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Background: Myocardial T1-rho (T1ρ) mapping is a promising method for identifying and quantifying myocardial injuries
without contrast agents, but its clinical use is hindered by the lack of dedicated analysis tools.
Purpose: To explore the feasibility of clinically integrated artificial intelligence-driven analysis for efficient and automated
myocardial T1ρ mapping.
Study Type: Retrospective.
Population: Five hundred seventy-three patients divided into a training (N = 500) and a test set (N = 73) including ische-
mic and nonischemic cases.
Field Strength/Sequence: Single-shot bSSFP T1ρ mapping sequence at 1.5 T.
Assessment: The automated process included: left ventricular (LV) wall segmentation, right ventricular insertion point
detection and creation of a 16-segment model for segmental T1ρ value analysis. Two radiologists (20 and 7 years of MRI
experience) provided ground truth annotations. Interobserver variability and segmentation quality were assessed using the
Dice coefficient with manual segmentation as reference standard. Global and segmental T1ρ values were compared.
Processing times were measured.
Statistical Tests: Intraclass correlation coefficients (ICCs) and Bland–Altman analysis (bias �2SD); Paired Student’s t-tests
and one-way ANOVA. A P value <0.05 was considered significant.
Results: The automated approach significantly reduced processing time (3 seconds vs. 1 minute 51 seconds � 22 seconds).
In the test set, automated LV wall segmentation closely matched manual results (Dice 81.9% � 9.0) and closely aligned
with interobserver segmentation (Dice 82.2% � 6.5). Excellent ICCs were achieved on a patient basis (0.94 [95% CI: 0.91
to 0.96]) with bias of �0.93 cm2 � 6.60. There was no significant difference in global T1ρ values between manual
(54.9 msec � 4.6; 95% CI: 53.8 to 56.0 msec, range: 46.6–70.9 msec) and automated processing (55.4 msec � 5.1; 95% CI:
54.2 to 56.6 msec; range: 46.4–75.1 msec; P = 0.099). The pipeline demonstrated a high level of agreement with manual-
derived T1ρ values at the patient level (ICC = 0.85; bias +0.52 msec � 5.18). No significant differences in myocardial T1ρ
values were found between methods across the 16 segments (P = 0.75).
Data Conclusion: Automated myocardial T1ρ mapping shows promise for the rapid and noninvasive assessment of heart
disease.
Evidence Level: 3
Technical Efficacy: Stage 1
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Myocardial T1-rho (T1ρ) mapping is a promising endog-
enous biomarker for detecting and quantifying myocar-

dial injuries, offering distinct advantages over conventional
contrast-enhanced methods.1 This noninvasive imaging tech-
nique does not require the injection of contrast agents, mak-
ing it a “needle-free” and cost-effective diagnostic marker that
may potentially have high impact both in terms of clinical
outcomes and patient comfort.2,3

One specific application that showcases the potential
impact of T1ρ mapping lies in patients with kidney fail-
ure, who currently face limitations in receiving
gadolinium-based contrasts due to compromised kidney
function.4 These patients represent 49% of the heart fail-
ure population.5 By enabling fibrosis assessment in this
patient group, T1ρ mapping may address an important
unmet need and may thus contribute to improved clinical
outcomes.6 The simplicity of this technique facilitates
patient management and promotes serial MRI screening
to monitor disease progression effectively, including
screenings for vulnerable populations such as children and
pregnant women.

However, despite the promise of T1ρ mapping, its
clinical adoption has been hindered by a lack of dedicated
post-processing software and efficient analysis tools.7 Imagers
currently rely on time-consuming visual assessments and
labor-intensive manual segmentation of endocardial and epi-
cardial borders, along with the positioning of insertion points
to generate the American Heart Association (AHA)
16-segment model, as recommended by recent guidelines
from the Society for Cardiovascular Magnetic Resonance
(SCMR) on parameter mapping.8 Unfortunately, these man-
ual inputs not only burden imagers but also introduce opera-
tor variability, potentially compromising the accuracy and
reliability of results.9

Drawing from experience with other parameter map-
ping techniques, such as T1 and T2 mapping,10,11 we posit
that an artificial intelligence (AI)-driven analysis can improve
the assessment of myocardial T1ρ maps. We hypothesized
that AI would allow faster, easier, and more efficient analysis,
with the potential to eliminate error-prone manual processes.
This could potentially be an important step toward the wide-
spread clinical adoption of this imaging technique.

Thus, the aim of this study was to explore the feasibility
and evaluate the accuracy, reliability, and diagnostic perfor-
mance of clinically integrated AI-driven analysis for myocar-
dial T1ρ mapping, using manual analysis as the reference
standard.

