the proportion of GFP+ cells in response to the ectopic expression of HR rate-limiting fac-
tors (A) or control proteins (C), as well as the corresponding frequency of dsRed+ cells,
as a proxy for the transfection efficiency and cell survival (B and D). The graphs show
the frequency of GFP+ cells among the transfected dsRed+ cells (A and C) or frequency
of dsRed+ cells (B and D) expressed relative to cells transfected with an empty vector
control (n ≥ 3, error bars represent s.e.m.). P values (* P < 0.05, ** P < 0.01) were cal-
culated using the two-tailed unpaired Student’s t-test with Benjamini and Hochberg false
discovery rate correction.
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Figure S3.11: Caption on next page.
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Figure S3.11: Characterization of the CHO-DG44 HR reporter cell line and analysis of
siRNA knockdown effect on GFP reconstitution. (A) Copy number qPCR analysis of
the number of integrated PB transposons per diploid CHO-DG44 genome. (B) Scheme
of the HR assay developed in the adherent CHO-DG44 cell line. This assay shows a
characteristic 215 bp frame-shift deletion (in red) within the GFP coding sequence and
shares homology to the GFP donor plasmid (horizontal bracket lines). Upon DSBs in-
duced by CRISPR nuclease, HR-mediated repair can be used to insert the missing GFP
sequence leading to the reconstitution of GFP expression. The CRISPR target sites and
donor plasmid are identical to those depicted in Figure 3.1A. (C) The CHO-DG44 HR
reporter cells were co-transfected with G3G7 sgRNA, FokI-dCas9 nuclease, GFP donor
and dsRed expression plasmids, or lacking one of these plasmids. Flow cytometry pro-
files show the GFP fluorescence of transfected dsRed+ cells only (Scale bar 300 µm).
(D) GFP+ and GFP- CHO-DG44 cell clones were isolated after transfection with differ-
ent siRNA pools and G3G7 sgRNA, FokI-dCas9 nuclease, donor and dsRed expression
plasmids, and they were analyzed for their GFP sequences using PCR primers hybridizing
to sequences located outside of the GFP donor homology arms (Fig. S3.2A). Expected
amplicon sizes for repaired (2.7kb) and unrepaired (2.5kb) GFP sequences are marked
with blue and red arrows, respectively. Clone siNeg 1 showed a mix of two sequences
and was excluded from sequencing analysis. (E) Alignment of the GFP coding sequence
of GFP- clones, with clone siXrcc4 7 showing a 1000 bp deletion. Detailed repair junc-
tion sequence analysis is shown in Table S3.7. (F) Sequence alignment of 14 analyzed
repair products of GFP+ clones, as a comparison to the wild-type GFP sequence. The red
and blue lines show upstream and downstream donor-derived PAM mutation, respectively
(Donor Mutation 1 and 2). Four clones containing large rearrangements were detected:
three GFP+ clones (siXrcc4 4, siXrcc4 5, siLig3 5) deleted the intervening sequence be-
tween two direct 215 bp repeats (blue arrows) downstream of the GFP CDS and one clone
(siNeg 5) had a 500 bp insertion, which contained fragments derived from the donor plas-
mid backbone (yellow) and GFP sequence. SD-MMEJ MH1 and MH2 microhomologies
bracketing the inserted sequences are represented as orange arrows. For detailed repair
junction analysis, see Table S3.7. (G) Flow cytometric analysis of GFP and dsRed fluo-
rescence of CHO-DG44 HR reporter cells treated with the indicated siRNA pools, G3G7
sgRNA, FokI-dCas9 nuclease, donor, and dsRed expression plasmids. All tested siRNA
pools were validated previously to reduce target mRNA level by at least 50% in CHO-
DG44 cells [141]. Values represent the frequency of GFP+ cells among the transfected
dsRed+ cells, expressed relative to siNeg-treated control cells (n ≥ 3, error bars represent
s.e.m.). P values (* P < 0.05, ** P < 0.01) were calculated using the two-tailed unpaired
Student’s t-test with Benjamini and Hochberg false discovery rate correction.
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Figure S3.12: Effect of siRNA-mediated knockdowns on cell cycle distribution. Cy-
cle distribution of siRNA-treated CHO-K1 reporter cells was assessed by flow cytometry
using the Watson Pragmatic algorithm to determine G1/G0, S, G2/M, apoptotic and poly-
ploid cell cycle phases. Data are normalized to cognate siNeg control values. siMre11
and siMre11 1 indicate transfections using the siRNA pool and the most efficient singular
siRNA targeting Mre11, respectively. All other samples were treated with siRNA pools
(n = 3, error bars represent s.e.m.).
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B FokI-dCas9 + G3G7 sgRNA
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Figure S3.13: Caption on next page.
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Figure S3.13: Comparison of different sgRNAs and nuclease systems DNA cleavage
products relative to DNA repair knockdowns in the GFP reconstitution assay. (A) CHO-
K1 reporter cells were transfected with distinct sgRNA (G1, G3, G7, G1G5, G3G7) and
nuclease systems (Cas9, FokI-dCas9) and assessed for GFP reconstitution frequency us-
ing flow cytometry. Data show the frequency of GFP+ cells among the entire cell popu-
lation (n ≥ 2, error bars represent s.e.m.). (B-E, G) Effect of siRNA knockdown on GFP
reconstitution for FokI-dCas9 nuclease using G3G7 sgRNA (B) and G1G5 sgRNA (C),
or for wild-type Cas9 nuclease using G3 sgRNA (D), G7 sgRNA (E), and G1 sgRNA
(G). (F) Effect of the dominant-negative Rad51-K133A mutant overexpression on GFP
reconstitution using G7 sgRNA and wild-type Cas9. Each plot represents the frequency
of GFP+ cells among the transfected dsRed+ cells, and values were normalized to the
corresponding siNeg control. siMre11 and siMre11 1 samples were transfected using the
siRNA pool and the most efficient singular siRNA targeting Mre11, respectively, while
the other samples were treated with siRNA pools. Data shown in panel B-E and G were
used for heat map and cluster analysis (see Figure 3.4) (n ≥ 2, error bars represent s.e.m.).
P values (* P < 0.05, ** P < 0.01) were calculated using the two-tailed unpaired Student’s
t-test with Benjamini and Hochberg false discovery rate correction.
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Table S3.1: siRNA target sequences.
 
 

                                                
1 siRNA sequences not listed here were published previously (Kostyrko et al., 2017) 

Target gene1 siRNA Sequence (5' - 3') 

Rif1 
siRif1_1 AGA GUC CAU UGC AUA UAA A 
siRif1_2 UGA UGA GCA UGC UGA AAC A 
siRif1_3 UGC UAC UAC UGG UGA UUU A 

Rev7 
siRev7_1 AAA CCA UGA CGU CGG AUA U 
siRev7_2 GAA CGA UGU GGA GAA GGU A 
siRev7_3 GAG CGA GCU CAU AAA CAC A 

Msh2 
siMsh2_1 GAU GCA GUC UAC AUU AAU A 
siMsh2_2 AAA GGA GAA CAG AUG AAU A 
siMsh2_3 GAA CAG AAU AGA AGA AAG A 

Mlh1 
siMlh1_1 ACA CAC ACC CAU UCU UAU A 
siMlh1_2 AAA UCC AAG UGA AGA GUA U 
siMlh1_3 GCA GCU GCC UCA AGU CAG A 

Fbxo18 
siFbxo18_1 AGU ACC AGC UGA AGA AGA A 
siFbxo18_2 GAA GAG GCA UAC CAA AUG A 
siFbxo18_3 CUU CUA CCC UGG UCA AGU A 

Recql5 
siRecql5_1 GAA AGU CUU UGG GUU UGA U 
siRecql5_2 GGC UGA UAA AGG GCU GUU A 
siRecql5_3 UUG UUG CGA CCA UCA GUU U  

Blm 
siBlm_1 UAC AGA CUG UGA CGA CAA A 
siBlm_2 AAG CUG ACU UCC UUU GAU A 
siBlm_3 ACA UGC UGC UUC AGU AAA U 

Wrn 
siWrn_1 ACA GAG UUG CAG UGA UUC A 
siWrn_2 GGC AGG UGU UGG AAU UGA A 
siWrn_3 UUA GCA AAU UUG GGU GAU A 

Rtel 
siRtel_1 GAA GCA CAC UCU AUU UAA A 
siRtel_2 GGG UUC UGA UGA CUU UGA A 
siRtel_3 AGU GGG AUG UAC AGU AGA A 

Keap1 
siKeap1_1 AGA CUA CCU GGU GCA GAU A 
siKeap1_2 UGA GUG GCG GAU GAU UAC A 
siKeap1_3 UGG AGG UGG UGU CCA UUG A 

Pari 
siPari_1 UAA AGC UGG UGG CAA AUU A 
siPari_3 UGU AGC AAC UUG ACU UCU A 
siPari_3 GGA AAC AGG UGG AUU UAG A 
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Table S3.2: Primer sequences.
 
 

End-point PCR 
Experiment Primer Sequence (5' - 3')1 
Cloning GFP 
gene 
correction 
vector  

HRassay_F1 CTC ACT GTT CTC TCC CTC CG 
HRassay_R1 CCT TAA GAT CAC CCC AGG ATG TTG CCG T 
HRassay_F2 GGT GAT CTT AAG GAC GGC AGC GTG C 
HRassay_R2 TTC TCC GCT CCA TCG TTC AG 

Cloning GFP 
donor plasmids 

G1_F TAC AAG ACa CGC GCC GAG 
G1_R GCG CGt GTC TTG TAG TTG C 
G5_F CTT CAA aGA GGA CGG CAA CA 
G5_R GTC CTC tTT GAA GTC GAT GCC 
G3_F GGC GAC ACa CTG GTG AAC 
G3_R ACC AGt GTG TCG CCC TC 
G7_F AAC ATC CTc GGG CAC AAG 
G7_R CTT GTG CCC gAG GAT GTT G 
GFP_F3 CGC TCA CTG TTC TCT CCC TC 
GFP_R4h TAC TCT GGC TAT GAA CCC TAC C 
GFP_Amut_KpnI_F TAA TGG TAC CTG GTG AGC AAG GGC GAG 
GFP_Amut_R  TCT CCG CTC CAT CGT TCA GA 

Analysis GFP 
repair junctions 

GFP_Junction_F CGT TCC CAA AGT CCT CCT GT 
GFP_Junction_R1 AAT CCG TCG CTG TGC ATT TAG G 
GFP_Junction_R2 GTG AGG CGT GCT TGT CAA TG 

Cloning 
overexpression 
plasmids 

Rad51_NcoI_F TAA GCA CCA TGG CTA TGC AGA TGC AGC TT 
Rad51_XbaI_R TAC GGT TCT AGA GAA GAA GCC CAG AGA GCA GTC 
Ercc1_NcoI_F TAT GCA CCA TGG ACC TTG GGA AAG ACG AG 
Ercc1_XbaI_R TAC GCA TCT AGA GCA GCC TGG AAA ATG CTT TAT 
Pold3_BsaI_F TAA GCA GGT CTC CCA TGG CGG AAC AGC TGT ATC 
Pold3_SpeI_R TAA GCA ACT AGT GTC TTC TCT GTG ACC ACT CCA 
Lig3_BspHI_F TAG GCA TCA TGA CTT TGG CTT TCA AGA TCC T 
Lig3_XbaI_R TAA GCA TCT AGA GAA CGT GAG GAC AGC TCA AAG 
Rad51_K133A_F CTG GGg ccA CAC AGA TCT GTC ATA CAT T 
Rad51_K133A_R TGT GTg gcC CCA GTT CGG AAT TCT CC 
Rad51_K133R_F CTG GGA gGA CAC AGA TCT GTC ATA CAT T 
Rad51_K133R_R TGT GTC cTC CCA GTT CGG AAT TCT 
Neomycin_HindIII_F TAGGTCAAGCTTACCGCCACCATGATTGAACAAGATGGA 
Neomycin_XbaI_R TAAGCGTCTAGATCAGAAGAACTCGTCAA 
Ku70_PciI_F AAA CCA ACA TGT CAG GGT GGG AAT C 
Ku70_SpeI_R TTT ACT AGT CAG TTC TTC TGG AAG TG 
Ku80_BspMI_F TAA GAC ACC TGC GCA ACA TGG CGT GGT CCG CTA 
Ku80_XbaI_R TAC GGT TCT AGA TGG GGT GAT TTG CTC CTG AGC 

qPCR and RT-qPCR 
Experiment Primer Sequence (5' - 3') 
HR reporter 
copy number2 

Puromycin_F CCT CTG AGC TAT TCC AGA AGT 
Puromycin_R GCT TGT ACT CGG TCA TGG G 
B2M_F ACC ACT CTG AAG GAG CCC A 
B2M_R TTG ACA CAG ATA GAG CTT CC 
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Table S3.2: Continued

Donor plasmid 
integration2 

GFP_Insert_F AGA TCC GCC ACA ACA TCG AG 
GFP_Insert_R GGG TGC TCA GGT AGT GGT TG 
Donor_Backbone_F TCG GGG CTG GCT TAA CTA TG 
Donor_Backbone_R GCC TGA TGC GGT ATT TTC TCC  

Unrepaired 
GFP deletion2 

GFP_Deletion_F GGT GAT CTT AAG GAC GGC AG 
GFP_Deletion_R CGC TTC TCG TTG GGG TCT TT 

siRNA 
knockdown 
and protein 
overexpression 

B2M_RTqPCR_F GAG TTT ACA CCC ACT GCG AC 
B2M_RTqPCR_R CAT GTC TCG TTC CCA GGT GA 
53BP1_F TCT CGA CAC CTT CCC AAT CT 
53BP1_R GCT ATT ATT GTC TCC TTG CTC 
Rif1_F GCC CCA CTT TAA CTG AAA ACC C 
Rif1_R CAG TTT TCC ACG GCA CCT TG 
Rev7_R GCT TCA CTG CGT CAA ACC AC 
Rev7_F GAC AGC AGG GAG TCG GAA C 
Ku70_F TCC AGC TTG TCT TCC TCC 
Ku70_R TTC GCT TTA CAT ACA GGA GTG 
Ku80_F CCC TGA TTG TGT GCA TGG AT 
Ku80_R GTT GAT CTT GGC TGA ATG GG 
DNA-PKcs_F CAT GAA TCA CAT TTC CTC CAG 
DNA-PKcs_R GTC ATC AGC AGA TAA TCC CAA 
Lig4_F GCA GAA AAG ATC AGG CAC TTT 
Lig4_R TGC TGG GTA AAA AGA GTC TGT 
Xrcc4_F TTC TTG GGA GGA AAC AGT GG 
Xrcc4_R CCA TAG CCA TGT CAT CAG CT 
Rad51_F CGG TTA GAG CAA TGT GGC A  
Rad51_R ACG GTG TAA CGA GAT TGG C  
Mre11_F TTC AGG CAT AGG GAG CAA A  
Mre11_R CTC TGA GTG TCG TTC CTT CC 
Rad50_F GGG ACA AGA AGA GTG GAC TGG  
Rad50_R GCT CGT TCT TCA CAT TCC TCA 
Nbs1_F ATC CAG CAA TGT CCT CAT CC 
Nbs1_R AGA TGG ATG CTC CTT GCT TT  
CtIP_F TGA GCT TGC ATC AGT TCT TCA  
CtIP_R GTC AAA GGG CAC ATC TTG G 
Parp1_F AGA AGG GAA AGG ACA AGG AC 
Parp1_R CAC TGG TGG AAC ATG CTT TC 
Ercc1_F AGA CGG TGA AAA CGG GAG C 
Ercc1_R GTC CCA GCA CAT AGT CAG G 
Xpf_F ACA AGG TGG TAT TAT ATT CGC 
Xpf_R ATG ATC CTG TGT GCT CTG TA 
Poltheta_F ACT TCT ATG AAA AGG GTG GCA 
Poltheta_R CCA TTT GTC GAT GCT GTC TG 
Pold3_F ACC CAA GAC ACC AAC AAG GA 
Pold3_R TCA CAT TCC CCT TTC CTG GT 
Lig1_F GTG AAA CAA GAA GAG CCA GG 
Lig1_R GGC ATC TTC AAT GGG GTG G 
Lig3_F GCT ACA ATA CAA AGA CCC AGA 
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Table S3.2: Continued

Lig3_R AAC ACT CTT AAC GAC TCC CG 
Xrcc1_F GGG ACG AGA GGA GGA AGC 
Xrcc1_R CCT GGG CTG TGA TAA CGA AT 
Rad52_F GCC AGA AGG TGT GTT ATA TTG 
Rad52_R ATT CTG CTG GGT GAT GGA GT 
Msh2_F CAA AAC TGC TCA AGG ACA AAG 
Msh2_R CCT CAA CAA AAG TCT CTA CTA 
Mlh1_F AGG ACG TGG AGA TGT TGG AG 
Mlh1_R CTT TCT GGG GTT GCT TGG AC 
Fbxo18_F CAG CTA ACA CAT GAA CAA CAG C 
Fbxo18_R AGA AAC CTG CTC TGA GAC CAC 
Recql5_F CCT GAA GGC TCT TGG ACA G 
Recql5_R CCT TTA GCC CTG CGT GGT AA 
Blm_F GAA ATG CCT GCA AAG GAG CC 
Blm_R CCA TCA CAC GAA TAA GCT GCT G 
Wrn_F TGT GTA TGT CTG AGA GCA AAT GT 
Wrn_R CAA AAT CCC GTA GAA GTT TCC AC 
Rtel_F GGC TTC TCT TAC CTG CCT CTT 
Rtel_R TCT TCA AAC TGC TGC TTG TGG 
Keap1_F CGA TGG CAC TAA CCG ACT GA 
Keap1_R GTA CAG CAC ACA GAC CCC AG 
Pari_F TGA AAG TGT GAA AGT GGT TGA CC 
Pari_R ACA GAA AAT CCC GTA GTT GGC T 
Neomycin_F GAC CAC CAA GCG AAA CAT CG 
Neomycin_R CCC TGA TGC TCT TCG TCC AG 
FokI-dCas9_F AAT TCC GTT GGA TGG GCT GT 
FokI-dCas9_R TCT GCC GTT TCG CCA CTA TC 

 

1 Lower case letters indicate mismatches to target sequence 
2 Location of primers is depicted in detail in Supplementary Figure S3A 

                                                

92



Table S3.3: Plasmids used in this study.

 
Plasmid name Description Reference 

wild-type Cas9 

[Addgene #43861] 

Expresses mammalian codon optimized Cas9 

nuclease 

(Fu et al., 

2013) 

FokI-dCas9 

[Addgene #52970] 

Expresses Fok1 nuclease domain fused to 

catalytically inactive Cas9 DNA-binding domain in 

mammalian cells 

(Guilinger et 

al., 2014) 

JG phU6-G1-

sgRNA 

single G1 sgRNA expression vector targeting GFP 

sequence 

(Guilinger et 

al., 2014) 

JG phU6-G3-

sgRNA 

single G3 sgRNA expression vector targeting GFP 

sequence 

(Guilinger et 

al., 2014) 

JG phU6-G7-

sgRNA 

single G7 sgRNA expression vector targeting GFP 

sequence 

(Guilinger et 

al., 2014) 

JG pUC19 double-

hU6-sgRNA-

G1&G5 

double G1&G5 sgRNA expression vector targeting 

GFP sequence 

(Guilinger et 

al., 2014) 

JG pUC19 double-

hU6-sgRNA-

G3&G7 

double G3&G7 sgRNA expression vector targeting 

GFP sequence 

(Guilinger et 

al., 2014) 

pCMV-DsRed-

Express 
dsRed expressing transfection control plasmid Clonetech 

pCS2+U5V5PBU3 PiggyBac transposase expression vector 
(Ley et al., 

2013) 

pITR_SV40Puro-

pGAPDHGFP_ITR 

PiggyBac transposon containing a Puromycin and 

GFP gene cassettes 

(Ley et al., 

2013) 

pHR-GFP-101del 
HR GFP assay containing a GFP loss-of-function 

101 bp deletion 
This study 

pUC19-G1G5-

Amut 

Donor plasmid containing two silent mutations in 

the PAM site for G1&G5 sgRNA 
This study 

pUC19-G3G7-

Amut 

Donor plasmid containing two silent mutations in 

the PAM site for G3&G7 sgRNA 
This study 

pGapdh-GFP 
Overexpression cloning plasmid containing a strong 

GAPDH promoter upstream of the GFP sequence  

(Le Fourn et 

al., 2014) 

pGapdh-

emptyVector 
Overexpression control plasmid; devoid of GFP This study 

pGapdh-CgRad51, 

pGapdh-CgErcc1,  

pGapdh-CgPold3,  

pGapdh-CgLig3,  

pGapdh-Neomycin,  

pGapdh-CgKu70,  

pGapdh-CgKu80 

Overexpression plasmids; GFP sequence of 

pGadph-GFP was replaced with Cricetulus griseus 

(Cg) Rad51, Ercc1, Pold3, Lig3, Neomycin, Ku70 or 

Ku80 

This study 

pGapdh-CgRad51-

K133A 

Overexpression plasmid expressing the dominant-

negative CgRad51-K133A mutant deficient in ATP 

binding 

This study 

pGapdh-CgRad51-

K133R 

Overexpression plasmid expressing the dominant-

negative CgRad51-K133R mutant deficient in ATP 

hydrolysis 

This study 
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Table S3.5: Estimated coefficients of non-linear model testing the relationship between
the amount of protein and the relative HR frequency for HR rate-limiting factors.

 

Supplementary Table S5. Estimated coefficients of non-linear model testing the 
relationship between the amount of protein and the relative HR frequency for HR rate-
limiting factors.  
 

Estimated 
Coefficient1 

Point Estimate Standard Error P-value 
(H0: !	 = 	0) 

Significance 
Level2 

!%& 1.085306 0.041569 < 2e-16 *** 

!%' 0.091292 0.028334 0.00163 ** 

!%( -0.012825 0.002821 1.29e-05 *** 

1 Estimated coefficients are derived from the non-linear model )*+,-./*012 = !& + !' ∗
	567)8-*.92 + !( ∗	567)8-*.92( + :2 using the Rad51, Ercc1, Lig3, and Pold3 overexpression 
data shown in Supplementary Figure S10A with a total of 126 observations. The F-Test for 
overall significance gives a p-value of 2.444e-07. 
2 *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05 

                                                

 
 
 
 
 
 
Supplementary Table S6. Estimated coefficients of non-linear model testing the 
relationship between the amount of protein and the transfection efficiency for rate-
limiting HR factors.  
 

