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Abstract 

Estimating the time since the last discharge of firearms and/or spent cartridges may be a useful 

piece of information in forensic firearm-related cases. The current approach consists of studying the 

diffusion of selected volatile organic compounds (such as naphthalene) released during the shooting 

using solid phase micro-extraction (SPME). However, this technique works poorly on handgun car-

tridges because the extracted quantities quickly fall below the limit of detection. 

In order to find more effective solutions and further investigate the aging of organic gunshot residue 

after the discharge of handgun cartridges, an extensive study was carried out in this work using a 

novel approach based on high capacity headspace sorptive extraction (HSSE). By adopting this 

technique, for the first time 51 gunshot residue (GSR) volatile organic compounds could be simul-

taneously detected from fired handgun cartridge cases. Application to aged specimens showed that 

many of those compounds presented significant and complementary aging profiles. Compound-to-

compound ratios were also tested and proved to be beneficial both in reducing the variability of the 

aging curves and in enlarging the time window useful in a forensic casework perspective. The ob-
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tained results were thus particularly promising for the development of a new complete forensic da-

ting methodology. 
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Introduction 

Estimating the time since the last discharge of firearms and/or spent cartridges may be a useful 

piece of information in firearm-related cases1,2. In fact, the validity of the collected evidence may 

sometimes be contested by stating that a seized gun was not recently fired, or alternatively, that a 

questioned empty cartridge found at the crime scene had been fired long before the commission of 

the crime. In such cases, estimating the time since discharge would help in reaching a conclusion. 

Several approaches were previously suggested to address this issue, and most exploited the measure 

of changes in the gunshot residue (GSR) after the discharge3-8. The term “GSR” refers to the differ-

ent materials released as a secondary result during the discharge of a firearm9,10. These mainly in-

clude unburned and partially burned flakes of smokeless powder 11,12, condensed metallic particles 

formed after the explosion of the primer13,14, and many explosion products and by-products coming 

from the deflagration of the propellant and the primer mixture15,16. GSR is thus a complex and het-

erogeneous mixture composed of both organic and inorganic species, possibly undergoing some ag-

ing mechanisms after the shot. In this regard, many organic GSR substances have significant vapour 

pressures and are thus particularly suitable for estimating the time since the last discharge15. 

Amongst them, we can find smokeless powder components such as nitroglycerin, diphenylamine, 

ethylcentralite, dibutylphthalate and 2-ethyl-1-hexanol17,18. Many organic reaction by-products were 

also identified, and these are mainly derivatives of benzene (e.g., benzonitrile and tolunitrile) and 

polycyclic aromatic hydrocarbons (PAHs) (e.g., naphthalene, acenapthene and pyrene)19.  

Solid phase micro-extraction (SPME) proved to be a promising solution for sampling such com-

pounds in a GSR dating method15. SPME is a solvent-free extraction technique based on the parti-

tion equilibrium of analytes between a matrix and a small amount of sorbent phase coated on a 

fused silica fibre20. GSR dating approaches using this technique were generally based on measuring 

the evolution of selected target compounds by repeated sampling from the inner space of the ques-

tioned objects (such as barrels or spent cartridges). In this way, a partial aging curve was construct-

ed and could be compared to a complete reference profile to infer the time since discharge15. Naph-

thalene and some unidentified decomposition products of nitrocellulose were suggested as target 

compounds15. Particular attention was devoted to the choice of the optimal coating material. Poly-

dimethylsiloxane (PDMS), polyacrylate (PA), and mixed carboxen/polydimethylsiloxane 

(CAR/PDMS) were tested, and it was found that PA offered better sensitivity towards the selected 

target analytes16. Gas chromatography (GC) was generally recommended for analysis, coupled to a 

thermal energy analyser (TEA) for the nitrocellulose decomposition products15,21, or to a flame ion-

ization detector (FID)15 or mass spectrometer (MS)22 for naphthalene.  
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SPME proved to be promising for dating the last discharge of shotguns, rifles, and related 

shells/cartridges15,21,23. However, when the method was applied to handguns and their cartridges, 

repeatability issues16 and aging curves quickly falling below the limits of detection for the consid-

ered target compounds16,23,24 were observed. No comprehensive studies were carried out using more 

effective extraction techniques and/or targeting less volatile compounds than naphthalene and nitro-

cellulose decomposition products. Therefore, the possibility of dating the discharge of handgun 

firearms and cartridges by sampling their GSR volatile organic compounds is still largely unex-

plored. 