Materials and Methods
This retrospective study was approved by our Institutional Ethics
Committee and all patients provided informed consent for this par-
ticular study.

Description of the Study Participants
Between July 2020 and July 2021, 73 patients (testing set, median
age [Q1–Q3], 55 years [41–66], 32 female) with suspected heart
disease who underwent MRI and myocardial T1ρ mapping at Bor-
deaux University Hospital were enrolled in this study. The training
set comprised a distinct group of 500 patients (median age [Q1–
Q3], 63 years [55–71], 110 female) with suspected ischemic struc-
tural heart disease, who underwent T1ρ-weighted imaging and who
were concurrently enrolled in a separate study from March 2021 to
July 2023. Figure S1 in the Supplemental Material outlines the
study’s flowchart. The inclusion criterion was a clinical indication
for contrast-enhanced cardiac MRI as part of standard care. Exclu-
sion criteria included age < 18-year-old, history of allergic reactions
to gadolinium-based contrast agents, severe renal failure, presence of
a non-MR-conditional implantable device, inability to maintain a
supine position for 50 minutes, pregnancy, breastfeeding, and inabil-
ity to provide informed consent. Patient inclusion was not continu-
ous as it depended on clinical workflow and was influenced by
concurrent research projects involving similar patient cohorts.

Baseline patient characteristics are detailed in Table 1. The
study population encompassed 477 ischemic patients, 64 non-
ischemic patients, and 32 negative-MRI subjects. The training set,
consisting of 500 patients, showed significant differences compared
to the testing set, in terms of age (63 years-old [55–71] vs. 55 years-
old [41–66]), prevalence of hypertension (42% vs. 12%),
dyslipidaemia (44% vs. 7%), diabetes mellitus (44% vs. 7%), and
troponin levels (1025 pg/mL [656–2059] vs. 187 pg/mL [39–846]).
The ejection fraction determined by MRI was significantly lower in
the training set compared to the testing set (40 � 13% vs. 49 -
� 14%). No significant differences were observed in heart rate
(P = 0.32), body mass index (P = 0.10), or gender (P = 0.17)
between the two cohorts.

MR Imaging
MRI acquisitions were performed in the supine position on a 1.5-T
clinical scanner (MAGNETOM Aera, Siemens Healthcare,
Erlangen, Germany) with a 32-channel spine coil and a dedicated
18-channel body coil.

2D MYOCARDIAL T1ρ MAPPING SEQUENCE. The 2D myo-
cardial T1ρ mapping sequence (Fig. 1) involved the acquisition of
T1ρ maps using a breath-held motion-corrected balanced steady-
state free-precession (bSSFP) sequence, which incorporates an adia-
batic T1ρ preparation module to achieve T1ρ weighting.12 Five
T1ρ-weighted images with varying spin-lock times (TSL = [0,
10, 20, 35, 50] msec) were collected sequentially in the mid-diastolic
phase during 13 heartbeats. A pause of two heartbeats between spin-
lock acquisitions was employed to facilitate full magnetization recov-
ery. Three short-axis slices (basal, middle, and apical) were acquired
for each study participant. Acquisition parameters are outlined in
Table S1 in the Supplemental Material, and further explanation of
the sequence can be found in Bustin et al.12

TESTING SET. The MRI protocol followed conventional SCMR
guidelines, including cine bSSFP imaging in 2-, 3-, and 4-chamber
views, and in a series of contiguous short-axis slices spanning the
ventricles. Breath-held 2D myocardial T1ρ maps were acquired
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TABLE 1. Baseline Patient Characteristics for the Training and Testing Sets

