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Martin, Sébastien Moretti, Robin Engler, Dmitry Kuznetsov, Orlin Topalov, Anne Niknejad,

Laith Abu-Nawwas, Diana Marek, Vassilios Ioannidis, Etienne de Rham, Brian Stevenson, and

Mark Ibberson. My mentor, Liliane Michalik, for her precious advice, and the nice moments

shared together.

The secretaries for guiding me through the administrative mysteries: Iris Marouani, Corinne

Dentan, Nathalie Clerc, Julie Papet, and Muriel Metrailler Lenoir.

Last but not least, I warmly thank my family and friends, for the games, the meals, the

discussions, the poetry, and the essential in life.

Dedication

I dedicate this thesis to my father, who showed me that courage is not to not have fears and

who knew the words to speak to my heart.

iv



Abstract

Sleep is a daily behavior important for health. Many people studied sleep with more or less

sophisticated technologies over time, and yet it has not revealed all its mysteries. To help

uncover the molecular consequences of sleep deprivation, the Franken group have assembled a

systems genetics resource interrogating the BXD mouse panel. The genotypes and sleep-wake

phenome were characterized, along with intermediate phenotypes: the transcriptome in brain

and in liver, and the targeted metabolome in the blood plasma. I have used this rich multi-

omics BXD dataset for computational investigation and development of analytical methods for

data and knowledge integration to expand the current understanding of sleep regulation. First,

in collaboration with Maxime Jan we used this real-world example of data and bioinformatic

analysis management to highlight multi-omics challenges and solutions used to help internal

or external reusability. This includes more details on the quality check and validations of

the methods, the use of Rmarkdown reports for more higher levels parts of the analyses, a

metadata workflow document illustrating and referencing the different code and data files,

and a web site for exploration of the results. The robustness of the results was also assessed

through the change to the newest version of the mouse genome reference assembly used. Then,

the classical pipeline to analyse RNA-sequencing reads uses one mouse reference for all samples,

irrespective of the strain of the samples, which is potentially creates a reference bias. Therefore,

to improve the genetic-specificity of the read mapping, I customized the standard assembly

based on one parental strain with variants from the BXD population. An important step was

adding a tailored imputation of the population genetic variants using haplotypes blocks/regions

to achieve a sufficient resolution for each line-specific reference. This strategy alleviated the

reference bias and allowed to detect proportionally more eQTLs with the custom BXD-specific

references than with the standard reference. Lastly, I assembled a multi-layer prior knowledge

network and integrated the gene expression sleep-specific on it. This integration of data-driven

and knowledge driven approach sets the basis for a way to generate hypotheses based on multiple

genes to explain the genetic and environmental interactions culminating in the different sleep

phenotypes.
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Résumé

Le sommeil est un comportement quotidien important pour la santé. De nombreuses per-

sonnes ont étudié le sommeil avec des technologies plus ou moins sophistiquées au fil du

temps, et il n’a cependant pas encore révélé tous ses mystères. Pour aider à découvrir les

conséquences moléculaires de la privation de sommeil, le groupe Franken a assemblé une

ressource de génétique des systèmes relative aux lignées de souris BXD. Les génotypes et le

phénome de sommeil-éveil ont été charactérisés, ainsi que des phénotypes intermédiaires : d’une

part le transcriptome dans le cerveau et le foie, d’autre part le métabolome ciblé dans le plasma

sanguin. J’ai utilisé ce riche jeu de données multi-omics sur les BXD pour le développement

de méthodes analytiques pour l’intégration de données et de connaissances afin d’étendre la

compréhension actuelle de la régulation du sommeil. D’abord, en collaboration avec Maxime

Jan, nous avons utilisé cet exemple réel de la gestion des données et de l’analyse bioinforma-

tique pour mettre en évidence les défis multi-omics et les solutions utilisées pour que le travail

puisse être réutilisé à l’interne ou à l’externe. Cela inclut plus de détails sur le contrôle de

qualité et les validations des méthodes, l’utilisation de rapports Rmarkdown pour les parties de

plus haut niveau d’abstraction des analyses, un document concernant les méta-données du flux

de travail pour illustrer et référencer les différents scripts et fichiers de données et un site web

pour l’exploration des résultats. La stabilité des résultats a également été évaluée au travers du

changement de version de l’assemblée de réference utilisée. Puis, la pipeline traditionnelle pour

analyser des reads de séquençage d’ARN utilise une référence murine pour tous les échantillons,

quelle que soit leur souche. Afin d’améliorer la spécificité génétique du mapping des reads, j’ai

utilisé et personnalisé l’assemblée standard basée sur une souche parentale avec les variants de la

population BXD. L’imputation des variants génétiques en utilisant les blocs/régions haplotypes

était importante pour obtenir une résolution suffisante pour chacune des lignées. Cette stratégie

a diminué le biais de référence et a permis de détecter proportionnellement plus d’eQTLs avec

les références spécifiques aux BXD qu’avec la référence traditionnelle. Finalement, j’ai as-

semblé un réseau à plusieurs couches de connaissances préalables et y ait intégré l’expression

des gènes contenant la composante spécique au sommeil. L’intégration des approches basées

sur les données et les connaissances préalables met en place la base pour un moyen de générer

des hypothèses basées sur plusieurs gènes pour expliquer les interactions génétiques et environ-

mentales provoquant les différents phénotypes du sommeil.
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Chapter 1

Introduction

Sleep is an essential behavior, and disturbed sleep or sleep loss has many short and long term

consequences on concentration, mood, and health [Tariq et al., 2020]. Inadequate sleep seem

to increase risks to develop different diseases such as type 2 diabetes [Spiegel et al., 2009]

and some types of cancer [Spiegel et al., 2005, Lu et al., 2017, Chen et al., 2018, Szkiela

et al., 2020, Manouchehri et al., 2021, Szkiela et al., 2021]. Additionally, theses conditions also

seem responsible for sleep disturbances [Atef et al., 2022]. It remains unclear exactly what

mechanisms could link sleep to these diseases [Everson et al., 2014]. It appears that sleep is an

important and vast subject with many unknowns.

In my thesis, by using the systems genetics resource interrogating the BXD mouse panel as-

sembled by the Franken lab [Diessler et al., 2018], I first assessed the reusability of the analyses

that were already performed in a formal way. This also allowed to identify directions for fur-

ther explorations. One is addressing the gap of standard RNA-sequencing analyses that use

one unique reference for all genetically diverse samples. The other is to combine the depen-

dencies between biological items and their variation in different genetic backgrounds to reveal

multi-variate subnetworks of sleep.
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1.1 Background

1.1.1 Sleep, molecules, and mouse

To clearly distinguish sleep from other states (for examples: coma, hibernation, or hypnosis)

five criteria can be used for mammals. 1) It has to be a period of reduced activity, 2) the

responsiveness to stimuli from environment is reduced, 3) it is quickly reversible, 4) it is home-

ostatically regulated, including a need to compensate after being deprived of it, 5) it is often

linked to circadian (daily) rhythms.

Outside mammals, other species are consider to sleep like flies (drosophila), or to have a sleep-

like state such as worms (nematodes) or jellyfishs [Nath et al., 2017]. The reticence to call it

sleep may somehow depends on the fact they do not have a brain and monitoring brain activity

is often considered to be the gold standard for measuring sleep. However, having a brain is

not in the criteria. It was observed that the sleep activity is not homogeneous in the brain and

dolphins are a famous example of how brain asymmetry of sleep [Schulz, 2022].

The two process model is a framework where the propensity to sleep comes from 2 processes

[Borbély, 1982, Borbély et al., 2016]. There is an homeostatic process (S) which increases when

awake and decreases while asleep and there is a circadian process (C) which determine the time

of the day more suitable to sleep, based on internal oscillator in the suprachiasmatic nucleus

(SCN). Process S can be measured with specific frequency of activity during the sleep and wake

states. Process C can be measured through core body temperature and melatonin levels.

The circadian rhythms are maintained in the cells by transcriptional activation-repression loops

of negative feedback [Franken and Dijk, 2009]. For example, a protein heterodimer of Circa-

dian Locomotor Output Cycles Kaput (CLOCK) and Brain and Muscle Arnt-Like 1 (BMAL1)

activates the transcription of Period Circadian Regulator 2 (Per2). The PER2 protein then

repress the transcription of Clock and Bmal1 gene, which reduces the amount of CLOCK and

BMAL1 proteins available and stops the transcription of Period Circadian Regulator 2 (Per2).

Multiple nested loops are forming this system and the genes are called clock genes. The SCN

10



is responsible to coordinate the oscillation in the organs, but not to drive them.

It is difficult to separate circadian and sleep homeostasis at the molecular level, as mutations

in some clock genes (Clock, Bmal1, Npas2, Per1, Per2, Cry1, Cry2) have an impact on the

homeostatic response [Franken, 2013]. Homer1a gene expression correlates with process S in

mouse [Schulz, 2022], a point mutation in the mouse gene Cacna1a reduces wakefulness by

about one hour per day [Jan et al., 2020], and mutations in a few genes were found to cause

sleep disorders such as hypocretin (orexin) cause narcolepsy in dogs [Schulz, 2022] but these

remain anecdotal to explain much of the heritability in the sleep characteristics.

The mouse is an experimental model of choice for the study of sleep. The sleep characteristics

in different strains have already been described extensively [Franken et al., 1998, Franken et al.,

1999]. As for humans, the gold standard to measure sleep is electroencephalography (EEG)

coupled with electromyography (EMG) which provide a high temporal resolution [Schulz, 2022]

(Figure 1.1A,B). There are 2 sleep stages for mouse: the rapid-eye-movement sleep (REM) sleep

and the non-REM (NREM) sleep. The REM sleep is also called paradoxical sleep because of the

brain activity similar to the awake state while the body is not active, except for characteristic

eye movements. Brain activity during NREM sleep is characterized by slower amplitude waves:

delta (1-4.25 Hz), which is thought to be indicative of sleep pressure. Recent work has shown

however that this binning groups heterogeneous waves that could more accurately be divided

into slow delta or δ1 (1-2.25 Hz) and fast delta or δ2 (2.25-4 Hz) [Hubbard et al., 2020]. From

the brain and muscle activity is derived hundred of quantitative sleep phenotypes describing

the sleep-wake duration, distribution, and architecture (Figure 1.1C). To challenge the sleep

homeostat, the perturbation is often a sleep deprivation (SD), done by gentle handling to avoid

unnecessary increase of stress. It has to be noted though that the deprivation of sleep is in

itself a cause of stress. The effect of sleep deprivation is however not only caused by stress

[Mongrain et al., 2010]. Further precision on the recording of sleep in mouse can be found in

the protocol [Mang and Franken, 2012].

11
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Figure 1.1: Recording sleep in mouse

A) Recording devices B) Typical EEG/EMG signal in the mouse C) Example of quantitative

sleep phenotypes for two different BXD lines.

Sleep combines neuronal and molecular interactions and is a complex trait involving environ-

mental and genetic factors [O’Callaghan et al., 2019]. The sleep phenotypes recorded in a

strictly controlled environment show a variability greatly heritable and the parental lines do

not necessarily have more extreme phenotypes than their crosses (Figure 1.2). Ranking pheno-

types values by strain/line is done elsewhere and identification of extreme value help to figure

out one BXD actually had a mutation that makes it now a substrain [Cook et al., 2006].
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NREM sleep [min/h]
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Figure 1.2: Sleep phenotypes ranked by mouse lines
Four examples of sleep phenotypes ranked by strain/BXD line with different patterns of whether
the parental strains have more extreme phenotypes than the crosses. ZT: Zeitgeber time (here
ZT0 is when the light is switched on, ZT12 is when the light is switched off, on a 12 hours
light-12 hours dark pattern), BXD: recombinant inbred derived from a cross between B6 and
D2 strains, REM: rapid-eye-movement sleep, NREM: non-REM.

1.1.2 Reproducibility, methodology, and RNA mapping

Scientists produce always more experiments and publications over the years and recently more

and more are coming to the realization that many of these are not actually ideal scientific pro-

ductions because of their lack of reproducibility, which questions their validity and usefulness.

We can make the distinction between two types of reproducibility: the first is that repeating

the same experiment using the same methods would obtain the same results, the second that

the code and data are available to redo the same analysis [noa, 2016]. [Freedman et al., 2015]

argues that the first definition is valid for confirmatory analyses whereas exploratory analyses

would only require the second one. The FAIR principles is an initiative to guide researchers to

sharing their data [Wilkinson et al., 2016]. It can be used as a theoretical checklist to help to

consider the different aspects. The main idea are that the data and meta-data should be: i)

Findable: which means they are indexed, can be searched for with keywords and have a univer-

13



sal identifier for example a Digital Object Identifier (DOI) to refer to. ii) Accessible: The data

can be retrieved either freely, either with an authorisation procedure if necessary because the

data are sensitive or under a particular regulation. And that meta-data is available even if the

data is not. iii) Interoperable: they are in a format and language broadly used and they follow

standard vocabularies when existing. iv) Reusable: which has to do with legal license, to clarify

who can use the data, whether or not it can be modified or used for commercial applications.

This sets ideal guidelines for more transparency and sharing of the (intermediate) data and

analyses, not just the final results. However, what limits the reusability of previous research is

not always the access to the data or analyses but sometimes simply the access to the knowledge

to full understand them, which argues in favor of more documentation and transmission during

the entire process. It is important to avoid isolation since already having another person’s look

can prevent conscious or unconscious bias [noa, 2016] but also as it allows to not reinvent the

wheel while still exploring further the world.

1.1.3 Multi-omics, Databases, and Network

With so many datasets available, the trend is to somehow merge the information for different

biological layers or different methods with the idea that it will allow to strengthen the biological

signal of interest (present across multiple layers and methods) while reducing the experimental

noise (different between omics). This data-driven approach assumes the data tables can be

summarized into a lower number of variables, as the Principal Component Analysis (PCA) does

with one data table. There is a wide range of algorithms to perform multi-omics dimensionality

reduction [Dubin et al., 2016, Cantini et al., 2021], which arise from different fields having

developed, sometimes in parallel, their methods. As a result, different vocabularies are found

for the same concepts (Table 1.1). Notably, multi-omics factor analysis (MOFA) [Argelaguet

et al., 2018, Argelaguet et al., 2020] is modelling in a probabilistic Bayesian framework and

allows to retrieve non-linear patterns, which most other methods would miss.

The data-driven approach needs eventually to compare the particular information extracted

with the scientific literature and knowledge. A part of this knowledge is stored in formalized

14



Term in MOFA Term in CCSWA Meaning

View (samples as columns,
features as rows)

Block (samples as rows, fea-
tures as columns)

Data matrix or table with
features values (genes,
metabolites, phenotypes,
genotypes, . . . ) for the
samples

Latent Factor (LF) Common dimension (dim)
Multi-block equivalent of
principal component in a
PCA

Loadings/weights Saliences
Contribution of each feature
to a LF or dim (no equiva-
lent in PCA)

Table 1.1: Comparison of multi-omics dimensionality reduction terminology.
The nomenclature differs between different methods to reduce the dimensionality of

multi-blocks data. MOFA: multi-omics factor analysis, CCSWA: Common Components and
Specific Weights Analysis

form of databases. PubTator stores publication-based text occurrences of different biological

elements [Wei et al., 2019], Rhea stores reactions [Bansal et al., 2022], STRING stores protein-

protein known and predicted interactions [von Mering et al., 2005, Szklarczyk et al., 2019].

Different databases were built for different purposes, and because of that they focus on different

types of interactions: atomic, molecular, complex, cell [Xenarios and Eisenberg, 2001]. Some are

specific to a species [Kim et al., 2016], tissue, or condition [Sügis et al., 2019] whereas some aim

to be generalist like Gene Ontology (GO) [Ashburner et al., 2000, Blake, 2013]. Even when focus

on the same biological objects, databases tend to differ in how they will identify each object,

and some databases are agglomerations of multiple other (primary) databases which have been

processed to form coherent ensembles [Hermjakob et al., 2004, Orchard et al., 2013, Türei et al.,

2021]. Mapping identifiers to make entries somehow comparable is an unavoidable but rarely

perfect process where information is loss or incorrectly transmitted, whether done manually

(curated), automatically, or a mix of both [Krassowski et al., 2020].

If interactions are often stored as list of entries for further analysis, for visualisation they may

be under another form (Figure 1.3). Graphs and networks are synonyms (except when graph

is used to describe a visual representation) where the nodes (or vertices) are the objects and

the edges are the interactions between the objects. The ball-and-stick (Figure 1.3A) type

of representation is the most commonly used for visualization with many variations to show
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different aspects of the state of the interactors (node properties) and the characteristics of

the interactions (edges properties) [Shannon et al., 2003, Marai et al., 2019]. There are many

different possibilities to spatially place the nodes in the 2D (or 3D) space and different layouts

are algorithms that will prioritize different aspect in the choice of where the nodes are displayed.
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Figure 1.3: Different network representations
A) Ball-and-stick model B) Adjacency matrix C) Edge list.

A few basic metrics can help characterise the network and its components [Koutrouli et al.,

2020]. The degree of a node is the number of its connections. The notion of shortest path

between two nodes (if a path exists) is also important, and allows for example to define the

diameter of the network: generally the network is considered to be the longest of all shortest

paths. The density is the ratio between the existing edges and the edges that could exist

considering the number of nodes, it can be calculated for the complete network or for a subpart

(subgraph) of it. From these few measures, networks across different fields have been put in

a few categories. The random networks have a small diameter but are poorly clustered, the

regular lattices have a large diameter and are highly clustered, and the small-world networks

are intermediate with a small diameter but highly clustered [Watts and Strogatz, 1998]. Scale-

free networks are often encountered for biological processes, which is thought to be because

that structure is more adaptable to environment and robust to change [Jeong et al., 2000].

For example, a mutation in a protein may suppress its interaction with another protein. A

computational way to address robustness is by removing or adding edges from prior knowledge

[Badia-i Mompel et al., 2022].