The purpose of this research was to study the aging of several GSR volatile organic compounds us-

ing a novel high capacity extraction technique, the so-called headspace sorptive extraction (HSSE). 

While HSSE and SPME are based on the same extraction principles, the extracting support of the 

former is a magnetic stir bar coated with a larger volume of sorbent phase in comparison to SPME 

fibres (up to 110 μL vs. a maximum of 0.5 μL, respectively)25. This feature generally guarantees 

better recovery yields with benefits for sensitivity and repeatability25,26, making HSSE particularly 

promising for studying more comprehensively the GSR aging processes in spent cartridges. Ther-

mal desorption coupled to gas chromatography/mass spectrometry (TD/GC/MS) was used to recov-

er and analyse the volatile compounds absorbed by HSSE stir bars. A data post-treatment approach 

involving compound-to-compound ratios was also applied in order to reduce variability of the aging 

curves and increase the measurable time ranges. These implementations resulted in an innovative 

analytical procedure expected to bring a significant contribution in a key forensic field.  

 

Experimental section 

Reference substances and solvents 

Pure standards of 55 compounds previously identified in GSRs were purchased from various chem-

ical companies (see details in Supporting Information, Table S-1): (#1) benzene, (#2) toluene, (#3) 

ethylbenzene, (#4a) p-xylene, (#4b) m-xylene, (#5) styrene, (#6) o-xylene, (#7) benzaldehyde, (#7) 

benzonitrile, (#9) 2-ethyl-1-hexanol, (#10) indene, (#11) acetophenone, (#12) o-tolunitrile, (#13) m-

tolunitrile, (#14) p-tolunitrile, (#15) benzyl nitrile, (#16) naphthalene, (#17) benzo[b]thiophene, 

(#18) benzothiazole, (#19) quinoline, (#20) isoquinoline, (#21a) 1,4-dicyanobenzene, (#21b) 1,3-

dicyanobenzene, (#22) indole, (#23) 2-mehtylnaphthalene, (#24) 1-methylnaphthalene, (#25) 1,2-

dicyanobenzene, (#26) biphenyl, (#27) 2-ethylnaphthalene, (#28) 2,6-dimehtylnaphthalene, (#29) 

1,4-dimethylnaphthalene, (#30) acenaphthylene, (#31) biphenylene, (#32) acenaphthene, (#33) 4-

methylbiphenyl, (#34) 1-naphthalenecarbonitrile, (#35) 2-naphthalenecarbonitrile, (#36) fluorene, 
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(#37) diphenylamine, (#38) benzophenone, (#39) phenanthrene, (#40) anthracene, (#41) carbazole, 

(#42) ethylcentralite, (#43) dibutylphthalate, (#44) 2-nitrodiphenylamine, (#45) 1-methyl-3,3-

diphenylurea, (#46) fluoranthene, (#47) pyrene, (#48) 4-nitrodiphenylamine, (#49) 2,4-

dinitrodiphenylamine, (#50) chrysene, (#51) benzo[a]pyrene, (#52) nitroglycerin, (#53) N-

nitrosodiphenylamine (compounds were numbered according to their elution order, while co-eluting 

and undistinguishable compounds were annotated with letters). For each substance, a working 

standard solution was prepared at a concentration of 1 mg·mL-1 in methanol (puriss. grade) pur-

chased from Sigma/Aldrich (Buchs, Switzerland), except for anthracene, chrysene and ben-

zo[a]pyrene which were dissolved in chloroform (purum grade) also purchased from Sig-

ma/Aldrich. Nitroglycerin was already dissolved in a mixture of ethanol/methanol (97:3). 

 

Ammunition and test shootings 

Nine types of ammunition were purchased in 2011 from various sellers in Switzerland: five .45 

ACP cartridges (produced by Geco, PMC, UMC, Sellier & Bellot and Magtech) and four .357 

Magnum cartridges (produced by Geco, Sellier & Bellot, Samson and Magtech). All ammunition 

contained double-base smokeless powders (i.e., they contained both nitrocellulose and nitroglycerin 

as main explosives) except for the .45 ACP Magtech cartridges which contained a single-base 

smokeless powder (i.e., it contained only nitrocellulose). 