Training Set Testing Set P-Value

Data

Number of participants 500 73 -

Time period March 2021–July 2023 July 2020–July 2021 -

Number of images for analysis 6380 219 -

Number of T1ρ maps 0 219 -

Demographics

Female gender 110 (22) 23 (32) 0.17

Age, years 63 [55–71] 55 [41–66] <0.001*

Weight, kg 77 � 16 75 � 16 0.14

Height, cm 178 � 63 172 � 10 0.54

BMI, kg/m2 26 � 5 25 � 5 0.10

Risk factors

Hypertension 210 (42) 9 (12) 0.006*

Dyslipidaemia 220 (44) 5 (7) <0.001*

Diabetes mellitus 140 (28) 3 (4) 0.02*

Smoking 285 (57) 18 (25) 0.14

Obesity (BMI ≥30 kg/m2) 120 (24) 9 (12) 0.69

Family history of coronary artery disease 80 (16) 8 (11) 0.98

Cardiovascular markers

Resting heart rate, beats/min 69 [56–76] 64 [57–73] 0.32

Systolic blood pressure, mm Hg 121 [111–133] 128 [110–133] 0.75

Diastolic blood pressure, mm Hg 73 [64–80] 74 [68–84] 0.47

NT-proBNP, pg/mL 1025 [656–2059] 187 [39–846] 0.02*

AF/atrial flutter 70 (14) 3 (4) 0.12

MRI function

LVEDVi, mL/m2 106 � 30 101 � 32 0.39

LVESVi, mL/m2 66 � 33 54 � 34 0.035*

LVEF, % 40 � 13 49 � 14 <0.001*

LVEF impairment (LVEF <35%) 27 (37) 10 (14) 0.05

RVEDVi, mL/m2 74 � 20 84 � 21 0.004*

RVESVi, mL/m2 37 � 17 42 � 16 0.08*

RVEF, % 50 � 11 50 � 11 0.82

Post-MRI diagnoses

Negative MRI 16 (3) 16 (22) <0.001*

Ischemic heart disease 464 (93) 13 (18) <0.001*

Nonischemic heart disease 20 (4) 44 (60) <0.001*

Values are N (%) for categorical variables and mean � SD or median [interquartile range] for continuous variables. AF = atrial fibrilla-
tion; BMI = body mass index; LV = left ventricle; LVEDVi = indexed left ventricular end-diastolic volume; LVESVi = indexed left ven-
tricular end-systolic volume; LVEF = left ventricular ejection fraction; RVEDVi = right ventricular end-diastolic volume;
RVESVi = right ventricular end-systolic volume; RVEF = right ventricular ejection fraction. Data are mean � SD for continuous vari-
ables and number of patients for categorical variables. Data in parentheses are percentages.
*Significant difference between training and testing sets.
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before contrast administration following cine imaging. Three short-
axis slices were collected (basal, middle, and apical) in each patient
resulting in a total of 219 T1ρ maps. Late gadolinium enhancement
(LGE) imaging was performed 15 minutes after the administration of
0.2 mmol/kg gadoteric meglumine (Dotarem, Guerbet, France),
employing a breath-held phase-sensitive inversion recovery sequence13

to collect a short-axis stack of contiguous slices covering the ventricles.
Inversion times were adjusted to null viable myocardium.

TRAINING SET. These patients underwent a clinical protocol that
included contrast-enhanced imaging with an additional pre-contrast
breath-held 2D whole-heart T1ρ-weighted scan with TSL35 only
(comprising 6380 images). This dataset was split into a training
(85%) and a validation (15%) set used for U-Net-based landmark
detection and Transformer-based LV segmentation. There was no
overlap between the testing dataset and the training/validation data,
ensuring the independence of test data. Training was conducted on
a dedicated workstation with Intel Xeon Gold 6154, 3 GHz,
18 cores, 36 threads, NVIDIA Tesla V100 32 Go GPU, 377 GB
RAM, Python version 2.7.18, Ubuntu Linux 18.04.6 LTS, CUDA
11.6, and TensorFlow 2.8.0.

Data Processing

AUTOMATED TRANSFORMER-BASED LEFT
VENTRICULAR SEGMENTATION. A transformer-based model
for medical image segmentation, inspired by Dosovitskiy et al,14 was
employed. A detailed description of the architecture can be found in
Gao et al.15 It is based on a hybrid approach to semantic segmenta-
tion, leveraging both the power of convolutional filters, and their
ability to extract local features, with the advantages of vision trans-
formers. The inclusion of attention maps helps the network to be

less dependent on local space features. Images are first divided into
patches, which are then embedded using a convolutional encoder. In
each downsampling block, the embedding is downsampled and
processed using a bi-directional transformer block. Similarly, each
upsampling block performs the same operations, in an upsampling
manner. At every scale, semantic maps, derived from the bi-
directional multi-head attention block in the transformer, are
extracted. These maps are then fused together using a multi-scale
fusion process and skip connections to maintain high-level informa-
tion that could have been lost during the downsampling phase. The
final embeddings are then decoded using a convolutional decoder to
output the segmentation map. This architecture is extremely data
efficient and has shown excellent performance on medical datasets,
especially when lowering the quantity of training examples, making
it suitable for our needs, where data availability is low.16 To alleviate
partial volume effect on T1ρ values, the output myocardium con-
tours were systematically eroded by one pixel.17

Adaptation to the current application. The settings were
mostly replicated from Gao et al.15 Data augmentation was used to
avoid overfitting and included random rotations, flips, contrast
adjustment, sharpness adjustment and Rician noise addition. The
following parameters were used: equally weighted binary cross-
entropy and dice loss, learning rate 10�3, cropped 160 � 160 pixels
TSL = 35 msec (TSL35) image as input, binary left ventricular
(LV) wall as output, normalization to zero mean and standard devia-
tion of one. The model was trained using the AdamW optimizer for
77 epochs with a batch size of 8 and weight decay of 0.01.