Graph Neural Networks (GNN) are neural networks that use graphs as input for their model
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[Sanchez-Lengeling et al., 2021]. The goal is to predict information, which can work well in

cases with very large number of input data and can perform well even with relatively simple

architecture [Xu* et al., 2018]. However the disadvantage is that the predictions are seen as

coming from a black box, whereas often the biological questions require to interpret and explain

what the model is. Some advances are made to make neuronal networks more interpretable but

progress is still needed to overcome this limitation [Ying et al., 2019].

1.2 Objectives

Sleep deprivation causes short-term discomfort and is associated with many long-term health

problems. Sleep regulation has important genetic and environmental factors, but many aspects

remain poorly understood. To uncover the molecular pathways underlying sleep regulation, The

Franken group has assembled a systems genetics resource interrogating the BXD mouse panel

[Diessler et al., 2018]. The genotypes and sleep-wake phenome were characterized, along with

intermediate phenotypes: the transcriptome in brain and in liver, and the targeted metabolome

in the blood plasma. My role in this project is to inherit this rich multi-omics BXD dataset

to expand the current understanding of sleep regulation by computationally investigating and

developing analytical methods for data and knowledge integration. My objectives for my thesis

are:

• The assessment of the reproducibility and robustness of previous computational analyses

on this dataset. (Chapter 2)

• The contribution to continuous documentation of the project through organisation of

the data and metadata, presentations at lab meetings, redaction of scientific literature.

(Chapter 2)

• The assessment of parental reference bias in RNA-seq. (Chapter 3)

• The implementation of solutions for better references for the RNA-seq of BXD lines.

(Chapter 3)
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• The building of a knowledge graph through the mining and the assimilation of publicly

available databases, and the mapping of various identifiers. (Chapter 4)

• The integration of the data and knowledge parts for the identification of multi-gene reg-

ulation subnetworks of the sleep phenotypes. (Chapter 4)

1.3 Side projects

During my time as a PhD candidate I also participate in the following side projects.

• Ongoing project on the molecular time-dependent effects of sleep deprivation on tran-

scription factor BMAL1 (ChIP seq).

This project aims to see the impact of sleep deprivation on BMAL1 [Mongrain et al.,

2011] on the entire genome and at different time points [Rey et al., 2011]. I contributed

to data analysis of preliminary sequencing tests to optimize the protocol and experimental

design.

• Published review on structural variant calling [Mahmoud et al., 2019]. Included in

this thesis as Annex 1. I contributed to articles mining, table/figure preparation, and

manuscript drafting and revisions. I also wrote a short blog post for outreach to a larger

public.
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Chapter 2

Reproducibility

Many research groups are working around the world and generating an always increasing amount

of data and analyses. Is this work resusable? The goal of this chapter is to assess the repro-

ducibility and robustness of previous computational analyses on the BXD dataset produced

in the Franken lab and participate to the continuous documentation of the project through

organisation of the data and metadata.

2.1 Results summary

In this paper, we are presenting a real-world concrete example of the data and bioinformatic

analysis management. We give insights about multi-omics challenges and solutions we used to

help the work to be reused internally or externally. This includes more details on the quality

check and validations of the methods, the use of Rmarkdown reports for more higher levels parts

of the analyses, a metadata workflow document illustrating and referencing the different code

and data files, and a web site for exploration of the results. We demonstrated assessment of

the robustness of the results through the change of version of mouse genome reference assembly

used (from mm9 to mm10).
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2.2 My contribution

In this research article, I have reproduced previous analyses and updated the mouse genome

reference from mm9 to mm10 in collaboration with Maxime Jan. I participated in data and

metadata organization. I produced the figures 2 and 5 and helped with manuscript writing.

2.3 Publication

This article was published in a peer-reviewed journal [Jan et al., 2019]. For outreach, I did a

short SIB in silico talk available as a video on youtube. The publication is included below.
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a multi-omics digital research 
object for the genetics of sleep 
regulation
Maxime Jan1, Nastassia Gobet1,2, Shanaz Diessler1, Paul Franken1 & Ioannis Xenarios3,4

With the aim to uncover the molecular pathways underlying the regulation of sleep, we recently 
assembled an extensive and comprehensive systems genetics dataset interrogating a genetic reference 
population of mice at the levels of the genome, the brain and liver transcriptomes, the plasma 
metabolome, and the sleep-wake phenome. To facilitate a meaningful and efficient re-use of this 
public resource by others we designed, describe in detail, and made available a Digital Research Object 
(DRO), embedding data, documentation, and analytics. We present and discuss both the advantages 
and limitations of our multi-modal resource and analytic pipeline. the reproducibility of the results was 
tested by a bioinformatician not implicated in the original project and the robustness of results was 
assessed by re-annotating genetic and transcriptome data from the mm9 to the mm10 mouse genome 
assembly.

Background & Summary
A good night’s sleep is essential for optimal performance, wellbeing and health. Chronically disturbed or cur-
tailed sleep can have long-lasting adverse effects on health with associated increased risk for obesity and type-2 
diabetes1.

To gain insight into the molecular signaling pathways regulating undisturbed sleep and the response to sleep 
restriction in the mouse, we performed a population-based multi-level screening known as systems genetics2. 
This approach allows to chart the molecular pathways connecting genetic variants to complex traits through the 
integration of multiple *omics datasets such as transcriptomics, proteomics, metabolomics or microbiomes3.

We built a systems genetics resource based on the BXD panel, a population of recombinant inbred lines of 
mice4, that has been used for a number of complex traits and *omics screening such as brain slow-waves during 
NREM sleep5, glucose regulation6, cognitive aging7 and mitochondria proteomics8.

We phenotyped 34 BXD/RwwJ inbred lines, 4 BXD/TyJ, 2 parental strains C57BL6/J and DBA/2 J and their 
reciprocal F1 offspring. Mice of these 42 lines were challenged with 6 h of sleep deprivation (SD) to evaluate 
the effects of insufficient sleep on sleep-wake behavior and brain activity (electroencephalogram or EEG; Fig. 1, 
Experiment 1) and, on gene expression and metabolites (Fig. 1, Experiment 2). For Experiment 1 we recorded 
the EEG together with muscle tone (electromyogram or EMG) and locomotor activity (LMA) continuously for 4 
days. Based on the EEG/EMG signals we determined sleep-wake state [wakefulness, rapid-eye movement (REM) 
sleep, and non-REM (NREM) sleep] as well as the spectral composition of the EEG signal as end phenotypes. 
For Experiment 2 we quantified mRNA levels in cerebral cortex and liver using illumina RNA-sequencing and 
performed a targeted metabolomics screen on blood using Biocrates p180 liquid chromatography (LC-) and 
Flow injection analysis (FIA-) coupled with mass spectrometry (MS). These transcriptome and metabolome data 
are regarded as intermediate phenotypes linking genome information to the sleep-wake related end phenotypes.

The keystone of systems genetics is data integration. Accordingly, the scientific community can benefit 
from data sharing strategies that facilitate the integration of datasets among research groups. However, relia-
ble methods for data integration are needed and require a broad range of expertise such as in mathematical 
and statistical models9, computational methods10, visualization strategies11, and deep understanding of complex 
phenotypes. Therefore, data sharing should not be limited to the dataset per se but also to analytics in the form 
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of analysis workflows, code, interpretation of results, and meta-data12. The concept of a Digital Research Object 
(DRO) was proposed to group dataset and analytics into one united package13. Various guidelines have been 
suggested to address the challenges of sharing such DRO with the goal to improve and promote the human 
and computer knowledge sharing, like the FAIR (Findable, Accessible, Interoperable, Reusable) principles pro-
posed by FORCE 1114 or by the DB2K (Big Data to Knowledge) framework. These guidelines concern biomedical 
workflow, meta-data structures and computer infrastructures facilitating the reusability and interoperability of 
digital resources15. Although such guidelines are often described and applied in the context of single data-type 
assays, they can be challenging to achieve for trans-disciplinary research projects such as systems genetics, in 
which multiple data types, computer programs, references and novel methodologies need to be combined16. 
Moreover, applying these principles can also be discouraging because of the time required for new working rou-
tines to become fully reproducible17 and because only few biomedical journals have standardized and explicit 
data-sharing18 or reproducibility19 policies. Nonetheless, DROs are essential for scientific reliability20, and can 
save time if a dataset or methods specific to a study need to be reused or improved by different users such as col-
leagues at other institutes, new comers to the lab, or at long-term yourself.

We here complement our previous publication2 by improving the raw and processed data availability. We 
describe in more details the different bioinformatics steps that were applied to analyze this resource and improve 
the analytical pipeline reproducibility by generating R reports and provide code. Finally, we assess the reproduc-
ibility of our bioinformatic pipeline from the perspective of a new student in bioinformatics that recently joined 
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Fig. 1 Data generation. The behavioral/EEG end-phenotypes of the BXD mouse panel were quantified in 
Experiment 1. Mice were recorded for 4 days: 2 days of baseline (B1 & B2), followed by 6 h of sleep deprivation 
(SD) and 2 days of recovery (R1 & R2). EEG spectral composition was written in .smo files, activity in .act 
files and meta-data in .hdr files. Blood metabolomics, liver transcriptomics and cortical transcriptomics were 
quantified in Experiment 2. ‘Control’ and ‘Sleep deprived’ batches were sampled at a single time point: ZT6 
(i.e. directly after sleep deprivation for the ‘sleep deprived’ batch). Transcriptomics was performed on pooled 
sampled per BXD strains. For blood metabolomics, metabolite quantification was performed for each BXD 
replicates. Adapted from2.
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the group, and the robustness of the results by changing both the mouse reference genome and the RNA-seq reads 
alignment to new standards.

Methods
The methods detailed below are an expanded version of the methods described in our related paper2. Appreciable 
portions are reproduced verbatim to deliver a complete description of the data and analytics with the aim to 
enhance reproducibility.

Experiment 1 and Experiment 2 (Fig. 1) were approved by the veterinary authorities of the state of Vaud, 
Switzerland (SCAV authorization #2534).

animals, breeding, and housing conditions. 34 BXD lines originating from the University of Tennessee 
Health Science Center (Memphis, TN, United States of America) were selected for Experiment 1 and Experiment 
2. These lines were randomly chosen from the newly generated advanced recombinant inbred line (ARIL) RwwJ 
panel4, although lines with documented poor breeding performance were not considered. 4 additional BXD RI 
strains were chosen from the older TyJ panel for reproducibility purposes and were obtained directly from the 
Jackson Laboratory (JAX, Bar Harbor, Maine). The names used for some of the BXD lines have been modified 
over time to reflect genetic proximity. Online-only Table 1 lists the BXD line names we used in our files alongside 
the corresponding current JAX names and IDs. In our analyses, we discarded the BXD63/RwwJ line for quality 
reasons (see Technical Validation) as well as the 4 older BXD strains that were derived from a different DBA/2 
sub-strain, i.e. DBA/2Rj instead of DBA/2 J for RwwJ lines21. The methods below describe the remaining 33 BXD 
lines, F1 and parental strains.

Two breeding trios per BXD strain were purchased from a local facility (EPFL-SV, Lausanne, Switzerland) 
and bred in-house until sufficient offspring was obtained. The parental strains DBA/2 J (D2), C57BL6/J (B6) and 
their reciprocal F1 offspring (B6D2F1 [BD-F1] and D2B6F1 [DB-F1]) were bred and phenotyped alongside. 
Suitable (age and sex) offspring was transferred to our sleep-recording facility, where they were singly housed, 
with food and water available ad libitum, at a constant temperature of 25 °C and under a 12 h light/12 h dark cycle 
(LD12:12, fluorescent lights, intensity 6.6 cds/m2, with Zeitgeber time 0 (ZT0) and ZT12 designating light and 
dark onset, respectively). Male mice aged 11–14 week at the time of experiment were used for phenotyping, with 
a mean of 12 animals per BXD line among all experiments. Note that 3 BXD lines had a lower replicate number 
(n), with respectively BXD79 (n = 6), BXD85 (n = 5), and BXD101 (n = 4) because of poor breeding success. For 
the remaining 30 BXD lines, replicates were distributed as follows: for EEG/behavioral phenotyping (Experiment 
1 in Fig. 1; mean = 6.2/line; 5 ≤ n ≤ 7) and for molecular phenotyping (Experiment 2 in Fig. 1; mean = 6.8/line; 
6 ≤ n ≤ 9). Additionally, to control for the reproducibility of the outcome variables over the course of the exper-
iment, parental lines were phenotyped twice—i.e., at the start (labeled in files as B61 and DB1) and end (labe-
led B62 and DB2) of the breeding and data-collecting phase, which spanned 2 years (March 2012–December 
2013). To summarize, distributed over 32 experimental cohorts, 227 individual mice were used for behavioral/
EEG phenotyping (Experiment 1) and 263 mice for tissue collection for transcriptome and metabolome analyses 
(Experiment 2), the latter being divided into sleep deprived (SD) and controls (“Ctr”; see Study design section 
below). We put in an effort to distribute the lines across the experimental cohorts so that biological replicates of 
1 line were collected/recorded on more than 1 occasion while also ensuring that an even number of mice per line 
was included for tissue collection so as to pair SD and “Ctr” individuals within each cohort (for behavioral/EEG 
phenotyping, each mouse serves as its own control).

Study design and sleep deprivation. The study consisted of 2 experiments, i.e., Experiments 1 and 
2 (Fig. 1). Animals of both experiments were maintained under the same housing conditions. Animals in 
Experiment 1 underwent surgery and, after a > 10 days recovery period, electroencephalography (EEG), elec-
tromyography (EMG) and locomotor activity (LMA) were recorded continuously for a 4-day period starting at 
ZT0. The first 2 days were considered Baseline (B1 and B2). The first 6 hours of Day 3 (ZT0–6), animals were sleep 
deprived (SD) in their home cage by “gentle handling” referring to preventing sleep by changing litter, introduc-
ing paper tissue, presenting a pipet near the animal, or gently tapping the cage. Experimenters performing the SD 
rotated every 1 or 2 hours (for more information, see22). The remaining 18 h of Day 3 and the entire Day 4 were 
considered Recovery (R1 and R2).

Half of the animals included in Experiment 2 underwent SD alongside the animals of Experiment 1. The other 
half was left undisturbed in another room (i.e., control or Ctr, also referred as Non Sleep Deprived or NSD). Both 
SD and “Ctr” mice of Experiment 2 were sacrificed at ZT6 (i.e., immediately after the end of the SD) for sampling 
of liver and cerebral cortex tissue as well as trunk blood. All mice were left undisturbed for at least 2 days prior 
to SD.

Experiment 1: EEG/EMG and LMA recording and signal pre-processing. EEG/EMG surgery was 
performed under deep anesthesia. IP injection of Xylazine/Ketamine mixture (91/14.5 mg/kg, respectively) 
ensures a deep plane of anesthesia for the duration of the surgery (i.e., around 30 min). Analgesia was provided 
the evening prior and the 3 days after surgery with Dafalgan in the drinking water (200–300 mg/kg). Six holes 
were drilled into the cranium, 4 for screws to fix the connector with Adhesive Resin Cement, 2 for EEG elec-
trodes. The caudal electrode was placed over the hippocampal structure and the rostral electrode was placed 
over the frontal cerebral cortex. Two gold-wire electrodes were inserted into the neck muscle for EMG record-
ing (for details, see22). Mice were allowed to recover for at least 10 days prior to baseline recordings. EEG and 
EMG signals were amplified, filtered, digitized, and stored using EMBLA (Medcare Flaga, Thornton, CO, USA) 
hardware (A10 recorder) and software (Somnologica). Digitalization of the signal was performed as followed: 
the analog-to-digital conversion of the signal was performed at a rate of 2000 Hz, the signal was down sampled 
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at 200 Hz, high-pass filter at 0.0625 Hz was applied to reject DC offset of the signal and a 50-Hz notch filter 
applied to reduce line artefacts. Signals were transformed by Discrete Fourier Transform (DFT) to yield power 
spectra between 0 and 100 Hz with a 0.25 frequency resolution using a 4-seconds time resolution (referred to 
as a 4 s “epoch”). EEG frequency bins with artefacts of known (line artefacts between 45–55 Hz) and unknown 
(75–77 Hz) source were removed from the average EEG spectra of all mice. Other specific 0.25 Hz bins containing 
artefacts (notably the 8.0, 16.0 and 32.0 Hz bins) of unknown source, were removed from individual mice based 
on the visual inspection of individual EEG spectra in each of the three sleep-wake states (i.e. wakefulness, REM 
sleep and NREM sleep). Power density in frequency bins deemed artefacted were estimated by linear interpola-
tion. For details, see Pascal scripts in https://gitlab.unil.ch/mjan/Systems_Genetics_of_Sleep_Regulation.

LMA was recorded by passive infrared (PIR) sensors (Visonic, Tel Aviv, Israel) at 1-min resolution for the 
duration of the 4-day experiment, using ClockLab (ActiMetrics, IL, USA). Activity data were made available as 
.act files at Figshare23.

Offline, the sleep-wake states wakefulness, REM sleep, and NREM sleep were annotated on consecutive 
4-second epochs, based on the EEG and EMG pattern (see Sleep-wake state annotation section). EEG/EMG 
power spectra and sleep-wake state annotation were made available as binary (.smo) files at Figshare23.

Experiment 2: Tissue collection and preparation. Mice were sacrificed by decapitation after being 
anesthetized with isoflurane, and blood, cerebral cortex, and liver were collected immediately. The whole proce-
dure took no more than 5 min per mouse. Blood was collected at the decapitation site into tubes containing 10 ml 
heparin (2 U/μl) and centrifuged at 4000 rpm during 5 min at 4 °C. Plasma was collected by pipetting, flash-frozen 
in liquid nitrogen, and stored at −80 °C until further use. Cortex and liver were flash-frozen in liquid nitrogen 
immediately after dissection and were stored at −140 °C until further use.