The test shootings were carried out using a Colt 1911 semi-automatic pistol (.45 ACP) and a Colt 

Python revolver (.357 Magnum). Development of the method was carried out using all types of 

ammunition, while the aging profiles were solely acquired on the Geco and Magtech .45 ACP car-

tridges. In fact, semi-automatic pistol spent cartridges are actually more often found on crime scene 

given that they are ejected from the firearm after the discharge, contrary to revolver cartridges 

which stays in the revolving cylinder. Before each shooting event, firearms were carefully cleaned 

with dry cleaning patches. Five consecutive shots with a generic type of ammunition were addition-

ally performed to remove any excess oils and lubricants. Then, test cartridges were fired by singly 

loading them in the magazine/barrel.  

Spent cartridges analysed at time t = 0 h were immediately recovered after the discharge and put in 

20 mL HSSE-dedicated crimp glass vials (Gerstel, Sursee, Switzerland). 20 mL crimp vials were 

found to be a good solution because their large opening (i.e., 13 mm) fits well with most handgun 

calibres. Vials were closed with 20 mm crimp caps equipped with 3.0 mm PTFE/silicon septa (Ger-

stel). Spent cartridges analysed at time t > 0 h were aged with openings facing upward in an air 
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conditioned laboratory kept at a temperature of about 20 °C. For each type of test, cartridges were 

fired in three replicates.  

 

HSSE extraction of spent cartridges 

HSSE stir bars are commercialized under the name of “Twister©” by Gerstel. The largest available 

PDMS-coated HSSE stir bars (2 cm length per 1 mm coating thickness, corresponding to a PDMS 

volume of 110 μL) were purchased. These were chosen to provide the maximum extraction capabil-

ity. Stir bars were always thermo-conditioned before use. To do this, they were put in ad-hoc glass 

desorption tubes (Gerstel) and placed in a Gerstel TC tube conditioner. The conditioning procedure 

suggested by the producer (30 min at laboratory temperature, followed by 90 min at 300 °C and 

about 60 min for cooling down) was used. 

For the extraction, one stir bar was suspended with the aid of a special glass insert (Gerstel) in the 

headspace of each vial containing one fired cartridge. Cartridges were extracted in a laboratory ov-

en at 80 °C for 72 h. Before analysis, vials were reopened. Then, the stir bars were retrieved and 

placed in reconditioned desorption tubes. Finally, the tubes were capped with special transportation 

adapters (Gerstel) and placed on the GC tray for TD/GC/MS analysis. 

 

TD/GC/MS analysis of stir bars 

Stir bars were thermally desorbed using a Gerstel TDU thermal desorption unit connected to a Ger-

stel CIS-4 programmed temperature vaporizing injector. These devices were mounted on an Agilent 

7890A gas chromatograph coupled to an Agilent 5975C mass selective detector (Agilent Technolo-

gies, Basel, Switzerland). The system was also equipped with a Gerstel MPS multi-purpose sampler 

which was used to automatically load tubes containing stir bars into the TDU. 

Desorption mode was splitless, desorption flow 40 mL·min-1, and desorption pressure 9.07 psi. The 

desorption ramp was programmed as follows: 20 °C for 0.5 min, ramped to 250 °C at 60 °C·min-1 

and held at this temperature for 10 min (total desorption time of 14.3 min). The transfer line tem-

perature between TDU and CIS-4 was 280 °C. Liners for CIS-4 were obtained from Gerstel and 

packed with quartz-wool. The cryo-focusing temperature was -80 °C. The PTV injection ramp was 

programmed as follows: -80 °C for 0 min, ramped to 300 °C at 600 °C·min-1 and held at this tem-

perature for 1.37 min (total injection time of 2 min). Splitless mode was used during this time. After 

injection, the injector was additionally programmed to decrease at a rate of 720 °C·min-1 down to 

270 °C and held at this temperature for 10 min in split mode to condition the liner for the next injec-

tion.  
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GC separation was performed on a HP-5MS (30 m x 0.25 mm x 0.25 μm) column from Agilent. 