Estimated 
Coefficient1 

Point Estimate Standard Error P-value 
(H0:	!	 = 	0) 

Significance 
Level2 

!%& 0.9429529 0.0389288 <2e-16 *** 

!%' -0.0174230 0.0265347 0.513 
 

!%( -0.0007418 0.0026416 0.779 
 

1 Estimated coefficients are derived from the non-linear model 
)*+,-./*;),9<=*>-.89?==.>.*9>@2 = !& + !' ∗ 	567)8-*.92 + !( ∗ 	567)8-*.92( + :2 using the 
Rad51, Ercc1, Lig3, and Pold3 overexpression data shown in Supplementary Figure S10B 
with a total of 126 observations. The F-Test for overall significance gives a p-value of 
0.009807. 
2 *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05 

                                                

 

Table S3.6: Estimated coefficients of non-linear model testing the relationship between
the amount of protein and the relative dsRed+ frequency for rate-limiting HR factors.

 

Supplementary Table S5. Estimated coefficients of non-linear model testing the 
relationship between the amount of protein and the relative HR frequency for HR rate-
limiting factors.  
 

Estimated 
Coefficient1 

Point Estimate Standard Error P-value 
(H0: !	 = 	0) 

Significance 
Level2 

!%& 1.085306 0.041569 < 2e-16 *** 

!%' 0.091292 0.028334 0.00163 ** 

!%( -0.012825 0.002821 1.29e-05 *** 

1 Estimated coefficients are derived from the non-linear model )*+,-./*012 = !& + !' ∗
	567)8-*.92 + !( ∗	567)8-*.92( + :2 using the Rad51, Ercc1, Lig3, and Pold3 overexpression 
data shown in Supplementary Figure S10A with a total of 126 observations. The F-Test for 
overall significance gives a p-value of 2.444e-07. 
2 *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05 

                                                

 
 
 
 
 
 
Supplementary Table S6. Estimated coefficients of non-linear model testing the 
relationship between the amount of protein and the transfection efficiency for rate-
limiting HR factors.  
 

Estimated 
Coefficient1 

Point Estimate Standard Error P-value 
(H0:	!	 = 	0) 

Significance 
Level2 

!%& 0.9429529 0.0389288 <2e-16 *** 

!%' -0.0174230 0.0265347 0.513 
 

!%( -0.0007418 0.0026416 0.779 
 

1 Estimated coefficients are derived from the non-linear model 
)*+,-./*;),9<=*>-.89?==.>.*9>@2 = !& + !' ∗ 	567)8-*.92 + !( ∗ 	567)8-*.92( + :2 using the 
Rad51, Ercc1, Lig3, and Pold3 overexpression data shown in Supplementary Figure S10B 
with a total of 126 observations. The F-Test for overall significance gives a p-value of 
0.009807. 
2 *** p-value < 0.001; ** p-value < 0.01; * p-value < 0.05 
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Chapter 4

Characterization and inactivation of

endogenous retroviruses in

Chinese hamster ovary cells

This chapter is based on a manuscript in preparation entitled “Characterization and in-

activation of endogenous retroviruses in Chinese hamster ovary cells” by Duroy P.O.*,

Bosshard S.*, Schmid-Siegert, E., Neuenschwander, S, Arib G., Lemercier P., Master-

nak J., Roesch L., Buron F., Girod P.A., Xenarios, I., Mermod, N. * equal contribution

I contributed to the genome editing design, generated the CRISPR-Cas9-treated CHO-K1

cells, coordinated the development of the bioinformatic pipelines, prepared the samples

for next-generation sequencing and analyzed the ERV mutations (Figs. 4.3, 4.4, 4.6, S4.1

and S4.3-S4.6 as well as Tables 4.2 and S4.1-S4.8). I also prepared the figures and tables

and wrote the first version of the manuscript.
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4.1 Abstract

Chinese hamster ovary (CHO) cells are the most commonly used protein production cell

host for biopharmaceuticals. These cells are known to have budding type-C endogenous

retroviruses (ERVs) embedded in their genome and to release retroviral-like particles in

the culture supernatant. Although evidence for the infectivity of these particles is missing,

their presence has raised safety concerns. As the genomic origin of these particles remains

unclear, we systematically characterized the type-C ERV elements at the genome, tran-

scriptome and viral particle level. We identified 173 type-C ERV sequences that clustered

into two functionally conserved groups. Interestingly, transcripts from only one type-C

ERV group were full-length with intact open reading frames, and corresponding viral

RNA genomes were loaded into retroviral-like particles, suggesting that this group may

produce functional viruses. Sequence analysis of the genomic RNA from viral particles

indicated that they may result from few expressed ERV sequences. Using CRISPR-Cas9

genome editing, we disrupted the gag gene of the expressed ERV group. Comparison of

CRISPR-derived mutations at the DNA and mRNA level led to the identification of a sin-

gle ERV locus responsible for the release of viral RNA-loaded particles from CHO cells.

Clones bearing a Gag loss-of-function mutation in this particular ERV locus showed a

reduction of viral RNA-containing particles in the cell supernatant by over 250-fold. No-

tably, ERV mutagenesis did not compromise cell growth, cell size or recombinant protein

production. Overall, our study highlights a new strategy to mitigate potential contamina-

tions from CHO endogenous retroviruses during biopharmaceutical manufacturing.
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4.2 Introduction

Contamination of biopharmaceutical products by adventitious agents such as viruses can

interrupt drug supply and thereby imperil patient safety. Although viral contaminations

of biopharmaceuticals are rare, they still occur [334], and mitigating the risk of viral

contaminations in therapeutic protein preparations remains a top priority.

Chinese hamster ovary (CHO) cells are the most widely used mammalian expression

system for biopharmaceutical products. Among others, CHO cells became a preferred

production host due to their superior safety profile compared to other cell lines used for

recombinant protein production. For instance, it was shown that CHO cells possess re-

duced susceptibility to certain viral infections [334]. This includes resistance to infec-

tions elicited by many human as well as murine retroviruses, with some of the latter being

known to infect other mammalian cells [332, 333]. In addition, CHO cells, unlike other

rodent cells, appeared to be unable to produce infective retroviruses that could replicate in

mammalian cells, notably in human cells [333, 354, 386, 387]. However, viral-like parti-

cles (VLPs) have been detected both within CHO cells as well as budding off in the culture

medium [388–392]. The presence of such VLPs raises safety and regulatory concerns, not

only because there is a remaining risk of a possible hamster to human ERV transmission,

but also because they interfere with and reduce the sensitivity of the detection of other

adventitious agents.

These VLPs were detected independently by several laboratories, suggesting that they

result from endogenous retroviruses (ERVs) that stably integrated into the CHO genome,

rather than from an exogenous infection [352]. CHO cells possess two classes of ERVs:

the intracisternal type-A ERVs (IAP), a defective ERV class forming immature particles

in the cisternae of the endoplasmic reticulum [393], and the budding type-C ERVs [352,

354]. Although type-C ERV sequences remain incompletely characterized, a previous

study estimated that approximately 100-300 type-C ERV sequences may be present in

the CHO genome [354]. Some of them seemed to be full-length and actively transcribed

proviruses, such as the ML2G retrovirus [352, 388]. However, the ML2G ERV sequences

described by Lie et al., contain frameshift mutations in each of its gene (Gag, Pol and

Env), indicating that the specific ERV sequence at this locus is not producing any VLP

[352]. Nevertheless, this publication indicated that other members of this type of ERV

sequence are transcribed and produce VLP. The ML2G transcript shares approximately
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64% sequence identity to the murine leukemia virus (MLV) family.

As of today, CHO cells are believed to produce non-infective retroviral particles, as

their infectivity could not be demonstrated. Nevertheless, the risk that at least one of

the uncountable predicted type-C ERV proviruses in the CHO genome is or becomes

infective cannot be excluded. This may happen if epigenetically silenced ERVs become

expressed, as was observed upon some chemical treatments [355], if dysfunctional ERVs

may acquire gain-of-function mutations or if ERVs recombine or trans complement each

other. Such genetic changes are more likely to occur in immortalized cell lines, such as

CHO cells, which have an overall increased genetic instability [368]. Notably, the close

similarity of CHO type-C ERVs to the MLV family, a retrovirus family known to cross the

species barrier and to infect even primate cells [394], further indicates that CHO particles

may have the potential to become pathogenic for humans, as seen for other retroviruses

[395]. Hence strategies to avoid viral contaminations originating from CHO endogenous

sources are highly desirable.

The most promising strategy to efficiently prevent hamster ERV transmission is to

inactivate retroviruses using CRISPR-Cas9-mediated mutagenesis. The programmable

CRISPR-Cas9 RNA-guided nuclease system has already been employed to introduce

DNA double strand breaks (DSBs) into proviral sequences in human and porcine cells

[325, 396]. Imprecise DSB repair may lead to insertions and deletions within the viral

sequences and inhibit viral activity. In a seminal paper, Yang et al. demonstrated that

the CRISPR-Cas9 technology can be used to knock-out all 62 genomic porcine ERV se-

quences resulting in a more than 1000-fold reduction of ERV infectivity [325]. Although

successful, viral inactivation remains technically challenging, due to high cytotoxicity,

frequent genomic rearrangements and low editing efficiency [325, 326]. One explanation

for the reduced editing efficiency of multi-loci sites compared to conventional editing of

single genes might be the sheer number of ERV-like sequences that could serve as re-

pair templates for precise, mutation-free repair, so antagonizing ERV mutagenesis and

promoting chromosomal rearrangements. However, the incomplete characterization of

type-C ERV sequences in CHO cells, as well as the absence of a clear link between the

genomic type-C ERV sequences and viral particles, have hampered the establishment of

a similar ERV inactivation strategy in CHO cells.

Here we sought to characterize in-depth the budding type-C ERV sequences at the

genome, transcriptome and viral particle level using CHO-K1 cells. In contrast to previ-
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ous studies, we identified transcribed type-C ERV group 1 sequences yielding full-length

transcripts with open reading frames, suggesting that this ERV group results in poten-

tially functional retroviruses. Using CRISPR-Cas9 genome editing, we mutated the ex-

pressed group 1 type-C ERV sequences, and showed that specific loss-of-function mu-

tations within the gag gene of a single ERV suffice to decrease the release of functional

viral RNA-loaded particles by more than 250-fold. This indicated that a single ERV locus

is responsible for most type-C viral particles released from CHO cells. Altogether, our

study provides a novel strategy to further improve the safety profile of CHO cells, paving

the way to complete eradication of endogenous viral contaminations in cultures of CHO

cells.

4.3 Material and Methods

Cell culture

Suspension-adapted Chinese hamster ovary (CHO-K1) derived cells were maintained in

serum-free HyClone SFM4CHO medium supplemented with HyClone Cell boost 5 sup-

plement (GE Healthcare), L-glutamine (Gibco), HT supplement (Gibco) and antibiotic-

antimycotic solution (Gibco). CHO cell viability was assessed by Erythrosin B dye

(Sigma-Aldrich) and viable cell density and cell size were quantified using the LUNA-FL

Dual Fluorescence Cell Counter (Logos Biosystems). The cells were cultivated in 50ml

TubeSpin bioreactor tubes (TPP, Switzerland) at 37 ◦C, 5% CO2 in a humidified incubator

with 180 rpm agitation rate and passed every 3-4 days.

Plasmid construction

The mammalian codon-optimized Streptococcus pyogenes Cas9 (SpCas9) nuclease ex-

pression plasmid JDS246 (Addgene plasmid #43861) [360] was used to introduce site-

specific DSBs. The CRISPRseek R package [397] was applied to design single guide

RNA (sgRNA) sequences that target the myristoylation (Myr) or PPYP motifs in the

gag consensus sequence of group 1 type-C ERVs. Among all potential sgRNAs, three

Myr (Myr2, Myr4, Myr8)- and five PPYP (PPYP5, PPYP6, PPYP7, PPYP13, PPYP20)-

specific sgRNA sequences were selected as they mediate DSB cleavage no more than
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25 bp apart from the target motif, and as they are predicted to have high sgRNA ef-

ficiency using various scoring tools (CRISPRseek [397]; Sequence Scan for CRISPR

[398]; sgRNA scorer 1.0 [399]) (Table S4.1). Genome-wide off-target cleavage analysis

for these sgRNA sequences was performed using the CRISPRseek R package using the

CHO-K1 cell genome as reference sequence. SgRNA oligonucleotides were designed

using the Zinc Finger Targeter software support tool [400, 401], and annealed sgRNA

oligonucleotides were subsequently cloned into the mammalian sgRNA expression vec-

tor MLM3636 (Addgene plasmid #43860) as previously described [360]. For sgRNA

sequences lacking a guanine (G) nucleotide at the 5’ end, an additional, non-pairing G

was appended to improve transcription from the sgRNA expression plasmid [370]. All

primers used in this study were purchased from Microsynth AG (Balgach, Switzerland)

and are listed in Tables S4.2-S4.4.

RNA-seq analysis of the cellular CHO mRNA

To complement the genomic CHO ERV characterization, the total cellular mRNA of wild-

type CHO cells was sequenced using Illumina paired-end technology, resulting in a library

of 83 mio reads of size 2x100 bp. This library was mapped with BWA [402] to the

entire CHO-K1 transcriptome (version 2014) extended with six ERV sequences. The

expression level per transcript was computed as the RPKM, normalizing the number of

reads mapping to the specific transcript by the transcript length and the total number of

reads mapping to the annotation to account for different library sizes.

VLP RNA extraction

To characterize viral sequences released within VLPs in the CHO supernatant, total VLP

RNA was extracted from CHO culture supernatants using the Invitrogen PureLink Viral

RNA/DNA mini kit (Thermo Fisher Scientific) according to the manufacturer’s protocol

with some modifications. The supernatants were used freshly prepared, or after only one

freezing and thawing cycle. 500 µl of supernatant were loaded on a Corning Costar Spin-

X column centrifuge tube with 0.22 µm membrane filter and centrifuged at 16000 g for

1 min. Approximately 12.5 units of RNase-free DNase (Macherey-Nagel) were added

to 500 µl of CHO cell culture supernatants, which were incubated for 15 min at 37 ◦C

to digest the residual DNA possibly present. The resulting extracts were then treated as
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described in the PureLink Viral RNA/DNA mini kit protocol. The RNA recovered from

the spin columns was resuspended in 30 µl of RNase-free water, followed by another

DNase treatment using 10 units of RNase-free DNase (Macherey-Nagel) for 30 min at

37 ◦C. After the addition of EDTA at a 5 mM final concentration, a DNase denaturation

step was made by incubating the extracts at 70 ◦C for 15 min. The samples were after-

wards placed on a Microdialysis MF-Millipore Membrane Filter with 0.025 µm pore size

(Merck-Millipore) for 15 min in order to remove salts such as EDTA remaining in the

samples.

RNA-seq analysis of CHO VLPs

VLP RNA sequences from wild-type CHO cells and from clones D12 (treated with Myr2

sgRNA) and E10 (treated with PPYP6 sgRNA) were sequenced using Illumina paired-end

technology, resulting in libraries of 187 mio, 306 mio and 283 mio of size 2x75 bp. Reads

were first checked for sequence quality (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc) before mapping them to 261 ERV sequences using BWA [402].

Expression levels per ERV were computed as the RPKM, normalizing the number of reads

mapping to the specific transcript by the transcript length and the total number of reads

mapping to the annotation to account for different library sizes.

Inactivation of ERV sequences, fluorescent cells enrichment and

single cell isolation

CHO-K1 cells were seeded at 300,000 cells/ml one day prior to transfection. On the day

of transfection, 700,000 cells were electroporated with 3700 ng of CRISPR-Cas9 and

1110 ng of Myr- or PPYP-specific sgRNA expression plasmids using the Neon trans-

fection system (Thermo Fisher Scientific), according to the manufacturer’s instructions.

CRISPR-Cas9 and sgRNA expression plasmids were used at equimolar ratio. 200 ng of

pCMV-DsRed-Express plasmid (Clonetech) was added to each transfection condition as

transfection control. For CRISPR control experiments, the Myr- or PPYP-specific sgRNA

plasmids were substituted with the empty sgRNA expression vector (empty vector con-

trol).

To enrich for transfected and ERV-mutated CHO cells, at least 70,000 cells were bulk-
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sorted for the highest 30-40% of transfected dsRed expressing cell population 48-72h after

transfection using the MoFlo Astrios EQ or FACSAria II cell sorters (Beckman Coulter).

Cells were then briefly centrifuged to exchange medium and expanded. To isolate single

cell clones, CRISPR-treated cells were incubated at room temperature with DAPI via-

bility dye (BD Biosciences) for 15 min. Viable cells were single cell sorted into 96well

plates using the FACSAria Fusion cell sorter (Beckman Coulter). Cell clones were recov-

ered in HyClone SFM4CHO medium supplemented with L-glutamine, HT supplement,

antibiotic-antimycotic solution and ClonaCell-CHO ACF Supplement (Stemcell Tech-

nologies) to increase post-sort survival. Flow cytometry data were analyzed using FlowJo

software v10.4.2. Cells were first gated using side scatter (SSC) versus forward scatter

(FSC) to separate the intact cell population from debris, and then selected for single cells

in the SSC-H/SSC-W and FSC-H/FSC-W plots. This single cell population was then

gated for dsRed+ cells with non-fluorescent cells as gating control.

ERV mutation efficiency

To assess the cleavage efficiency of ERV-specific sgRNAs, the frequency of ERV muta-

tions was determined among the transcribed ERV sequences. Total RNA from CRISPR-

treated polyclonal cell populations was extracted using the NucleoSpin RNA kit (Macherey

Nagel) and reverse transcribed into cDNA using oligo(dT)15 primers and the GoScript

Reverse Transcription System (Promega). For CRISPR-treated single cell clones, total

RNA was isolated using the SV 96 Total RNA Isolation System (Promega) and reverse

transcribed using GoScript Reverse Transcription Mix, Oligo(dT) (Promega). PCR am-

plification of the CRISPR target regions was carried out using OneTaq DNA polymerase

(New England BioLabs) with group 1 type-C ERV-specific primers (Table S4.4). PCR

products were analyzed by Sanger sequencing and analyzed for mutations. The muta-

genesis frequency in CRISPR-treated polyclonal populations was determined by decom-

position of the mixed Sanger sequencing chromatograms and comparison to untreated

(wild-type) cells using the TIDE software [403].

Deep amplicon sequencing of CRISPR-targeted genomic regions

To assess the number of CRISPR-induced ERV mutations at the genome level, DNA was

extracted from clones bearing a mutation in the expressed group 1 type-C ERV sequence
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as well as from empty sgRNA vector-treated and wild-type cells using the DNeasy Blood

& Tissue Kit (Qiagen). This extracted genomic DNA was used to prepare sequencing

libraries in a two-step PCR approach as described in the Illumina “16S Metagenomic

Sequencing Library Preparation” protocol with some modifications. Briefly, degenerate

primers were designed using the Primer Design-M tool [404] to amplify approximately

300 bp of the genomic region flanking the Myr2 and PPYP6 sgRNA target sites of all

predicted type-C ERV sequences (290 bp amplicon for Myr, 314 bp amplicon for PPYP,

Table S4.3). Degenerate primers contained various 0-3 bp heterogeneity spacers to in-

crease template complexity [405] and Myr or PPYP primers were mixed at the predicted

genomic frequency. In the first PCR round, 100 ng of isolated genomic DNA was used to

PCR amplify the Myr and PPYP target loci using KAPA HiFi HotStart ReadyMix (2X)

(Kapa Biosystems) for 23 and 20 cycles, respectively. PCR amplicons were purified with

AMPure XP beads (Beckman Coulter) using a 1:1 bead ratio. Amplicon quality and size

were verified on an Agilent 2100 Bioanalyzer and DNA was quantified using the Qubit

dsDNA HS Assay Kit (Thermo Fisher Scientific). In the second PCR round, Illumina

Nextera XT Index sequencing adapters were added to 15 ng of purified amplicons using 8

PCR cycles. The final libraries were purified with AMPure XP beads (Beckman Coulter)

using a 1:1.12 bead ratio. Library quality and size were verified using Fragment Ana-

lyzer (Advanced Analytical) and quantified using Qubit dsDNA HS Assay Kit (Thermo

Fisher Scientific). Libraries were pooled at equimolar ratio, spiked with 25% PhiX and

sequenced using 2x 250 bp paired-end sequencing on an Illumina Miseq System at the

Genomic Technologies Facility of the University of Lausanne (Switzerland).

Analysis of deep amplicon sequencing

All sequenced Illumina paired-end reads were trimmed using trimmomatic (v0.36; IL-

LUMINACLIP:config/daf.adapt.fa:2:30:10 LEADING:20 TRAILING:20 MINLEN:50),

merged with FLASH2 (v2.2.00; –max-overlap 350) and converted to FASTA format.

Spacer and primer sequences were translated into sequence profiles (pftools v3.0), flagged

on all reads using pfsearchV3 (pftools) and subsequently excised.

Weighted profiles for both Myr and PPYP CRISPR-targeted regions were created as

following: merged paired-end reads from wild-type control samples were cleaned (reads

lengths exceeding Myr: > 300 bp, PPYP: > 400 bp removed) and clustered using cd-hit

(v4.6.8, -n 11 -c 0.97 -A 0.95 ). Clusters with > 0.3% of members were kept and a con-
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sensus sequence for each cluster created based on 100 random sequences (mafft v7.310;

–globalpair –maxiterate 1000 and cons from EMBOSS suite v6.6.0). Multiple sequence

alignments were done for these consensus sequences (mafft; –globalpair –maxiterate

1000) and translated into weighted profiles with pfmake (pftools suite 2.3.5.d; -0 -G 3

and a search-like scoring matrix). Profiles were calibrated using scores from pfsearchV3

against scrambled sequences (60 bp window).

The calibrated profiles were used to search both, wild-type control reads and CRISPR-

treated sample reads with pfsearchV3 generating a psa output. Modifications observed in

comparison to the profile were determined and further analyzed in R (v3.4.2). Alignment

differences observed in wild-type control samples compared to the profile were removed

in CRISPR-treated sample reads and only CRISPR-unique events kept. Events which

appeared in < 0.1% of total reads were removed and reads from identical events clus-

tered using mafft (< 1000 members: –globalpair –maxiterate 1000; > 1000 members:

–globalpair –retree 1 –maxiterate 0 ) to generate one consensus sequence per observed

CRISPR mutation (using cons). R packages used are: data. table, RColorBrewer, col-

orspace, seqinr, glue, knitr.

For all identified CRISPR-derived mutations, Illumina raw reads were clustered using

the Jukes-Cantor genetic distance model under the UPGMA tree building method to test

for ERV locus-specific genetic variations in the mutation flanking region.