RNA extraction and pooling. For RNA extraction, frozen samples were homogenized for 45 seconds in 1 ml of 
QIAzol Lysis Reagent (Qiagen; Hilden, Germany) in a gentleMACS M tube using the gentleMACS Dissociator 
(Miltenyi Biotec; Bergisch Gladbach, Germany). Homogenates were stored at −80 °C until RNA extraction. Total 
RNA was isolated and purified from cortex using the automated nucleic acid extraction system QIAcube (Qiagen; 
Hilden, Germany) with the RNeasy Plus Universal Tissue mini kit (Qiagen; Hilden, Germany) and were treated 
with DNAse. Total RNA from liver was isolated and purified manually using the Qiagen RNeasy Plus mini kit 
(Qiagen; Hilden, Germany), which includes a step for effective elimination of genomic DNA. RNA quantity, 
quality, and integrity were assessed utilizing the NanoDrop ND-1000 spectrophotometer (Thermo scientific; 
Waltham, Massachusetts, USA) and the Fragment Analyzer (Advanced Analytical). The 263 mice initially sacri-
ficed for tissue collection yielded 222 cortex and 222 liver samples of good quality.

Equal amounts of RNA from biological replicates (3 samples per strain, tissue, and experimental condition, 
except for BXD79, BXD85, and BXD101; see above under Animals, breeding, and housing conditions) were 
pooled, yielding 156 samples for library preparation. RNA-seq libraries were prepared from 500 ng of pooled 
RNA using the Illumina TruSeq Stranded mRNA reagents (Illumina; San Diego, California, USA) on a Caliper 
Sciclone liquid handling robot (PerkinElmer; Waltham, Massachusetts, USA).

RNA sequencing. Libraries were sequenced on the Illumina HiSeq. 2500 using HiSeq SBS Kit v3 reagents, with 
cluster generation using the Illumina HiSeq PE Cluster Kit v3 reagents. A mean of 41 M 100 bp single-end reads 
were obtained (29 M ≤ n ≤ 63 M). Quality of sequences were evaluated using FastQC software (version 0.10.1) 
and reports made available here https://bxd.vital-it.ch/#/dataset/1. Figure 2 (a, b, c and d) shows the median 
Phred quality score per base among all samples reads for ‘Cortex Control’, ‘Cortex SD’, ‘Liver Control’ and ‘Liver 
SD’ respectively. Fastq files were made available at NCBI Gene Expression Omnibus24.

Targeted LC-MS metabolomics. Targeted metabolomics analysis was performed using flow injection analysis 
(FIA) and liquid chromatography/mass spectrometry (LC/MS) as described in25,26. To identify metabolites and 
measure their concentrations, plasma samples were analyzed using the AbsoluteIDQ p180 targeted metabolomics 
kit (Biocrates Life Sciences AG, Innsbruck, Austria) and a Waters Xevo TQ-S mass spectrometer coupled to an 
Acquity UPLC liquid chromatography system (Waters Corporation, Milford, MA, USA). The kit provided abso-
lute concentrations for 188 endogenous compounds from 6 different classes, namely acyl carnitines, amino acids, 
biogenic amines, hexoses, glycerophospholipids, and sphingolipids. Plasma samples were prepared according to 
the manufacturer’s instructions. Sample order was randomized, and 3 levels of quality controls (QCs) were run 
on each 96-well plate. Data were normalized between batches, using the results of quality control level 2 (QC2) 
repeats across the plate (n = 4) and between plates (n = 4) using Biocrates METIDQ software (QC2 correction). 
Metabolites below the lower limit of quantification or the limit of detection, as well as above the upper limit of 
quantification, or with standards out of limits, were discarded from the analysis26. Out of the 188 metabolites 
assayed, 124 passed these criteria across samples and were used in subsequent analyses. No hexoses were present 
among the 124 metabolites. Out of the 256 mice sacrificed for tissue collection, 249 plasma samples were used 
for this analysis. An average of 3.5 animals (3 ≤ n ≤ 6) per line and experimental condition were used (except 
for BXD79, BXD85, and BXD101 with respectively 2, 1, and 1 animal/condition used; see above under Animals, 
breeding, and housing conditions). Note that in contrast to the RNA-seq experiment, samples were not pooled 
but analyzed individually. Mean metabolite levels per BXD line were made available at https://bxd.vital-it.ch/#/
dataset/1 for details see intermediate files27.

Corticosterone quantification. In the same plasma samples, we determined corticosterone levels using an 
enzyme immunoassay (corticosterone EIA kit; Enzo Life Sciences, Lausanne, Switzerland) according to the 
manufacturer’s instructions. All samples were diluted 40 times in the provided buffer, kept on ice during the 



5Scientific Data |           (2019) 6:258  | https://doi.org/10.1038/s41597-019-0171-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

manipulation, and tested in duplicate. BXD lines were spread over multiple 96-well plates in an attempt to control 
for possible batch effects. In addition, a “control” sample was prepared by pooling plasma from 5 C57BL6/J mice. 
Aliquots of this control were measured along with each plate to assess plate-to-plate variability. The concentration 
was calculated in pg/ml based on the average net optical density (at λ = 405 nm) for each standard and sample.

Corticosterone level were made available on Figshare27.

Bioinformatics pipeline. To facilitate the interpretation of the complete bioinformatic workflow that was 
performed on this dataset, we here describe first our general strategy to construct an analytics pipeline with which 
we hope to improve reproducibility (Fig. 3). This strategy has some similarities with the recently published tool 
Qresp28 that facilitates the visualization of paper workflow. We then describe the specific methods used to analyze 
this dataset.

The analytics and input datasets were separated into 3 layers according to an increasing level of data abstrac-
tion (Fig. 3). This hierarchical structure of the workflow was particularly useful to identify steps downstream 
novel versions of a script or data (e.g. Figure 3, red) and simplify workflow description. The first low-level layer 
contains the procedures needed to reduce and transform the raw-data (i.e. RNA-seq reads, EEG/EMG signals) 
into an exploitable signal such as sleep phenotypes, gene expression, or mice genotypes by further analytical steps. 
This layer is characterized by long and computationally intensive procedures which required the expertise of dif-
ferent persons, each with their own working environment and preferred informatics language.

The intermediate-level layer contains some established analyses that could be performed on the data such as 
gene expression normalization followed by differential expression or Quantitative Trait Locus (QTL) mapping. 
With the scripts of this layer we explored the effects of sleep deprivation, genetic variations, as well as their inter-
action on EEG/behavioral phenotypes and intermediate phenotypes.

Fig. 2 Median PHRED read quality per base for BXD RNA-sequencing. PHRED quality score based 
on illumina 1.9. (a) Samples from Cortex during control (NSD). (b) Samples from Cortex after sleep 
deprivation (SD). (c) Samples from Liver during control (NSD). (d) Samples from Liver after sleep 
deprivation (SD). Median score was computed using MultiQC69.
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The high-level layer contains the novel integrative methods that we developed to prioritize genes driving sleep 
regulation and to visually represent the meta-dimensional multi-omics networks underlying sleep phenotypes.

Standard and non-standard semantics. To improve the reproducibility and reusability of our work-
flow, we tried to prioritize standard semantics and established pipelines when applicable, such as the RNA-seq 
processing by STAR and htseq-count29. The use of curated symbols for genes nomenclature by RefSeq allowed a 
better semantic interoperability with other resources such as Uniprot protein ID using solutions like biomaRt30. 
We provided some of the references files used in these scripts, like the RefSeq.gtf reference file (see the Exome/
RefSeq_20140129.gtf file in the DataSystemsGeneticsOfSleep_mm9.tar.gz file27, this file comes from UCSC table 
browser and was generated using RefSeq Reflat database on the 2014/01/29).

These annotations can be updated and possibly change the gene quantification with updated version or differ-
ent genome reference.

However, the EEG/behavioral phenotyping procedure could not be performed by any standard computational 
workflow or common semantics as none exist. The nomenclature that was chosen in this case to generate unique 
phenotypic ID was a combination of the phenotype observed (e.g. EEG power during NREM sleep) and the 
features observed in this phenotype (e.g. delta band 1–4 Hz). These phenotypes were also present as file name 
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and column name in our dataset27. Nevertheless, we mapped our phenotypes to the Human Phenotype Ontology 
(HPO)31 to help non-specialists to explore these traits and facilitate human-mouse data integration. These associ-
ations are not exact matches as most of the terms available in the HPO are disease oriented while our phenotypes 
should be considered as normal traits for inbred lines. The mapping can be found in the General_Information.xlsx 
file (https://bxd.vital-it.ch/#/dataset/1).

Favor R and Rmarkdown reports for reproducible results. After data processing within the low-level 
layer, the effect of sleep deprivation, genotype, and their interaction were measured using various statistical mod-
els and computational methods. We chose to prioritize the programming language R as it was the best suited tool 
for the statistical analyses and for the generation of figures. Beside the advantages of a license-free and portable 
language, R was already recommended as main tool for systems genetics analysis32. Many available packages were 
particularly adapted for the systems genetics design, involving phenotype-genotype association (r/qtl), network 
analysis (WGCNA, SANTA, igraph), differential expression (EdgeR, DESeq, limma), bayesian network learning 
(bnlearn), visualization (ggplot2, grid), enrichment (topGO, topAnat) and parallel computing (parallel). Only a 
few analyses were performed using other softwares, principally for efficiency reasons in cis-/trans-eQTL analysis 
where the number of models to test was quite large33,34. R is one of the flagships of open science and reproduc-
ibility35 with a reviewable source code and the possibility of generating reports known as ‘Rmarkdown’ with 2 
packages: knitr36 and rmarkdown37. This report format contains combination of code, figures, and comments 
within a single markdown document that can be easily converted into pdf or html format. Rmarkdown scripts 
were made available (https://gitlab.unil.ch/mjan/Systems_Genetics_of_Sleep_Regulation) and the reports in the 
form of.html document were made available together with the data27. To avoid the need to copy/paste some 
functions shared between Rmarkdowns but still display them in our reports, we used the readLines() function 
within Rmarkdown chunks. Finally, the use of the sessionInfo() function at the end of the document allowed to 
keep track of the packages versions and the environment variable used. Some of these Rmarkdown reports were 
generated on a remote cluster instead of the more traditional Rstudio environment, for more information on how 
to generate these Rmarkdown, see the Usage Notes.

Workflow documentation. This systems genetics approach was an integrative project that implicated mul-
tiple collaborators, that each contributed to the final results, with their own working habit related to their area 
of expertise. For better reproducibility of the generated files, a critical goal was to keep track of the different files 
created, associated documents or analytical steps that were produced. For example, EEG/behavioral phenotypes 
could be found within many files and reports, from low-level to high-level layers, but their nomenclatures were 
still hard to interpret as mentioned above, for those not directly related to this project. A newcomer in this project 
should be able to easily recover the metadata document containing all the physiological phenotypes information 
(i.e. understand that a metadata document was created and where to find it or who to ask for it) and under-
stand which scripts were used to produce these phenotypes. To establish what was exactly performed, we gen-
erated a documentation file containing the essential information and relationships between all the files, scripts, 
Rmarkdown, small workflow or database used in this project. This document describes the inputs/outputs needed 
and where to locate the information distributed among different persons or different directories on a digital infra-
structure as presented in Fig. 3 but with more details to improve the reproducibility of the DRO38.

The markdown format was kept as it was easy to write/read by a human or to generate via a python script. This 
file was formatted into a simplified RDF-like triples structure, were each file-object (subject) was linked to infor-
mation (object) by a property. This format allowed to use the following properties to describe each file-objects we 
had: The file-object name or identification, a brief description (i.e. about the software used or the data content), the 
file-object version, the input(s)/output(s), the associated documents, hyperlink(s) to remote database or citation, 
the location of the file-object on the project directory or archiving system, and the author(s) to contact for ques-
tions. These associations could be viewed as a graph to display the important files and pipelines used. This docu-
ment was useful to understand how exactly the different files were generated, and to recover the scripts and input/
output used, even after prolonged periods and to use them again, which permits for example, to reproduce data 
with novel or updated annotation files. Furthermore, if an error was detected within a script, the results and fig-
ures downstream that needed to be recomputed could be easily found. This documentation file (Documentation.
html) was made available on gitlab (https://gitlab.unil.ch/mjan/Systems_Genetics_of_Sleep_Regulation).

Data mining website. The DRO built for this systems genetics resource is constituted of the following col-
lection: raw-data, processed data, Rmarkdown reports, results & interpretation, workflow, scripts, and metadata. 
To improve the reproducibility of our integrative visualization method (see HivePlots below), we provided some 
data-mining tools, a server to store some intermediate results, and a web application39,40. The home page of the 
web application displays the information for the NREM sleep gain during the 24 hours (in four 6-hour intervals) 
after sleep deprivation. Three data-mining tutorials were described on the website the web interface to: (i) mine 
a single phenotype, (ii) search for a gene, and (iii) compare hiveplots. Currently, no centralized repository exists 
containing all types of phenotypic data that were extracted within this project. This web-interface can, however be 
viewed as a hub for this DRO that became findable and accessible with a web-browser. With this web resource, we 
provided an advanced interactive interface for EEG/behavioral end-phenotypes and their associated intermediate 
phenotypes (variants, metabolites, gene expression). Compared to other web-resources for systems genetics like 
GeneNetwork where the principal focus is QTL mining, this interface provides an integrative view of this one 
dataset, with also data files and link to code to reproduce some of our analyses in the form of Rmarkdown, like 
the prioritization strategy.
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Low-level layer analyses. Sleep-wake state annotation. To assist the annotation of this extensive data-
set (around 20 million 4 s epochs), we developed a semiautomated scoring system. The 4-day recordings of 43 
mice (19% of all recordings), representing animals from 12 strains, were fully annotated visually by an expert 
according to established criteria22. Due to large between-line variability in EEG signals, even after normaliza-
tion, a partial overlap of the different sleep-wake states remained, as evidenced by the absolute position of the 
center of each state cluster, which differed even among individuals of the same line (precluding the use of 1 “ref-
erence” mouse), even per line, to reliably annotate sleep-wake states for the others. To overcome this problem, 
1 day out of 4 (i.e., Day 3 or R1, which includes the SD) was visually annotated for each mouse. These 4 seconds 
sleep-wake scores were used to train the semiautomatic scoring algorithm, which took as input 82 numerical 
variables derived from the analyses of EEG and EMG signals using frequency- (discrete Fourier transform [DFT]) 
and time-domain analyses performed at 1 second resolution. We then used these data to train a series of support 
vector machines (SVMs)41 specifically tailored for each mouse, using combinations of the 5 or 6 most informative 
variables out of the 82 input variables. The best-performing SVMs for a given mouse were then selected based on 
the upper-quartile performance for global classification accuracy and sensitivity for REM sleep (the sleep-wake 
state with the lowest prevalence) and used to predict sleep-wake states in the remaining 3 days of the recording. 
The predictions for 4 consecutive 1-s epochs were converted into 1 four-second epoch. Next, the results of the 
distinct SVMs were collapsed into a consensus prediction, using a majority vote. In case of ties, epochs were 
annotated according to the consensus prediction of their neighboring epochs. To prevent overfitting and assess 
the expected performance of the predictor, only 50% of the R1 manually annotated data from each mouse were 
used for training (randomly selected). The classification performance was assessed by comparing the automatic 
and visual scoring of the fully manually annotated 4 d recordings of 43 mice. The global accuracy was computed 
using a confusion matrix42 of the completely predicted days (B1, B2, and R2). For all subsequent analyses, the 
visually annotated Day 3 (R1) recording and the algorithmically annotated days (B1, B2, and R2) were used for 
all mice, including those for which these days were visually annotated. The resulting sleep-wake state annotation 
together with EEG power spectra and EMG levels were saved as binary files (.smo) with their corresponding 
metadata files (.hdr) and deposited at Figshare23. For more information on .smo and .hdr files, see Usage Notes.

EEG/Behavioral Phenotyping. We quantified 341 phenotypes based on the sleep-wake states, LMA, and the 
spectral composition of the EEG, constituting 3 broad phenotypic categories. For the first phenotypic category 
(“State”), the 96 hours sleep-wake sequence of each animal was used to directly assess traits in 3 “state”-related 
phenotypic subcategories: (i) duration (e.g., time spent in wakefulness, NREM sleep, and REM sleep, both abso-
lute and relative to each other, such as the ratio of time spent in REM versus NREM sleep); (ii) aspects of their 
distribution over the 24 h cycle (e.g., time course of hourly values, midpoint of the 12 h interval with highest time 
spent awake, and differences between the light and dark periods); and (iii) sleep-wake architecture (e.g., number 
and duration of sleep-wake bouts, sleep fragmentation, and sleep-wake state transition probabilities). Similarly, 
for the second phenotypic category (“LMA”) overall activity counts per day, as well as per unit of time spent 
awake, and the distribution of activity over the 24 h cycle was extracted from the LMA data. As final phenotypic 
category (“EEG”), EEG signals of the 4 different sleep-wake states (wakefulness, NREM sleep, REM sleep, and 
theta-dominated waking [TDW], see below) were quantified within the 4-s epochs matching the sleep-wake 
states using DFT (0.25 Hz resolution, range 0.75–90 Hz, window function Hamming). Signal power was calcu-
lated in discrete EEG frequency bands—i.e., delta (1.0–4.25 Hz, δ), slow delta (1.0–2.25 Hz; δ1), fast delta (2.5–
4.25; δ2), theta (5.0–9.0 Hz during sleep and 6.0–10.0 Hz during TDW); θ), sigma (11–16 Hz; σ), beta (18–30 Hz; 
β), slow gamma (32–55 Hz; γ1), and fast gamma (55–80 Hz; γ2). Power in each frequency band was referenced 
to total EEG power over all frequencies (0.75–90 Hz) and all sleep-wake states in days B1 and B2 to account for 
interindividual variability in absolute power. The contribution of each sleep-wake state to this reference was 
weighted such that, e.g., animals spending more time in NREM sleep (during which total EEG power is higher) 
do not have a higher reference as a result43. Moreover, the frequency of dominant EEG rhythms was extracted as 
phenotypes, specifically that of the theta rhythm characteristic of REM sleep and TDW. The latter state, a substate 
of wakefulness, defined by the prevalence of theta activity in the EEG during waking44,45, was quantified accord-
ing to the algorithm described in46. We assessed the time spent in this state, the fraction of total wakefulness it 
represents, and its distribution over 24 h. Finally, discrete, paroxysmal events were counted, such as sporadic 
spontaneous seizures and neocortical spindling, which are known features of D2 mice47, which we also found in 
some BXD lines.