The carrier gas was helium, and column flow was maintained at 1.2 mL·min-1. The oven ramp was 

programmed as follows: 40 °C for 2 min, ramped to 100 °C at 10 °C·min-1, ramped to 200 °C at 5 

°C·min-1, ramped to 280 °C at 5 °C·min-1 and held at this temperature for 10 min (total chromato-

graphic time of 46 min). The transfer line between the column and the MS was at 280 °C. Ionisation 

was carried out through electron impact (EI). Masses were scanned from m/z 40 to 500 without sol-

vent delay. MS source and quadrupole temperatures were 230 °C and 150 °C respectively. 

 

TD/GC/MS analysis of reference standards 

Liquid standards were injected into the instrument and analysed to obtain their MS spectra and re-

tention times. Injection was performed by equipping a desorption tube with a special glass insert 

and a special transportation adapter for liquid injection, both furnished by Gerstel. Before analysis, 

the tube was automatically inserted into the TDU and 1 μL of solution was injected into the insert. 

TD/GC/MS parameters were the same as written above, except for the CIS-4 cryo-focusing temper-

ature which was set to 0 °C in order to vent solvents during desorption. Moreover, a solvent delay 

of 4 min and the split mode were adopted. 

 

SPME extraction of spent cartridges 

Automated SPME extractions were performed as previously described in Weyermann et al.16, apart 

from extraction temperature which was set to 80 °C (instead of 20°C). A PA-coated fibre (85 μm 

layer) purchased from Supelco was used. Analyses were performed on an Agilent 6890N gas chro-

matograph equipped with a normal split/splitless injector and coupled to an Agilent 5973 inert mass 

selective detector. Separation and detection parameters were identical to those adopted for the 

TD/GC/MS method. 

 

Data treatment 

If not specified otherwise, aging curves were fitted with the following equation previously derived 

from the diffusion theory27: 

 

𝑆𝑆 = 𝐴𝐴+ 𝐵𝐵 ∙ exp (−𝐶𝐶 ∙ √𝑡𝑡) (1) 
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where S is the expected peak area mean, t is the time since discharge, A and B are two size constants 

(for t = ∞, A represent the minimal value of the signal, while for t = 0, A + B is its maximal value), 

and C is a characteristic curve constant which is related to the decrease rate.  

To test correlation between compounds, the Spearman’s rank correlation coefficient (rs) was esti-

mated for each tested type of ammunition between all the couples formed by the combination of the 

selected target compounds.  

 

Results and discussion 

Analysis of liquid standards 

Analysis of liquid standards from 55 molecules previously identified in GSR was carried out in or-

der to evaluate the injection and separation parameters of the TD/GC/MS method. The method al-

lowed detecting 51 of the 55 injected compounds (Figure 1 and Table S-1). Even if a PTV injector 

and a cold injection technique were used, some thermo-labile molecules could not be detected. Par-

ticularly, nitroglycerin (#52) degraded during thermo-desorption and/or in the injection port and 

was thus not observed in chromatograms. Lower temperatures should be adopted in order to avoid 

this phenomenon16. N-nitrosodiphenylamine (#53) also degraded but was totally converted in di-

phenylamine28. Some compounds co-eluted. Amongst them, the co-eluting couples p-xylene/m-

xylene (#4a/#4b) and 1,4-dicyanobenzene/1,3-dicyanobenzene (#21a/#21b) actually showed undif-

ferentiable mass spectra and could not be differentiated. On the contrary, styrene/o-xylene (#5/#6), 

acetophenone/o-tolunitrile (#11/#12), indole/2-methylnaphthalene (#22/#23), and 4-

methylbiphenyl/1-naphthalenecarbonitrile (#33/#34) could be differentiated. The same was possible 

for isoquinoline (#20) which co-eluted with both 1,4-dicyanobenzene and 1,3-dicyanobenzene 

(#21a/#21b). Good chromatographic efficiency and resolutions were reached, as Figure 1 illustrates. 

The only exceptions were the first two eluting compounds (i.e., benzene and toluene) which had 

relatively large peak widths. This is due to the cold injection method, which causes the slow release 

of the most volatile molecules into the GC column. Substances eluting after 5 min did not present 

this problem. 