Whole genome sequencing of ERV-mutated CHO clone

To identify mutated ERV loci in the whole CHO genome, high-molecular-weight DNA

was extracted from the sgRNA PPYP6-treated E10 clone using the Blood & Cell culture

DNA kit (Qiagen). DNA quality and quantity were verified using Fragment Analyzer

(Advanced Analytical) and Quibit (Thermo Fisher Scientific), respectively. Five SMRT

cells were sequenced on a PacBio Sequel system (Pacific Biosciences) at the Genomic

Technologies Facility of the University of Lausanne (Switzerland). Each SMRT resulted

in 5.9 Gbp – 7.2 Gbp in subreads and a N50 of 18.5 kbp. This yielded in total 34.15

Gbp of sequenced DNA in subreads which equals ∼14x theoretical coverage over the

CHO genome. The consensus sequence describing the CRISPR-derived mutation at the

PPYP site in clone E10 and the PPYP wild-type control cluster consensus sequences were

used as reference for this analysis. WGS PacBio reads from the E10 clone were aligned
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against these reference sequences (minimap2 v.2.8; -x map-pb –secondary=no; samtools

v.1.8) and 2 subreads with the E10 PPYP mutation were identified (lengths of subreads:

4.3 kbp and 15 kbp). The latter contained sufficient genomic non-ERV sequence and was

successfully mapped onto the NCBI CHO-K1 reference genome using minimap2.

Analysis of therapeutic protein expression

To assess the therapeutic protein production capacity of ERV-modified cells, polyclonal

cell populations and cell clones previously treated with ERV-specific or empty sgRNA

expression plasmids were electroporated with a trastuzumab immunoglobulin G1 (IgG1)

heavy and light chain expression vector bearing a puromycin resistance gene [363]. As

control, wild-type CHO-K1 cells were transfected with the same expression vector in

parallel. Two days after transfection, cells were transferred to culture medium containing

5 µg/ml puromycin and selected for three weeks. Immunoglobulin titers from cultures of

stable trastuzumab expressing cell populations were quantified during ten-days fed-batch

cultures as previously described [363]. Briefly, cells were seeded at 0.3*106 cells/ml

in 5 ml initial culture volume without puromycin selection. Cell culture was fed with

HyClone Cell boost 5 supplement (GE Healthcare) at 16% of the initial culture volume

on days zero, two, three and six to eight of the cell cultivation. Cell density and viability

was assessed at days three, six, eight and ten and immunoglobulin secretion in the cell

culture supernatant was measured on days six, eight and ten by sandwich ELISA.

4.4 Results

4.4.1 Characterization of ERV elements in CHO-K1 cells

To search for ERVs present in CHO cells, the CHO-K1 genome was assembled de novo

using PacBio long-read sequencing, and the previously reported IAP and ML2G murine

retroviral sequences were searched in this assembly [352, 393]. Furthermore, we used

as well profiles to complement and validate the ERV elements identified by sequence

similarity. We found approximately 160 copies of IAP-like proviral elements within the

CHO genome. In addition, we identified 173 gammaretrovirus type-C proviruses that

shared at least 80% sequence identity to the ML2G sequence in CHO cells [352] (Table
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4.1). Although the identified number of type-C proviruses is in line with previous esti-

mations [354], we noticed that some ERV copies could not be successfully placed in the

assembly suggesting that 173 copies are likely an underestimation of the total reservoir

of type-C ERV elements in CHO cells. Among the identified 173 type-C ERV sequences,

only 112 contained the gag, pol and env genes, as required to produce a functional ERV.

Phylogenetic analysis of these full-length hamster type-C ERV sequences revealed their

close similarity to other mammalian retroviral elements, such as the Feline leukemia virus

(FeLV) and the Murine leukemia virus (MLV) (data not shown). Among these type-C

ERV sequences, we identified two distinct groups, termed group 1 and group 2, which

were composed of 101 and 36 members, respectively (Fig. 4.1A). Group 1 and group 2

type-C ERVs formed the predominant and functionally most conserved sequence clusters,

with complete 5’ LTR-gag-pol-env-3’ LTR proviral structures, and they also shared most

similarity to MLV elements, which are known to produce viral particles infecting primate

cell lines [394]. This implied the ERVs of group 1 and 2 as the most likely candidates for

viral particle formation.

Table 4.1: Number and frequency of distinct type-C ERV sequences detected in the
genome, transcriptome and viral particles of CHO-K1 cells.

 

 

Detection level Type-C ERV sequence number ERV group relative frequency 

Genomic DNA 173 group 1 ~ group 2 

Cellular mRNA 3-32 group 1 > group2 

Viral particles 1-5 group 1 only 

Further sequence analysis highlighted that the gag and pol genes were highly con-

served among group 1 and group 2 ERV sequences but that ERVs belonging to group

1 showed overall less diversity than ERVs from group 2 (Figs. 4.1B-4.1D). On average

group 1 ERV sequences shared 99% sequence identity and likely form three subgroups

(marked in blue, turquoise and green in Figs. 4.1B-4.1D). However, the overall high con-

servation of these ERV sequences and the frequency of residual PacBio derived errors in

the assembled genome hampered the direct identification of which of these group 1 and

group 2 ERVs may be functional and potentially active.

To complement the genomic CHO ERV characterization, the total cellular mRNA was
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Figure 4.1: Phylogenetic analysis of full-length type-C ERV DNA sequences within the
CHO genome. Phylogenetic trees were generated based on alignments of the complete
gag-pol-env sequence (A) or the gag (B), pol (C) or env (D) sequence separately from 112
full-length type-C ERV. The scale under the tree shows the substitution rate per nucleotide.
Group 1 with its three subclusters (in blue, turquoise and green) and group 2 (in red) are
indicated by brackets. ERV sequences in black belong neither to group 1 nor group 2.

sequenced using Illumina short-read technology in order to refine the transcribed ERV se-

quences. Type-C ERV mRNAs were among the top 10 most abundant transcripts in CHO

cells (data not shown). Mapping of these reads to type-C ERV representatives showed that

99.5% corresponded to group 1 and 2, indicating that these two groups contribute the vast

majority of the transcribed ERVs of CHO cells. While the Illumina reads mapped mainly

on two easily distinguishable group 2 ERV sequences, they mapped on approximately 30

group 1 ERV sequences (Fig. 4.2A). As group 1 ERVs are most highly conserved, this

did not allow unambiguous attribution of these reads to one or few unique group 1 loci.

Interestingly, both transcribed group 2 ERV sequences contained interrupted ORFs and/or

missing coding sequences, one containing two deletions of a total of 2350 bp in the pol
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gene and the second having one frameshift in the gag and pol genes, as well as three stop

codon mutations in pol. These mutations were confirmed by Sanger sequencing. In con-

trast, the transcribed group 1 ERV sequences seemed to encode full-length gag, pol and

env transcripts. Overall, this suggested that between 3 to 32 ERV loci are transcribed, cor-

responding to approximately 2-20% of the total ERV elements in CHO cells (Table 4.1).

Such an ERV expression frequency agrees with previous reports indicating that the major-

ity of ERVs are epigenetically silenced in cell lines and organisms [349]. Finally, among

the total cellular mRNA, we also detected LTR-containing viral genomic RNA, indicating

that CHO cells are capable of producing retroviral genomes that may be encapsulated and

released as retroviral particles in the cell supernatant.

Moreover, we also characterized viral genomic RNA loaded into VLPs by Illumina

sequencing. LTR-containing viral genomic RNA was enriched twenty-fold compared to

the total cellular mRNA sequences (Fig. 4.2A). This indicated that CHO cells are able to

shed retroviral particles containing genomic viral RNA into the cell supernatant. In-depth

analysis of these viral RNA sequences indicated that group 1-derived reads were mostly

present in the released viral particles (Fig. 4.2A). Moreover, these sequences mapped to

between 1 and 5 different group 1 ERV loci, suggesting that only few group 1 ERV loci

are responsible for the production of viral particles in CHO cells (Table 4.1).

To further characterize the functional group 1 type-C ERV sequences, we designed

group 1-specific probes for Fluorescent in-situ hybridization (FISH) experiments. Us-

ing these probes, we detected approximately 50-100 group 1 ERV integration sites in

the CHO-K1 genome (Fig. 4.2B). Retroviral integrations were dispersed throughout the

CHO-K1 genome, with a possible integration hotspot in one of the smallest chromo-

somes. Additionally, when staining for group 1 nascent mRNAs, we observed a unique

highly transcribed site, suggesting that only a single group 1 ERV locus might be tran-

scriptionally active (Fig. 4.2C).

Altogether, systematic ERV characterization at the genome, transcriptome and viral

particle level identified several group 1 type-C ERVs as strong candidates for the expres-

sion and release of functional retroviral particles from CHO-K1 cells. Although the high

sequence identity among the type-C ERV sequences concealed the exact number of ex-

pressed ERV loci, these data suggested that mutating few transcribed group 1 ERV loci

by genome editing might suffice to prevent ERV particle formation.
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Figure 4.2: Characterization of expressed type-C ERV sequences in wild-type CHO cells.
(A) Mapping of Illumina sequencing reads of total cellular RNA (left) or of viral particle
RNA (right) obtained from CHO-K1 cells on group 1 and group 2 type-C ERV sequences.
Reads were mapped to a consensus sequence for group 1 and on two distinct loci (locus
A and locus B) for group 2. Signs present on the schematic representation of group 2
ERV on locus A and B show the mutation type occurring in these ERV sequences, blue
for frameshift mutations, red for stop codon mutations and grey for deletions, with the
deletion size indicated as the number of bases. (B) Representative metaphase spread
of CHO-K1 chromosome FISH analysis using fluorescent probes specifically targeting
group 1 type-C ERV. Chromosomal DNA is represented in red and the FISH signals of
integrated retroviral sequences are shown as green dots (C) Three representative inter-
phase CHO-K1 cells are shown, with mRNAs depicted in red and group 1 type-C ERV
RNA illustrated in blue color. The bright purple dot represents the nascent group 1 mRNA
at the transcription site.
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4.4.2 Designing ERV-specific sgRNA sequences for CRISPR-Cas9

genome editing

To inhibit the release of potentially infective viral particles from CHO cells, we aimed to

disrupt conserved ERV sequence motifs critical for viral particle release. The Gag protein

plays a pivotal role during retrovirus budding, and, consistently, it was conserved among

the type-C ERVs in CHO cells. However, in contrast to the pol gene, for instance, the gag

sequences were sufficiently different to distinguish group 1 from group 2 type-C ERV

sequences, allowing to specifically target group 1 ERV particles (Figs. 4.1B and 4.1C).

We selected two conserved gag sequences involved in viral budding – the myristoylation

(Myr) and the PPxY motifs – as targets for CRISPR-Cas9-mediated mutagenesis. The

N-terminal Myr motif locates at a glycine residue at position 2 downstream of the ATG

translation initiation codon (Fig. 4.3). Myristoylation of Gag is generally considered

essential for targeting the protein to the host plasma membrane [406]. Mutations that

directly interfere with Gag myristoylation, that block translation from the physiological

start site or that create a loss-of-function gag transcript will perturb proper viral particle

assembly at the plasma membrane, and hence block retroviral particle budding [406, 407].

In addition to Myr, the conserved proline-rich PPxY motif also contributes to retrovirus

budding, likely by interacting with the ESCRT machinery [408], and its mutation strongly

inhibits viral particle release [409]. The PPxY motif overlapped with a PPYP motif that

is conserved in group 1 and group 2 CHO ERVs, which is termed PPYP hereafter to refer

to this CHO-specific PPxY-related budding motif.

We designed eight sgRNAs against the group 1 gag consensus sequence: three con-

structs targeting the Myr motif (Myr2, Myr4, Myr8) and five constructs targeting the

PPYP motif (PPYP5, PPYP6, PPYP7, PPYP13, PPYP20) (Fig. 4.3). The selected sgRNA

sequences located close to the corresponding target motifs and were predicted to perfectly

match between 33 and 117 target ERV sequences, but to target up to 283 sites when allow-

ing a maximum of three mismatches and non-canonical protospacer adjacent motif (PAM)

sites (Table S4.1). Importantly, all these potential cleavage sites map to ERV sequences,

while other off-target sites in the CHO genome were not detected. Although these sgRNA

sequences contain a multitude of predicted target sites, we hypothesized that expressed

ERVs might be preferentially cleaved by the CRISPR-Cas9 nuclease, due its preference

for open chromatin [410].
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Figure 4.3: CRISPR-Cas9 target sites for ERV mutagenesis. The orientation and position
of the eight sgRNA sequences designed to target the Myristoylation (Myr) and PPYP mo-
tifs of the gag group 1 type-C ERV consensus sequence are illustrated by grey arrows. The
CRISPR-Cas9 DSB sites are shown by open triangles for sgRNAs targeting the forward
strand (Myr2, PPYP5, PPYP6, PPYP7) and by filled triangles for sgRNAs targeting the
reverse strand (Myr4, Myr8, PPYP13, PPYP20). The protospacer adjacent motif (PAM)
sites are marked by blue bold letters.

To mutate the Gag budding motifs, CHO-K1 parental cells were transiently transfected

with CRISPR-Cas9 and Myr or PPYP sgRNA expression plasmids together with a dsRed

transfection control plasmid. For CRISPR control samples, the gag-specific sgRNA ex-

pression plasmids were replaced with a non-targeting empty vector sgRNA control plas-

mid (empty vector) or cells were left untreated (wild-type). Transfected dsRed positive

(dsRed+) cells were bulk-sorted to enrich for cells containing mutations in the target mo-

tifs. Following treatments with ERV-specific sgRNAs, we noted an overall reduced fre-

quency of transfected dsRed+ cells as well as a significant drop in dsRed fluorescence

intensity in dsRed+ cells compared to control samples, suggesting that the most highly

transfected cells may not survive because of a high frequency of genome cleavage (Figs.

S4.1A and S4.1B). This effect was reduced for Myr4 sgRNA treated cells, which has the

lowest number of predicted target sites. We also observed an elevated cell granularity fol-

lowing CRISPR treatment which inversely correlated with the frequency and expression

intensity of dsRed+ cells (Figs. S4.1C and S4.1D). Highly granular cells were previously

reported to consist of pro-apoptotic and/or dying cell populations [411]. Altogether, this

provides evidence that CRISPR-mediated ERV cleavage impedes cell proliferation and
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survival, especially in highly transfected cells, implying that ERV-specific sgRNAs effi-

ciently introduce DSBs at multiple target sites in the CHO genome.

To estimate the CRISPR-mediated mutagenesis frequency within the expressed group

1 ERVs, the total cellular mRNA of bulk-sorted Myr- and PPYP-treated cells was reverse

transcribed and PCR amplified. Polyclonal PCR products were then either directly se-

quenced or cloned into bacterial vectors prior to single colony sequence analysis. Based

on these analyses, we estimated that the designed gag-specific sgRNAs introduced mu-

tations in roughly 10 to 30% of the ERV mRNAs, and that the Myr2 or PPYP6 sgRNAs

were most efficient (Fig. S4.2, Tables S4.5-S4.7). Interestingly, some of the recovered

mutations were expected to block translation or introduce frameshifts, and thus should

cause Gag loss-of-function phenotypes.

4.4.3 Isolation and characterization of ERV-mutated CHO-K1

clones

Given that roughly 10-15% of the expressed group 1 ERV sequences are predicted to

be mutated, we hypothesized that a potential reduction in viral particle release would

be difficult to detect within a polyclonal population. Thus, we isolated single CHO cell

clones from bulk-sorted Myr2- or PPYP6-edited cell pools and screened for those hav-

ing mutations in the expressed group 1 ERV sequences. 18 out of 95 screened Myr2

sgRNA-treated clones (18%) and 14 out of 181 screened PPYP6 sgRNA-treated clones

(8%) contained group 1 ERV mutations at the mRNA level, in line with previous editing

estimations (Table 4.2, Figure S4.2, Tables S4.5-S4.7). Among the Myr2-mutated clones,

the majority possessed an identical 1 bp insertion upstream of the ATG start codon (Ta-

bles S4.6 and S4.8), which likely resulted from staggered CRISPR-Cas9 cleavage [262].

No clone treated with the PPYP6 sgRNA acquired a mutation disrupting the PPYP mo-

tif. Nonetheless, two Myr2- and eleven PPYP6-derived clones contained mutations either

blocking translation or frameshifting the gag transcripts, hence making them promising

candidates for reduced viral particle release. We also observed that the Sanger sequencing

chromatogram of the repair junctions of all clones showed a clear mutated sequence and

lacked background noise in the CRISPR flanking sequences. This supported our earlier

hypothesis that only a single group 1 ERV locus might be prominently transcribed and

lead to the production of viral particles in CHO cells.
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Table 4.2: Detection of CRISPR-mediated mutations in the expressed type-C ERV se-
quences of edited CHO-K1 clones.

 

 
                                                        
1 Includes translation inhibition and frameshift mutations and is expressed relative to the number of mutated 
clones.  

Sample # screened 
clones 

# mutated 
clones 

Mutation 
frequency 

Loss-of-function 
mutation frequency1 

Myr2 sgRNA 95 18 19% 11% 

PPYP6 sgRNA 181 14 8% 79% 

Total 276 32 12% 45% 

To further investigate the CRISPR-derived mutations at the genome level, we deep-

sequenced the Myr and PPYP flanking regions of type-C ERVs in a subset of CHO. We

selected two Myr2- and four PPYP6-edited clones with Gag loss-of-function mutations

in the expressed group 1 type-C ERV sequences (clones CO2 and D12 for Myr2; A02,

E10, K03 and K14 for PPYP6) as well as one Myr2-derived clone with a large mutation

outside of the group 1 ERV coding (G09) and genotyped them along with wild-type and

empty vector control samples (Table S4.8).

To detect CRISPR-derived mutations and distinguish them from sequence variations

naturally occurring at each target site, we clustered the reads from wild-type CHO cells

and used these cluster consensus sequences to create diversity profiles. When clustering

by 97% sequence similarity, we identified 34 Myr and 28 PPYP clusters that represented

the natural ERV sequence diversity present within the Myr and PPYP flanking regions

(Figs. 4.4A and 4.4B, S4.3). Despite the observed sequence diversity, the Myr and PPYP

motifs themselves were highly conserved, in agreement with their biological significance

for viral budding. The identified clusters correlated well with the type-C ERV groups pre-

viously characterized from the CHO genome as well as with their predicted frequencies,

corroborating our previous characterization of ERV sequences at the whole genome level

(Figs. 4.1, 4.4A and 4.4B, Tables S4.9 and S4.10). For both targets, the largest cluster

encompassed approximately 40% of all reads and its consensus sequence was identical

to the group 1 type-C ERV sequence present in VLPs (yellow highlight, Figs. 4.4A and

4.4B). Among all clusters, 13 Myr and 8 PPYP clusters, including the largest clusters,

could be targeted by the Myr2 and PPYP6 sgRNAs, accommodating for 61% and 72% of
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Figure 4.4: Assessment of sequence diversity in the Myr and PPYP motif flanking re-
gions and analysis of CRISPR-derived mutations by deep DNA sequencing. Targeted
amplification of approximately 300 bp surrounding the Myr and PPYP CRISPR target
sites was performed using type-C ERV specific primers and amplicons were analyzed by
Illumina deep sequencing. Clustering analysis was based on 97% similarity of wild-type
CHO-K1 deep sequencing reads from the Myr (A) and PPYP (B) flanking sequences.
Clusters are indicated in turquoise, blue, green or red lettering, according to the phyloge-
netic groups identified in Figure 4.1. Clusters containing the Myr2 sgRNA and PPYP6
sgRNA recognition sites and an adjacent PAM sequence are shown in bold, and the most
abundant cluster per target site is highlighted in yellow. Values to the right represent the
frequency of reads obtained for each subcluster relative to the total number of reads. (C)
Number of distinct mutations and their corresponding read frequencies in seven clones
(C02, D12, G09, A02, E10, K03, K14) isolated from Myr2 or PPYP6 sgRNA-treated
polyclonal populations. All clones display mutations in the expressed group 1 type-C
ERV locus. Grey shaded boxes represent mutations occurring at a higher than average
read frequency (> 0.4%, left-hand side axis) and the predicted number of ERV loci con-
taining an identical mutation is indicated as dashed lines. Caption continued next page.
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Figure 4.4: The estimated total number of mutated ERV loci of each clone is indicated
by the right-hand side axis. (D) Frequency of Myr2 or PPYP6 sgRNA-induced repair
junctions compatible with C-NHEJ, alt-EJ or HR-mediated gene conversion DSB repair
mechanisms. Repair junctions incompatible with these three main DSB repair mecha-
nisms are grouped as Unknown. A total of 74 DNA repair junctions (nMyr=47, nPPYP=27)
obtained from both Sanger mRNA and Illumina deep DNA sequencing were analyzed. (E
and F) Frequency of the wild-type CHO clusters representing best the mutation-flanking
sequence of 30 Myr2- and 12 PPYP6-derived mutations of deep sequencing reads. Clus-
ters containing the Myr2 or PPYP6 sgRNA recognition sites including an adjacent PAM
site are shown in bold letters (on-targets), while clusters with sgRNA mismatches are
shown in normal letters (off-targets). Off-target cluster possesses mismatches at position
13 or 15 in the sgRNA recognition site.

the captured read diversity, respectively (bold letters, Figs. 4.4A and 4.4B).

Using these wild-type CHO clusters and corresponding diversity profiles, we found

between 1 and 7 distinct CRISPR-derived mutations per clone, including the mutations

previously detected at the mRNA level (number of boxes, Fig. 4.4C; Table S4.6). The

detected mutation range spanned from a 114 bp deletion up to a 78 bp insertion. As

expected, CHO cells treated with the empty vector expression plasmid lacked additional

mutations in the CRISPR target sites. Some mutations, for instance, a 1 bp insertion,

occurred within all three genotyped Myr2-treated clones but were absent in the PPYP6

clones, as expected from sgRNA-specific repair outcomes [278].

Typically, a given mutation was detected at a read frequency of approximately 0.3%,

which thus must represent a single ERV locus in the CHO genome (Fig. 4.4C). However,

three Myr2-derived mutations were discovered at a read frequency well above 0.3%, with

the same 1 bp insertion being present in 2.6% of all G09 clone reads. Consequently, this

implies that the same mutation may occur more than once in the same clone. In support

for this hypothesis, the reads of predicted single locus mutations (i.e. clones A02 or E10)

were highly similar in the mutation flanking region, while the reads of abundant mutations

(i.e. G09 1 1) contained variations in the mutation flanking regions, suggesting that the

same mutations may have occurred repeatedly at distinct ERV loci (Fig. S4.4). In the case

of G09 1 1, five ERV groups could be distinguished with one group having four-times

more reads than the others, indicating that this mutation should have occurred at eight

distinct ERV loci in the G09 clone. Therefore, we concluded that each clone acquired

between 1 and 14 ERV mutations following transient CRISPR transfection (Fig. 4.4C).