RIGHT VENTRICULAR INSERTION POINTS DETECTION
AND AHA’s 16-SEGMENT MODEL CREATION. A conven-
tional U-net-based method18,19 was employed to automatically

FIGURE 1: Diagram of the proposed pipeline for fully automated myocardial T1ρ mapping. Left: T1ρ mapping is performed using a
single-shot electrocardiogram-triggered balanced steady-state free precession acquisition. This process acquires five images with
varying spin lock times (TSL) over the span of 13 heartbeats within a single breath-hold. Middle: Leveraging a transformer-based
model to achieve automated left ventricular wall segmentation in T1ρ images, alongside a U-Net architecture for the automated
identification of the two right ventricular insertion points. Right: The pipeline automatically generates a 16-segment American Heart
Association Bullseye model report.
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locate the anterior and posterior right ventricular insertion points
within short-axis TSL35 images. The SoftMax activation function
was applied to obtain confidence scores, representing the probability
of accurate landmark detection. Confidence calibration assesses the
model’s ability to provide precise correctness probabilities for predic-
tions. The same hyperparameters described above were employed,
except for the pixel-wise Euclidean distance loss and a base learning
rate of 10�4. To define segments within a cardiac level, both anterior
and posterior right ventricular insertion points were used to establish
two major axes.20,21 For the basal and mid-cavity levels, the septal
and lateral areas were further divided into six segments using an
equiangular line. Finally, a 16-segment AHA bullseye model was cre-
ated by incorporating both landmarks and LV contours.

INLINE INTEGRATION FOR PROSPECTIVE STUDIES. To
assess the practical utility of the proposed framework in a clinical
hospital environment, an inline point-of-care implementation of the
pipeline was seamlessly integrated onto a clinical 1.5-T MRI scanner
(MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany)
using the Gadgetron framework.22 Model inference was conducted
on a workstation equipped with an Intel Xeon CPU E5-2698 v4,
2.20 GHz, with 20 cores, 40 threads, NVIDIA Tesla K80 GPU,
512 GB RAM, Python 2.7.18, Ubuntu Linux 20.04.6, CUDA
11.4, TensorFlow 2.9.1, and Gadgetron 4.1.1. Native T1ρ-weighted
images and their corresponding T1ρ maps were transmitted back to
the user interface. These images were enriched with overlaid LV con-
tours, AHA 16-segment bullseyes (displaying both mean and stan-
dard deviation), right ventricular insertion points, and associated
confidence scores. Video S1 highlights the inline application of the
proposed tool. The codes employed for training the segmentation
and landmark models, the pre-trained models, and the Gadgetron
gadgets are readily available to the community at the following
repository: https://github.com/AurelienBustin/Automated-myocardial-
T1-rho-mapping.

STANDARD OF REFERENCE. In the training set, three annota-
tors, with 20, 20, and 15 years of experience in MRI image segmen-
tation, performed the manual delineation of the endocardial and
epicardial contours, as well as identifying right ventricular insertion
points. Each annotator segmented a third of the dataset. The annota-
tions were performed using CVI42 (Circle Cardiovascular Imaging,
Calgary, Canada). For the testing set, the standard of reference was
established by two radiologists (H.C. and S.S., with 20 and 7 years
of MRI experience, respectively). These observers were entirely blind
to the output of the algorithms and were unaware of the labels pro-
vided by other observers. One of the radiologists (S.S) independently
re-annotated a subset of 47 patients from the testing set during a
second session conducted over a month after the initial annotation.
Myocardium contours were systematically eroded by one pixel.

Statistical Analysis
Statistical analysis was performed using SPSS Statistics v28 (IBM
Corp., Armonk, NY). The Shapiro–Wilk test was used to test the
null hypothesis that each continuous variable follows a normal distri-
bution. Continuous variables are presented as mean � SD (normally
distributed) and as median [interquartile range Q1–Q3] (non-
normally distributed). Categorical variables are presented as fraction

(%). Parametric (unpaired Student’s t-test) or non-parametric tests
(Mann–Whitney) were used for continuous variables based on nor-
mality. Categorical variables were compared using χ2 or Fisher’s
exact test as needed.