All phenotypes were quantified in baseline and recovery separately, and the effect of SD on all variables was 
computed as recovery versus baseline differences or ratios. Pascal source code used for EEG/behavioral phe-
notyping was made available on gitlab (https://gitlab.unil.ch/mjan/Systems_Genetics_of_Sleep_Regulation). 
Processed phenotypes and descriptions were made available at https://bxd.vital-it.ch/#/dataset/1 and were sub-
mitted the Mouse Phenome Database48.

Read alignment. For gene expression quantification, we used a standard pipeline that was already applied in a 
previous study6. Bad quality reads tagged by Casava 1.82 were filtered from fastq files and reads were mapped to 
MGSCv37/mm9 using the STAR splice aligner (v 2.4.0 g) with the 2pass pipeline49.

Genotyping. The RNA-seq dataset was also used to complement the publicly available GeneNetwork genetic 
map (www.genenetwork.org), thus increasing its resolution. RNA-seq variant calling was performed using the 
Genome Analysis ToolKit (GATK) from the Broad Institute, using the recommended workflow for RNA-seq 
data50. To improve coverage depth, 2 additional RNA-seq datasets from other projects using the same BXD lines 
were added6. In total, 6 BXD datasets from 4 different tissues (cortex, hypothalamus, brainstem, and liver) were 
used. A hard filtering procedure was applied as suggested by the GATK pipeline50–52. Furthermore, genotypes 
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with more than 10% missing information, low quality (<5000), and redundant information were removed. 
GeneNetwork genotypes, which were discrepant with our RNA-seq experiment, were tagged as “unknown” 
(mean of 1% of the GeneNetwork genotypes/strain [0.05% ≤ n ≤ 8%]). Finally, GeneNetwork and our RNA-seq 
genotypes were merged into a unique set of around 11000 genotypes, which was used for all subsequent analyses. 
This set of genotypes was already used successfully in a previous study of BXD lines6 and is available through our 
“Swiss-BXD” web interface (https://bxd.vital-it.ch/#/dataset/1).

Protein damage prediction. Variants detected by our RNA-seq variant calling were annotated using Annovar53 
with the RefSeq annotation dataset. Nonsynonymous variations were further investigated for protein disruption 
using Polyphen-2 version 2.2.254, which was adapted for use in the mouse according to recommended configura-
tion. Variant annotation file and polyphen2 scores were made available here27.

Gene expression quantification. Count data was generated using htseq-count from the HTseq (v0.5.4p3) package 
using parameters “stranded = reverse” and “mode = union”55. Gene boundaries were extracted from the mm9/
refseq/reflat dataset of the UCSC table browser (extracted the 29th Jan. 2014). Raw counts were made available27.

Intermediate-level Layer Analyses. Gene expression normalization. EdgeR (v3.22) was then used to 
normalize read counts by library size. Genes with with low expression value were excluded from the analysis, and 
the raw read counts were normalized using the TMM normalization56 and converted to log counts per million 
(CPM). Although for both tissues, the RNA-seq samples passed all quality thresholds, and among-strain varia-
bility was small, more reads were mapped in cortex than in liver, and we observed a somewhat higher coefficient 
of variation in the raw gene read count in liver than in cortex. Genes expression as CPM or log2 CPM were made 
available27.

Differential expression. To assess the gene differential expression between the sleep-deprived and control condi-
tions, we used the R package limma57 (v3.36) with the voom weighting function followed by the limma empirical 
Bayes method58. Differential expression tables were made available27.

QTL mapping. The R package qtl/r33 (version 1.41) was used for interval mapping of behavioral/EEG phenotypes 
(phQTLs) and metabolites (mQTLs). Pseudomarkers were imputed every cM, and genome-wide associations 
were calculated using the Expected-Maximization (EM) algorithm. p-values were corrected for FDR using per-
mutation tests with 1000 random shuffles. The significance threshold was set to 0.05 FDR, a suggestive threshold 
to 0.63 FDR, and a highly suggestive threshold to 0.10 FDR according to59,60. QTL boundaries were determined 
using a 1.5 LOD support interval. To preserve sensitivity in QTL detection, we did not apply further p-value cor-
rection for the many phenotypes tested. Effect size of single QTLs was estimated using 2 methods. Method 1 does 
not consider eventual other QTLs present and computes effect size according to 1 − 10^(−(2/n)*LOD). Method 
2 does consider multi-QTL effects and computes effect size by each contributing QTL by calculating first the full, 
additive model for all QTLs identified and, subsequently, estimating the effects of each contributing QTL by com-
puting the variance lost when removing that QTL from the full model (“drop-one-term” analysis). For Method 2, 
the additive effect of multiple suggestive, highly suggestive, and significant QTLs was calculated using the fitqtl 
function of the qtl/r package61. With this method, the sum of single QTL effect estimation can be lower than the 
full model because of association between genotypes. In the Results section, Method 1 was used to estimate effect 
size, unless specified otherwise. It is important to note that the effect size estimated for a QTL represents the vari-
ance explained of the genetic portion of the variance (between-strain variability) quantified as heritability and not 
of the total variance observed for a given phenotype (i.e., within- plus between-strain variability).

For detection of eQTLs, cis-eQTLs were mapped using FastQTL33 within a 2 Mb window for which adjusted 
p-values were computed with 1000 permutations and beta distribution fitting. The R package qvalue62 (version 
2.12) was then used for multiple-testing correction as proposed by33. Only the q-values are reported for each 
cis-eQTL in the text. Trans-eQTL detection was performed using a modified version of FastEpistasis34, on several 
million associations (approximately 15000 genes × 11000 markers), applying a global, hard p-value threshold of 
1E−4.

List of ph-QTLs, cis-eQTL, trans-eQTL and m-QTLs were made available27.

High-level layer analyses. Hiveplot visualization. Hiveplots were constructed with the R package 
HiveR63 for each phenotype. Gene expression and metabolite levels represented in the hiveplots come from either 
the “Ctr” (control) or SD molecular datasets according to the phenotype represented in the hiveplot; i.e., the “Ctr” 
dataset is represented for phenotypes related to the baseline (“bsl”) condition, while the SD dataset is shown 
for phenotypes related to recovery (“rec” and “rec/bsl”). For a given hiveplot, only those genes and metabolites 
were included (depicted as nodes on the axes) for which the Pearson correlation coefficient between the pheno-
type concerned and the molecule passed a data-driven threshold set to the top 0.5% of all absolute correlations 
between all phenotypes on the one hand and all molecular (gene expression and metabolites) on the other. This 
threshold was calculated separately for “Bsl” phenotypes and for “Rec” and “Rec/Bsl” phenotypes and amounted 
to absolute correlation thresholds of 0.510 and 0.485, respectively. The latter was used for the recovery phe-
notypes. Associations between gene expressions and metabolites represented by the edges in the hiveplot were 
filtered using quantile thresholds (top 0.05% gene–gene associations, top 0.5% gene–metabolite associations). We 
corrected for cis-eQTL confounding effects by computing partial correlations between all possible pairs of genes. 
Hiveplots figures and Rmarkdowns reports were made available27.
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Candidate-gene prioritization strategy. In order to prioritize genes in identified QTL regions, we chose to com-
bine the results of the following analyses: (i) QTL mapping (phQTL or mQTL), (ii) correlation analysis, (iii) 
expression QTL (eQTL), (iv) protein damaging–variation prediction, and (v) DE. Each result was transformed 
into an “analysis score” using a min/max normalization, in which the contribution of extreme values was reduced 
by a winsorization of the results. These analysis scores were first associated with each gene (see below) and then 
integrated into a single “integrated score” computed separately for each tissue, yielding 1 integrated score in cor-
tex and 1 in liver. The correlation analysis score, eQTL score, DE score, and protein damaging–variation score are 
already associated to genes, and these values were therefore attributed to the corresponding gene. To associate 
a gene with the ph-/m-QTL analysis score (which is associated to markers), we used the central position of the 
gene to infer the associated ph-/m-QTL analysis score at that position. In case of a cis-eQTL linked to a gene or a 
damaging variation within the gene, we used the position of the associated marker instead. To emphasize diversity 
and reduce analysis score information redundancy, we weighted each analysis score using the Henikoff algorithm. 
The individual scores were discretized before using the Henikoff algorithm, which was applied on all the genes 
within the ph-/mQTL region associated with each phenotype. The integrated score was calculated separately for 
cortex and liver. We performed a 10000-permutation procedure to compute an FDR for the integrated scores. For 
each permutation procedure, all 5 analysis scores were permutated, and a novel integrated score was computed 
again. The maximal integrated score for each permutation procedure was kept, and a significance threshold was 
set at quantile 95. Applying the Henikoff weighting improved the sensitivity of the gene prioritization. E.g., among 
the 91 behavioral/EEG phenotypes associated with 1 or more suggestive/significant QTLs after SD, 40 had at 
least 1 gene significantly prioritized with Henikoff weighting, against 32 without. Gene prioritization figures and 
Rmarkdown reports were made available27.

Reproducibility of the pipeline. Technical reproducibility of the pipeline. To assess the reproducibility of 
our analytical pipeline, we asked a bioinformatician that was not involved in the data collection and analysis to 
reanalyze some of the results. A relatively short computational time as well as importance in the published results 
were taken as selection criteria of analyses to be replicated. The TMM normalisation of RNA-seq counts, differen-
tial gene expression, cis-eQTL detection, and the ph-/m-QTL mapping for 4 sleep phenotypes (slow delta power 
gain after SD, fast delta power after SD, theta peak frequency shift after SD and NREM sleep gain in the dark after 
SD) and 2 metabolites (Phosphatidylcholine ae C38:2 and alpha amino-adipic acid) used as main examples in 
our previous publication were all re-analyzed. Finally, gene prioritization and hiveplot visualization of these 4 
examples were replicated. Originally, ties in the nodes ranking function on the hiveplots axis was solved using the 
“random” method, but this function was modified in the hiveplot code and set as “first” to remain deterministic 
(see Technical Validation for results).

Reanalysis with mm10. To quantify the effect of new standards and robustness of our end-results and interpreta-
tion we changed some analyses within our low-level layer. The mm10 genome assembly was set as our new refer-
ence and the gene expression was reanalysed from the raw fastq files with the BioJupies reproducible pipeline64,65 
that use kallisto pseudo-alignement66. The gene positions were retrieved from the headers of the ENSEMBL fasta 
file used by BioJupies (Mus_musculus.GRCm38.cdna.all.fa.gz). Genotypes were downloaded from GeneNetwork 
database and our annovar/polyphen2 variations positions based on mm9 were adapted to mm10 using CrossMap 
version 0.2.467. The analyses performed to assess the technical reproducibility of our pipeline (see above) were 
finally replicated using these new files. (see Technical Validation for results).

Data Records
EEG/EMG power spectra and locomotor activity files were submitted to Figshare23. Raw data of RNA-sequencing 
were submitted to Gene Expression Omnibus24. Processed phenotypes files as gene expression, metabolites 
level and mean EEG/behavioral phenotypes per lines, as well as phenotypes descriptions, were submitted to our 
data-mining web-site (https://bxd.vital-it.ch/#/dataset/1) on the ‘Downloads’ panel. Scripts and code were sub-
mitted to gitlab (https://gitlab.unil.ch/mjan/Systems_Genetics_of_Sleep_Regulation). Intermediate files required 
to run these scripts were submitted to Figshare27. The data hosted on our server and the data we used from exter-
nal repositories like GeneNetwork original genotypes40 and RefSeq transcripts68 were also copied on Figshare27 for 
reproducibility purpose. Please cite R.Williams or the NCBI if you use these two files.

technical Validation
compare genotype RNa-seq vs GeneNetwork. To verify the genetic background of each mice we phe-
notyped, we analyzed the correspondence between GeneNetwork genotypes and RNA-seq variants detected by 
GATK. Of the 3811 GeneNetwork (2005) genotypes, 1289 could be recalled in our RNA-seq variant calling pipe-
line. Figure 4 shows the similarity proportion between RNA-seq variants and GeneNetwork genotypes, for each 
pair of BXD lines. Our BXD63 was more similar with the GeneNetwork BXD67 than with the BXD63, probably 
due to mislabeling. We therefore chose to exclude this line. The matrix also shows the genetic similarity between 
BXD73 and BXD103 (now renamed as BXD73b), between BXD48 and BXD96 (now BXD48a) and between 
BXD65 and BXD97 (now BXD65a), which confirmed the renaming of these BXD lines on GeneNetwork.

Reproducibility of the pipeline. Technical reproducibility of the pipeline. To assess the technical repro-
ducibility of the pipeline, a bioinformatics student (NG) new to the project, reproduced selected steps of the 
bioinformatic pipeline. The results (Fig. 5, upper part) were consistent with previous analyses (PLOS Biology pub-
lication figures: 2c, 4c left, 7d, and 7c bottom). The robustness of the pipeline was verified because the same con-
clusions could be drawn. For examples, the same 3 genes showed the largest differential expression after SD in the 
cortex (Arc, Plin4, and Egr2 in Fig. 5b). Moreover, the Acot11 gene was prioritized by gene prioritization (Fig. 5 
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d and e). Nevertheless, the numbers of significant genes of cis-eQTL showed variations compared to previous 
analysis2 due to use of a hard significance threshold for visualization. For example, the number of genes with sig-
nificant QTL unique to Cortex SD changed from 870 (PLOS Biology publication Fig. 2c) to 872 (Fig. 5a). Genes 
were considered as significant if their FDR-adjusted p-value was below or equal to 0.05, which was obtained by 
estimating the β-distribution fitting of random permutations tests. Changing the fastqtl version (version 1.165 
to version 2.184) seems to change the pseudo-random number generation, even when using the concept of fixed 
seed. Consequently, the number of genes considered as significant varies because their FDR-adjusted p-value 
passed just above or below the threshold (FDR in the range of 0.04864 to 0.05054). This confirms that looking at 
the order of magnitude is important, though the use of significance threshold is convenient.

Moreover, the reanalysis process helped to improve the code documentation by explicitly writing 
project-related knowledge, such as common abbreviations. Having another perspective on the code also allowed 
to improve its structure. Indeed, a retrospective overview helped improve the organisation of files, which was 
more difficult to do within the implementation phase of the project because the code was incrementally created 
and adapted. The process allowed to catch and correct minor mistakes or make improvements to readability and 
consistency. For example, it was highlighted that the ranking function used in hiveplot to order nodes in the 
axes was using the “random” argument for differentiating ties. As a key concept of the hiveplots was to be fully 
reproducible in the sense of “perpetual uniformity”63, we changed the ties.method parameter to “first” so that the 
same input always gives the same result, without having to fix a seed for the pseudo-random generation. Another 
example was the ranking of the x-axis in the gene DE volcano plot and the colouring that were based on log-odds 
values (B statistic according to in limma R package) instead of FDR-adjusted p-values. However, this reproduci-
bility ‘experiment’ was performed internal to the group, which facilitated communication such as which steps to 
focus on and whether to run them locally or on a high-performance computing (HPC) structure. An assessment 
of the computational requirements for each step, such as computing time, memory, software, and libraries used 
may be interesting to provide to facilitate external reproducibility.

Reanalysis with mm10. To assess the influence of the reference genome used in the analyses, we reproduced 
selected parts of bioinformatic pipeline using the updated mm10 version (instead of mm9). The results (Fig. 5, 
lower part, Tables 1 and 2) were consistent with previous analyses but presented also some substantial varia-
tions. The cis-eQTL detection revealed differences in the number of significant associations found, as showed in 

Fig. 4 Similarity matrix [in %] between RNA-seq variant calling and GeneNetwork genotypes. A similarity of 1 
indicates that all common genotypes are similar. We here compare only genotypes that were labeled as ‘B’ or ‘D’ 
and excluded unknown ‘U’ or heterozygous ‘H’ genotypes. BXD63 genotypic similarity in our dataset was low 
and could indicate mislabeling.
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Table 1. These differences could be mainly explained by small q-value variation around the significant threshold. 
Nevertheless, around 5% of cis-eQTLs did not reproduce even at a more permissive significant threshold (0.1 
FDR), which affected some of our end results. For example, Wrn was no longer prioritized for the gain of slow 
EEG delta power (δ1) after SD compared to previous results on mm9. Although the cis-eQTL for Wrn was pres-
ent in both assemblies for the ‘Cortex Control’ samples, it disappeared for ‘Cortex SD’ samples using mm10. A 
number of factors could have contributed to this discrepancy among which i) the variations between mm9 and 
mm10 could change the mappability of some transcripts, although this did not seem to be the case for the Wrn 

Fig. 5 Robustness of the analysis pipeline. (a to e) Technical reanalysis with mm9 reference genome.  
(f to j) Reanalysis with mm10 reference genome. (a and f) Venn diagram of significant cis-eQTL.  
(b and g) Volcano plot of differential gene expression in cortex. (c and h): Hiveplot for NREM sleep gain  
during recovery with highlight on Acot11. (d,e,i,j) Gene prioritization for NREM sleep gain during recovery 
(d and i) or phosphatidylcholine acyl-alkyl C38:2 levels (e and j). recovery = first 6 hours of dark period after 
sleep deprivation (ZT 12–18), SD = sleep deprivation, NSD = not sleep deprivation (control), FC = fold-change, 
NREM = non-rapid eye movement, LOD = logarithm of odds, FDR = false discovery rate.

Assembly

Liver NSD Liver SD Cortex NSD Cortex SD

mm9 mm10 mm9 mm10 mm9 mm10 mm9 mm10

Total genes 14103 12647 14103 12647 14889 15734 14889 15734

Unique genes 2405 949 2405 949 1043 1888 1043 1888

Genes with significant cis-eQTL 3155 3092 2654 2695 4522 4192 4732 4542

Proportion of genes with significant cis-eQTL 0.22 0.24 0.19 0.21 0.30 0.27 0.32 0.29

Genes with significant cis-eQTL overlapping 2255 1911 3204 3483

Genes with not significant cis-eQTL overlapping 8375 8857 9062 8801

Genes with significant cis-eQTL not overlapping 900 837 743 784 1318 988 1249 1059

Genes with significant cis-eQTL almost overlapping 2995 2898 2535 2505 4201 4019 4441 4350

Table 1. Comparison of cis-eQTL summary statistics using mm9 vs mm10. ‘Unique’ is defined as specific to an 
assembly (mm9 or mm10). Significance is defined as a q-value below or equal to 0.05. ‘Overlapping’ is defined 
as common between mm9 and mm10 reanalyses. ‘Almost overlapping’ is defined as common between mm9 and 
mm10 at a threshold of 0.1 but not as the 0.05 threshold.
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sequence, ii) pseudo-alignment (Kallisto) was used instead of alignment (STAR), which may have influenced 
the quantification, iii) bad quality reads were filtered with our STAR pipeline according to Casava 1.82 but not 
with Kallisto, and iv) variant calling on RNA-seq data to add markers was not done for mm10, so only markers 
from GeneNetwork (2017) were used. Specifically to the latter factor, the marker closest to the Wrn gene in mm9 
merged (GeneNetwork 2005 + RNA-seq) genotypes (rs51740715) is not present in mm10. The change in the 
number of genetic markers could have therefore influenced the cis-eQTL detection, which is an important factor 
in the gene prioritization that resulted in the identification of Wrn as candidate underlying the EEG delta power 
(δ1) trait under mm9.