 

HSSE analysis of spent cartridges 

Three cartridges belonging to each of the nine types of ammunition were fired and extracted at 80 

°C by HSSE stir bars and analysed using TD/GC/MS. Generally, HSSE total ion chromatograms 

(TICs) were characterised by a large number of peaks. Some of them were siloxane oligomers, 
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which are formed during thermo-desorption by the oxidative degradation of the polydimethylsilox-

ane coating29. As a representative example, Figure 2a shows the TIC of a Samson .357 Magnum 

cartridge. The thick coating layer also produces a slight background noise along the chromato-

grams. Nevertheless, given the high selectivity of the mass spectral ions belonging to siloxane com-

pounds, the additional signals did not affect the identification of target analytes. This is well illus-

trated in Figure 2b where the superimposed extracted ion chromatograms (EICs) belonging to 12 

ions of particular interest are shown. Apart from four analytes, all target compounds were detected 

in the GSR of all ammunition types. Differences between ammunitions were mainly quantitative 

(i.e., difference in their relative peak areas). The four compounds detected in only some types of 

cartridges were 1-methyl-3,3-diphenylurea (4 occurrences), 2,4-dinitrodiphenylamine (3 occurrenc-

es), chrysene (8 occurrences) and benzo[a]pyrene (1 occurrence).  

For comparison, Samson .357 Magnum cartridges were also extracted by a PA-coated SPME fibre. 

Unlike HSSE, TICs obtained by SPME did not contain any major breakdown products (Figure 2c). 

This is both due to the difference in coatings and to the smaller volume of phase on fibres in com-

parison to stir bars. Despite this advantage, significantly fewer compounds were observed in SPME 

chromatograms as opposed to the HSSE ones. This was evident by comparing HSSE and SPME 

EICs for the 12 previously discussed ions in Figure 2b and 2d, respectively. 

 

Measurement precision 

Relative standard deviations (RSDs) of the peak areas for representative compounds were calculat-

ed in order to measure the precision of the analytical method (see details in Table S-2). Many 

sources of variability can affect precision during HSSE extraction of spent cartridges. Thus, meas-

urement errors may be due to variations in the analysis, the HSSE extraction, the sample prepara-

tion, the discharge and/or the powder composition16. In order to take into account all these factors, 

RSDs were calculated for cartridges analysed on different days (i.e., between-day precision) and us-

ing stir bars from different batches. Concerning explosion products, RSD values ranged from 3% to 

70% in all the nine types of ammunition. This interval narrowed down to 3% - 43% without consid-

ering acenaphthylene and pyrene, which were the least reproducible compounds. RSD values for 

SPME are rarely mentioned in literature, but a recent study reported 71% for naphthalene and 157% 

for benzonitrile in spent 9mm Parabellum cartridges16. The same compounds extracted by HSSE 

yielded better RSD values between 5% - 34% and 9% - 33%, respectively. For gunpowder com-

pounds, the RSD values were generally higher than for explosion products, ranging from 5% to 

110%. This lower reproducibility may indicate that residual gunpowder in the cartridge is very vari-
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able from shot to shot. For SPME extraction of spent cartridges, RSD values of 96% and 153% 

were reported for diphenylamine and 2-ethyl-1-hexanol respectively16. Using HSSE to extract the 

same compounds, RSD values between 7% - 110% and 8% - 73% were respectively obtained.  

 

GSR aging 

The evolution of the detectable target compounds as a function of time was followed using the de-

veloped HSSE method. This study was carried out during a period of 31 h with two different types 

of .45 ACP ammunition: Magtech (single-base) and Geco (double-base). Generally, the GSR chro-

matograms strongly evolved during the cartridges’ aging but not all the target substances had the 

same behaviour over time. Aging rates were actually found to be dependent on the nature of the 

considered compound and slightly influenced by the type of cartridge.  

On the one hand, the different gunpowder components seemed to remain essentially constant over 

time, or at least did not follow any recognizable aging trend in both types of ammunition during the 

studied period. Considering that these compounds were mainly trapped in unburned powder flakes, 

their high persistence can be ascribable to a difficulty in escaping from this matrix, which in turn 

leads to an important slowing-down of their loss from the cartridges. Thus, they seem of little use 

for dating purposes, considering also their weak reproducibility (see previous section).  