SEGMENTATION AND LANDMARKS QUALITY. The Fried-
man test was used to compare LV wall volumes obtained by the
radiologists and the automated pipeline. Inter- and intraobserver
reproducibility was assessed using Bland–Altman analysis and
intraclass correlation coefficient (ICC) with 95% confidence interval
(CI). Agreement was considered poor, moderate, good, or excellent
for ICC <0.50, 0.50 to 0.75, 0.75 to 0.90, and >0.90.23 One-way
repeated measures analysis of variance (ANOVA) was used to com-
pare Dice coefficients,24 Jaccard index,25 and center of mass differ-
ence between slices, followed by Tukey’s post-hoc test for multiple
comparison. Wilcoxon signed rank test assessed differences in
Euclidian distance (mm) and insertion points angle (degrees)
between anterior and posterior right ventricular insertion points. For
each patient, the size of the 16 regions-of-interest (ROI) from the
AHA model was documented for both manual and automated
processing, and a comparison was conducted using a paired t-test.
Processing times were measured and recorded.

MYOCARDIAL T1ρ VALUES COMPARISON. Paired Student’s
t-tests were used to compare automated and manual global T1ρ
values. One-way ANOVA followed by Tukey’s post-hoc test assessed
regional T1ρ differences between slices and between AHA segments.
Agreement in T1ρ values obtained with automated and manual
processing was evaluated at patient, slice, and segment levels using
Bland–Altman analysis and ICC with 95% CI, with agreement
ranges as above. Sensitivity, specificity, positive and negative predic-
tive values, and diagnostic accuracy of automated processing in
detecting abnormal T1ρ values were calculated at patient, slice, and
segment levels. Abnormal T1ρ values were defined as
T1ρ ≥ 55 msec, based on mean + 2 SDs from a prior study on
healthy volunteers at 1.5-T.12 Myocardial T1ρ values on all true
positive (T1ρAutomated ≥ 55 msec, T1ρManual ≥ 55 msec), true nega-
tive (T1ρAutomated < 55 msec, T1ρManual < 55 msec), false positive
(T1ρAutomated ≥ 55 msec, T1ρManual < 55 msec), and false negative
(T1ρAutomated < 55 msec, T1ρManual ≥ 55 msec) groups were
analyzed.

All tests were 2-tailed, with P < 0.05 considered statistically
significant.

Results
Segmentation Time and Quality
The automated processing of T1ρ slices showed a marked sig-
nificant reduction in processing time compared to manual
processing in the testing set (�3 seconds vs. 1 minute
51 seconds � 22 seconds). Figure 2 shows example LV seg-
mentations and right ventricular insertion points generated by
the proposed automated pipeline in seven patients presenting
diverse cardiomyopathies. Figure S2 in the Supplemental
Material shows the epicardial and endocardial contours
obtained in four patients using the automated pipeline along-
side those delineated by the two observers. The quality of LV
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segmentation in the basal slices was significantly better than
that in the apical slices, as evidenced by the significantly
higher Dice and Jaccard indices (Table S2 in the Supplemen-
tal Material). Automated segmentation closely approximated
the average of results obtained by the two annotators (global
Dice of 81.9% � 9.0 and global Jaccard index of 70.2% �
12.0), and closely aligned with interobserver segmentation
(global Dice 82.2% � 6.5, P = 0.97, and global Jaccard
index 70.2% � 9.2, P = 0.99). Regarding manual LV wall
volume segmentation, excellent intraobserver reproducibility
(ICC = 0.96 [0.93–0.98]) and good interobserver reproduc-
ibility (ICC = 0.79 [0.65–0.88]; Fig. S3 in the Supplemental
Material) was observed on a patient basis in the testing set
with repeated segmentation (N = 47). Furthermore, when
comparing LV wall volumes obtained through the automated
pipeline with radiologist-derived volumes (global volume
29.3 cm2 [26.3–36.7] vs. 29.7 cm2 [25.4–36.7]; Table S3 in
the Supplemental Material). There was a moderate to excel-
lent ICC both at the patient level (Radiologist 1: 0.65 [0.46–
0.79], Radiologist 2 Session 1: 0.91 [0.85–0.95]) and at the
slice level (Radiologist 1: 0.72 [0.63–0.79], Radiologist 2 Ses-
sion 1: 0.89 [0.85–0.92]; Table 2). When considering the
entire testing cohort (N = 73), the ICC for LV wall volume
segmentation further improved on a patient (0.94 [0.91–

0.96]) and slice basis (0.93 [0.91–0.95]; Fig. S4 in the Sup-
plemental Material) with minimal bias of �0.93 cm2 (95%
CI: �7.5 to 5.7 cm2) and �0.31 cm2 (95% CI: �3.2 to
2.6 cm2), respectively.