Usage Notes
SMO files. Binary .smo files were structured as follows: Each file contains a 4-day recording or precisely 86400 
consecutive 4 s epochs. Each 4 s epoch contains the following information: one byte character and 404 single pre-
cision floating-points, which represent, respectively: sleep-wake state of the 4 s epoch as a character (wake = ‘w’, 
NREM sleep = ‘n’, REM sleep = ‘r’, wake w/ EEG artifact = ‘1’, NREM sleep w/ EEG artifact = ‘2’, REM sleep w/ 
EEG artifact = ‘3’, wake w/ spindle-like EEG activity = ‘4’, NREM sleep w/ spindle-like EEG activity = ‘5’, REM 
sleep w/ spindle-like EEG activity = ‘6’, Paroxysmal EEG activity in wake = ‘7’, Paroxysmal EEG activity in NREM 
sleep = ‘8’, Paroxysmal EEG activity in REM sleep = ‘9’), EEG power density from the full DFT spectrum of the 
4 s epoch from 0.00 Hz to 100.00 Hz (401 values at 0.25-Hz resolution), the EEG variance, the EMG variance, and 
temperature. Temperature was not measured and was set to 0.0.

HDR files. Text .hdr files are generated alongside their corresponding .smo file and contain among other infor-
mation, the mouse ID (Patient) and recording date.

Rmarkdown scripts. Some of the Rmarkdown scripts were created for a remote cluster environment on 
a CentOS distribution which required the use of a second script that generated the document with the rmark-
down::render() function and pass the expected function arguments. Therefore some functions that use the par-
allel package in R are only executable on a linux environment (i.e. mclapply()). These functions can be modified 
with the doSNOW R library to be applicable on a windows environment. The author can set many option in the 
YAML (Yet Another Markup Language) header to: create dynamic and readable table that contains multiple rows, 
hide/show source code or integrated CSS style and table of contents. The reports can be visualized using any 
web-browser.

code availability
The scripts used for analytics were made available on gitlab (https://gitlab.unil.ch/mjan/Systems_Genetics_
of_Sleep_Regulation). The master branch contains the scripts used for our publication and mm9 analysis. A 
second branch was created for analysis performed on a mm10 mouse references (see Technical Validation). The 
intermediate files required to run these scripts were made available at Figshare27. Finally, a documentation file was 
generated documenting the hierarchical relationship between the scripts and datasets in a form of a dynamic html 
document (see Workflow documentation).
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Chapter 3

Towards mouse genetic-specific

RNA-sequencing read mapping

The traditional pipeline for RNA-sequencing uses the GRC reference which is predominantly

based on one mouse strain: C57BL/6J (B6) which is one of the parental strain that the BXD

recombinant inbred panel were derived from. Therefore, the DBA/2J (D2) regions risk to be

less well represented. How is this impacting the results and can we find a better solution to this

short-comming? The goal of this chapter is to assess the parental reference bias in RNA-seq

and to implement a solution to improve references for BXD lines.

3.1 Results summary

To tackle the genetic-specificity of the reads, the first strategy was to use two different genome

assemblies to map the reads, one per parental strain to balance. However the difference in

quality between the assemblies was prohibitive to used them as co-contributors. The second

strategy was to use the standard assembly based on B6 and customize it with BXD variants.

Imputing the D2 genetic variants in D2 blocks/regions was important achieve enough resolution

in the BXD-specific references. The impact can be seen at different levels: the mapping, the gene

expression and the eQTLs. The reference bias was alleviated and we detected proportionally

36



more eQTLs with the custom BXD-specific references than with the standard reference.

3.2 My contribution

With the help of co-authors, I planned and performed all the analyses. I wrote the draft,

produced all the figures and tables, and edited the manuscript with input from co-authors.

3.3 Publication

This article was published in a peer-reviewed journal [Gobet et al., 2022]. The publication is

included below.
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Abstract

Genetic variations affect behavior and cause disease but understanding how these variants

drive complex traits is still an open question. A common approach is to link the genetic vari-

ants to intermediate molecular phenotypes such as the transcriptome using RNA-sequenc-

ing (RNA-seq). Paradoxically, these variants between the samples are usually ignored at

the beginning of RNA-seq analyses of many model organisms. This can skew the transcrip-

tome estimates that are used later for downstream analyses, such as expression quantita-

tive trait locus (eQTL) detection. Here, we assessed the impact of reference-based analysis

on the transcriptome and eQTLs in a widely-used mouse genetic population: the BXD panel

of recombinant inbred lines. We highlight existing reference bias in the transcriptome data

analysis and propose practical solutions which combine available genetic variants, geno-

types, and genome reference sequence. The use of custom BXD line references improved

downstream analysis compared to classical genome reference. These insights would likely

benefit genetic studies with a transcriptomic component and demonstrate that genome ref-

erences need to be reassessed and improved.

Author summary

To understand how genetic variations affect behavior and cause disease it is common to

quantify expression of transcripts by sequencing. Transcripts are extracted, fragmented,

and the sequence of the fragments read. An important step for their quantification is to

virtually assign the different fragments to the transcript they originate from using a refer-

ence genome. Reference genomes are costly to build, so usually only one high-quality ref-

erence per animal model species is available. When comparing genetically different

individuals, using a single reference may introduce a bias because it might be more similar

to some individuals than to others. Paradoxically, the variations at the core of genetic

studies are thus ignored at the start of the analysis. We built customized references with

known genetic variants for each of the mouse lines we had and quantified the impact of

the reference at different levels of the bioinformatic analysis. We found that using custom-

ized references reduced the bias compared to using a single reference. Our study uses
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publicly available data and tools, so others can easily implement this improvement in their

analyses.

Introduction

To decipher how genome leads to phenome, measuring gene expression by RNA-sequencing

(RNA-seq) is widely used. Fragments of RNA are read and then virtually mapped back onto a

reference genome to determine the transcriptomic location of origin. Read mapping is often

regarded as trivial but relies on many choices. Indeed, the user decides for example which ref-

erence to use and how exact the alignments are required to be. Most of the time, little informa-

tion is published on how these choices are made. The mapping needs to account for

amplification and sequencing errors, and for repeated sequences within the genome. It is

important that the reference precisely represents the samples to guide the mapping. However,

generating a reference assembly is complex and expensive and it is common practice to map

all samples of a model organism to a single assembly provided by the genome reference con-

sortium (GRC) [1,2]. The expression of non-reference alleles may be altered compared to that

of reference alleles. This reference bias on the transcriptome can then spread to downstream

analyses such as expression quantitative trait loci (eQTL) detection, where gene expression is

associated to genomic variants. The genomic variations between individuals at the core of

genetic studies are thus paradoxically often ignored at the start of the analysis and may alter

interpretations and conclusions.

The genetic characteristics of humans have been widely studied and reference bias is

known to alter DNA-seq, RNA-seq [3], and chromatin immunoprecipitation (ChIP)-seq anal-

yses [4,5]. The ideal solution would be to use a sample-specific genome assembly. Since this is

currently too costly, many methods to reduce reference bias were proposed [3,6,7]. One strat-

egy notably used by the Genotype-Tissue Expression (GTEx) consortium is to tailor the analy-

sis to each individual as initially implemented in theWASP suite of tools [8]. The WASP-

correction proposes to map reads to the GRC assembly and identify mapped reads that overlap

SNVs, then re-map these reads after replacing the reference alleles by variant alleles in the

assembly and discard reads that change mapping loci. Although this strategy removes refer-

ence bias it also discards reads that are potentially informative of a genetic effect. Nevertheless,

the idea of modifying the GRC reference assembly with variants specific to the individual or

sample is used by many tools, with the difference that all the reads are mapped to the custom-

ized references only. For example, the AlleleSeq pipeline was developed for human trios where

the variants for the two parents are known [9]. One of its tools, vcf2diploid, constructs two hap-

lotype-specific references from one reference assembly and a list of genomic variants which

can include single nucleotides variants (SNVs), indels, and structural variants (SVs). The

authors proposed to map the offspring sample separately onto its two parental references, and

to retain for each read the alignment with the highest alignment score. In case of equality the

alignment is randomly taken from that of either parent to avoid systematic bias. RefEditor
offers a similar approach, but adds a genotype imputation option [10]. Many tools aim at mak-

ing the best use of large-scale variants and genotypes databases by genotype imputation to

have for each individual a more complete set of alleles. However, these genotype imputation

strategies cannot be applied to mouse or other animal models because of a lack of genetic char-

acterization at the individual level.

Mouse genetic research mostly uses inbred lines, in which individuals are presumed iso-

genic. Therefore, it seems logical to aim for reference customization for mouse strains rather
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than for individuals. The GRC mouse assembly is mainly based on the inbred strain C57BL/6J

(B6) [11] and short genomic variants for many other inbred strains are available at dbSNP

[12]. To compare retinal transcriptomes in two inbred strains (DBA/2J (D2) and B6), Wang

et al. modified the GRCm38 reference genome with D2-specific variants from dbSNP to map

the D2 samples [13]. This improved slightly the mappability by reducing the fraction of

unmapped reads. Seqnature software aims at producing individualized diploid references for

RNA-seq analysis and was used on simulated and real world data of Diversity Outbred (DO)

mice, in which each mouse is a unique combination of 8 founder strains [14]. It shows

improvement of the number of reads mapped, of the accuracy of transcript expression esti-

mates, and of the number of eQTLs detected. Unfortunately, this type of study is very rare and

the R package (DOQTL) used for the QTL analyses is specific to this mouse population, which

renders comparisons with studies on different populations challenging. The Mouse Genome

Project tries a more global approach to characterize the genetic variation among mouse strains.

Many genetic variants were discovered and strain-specific genome assemblies for sixteen

mouse strains were released [15]. However, it remains unclear how to use these resources for

mice that are intercrossed.

The BXD panel of recombinant inbred lines is a well-studied and genetically simple popula-

tion derived from the B6 and D2 strains [16]. Each BXD line has genetic markers (genotypes)

available on the GeneNetwork website (http://genenetwork.org). Although this panel has been

used in hundreds of studies, nobody to our knowledge has performed neither BXD-specific

read mapping, nor BXD genome assembly. Here, we explored different strategies using pub-

licly available resources to accurately represent the genetic diversity of the samples. We

assessed the influence of the reference used for read mapping in this panel and how it impacts

read mappability, gene expression, and eQTLs. We also measured how various parameter set-

tings would influence the number of eQTLs found. We evaluated the use of the two parental

genome assemblies and found this strategy not adequate. We implemented an alternative strat-

egy which enhanced the GRC assembly with known variants. This improved the quality of

BXD transcriptomics analyses. Our approach reduces reference bias in the BXD transcrip-

tomics, and raises awareness about pitfalls of RNA-seq analyses.

Methods

Ethics statement

The authorization was given by the veterinary authorities of the state of Vaud, Switzerland

(SCAV authorization #2534) as previously described in [17]. No sequencing data were col-

lected specifically for this study.

Samples and RNA-sequencing

We used RNA-seq samples obtained from the liver and the cerebral cortex of male mice from

33 BXD/RwwJ lines, the two parental strains C57BL/6J (B6), DBA/2J (D2), and their reciprocal

F1 offspring (Fig 1A). The two tissues were collected at zeitgeber time (ZT) 6 (i.e., 6h after light

onset) in mice that were either sleep deprived (SD) for the preceding 6 hours (ZT0-6) or mice

that could sleep ad libitum (i.e. non-sleep deprived or NSD) [17,18]. Prior to sequencing, the

RNA was pooled by mouse line and experimental condition (NSD or SD), such that material

for a maximum of 3 mice contributed to each sample. Single-end reads of 100 bp were

obtained using Illumina HiSeq 2500 system. A list of samples, including which BXD lines were

used, is available (S1 Table). All samples passed quality control [17]. The eventuality of a mix-

up of samples between strains, was tested previously by comparing the similarity between

RNA-seq variant calling and GeneNetwork genotypes (see Fig 4 in [18]).
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Genome assemblies and transcriptome annotation download

Two genome assemblies and two transcriptome annotations were downloaded from Ensembl

release 94 (ftp://ftp.ensembl.org/pub/release-94). The classical genome sequence GRCm38,

also referred to as mm10, is based on the B6 strain (Mus_musculus.GRCm38.dna_sm.pri-

mary_assembly.fa). As D2 assembly the DBA/2J v1 genome sequence was used (Mus_muscu-

lus_dba2j.DBA_2J_v1.dna_sm.toplevel.fa) [15]. Both genome sequences do not contain

alternative haplotypes, and repeats or low complexity regions are soft-masked (sm), which

means they are represented as lowercase letters. Summary statistics of the assemblies were cal-

culated in GAAS toolkit (https://github.com/NBISweden/GAAS, S2 Table). The transcriptome

annotations correspond to these two assemblies (Mus_musculus.GRCm38.94.gtf and Mus_-

musculus_dba2j.DBA_2J_v1.94.gtf).

Variants download and genotype imputation

The BXD genotypes were downloaded from GeneNetwork. These are the alleles for each BXD

line for 7324 genetic markers, which are variants selected to be indicative of recombination events

between the parental genomes (BXD_Geno-19Jan2017_forGN.xlsx, Fig 1C). The D2-specific vari-

ants, which are 5’872’394 SNVs (DBA_2J.mgp.v5.snps.dbSNP142.vcf.gz) and 1’093’496 indels

(DBA_2J.mgp.v5.indels.dbSNP142.normed.vcf.gz) from dbSNP (version 142, variants version 5),

were downloaded (Fig 1C). To have a more complete set of genetic variants specific to each of the

BXD lines, we performed genotype imputation as follows (Figs 1D and S3):

Fig 1. Overview of strategies to utilize genomic variants in transcriptome read mapping in inbred mouse lines. A.

BXD mouse recombinant inbred panel. Samples came from mice that are: BXD advanced recombinant inbred lines,

their parental inbred strains; i.e., C57BL/6J (B6) and DBA/2J (D2), and first generation cross between the parental

strains (F1). B. The 3 RNA-seq read mapping strategies used in this study. In the ‘two parental assemblies’ strategy

(left), the reads of all samples were mapped to the classical mouse genome assembly (GRCm38 or mm10) and to the

D2 assembly. The ‘BXD-specific references’ (middle) were made from GRCm38 and BXD-specific variants. There is

one reference for each BXD line, and the reads of each sample were mapped to the corresponding reference. The ‘two

parental references’ (right panel) is an intermediate strategy in which the D2-specific reference was built from

GRCm38 assembly and D2-specific variants. C. BXD genotypes available from GeneNetwork (genotypes) and

D2-specific genomic variants (SNVs, indels, SVs) available from dbSNP. D. Genotypes imputation workflow. D2

haplotype blocks were delineated based on available genotypes in the BXD lines. D2-specific variants within these D2

blocks were included in the BXD-specific references. B6 regions or alleles are in black, D2 regions or alleles are in

brown.

https://doi.org/10.1371/journal.pcbi.1010552.g001
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1. With the GeneNetwork BXD genotypes we defined for each BXD line the D2 haplotype

blocks, as sets of at least 2 consecutive genotypes with D2 alleles without B6 or heterozygous

alleles in between.

2. We checked which dbSNP D2-specific variants overlapped with the D2 blocks using bed-

tools (version v2.28.0).

3. We imputed the D2-specific variants overlapping with D2 blocks of a BXD line to be D2

alleles for this specific BXD line.

During this study, we noticed that genotypes from GeneNetwork for BXD100 (based on

GRCm38 genome assembly also called mm10) had multiple chromosomes without any D2

alleles, which was unexpected considering this was not the case in the previous version of

genotypes (based on MGSCv37 genome assembly also called mm9). GeneNetwork has been

informed and the error was thought to have occurred during lift-over of the genotypes. We

did not try to correct this mistake and kept the erroneous BXD100 genotypes in the current

analysis. The effect, if any, on the eQTL analysis should be small, as this concerned only one

BXD line out of 33, and not all chromosomes were affected.

Customization of references

We built a customized reference genome for each BXD based on the GRCm38 assembly and

BXD-specific genotypes (from GeneNetwork and imputed). For this, the reference genome

sequence GRCm38 was customized for each BXD line with BXD-specific genotypes (from

GeneNetwork and imputed) using vcf2diploid software (version 0.2.6) with a slight modifica-

tion to change the software’s behaviour with unphased heterozygous variants. Prior to compil-

ing the software according to the installation instructions, we removed the function that

randomizes unphased heterozygous variants (to determine whether there are included in the

paternal or maternal genome) and the call to this function (see Table 1). It is, however, entirely

possible to use the software without these modifications.

In the modified software, all unphased heterozygous variants were included in the genome

sequence called “maternal” but ignored in the one called “paternal”. We used the paternal

sequence so that heterozygous genotypes were ignored. Note that all D2-specific variants from

dbSNP and the BXD markers from GeneNetwork are unphased and heterozygous labels may

be indicative of low or uncertain quality. On GeneNetwork (January 2017), genotypes are

defined as “H (heterozygous) if the genotype was uncertain”. In the 33 BXD lines we used,

1449 loci had H alleles out of the 7320 genotypes (20%) and on average 60 H alleles out of 7320

loci or a total 1967 H alleles out of 241560 alleles (0.82%). For D2-specific variants from

dbSNP (version 142), Het means “Genotype call is heterozygous (low quality)”. Of the

Table 1. Modifications to vcf2diploid software.