On the contrary, most of the explosion products significantly diminished over time (Figure 3). Geco 

ammunition generally gave faster and less reproducible aging profiles compared to those obtained 

from Magtech for the same molecules. In fact, analytes in Geco cartridges globally levelled off 2 h 

after discharge, while aging in Magtech ammunition appeared to be more variable. In the latter case, 

the substances’ decrease rates were found to be directly correlated with their boiling points (BPs). 

For example, naphthalene (BP = 218 °C30) diminished quickly from spent cartridges (70% of its 

signal was lost in the first 2 h after the discharge), while acenaphthene (BP = 279 °C30) decreased 

more slowly and did not level off after 31 h yet (Figure 3). As a general representation of the rela-

tionship between the BPs and decrease rates, Figure 4 shows the plot of the estimated C parameters 

of the compounds’ aging curves versus their GC retention times in Magtech cartridges (according to 

equation (1), C is related to the decrease rates). It can thus be noticed that the higher the retention 

time of the compound is, the slower its decrease.  

Levelling-off of the aging curves seemed to indicate that the diffusion of GSR compounds was ac-

tually characterised by two distinct phases. In the first aging stage, the decrease was generally rapid. 

As a high amount of vapours was released during the discharge, the excess was probably lost rapid-

ly because of the important gradient formed between the internal and external atmospheres. Then, 
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equilibrium between compounds in the vapour phase and those adsorbed on surfaces such as walls 

and particles was probably established, making their decrease slower in this second phase. If we 

considered the aging curve of naphthalene (Figure 3a), while its decrease was very rapid and essen-

tially levelled off 2 h after discharge, the residual signal was still relatively high after 31 h. The 

same observation was previously reported for the escape of naphthalene and nitrocellulose decom-

position products from barrels15. Because of this non-linear diffusion trend, most of the selected tar-

get substances were still detected in both cartridges 31 h after discharge, making the difference be-

tween GSR chromatograms at t = 0 h and t > 0 h essentially quantitative and not qualitative.  

Reliability of aging profiles was also correlated to the compounds’ BPs. Aging curves for low-BP 

compounds generally gave higher coefficients of determination (R2) after regression analysis in 

comparison to high-BP compounds. For example, R2 values for benzonitrile (BP = 191 °C30) 

reached 0.995 and 0.741 in the two types of ammunition, while values for pyrene (BP = 393 °C30) 

were quite low: -0.012 and -0.033 (Figure 3). As a result, measurements for high-BP compounds 

were often not sufficiently reproducible in comparison to their decrease rates to significantly dis-

criminate shots of different ages. 

 

Ratios between compounds as aging indicators 

In order to stabilize trends and solve the problem of data variability (particularly for high-BP com-

pounds), normalization to other compounds or internal standards is a common stratagem in analyti-

cal chemistry31,32. From a general point of view, an adequate normalization strategy would be to de-

termine ratios between compounds for which the measured signal vary similarly. This is particularly 

important because it is essential that the reference and normalized compounds are submitted to the 

same variability-introducing factors. Internal standards added to the vial before the HSSE extraction 

would not be sufficient since they would account only for the variability introduced by the extrac-

tion procedure and the analytical method, and not for the heterogeneity of the powder composition 

and the shooting conditions (e.g., the temperature and pressure in the cartridge during the gunpow-

der explosion). Unfortunately, these latter factors are likely responsible for most of the variability 

affecting the results. In this regard, substances which are simultaneously produced during the dis-

charge are subjected to the same variability-introducing factors and are expected to present closer 

mutual fluctuations. Normalizing the response of a target compound with those of another correlat-

ed substance thus seemed a promising solution.  