Landmarks Precision
The accuracy of the LV center of mass is shown by the small
distance observed between the automated pipeline and man-
ual measurements (center of mass difference of
3.1 mm � 2.4; Table S2 in the Supplemental Material),
closely approximating interobserver error (2.7 mm � 1.8,
P = 0.33). The center of mass difference between manual
and automated segmentation did not show significant varia-
tion between slices (P = 0.578). Furthermore, the distance
between the identified right ventricular insertion points and
the reference standard was small, with a slightly higher but
significant discrepancy for the posterior point (5.5 mm [3.9–
8.2] vs. 8.2 mm [6.4–10.8]; Fig. S5 in the Supplemental
Material). There was also a small but significant difference for
the angle (7.2� [3.6–11.6] vs. 11.5� [8.5–15.1]). The confi-
dence score for detecting both landmarks in the testing set
was 94.4% (95% CI: 91.3% to 95.7%). With the exception
of the infero-apical and latero-apical segments, there were no
significant differences in ROI size between automated and

FIGURE 2: Automated pipeline results showcasing left ventricular segmentation outcomes (top) and identified right ventricular
insertion points (bottom) in seven patients presenting diverse cardiomyopathies. LV = left ventricle; A-RVI = anterior right
ventricular insertion point; P-RVI = posterior right ventricular insertion point.
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manual processing for each AHA segment (Table S4 in the
Supplemental Material).

Myocardial T1ρ Reproducibility
In the test cohort, there was no significant difference in global
myocardial T1ρ values between manual processing
(54.9 msec � 4.6; 95% CI: 53.8 to 56.0 msec, range: 46.6–

70.9 msec) and automated processing (55.4 msec � 5.1;
95% CI: 54.2 to 56.6 msec, range: 46.4–75.1 msec;
P = 0.099; Table 3). The automated pipeline demonstrated a
good level of agreement with radiologist-derived myocardial
T1ρ values, with ICC of 0.85 (95% CI: 0.77 to 0.90), 0.80
(95% CI: 0.74 to 0.84), and 0.65 (95% CI: 0.62 to 0.68) at
the patient, slice, and segment levels, respectively. Minimal
biases and 95% limits of agreement were observed, with T1ρ
differences of +0.52 msec � 5.18, +0.78 msec � 8.52, and
+0.52 msec � 14.48, respectively (Fig. 3). No significant dif-
ferences in myocardial T1ρ values were found between the
automated pipeline and manual processing across the 16 seg-
ments defined by the AHA (One-way ANOVA P = 0.75;
Fig. 4a) or on individual slices (basal P = 0.99, middle
P = 1.00, apical P = 0.08; Fig. 4b). A slight trend toward
higher T1ρ values was observed in the apical segments for
both automated and manual processing (P < 0.001). Average
myocardial T1ρ values between the automated pipeline and
manual processing across the different patient groups (MRI-
negative, ischemic, myocarditis, hypertrophic cardiomyopa-
thy, dilated cardiomyopathy, and Takotsubo) are shown in
Table 4. Only the dilated cardiomyopathy group showed
slightly but significantly higher T1ρ values with the auto-
mated pipeline compared to manual processing
(56.2 msec � 5.2 vs. 54.0 msec � 3.8). Figure S6 in the
Supplemental Material shows the results of the proposed
framework in two MRI-negative subjects. Figure 5 shows the
16-segment AHA representations and corresponding contrast
agent-free T1ρ maps for both manual and automated
processing in two patients with ischemic and nonischemic
heart disease. Figure 6 provides the same visual comparison
for three patients with Takotsubo cardiomyopathy.

Identification of Patients With Elevated T1ρ Values
The fully automated framework provided robust diagnostic
performance on a patient basis, with a sensitivity of 91.4%
(95% CI: 81.9 to 96.8), a specificity of 89.5% (95% CI:
79.5 to 95.5), a positive predictive value of 88.9% (95%
CI: 78.8 to 95.1), a negative predictive value of 91.9% (95%
CI: 82.5 to 97.1), and an overall accuracy of 90.4% (95%
CI: 80.7 to 96.1) for identifying abnormal T1ρ values
(Table S5 in the Supplemental Material).

TABLE 2. Intraclass Correlation Coefficient (ICC) With
95% Confidence Intervals for Left Ventricular Wall
Volume, Comparing Automated and Manual
Processing of Myocardial T1ρ Maps in 47 Patients

Left Ventricular
Wall Volume
Comparisons

ICC (95% Confidence Interval)

Patient Basis Slice Basis

Radiologist 1—
Radiologist 2
Session 1

0.73 [0.57–0.84] 0.78 [0.70–0.83]

Radiologist 1—
Radiologist 2
Session 2

0.79 [0.65–0.88] 0.82 [0.76–0.87]

Radiologist 2
Session 1—
Radiologist 2
Session 2

0.96 [0.93–0.98] 0.95 [0.93–0.96]

Automated—
Radiologist 1

0.65 [0.46–0.79] 0.72 [0.63–0.79]

Automated—
Radiologist 2
Session 1

0.91 [0.85–0.95] 0.89 [0.85–0.92]