File name Code removed

Variant.java public void randomizeHaplotype()

{

if (_rand.nextDouble() > 0.5) return;

int tmp = _paternal;

_paternal = _maternal;

_maternal = tmp;

return;

}

VCF2diploid.java if (\!var.isPhased()) var.randomizeHaplotype();

https://doi.org/10.1371/journal.pcbi.1010552.t001
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5’872’394 SNPs 481’158 SNPs were “Het” (8%) and of the 1’093’496 indels 80’075 were Het

(7%).

We also built a D2-specific reference genome based on the GRCm38 assembly and D2-spe-

cific SNPs and indels from dbSNP (Fig 1B “2 parental references”). We refer to this modified

version as D2 reference, which differs from the D2 assembly in that the D2 assembly was

assembled from DNA reads obtained in the D2 strain, whereas the D2 reference was a modi-

fied version of the assembly based on the B6 strain. We adapted the coordinates of the tran-

scriptome annotation to the new coordinates for BXD and D2 references using the chain files

generated by vcf2diploid and the liftOver tool (version 8.28) from UCSC (http://genome.ucsc.

edu).

Read mapping and setting of mapping parameters

We performed read mapping with STAR (version 2.7.0e) [19] with different values for the

parameters. The default values were used for permissive alignment, whereas more restrictive

alignments were obtained by varying the settings of the parameters: “--scoreDelOpen -40” to

prevent deletions, “--scoreInsOpen -40” to prevent insertions, “--alignIntronMax 1” to prevent

introns (splicing), “--alignEndsType EndToEnd” to prevent partial alignment of the read, and

“--outFilterMismatchNmax 0” to prevent mismatches (the value is the maximal number of

mismatches allowed). We also varied the inclusion (with annotation) or exclusion (without

annotation) of the transcriptome annotation in the genome index.

To count the uniquely mapped reads per gene after STAR, HTseq (version 0.6.1p1) was

used with samtools (version 1.9) to convert alignments from bam to sam format. Only the

alignments with a quality score of 10 or above were kept (default). The command used was:

samtools view -h alignment.bam | htseq-count -s reverse -t exon -m union-reference.gtf

The “-s reverse” parameter was used for the stranded library which is specific to the library

preparation and sequencing protocol. Alternatively, for mapping using transcriptome annota-

tion, the HTseq counting implemented in STAR was used with--quantMode GeneCounts.

Filtering and normalization of gene counts

Lowly expressed genes were filtered by tissue keeping only genes with counts per million

(cpm) above 0.5 (min_cpm) for at least 20 samples (on a total of 66 BXD samples/tissue).

Counts were normalized with the edgeR package (version 3.24.3) which uses the weighted

trimmed mean of M-values (TMM) method to take into account the variation in library size

and in RNA population [20] and log transformed (log2).

Differential mapping analysis of genes

To compare the impact of the reference on the gene expression, duplicated gene names were

removed, and only gene names common to both GRCm38 and D2 or GRCm38 and BXD ref-

erences transcriptome annotation were kept. A differential expression analysis was performed

on the BXD samples using the voom function from R package limma (version 3.38.3). Notice

that in each case, the two groups compared had exactly the same samples, so only the reference

used for read mapping differed.

Local eQTL detection and comparison

QTL detection is sometimes referred to as QTL mapping, but we will avoid this terminology to

avoid confusion with read mapping. Local eQTLs (often referred to as cis eQTLs) were

detected using FastQTL (version 2.184) using 2 Mbps above and below transcription start site
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(TSS). 1000 permutations were used to adjust p-values for multiple markers tested and seed 1

was chosen to help reproducibility. Correction for multiple gene testing was performed with R

(version 3.4.2) package qvalue (version 2.10.0). The percentage of expressed genes that have a

significant local eQTL serves to measures the improvement between the different values used

for the mapping parameters tested in the evaluation. The slope (allelic mean difference, repre-

senting the direction and strength of allele-specific gene expression) of the linear regression

and qvalue of eQTLs from different references were considered similar (unaffected) if they are

within less than 5%:

j
ðXBXD � XGRCm38Þ

averageðXBXD; XGRCm38Þ
j < 0:05;

where X refer to slope or qvalue.

Reference bias

Assuming that D2 alleles are on average as much expressed as B6 alleles, significant eQTLs are

as likely to have one or the other allele more expressed. The percentage of skewness of local

eQTLs is thus calculated as follows to reflect reference bias (0% indicates no reference bias):

significant eQTLs with negative slope � significant eQTLs with positive slope
expressed genes

� 100;

where significant is defined as FDR< 5%.

Computational requirements

Some computations were performed on the Wally cluster of the University of Lausanne with

the Vital-IT software stack (https://www.vital-it.ch) of the Swiss Institute of Bioinformatics for

speed (parallelizing multiple mapping runs) and convenience (having a functional installation

of FastQTL software). However, none of the steps require unreasonable memory or computa-

tional power, and all softwares used in this study are freely available for reproducibility

purpose.

Results

To improve genetic coherency of RNA-seq read mapping, we explored two alternative strate-

gies to exploit available data in the BXD panel. The first strategy used the two parental strains

(B6 & D2) assemblies (Fig 1B “2 parental assemblies”). The second strategy used BXD-specific

references obtained from the GRC assembly modified with BXD known and imputed variants

(Fig 1B “BXD-specific references”). An intermediate between these two strategies was used for

comparison: a D2 reference built from the GRC assembly modified with known D2 variants

(Fig 1B “2 parental references”). For each strategy, we evaluated the impact on various down-

stream steps of the analytical pipeline by quantifying how the strategies affected mappability of

the RNA reads (Figs 2A–2C and 3A and 3C), gene expression estimates (Figs 2D and 3B), and

eQTLs (Fig 4). In addition, we have evaluated how key mapping parameters influence these

results (Figs 2B and 2C and 5).

Mapping strategy with two parental strains assemblies

To explore the impact of using one reference for all samples despite their genetic differences,

we mapped all samples on the classical GRCm38 (B6) genome assembly and on the more

recent D2 assembly. We expected that more reads from D2 samples would be uniquely
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mapped on D2 assembly than on the GRCm38 assembly, and that reads from BXD samples

would map approximately equally on both parental assemblies. Surprisingly, we observed that

the percentage of uniquely mapped reads, used to estimate mappability, was higher for all sam-

ples when mapped to the D2 assembly compared to the GRCm38 assembly (Fig 2A), even for

B6 samples. We also noticed that mappability differed between the liver and the cortex both in

amplitude and in variance. This difference might relate to differences in the preparation of the

two tissues for reasons inherent to the tissues, but all the samples passed the quality tests [17].

The liver samples had on average more raw reads than the cortex samples, but the sequencing

depth did not seem to explain differences in mappability. It may be that there were more PCR

artefacts in the liver reads, so they were either unmapped or multi-mapped which means there

were less uniquely mapped reads than in the cortex. Another possibility is that the liver

expresses more genes that have regions that are not unique, so more reads are multi-mapped.

To further explore the bias for the D2 assembly, we allowed only exact matches. We now

observed the expected strain-specificity as B6 samples mapped higher on B6 assembly and D2

samples mapped higher on D2 assembly (Fig 2B). Using up to 10 mismatches (the STAR

default for 100 bp reads) but no insertions, deletions and trimming, we lost strain-specificity

(Fig 2C). However, the more restrictive mapping setting also importantly reduced the number

of uniquely mapped reads (Fig 2A–2C). This raised the question what choice of parameter set-

tings ensures both high read yield and strain specificity (see part “Mapping parameters evalua-

tion” below).

To determine the impact of mapping reference on gene expression, we performed a differ-

ential mapping (DM) analysis. The principle is the same as differential expression analysis, but

the mapping references are compared instead of different groups or perturbations. Note that

Fig 2. Two parental assemblies strategy. A. Mappability of all samples on 2 parental assemblies (samples are mapped

on GRCm38: black symbols and on D2 assembly: brown symbols) using permissive mapping setting (STAR default) in

cortex (left) and liver (right). Mappability was estimated as the number of uniquely mapped reads expressed as the % of

all reads. B. Mappability in samples from the parental strains and their reciprocal F1 offspring (BxD and DxB) on the 2

parental assemblies using restrictive mapping setting allowing 0 mismatches. Same legend than in A. C. Mappability of

parental and F1 samples on 2 parental assemblies using restrictive mapping setting but allowing up to 10 mismatches.

Same legend than in A. D. Differential mapping (DM) analysis of D2 assembly compared to GRCm38 in the cortex

(left) or in the liver (right). Genes are classified as DM genes if FDR adjusted p-value< 0.05 (red) or non DM genes

otherwise (black).

https://doi.org/10.1371/journal.pcbi.1010552.g002
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the reads and the values used for the mapping parameters are identical for both references, so

differences observed are caused strictly by the reference. More than one third (38%) of genes

were affected by the mapping reference (GRCm38 vs. D2) in the cortex and about a quarter

(22%) in the liver (Fig 2D). Alignments of the top 4 highly affected genes were visually

inspected and revealed variation in the quality of the assemblies and their transcriptome anno-

tation at these precise places. Thus what appeared as differences in gene expression between

the two assemblies could in some cases be artefacts and not consequences of genetic variants

(examples of artefacts in S2 Fig and S3 Table).

Customizing reference for D2 and BXD lines

To avoid differences of quality and completeness between B6 and D2 assemblies (S2 Table),

we modified the B6 reference assembly using SNPs and indels specific to the D2 strain from

dbSNP. We mapped parental and F1 samples with exact matches on both the mm10 assembly

and the mm10 assembly modified for D2. The percentage of uniquely mapped reads was

increased when the samples were mapped to their corresponding strain reference, compared

to the other parental strain reference (Fig 3A). Indeed, D2 samples gained between 4.6 and

5.7% when mapped to the customized D2 reference, whereas B6 samples lost between 3.4 and

5.8%. In contrast, when mapped on the D2 assembly (Fig 2B) D2 samples gained between

0.03% and 3.4% whereas B6 samples lost between 8.5% and 9.8%. The D2 customized refer-

ence thus appears more balanced as the gain for D2 samples is closer to the loss for B6 samples.

In both cases, the difference between the two parental references was smaller for F1 samples,

which is expected for a mix between the two parental strains. To apply the same strategy to

Fig 3. Line-specific references strategy. A. Relative mappability of customized D2-specific reference (GRCm38

modified with D2-specific indels and SNVs from dbSNP) compared to GRCm38 on parental and F1 samples with

exact matches. Samples are all NSD. Colors indicate genetic of the samples: B6 (black), D2 (light brown), and F1

(white) between B6 and D2 strains. The F1 samples are BxD if the mother is B6 and the father is D2 (as for the BXD

lines), or the reverse for DxB. B. Differential mapping (DM) analysis of BXD-specific references compared to

GRCm38, in the cortex (left) or in the liver (right). Genes are classified as DM genes if the FDR adjusted p-value< 0.05

(red) or non DM genes otherwise (black). C. Relative mappability of BXD-specific references (GRCm38 modified for

each BXD line with GeneNetwork genotypes and imputed variants) compared to GRCm38 on BXD samples with exact

matches.

https://doi.org/10.1371/journal.pcbi.1010552.g003
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BXD samples, genotypes were imputed using the large amount of D2-specific variants from

dbSNP and the BXD specificity of genotypes from GeneNetwork. All BXD samples gained

between 1.4 and 4.3% in mappability from having a customized reference by BXD line (Fig

3C). The amplitude of the gain varied among BXD lines and between tissues with cortex sam-

ples having globally higher values than liver samples. Note that it was expected the gain to be

lower for BXD samples than for D2 samples, since in BXD lines approximately half of the

alleles are D2.

To determine the impact of reference customization on gene expression in the BXD lines,

we performed a differential mapping analysis. Around 2% of genes are affected by the mapping

reference in the cortex and in the liver (Fig 3B).

Consequences of customization on local eQTL detection

To evaluate the effect of reference customization on estimated biological phenotypes by down-

stream analysis, we detected local eQTLs using gene expression estimated with the B6 refer-

ence or the BXD-specific references. The eQTLs are particularly likely to be influenced since

they link gene expression to genetic variants. Significant eQTLs can be seen as a signal-to-

noise measure of genetically structured gene expression. The percentage of significant eQTLs

was slightly higher (0.1% difference) when using BXD-specific references than when using B6

assembly (Fig 4A). However, this does not necessarily mean that the same eQTLs were

detected when using the two different references. The results can differ by the genetic marker

associated with the gene expression, the direction of gene expression (whether the gene expres-

sion is higher with B6 or D2 allele), or change in the q-value (Figs 4C and S4). When

Fig 4. Consequences of mapping reference at local eQTL level. A. Percentage of significant (FDR 5%) local eQTLs

over all expressed genes with GRCm38 or BXD-specific references. B. Percentage of skewness of significant (FDR 5%)

local eQTLs slope over all expressed genes with GRCm38 or BXD-specific references. C. For all expressed genes, the

best local genetic marker to explain gene expression was selected. The Venn diagrams represent the overlap of this

analysis between GRCm38 and BXD-specific references for the three criteria in cortex NSD (left) or in the liver NSD

(right). The marker (in green) indicates changing the reference result in the same genetic marker associated with gene

expression. The slope (in blue) is the direction and strength of allele-specific gene expression, it is considered to be

overlapping between the references if it varies less than 5%. The qvalue (in pink) is the statistical significance of the

marker to gene expression association, it is considered to be overlapping between the references if it varies less than

5%.

https://doi.org/10.1371/journal.pcbi.1010552.g004
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considering these 3 variables, mapping reference did not affect 44% of local genetic marker to

gene expression association in the cortex and 64% in the liver.

Reference bias

Next, we wanted to detect a potential reference bias, where reads containing B6 alleles get

more easily mapped than those containing D2 alleles or the contrary. In DNA-seq studies, this

can be achieved by checking the symmetry of the distribution of allelic ratios at heterozygous

loci. In RNA-seq, allele-specific expression can also modify allelic ratio. However, we assumed

that globally genes with B6 or D2 alleles are equally expressed. Moreover, since our samples

are inbred lines, heterozygous sites are rarer than in other populations, so we compared homo-

zygous alleles of genetically different samples, rather than heterozygous alleles from one sam-

ple. The percentage of skewness represents how many local eQTLs deviate from a situation

without reference bias (skewness 0%). A positive percentage indicates a B6 bias: more eQTLs

with the B6 allele increasing gene expression, whereas a negative percentage indicates a D2

bias: more eQTLs with the D2 allele increasing gene expression. Using the B6 reference shows

a reference bias for B6 alleles in all tested tissues and conditions while using BXD-specific ref-

erences decreased bias (Fig 4B).

Mapping parameters evaluation

The reference used is not the only thing influencing read mapping. We used the BXD-specific

references, and to test which values to use for the more critical mapping parameters of STAR

we varied: i) the number of mismatches allowed, ii) the possibility to trim end of reads, iii) the

possibility to splice reads, and iv) the use of known transcriptome annotation. The ratio of sig-

nificant eQTLs to expressed genes (Fig 5) was used for performance optimization as done pre-

viously [14,21]. A higher ratio indicates a higher proportion of genetically structured gene

expression versus random variations in gene expression. The best settings in both tissues are to

use trimming, splicing, and transcriptome annotation and to allow mismatches. The exact

maximal number of mismatches differed: 10 mismatches in the cortex (Fig 5A), but only 2 in

the liver (Fig 5B). All top settings use existing transcriptome annotation and thus appears to be

the more important parameter.

Discussion

Genomic variations among individuals are the core of genetic studies. Yet it is common prac-

tice in the field to use one assembly as reference for all genetically different samples. Here, we

improved genetic specificity of read mapping of BXD samples using publicly available data.

Our custom BXD-specific references detected proportionally more eQTLs and alleviated refer-

ence bias. Below we will discuss the complexity of assessing the analytical design of RNA-seq

and the various strategies to integrate genomic variations in transcriptomic analyses.

Although the analysis of RNA-seq data is often regarded as well established, it remains a

complex procedure. A great number of factors are involved, going from experimental design

(number of replicates, kit for library preparation, sequencing platform, read length) to soft-

wares, functions, and settings used in the different analytical different steps (quality control,

mapping, filtering, normalization). We are not being exhaustive about all these aspects, but

nevertheless think our observations and considerations on selected features are useful for the

community. One of these observations concerned the unanticipated tissue differences in

mappability. We were unable to identify supportive literature for this phenomenon and think

it merits a more thorough analysis addressing such tissue effects (e.g. using GTEx).
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Another difficulty is that for mapping of real samples, the true location of reads is

unknown. The fraction of uniquely mapped reads is used as a mapping statistic because an

RNA molecule can only come from one locus. However, this does not guarantee the correct-

ness of mapping of uniquely mapping reads. Importantly, some reads are expected to be cor-

rectly classified as multi-mappers because some regions in the genome are identical or very

similar (e.g. repeat elements). Moreover, uniqueness can have slightly different meanings

depending on the mappers and parameters used, as reads are not necessarily exactly and fully

aligned because of mismatches, indels, and sequencing errors especially at the ends of reads

(trimming).

Most RNA-seq studies use standard analytical pipelines with default setting, or with slight

modifications such as the number of mismatches allowed. Mismatches have the task to com-

pensate for sequencing errors or small unknown variants to give some flexibility in case an

exact match is not found. However, the choice of the number of mismatches allowed is rarely

given, even though it has been shown in humans that reducing the number of mismatches

allowed increased the difference in uniquely mapped reads when using a general versus an

individual-specific reference [10]. We showed that the mapping settings have an effect on

mappability and also on the local eQTLs. An interesting benchmark was completed on human

RNA-seq data in a differential gene expression (DE) pipeline [22]. They compared filtering

methods, along with transcriptome reference sets, normalization and DE detection, alignment

and counting software. The authors concluded that the optimal filtering threshold depended

Fig 5. Evaluating mapping parameters. A. The performance on local eQTLs of selected mapping settings on cortex

samples (average of the NSD and SD conditions) is measured by the percentage of expressed genes that have a

significant local eQTL. The BXD-specific references were used. C. As in A but for liver samples.

https://doi.org/10.1371/journal.pcbi.1010552.g005
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on the pipeline parameters. Particularly, the mapping software had the least impact whereas

the transcriptome annotation had the higher impact. Also, our study highlighted the impor-

tance of transcriptome annotation even if our evaluating measure differed. By focusing on the

impact of genetic differences in the reference we could assess different combinations of map-

ping options. We used the fraction of eQTLs as evaluation measure rather than DE, because

we compared B6 versus D2 alleles in a genetic population and not two fixed groups. Indeed,

each BXD sample will be considered to be B6 at some loci and D2 at others. A reference bias is

likely to influence eQTLs because a variant in a certain gene can modify the mapping of the

reads precisely for the samples that have the alternative allele in this region.