The identification of clones having only one mutated ERV at the DNA level, together
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with the finding that this mutation was identical to the single mutation detected at the

intracellular RNA level, further substantiated that a single group 1 type-C ERV locus is

transcribed, and likely responsible for the release of type-C retroviral particles from CHO

cells.

The repeated occurrence of identical mutations within one clone raised the question

of whether they may result from gene conversion, a homologous recombination (HR)-

related repair mechanism, in which a previous mutated ERV locus is used as template

to repair other cleaved ERV sites. To find evidence for HR activity following Myr2-

and PPYP6-mediated cleavage, we combined the previously obtained mRNA and DNA

data and analyzed a total of 74 DNA repair junctions (nMyr=47, nPPYP=27). While Myr2

sgRNA-mediated cleavage led to an overall higher mutation frequency, with a prefer-

ence for insertions, PPYP6 sgRNA mostly produced deletions (Fig. S4.5A). Notably,

Gag loss-of-function mutations were observed in 70% of PPYP6 sgRNA-induced re-

paired junctions, but only in 30% of all Myr2 sgRNA-derived mutations (Fig. S4.5B).

The majority of Myr2- and PPYP6-derived repair junctions were compatible with clas-

sical non-homologous end-joining (C-NHEJ) and alternative end-joining (alt-EJ) repair

activities (Fig. 4.4D). C-NHEJ typically leads to small insertion and deletions, while

alt-EJ utilizes microhomologies at the DSB site to anneal broken ends, which often re-

sults in larger and more complex mutations. Although alt-EJ repair is considered to be

a backup pathway in most mammalian cells, we detected between 25-55% alt-EJ com-

patible junctions when targeting the gag gene, supporting our previous conclusions of

intrinsically elevated alt-EJ activities in CHO cells [119, 141]. Among the alt-EJ repair

junctions, some could be uniquely attributed to the microhomology-mediated end-joining

(MMEJ) or the synthesis-dependent microhomology-mediated end-joining (SD-MMEJ)

alt-EJ subpathways, while others were consistent with both MMEJ and SD-MMEJ repair

[122, 123] (Fig. S4.5D). Interestingly, approximately 10% of all analyzed repair junc-

tions contained either insertions templated from other ERV loci or from the same ERV

locus but using a distant sequence, while others manifested apparent duplications devoid

of microhomologies, as mediated by alt-EJ mechanisms. All of these latter junctions are

consistent with homology-directed repair activities at Myr2- and PPYP6 target sites fol-

lowing CRISPR cleavage (Fig. 4.4D). Thus, HR-mediated gene conversion might indeed

have caused the multiple occurrences of certain mutations.

Next, we assessed whether mutations occurred more frequently in some type-C ERV

clusters, indicating a preferential cleavage of certain ERV loci. As expected, mutations
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associated uniquely with clusters of group 1, but not of group 2, confirming sgRNA speci-

ficity for group 1 only (Figs. 4.4E and 4.4F). The majority of mutations located within the

most abundant Myr or PPYP clusters, which presumably represent the actively transcribed

and hence expressed ERVs. Additional mutations were observed in other clusters, which

contained a Myr2 or PPYP6 sgRNA recognition sites adjacent to a PAM sequence (Figs.

4.4E and 4.4F, bold font). Surprisingly, we also witnessed CRISPR cleavage in Myr and

PPYP clusters containing a one base pair mismatch to the sgRNA target site, supporting

previous reports indicating that CRISPR-Cas9 tolerates small mismatches during target

recognition [269] (Figs. 4.4E and 4.4F, normal font).

4.4.4 Identification of a unique viral particle-producing ERV locus

in CHO-K1 cells

The Sanger chromatograms as well as the read frequencies of gag mutations observed

during RNA and targeted DNA amplicon sequencing corroborated the assumption that a

single group 1 type-C ERV locus is transcribed, and may therefore mediate viral particle

production by CHO cells. To further substantiate this assumption, the genome of the E10

clone was fully sequenced using a PacBio approach, so as to obtain reads sufficiently long

for the unambiguous determination of ERV integration sites. This clone was selected

as it appeared to contain only a single mutated ERV, allowing to correlate its unique

mutation at the RNA level with a potentially unique genomic locus (Fig. 4.4C). Analysis

of the E10 clone genome sequence led to the identification of a single ERV locus bearing

the mutation detected at the mRNA level (Figs. S4.6A and S4.6B). The predicted ERV

integration site was then validated by PCR amplification and DNA Sanger sequencing

using locus-specific primers located outside of the ERV sequence in the parental CHO

cell line as well as the deep-sequenced clones. All deep-sequenced clones, which contain

CRISPR-derived mutations at the mRNA level, possessed the identical mutation also at

this ERV locus, further supporting that this genomic region harbors the expressed type-C

ERV element (Fig. S4.6C). Interestingly, this particular ERV integration was found to be

hemizygous, as the other allele was devoid of a corresponding ERV integration, and to

have occurred into open chromatin between two moderately expressed CHO cell genes.

Next, we assessed whether Gag loss-of-function mutations in this expressed ERV lo-

cus may lead to the anticipated inhibition of viral particle budding. Besides the previously
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characterized mutated clones, we analyzed in parallel their corresponding bulk-sorted

polyclonal populations, as well as clones devoid of detectable mutations in the expressed

group 1 ERV sequence (B01 for Myr2, B03 for PPYP6), as additional controls. First, viral

particles were extracted from the supernatant of the CHO cell cultures and the amount of

type-C viral genomes was quantified by RT-qPCR. Preliminary data suggested that viral

particles produced by Gag loss-of-function mutants contain 80% less group 1 type-C ge-

nomic viral RNA than control samples, while the amount of group 2 genomic viral RNA

remained close to detection limit (data not shown). To substantiate this finding, RNA ex-

tracted from the viral particles shed by the D12 (Myr2 sgRNA) and E10 (PPYP6 sgRNA)

clones was Illumina sequenced. Remarkably, we observed a more than 250-fold reduc-

tion in reads mapping to the group 1 ERV sequence in both D12 and E10 when compared

to wild-type CHO cells, while the trace amounts of reads mapping to group 2 remained

close to the detection level (compare Figs. 4.5 and 4.2A). This indicated that mutations

in the single expressed group 1 ERV sequence that block translation initiation (D12) or

introduce a frameshift in the gag gene downstream of the PPYP motif (E10) are sufficient

to severely reduce the budding of complete viral particles.
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Figure 4.5: Viral particle RNA sequencing of CHO clones mutated in the expressed
group 1 type-C ERV sequence. Mapping of viral particle RNA sequencing reads from a
Myr2 sgRNA clone (D12, left panels) and a PPYP6 sgRNA clone (E10, right panels) on
group 1 consensus sequence and group 2 locus A and locus B, as shown for the wild-type
CHO viral particles (Fig. 4.2A). D12 and E10 mutants both contain Gag loss-of-function
mutations in the functionally relevant group 1 type-C ERV locus.
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4.4.5 Characterization of edited CHO cell lines displaying reduced

viral budding

Having observed that CRISPR mutagenesis had efficiently inactivated viral particle re-

lease, we next tested whether ERV inactivation would affect other CHO cell properties,

such as cell growth, cell size and therapeutic protein production. ERV-edited clones were

found to proliferate at similar rates as polyclonal populations, wild-type and empty vector-

treated cell controls, with a density reaching approximately 12.5*106 cells/ml after five

days in culture (Fig. 4.6A). Such a cell density concords with the expected CHO-K1

doubling time of roughly 20h [412]. Although two Myr2 sgRNA clones (C02, D12) and

one PPYP6 sgRNA clones (K14) showed slightly modified cell cycle durations, the effect

was not statistically significant. In addition, cell sizes tended to be elevated in ERV-edited

cells, notably in the C02 clone, but they did not differ significantly when compared to the

empty vector control cells (Fig. 4.6B).

Finally, we assessed the capacity of ERV-edited CHO cells to produce therapeutic pro-

teins, a pivotal property of CHO cells for biotechnological use. We used the previously

characterized ERV-mutated cells to generate polyclonal populations stably expressing a

humanized therapeutic IgG immunoglobulin and quantified IgG secretion during ten-days

fed-batch cultures. ERV-edited clones and polyclonal populations expressing the IgG pro-

tein demonstrated cell growth and cell viability properties similar to those of wild-type

and empty vector control cells, as observed without therapeutic protein expression (Figs.

4.6C and 4.6D). IgG titer in the cell culture supernatants increased over the course of

the fed-batch experiment, as expected from the accumulation of the secreted IgG pro-

tein, reaching around 300-400 mg/l at the end of the fed-batch for control cells and most

ERV-edited cell clones (Fig. 4.6E). Thus, ERV mutagenesis did not globally affect the

capability of CHO cells to produce IgG proteins. Interestingly, clone C02 (Myr2 sgRNA)

secreted significantly fewer immunoglobulins, likely reflecting its reduced growth and in-

creased cell size, while clones E10 and K03 (both PPYP6 sgRNA) produced 50% more

IgG relative to the empty vector control. Overall, this indicated that CHO clones that

were exposed to multi-locus ERV editing generally maintain normal CHO characteris-

tics, while some clones, especially those with mutations in the PPYP region, appeared

to have acquired a higher metabolic capacity to produce therapeutic proteins. However,

this apparently augmented metabolism capacity could not be correlated to a specific ERV

mutation type or to the total number of mutations, nor to cell growth or size, suggesting
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clone-specific effects.
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Figure 4.6: Assessment of cell growth, cell size and therapeutic IgG immunoglobulin
production in ERV-mutated CHO cells. Viable cell density (A) and cell size (B) was
measured in wild-type CHO cells (WT), empty sgRNA vector-treated cells (Empty), bulk-
sorted polyclonal CRISPR-treated cells (Poly) as well as in clones containing mutations
in the expressed ERV locus (C02, D12, G09, A02, E10, K03 and K14) or not (B01,
B03) after five days of culture. The same samples were stably transfected to express an
IgG immunoglobulin antibody and assessed for cell density (C), cell viability (D) and
IgG production (E) during ten-days fed-batch cultures. Statistical significance relative
to the empty vector control was calculated using the two-tailed unpaired Student’s t-test
with Benjamini and Hochberg false discovery rate correction (n ≥ 2, error bars represent
s.e.m, * P < 0.05, ** P < 0.01).
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4.5 Discussion

CHO cells are the most widely used expression system for therapeutic proteins, but also

a recognized source of adventitious VLPs for more than 40 years [388–391]. Although

these particles were never shown to be infectious, their genomic origin and possible evolu-

tion remain mostly unknown. Thus, safety concerns have persisted, and ample precautions

must be taken when purifying therapeutic proteins. In this study, we first addressed this is-

sue by characterizing CHO endogenous retroviral elements at the genome, transcriptome

and viral particle level, showing that CHO cells are able to release intact viral particles

loaded with viral RNA genomes of group 1 type-C ERVs. The sequence encodes a full-

length open reading frame, thus likely producing functional viral proteins. This finding

challenges the only available study on CHO viral particle sequences, published in 1994,

in which the authors detected only defective DNA sequences with numerous mutations in

the ERV genes [352]. This apparent contradiction may be explained by improved current

sequencing methods, allowing the in-depth characterization of expressed and released se-

quences. Using this updated viral particle RNA sequence, we curtailed the number of

possible ERV loci responsible for the expression and release of CHO viral particles to a

group of up to 30 well-conserved group 1 type-C ERV sequences in the CHO genome.

Next, we mutated the Myr and PPYP Gag budding motifs of the functionally relevant

group 1 type-C ERV sequences using CRISPR-Cas9, so as to attempt to prevent ERV

budding. After transient CRISPR-Cas9 expression, 10-15% of the isolated clones con-

tained mutations in the expressed group 1 sequences, some of which causing Gag loss-

of-function effects. Having introduced unique mutations into defined ERV sequences

allowed us to pinpoint a single genomic ERV locus as the origin of viral type-C particle

formation in CHO cells. Most interestingly, site-specific mutagenesis of this particular

locus was sufficient to avoid release of viral particles carrying the viral genomic RNA.

This indicated that the other ERVs present in the CHO genome may be unable to comple-

ment the Gag loss-of-function, nor became reactivated upon CRISPR-Cas9 mutagenesis,

at least under the controlled cell culture conditions used in this study.

A common technical challenge for multi-locus genome editing is the presence of ex-

tensive DNA damage. This damage may be elicited by the multiple Cas9-induced DSBs,

which usually activate p53 signaling and cause cell death [326–328, 413, 414]. The sgR-

NAs designed in this study were predicted to perfectly recognize roughly 60 distinct group
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1 type-C ERV loci in the CHO genome, although only some of them should be transcribed

and may thus be preferentially cleaved by Cas9. Indeed, CRISPR-Cas9 treated clones

possessed between 1 to 14 different mutation sites following a single transient transfec-

tion, suggesting that CHO cells are able to handle the DNA damage response and repair

of up to 14 separate DSBs. In comparison to primary cells where sometimes a single

DSB break results in cell death [413], immortalized cell lines such as CHO cells typically

encounter higher levels of endogenous DNA damage, and they are more likely to cope

with and survive multi-loci genome editing, as seen here [415]. However, even in CHO

cells, we observed a drop in cell proliferation and/or viability following a rather mild

transient treatment with ERV-targeting sgRNAs, which correlated well with the predicted

number of target sites. Elevated cytotoxicity might have prevented the isolation of even

more highly mutated clones. This would explain why a recent study reporting the isola-

tion of primary porcine cells containing mutations in up to 62 endogenous viral elements

required anti-apoptotic treatments to suppress p53-mediated cell death [326].

Another challenge in multi-locus editing is the plurality of repetitive ERV sequences

present in the CHO genome that could be used as template for HR repair, which may coun-

teract efficient gene knock-out mediated by C-NHEJ and alt-EJ repair pathways. In CHO

cells, HR activity is believed to be rather low compared to other cells [171, 291]. Typ-

ically, HR may precisely repair DSBs, but imprecise repair outcomes also occur [416].

Here we found that roughly 10% of the analyzed repair junctions at both sgRNA sites

contained HR-compatible signatures, such as templated insertions from other ERV loci.

Thus, we hypothesize that HR repair is active and possibly opposes efficient ERV muta-

genesis. Although we succeeded in isolating clones with Gag loss-of-function mutations,

reducing HR activity could be advantageous in some case, for instance when knock-out

frequency needs to be maximized.

The genome editing strategy used in this study aimed to introduce Gag loss-of-function

mutations that interfere with proper Gag protein synthesis and thereby prevent ERV bud-

ding. As expected, clones mutated in the expressed group 1 type-C ERV sequence showed

unchanged mRNA expression levels of group 1 and group 2 ERVs, while being strongly

impaired in releasing encapsulated viral RNA. In addition, ERV-mutated clones did not

consistently differ in cell growth, cell size or therapeutic protein production compared to

control samples. Hence, the differences between clones are likely clone-specific. Clonal

variation is a common phenomenon when isolating clones from polyclonal populations

and has even been noticed during clone subcloning [417, 418]. Clone-specific variabil-
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ity may arise not only from genetic heterogeneity between the clones, for instance due

to the acquisition of random and/or CRISPR-derived mutations, but also from stochastic

fluctuations in protein expression and/or epigenetic effects [328, 418, 419].

The current study provides a proof-of-principle that the functionally active ERV locus

can be selectively mutated using group 1 type-C specific sgRNAs. This offers novel av-

enues to improve the safety profile of CHO cells and thereby substantially reducing the

number of virus inactivation and removal steps needed for viral clearance during biophar-

maceutical production. Moreover, the study opens up prospective extensions for further

improvements. For example, the discovery of a single ERV locus responsible for ERV

expression and particle release in CHO cells would enable to excise the entire 10 kb long

proviral genome using two site-specific sgRNAs, as done for HIV-infected human cells

[420]. This approach for ERV mutagenesis might reduce the elicited DNA damage re-

sponse and avoid the accumulation of defective ERV RNAs in the cytoplasm, which may

both cause unclear side effects [421]. Furthermore, the current approach already greatly

mitigates the risk of infective viral particles in the CHO supernatant by mutagenizing the

expressed and particle-forming ERV, but it may not prevent the reactivation of silenced

ERVs nor new adventitious infections. An interesting perspective is therefore to intro-

duce mutations that can act preventively. For instance, work in FeLV and HIV showed

that non-myristoylated Gag behaves in a dominant-negative manner leading to severe in-

hibition of viral particle release [422, 423]. Whether the similar Myr and possibly also

the PPYP Gag mutations also manifest a dominant-negative phenotype in hamster ERVs,

and whether this could prevent new infections in CHO cells, are interesting possibilities

that will require further experimental validation.
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4.6 Supplementary Data

Table S4.1: Predicted number of ERV target sites for Myr- and PPYP-specific sgRNAs
in the CHO-K1 genome.

 

 
                                                      
1 The canonical PAM sequence of SpCas9 is NGG 

   Number of mismatches allowed  

sgRNA 
name 

sgRNA sequence (5'-3') 
PAM 

sequence1 
0 1 2 3 Total 

Myr2 TCCTAAGCCTAGAAACTATG 
Canonical 59 29 16 26 

147 
Non-canonical - - 1 16 

Myr4 CATAGTTTCTAGGCTTAGGA 
Canonical 33 - - 9 

54 
Non-canonical - - 1 11 

Myr8 GAGTGTTAGGGACAAAGGAG 
Canonical 117 30 - 36 

218 
Non-canonical - - 2 33 

PPYP5 GTTGGTTGATCTATTAACGG 
Canonical 61 30 12 5 

114 
Non-canonical - - - 6 

PPYP6 GCCACTGCCGCCCCCACCAG 
Canonical 55 16 9 36 

133 
Non-canonical 1 - - 16 

PPYP7 GCCCCCACCAGAGGCAGAAG 
Canonical 69 65 41 60 

283 
Non-canonical 3 3 3 39 

PPYP13 GGCAGTGGCGGATATGGCGG 
Canonical 58 16 14 42 

142 
Non-canonical 1 2 1 8 

PPYP20 GCTTCTGCCTCTGGTGGGGG 
Canonical 70 63 8 47 

217 
Non-canonical 3 4 5 17 
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Figure S4.1: Assessment of gag-specific sgRNA-mediated CRISPR-Cas9 cleavage by
flow cytometry. Analysis of the dsRed positive (dsRed+) cell frequency (A), the dsRed
fluorescence intensity (B) and the frequency of high granularity cells (C and D) of
CHO cells transfected with CRISPR-Cas9, Myr- or PPYP-specific sgRNAs (Myr2, Myr4,
Myr8,PPYP5, PPYP6, PPYP7, PPYP13, PPYP20 sgRNAs) or a non-targeting empty vec-
tor control and dsRed transfection control expression plasmids. Panel C shows size (FSC)
vs granularity (SSC) flow cytometry density plots of the empty vector-, Myr2 sgRNA- and
PPYP6- treated cells. The larger black gate selects for intact non-debris cells while the
smaller purple gate marks the CHO cell subpopulation with an elevated granularity level,
as quantified in panel D. Statistical significance relative to the empty vector control was
calculated using the two-tailed unpaired Student’s t-test with Benjamini and Hochberg
false discovery rate correction (n = 3, error bars represent s.e.m, * P < 0.05, ** P <
0.01).
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Figure S4.2: Estimation of gag-specific sgRNA-mediated CRISPR-Cas9 cleavage effi-
ciency by targeted mRNA sequencing of polyclonal CHO populations. Indel mutation
analysis of polyclonal PCR products obtained from reverse-transcribed cellular mRNA of
bulk-sorted CRISPR-treated polyclonal populations using the indicated group 1 type-C
specific primers. The mutation frequency was estimated by decomposition of the Sanger
chromatogram [403]. The predicted mutation frequency relative to the untreated wild-
type control sample is shown on the right of the chromatograms. The DSB site for each
sgRNA is shown with a black line and the decomposition window, downstream of the
DSB site relative to the sequencing direction indicated by an arrow, is shaded in grey.
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Figure S4.3: (Caption next page.)
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Figure S4.3: Wild-type CHO consensus sequences of Myr and PPYP diversity clusters.
Cluster sequences of Myr (A) and PPYP (B) flanking regions of deep-sequenced wild-
type CHO cells. Colors correspond to the phylogenetic groups depicted in Figure 4.4A
and 4.4B. Myr and PPYP clusters containing a sgRNA recognition site (black outlined
arrow) with an adjacent PAM sequence are written in bold letters. Myr and PPYP motifs
are indicated with turquoise and purple outlined boxes, respectively. The higher sequence
complexity of the PPYP flanking region relative to the Myr flanking region is illustrated
by missing sequences and colored lines depicting deletions or insertions and single nu-
cleotide variants, respectively.
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Figure S4.4: Characterization of ERV locus-specific mutations and their frequencies
within clonal populations. Analysis of Illumina raw reads of mutations detected at nor-
mal (0.2-0.4%) or high (> 0.4%) read frequencies in different clones. Pie charts represent
number and frequency of identified groups with identical CRISPR-derived mutation but
distinct mutation flanking sequences (e.g. in D12 1 1 and G09 1 1). Dotted lines indicate
the number of predicted ERV loci that could not be distinguished based on their flanking
sequences.
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Figure S4.5: Characterization of Myr2 sgRNA- and PPYP6 sgRNA-mediated mutations
and repair junctions. 47 Myr2- and 27 PPYP6-derived repair junctions were analyzed
for sgRNA specific mutation signatures, including the elicited mutation type (Deletion,
Insertion, Indel) (A), the mutation effect on Gag and ERV function (Outside ERV coding
region, Translational inhibition, Frameshift mutation, In-frame mutation) (B), the muta-
tion size distribution (C) and MMEJ and SD-MMEJ alt-EJ repair pathway activities. Indel
mutations are defined in this figure as deletions coupled to insertions. Repair junctions
compatible with both MMEJ and SD-MMEJ repair mechanisms are classified as “MMEJ
+ SD-MMEJ”. Repair junctions were obtained from both Sanger mRNA and Illumina
DNA deep sequencing.
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Figure S4.6: Identification of a unique functionally active group 1 type-C ERV locus.
(A) Schematic representation of a 15 kb PacBio read obtained following whole genome
sequencing of the E10 (PPYP6 sgRNA) clone. The read contains full-length gag, pol,
env and 3’ LTR sequences as well as the E10-specific CRISPR-mutation in the gag gene
and extends into the CHO genome. (B) Alignment of the PacBio CHO genome-specific
sequence against the publicly available NCBI CHO genome. The NCBI scaffold identifier
is shown on top. The predicted group 1 type-C ERV integration site is highlighted in
yellow. The genomic region surrounding the ERV integration site contains two protein-
coding genes (Cidec, Jagn1) as well as three pseudogenes (Rps15, Rpl18a, Rpl34; shown
with green backgrounds), as annotated by the NCBI. Cidec (cell death inducing DFFA like
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predicted mRNA expression levels for each gene are estimated by RNA sequencing data
and expressed as Reads Per Kilobase Million (RPKM). Continued next page.
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Figure S4.6: (C) Sanger sequencing results of the Myr2 and PPYP6 sgRNA flanking
regions. Sanger sequencing was performed on PCR amplicons obtained from total cellular
mRNA using group 1 specific primers (in blue) or genomic DNA using primers specific
to the expressed group 1 type-C ERV locus (in red). Clones C02, D12, G09, A02, E10,
K03, K14 contain mutations in the functionally active group 1 type-C ERV locus, but
clones (B01 and B03) as well as the empty vector controls do not. The predicted Myr2
and PPYP6 DSB sites are marked with a dotted line.
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Table S4.4: Sequences of the PCR and qPCR primers used in this study to characterize
and validate ERV loci and expression

Amplification type Primer 1 Primer 2

Locus group 1 type-C ERV validation1 CTCTGGTTCTTGCCTGCTGAGCT TGGTCAATGTATATGAGGCGCT
Locus group 1 type-C ERV validation2 CTCTGGTTCTTGCCTGCTGAGCT TAAGCCATTGGTGAAGGGTCA
Locus group 1 type-C ERV validation3 CTCTGGTTCTTGCCTGCTGAGCT TGACGATATAAGCCACTTGA
Locus group 1 type-C ERV validation4 TTTTCTGGTGCCCTCTTGCCTGG TAAGCCATTGGTGAAGGGTCA
Locus group 1 type-C ERV validation without ERV CTCTGGTTCTTGCCTGCTGAGCT TTGTGGAGCTGTGTGAGTGGTGG

Group 1 type-C ERV specific LTR GGGAATTGAGTCTGCTGTACCA ACAGAGTCTTTCAAATGAGGCG
Group 1 type-C ERV specific Gag TGACGATATAAGCCACTTGA ACCCCCAGACTATATTCCAGATA
Group 1 type-C ERV specific Env CTATGTGCTGCCCTCAAGGA GCCTCTCCCTAAGTTTGGCC
Group 2 type-C ERV specific GAATAAAAGGTCAGGGCGTTGG CTGACTTGGCTCTATCTTGGGT
Reference GAPDH GCGACTTCAACAGTGACTCCCA TGAGGTCCACCACTCTGTTGCT

qPCR

End-point PCR

Table S4.5: Detection of CRISPR-mediated mutations in expressed type-C ERV se-
quences cloned into plasmid vectors.