Automated—
Radiologist 2
Session 2

0.91 [0.84–0.95] 0.90 [0.87–0.93]

Automated—
Average
Radiologist 1
and
Radiologist 2
Session 1

0.88 [0.79–0.93] 0.89 [0.85–0.92]

TABLE 3. Manual vs. Automated Extraction of Global Myocardial T1ρ Values in the Test Cohort (N = 73)

Global T1ρ (msec) Mean � SD 95% CI [Min, Max] Range Differences

Manual 54.9 � 4.6 [53.8, 56.0] [46.6, 70.9] 24.3

Automated 55.4 � 5.1 [54.2, 56.6] [46.4, 75.1] 28.7

SD = standard deviation; CI = confidence interval.
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FIGURE 3: Bland–Altman analysis for myocardial T1ρ values derived from T1ρ maps comparing manual and fully automated
processing on a patient (N = 73), slice (N = 219), and segment (N = 1168) basis.

FIGURE 4: Myocardial T1ρ measurement in the 16 American Heart Association segments (a) and at basal, middle, and apical slice
levels (b) obtained with manual and automated processing in a test cohort of 73 patients. Errors bars represent standard deviation.
NS = non-significant, *P < 0.001.
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Discussion
This study investigated the performance of an AI-based
framework for the automated quantification of contrast
agent-free myocardial T1ρ mapping in a clinical setting. First,
the automated segmentation of LV contours on T1ρ-
weighted images was shown to be feasible and reproducible,
even with the relatively small training dataset. Second, this
approach enabled accurate extraction of global and segmental
myocardial T1ρ values in a fast and fully automated manner.
Third, its seamless clinical integration not only resulted in
substantial time savings compared to conventional manual
methods but also has potential to enable real-time diagnosis
of myocardial lesions during scanning. Taken together, this
framework takes a step toward quicker, “needle-free,” and
more efficient management of patients with heart disease.

Automated Quantification of Myocardial Parameter
Mapping
Several innovative approaches have emerged to automate the
quantification of myocardial T1 mapping,10,26–29 T2
mapping,30 and the fusion of both.11,31 In their respective
studies, Kim et al,30 Fahmy et al,10 and Puyol-Ant�on et al26

used U-Net and advanced U-Net architectures, meticulously
trained on datasets comprising 586, 210, and 800 carefully
selected subjects, respectively. Howard et al31 adopted the
deep high-resolution representation learning (HigherHRNet)
framework, trained on a dataset of 713 patients for the auto-
mation of joint T1 and T2 mapping using the mSASHA
sequence. This network has multiple advantages over the
U-Net models, including finer and more spatially accurate
segmentation.31 By exploiting self-attention mechanisms, the
transformer model employed in the current study has shown
even better performance in medical image segmentation,15 by
capturing patterns and global spatial dependencies within the
images and by improving computational efficiency. A

comprehensive comparison of these segmentation architec-
tures for MRI parameter mapping remains to be established.

In the current study, elevated T1ρ values were observed
in the apical segments which might be attributed to their sus-
ceptibility to partial volume averaging, a phenomenon previ-
ously reported in T1 and T2 mapping.32–34 The lower
segmentation quality in the apical segment, as indicated by
lower Dice and Jaccard indices, could also contribute to this.
In the dilated cardiomyopathy group, T1ρ values were signifi-
cantly higher with automated processing compared to manual
processing. This discrepancy may be linked to thinner myo-
cardial walls and diminished segmentation performance, as
corroborated by the slightly lower Dice score.

Future study may include extending the proposed
framework to other mapping techniques, including T1 and
T2 mapping. Additionally, extending the framework to high-
resolution 3D T1ρ mapping35,36 may offer opportunities for
various applications, such as atrial or right ventricular imag-
ing. Lastly, conducting follow-up studies to assess the frame-
work’s results and performance over time is an avenue for
future research.

Limitations
The single-center, single-scanner design and relatively small
sample size in this study cannot eliminate center-specific and
manufacturer-specific T1ρ bias. Additionally, a larger sample
size is important to increase the performance of deep
learning-based automated segmentation. Unfortunately, the
absence of an open-access T1ρ dataset has hindered the use
of deep learning in LV segmentation tasks. Furthermore, our
test dataset lacked sufficient representation for each cardiomy-
opathy subtype, resulting in insufficient statistical power to
achieve a robust comparison between manual and automated
processing methods. A larger, more diverse cohort
encompassing various heart conditions is essential to enhance
the robustness of this study.