An assembly is a global solution because it uses all genomic variants specific to a strain

regardless of their size. However, we observed that the technical difference in quality between

the two parental assemblies prevents a fair comparison of the genetic difference. In this context

it can be noted that we can exclude mix-up of samples as a possible cause of D2 bias in assem-

bly mapping, because it affected all samples: BXD lines, B6 and D2, and because our previous

analysis confirmed that this had likely not occurred [18]. Even if transcriptome annotation is

likely to be similar in other strains, the different coordinate systems between the assemblies

complicate the transfer. Moreover, the actual D2 transcriptome annotation corresponding to

the D2 assembly includes manual curation steps that make it hard to update to new releases of

the genome assembly or variants. Notably, no study was published using this D2 assembly,

except the one from the group that released it [15]. In contrast, our customization of one

assembly offers the advantage that the coordinate changes are formalized which allows autom-

atization of transcriptome annotation changes with the same tool used for upgrading versions

of an assembly (liftOver). For mapping reads of D2 samples and those of other strains than B6,

we currently recommend the use of GRCm38 assembly modified with strain-specific indels

and SNVs from dbSNP.

Our custom references combine the specificity of BXD genotypes with the large amount of

D2-specific short variants from dbSNP. Importantly, we did not include structural variants

(SVs), although many were detected between B6 and D2 strains [23]. SVs can have important

phenotypic impacts [24], potentially more than SNVs [25,26]. However, SVs calls will require

further efforts in the reporting to ensure the confidence and the format for integration into

current workflows. This is due largely to the nature of SVs: their length and large variety

implies that the possible number of SVs is greatly superior to that of SNVs, making them less

easy to validate and report. Without technologies like long read sequencing and optical

genome mapping, those SVs will be very likely inaccessible for mouse models unless an inter-

national consortium tackles this issue.

Another limitation is that all murine assemblies are haploid whereas mice are diploid. The

diploidy is ignored at the mapping step under the assumption that the genotypes of inbred

strains are mostly homozygous. However, the homozygosity and stability of inbred mouse

strains is based on a theoretical model that does not consider new mutations [27], although

germline mutations are estimated to be between 10 and 30 per generation [28,29]. Unfortu-

nately, the assumption of stability of inbred lines is so strongly anchored in the field that its

verification is compromised, because of not searching for heterozygous sites or dismiss them.

Indeed, the term heterozygous is sometimes used to call variants uncertain or low quality, and

they are always unphased. When mouse assemblies were built, regions with high density of

heterozygous sites were used to detect (haploid) assembly errors, ignoring the potential coher-

ence of diploid or polyploid references [15]. A more systematic detection and characterization

of heterozygous regions will likely improve the accuracy of transcriptomics studies, particu-

larly for loci with allele-specific expression. However, the read mapping of different possible

alleles, which could also be used for not inbred crosses between 2 strains would require a
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reconciliation step, as implemented for example for human with paternal and maternal allele

[9]. Indeed, every read can come from either one of the two alleles but not from both at the

same time. We made an effort to improve the D2 parts of reference to map the BXD samples,

however the B6 strain itself is also susceptible to mutations, as confirmed by the occurrence of

many B6 substrains, even if it affects only a few genes. Therefore, a complete characterization

of genetic variants of the BXD by DNA-sequencing could improve the customization of both

D2 and B6 parts of BXD, and therefore enhance resolution of downstream analyses.

Conclusion

In current genetic studies using the BXD population, genomic variations are paradoxically

ignored at the read mapping step, which as we show here causes a reference bias. The genomic

variations need to be explicitly integrated in the reference instead of treated as sequencing

errors. Our results show the need for a critical evaluation of the RNA-seq pipeline and the

development of more complete genomic variants databases to best approximate the genetics of

the samples. Most genetic studies with a transcriptomic component in mice and other model

organisms can suffer from reference bias, which could be attenuated by assessing and sequenc-

ing those strains. The mouse community could follow the drosophila community (http://

dgrp2.gnets.ncsu.edu) and sequence genetic reference populations. Our study can serve as a

wake-up call for improving the characterization of genomic variations, and as a concrete guide

for analyses in BXD and other genetic populations. As RNA-seq analyses are often a starting

point to identify one or a few genes that then are studied in more detail in follow-up experi-

ments, it is worth the extra effort to avoid potential bias by not blindly following traditional

pipelines.
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Chapter 4

Knowledge network

Many methods for different omics are based on independently identifying key biological features,

and after trying to find out how they interact. This may manage to capture a strong causal gene,

but the risk is to miss smaller impact genes that are working together. Can we use the prior

knowledge of the interactions between biological items to retrieve full subnetworks implicated in

the regulation of sleep and combine the strength of different molecular layers? The goal of this

chapter is to assemble a knowledge graph to consider interactions and to integrate data-driven

and knowledge-driven inputs for the identification of multi-gene regulation subnetworks of the

sleep phenotypes.

The primary article presenting this BXD sleep resource offers an analytical method to find

candidate gene in single locus QTLs [Diessler et al., 2018]. The high heritability of sleep

phenotypes is however not fully explained. Another data-driven approach, that I took for

example with MOFA, aims at using embeddings to combine features possibly across modalities

(omics) to differentiate the biological signals from the experimental noise. The issue with

any purely data-driven is that it works independently of previous knowledge acquired and

curated over the years. Regulations between genes, interactions of proteins, and reactions of

metabolites have been long studied. There are not all discovered but there are good chances

that the underlying network of biological known interactions can guide future discoveries to

build multi-variate hypotheses explaining complex phenotypes.
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4.1 Methods

4.1.1 Overview

A purely data-driven approach is explained with MOFA and embeddings to provide contrast

to the main network approach taken with the following workflow (Figure 4.1). Extraction:

The mouse-specific interactions were retrieved from databases. The only exception is for Rhea

where all reactions were retrieved because the reactions do not have an organism specified, but

the enzymes retrieved are mouse-specific. Structuring: The nodes were structured in the form

”type|identifier” where the identifiers would be ENSEMBL gene identifier for genes and pro-

teins, and ChEBI for metabolites. The concept of metabolite complexes was used for the sides

of the reactions. Harmonization: The identifiers of the genes and metabolites were mapped to

ENSEMBL gene identifiers and ChEBI, respectively. For metabolites, manual processing was

required and a pH of 7.3 was chosen to match Rhea metabolites. Path detection: Paths up

to a certain length are listed for all pairs of genes in the network. Scoring: A BXD-expression

score was calculated by path and by BXD line. Ranking by line: The lines were ordered for

each sleep phenotype and for each path. Correlation: The Kendall correlation was used to

compare BXD lines rankings of sleep phenotypes and paths.

4.1.2 MOFA

To build the MOFA model, 3 datasets of molecular (intermediate) phenotypes were used as

input: the top 500 most variable genes in cortex in log2(CPM), the top 500 most variable

genes in liver in log2(CPM), and the metabolites concentrations averaged by BXD line (124

metabolites). The samples considered are combinations of BXD line and condition: not sleep

deprived (NSD) or sleep deprived (SD). MOFA package (version 1.1.1) was used for the analysis

with R (version 3.5.3).
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4.1.3 Retrieving datasets from databases

IntAct is a reviewed database of molecular interactions, mainly protein-protein interactions,

based on experiments reported in literature. Version 2021-10-13 was downloaded from IntAct

website, then only mouse specific interactions were kept by selecting interactions where both in-

teractors have taxid 10090 (Mus musculus), for a total of 30’391 interactions. Notice that some

taxid of the interaction may be different depending on the experiment from which the infor-

mation come from (for example: -1 in vitro). The interactors identifiers were converted to EN-

SEMBL gene id (ENSG) using the gconvert function from R Bioconductor package gprofiler2,

using ”mmusculus” as organism and giving maximum one result per identifier (mthreshold=1).

Interactions where at least one interactor was not converted were removed.

STRING is a database of functional protein-protein interactions known and predicted, based

on other databases, ortholog predictions, and text mining of literature. Due to the diversity

of evidence and prediction, there is a confidence score for each type of evidence, and they

are all combined in a combined score, going from 0 to 1000 (or 0 to 1), where a higher value

indicates a higher confidence in the interaction. However, interaction does not mean physical

interaction. There is a R Bioconductor package for the STRING database (STRINGdb) but

limited in which information are retrievable. The database for mouse version 11.5 was down-

loaded (“10090.protein.links.full.v11.5.txt”) from STRING website, giving a total of 14’496’358

interactions. The interactors identifiers were converted to ENSEMBL gene id (ENSG) using

the gconvert function from R Bioconductor package gprofiler2, using ”mmusculus” as organ-

ism and giving maximum one result per identifier (mthreshold=1). Interactions where at least

one interactor was not converted were removed. One version of the knowledge graph included

STRING interactions and one did not.
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Figure 4.1: Flowchart of the main network approach.
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Omnipath is a biological processes database assembled for human but available via homology

for mouse and rat [Türei et al., 2021]. Interactions were downloaded using the R bioconduc-

tor package: OmnipathR version 3.2.8, with the function import all interactions, specifying

10090 for mouse as organism. This gives 144’453 directed protein-protein interactions of 14’643

interactors coming from over 100 resources. The interactors identifiers were converted to EN-

SEMBL gene id (ENSG) using the gconvert function from R Bioconductor package gprofiler2,

using ”mmusculus” as organism and giving maximum one result per identifier (mthreshold=1).

On the 14’643 interactors, 13’480 were converted to gene id. After removing interactions where

at least one interactor was not converted, there were 122’185 interactions, for 13’375 interactors.

Rhea is a metabolic reactions database not specific to a species or tissue [Bansal et al., 2022].

Downloaded release 121 (2022 03 02) from rhea website, which contains 14’281 reactions of

12’385 unique interactors. The sides of reactions were called metabolite complexes and the

interactors were called metabolites. The network is built with two types of edges: the re-

actions linking two metabolite complexes (the two can be the same in the case of transport

reaction for example) and the membership relations indicating which metabolite belongs to

which metabolite complex(es) where one metabolite complex can have one or more metabolites

and a metabolite can be in one or more metabolite complexes. The reactions are undirected,

what is the left and right sides of the reactions is arbitrarily determined (since release 90 by

the alphabetic order of the metabolites names). Metabolite names were converted to ChEBI

identifiers at pH 7.3 using the chebiId name.tsv mapping file from rhea website. The macro-

molecules or polymers for examples cannot be converted to ChEBI ids. Only the reactions

where all the interactors were converted are kept. The enzymes to rhea information from the

rhea2uniprot sprot.tsv was used to identify mouse specific catalysed reactions. The enzymes

were converted from uniport id to ENSG id using the gconvert function from R Bioconductor

package gprofiler2, using ”mmusculus” as organism and giving maximum one result per identi-

fier (mthreshold=1). For the 1.3% of enzymes that were converted, the metabolite complexes

on both sides were considered to be linked to the enzyme. Some metabolites were mapped to

SwissLipids by Alan Bridge.

PubTator is a database of scientific literature [Wei et al., 2019]. The genes to citations dataset
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was downloaded. The number of citations was counted. The NCBI gene identifiers were

converted to ENSEMBL gene identifiers using the NCBI key table (gene2ensembl.gz).

4.1.4 Structuration of the knowledge graph

The nodes are called with their type and identifier, for example: gene|ENSMUSG00000032265.

For the reactions, the metabolites designate the molecular species, while the term metabolite

complex was chosen for side of the reaction, by analogy to protein complex. The datasets were

merged and only one occurrence of duplicate edges was kept. Only the maximal component of

the network was kept to avoid to have multiple unconnected subgraphs.

4.1.5 Network analysis

All paths up to a maximal length of 2 edges were searched for all gene pairs present in the

network. For each path a coverage (or presence) score was given. It is calculated as the

number of nodes with a gene expression available in our BXD data, divided by the number of

nodes in the path (path length). A BXD-expression score is given to each path, for each BXD

line. It is calculated as the sum of the gene expression of the nodes divided by the number

of nodes in the path. The BXD-expression scores are used to rank the BXD for each path.

The sleep phenotypes are also used to rank the BXD for each path. For each path the Kendall

correlation is taken between the BXD-expression rank and the sleep phenotypes rank. For each

sleep phenotype, the top 100 paths with the higher absolute value of correlation coefficient

are selected. The subgraphs represents the list of these top 100 paths. The subgraphs were

aggregated by tissue and condition and the presence or absence of each node and edge was

counted.
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4.2 Results and Discussion

4.2.1 Data-driven approach with MOFA
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Figure 4.2: MOFA simple use on molecular data

The metabolomics data and the transcriptomics (cortex and liver) data allows to create a model

differentiating the sleep-deprived and non-sleep-deprived samples. A) Input data used for the

model. B) Variance explained by the model. C) Scatter plots of the samples projected on the

two first latent factors of the model, colored by BXD line and shaped by condition.

Combining the three molecular modalities using MOFA allows to split the samples by condition

(first factor), and to split the BXD lines into 2 groups (second factor) (Figure 4.2). The lines

in the upper group are: BXD005, BXD032, BXD044, BXD050, BXD056, BXD070, BXD073,
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BXD079, BXD087, and BXD103. This unsupervised method shows both the genetic and

environment (external perturbation) have an strong impact at the molecular level. Both the

complementarity of data inputs and the ability of the algorithm seem to be relevant. Now as

powerful as the data-driven approach we still need then to use the current biological knowledge

to interpret it. Now instead of first considering the data-driven way (for example assuming

the different metabolites are independent even though we know they are connected), and then

adding the knowledge on it, we decided to take another approach where we start from our data

and the scientific knowledge (which is actually also data but structured into databases).

4.2.2 Building a multi-layer knowledge graph

During the building of the knowledge graph, the conversion of uniprot identifiers from IntAct

database to ENSG gene identifiers lost 16% (using gprofiler2 R package) or 13% (using STRING

aliases table) of proteins. The conversion of uniprot identifiers from Omnipath to ENSG gene

identifiers lost 8% using gprofiler2 R package, but only less than 1% when starting from gene

names. However, since the gene name was present in the initial entry, we can check if the ENSG

gene id obtained allows are converted back to the same gene name and in 13% (if starting from

uniprot id) or 4% (if starting from gene name) the initial and final gene names are different.

The reconversion does not not always give the original result because of inconsistencies in

the databases. For example, the gene Calm1 has one ENSEMBL entry linked to 3 proteins,

whereas these 3 proteins have separate Uniprot entries each linked to one gene: respectively

Calm1, Calm2, and Calm3 (Figure 4.3).

Mapping our metabolome data on the network yielded many losses. Starting from 124 metabo-

lites, 92 lipids had a SwissLipids identifier, in which: 64 had an attached ChEBI identifier on

SwissLipids, 85 had an attached ChEBI identifier on MetaNetX, 6 lipids had no ChEBI on

both SwissLipids and MetaNetX tools. So 118 metabolites were translated to ChEBI identi-

fiers. Now on those only 30 metabolites are found in the knowledge network. This is due to

the fact that there are not many lipids in RHEA. The organisation of the information in the

databases, such as which chemical species is more present at pH 7.3 is not always available in
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3 proteins from 
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Figure 4.3: Example of inconsistency between databases
A) Uniprot entries (arrows and text on the right added for highlight). B) ENSEMBL entry
(highlights added in red).
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the same place so it makes more manual steps to curate the entries.

4.2.3 Network analysis

The full network without STRING contains 54’259 nodes and 197’436 edges. It has a diameter

of 14 (longest shortest path is 14 edges) and a mean distance of 5 (average shortest path is 5

edges long). The network can be described as a small-world (Figure 4.4).
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Figure 4.4: Knowledge network description

A) Type of nodes in the network. B) Distribution of the degree of nodes (log and zoom on

small degrees). C) Distribution of the length of shortest paths.

As also observed by [Garrido-Rodriguez et al., 2022] in their prior knowledge graph, a literature

bias is present in our network (Figure 4.5). It remains hard to know if a biological item is more

studied because it has many interactions and a crucial role in biology, or if it is found to interact

more because it is more studied.
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A

Figure 4.5: Literature Bias in the knowledge network

A) The number of mentions of genes in PubTator in function of the degree of proteins in the

network. (Pearson correlation coefficient: 0.57, 95% confidence interval: 0.56 to 0.58, t-test:

p-value < 2.2e-16)

The more positively or negatively correlated paths were retrieved for each sleep phenotypes

using the BXD expression score. A few examples of subnetworks are shown (Figure 4.6). It has

to be noted that the correlation coefficients are overall low (not more than 0.5). Additionally,

each path is considered independently of other paths even if they have node(s) in common. We

can observe also that the subgraphs tend to have multiple (unconnected) components. This is

probably an indication that the path length used for the search was not high enough.
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CNSDLSD

CNSD LNSD

top100 paths for: NREM sleep time gained 
during recovery in minutes

top100 paths for: NREM sleep power in EEG slow delta 

top100 paths for: Number of NREM sleep episodes in baselineA

B C

Figure 4.6: Examples of subnetworks from top 100 paths for different sleep phenotypes

In all subnetworks, the genes are in black and the proteins in blue. The Fruchterman-Reingold

layout is used. A) Subnetwork for the number of NREM sleep episodes in baseline (48h), with

scores based on expression in NSD condition in cortex (left) and liver (right) B) Subnetwork for

the NREM sleep time (in minutes) gained during recovery compared to baseline, with scores

based on expression in SD condition in liver C) Subnetwork for NREM sleep power in EEG slow

delta compared to baseline reference power, with scores based on expression in NSD condition

in cortex.
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To understand which subpaths are specific to some aspects of sleep or common to all, the

subgraphs were concatenated. Complete heatmaps for interactions (edges) and interactors

(nodes) are in Annexes 2 to 9 while a brief overview is shown in Figure 4.7. The approach

requires many fine tunings but is a novelty in the sense that it aims at predicting regulatory

networks of most promising candidates for complex traits, instead of trying to retrieve a single

gene that is significant on statistical test but even if we do not expect that the behavior is

impacted only by one gene.
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B

Figure 4.7: Aggregation of top 100 paths by condition and tissues

A) Number of nodes and edges by tissue and condition. B) Heatmap of 25 most frequent

interactions and 25 phenotypes with most interactions in the cortex SD.
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The data-driven exploration brought evidence that the signal of interest is present in the molec-

ular layers collected. The approach taken was then more generalist to include data-driven and

prior knowledge inputs together and to see the sleep phenotypes as multi-gene regulated traits.