To test the correlation between compounds, Spearman’s rank correlation (rs) was calculated be-

tween all the couples formed by the combination of the 51 observable target analytes. Amongst the 
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1327 formed couples, only 407 (about 31%) were found to be strongly correlated (i.e., rs > 0.7) in at 

least one type of cartridge. The relatively small percentage of correlated couples is not surprising. In 

fact, it should be noted that not all the explosion products are simultaneously produced during the 

discharge, but their formation can be explained by multiple step reaction mechanisms in which 

larger products (e.g., pyrene and benzo[a]pyrene) are formed by the addition of radicals to smaller 

molecules (e.g., benzene and naphthalene) through different chemical pathways 33,34. This means 

that similar molecules more probably come from a similar reaction pathway, resulting in high corre-

lation. Indeed, in our research, isomers gave the best values. The correlation patterns also slightly 

depended on the type of ammunition. This can be explained by changes in the explosion tempera-

ture and pressure from cartridge to cartridge. However, some groups of compounds remained 

strongly correlated amongst the two tested types of ammunition. These are, for example, the groups 

formed by: 

- naphthalene, 1-methylnaphthalene, 2-mehtylnaphthalene, biphenyl, 4-methylbiphenyl, fluo-

rene and acenaphthene,  

- phenanthrene, fluoranthene and pyrene 

- benzonitrile, benzyl nitrile and the three tolunitrile isomers.  

Ratios between signals belonging to the different couples of correlated molecules were determined 

in order to evaluate their usefulness for dating purposes. In many cases, the aging curves of the new 

indicators presented more reproducible values and slower decrease rates in comparison to those of 

the single molecules. A representative example is shown in Figure 5, where the aging curves of 

acenaphthene (Acp) and phenanthrene (Phe) are reported for the two tested types of ammunition, 

along with those of their ratios (Acp/Phe). For single molecules, dispersion of peak areas was rela-

tively high at the different tested ages yielding low R2 after regression analysis (i.e., 0.612 and 

0.631 for Acp, and 0.006 and -0.005 for Phe in Magtech and Geco cartridges, respectively). On the 

contrary, dispersion of the ratios’ values was smaller and resulted in improved R2 values for the 

Acp/Phe aging curves (0.800 and 0.856, respectively). In addition to this, it is also evident that the 

decrease rates for the Acp/Phe aging curves were slower than those of the single components. In-

deed, they actually presented a quite linear trend. This slow-down effect was particularly significant 

for low-BP correlated molecules such as benzonitrile and o-tolunitrile. In fact, while these analytes 

showed a very quick decrease in their signals after the discharge and reached a steady state after a 

couple of hours, the aging curve of their ratio did not to seem to level off after 31 h of aging. 407 

ratios were tested in this work and, amongst them, 154 (38%) presented slower decrease rates than 
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both their composing molecules in the Magtech ammunition, and 264 (65%) in the Geco ammuni-

tion.  

Generally, the decrease rates of the ratios obtained by inter-normalizing compounds depended on 

the difference between the decrease rates of the respective components. For example, ratios ob-

tained from substances showing comparable decrease rates tended to be constant over time (i.e., 

they did not show any appreciable decrease), while for the compounds showing very different rates, 

the decrease rate of the obtained ratio was closer to that of the fastest decreasing substance. Inter-

mediate situations were the most interesting because they allowed effectively slowing down the de-

crease rates and conserving a noticeable monotonic decrease. Apart from acenaph-

thene/phenanthrene and benzonitrile/o-tolunitrile, particularly interesting combinations were benzyl 

nitrile/1-naphthalenecarbonitrile, benzyl nitrile/2-naphthalenecarbonitrile, 1-

methylnaphthalene/phenanthrene, 2-methylnaphthalene/phenanthrene, biphenyl/phenanthrene, and 

acenaphthene/fluorene. 

 

Implementation in forensic caseworks 

As demonstrated above, the suggested HSSE approach offers several advantages over existing ex-

traction procedures (e.g., SPME) to analyse GSR volatile organic compounds in handgun cartridges 

(i.e., sensitivity and reproducibility). However, further research will be necessary in order to apply 

the approach in real forensic cases. Particularly, GSR aging kinetics in daily casework will be af-

fected by the ammunition and firearm used, as well as  other influence factors, such as the storage 

conditions. For example, Andrasko et al.23 demonstrated that GSR compounds’ diffusion was influ-

enced by the environmental temperature and found that cold weather did quenched the aging. They 

also showed that calibre and ammunition type were important parameters affecting the aging of the 

selected target compounds. Other factors such as humidity, wind speed or cartridge position were 

not addressed yet, but would probably affect GSR aging as well. Future works should thus consider 

these parameters in order to implement HSSE/TD/GC/MS for dating in caseworks32. 