TABLE 4. Comparative Analysis of Global T1ρ Values Obtained From Manual and Automated Processing Pipelines
in the Different Cardiomyopathies Within the Test Cohort

Cardiomyopathy
No. of
Patients

Mean T1ρ
Automated (msec)

Mean T1ρ
Manual (msec)

P-
Value

Global
DICE (%)

MRI-negative 16 52.9 � 5.6 50.9 � 3.1 0.249 83 � 5

Ischemic 13 57.5 � 3.9 56.7 � 3.0 0.482 83 � 5

Myocarditis 8 59.3 � 6.4 54.1 � 3.0 0.229 81 � 6

HCM 5 51.9 � 1.7 51.2 � 0.9 0.427 86 � 4

DCM 25 56.2 � 5.2 54.0 � 3.8 0.027 82 � 5

Takotsubo 6 67.4 � 11.2 64.9 � 8.4 0.427 84 � 3

HCM = hypertrophic cardiomyopathy; DCM = dilated cardiomyopathy.
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Nevertheless, compared to previous studies, this study
used a relatively large myocardial T1ρ mapping database and
may benefit the wider research community. Furthermore, the
framework’s inline implementation holds promise for its
deployment in external clinical centers for multicentric stud-
ies spanning diverse patient demographics.

This study did not measure and compare fibrotic extent
and transmurality in ischemic and nonischemic cardiomyopa-
thies against established LGE techniques, primarily due to the
limited 3-slice short-axis coverage of the data collected. The
algorithm implemented in the current study is designed to
handle an arbitrary number of slices which would facilitate
the assessment of T1ρ diagnostic accuracy in forthcoming
studies.

Due to time and institutional constraints, the training
dataset in the current study only comprised whole-heart
TSL35 images. Improved segmentation accuracy could

potentially be achieved by leveraging all T1ρ-weighted images
using a multi-channel Swin Transformer architecture.37 How-
ever, this will only be possible after the construction of suffi-
ciently large registry. Our study employed an 85:15 train-test
splitting scheme, but exploring alternative splits such as 80:20
or 75:25 may also mitigate the variability of performance
estimates.

Remaining Hurdles for the Broad Clinical
Integration of Myocardial T1ρ Mapping
Enhancements in spatial resolution is a crucial requirement
for advancing clinical detection capabilities and facilitating
finer differentiation of myocardial lesions. While myocardial
T1ρ mapping is still in its early stages, the emergence of 3D
applications, in Cartesian and non-Cartesian formats, have
shown significant advancement.35 The integration into a
“free-running” framework may also be crucial in achieving

FIGURE 5: Comparison of 16-segment American Heart Association Bullseye representations and corresponding T1ρ maps, as well as
T1ρ-weighted images (spin-lock time of 35 msec), for both manual and automated processing in a patient with ischemic heart
disease (top row) and in a patient with both ischemic and nonischemic heart disease (bottom row). Post-contrast late gadolinium
enhancement (LGE) images are also provided. Arrows highlight regions exhibiting elevated T1ρ values and hyperenhancement on
LGE imaging.
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cardiac- and respiratory-resolved (5D) T1ρ mapping.38 Its
integration into a multiparametric mapping presents an
opportunity for a comprehensive evaluation of myocardial tis-
sue characteristics. Magnetic Resonance Fingerprinting
(MRF), for example, promises the joint assessment of multi-
ple parameters, thereby enabling a comprehensive examina-
tion. Velasco et al have introduced such framework
facilitating simultaneous T1ρ, T1, and T2 cardiac mapping
within a single 16-second scan.39

Furthermore, other artificial intelligence applications
offer a spectrum of prospects, including quality control and
motion correction, both directed toward alleviating manual
workload and fostering clinical applicability.9

Nevertheless, the widespread clinical adoption of T1ρ
mapping encounters challenges pertaining to standardization

and transferability. Encouragement of collaborative endeavors
and fostering the sharing of protocols, will help enhancing
accessibility and standardization. Moreover, granting open
access to data, reconstruction techniques, and code used for
analysis may improve reproducibility and bring myocardial
T1ρ mapping closer to routine clinical practice. Lastly, there
is a lack of certainty regarding the nature of T1ρ tissue varia-
tions and whether they reliable indicate disease. This remains
to be clinically validated in prospective and randomized trials.

Conclusion
Automated processing of myocardial T1ρ mapping demon-
strated strong agreement with manual processing, and had
greater time efficiency and comparable segmentation quality.

FIGURE 6: Comparison of 16-segment American Heart Association Bullseye representations and corresponding T1ρ maps for three
patients with Takotsubo cardiomyopathy, analyzed both manually and via automated processing. Post-contrast late gadolinium
enhancement (LGE) images are included for reference.
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These results highlight its potential for conducting noninva-
sive, “needle-free,” and rapid on-site assessment of structural
heart disease.
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