 

 
                                                        
1 Includes translation inhibition and frameshift mutations and is expressed relative to the number of mutated 
sequences.  

Sample Analyzed 
sequence  

Mutated 
sequences 

Mutation 
frequency 

Loss-of-function 
mutation frequency1 

Myr2 sgRNA 12 2 17% 50% 

PPYP6 sgRNA 56 4 7% 75% 

PPYP13 sgRNA 12 1 8% 0% 

Total 80 7 9% 42% 
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Chapter 5

Conclusions and outlook

The advent of programmable nucleases, notably the CRISPR system, has sustainably im-

pacted modern biology and is going to fundamentally shape it also in the future. CRISPR

is currently omnipresent as the genome editing tool of choice in biological research. How-

ever, while CRISPR-mediated genome editing can be used to efficiently inactivate single

genes, it remains relatively inefficient at inducing precise HR-mediated gene modifica-

tions as well as at simultaneously inactivating multiple genes by end-joining pathways.

In this thesis, I aimed to address both of these limitations by better characterizing DSB

repair mechanisms in the biotechnology-relevant CHO cells.

5.1 Identifying rate-limiting factors for HR repair

As a first part of this thesis, we designed a chromosomal HR gene correction assay in

CHO cells in order to quantify how HR frequency alters upon knockdown and/or over-

expression of DNA repair factors previously implicated in regulating HR repair. Our

initial hypothesis was that the predominance of alt-EJ activity in CHO cells forms a ma-

jor bottleneck for efficient HR-mediated genome editing. Surprisingly, we found that

most alt-EJ factors positively contribute to HR in lieu of being anti-recombinogenic. By

varying nuclease types and distance between the DSB and the gene correction site, we

further demonstrated that alt-EJ contribution appears to be most relevant for the repair

of short 5’ overhanging DSB ends, as generated by the FokI-dCas9 system, or of blunt-

ended DSB ends, as introduced by the wild-type Cas9 nuclease of Streptococcus pyogenes
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(SpCas9), with long non-homologous protruding flaps. This indicates that alt-EJ factors

may possess non-canonical activities to ensure bona fide HR repair, in addition to their

well-established activity in end-joining pathways. The proposed interplay between alt-EJ

and HR, thus, challenges the prevailing view that they are primarily competitors for the

same DSB substrate.

Our current model assumes that in specific repair contexts alt-EJ factors non-canoni-

cally engage at an early as well as at a late stage of DSB repair. While alt-EJ factors

may contribute to DSB recognition and processing at an early stage, they rather assist in

processing HR intermediates at a late stage. In support for our model, growing evidence

suggests that end-joining pathways may be involved in completing and/or rescuing HR

intermediates [92, 141, 293, 373, 379]. For instance, the Ercc1-Xpf endonuclease com-

plex appears not only to have key roles in NER and SSA pathways but also to remove

non-homologous flap structures during HR in both yeast and mammalian cells, consis-

tent with our data [373, 374]. Future work will be needed to understand how alt-EJ and

HR activities are coordinated and whether these factors act as a complex through direct

protein-protein interactions to stimulate HR-mediated gene conversion.

As a follow up to this study, it would be necessary to provide further support for an

alt-EJ contribution to HR in other repair settings. For instance, it would be interesting to

assess whether alt-EJ contributes to HR at DSBs induced by alternative CRISPR systems

that may have a distinct globular protein structure, lead to different DSB ends and/or

show other nuclease dynamics [248, 249]. Of particular interest to this study is the Cas9

ortholog of Francisella novicida (FnCas9) [257]. FnCas9 has the peculiarity that, on the

one hand, it has the same target site requirements like the classical wild-type SpCas9, but

on the other hand, it creates 4 nt 5’ overhanging DSBs like the highly specific FokI-dCas9.

This would allow validating and possibly extending our previous findings using another

Cas9 ortholog. Moreover, it would be of great interest to test how the structure and origin

of donor templates (e.g. whether they are single stranded or double stranded, or derived

from non-viral or viral vectors) influence alt-EJ activity during HR. Ultimately, we could

also assess whether alt-EJ factors contribute to HR-mediated large transgene insertions,

as frequently used for biotechnological applications.

This work relied on CHO cells to advance our understanding of alt-EJ mechanisms

and functions in mammalian cells. However, further investigations will be necessary to

evaluate whether alt-EJ pathways fulfill similar roles in other cell types and/or organisms.
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It is well-documented that cells can have intrinsically different DSB repair pathway activ-

ities, depending, among others, on their degree of differentiation and deficiencies in other

DSB repair pathways. In the case of the immortalized CHO cells, alt-EJ pathways appear

upregulated at the expense of C-NHEJ and HR activities, as we have also observed during

this thesis [119, 141, 164, 171, 291]. This implies that DSB repair mechanisms and/or

regulations may differ between CHO and other cells. In addition, different CHO cell lines

are known to possess specific genetic diversity and are thus sometimes referred to as “qua-

sispecies” [368]. In this study, most of the assessed repair factors – including many alt-EJ

factors – showed consistent effects in both the adherent CHO-DG44 and the suspension-

adapted CHO-K1 cell lines. This argues for a rather conserved alt-EJ role in CHO cells.

Although alt-EJ pathways play only a minor role in primary and non-malignant cells, they

are important in many cancer cells [116–118, 170]. Therefore, it would be tempting to

corroborate our findings in cancer cells with similar DSB repair characteristics as CHO

cells.

Despite the identification of numerous alt-EJ factors and subpathways, alt-EJ remains

poorly defined. Several factors have complicated its in-depth characterization and sepa-

ration from other repair mechanisms. First of all, alt-EJ is not a single repair pathway but

a family of multiple subpathways. These alt-EJ pathways utilize partially overlapping but

also distinct repair factors [121, 122, 141]. Alt-EJ pathways also appear to have co-opted

many proteins from other repair pathways, notably from HR, SSA and excision repair

pathways [128, 176, 177, 186, 426]. So far, Pol theta is the only alt-EJ repair protein with

no function in other DNA repair pathways [132]. Additionally, alt-EJ protein require-

ments and/or mechanisms seem not to be conserved between lower and higher eukary-

otes. For example, alt-EJ pathways are independent of Parp1, Pol theta and Lig3 in yeast,

where these proteins are absent, and they require longer MH sequences for end anneal-

ing compared to mammalian cells [123]. Finally, alt-EJ pathways are not the only repair

mechanisms that may rely on MHs as repair intermediate. Essentially MHs were impli-

cated in C-NHEJ [24, 25], in a specific type of SDSA termed microhomology-mediated

SDSA (MM-SDSA) [427], in microhomology-mediated BIR (MM-BIR) [428] as well as

in a replication-based repair mechanism to regress stalled replication forks termed FoS-

TeS [429]. Single cell analysis and omics data will be valuable technologies to further

improve our current DSB repair pathway understanding and, in particular, might help to

better disentangle alt-EJ subpathways and define their corresponding protein requirements

[430].
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The inherently low HR frequency in most mammalian cells, including CHO cells,

raises the intriguing question of which steps are rate-limiting in HR. Homology search is

considered one of the major rate-limiting step of HR in eukaryotes [431]. Consistent with

this assumption, we found that attempts to stimulate the formation of the Rad51 presynap-

tic complex, either by overexpressing the Rad51 recombinase or by knocking down the

Pari anti-recombinase, increased HR. Therefore, it appears that the natural Rad51 levels

in mammalian cells with large and highly complex genomes are kept in check to prevent

unscheduled and/or non-allelic recombinations. Besides homology search, we provide ev-

idence that end resection is another rate-limiting step of HR in CHO cells. More precisely,

we found that knockdown of the Mre11 nuclease favors HR repair, while knockdown of

the 53BP1 end protection protein reduces HR repair. This somewhat counterintuitive

result suggests that end resection needs to occur “just to the right” extent to permit pro-

ductive HR repair. In line with this hypothesis, several studies reported that excessive

DSB end resection (known as hyper-resection) can lead to a switch from productive high-

fidelity HR to highly mutagenic non-allelic recombination or SSA repair [366, 432, 433].

This implies that HR can be blocked not only by absence of DSB end resection but also

by hyper-resection [366].

This work extends numerous previous studies attempting to improve HR and HR-

mediated genome editing in mammalian cells. Most of these studies tested a single repair

factor in a specific cellular context, which typically resulted in only moderate improve-

ment rates and/or in conflicting result between cell types (e.g. [171, 309, 314]). This

indicates tightly controlled HR activities and the absence of one single universal HR bot-

tleneck sufficient to boost HR in distinct cell lines. Therefore, future improvement strate-

gies will need to focus on modulating multiple repair factors and/or entire pathways in

parallel taking into account cell line specific repair properties – as we attempted in this

study with CHO cells. Ultimately, the aim would be to establish unique protein “cock-

tails” that allow stimulating HR, or any other DNA repair pathway, in a cell line-specific

manner.

5.2 Inactivating endogenous viral elements

As a second part of this thesis, we performed multi-locus genome editing in order to

inactivate group 1 type-C endogenous retroviruses (ERVs) presumably responsible for
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the release of viral-like particles (VLPs) in CHO cells. Following transient CRISPR-

Cas9 expression, 10-15% of the isolated clones contained group 1 ERV mutations at the

mRNA level despite targeting more than 50 predicted genomic ERV loci. Moreover, we

developed a bioinformatic pipeline to analyze CRISPR-derived mutations at the genome

level by targeted DNA amplicon sequencing. This analysis highlighted that clones bearing

mutations in the expressed group 1 type-C ERV sequence contained between 1 to 14

mutated ERV loci in total. Interestingly, disrupting the gag ERV gene of one particular

ERV locus sufficed to decrease the amount of viral RNA-containing particles close to the

detection limit, suggesting that a single ERV is responsible for VLP production in CHO

cells. Clones with reduced functional VLP levels seemed not to have altered key CHO

properties, including the capacity to produce therapeutic proteins. Therefore, the genome

editing approach established here provides new avenues to increase the safety profile of

CHO cells in biomanufacturing.

This study is a proof-of-principle that transient CRISPR-Cas9 expression followed

by enrichment for transfected cells is suitable for inactivating multi-locus ERV sites in

CHO cells. Previous studies attempting to mutate multiple ERV sequences in porcine

cells failed to obtain acceptable editing frequencies using transient CRISPR-Cas9 expres-

sion and, instead, had to rely on stable integration of the sgRNA and Cas9 sequences

into the to be edited genome [325, 326]. Although the overall editing frequencies were

lower than those obtained from stable CRISPR-Cas9 expression, as expected, the tran-

sient CRISPR-Cas9 expression approach was sufficient to reduce the release of functional

VLPs from CHO cells. This discrepancy may be explained by the different number of ac-

tive ERV copies in porcine and hamster cells. Unlike porcine cells in which many ERVs

remain active, we showed that presumably only a single group 1 type-C ERV locus is

transcriptionally active and able to produce VLPs in CHO cells. Thus, the preference of

CRISPR-Cas9 to cleave open chromatin seems to act as a natural selection mechanism

to primarily mutate functionally relevant ERV loci [410]. However, if more or possible

all ERV sequences were to be disrupted, for instance, to circumvent trans complementa-

tion of ERVs, additional strategies would be desired to further improve the efficiency of

multi-locus genome editing by transient CRISPR-Cas9 expression.

In order to augment transiently expressed CRISPR-Cas9 multi-locus gene inactiva-

tions, one interesting strategy could be to prevent HR-mediated gene conversion. In fact,

the large number of intact homologous ERV sequences may serve as donor template for

HR repair. Thus, precise HR-mediated ERV reconstitution could oppose gene inactiva-
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tion by inaccurate end-joining pathways. Supporting this hypothesis, we detected ERV

repair junctions compatible with HR repair pathways, suggesting that HR contributes to

the repair of CRISPR-targeted ERV sequences. Therefore, it would be interesting to as-

sess ERV knock-out frequencies in HR-deficient backgrounds. Preliminary experiments

combining ERV mutagenesis with knockdown of Rad51 in CHO cells were inconclusive.

As HR inactivation appeared not to be necessary to disrupt the relevant ERV copy in CHO

cells, we did not further pursue this strategy.

In addition to interfering with HR, gene inactivation at multiple target sites may be

improved by channeling DSB repair into more mutagenic end-joining pathways. SSA

belongs to the most mutagenic end-joining pathways. Unlike the C-NHEJ and SD-MMEJ

pathways that can lead to apparent blunt end joints, SSA always leads to large deletions

of sometimes several kb in length, almost exclusively causing loss-of-function mutations

[101, 102]. Hence, one might try to block HR together with C-NHEJ to favor alt-EJ path-

ways, e.g. by simultaneously knocking down Rad51 and Ku. Furthermore, this approach

could be extended in combination with a Pol theta knockdown to additionally block the

MMEJ and SD-MMEJ pathways to avoid small in-frame mutations in favor of SSA. The

bioinformatic pipeline developed in this study would allow to quantify and compare indel

length and out-of-frame frequency for treated and control samples in the context of CHO

ERV mutagenesis.

A major concern of CRISPR-Cas9 genome editing is the potential adverse side-effects,

such as off-target mutagenesis and chromosomal aberrations. The transient CRISPR-Cas9

expression approach used in this study leads to timely restricted nuclease activity, poten-

tially avoiding extensive DDR signaling and off-target mutagenesis, as typically observed

following stable CRISPR-Cas9 expression [325, 326]. Despite these precautions, the es-

tablished ERV-edited CHO cells would have to be further characterized prior to their use

in biopharmaceutical production to ensure lack of adverse effects. Additional characteri-

zation steps could include, for instance, identifying potential CRISPR-induced off-target

mutations in the ERV-edited CHO clones by whole-genome sequencing. Karyotype anal-

ysis would be another important characterization to check for undesired large deletions

and/or complex rearrangements. Such mutations are difficult to detect by standard se-

quencing techniques, like PCR and Illumina paired-end sequencing, and have been sys-

tematically overlooked in the past although they could happen relatively frequently [299].

The risk of chromosomal aberrations is expected to be increased when introducing mul-

tiple DSBs simultaneously [326]. Hence, karyotyping ERV-edited CHO cells obtained
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from transient CRISPR-Cas9 expression could be useful to demonstrate not only the ab-

sence of detectable chromosomal changes but also the superior genome integrity com-

pared to stable expression of CRISPR-Cas9.

Another avenue of future research is to investigate whether ERV mutagenesis may af-

fect the expression of viral and/or cellular genes. Preliminary RT-qPCR data suggest that

clones mutated in the expressed group 1 type-C ERV sequences show unaffected mRNA

levels of group 1 as well as the other expressed type-C ERV group. Moreover, we showed

that ERV mutagenesis does not consistently alter CHO phenotypes (e.g. cell growth, cell

size, therapeutic protein production) compared to control cells, implying the absence of

critical changes in gene expression in the surviving clones. Nevertheless, it would be

worthwhile complementing these experiments with an analysis of the transcriptome of

edited CHO cells. For instance, such a transcriptome analysis could provide more global

insight into how ERV editing influences the intracellular mRNA level of mutated as well

as other non-mutated ERV sequences. In addition, it would allow us to detect potential

changes in the expression of cellular genes. Such transcriptional changes may result from

cellular adaptation to reduced VLP budding, off-target mutagenesis and cell responses to

CRISPR genome editing. One particularly interesting protein to look at is p53. Altered

or low p53 activities may have allowed the surviving clones to evade apoptosis induced

by a strong DDR upon editing of numerous ERV sequences in parallel [434].

Besides creating loss-of-function mutations, other strategies could also prevent the re-

lease of ERV-derived particles from CHO cells. For instance, one possible strategy might

be to introduce a dominant-negative mutation into the myristoylation motif in the gag

gene. Studies using the feline leukemia virus (FeLV) and the human immunodeficiency

virus (HIV) demonstrated that the substitution of the myristoylation glycine residue with

an alanine severely inhibits particle release in a dominant-negative manner [422, 423]. To

test whether the same mutation has a similar effect in CHO cells, this mutation could ini-

tially be expressed from a stably integrated plasmid vector and could later be introduced

site-specifically by homology-directed repair. Unlike loss-of-function ERV mutations,

this strategy could even prevent viral particle formation from reactivated ERVs as well

as new viral infections. Another interesting strategy is to entirely excise the single ERV

locus responsible for particle release in CHO cells. A similar approach was already de-

ployed in HIV-infected human cells [420]. In contrast to multi-locus ERV mutagenesis,

this approach requires two sgRNAs to introduce DSBs flanking the ERV sequence, which

should greatly reduce the elicited DNA damage response and avoid the accumulation of
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defective ERV RNAs in the cytoplasm.

An outstanding question is the potential function of ERVs in CHO cells. Although

integration of viruses often negatively influences the fitness of the host organism (e.g.

leading to diseases), their integration was as well associated with several positive effects

(e.g increasing the genetic diversity by introducing new genes, providing new regulatory

elements and protecting against other viral infections) [344, 345, 350]. The best-described

examples for such positive effects are Syncytin proteins that are derived from the env gene

of human ERVs and became co-opted for placenta development in mammalian embryoge-

nesis [435]. Thus, one could advance the theory that those ERV sequences which remain

full-length and/or expressed benefit the CHO cells’ fitness. In that case, we would expect

changes in the mRNA levels and/or higher susceptibility to viral infections in CHO cells

in which the VLP-producing ERV locus has been excised by CRISPR-Cas9 editing. Al-

ternatively, such intact ERV sequences could result from recent integrations, which have

not yet accumulated deleterious mutations and/or became epigenetically silenced.

5.3 Perspectives in genome engineering

The current CRISPR-Cas9 applications are only the tip of the iceberg of what could be

done with CRISPR nucleases. Besides genome editing, CRISPR holds great promises

in labeling specific DNA sequences and activating as well as repressing gene expres-

sion [233]. A growing number of studies start focusing on the translation of CRISPR

technologies into clinics, agriculture and biotechnology. For instance, future CRISPR

applications might involve genetically modifying livestock and crop plants, controlling

disease-causing mosquito populations via gene drives and germline editing [436]. As of

today, 24 registered clinical trials are ongoing [437]. More will certainly arise in the fu-

ture. However, limitations in CRISPR efficiency, as discussed in this thesis, as well as

safety and ethical concerns still need to be thoroughly addressed before broad transla-

tional applications.

CRISPR-mediated genome editing is also becoming increasingly important for biotech-

nology applications, notably for genetically engineering CHO host cells. The main focus

in CHO cell line engineering may be to improve productivity and cell line robustness

[438]. In the past, CHO cells were genetically engineered to resist apoptosis by inac-

tivating pro-apoptotic factors like Bax [439] or to produce less metabolic by-products
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such as lactate, which negatively affect cell growth during large-scale cell culture [440].

Moreover, CHO cell lines lacking glutamine synthetase were established to facilitate the

selection of high-producing clones using glutamine-depleted cell culture medium [441].

However, more recently, site-specific transgene integration into CHO cells has attracted

growing interest [268, 442, 443]. Unlike random integration, targeted integration is ex-

pected to yield homogeneous and predictable transgene expression in a predefined ge-

netic background [268]. This could drastically reduce the time required for selection

and screening for high-producing clones. Interestingly, circumstantial evidence suggests

that VLP levels are on average lower in clones derived from targeted rather than from

random transgene integration (Conference presentation Merck company). This suggests

that chromosomal rearrangements, as frequently observed upon random integration [216],

may stimulate ERV expression and/or cause ERV reactivation.

At present, targeted integration has not replaced random integration as the standard

approach for establishing CHO cell lines for biopharmaceutical production [444]. This

has two main reasons. The first reason is that targeted transgene expression levels are

typically inferior to those obtained from traditional random integrations. One explanation

for this observation could be the considerably lower transgene copy number following

targeted integration than random integration. While targeted integration typically results

in a single transgene copy, random integration causes multicopy transgene arrays at one

or few genomic sites. This raises the question of whether similar therapeutic protein lev-

els can be achieved from targeted as from random transgene integrations or of whether

optimal integration sites have just not yet been identified in the CHO genome. Optimal

integration sites should support high and reproducible long-term transgene expression

in well-characterized genomic loci without disrupting genes and/or regulatory elements.