 

Conclusions 

A novel approach for studying the aging of gunshot residue (GSR) volatile organic compounds in 

handgun cartridges was developed in this work. This approach was based on the headspace sorptive 

extraction (HSSE) of the fired cartridges followed by thermal desorption and analysis using gas 

chromatography/mass spectrometry. The developed analytical method allowed, for the first time, 

the detection of 51 GSR compounds from fired cartridge cases. Moreover, compared to solid phase 
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micro-extraction (SPME), HSSE was found to be more reproducible and effective, allowing simul-

taneous analysis of more compounds when applied to the same spent cartridge.  

The method was applied to follow the evolution of GSR volatile organic compounds in two types of 

.45 ACP ammunition. Results showed that many compounds presented noticeable aging profiles 

and could thus be exploited for the purpose of estimating the time since discharge. Compound-to-

compound ratios were tested and proved to be beneficial both in reducing the variability of the ag-

ing curves and in enlarging the time window useful for producing data in a forensic context. The 

obtained results are particularly promising regarding the full development of a forensic dating 

methodology for handgun and related cartridges. The analytical method should now be validated for 

practical forensic implementation, taking into account the factors influencing the aging and particu-

lar circumstances surrounding the discharge. 

 

Associated content 

Additional information as noted in the text. This material is available free of charge via the Internet 

at http://pubs.acs.org. 
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Figure 1 – Superimposed extracted ion chromatograms (EICs) of the injected standards. Correspondence between 

numbers and substances are explained in Table S-1. 
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Figure 2 – Total ion chromatograms (TICs) and extracted ion chromatograms (EICs) of a fired Samson .357 Magnum 

cartridge extracted by HSSE (TIC: a; EICs: b) and SPME (TIC: c; EICs: d), at an extraction temperature of 80 °C. EICs 

are given as the superimposed traces for 12 ions of particular interest. Asterisks in the HSSE TIC indicate peaks belong-

ing to major siloxane oligomers. 
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Figure 3 – Evolution of the peak areas observed by HSSE/TD/GC/MS for 4 target analytes in two types of .45 ammuni-

tion: Magtech (squares) and Geco (triangles). Measurements were fitted with Equation (1). 
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Figure 4 – Characteristic C constant for the aging curves (Equation 1) of all the target analytes detected in the Magtech 

.45 ACP spent cartridges versus their respective retention time (tR). C is related to the decrease rate. 
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Figure 5 – Evolution over time of selected compounds and their respective ratios in two .45 ACP cartridges. Solid lines 

are the regression curves obtained by fitting the data with the non-linear regression model reported in Equation (1), 

while dashed lines are the curves obtained by simple linear regression. 
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# Substance Origin BPref 

RSD 

HSSE SPMEref 

7 Benzaldehyde E 178 °C 4% - 23%  
8 Benzonitrile E 191 °C 9% - 33% 157% 
13 m-Tolunitrile E 213 °C 4% - 35%  
16 Naphthalene E 218 °C 5% - 34% 71% 
23 2-Methylnaphthalene E 241 °C 3% - 31%  
26 Biphenyl E 256 °C 5% - 43%  
30 Acenaphthylene E 270 °C 5% - 70%  
34 1-Naphthalenecarbonitrile E 299 °C 7% - 28%  
39 Phenanthrene E 340 °C 4% - 32%  
47 Pyrene E 393 °C 11% - 55%  
9 2-Ethyl-1-hexanol G 185 °C 8% - 73% 153% 
37 Diphenylamine G 302 °C 7% - 110% 96% 
42 Ethylcentralite G ? 9% - 33%  
43 Dibutylphthalate G 340 °C 12% - 74%  
44 2-Nitrodiphenylamine G ? 5% - 103%  

 
Table 1 – Ranges for the relative standard deviations (RSDs) of peak areas of selected compounds detected in nine 

types of handgun cartridges using HSSE extraction Values represent the between-day precision (n = 3) and were com-

pared to those reported in the literature for SPME extraction.  “E” indicates explosion products and “G” gunpowder 

components.  

 