Such genomic loci are known as “safe harbors”. Therefore, current attempts try to deploy

transcriptomics to identify highly expressed genomic sites suitable as safe harbors [444].

It remains unclear whether a single best integration site exists or whether the optimal

integration site is transgene dependent. The second reason is that HR-mediated precise

integration of transgenes remains relatively inefficient in CHO cells, as extensively dis-

cussed during this thesis. Therefore, new strategies to boost HR in CHO cells are highly

desired and will have broad implications for biomanufacturing.
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[310] Vispé S, Cazaux C, Lesca C, Defais M (1998) Overexpression of Rad51 protein

stimulates homologous recombination and increases resistance of mammalian cells

to ionizing radiation. Nucleic Acids Research 26(12):2859–2864.
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ABSTRACT: Untargeted plasmid integration into mammalian cell
genomes remains a poorly understood and inefficient process. The
formation of plasmid concatemers and their genomic integration has been
ascribed either to non-homologous end-joining (NHEJ) or homologous
recombination (HR) DNA repair pathways. However, a direct involvement of
these pathways has remained unclear. Here, we show that the silencing of
many HR factors enhanced plasmid concatemer formation and stable
expression of the gene of interest in Chinese hamster ovary (CHO) cells, while
the inhibition of NHEJ had no effect. However, genomic integration was
decreased by the silencing of specific HR components, such as Rad51, and
DNA synthesis-dependent microhomology-mediated end-joining (SD-
MMEJ) activities. Genome-wide analysis of the integration loci and junction
sequences validated the prevalent use of the SD-MMEJ pathway for transgene
integration close to cellular genes, an effect shared with matrix attachment
region (MAR) DNA elements that stimulate plasmid integration and
expression. Overall, we conclude that SD-MMEJ is the main mechanism
driving the illegitimate genomic integration of foreign DNA in CHO cells, and
we provide a recombination engineering approach that increases transgene
integration and recombinant protein expression in these cells.
Biotechnol. Bioeng. 2017;114: 384–396.
! 2016 The Authors. Biotechnology and Bioengineering published by
Wiley Periodicals, Inc.

KEYWORDS: DNA recombination; microhomology-mediated
end-joining; Chinese hamster ovary cells; recombinant protein
expression; immunoglobulin production

Introduction

Spontaneous integration of non-viral DNA vectors into the genome
of eukaryotic cells is a widely exploited process in research and
biotechnology. Its molecular basis, however, remains incompletely
understood. It is believed to rely on cellular DNA repair
mechanisms, as it is favored by the presence of free DNA ends
in the vector resembling double stranded breaks (DSBs). The two
major pathways responsible for DSB repair in eukaryotic cells are
non-homologous end-joining (NHEJ) and homologous recombina-
tion (HR) (Jackson, 2002). NHEJ is a fast mechanism that efficiently
joins DNA ends with little processing (Mao et al., 2008). In contrast,
HR is a slow, multi-step process requiring resection of one of the
two DNA strands and pairing to a homologous DNA template for
repair. A third group of DSB repair pathways, believed to function
when the main repair mechanisms are impaired, are collectively
termed microhomology-mediated end joining (MMEJ). MMEJ is a
still poorly characterized family of pathways, also referred to as
alternative or backup non-homologous end-joining (alt- or B-
NHEJ), which requires short (2–25 nt) homologies to align broken
DNA strands before joining (Boboila et al., 2010; Gigi et al., 2014; Oh
et al., 2014; Paul et al., 2013). Another hallmark of this process is the
occurrence of large deletions and, less frequently, insertions of
sequences copied from other parts of the genome, termed
templated inserts (Ma et al., 2003; Merrihew et al., 1996). MMEJ
shares DNA strand resectionwith HR, implying that it may partially
rely on HR enzymes (Decottignies, 2007; Dinkelmann et al., 2009;
Ma et al., 2003; Truong et al., 2013). Several mechanisms proposed
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to mediate chromosomal rearrangements associated with human
genetic disorders were shown to rely on MMEJ (Costantino et al.,
2014; Hastings et al., 2009; Hicks et al., 2010; Lee et al., 2007;
Villarreal et al., 2012). Finally, another variant of MMEJ, termed
synthesis-dependent MMEJ (SD-MMEJ), was also proposed to
repair DSBs in the absence of pre-existing homology (Yu and
McVey, 2010). In this latter mechanism, the microhomologies
required for the MMEJ pathway are synthetized de novo by an
accurate non-processive DNA polymerase. While all of these
mechanisms may be mechanistically different, they possess several
common features, such as the annealing of single stranded DNA
ends at microhomology regions and the priming of low-processivity
DNA polymerization.
Plasmid integration into the genome of eukaryotic cells is an overall

inefficient process, occurring in a minor proportion of cells that take up
the exogenous DNA. It was shown to involve two major steps: (i)
recombination between vector molecules to form multimeric transgene
arrays termed concatemers and (ii) the recombination of the resulting
concatemers with the genome, usually at a single or at few chromosomal
loci (Folgeret al., 1982;Grandjean et al., 2011;Kohli et al., 1998).TheDSB
repair pathways responsible for transgene concatemerization remain
currently unclear. Inmammalian cells, this process was attributed to HR
(Folger et al., 1982; Wong and Capecchi, 1987), while NHEJ appeared to
be involved in zebrafish embryos and rice (Dai et al., 2010; Kohli et al.,
1998). In addition, some studies suggested that alternative pathwaysmay
also play a role in the joining of extrachromosomal DNAends (Lundberg
et al., 2001). Similarly, the mechanism mediating the recombination of
the transgene with the genome remains to be fully identified. NHEJ is
considered to mediate the majority of integration events in eukaryotic
cells, while HR may be responsible for a smaller proportion of genomic
integrations (W€urtele et al., 2003). However, there is evidence that
distinct repair pathways may also be implicated in this process (Iiizumi
et al., 2008; Merrihew et al., 1996).
We previously reported that plasmid integration is enhanced by

the presence of matrix attachment regions (MARs), which are
epigenetic regulatory DNA elements that participate in the
formation of chromatin boundaries and augment transcription
(Galbete et al., 2009; Girod et al., 2007; Grandjean et al., 2011;
Majocchi et al., 2014). MARs are thus widely used to sustain
elevated transgene expression, as well as to prevent epigenetic
silencing effects by blocking the propagation of heterochromatin
(Allen et al., 2000; Harraghy et al., 2008; Zahn-Zabal et al., 2001).
Their action to increase genomic integration and plasmid copy
number suggested that stimulating recombination may constitute
an additional mechanism by which MARs increase transgene
expression (Girod et al., 2007; Grandjean et al., 2011). Thus, in the
present study, we sought to identify the pathway(s) responsible for
the integration of MAR-containing or -devoid plasmids into the
genome of cultured cells.
Using siRNA-mediated knock-down approach, we show that a

subset of alternative repair mechanisms resembling SD-MMEJ may
be preferentially used by CHO cells for the spontaneous integration
of foreign DNA into their genome. This finding was confirmed by
the characterization of plasmid-to-genome junction sequences,
which were found to display an SD-MMEJ pattern. Finally, we
demonstrate that MAR elements and SD-MMEJ favor transgene
integration into permissive chromatin loci, and that the inhibition

of competing recombination pathways can be used to improve the
expression of recombinant proteins.

Materials and Methods

Cells, Plasmids, and siRNA

Adherent Chinese hamster ovary (CHO) DG44 cells (Urlaub and
Chasin, 1980) were cultivated in DMEM/F-12þGlutaMAXTM

supplemented with 1" HT and 10% fetal bovine serum (Gibco,
Invitrogen), and with the antibiotic-antimycotic solution (Sigma–
Aldrich, #A5955). Suspension-adapted CHO K1 derived cells
(CHO-M) were cultured in SFM4CHO (HyCloneTM) medium
supplemented with 8mM L-Glutamine (PAA Laboratories GmbH)
and 1" HT (Gibco).
The MAR-devoid pGEGFP, MAR 1-68-containing p1-68-GFP,

pGL3-CMV-DsRed, and pSVpuro expression vectors were described
previously (Supplementary Fig. S1) (Grandjean et al., 2011). The HR
and NHEJ reporter plasmids were kindly provided by V. Gorbunova
(University of Rochester, New York) (Mao et al., 2008). The MMEJ-
specific GFP reporter assay, based on the pGEGFP vector, was
constructed as described previously (Kostyrko and Mermod, 2015).
Small interfering RNA duplexes, specifically designed to target the
CHO cell homologs of the DNA repair proteins listed in Tables SI and
SII, were designed and provided by Microsynth AG (Balgach,
Switzerland) (Supplementary Table SIII). Three RNA duplexes were
designed per mRNA to increase the probability of successful knock-
down. It was confirmed experimentally that individual siRNAs had
similar effects on mRNA levels as the siRNA mixes, and it was also
controlled that the siRNA and plasmids were delivered to the cells
with above 90%efficiency by using a fluorescently labelled siRNAand
a GFP expression plasmid (data not shown). Three negative (non-
targeting) siRNAs were designed as controls.

Recombination Assays

For HR and NHEJ recombination transient assays, adherent CHO
cells were transfected with HR or NHEJ reporter plasmids digested
with I-SceI, and with the pGL3-CMV-dsRed plasmid to normalize
for transfection efficiency, using Fugene 6 (Promega). The pGEGFP
plasmid was transfected in parallel as a positive control of GFP
expression.
For siRNA-mediated knock-downs of DNA repair proteins,

adherent CHO DG44 cells were transfected with equimolar mixes
of three mRNA-specific or control siRNA duplexes at a final
concentration of 50 nM using Lipofectamine RNAiMAX (Invitro-
gen), according to manufacturer’s instructions (Supplementary
Fig. S2A). After 2 days, the siRNA-treated cells were re-transfected
with pGEGFP or p1-68-GFP, and with a puromycin resistance
plasmid pSVpuro (Clontech), using Lipofectamine 2000 (Invitro-
gen). Prior to transfection all plasmids were linearized with PvuI
and purified by ethanol precipitation. Puromycin (5mg/mL) was
added to the culture medium 24 h after transfection, and stably
transfected cells were selected for 2 weeks. Stable GFP expression
was analyzed by flow cytometry (CyAn flow cytometer, Beckman
Coulter), whereas aliquots of each sample were used for genomic
DNA extraction.
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Colony Formation Assay

To assess the frequency of genomic integration events, CHO DG44
cells were transfected with siRNA duplexes against selected DNA
repair proteins, using the protocol described above (Supplementary
Fig. S2A). Cells were re-transfected 72 h later with pGEGFP or
p1-68-GFP, and pSVpuro, using Lipofectamine 2000 (Invitrogen),
once the effects of the knock-down on cell cycle progression had
disappeared (Kostyrko et al., 2015). The cells were trypsinized and
counted 24 h after the second transfection, and 10000 viable cells
were seeded in complete medium into each well of a 6-well plate.
Puromycin (5mg/mL) was added to the medium 7 h after seeding.
After 10 days of selection, puromycin-resistant colonies were
stained with 0.2%methylene blue and quantified using ImageJ (U.S.
National Institutes of Health, Bethesda, MD).

Transgene Copy Number Determination and
Quantitative PCR

To analyze the transgene copy number, total genomic DNA was
isolated from cells using the DNeasy purification kit (Qiagen). For
quantitative PCR (qPCR), 6 ng of genomic DNAwere analyzed using
the SYBRGreen IMaster kit for the Light Cycler 480machine (Roche)
using AGCAAAGACCCCAACGAGAA and GGCGGCGGTCACGAA as
GFP-specific primers. The beta-2-microglobulin (B2M) CHO gene
was amplified as a normalization control using ACCACTCTGAAG-
GAGCCCA and GGAAGCTCTATCTGTGTCAA as primers. The
number of integrated transgene (GFP) copies was calculated using
the B2M gene as a reference, as previously described (Pfaffl, 2001).

Characterization of Transgene Integration Sites

To assess which CHO genes were expressed in our culture
conditions, the transcriptome of the suspension-adapted parental
CHO K1 cells was determined by paired-end sequencing using the
Illumina technology by the Next Generation Sequencing Facility of
the University of Lausanne. Expressed coding sequences were
annotated using the Annotation Release 101 of the Chinese hamster
genome assembly (CriGri_1.0, GCF_000223135.1) (Xu et al., 2011).

To identify the plasmid integration sites in polyclonal
populations, CHO K1 cells were electroporated with the MAR-
devoid pGEGFP or the MAR-containing p1-68-GFP plasmids and
with the pSVpuro puromycin resistance construct using the Neon1

transfection system (Invitrogen). After 3 weeks of puromycin
selection, total genomic DNA was isolated from polyclonal cells
using the Genomic-tip G/20 kit (Qiagen). The DNA was sequenced
using the Single Molecule Real-Time (SMRT) technology (Pacific
Biosciences) at the Next Generation Sequencing Facility of the
University of Lausanne. CHO cells transfected with p1-68-GFP were
sequenced using 20 SMRT cells, and those transfected with pGEGFP
required the use of 60 SMRT cells to obtain a similar number of
integration site sequences. Transgene integration sites were
identified by a custom identification pipeline. PacBio filtered
subreads were obtained using the tool DEXTRACTOR (Myers,
unpublished) using the standard settings. Plasmid sequences were
identified in PacBio filtered subreads with the help of the alignment
tool BLASR (Chaisson and Tesler, 2012). A raw score of at least

#500 was chosen as cut-off based on results using PacBio reads
from untransfected CHO cells. Flanking regions of matching
plasmid sequences were extracted and mapped onto the CHO K1
genome using BLASR. 14 CHO genomic integration sites were
identified in the p1-68-GFP-transfected population and 10 in the
pGEGFP-transfected population. Two sets, one of 14 and one of 10,
different, randomly picked genomic scaffolds of the same length
($10%) as the sample scaffolds were selected as controls. The
Annotation Release 101 of the Chinese hamster genome assembly
(CriGri_1.0, GCF_000223135.1) was used to identify the CHO genes
in the vicinity of the integration sites. The presence of genes near
the plasmid integration position in each of the identified scaffolds
was compared with an analogous position on a corresponding
control scaffold. An exact binomial test was used to calculate
statistical significance between these datasets. Based on this
analysis, integration within 5 kb from an open reading frame (ORF)
was considered as intragenic, whereas integrationwithin 35 kb from
an ORF was defined as gene-proximal.

Suspension-adapted CHO K1 cells were stably transfected in
multiple transfection cycles with plasmid vectors containing the
human MAR X-29 and encoding the light and heavy chains of the
trastuzumab and adalinumab therapeutic antibodies, as previously
described (Le Fourn et al., 2014), with prior PvuI cleavage of the
vectors. Clones expressing the highest amount of the recombinant
proteins were selected for whole genome sequencing (Illumina),
performed by Fasteris SA (Plan-Les-Ouates, Switzerland). Integra-
tion sites were first predicted by the in silico identification of paired
reads displaying linked plasmid and genomic sequences, and the
predicted junctions were subsequently validated by PCR amplifica-
tion and Sanger sequencing. Identification of CHO genes near the
plasmid integration sites was performed as described for the
polyclonal populations.

Analysis of Immunoglobulin-Expressing CHO Cells

To assess the impact of DNA repair protein knock-down on
recombinant protein expression, CHO K1 cells were electroporated
with a negative control siRNA and siRNAs against MDC1, Ligase I,
Rad51, and Rad52 using the Neon1 transfection system (Invitrogen)
(Supplementary Fig. S2B). Two days post transfection the cells were
electroporated with PvuI-linearized human immunoglobulin (IgG1)
expression vectors containing the MAR 1–68 and a puromycin
resistance plasmid (pSVpuro) (Supplementary Fig. S1), using the
Neon1 transfection system (Invitrogen). After 3 weeks of antibiotic
selection the IgG titer in cell culture supernatants was measured by
sandwich ELISA and the specific productivity was calculated as
described previously (Le Fourn et al., 2014).

Results

Plasmid Integration Does Not Rely on NHEJ or the
Canonical HR Pathway

To assess the possible implication of NHEJ and HR in plasmid
concatemer formation and spontaneous integration into the cell
genome, we silenced the components of these major DSB repair
pathways in CHO DG44 cells using short interfering RNA (siRNA)
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(Supplementary Fig. S3 and Table SI). Efficient reduction of the
target mRNA and/or protein levels by siRNA transfection was
validated experimentally, to insure decreased levels by at least
twofold (Supplementary Figs. S4 and S5).
To evaluate if the knock-down of these genes affects DNA

recombination, we used previously described HR and NHEJ
fluorescent reporter assays based on the repair of transiently
transfected plasmids with a I-SceI-induced DSB in the GFP coding
sequence (Mao et al., 2008; Seluanov et al., 2004). These assays
enable to evaluate the efficiency of extrachromosomal break repair,
and thereby may provide an estimation of HR and NHEJ
involvement in plasmid concatemer formation. We observed that
DSB repair of the HR reporter plasmid was impaired by the knock-
down of the Rad51 HR protein, whereas it was rather increased in
cells treated with siRNAs targeting NHEJ factors (Supplementary
Fig. S6A). This indicated that Rad51 may contribute to the repair of
DSBs in episomal plasmids. Interestingly, the knock-down of the
remaining HR factors had no detectable effect on GFP reconstitu-
tion in this assay, although there was a very significant difference
between the overall effect of knocking-down NHEJ and HR genes, in
line with the previously reported competition between these
pathways (Neal et al., 2011). In contrast, the occurrence of GFP
expression from the NHEJ reporter was not altered by any of the
NHEJ-targeting siRNAs (Supplementary Fig. S6B), implying that
NHEJ is not prominently used to rejoin episomal DSBs in CHO cells
or that alternative end-joining pathways may be more active than
NHEJ.
We further assessed the recombination mechanisms involved in

plasmid concatemer formation and genomic integration by stably
transfecting the siRNA-treated CHO cells with plasmids carrying
the GFP reporter and a puromycin resistance gene (Supplementary
Fig. S2A). The average number of integrated GFP copies was
measured in antibiotic-resistant polyclonal populations, so as to
assess the efficiency of plasmid concatemerization prior to genomic
integration. Since expression from individual plasmids can be
influenced by the surrounding chromatin environment, the level of
GFP fluorescence and its normalization to the transgene copy
number was used to estimate plasmid integration within
transcription permissive or non-permissive areas of the genome.
Finally, we measured the efficiency of plasmid genomic integration
by quantifying puromycin-resistant colonies arising from cells
that had successfully integrated transgenes into their genome,
focusing on siRNAs that affected GFP expression or plasmid
concatemerization, as well as representative targets from each DSB
repair pathway.
The average GFP expression and plasmid copy number were not

affected by the down regulation of NHEJ activities such as DNA-
PKcs, Ligase IVor Xrcc4, nor was the expression per transgene copy
or the number of antibiotic resistant colonies (Fig. 1A–D). This
indicated that NHEJ activities are not limiting for plasmid
concatemerization and integration within the cell genome.
Stable GFP expression and/or transgene copy numbers were

increased by the knock-down of HR proteins, notably MDC1,
Rad51, Rad52, Rad54, and Brca1 (Fig. 1A and B). The knockdown
of these proteins had overall little effect on gene expression when
normalized to the copy number, indicating that the increased
expression observed upon HR gene knockdown resulted mostly

from an increased copy number rather than from preferential
plasmid integration into transcription-permissive chromatin
(Fig. 1C). These observations indicated that HR activities may
oppose a mechanism that mediates plasmid concatemerization
prior to genomic integration. However, the knock-down of proteins
having an effect on plasmid concatemerization and/or GFP
expression, such as MDC1 and Rad51, strongly decreased the
number of puromycin-resistant colonies (Fig. 1D), indicating that
these components of the HR pathway may mediate transgene
genomic integration. Interestingly, the frequency of integration was
not affected by the knock-down of other components of HR, such
as Rad52, Rad54, or Brca1, despite their effect on transgene
concatemerization and expression. These findings implied that
some HR activities are required for genomic integration whereas
others are not, suggesting the occurrence of non-canonical HR-
related integration mechanisms.

MMEJ-Type Mechanisms Mediate Plasmid
Concatemerization and Genomic Integration

Given that neither the NHEJ nor the canonical HR pathway may be
involved in plasmid concatemerization prior to genomic integra-
tion, we speculated that this could involve MMEJ-related
mechanisms active in eukaryotic cells with impaired NHEJ
and/or HR, but that may share early 50 strand resection events
with the HR pathway (Supplementary Fig. S3 and Table SII)
(Decottignies, 2007; Ma et al., 2003).
Knock-down of most MMEJ proteins had a moderate effect on

plasmid integration or expression, possibly because these pathways
may be masked by other repair mechanisms in the absence of
induced DNA damage, as was the case here (Fig. 2A–C).
Nevertheless, we observed a small decrease in GFP copy number
upon the knock-down of DNA polymerase u (Pol theta), suggesting
that this polymerase might be involved in plasmid concatemeriza-
tion, although the potential involvement of other DNA polymerases
cannot be excluded. Interestingly, the knock-down of Ligase I had
an opposite effect (Fig. 2A and B). Moreover, the depletion of this
ligase strongly inhibited plasmid genomic integration (Fig. 2D). A
recent study suggested the existence of two branches of the MMEJ-
related end-joining pathways, one of which may depend on Ligase I
whereas the other would require Ligase III (Oh et al., 2014; Paul
et al., 2013). We thus speculated that upon Ligase I knock-down, the
Ligase III-dependent branch could prevail, which may favor
plasmid concatemer formation. In contrast, the pathway responsi-
ble for plasmid genomic integration may be dependent on Ligase I,
as it is suppressed by it’s depletion.
We have recently constructed a MMEJ-specific GFP reporter

assay, based on principles analogous to the HR and NHEJ reporter
plasmids used above (Kostyrko and Mermod, 2015). Interestingly,
the use of this reporter in CHO cells revealed that the majority of
episomal DSBs were not re-joined by a simple MMEJ pathway.
Instead, the joined sequences of most repaired vectors rescued from
the transfected cells resembled the recently proposed alternative
DNA synthesis dependent (SD)-MMEJ mechanism (Yu and McVey,
2010). This pathway relies on a non-processive DNA polymerase,
such DNA polymerase u, to copy short homologous sequences
(2–9 bp) from a different part of the repaired molecule, which can
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then be used to rejoin the DSB (Yousefzadeh et al., 2014; Yu and
McVey, 2010). As a result, the junction sequence consists of a short
duplication (direct or inverted) of a sequence found nearby on the
repaired DNA fragment (Supplementary Fig. S3). Seventy percent of
the analyzed repair products had no pre-existing microhomology
indicative of MMEJ, but they displayed direct or inverted repeat
sequences associated SD-MMEJ, up- or downstream of the repaired
junction (Kostyrko and Mermod, 2015). We thus concluded that
plasmid-to-plasmid joining relies mostly on a SD-MMEJ pathway
potentially involving DNA polymerase u and Ligase III, and that the
simple MMEJ mechanism is seldom used.

MAR Elements Promote Plasmid Integration by
Stimulating SD-MMEJ Pathways

We previously showed that transgene integration in CHO cells is
enhanced three- to fourfold in the presence of matrix attachment
regions (MARs), which are DNA elements that form chromatin
domain boundaries (Girod et al., 2007; Majocchi et al., 2014). A
human MAR, termed MAR 1–68, was found to increase both the
number of transgene copies as well as the frequency of genomic
integration events in CHO cells, which has been previously ascribed

to HR-related mechanisms (Grandjean et al., 2011). However, which
HR-related recombination mechanism may be activated by MAR
elements was not assessed.

To unambiguously identify the recombination mechanism
activated by such elements, we combined the addition of the
human MAR 1–68 in the GFP vector with the siRNA knock-down
approach used earlier. As shown previously, inclusion of the MAR
1–68 enhanced GFP expression and copy number by approximately
five- and threefold, respectively, when compared to the MAR-devoid
control (Fig. 3A and B). This indicated that the MAR acted in part to
activate plasmid concatemerization, whereas it concomitantly
increased expression per gene copy (Fig. 3C). The presence of the
MAR also increased by around twofold the proportion of cells
having recombined the transgenes into their genome (Fig. 3D),
indicating that it also activated genomic integration.

In the presence of the MAR, the silencing of NHEJ factors had no
effect on transgene expression or copy number, as before
(Fig. 3A and B). In contrast, the knock-down of many HR and
cell cycle control factors yielded very high transgene expression, but
without further increasing the transgene copy number. Consis-
tently, we observed an enhancement of expression per gene copy
upon the knock-down of most HR factors, which was markedly

Figure 1. Effect of HR and NHEJ components knock-down on plasmid genomic integration and expression. CHO cells treated with indicated siRNAs were re-transfected with a
GFP expression plasmid and puromycin resistance vector. Puromycin-resistant stable polyclonal CHO populations were assessed for average GFP fluorescence (A), GFP copy
number (B), GFP expression per transgene copy (C), and the occurrence of puromycin-resistant colonies (D). Values represent mean fold change over control cells not treated with
siRNAs (mock); s.e.m error bars, n% 3.
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higher than the increase already mediated by the MAR (Fig. 3C). A
strong inhibition of the frequency of plasmid genomic integration
was again noted upon the knock-down of MDC1 and especially
Rad51 (Fig. 3D). This indicated that these factors and the MARmay
act synergistically to promote transgene genomic integration.
However, upon the knock down of Rad51 and other HR proteins, the
MAR-containing plasmids may have integrated preferentially into
expression-permissive portions of the genome. We therefore
speculated that the MAR acts to promote one or several MMEJ-
related pathways that may direct transgenes into expression-
favoring chromatin structures.
In the presence of the MAR, the knock-down of MMEJ factors

had mostly similar effects on GFP expression and copy number as
observed earlier for the MAR-devoid plasmid, with a small decrease
upon the knock-down of DNA polymerase u, and an increase in the
absence of Ligase I (Fig. 3A and B). Interestingly, the presence of the
MAR seemed to counteract the effect of Ligase I down-regulation on
transgene genomic integration, possibly by reducing the inhibitory

effect of the reduced ligase level, or by stimulating a distinct
recombinationmechanism (Figs. 2C and 3D). Overall, we concluded
that the MAR may activate both concatemerization and genomic
integration processes by stimulating SD-MMEJ-related repair
pathways, and that these pathways may concur with the MAR to
favor integration into expression-permissive genomic loci.

The MAR and SD-MMEJ Pathways Mediate Transgene
Integration Near Cellular Genes

To further assess which of the alternative recombination pathways
may mediate favorable genomic integration events, we analyzed
the genomic integration loci and the DNA sequence of the
genome-plasmid junctions. This was performed on three CHO
clones transfected multiple times with immunoglobulin (IgG)
expression vectors containing the human MAR X-29 and selected
for high stable expression of the therapeutic protein. To do so, we
used a whole genome sequencing approach on these clones and

Figure 2. Effect of MMEJ components knock-down on plasmid genomic integration and expression. CHO cells were treated with siRNAs against the indicated MMEJ genes
and processed as described in the legend to Figure 1. The average GFP fluorescence (A), GFP copy number (B), GFP expression per transgene copy (C), and frequency of genomic
integration events (D) were assessed and represented as in Figure 1 (n% 3).
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devised a software to identify paired sequence reads pertaining to
the plasmid and the CHO genome. Six integration sites in one
clone (BS01) and two in the other clones (BS03 and Cp33/64)
were predicted in silico and validated experimentally by PCR
amplification and DNA sequencing. The occurrence of the
predicted number of plasmid integration loci was further
validated by FISH for two of the analyzed clones (Supplementary
Fig. S7).

From the five integration sites where the junction sequences were
validated experimentally on both sides of the transgenes, two had
large deletions (913 bp in BS01 and 320 bp in Cp33/64), as expected
from MMEJ-related mechanisms (Supplementary Table SIV
and Fig. 4). In 5 of the 15 experimentally validated junctions, we
noted the presence of short (1–3 bp) or long (60–100 bp) templated
inserts, suggesting the involvement of a DNA polymerase in the
repair process, a hallmark of the SD-MMEJ mechanism (Fig. 5). All
analyzed junction sequences fitted well to the SD-MMEJ model,
although 5 out of 15 junctions also covered pre-existing micro-
homologies (%2 nt), and thus could also be explained by simple
MMEJ. Interestingly, no integration site could be explained by HR.
Although NHEJ cannot be fully excluded, as it does not strictly
require extensive homology, the SD-MMEJmechanismmore readily
explains the presence of extended deletions and templated inserts.
Moreover, no junction lacking any type of microhomology was

observed. Overall, these results confirmed that the genomic
integration of MAR-containing plasmids predominantly involves a
SD-MMEJ pathway.

Out of the 10 integration events, eight had occurred within or
near cellular genes, whereas only two were intergenic. Seven out of
these eight gene-proximal integrations were found in or close to an
expressed gene (Supplementary Table SV), suggesting that most
integration events had occurred in transcriptionally active genomic
loci. These results further suggested that the MAR-containing
plasmids preferably integrate within- or in close proximity- to
expressed CHO genes. To assess whether this indeed resulted from
the presence of the MAR in the IgG expression vector or from the
selection of highly expressing clones, we directly compared the
integration loci of MAR-containing and MAR-devoid GFP
expression vectors in polyclonal cell populations.

Analysis of the integration sites identified from the whole
genome sequencing of these cells revealed that, in presence of the
MAR, plasmids indeed often integrated close to cellular genes
(10/14 loci) (Supplementary Table SV and Fig. S8). This result was
significantly different from random (P¼ 0.05), indicating that the
MAR may stimulate genomic integration into chromatin regions
permissive for transgene expression. In the cells transfected with
the MAR-devoid plasmid, integration in the vicinity of genes was
not significantly enriched (Supplementary Table SV and Fig. S8B).

Figure 3. Effect of aMAR element and recombination gene knock-down on plasmid genomic integration and expression. The effect of the inclusion of aMAR element on stable
GFP expression (A), GFP copy number (B), GFP expression per transgene copy (C), and the frequency of genomic integration events (D), were assessed as described for Figures 1
and 2, except that siRNA-treated cells were re-transfected with GFP or MAR-GFP vectors, as indicated (n% 3).
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Furthermore, these cells required threefold more sequencing reads
to identify a comparable number of integration loci as obtained
from the cells transfected with the MAR, further indicating that
genomic integration events were less frequent in the absence of the
MAR.
Interestingly, all cellular genes near the integration loci of MAR-

devoid plasmids were transcribed in the parental CHO cells
(Supplementary Table SV and Fig. S9). This suggested that, in the
absence of the MAR, the cells had to integrate the transgenes into
transcriptionally active chromatin in order to express the selection
gene at a sufficient level to survive antibiotic selection. This may
explain the strong decrease in cell survival upon the knock-down of
Rad51, as this protein was recently reported to be primarily
responsible for DSB repair in transcriptionally active chromatin
(Aymard et al., 2014). In contrast, presence of the MAR seemed to
alleviate the need to integrate transgenes into transcribed genomic
sequences, as only half of the CHO genes close to integration sites
were found to be transcriptionally active. This indicated that the
MAR itself may ensure high expression of transgenes integrated in
non-transcribed DNA, likely due to its previously reported
transcription-enhancing properties (Galbete et al., 2009; Majocchi
et al., 2014). Taken together, these results suggested that MAR
elements may promote transgene integration into gene-rich
chromatin regions by stimulating an SD-MMEJ mechanism.

MARs and HR or SD-MMEJ Knock-Down Improve
Recombinant Protein Expression

The transient knock-down of MDC1, Rad51, Rad52, and Ligase I
was found to mediate the highest and most homogeneous GFP
fluorescence from polyclonal pools of cells stably transfected with
the MAR-GFP vector (Fig. 6A). To ascertain whether the knock-
down of these specific HR and/or SD-MMEJ activities may be used
in conjunction with MAR elements as a general approach to boost
the expression of recombinant proteins, we similarly assessed
vectors encoding a therapeutic IgG1 immunoglobulin, using a
suspension-adapted CHO K1 cell line derivative suitable for the
production of therapeutics. CHO cells treated with siRNAs against
Rad51, Rad52, MDC1, or Ligase I were subsequently re-transfected
with MAR-containing vectors for the human IgG1 light and heavy
chains (Supplementary Fig. S2B). Polyclonal populations were then
assessed for specific antibody secretion, which revealed that prior
treatment with Rad52, MDC1, or Ligase I siRNAs increased stable
IgG expression by approximately twofold relative to the untreated
cells (Fig. 6B). The high productivity levels observed from these
polyclonal populations, up to over six picograms per cell per day
(PCD), are usually only observed from monoclonal populations
obtained from the screening of hundreds of individual cell clones, to
identify the most productive ones. Interestingly, Rad51 depletion in

Figure 4. Example of a plasmid-to-genome junction and underlying SD-MMEJ mechanism. The integration site and junction sequence used in this example is taken from
Supplementary Table SIV (clone BS01, integration site #2, right junction). P1/P2, primer repeats; mh1/mh2, microhomology repeats. Adapted from Yu and McVey (2010).
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CHO K1 cells had a weaker effect on transgene expression than in
CHO DG44 cells. This could be due to the combination of
mechanical stress associated with growth as cell suspension in
shake flasks, antibiotic selection and the deleterious effect of Rad51
knock-down. Consistently, we observed that CHO K1 cells treated
with Rad51 siRNA grew much slower than the cells treated with
other siRNAs, and only a small number of cells survived selection
(data not shown). We hypothesize that the population of CHO K1
cells that recovered from selection represented cells which retained
some Rad51 activity, and which thus did not have a large increase of
plasmid concatemerization and overall expression.

In conclusion, the increase in expression mediated by Rad52,
MDC1, and Ligase I knock-down could be observed for distinct
recombinant proteins, and from the use of distinct CHO cell lines
and vectors. We concluded that the production of therapeutic
proteins in CHO cells may be significantly improved by transiently
altering their DSB repair properties during transfection and by
incorporating MAR elements in the vector.

Discussion

Eukaryotic cells have developed many defense mechanisms that
detect and repair DNA double stranded breaks, one of the most
deleterious types of DNA damage. The two canonical pathways
responsible for DSB repair are HR and NHEJ. However, recent
evidence indicated that these two mechanisms may not suffice to

repair all DSBs, and that several alternative pathways, collectively
termed MMEJ or alt-NHEJ, also exist in eukaryotic cells (Gigi et al.,
2014; Truong et al., 2013). These later processes are often obscured
by the main repair mechanisms, which may predominate in normal
cells. Furthermore, their components are still poorly characterized
and there was no simple assay to specifically detect them, rendering
their study difficult (Kostyrko and Mermod, 2015). However, they
are now attracting increasing attention, notably in oncology, since
these “illegitimate” recombination pathways were shown to be more
prevalent in tumor cells and to cause chromosomal rearrangements
leading to cancer (Bentley et al., 2004; Simsek et al., 2011; Tobin
et al., 2012; Zhang and Jasin, 2011).

Here, we found that NHEJ and HR are not the main pathways
responsible for non-specific recombination in CHO cells, as
required for plasmid genomic integration in these cells. Rather, we
found that the absence of several HR factors augmented plasmid
concatemerization, implying that HR proteins may compete with
one or more DSB repair pathways that mediate this process. In
contrast, specific HR proteins, such as Rad51, were required for
efficient transgene recombination with the genome, whereas the
silencing of downstream HR proteins had no effect. This suggested
the involvement of other mechanisms, distinct from the canonical
NHEJ or HR pathways but nevertheless requiring DNA homology,
such as MMEJ-related pathways. Consistently, the knock-down of
Ligase I, a protein reported to play a role in alternative DSB repair
pathways, was found to alter plasmid genomic integration.

Figure 5. Example of a plasmid-to-genome junction and SD-MMEJ mechanism requiring a templated insertion. (A) A scheme showing the mechanism of plasmid (dark green)
joining with the genome (blue). Another fragment of the plasmid (light green) serves as an adaptor providing the microhomologies required for joining and becomes incorporated into
the junction as a templated insert. (B) Sequences of plasmid and genome fragments shown in panel A. The integration site and junction sequence used in this example is taken from
Supplementary Table SIV (clone BS01, integration site #1, right junction). P1/P2 and P3/P4, primer repeats; mh1/mh2 and mh3/mh4, microhomology repeats.
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As the majority of rejoined plasmid extremities displayed
microhomology patterns and templated inserts, we attribute
these end-joining events to the SD-MMEJ mechanism proposed
by Yu and McVey (2010). Indeed, both plasmid-to-plasmid and
plasmid-to-genome fusion sequences were also present as direct
or inverted repeats near the junctions, occasionally accompanied
by templated inserts. However, the knock down of specific
SD-MMEJ activities had distinct effects on plasmid concatemer
formation and on genomic integration, suggesting the occurrence
of multiple SD-MMEJ pathways. One of these pathways, which
may rely on DNA polymerase u and Ligase III, appears to mediate
plasmid concatemerization. The other SD-MMEJ pathway, which
may involve the activity of Ligase I, appears to mediate the
recombination of plasmid concatemer with the genome, as
indicated by the finding that the lack of this ligase nearly
abolished genomic integration of the GFP vector. Taken together,
these results imply that concatemer formation and integration of
MAR-devoid plasmids may be mediated by sets of proteins
belonging to distinct branches of the SD-MMEJ pathways, as
proposed in Figure 7.

Interestingly, we observed that the knock down of Rad51 had
similar effects as the silencing of Ligase I, implying that they
contribute to the same pathway mediating genomic integration of
exogenous DNA. The mechanismmediating microhomology search
of the SD-MMEJ pathway remains mostly uncharacterized, but it
may involve DSB repair components that are common to other
mechanisms. In this model, the Ligase I-dependent SD-MMEJ
pathway may lie downstream of the search for a homologous DNA
strand by Rad51, as in canonical HR (Fig. 7). However, the lack of
extended homology may preclude the productive cooperation of
Rad51 with its accessory proteins, preventing extended strand
invasion and the successful completion of HR. End-joining would
then rather be performed by Ligase I-dependent SD-MMEJ, as a
salvage repair pathway, since it only requires short homology
regions as shared by the plasmid and cell genome. When such
microhomologies are not available, they may be provided by an
adaptor DNA stretch copied from nearby plasmid or genome
sequences, leading to the insertion of a templated insert separating
the joined sequences (Fig. 5). We hypothesize that the enzyme
involved in the synthesis of the templated insert may be DNA

Figure 6. Engineering of the transgene integration process for improved expression. (A) Adherent CHO cells transfected with the indicated siRNAs or left untreated (control),
were re-transfected with a GFP or MAR-GFP vector, as indicated, and selected for antibiotic resistance. GFP fluorescence profiles of polyclonal cell pools and corresponding
fluorescence microscopy pictures are shown. (B) Specific IgG productivity in polyclonal, suspension-adapted CHO cells treated as for panel A, except that they were re-transfected
with the MAR-containing IgG1 expression vectors. Values represent the average fold change in IgG secretion (in picograms/cell/day) as compared to the cells not treated with
siRNAs (control); s.e.m error bars, n¼ 3.
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polymerase d, which together with Ligase I participates in DNA
replication and long patch base excision repair (BER) (Stucki et al.,
1998). In human cells, a break-induced replication (BIR)
mechanism responsible for the repair of one-ended DSBs was
also recently shown to rely on POLD3, a DNA polymerase d subunit,
and to involve microhomologies (Costantino et al., 2014; Lydeard
et al., 2007). Nevertheless, whether the Rad51-dependent SD-MMEJ
pathway proposed here may be related to BIR remains to be
established.

Inclusion of a MAR element also increased plasmid concateme-
rization, suggesting that it can act to activate the processing of
linearized plasmid extremities by a Ligase I-independent SD-MMEJ
mechanism. In addition, the MAR presence increased genomic
integration and dampened the inhibitory effect of Ligase I
downregulation, whereas it did not abolish the requirement for
Rad51. These findings suggest a preferential use of the Ligase
I-dependent SD-MMEJ mechanism for the genomic integration of
the MAR-devoid plasmid, whereas the presence of the MAR may
stimulate the use of a repair pathway downstream of Rad51 that
may involve a distinct ligase, for example, Ligase III.

The molecular mechanisms by which MARs may promote
SD-MMEJ-mediated recombination could involve their AT-rich
cores, which possess a high potential for double helix denaturation
(Bode et al., 1992; Platts et al., 2006), or their enrichment in
topoisomerase II cleavage sites and so-called fragile sites that may
be the hot spots of DNA breakage and repair (Jackson et al., 2003;
Sperry et al., 1989; Svetlova et al., 2001). Consistently, these sites
were previously reported to be preferred targets of plasmid
integration (Rassool et al., 1991). MAR elements were also proposed
to mediate DNA replication initiation in mammalian somatic cells
(Debatisse et al., 2004). Thus, they might associate with DNA
replication machinery components also involved in MMEJ-related
mechanisms (e.g., Pold3, Ligase I), thereby contributing to the
repair of DSBs arising at replication forks (Truong et al., 2013).

In this study, we identified SD-MMEJ as the primary mechanism
driving plasmid integration in the genome of CHO cells. We propose
the occurrence of two distinct SD-MMEJ branches relying on
different subsets of proteins, both of which are stimulated by MAR
elements, to increase transgene copy number and to preferentially
target plasmid DNA into potentially expression-permissive, gene-

Figure 7. Revised model of the major CHO cell DSB repair pathways. A novel model describing the possible interplay of the NHEJ, HR, MMEJ, and two distinct SD-MMEJ
pathways involved in DSB repair in CHO cells, as modified from Supplementary Figure S3. Although the junction sequences resulting from both SD-MMEJ pathways are similar, the
Ligase I-dependent SD-MMEJ requires the homology-searching Rad51 protein, and it may provide a fallback mechanism in the absence of extensive homology, as required to
complete HR. Activities that initiateMMEJ and Ligase III-dependent SD-MMEJ remain to be identified, but the presence or absence of pre-existing microhomologies may dictate the
choice between these two pathways.
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rich regions of the genome. Finally, we use this knowledge to
transiently modify the DNA recombination properties of CHO cells
to improve the expression of a therapeutic antibody, demonstrating
that this approach can be used to engineer cells for more efficient
recombinant protein expression.
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reagents. We thank the Vital-IT high performance computer cluster and the
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Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage
response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is
transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing
molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the
checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle
regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells
expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of
HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit
differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that
they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51
paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and
Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle
checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an
essential role both in DNA repair and checkpoint signaling.

Introduction

DNA double strand breaks (DSBs), one of the most deleteri-
ous types of DNA lesions, can result from ionizing radiation or
chemical agents, or from natural cellular processes such as DNA
replication or maturation of the immune system genes. If left
unrepaired, they constitute a major threat to genetic integrity
and stability, possibly leading to cell death or carcinogenesis.1 In
response to DSBs, cells activate a network of DNA repair and sig-
naling pathways, collectively termed the DNA damage response
(DDR).2-4 To allow time for DNA repair, the DDR machinery
activates cell cycle checkpoints that arrest cell cycle progression
until genome integrity is restored. The DDR-activated check-
points include the G1/S, the intra-S and the G2/M transitions.
The G1/S checkpoint, the one most sensitive to DNA damage, is
defective in most human cancer cells.5,6

The Mre11/Rad50/Nbs1 (MRN) complex is among the first
sensors of DSBs, subsequently activating Ataxia telangiectasia
mutated (ATM).7 ATM, a key protein kinase in the DDR

network, is responsible for phosphorylation of many downstream
DNA repair and cell cycle factors, including tumor suppressor
p53, mediator of DNA-damage checkpoint 1 (MDC1), cell cycle
checkpoint kinase 2 (Chk2), and breast cancer susceptibility pro-
tein 1 (Brca1).8,9 The activation of these factors results in signal-
ing cascades ultimately leading to cell cycle arrest. ATM-
dependent phosphorylation of histone H2AX also induces global
changes in the chromatin structure, leading to the recruitment of
DNA repair proteins to the sites of damage.

Several specialized pathways act to repair DNA breaks in
higher eukaryotic cells. One of the main pathways responsible for
DSB repair is non-homologous end-joining (NHEJ). NHEJ is a
fast process, based on a simple ligation of the 2 broken DNA
ends, active throughout the entire cell cycle.10 In the absence of
functional NHEJ, cells were shown to use a highly error-prone,
backup mechanism termed microhomology mediated end join-
ing (MMEJ).11,12 The third pathway, considered to be the most
precise of all DSB repair mechanisms, is based on homologous
recombination (HR).13 HR requires extensive homology for
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repair, and thus is primarily used in late S and G2 phases of the
cell cycle, when the genetic material has been replicated and sister
chromatids are available as repair template.

A key role in eukaryotic HR is played by the Rad51 recombi-
nase, which coats ssDNA ends resulting from the initial process-
ing of the DSB.14,15 The DNA-bound Rad51 then searches for
sequence homology along a cDNA strand and mediates pairing
between the 2 strands. The Rad51 protein is essential, as the tar-
geted knock-out of its gene leads to embryonic lethality in
mice.16 Other proteins involved in HR include CtIP, Brca2,
Rad52, Rad54 and the 5 Rad51 paralogs: Rad51B, Rad51C,
Rad51D, Xrcc2, and Xrcc3.17–21 Rad51B, Rad51C, Rad51D
and Xrcc2 together form the BCDX2 complex, which was pro-
posed to facilitate the formation and stabilization of the Rad51
nucleofilament.22 Rad51C also participates in the formation of a
second complex with Xrcc3 termed CX3, which was reported to
play an essential role in the final resolution of recombination
intermediates.23 The MRN complex, MDC1 and Brca1, which
are components of the DDR response, also play a role in the ini-
tial steps of HR.24-26

It was recently proposed that HR proteins may also directly
contribute to cell cycle control, in addition to their role in DNA
repair.27-29 The knock-down of Rad51 was shown to induce
G2/M arrest, suggesting that this protein is required for the pro-
gression from the G2 phase to mitosis,30-32 and Brca1 was
reported to play a role in the regulation of the G2/M and intra-S
checkpoints.29,33 Rad51C was also proposed to contribute to cell
cycle regulation, although there are conflicting reports as to its
exact role. Rodrigue and others observed that the knock-down of
Rad51C in human cells leads to arrest at the G2/M checkpoint,
similarly to Rad51.27 In another study, knock-down of Rad51C
caused cells to escape the intra-S and G2/M checkpoints,
thus allowing entry into mitosis.28 Several other DSB repair pro-
teins have also been proposed to participate in cell cycle
progression.34,35

Here, we systematically assessed the role of HR factors in cell
cycle regulation in the absence of exogenous DNA damage by

silencing HR genes of Chinese Hamster Ovary (CHO) cells
expressing the fluorescent ubiquitination-based cell cycle indica-
tor (Fucci) probes.36 We show that the knock-down of many HR
factors, including Rad51, MDC1, Brca1, several Rad51 paralogs,
CtIP, and Rad50 significantly affected cell cycle progression,
albeit differentially. The knock-down of MDC1, Rad51 and
Brca1 caused the cells to arrest at the G2/M checkpoint, suggest-
ing that these factors may be required for the transition through
the G2 phase and entry into mitosis. In contrast, the absence of
the remaining HR proteins increased the proportion of G1/G0
phase cells, indicating that their deficiency may cause the cells to
escape the G2/M checkpoint, divide and subsequently become
arrested in the G1 phase. We also observed that knock-down of
Rad51B, Rad51C, CtIP and Rad50 increased the proportion of
G0 cells, suggesting that the absence of these factors may cause
cells to enter a quiescent state. We conclude that many HR pro-
teins may regulate cell cycle progression in addition to their
known role in DSB repair.

Results

Characterization of CHO Fucci cells
The fluorescent ubiquitination-based cell cycle indicator

(Fucci) system enables the simultaneous observation of multiple
cell cycle phases in living cells.36 It is based on the expression,
ubiquitination and degradation of the cell cycle-dependent
human Cdt1 and Geminin proteins fused to fluorescent markers,
the monomeric Kusabira Orange 2 (mKO2) and monomeric
Azami Green (mAG), respectively. Depending on the fluoro-
phore levels, 4 main cell subpopulations can be visualized,
namely early G1 phase cells, G1/G0 cells, early S cells, and late
S, G2 and M phase cells (Fig. 1). The freshly divided early G1
phase cells are non-fluorescent, but they start to express and accu-
mulate the mKO2-hCdt1(30/120) chimeric protein as they prog-
ress through the G1 phase. In the early S phase, as the mKO2-
hCdt1(30/120) becomes ubiquitinated and degraded, expression

Figure 1. Characterization of CHO Fucci cells. (A) Scheme of the Fucci cell cycle indicator assay.36 (B) Typical fluorescence image of non-synchronized
CHO Fucci cells. Arrows point to cells in G1/G0 (top), late S, G2, and M (middle) and early S phase cells (bottom). (C) Flow cytometry analysis of CHO Fucci
cells with 4 subpopulations of cells: mKO2-positive G1/G0 cells (mKO2), mAG-positive late S, G2 and M cells (mAG), double positive (mKO2CmAGC) early
S cells, and a double negative (mKO2-, mAG-) early G1 cells.
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of the mAG-hGem(1/110) fusion protein yields yellow cells.
Expression of mAG-hGem(1/110) and green fluorescence is then
maintained from late S until the end of M phase.

To confirm that the CHO Fucci cells express the fluorescent
probes in a cell cycle dependent manner, we synchronized the
culture by serum deprivation, to induce a cell cycle arrest in the
G1/G0 phase, or by contact inhibition, which can cause G1
arrest.37,38 Over 90% of serum-deprived cells displayed red fluo-
rescence indicative of the G1/G0 phase (Figs. S1A, S2A). In cul-
tures grown to confluence, a lower proportion (50%) of the red
fluorescent G0/G1 cells was obtained, indicating that this
method did not efficiently synchronize cells into the same phase
of the cell cycle (Figs. S1B, S2B). We subsequently released the
cells from cycle arrest and monitored the cell cycle phase distribu-
tion 16–24 h and 40–48 h following release. Within 20 h, the
serum deprived cells had progressed through the S phase into the
G2 and M phases, as evidenced by the accumulation of green
fluorescent cells. Most serum deprived cells remained synchro-
nized until 48 h post release, whereas the cells grown to conflu-
ence became desynchronized. Overall, the CHO Fucci cells
appeared to express the fluorescent probes in a cell cycle depen-
dent manner and therefore may serve as a model to study cell
cycle regulation.

Knock-down of HR factors differentially influences cell cycle
distribution

To assess the role of recombination factors in cell cycle regula-
tion, we subsequently treated the CHO Fucci cells with a panel
of short interfering RNAs (siRNAs) targeting HR protein
mRNAs. The efficiency of siRNA knock-down was assessed by
qPCR (Fig. S3A). Rad51 and Rad51D knock-down was also
confirmed by western blot (Fig. S3B). A non-targeting siRNA,
as well as an siRNA targeting Cyclin D1, which is required for
the progression through the G1/S checkpoint,39 were used as a
negative and positive control, respectively.

The siRNA treatments had little effect on the proportion of
freshly divided early G1 phase cells, except for a decrease of this
sub-population, albeit not statistically significant, with Rad51C
siRNA (Fig. 2A). However, the number of G1/G0 cells was sig-
nificantly increased upon treatment with the Cyclin D1 siRNA, as
expected from a G1/S checkpoint arrest (Fig. 2B). Interestingly,
the knock-down of 3 Rad51 paralogs – Rad51B, -C, and -D, as
well as Rad50, one of theMRN components, and to a lower extent
CtIP, had a similar effect. The accumulation of G1/G0 cells upon
the knock-down of these factors suggests that the progression
through the G1 phase may be perturbed in their absence, possibly
involving the G1/S checkpoint. This is surprising, as these pro-
teins are thought to operate primarily in the late S and G2 phases
of the cell cycle, when HR is most active. However, it is also possi-
ble that these factors may be necessary for the G2/M checkpoint
activation in response to DNA damage. In this scenario, the
absence of these factors would cause the cells to circumvent arrest
and enter mitosis despite the presence of unrepaired breaks, which
later on would activate the G1/S checkpoint.

As expected, the proportion of early S phase cells was signifi-
cantly decreased by the knock-down of Cyclin D1, due to the

defective G1/S transition (Fig. 2C). We also noted a decrease in
this subpopulation in the presence of Xrcc2 siRNA, which, how-
ever, did not correlate with an increase in the number of G1/G0
phase cells. Distinctly, the knock-down of MDC1, Rad51 and
Brca1 resulted in a significant accumulation of green-fluorescent
late S, G2 or M phase cells (Fig. 2D). This further supported the
view that these proteins are required for the progression through
the G2/M checkpoint.29–31,40,41 The percentage of green fluores-
cent cells was also slightly increased in the presence of Xrcc2
siRNA. In contrast, the silencing of Cyclin D1 as well as
Rad51B, -C, -D, Rad50 and CtIP, resulted in a significant
decrease in this subpopulation, which may result from the afore-
mentioned lack of G2/M checkpoint activation upon DNA dam-
age and in the following accumulation of G1/G0 phase cells.

In conclusion, several HR proteins appear to be involved in
cell cycle regulation, albeit differentially. MDC1, Rad51 and
Brca1 seem to be essential for the progression from S and G2
phases into mitosis, while Rad51 paralogs, Rad51B, -C and -D,
as well as the DNA end resection enzymes, Rad50 and CtIP may
be required for activating the G2/M checkpoint in response to
damage and/or progression through the G1/S checkpoint.

Knock-down of specific HR proteins induces entry into G0
phase and cell cycle arrest

In addition to increasing the number of mKO2-positive cells,
we also observed that the knock-down of Cyclin D1 and several
HR factors increased the level of mKO2 fluorescence (Fig. S4).
A detailed analysis of the cells knocked-down for Rad51B,
Rad51C, CtIP, and Rad50 revealed a sub-population of cells
with distinctly higher mKO2 fluorescence patterns (Fig. 3A). A
recently published report identified low- and high mKO2-
expressing cells as cycling G1 and quiescent G0 cells, respec-
tively.42 Consistently, we observed an increase in the number of
these bright red fluorescent cells upon serum starvation
(Fig. S5), confirming the view that this sub-population repre-
sents non-cycling G0 cells.

We therefore set out to quantify the G1 and G0 sub-popula-
tions in cells transfected with HR siRNAs. In controls, as well as
in most siRNA-treated samples, the G0 phase cells constituted
only approximately 5–10% of the population (Fig. 3B). How-
ever, treatment with Cyclin D1 siRNA increased the number of
quiescent cells to 30%. This is consistent with previous studies
showing that Cyclin D1 deficiency causes entry in the G0
phase.43 Interestingly, we also observed a very significant increase
in the number of G0 cells upon the knock-down of Rad51B,
Rad51C, CtIP, and Rad50. This was especially striking in the
presence of Rad51B and Rad51C siRNAs, where G0 cells com-
prised up to 40% of the entire population. This implied that the
absence of these HR factors may constitute a signal to enter the
quiescent state.

We next sought to investigate whether the altered cell cycle
distribution observed upon siRNA knock-down of HR factors
results from a cell cycle arrest or from a delayed cycle progression.
We focused our attention on Rad51 and Rad51C, the 2 HR pro-
teins with pronounced, but distinct effects on the cell cycle. We
synchronized the siRNA-treated cells in early S phase by sorting
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double positive mKO2CmAGC cells, and subsequently analyzed
their cell cycle distribution (Fig. 4A) and the presence of cell
doublets and quadruplets (Fig. S6A) 1 or 2 d after sorting. Since
the doubling time of CHO DG44 cells is approximately
12–14 h,37,44 the cells should have completed a first cell cycle
and be nearly completing a second one during the 18 h between
sorting and the first measurements. Accordingly, the majority of
cells should be green fluorescent at the beginning of the analysis,
40 h post transfection, and green fluorescence should decrease
thereafter upon mitosis completion. This was indeed the case for
untreated cells, and for cells transfected with the non-targeting
siRNA (Fig. 4B,C; Fig. S6A, B). Both populations also showed
a similar cell cycle distribution over time, with another cell divi-
sion around 64 h to 72 h post transfection. The time between

these mitosis was also consistent with the normal CHO cell cycle
duration.

Cells treated with the Cyclin D1 siRNA initially displayed a
cell cycle pattern similar to that of the cells treated with the non-
targeted control siRNAs, with one division 44–48 h post trans-
fection (Fig. 4D; Fig. S6C). However, the next division to an
8-cell stage was delayed to 64–68 h, after which the accumula-
tion of G1 and G0 phase red-fluorescent cells occurred (Fig. 4C
and D; Figs. S6B and S6C). In Rad51-depleted cells, the first
division was notably delayed compared to the controls (48–
64 h), despite the cell enlargement, after which most cells
appeared not to divide anymore, except for a small portion of
cells (approx. 20%) which underwent a second division at around
64–68 h after transfection. (Fig. 4E; Fig. S6D). The percentage

Figure 2. Knock-down of HR factors affects cell cycle distribution of CHO Fucci cells. Graphs show relative numbers of cells in (A) early G1 phase,
(B) G1/G0 phase, (C) early S phase, (D) late S, G2 and M phases. Results are shown as fold change over the data obtained from mock-treated cells (mock).
Mean of ! 3 experiments, error bars show s.e.m. Asterisks indicate significant differences between siRNA-treated samples and mock control. Statistical
significance relative to mock was determined by unpaired Student’s t-test with Benjamini-Hochberg correction; significance level P < 0.05 (*), P < 0.01
(**).
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Figure 3. Knock-down of Cyclin D1, Rad51B, Rad51C, CtIP and Rad50 induces G0-like quiescence. (A) FACS plots of siRNA-treated cells. (B) Percentages of
cells in G1 and G0 phases. The mean of values from ! 3 experiments is displayed, and error bars indicate the standard errors of the mean. Statistical sig-
nificance relative to mock was determined by unpaired Student’s t-test with Benjamini-Hochberg correction; significance level P < 0.05 (*), P < 0.01 (**).
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of green fluorescent cells stayed high throughout the time course,
implying that most cells were arrested in late S, G2 or M phase.
Thus, a near complete Rad51 deficiency may have caused the
cells to arrest in the late phases of the cycle, likely at the G2/M
checkpoint, whereas a milder Rad51 depletion, as due to lower
knock-down efficiency, may have resulted in delayed cell cycle
progression.

Cells treated with Rad51C siRNA also divided later than the
controls (between 48 and 64 h) pointing to a delay in the cell
cycle (Fig. 4F; Fig. S6E). However, Rad51C-deficiency resulted

in a steadily elevated proportion of cells in G1 and G0 phases,
resembling the effect of the Cyclin D1 knock-down. Indeed,
cluster analysis demonstrated that Rad51C-depleted cells
grouped together with Cyclin D1 siRNA-treated cells (data not
shown). However, the majority of these red-fluorescent cells
appeared to be quiescent, reaching 50% of the entire population
(Fig. 5). This was more than observed in the presence of Cyclin
D1 siRNA (10–20%). After the delayed first cycle, most of
the Rad51C-depleted cells underwent a second division within a
normal time of 12–14 h, although some cells remained arrested

Figure 5. Effect of HR protein depletion on the percentages of quiescent cells in CHO Fucci cells synchronized in early S phase. Numbers below the bars
represent time (in hours) post siRNA transfection. The siRNA targets are indicated below the plot. Mock indicates cells treated with the transfection
reagent only.

Figure 4. Effect of Rad51 and Rad51C knock-down on cell cycle progression of CHO Fucci cells synchronized in early (S)phase. (A) General outline of the
procedure. (B F) Percentages of cells in a given cell cycle phase at day 3 (D3) and day 4 (D4) post siRNA transfection. Arrows indicate the estimated
average time of cell division, dotted arrow indicates a cell division of a subpopulation of cells.
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in a prolonged G1, G0-like phase (Fig. 5; Fig. S6E). This indi-
cated that, out of all the cells initially arrested in a quiescent G0-
like phase, some were later released from the block and re-entered
the cell cycle. At 64 h post transfection, most of the cells had
reverted to a G1 profile, indicating that the cell Rad51C deple-
tion-mediated cell cycle arrest is reversible.

Overall, we concluded that Rad51 knock-down causes an
arrest at the late phases of the cell cycle, most probably at the
G2/M checkpoint, or delayed cell cycle progression in cells cir-
cumventing the arrest. In contrast, Rad51C depletion causes
entry into a quiescent G0-like phase, most likely due to the acti-
vation of the G1/S checkpoint.

Discussion

The DNA damage response encompasses many functionally
interconnected pathways, including cell cycle checkpoint signal-
ing and DNA repair. Many proteins participating in cell cycle
regulation are also known to control DNA repair, whereas the
converse was not known to be true for the DNA repair factors.
Recent evidence, however, suggested that some DSB repair pro-
teins may also be implicated in cell cycle regulation in response
to exogenous DNA damage.28,29,34 To further explore this con-
nection between DNA repair proteins and cell cycle machinery,
we analyzed the effect of HR protein depletion on the CHO cell
cycle in the absence of induced DNA damage. We found that the
knock-down of several HR factors altered cell cycle progression,
suggesting that they may play a direct role in cell cycle control.
However, the lack of these proteins affected the cell cycle differ-
entially, despite their being part of the same DNA repair
pathway.

In the late S and G2 phases, the presence of unrepaired DNA
breaks results in the activation of the G2/M cell cycle checkpoint
by DNA damage sensing factors, e.g. ATM, ATR, p53, and
Chk1.45,46 We anticipated that the absence of crucial HR factors
might lead to the accumulation of unrepaired DSBs, thereby
stimulating the DDR to arrest the cells before division. Surpris-
ingly, the knock-down of the majority of HR proteins, including
3 Rad51 paralogs, CtIP, and Rad50, failed to arrest the cells at
the G2/M checkpoint. Instead, the presence of these factors
seemed to be necessary for the progression from G1 to S phase.
Only the loss of MDC1, Rad51 and Brca1 led to an accumula-
tion of late S, G2 and M cells, likely due to the activation of the
intra-S and/or G2/M checkpoints. This could indicate that the
knock-down of these 3 genes, which products are involved in the
early steps of the HR pathway, led to the accumulation of enough
endogenous DNA damage to trigger the G2/M checkpoint. The
absence of the remaining HR factors would potentially inhibit
the repair process incompletely, instead rendering it more error-
prone. These cells would still enter mitosis, but due to the accu-
mulation of imprecisely or incompletely repaired DSBs, they
may become arrested at the next G1/S checkpoint, explaining the
accumulation of cells in the G1/G0 phase. In a recent study, Shi-
bata and co-workers estimated that only about 15% of DSBs
occurring in the G2 phase are repaired by the HR pathway, while

the remaining breaks are efficiently repaired by other mecha-
nisms.47 This, together with our results obtained in the absence
of induced DNA damage, may indicate that the effects of HR
protein knock-down described here are not merely due to the
accumulation of unrepaired DSBs. Instead, these HR proteins
may play a more direct role in the cell cycle, for instance by
interacting with cell cycle signaling factors, cyclins or cyclin-
dependent kinases.

Our results obtained with Rad51B and Rad51C siRNAs con-
trast recently published observations that the knock-down of
these Rad51 paralogs blocks progression through the G/M check-
point in HeLa cells.27 However, it is possible that the absence of
these proteins in human cells may have a different impact on HR
and/or the cell cycle than it does in CHO cells, which divide
2 times faster than HeLa cells and display different kinetics of
DSB repair.48,49

In the present study, we also observed that apart from a defect
in the G1/S transition, the knock-down of Rad51B, Rad51C,
CtIP and Rad50 also caused entry into a non-proliferative G0
phase resembling the effect of the Cyclin D1 knock-down. This
suggests that the absence of these proteins may constitute a signal
for the cells to withdraw from the cell cycle. This may in part
explain the characteristic enhanced proliferation of cancer cells,
in which HR proteins are often overexpressed. Taken together,
these results indicate that many HR components are required for
normal cell cycle progression, at least in CHO cells. Thus, their
expression to levels that are sufficiently high to handle spontane-
ous DSB would act as one of the regulatory cues that control pro-
gression through cell cycle checkpoints. It will therefore be of
interest to decipher how these proteins transmit the signals to the
cell cycle control machinery, and what their molecular targets
may be, to further understand their function in the cell cycle
regulation network.

Materials and Methods

CHO cells expressing Fucci probes
Adherent CHO DG44 cells50 were cultivated in DMEM/

F12CGlutaMAXTM supplemented with 1x HT and 10% fetal
bovine serum (FBS) (Gibco, Invitrogen), and with antibiotic-
antimycotic solution (Sigma-Aldrich, #A5955). CHO Fucci
cells were constructed using lentiviral vectors carrying the red
and green fluorescent ubiquitination-based cell cycle indicator
(Fucci) cassettes.36 The red Fucci cassette contains a monomeric
version of Kusabira Orange 2 (mKO2) reporter gene fused to a
truncated human Cdt1 (hCdt1, amino acids 30–120). The
mKO2-hCdt1(30/120) protein is expressed in G1 phase and
degraded at the onset of the S phase. The green Fucci cassette
contains the monomeric version of Azami green (mAG)
reporter gene fused to the 110 amino acid N-terminus of
human Geminin (hGem amino acids 1–110). The mKO2-
hGem(1/110) protein accumulates through S, G2 and M
phases of the cell cycle and is degraded in the metaphase/ana-
phase transition of mitosis. The lentiviral constructs were kindly
provided by M. Lutolf (EPFL, Lausanne, Switzerland). Briefly,
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the cells were transduced with a 1:1 ratio of mKO2 and mAG
vectors at MOI 50. Three weeks after transduction double
positive (mKO2CmAGC) clones were single-cell sorted by
fluorescence-activated cell sorting (FACS) (FACSAria II sorter,
Becton-Dickinson, Allschwil Switzerland). A single clone with
similar levels of mKO2 and mAG fluorescence intensity was
selected for subsequent experiments.

Cell synchronization
For starvation synchronization CHO cells were grown for

72 h in medium supplemented with 0.2% FBS (Gibco, Invitro-
gen). For synchronization through contact inhibition cells were
grown for 3–5 d until complete confluency. Both methods syn-
chronize the cells in G1/G0 phase. To reinitiate cell cycle pro-
gression cells were replated at lower density in complete
medium. For early S phase synchronization 10,000 double posi-
tive (mAGCmKO2C) cells were sorted by FACS (FACSAria II
sorter, Becton-Dickinson, Allschwil Switzerland) into each well
of a 12-well plate.

siRNA transfection
Small interfering RNA duplexes were specifically designed to

target the Chinese hamster homologs of HR genes. The siRNAs
were designed and provided by Microsynth AG (Balgach, Swit-
zerland). Three RNA duplexes were designed per gene to increase
the probability of successful knock-down. Three negative (non-
targeting) siRNAs were also designed as controls. For siRNA-
mediated knock-down, CHO-Fucci cells were transfected with
equimolar amounts of 3 siRNA duplexes at a final concentration
of 50 nM using Lipofectamine RNAiMAX, according to the
manufacturer’s instructions (Invitrogen). After 72 h cells were
analyzed using the Axio Observer.A1 microscope (Zeiss, Jena,
Germany).

Flow cytometry
For flow cytometry cells were harvested 72 h following siRNA

transfection, resuspended in 0.5 ml of PBS with 2% FBS (Gibco,

Invitrogen), and analyzed using the CyAn analyzer (Beckman
Coulter, Nyon, Switzerland). Acquired data was analyzed using
the FlowJo software (Tree Star Inc., Ashland, OR, USA). For the
time point experiment cells were harvested every 4 h at 40, 44,
48, 64, 68 and 72 h post transfection, fixed in PBS with 4% PFA
(Merck) (1:2 v/v) and analyzed by flow cytometry.
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