The databases mining, the mapping of identifiers, and the projection of the sleep specific omics

on the knowledge graph are completed, although we are hoping future development of lipids

metabolism databases will be able to improve the integration and fill the current gap. The

preliminary results of the network analysis are given here for this project still under progress.

The more logical extensions of these is first some optimisation on the current settings, includ-

ing: i) search the full network for paths longer than 2 edges probably with more efficient ways

to run the calculations, ii) varying the threshold of top paths taken for each sleep phenotype

to assess the robustness, and iii) use of negative controls datasets (not related to sleep) to

highlight the specificity of the approach even with the guidance of a general knowledge graph.

Additionally, the inclusion of a scoring for multi-locus genetics could help link the different

layers and help the identification of the genetic interactors. Another future direction that could

be taken would be the inclusion of a time component in the knowledge graph to account for the

dynamics observed in the sleep phenotypes (some are the same variable at different periods).

As the molecular layers are snapshots of the situation at a single moment in time, it would

requires to use time course experiment data [Hor et al., 2019]. That would allow to compare

sleep phenotypes to their time-corresponding values of molecular phenotypes.
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Chapter 5

Discussion

5.1 Summary of thesis achievements

Sleep research has a lot of unknown, my PhD journey therefore started by establishing solid

structure bases with the data and metadata (re)organization. Shortly after followed the as-

sessment of robustness of the results by changing the reference assembly done collaboratively.

Then, I adapted a tool made for human research to fit our needs and implemented the D2 blocks

imputation of genotypes for the BXD lines and the concept of differential mapping analysis.

Finally, I built the prior knowledge graph, discovering a lot on different databases structures,

purposes, advantages, and limitations. I progressively developed my network thinking even if

I was not able to finish all the analyses that we had conceptualized. I will now discuss points

that were not covered in the previous chapters.

5.2 Reproducibility

The FAIR principles are not always easy to apply to a project with multiple types of data.

For example, simply choosing where to deposit them is not trivial, because the database more

suited for each dataset is different for each omic. On one hand, specialized repositories, such as
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GEO for the RNA data, are preferable because they have specific tools to search, explore and

retrieve data. However, not all omics have a tailored database. On the other hand, generalist

repositories, such as Figshare, allow more freedom on the type of data and formatting, but this

makes it harder to explore and compare between datasets because they may capture a similar

type of data, without necessarily using the same vocabulary. For genes names, this is relatively

well organized, the Gene Ontology can be used and diverse packages allow to transform from

gene name to identifiers. However, to standardize the description of our sleep phenotypes, the

Human Phenotype Ontology (HPO) was the closest ontology available. However, it was made

more to describe disease-linked phenotypes in humans whereas we have healthy phenotypes in

the mice. Therefore, the correspondence is not one-on-one and had to be done manually. This

situation is not unique to sleep, but can be found in different fields where there is a lack of

consortium. More formal languages can help unify different area of biology [Lazebnik, 2004],

but there is also a need of more discussion between specialists of different fields and omics [Pinu

et al., 2019].

Data and analysis management is crucial but often in the shadow of the scientific results. How-

ever, we manage our data whether we want it or not, when talking about data management the

big step is often about become aware of that and deciding to actively improve our organisation

and communication. And in the end, even with the newest technologies an essential part is ac-

tually still carried by humans. Indeed, well documented meta-data and code, multiple research

articles in peer-review journals, and data-mining exploratory website are clearly important but

the human contact with the people that designed and performed the experiments is what ac-

tually brings the most meaning to the data: the anecdotes of highs and lows and interactions

are things that words and numbers often miss.

5.3 Mouse model and experimental design

The definition of species and strains are very different across the entirety of living beings. For the

mouse, the definition of an inbred strain is that they need to have been inbreed between sibilings
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for at least 20 generations [Mekada et al., 2009]. However, there are considered substrains if they

have known or suspected genetic differences. The issue is that even if we take a low estimate of

10 germline mutations by generation [Reardon, 2017], each inbreeding done to bring closer to

the 20 generations necessary for a inbreed strain are actually by definition creating substrains

because we should suspect mutations. The assumption that inbred strains are fully fixed and

stable across time was anchored in the mentalities which make some researchs being vague

about exactly which mice were used and the practice of precising which substrain was used is

quite recent [Bryant, 2011].

The best experimental design practices are not always compatible with sleep experiments and

mouse breeding. For example the randomization of mice of different lines in different time

batches, but the age and breeding success of the mice are sometimes coming in the way. We

can also mention the isolation of mouse, since for the gold standard of sleep recording they are

one per cage to avoid fights and other mice to climb on other mice cables to go out of the cage.

However, mice are social animals and it seems unlikely isolation has no effect on their sleep.

Studies using multiple mice per cage have detected social genetic effects (ie. the genotype of

another mouse in the same cage has an effect) for a variety of phenotypes including wound

healing [Baud et al., 2017]. Interestingly, the social genetic effect is sometimes stronger than

the direct genetic effect. So we are using the BXD population but we are studying the genetics

of the individuals.

Notice that all the mice for our sleep BXD dataset were male. Presumably to avoid to deal

with periodic hormonal changes of female mice and because administratively speaking that

represents a burden to justify more mice in the authorization. However, it was shown that

sleep regulation in female mice more influenced by the genetic than the hormonal variations

associated with the estrous cycle [Koehl et al., 2003]. Studying the sex-difference indeed requires

to use more mice in the experiment but is it not important to include a structural variant

covering large amount of a chromosome, easy to detect, and known to impact phenotypes?

There is a need for a sex perspective in basic sleep and circadian research [Dib et al., 2021], and

the inclusion of a sex variable is present in other studies too so it should not be a unstoppable

administrative burden [Strefeler et al., 2023]. The lack of female mouse in sleep research is
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however sadly corresponding to the trend in humans where the women are underrepresented in

research studies [Pandi-Perumal et al., 2022].

The characterization of sleep in the mouse is done by measuring objective variables. The large

number of them try to capture the full picture, but there has no guarantee that we do not miss

some aspects, such as fatigue, or cognitive performance during the following time awake. For

example in humans, the objective sleep duration (gold standard) is not necessarily reflecting

the subjective sleep duration, which is what matter really for patients and a diagnostic can be

based on subjective measures [Benz et al., 2022].

5.4 Genetic-specific RNA mapping

Questioning current practice even in commonly used analyses has its place, even if it means

only small incremental progresses it can help to gradually improve things that tend to be

inert [Soneson et al., 2016]. In our BXD-specific approach for RNA-seq reference, a key thing

that makes the downstream analyses still possible is that the data are aggregated at the gene

level. The difficulty for it to be applied to other sequencing methods is the lack of unity of

coordinate reference system. For example in ATAC-seq where genomic regions obtained with

different references would be harder to compare. An important limitation on the theme of

genetic-specificity is that in our analyses we did not controlled for BXD population structure

that others have to account for more proximity of some of the BXD lines [Kang et al., 2008, Li

et al., 2018].

5.5 Databases and Network

One of the reasons that genes and transcripts databases are more developed than metabolites

and lipids ones is that the hierarchy for classification is simpler in the first case. Another reason

is that genes are defined and identified by their 1D sequence, whereas for metabolites and lipids

the identification is only indirectly linked to their 2D composition or 3D conformation (Figure
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5.1). A limitation that we have in our approach to retrieve information from databases is that

we did not put in place automatic updates, whereas most databases are updated at a more

or less regular frequency. Having fixed data however allows to avoid to constantly reassess

the changes that the updates may or not have, the complex dependencies between databases

(one meta-resource may have a different update frequency than the individual resources), and

because the comparison between different updates is anyway not trivial [Ormond et al., 2021].

substancemetabolites

chemical X

molecules Mass spectra

A B C D

Figure 5.1: Metabolites concepts

A) Molecular structure (2D or 3D) of a metabolite. B) Metabolite as an existing chemical

species that can interact, may have more than one possible molecular structure. C) Metabolites

as they can be bought or used as reference, may be a mix of different molecules, with possible

presence of a solvent. D) Metabolites as they are often identified by Mass Spectrometry (MS).

Figure idea from M. Pagni.

We do look at gene expression in two key organs for sleep and circadian rhythms, however it

remains that these are mix of different cell populations within the tissues and this may blur the

signals and limit the insights that we could retrieve on their gene regulation systems [Aguet

et al., 2019].

Computationally talented people have developed viable solutions for epistasis eQTLs calcu-

lations [Schüpbach et al., 2010, Huang et al., 2013, Trotter et al., 2021]. Certainly larger

graphs exists and different algorithms exist to process them efficiently [Sakr, 2013, Slota et al.,

2016, Lin et al., 2018]. However, with some hindsight what is most limiting in my approach is

not necessarily the length or intensity of the computations but rather that I needed more time

to grasp and process the concepts to be able to communicate about them and search for the
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appropriate tools or resources to put in practice the ideas.

Many tools assume the existence of one or few key genes that drive the entire behavior which

makes them inadequate for complex traits [Lee et al., 2023] or are designed for specifically for

a clinical or medical outcome [Shu et al., 2016]. Supervised learning works well to find more

items of a certain type in large datasets [Libbrecht and Noble, 2015]. However, for sleep which

are the core items is not so well defined as genes considered as core circadian genes can be

actually in some organs mostly influenced by sleep-wake history, so the highly variable context

dependent makes it hard to put reliable labels on genes. Different levels of representation of

the data can used are have their pros and cons, with more embedded data being usually faster

to process and simplifying the situation [Nelson et al., 2019].
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Structural variant calling: the long and the
short of it
Medhat Mahmoud1†, Nastassia Gobet2,3†, Diana Ivette Cruz-Dávalos3,4, Ninon Mounier3,5,
Christophe Dessimoz2,3,4,6,7* and Fritz J. Sedlazeck1*

Abstract

Recent research into structural variants (SVs) has established their importance to medicine and molecular biology,
elucidating their role in various diseases, regulation of gene expression, ethnic diversity, and large-scale
chromosome evolution—giving rise to the differences within populations and among species. Nevertheless,
characterizing SVs and determining the optimal approach for a given experimental design remains a computational
and scientific challenge. Multiple approaches have emerged to target various SV classes, zygosities, and size ranges.
Here, we review these approaches with respect to their ability to infer SVs across the full spectrum of large,
complex variations and present computational methods for each approach.

Keywords: Structural variant (SV) detection, De novo assembly, Short-read, Long-read, Mapping, Hybrid, RNA-Seq,
Gene fusion

Introduction
Structural variants (SVs) are large genomic alterations,
where large is typically (and somewhat arbitrarily) de-
fined as encompassing at least 50 bp. These genomic
variants are typically classified as deletions, duplications,
insertions, inversions, and translocations describing
different combinations of DNA gains, losses, or rear-
rangements [1–3]. Copy number variations (CNVs) are a
particular subtype of SVs mainly represented by dele-
tions and duplications (reviewed in Carvalho and Lupski
[4]). SVs are typically described as single events, al-
though more complex scenarios involving combinations
of SV types exist [5, 6]. Chromothripsis, which is a large
and complex combination of rearrangements reported in
cancer [7], is an example. While the average genomic
variation between two humans is 0.1% in terms of single
nucleotide variants (SNVs), when taking SVs into ac-
count, this increases to 1.5% [8]. In particular, telomeric
regions are affected by a higher rate of SVs [9].

SVs can have a pronounced phenotypic impact—dis-
rupting gene function and regulation or modifying gene
dosage. Multiple studies have highlighted their role in
functional changes across populations [1, 10, 11] and
species [12]. Their importance in medicine and molecu-
lar biology has been highlighted by multiple recent stud-
ies. For instance, in neurological diseases, SVs have been
often discussed based on ATTCC repeat extensions in
Parkinson [13] or CAG expansions in Huntington
disease [14]. Furthermore, a retrotransposon insertion in
an intron of the TAF1 gene has been associated with
early stages of linked dystonia-parkinsonism disease [15].
In cancer, different types of SVs have been highlighted
as causing various types of dysfunction: (i) deletions or
rearrangements truncating genes [16]; (ii) amplification
of genes leading to overexpression, for example, due to
homologous recombination (HR) that leads to an inacti-
vation of BRCA1 and BRCA2 [17, 18]; (iii) gene fusions,
such as Her2-positive SKBR3 breast cancer that com-
bines multiple genes across chromosomes [19]; and (iv)
alteration of the location of gene regulatory elements,
causing changes in the gene expression [4, 20]. In Men-
delian studies, multiple diseases have been associated
with deletions or duplications of genic regions. For
example, three complex SVs affecting ARID1B (Coffin-
Siris syndrome), HNRNPU (hypotonia), and CDKL5
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(early infantile epileptic encephalopathy is a severe intel-
lectual disability and Rett-like features) have been reported
[21]. Another more recent study showed the complexity
of these CNVs and an increase in mutation rates for
Potocki-Lupski and Smith-Magenis syndrome [22].
SVs are also playing an essential role in plants includ-

ing having a direct phenotypic impact [23]. For example,
SVs play important roles in tolerance for multiple plants:
(i) in maize, a tandem triplication over the AMTE1
genes is reported to be associated with aluminum resist-
ance [24]; (ii) an amplification of Bot1 plays an import-
ant role in boron toxicity in barley [25]; and (iii) for
weeds, a tolerance against the herbicide glyphosate based
on amplification of EPSPS has been reported in response
to extensive use of glyphosate [26]. Other SVs have a
positive impact on fruit yield and quality. For example, a
transposon insertion near Ruby, a MYB transcriptional
activator, leads to the increase of anthocyanin concen-
tration in blood orange compared to pumelo and
mandarin [27]. In tomatoes, a transposon insertion in
JOINTLESS2 (J2) results in undesirable branching of
flower-bearing shoots (inflorescences) in genetic back-
grounds that also carry a cryptic variant for the close
homolog enhancer of J2. This combination results in ex-
cessive flower production. However, an additional tan-
dem duplication in fresh-market breeding lines across
this region leads to a threshold of correctly spliced prod-
uct and thus to a healthy phenotype with higher fruit
yield [28].
Despite all these evidences of the importance of SVs,

they have been largely understudied, compared to SNVs,
because they are much more difficult to identify. In
principle, taken individually, each type of SV induces a
distinctive pattern in mapping reads that can be used to
infer the underlying mutation. For example, a deletion
forms a lack of a sequence and thus a gap in the align-
ment of the sample relative to a reference (Fig. 1). How-
ever, in practice, it is much more complicated. First,
sequencing and mapping errors blur the patterns. In-
deed, in contrast to SNVs and smaller insertions and de-
letions, SVs can cover a large portion of a read or even
be larger than the read length—which complicates map-
ping [5]. Second, the patterns induced by the different
SV types can be very similar. For example, it is often
hard to distinguish tandem duplications from novel in-
sertions for genomic alignments (Fig. 1). Finally, multiple
SVs can overlap or be nested, giving rise to much more
complex mapping patterns than when considered indi-
vidually [5, 20]. Such complex patterns may preclude
mapping altogether, forcing researchers to assemble each
genomic sample de novo—a difficult and more costly
task with conventional sequencing.
However, great strides have recently been made, thanks

to technological and methodological developments. The

advent of long-read sequencing technology, in particular,
Pacific Biosciences (PacBio) and Oxford Nanopore tech-
nologies (ONT), makes it possible to produce reads of
several thousand base pairs, even reaching up to 2 Mbp
for Oxford Nanopore [29]. Furthermore, as we shall re-
view in more detail below, technologies such as linked
reads (e.g., 10x Genomics), optical mapping, and Strand-
Seq have also been developed to improve the quality of as-
semblies and/or SV calling. Long reads help to increase
the detection of SVs as they considerably ease de novo
genome assembly and mapping. Nevertheless, the
increased length and the higher error rate of emerging
long-read technologies can pose new methodological chal-
lenges. Complementary to long reads, another noteworthy
development has been the repurposing of transcriptomics
(RNA-Seq) to detect SVs—in particular, rearrangements.
Indeed, by identifying apparent RNA fusions, which are
thus inherently transcribed, it is possible to focus on SVs
with potential functional implications. Lastly, recent
progress in benchmarking is greatly improving our under-
standing of the strengths and weaknesses of each ap-
proach. Current efforts such as Genome in the Bottle [30]
and the FDA-led initiative SEQC2 (https://www.access-
data.fda.gov/scripts/fdatrack/view/track_project.cfm?pro-
gram=nctr&id=NCTR-DBB-PM-SEQC2-Phase-II) aim at
better characterizing false positives and false negatives in
SV calling.
In this review, we give an overview of methods to detect

SVs utilizing DNA and RNA-Seq from both short and
long reads (Fig. 2). We provide a snapshot of the main
methods currently available for detecting SVs (Table 1),
with practical guidance as to which approach is suitable
for which type of study. We conclude the review with a
discussion of open challenges and future directions.

De novo assembly-based approach
De novo genome assembly has traditionally been used to
generate reference genomes. Multiple strategies have
been proposed, utilizing long and short reads or lever-
aging both. We refer the interested reader to the review
of Nagarajan and Pop [72], which provides a critical
overview of de novo assembly methods.
To detect SVs, such de novo-assembled sequences

can be aligned to a reference or other assembly
(Fig. 1), and the alterations between the two can be
systematically identified: the comparison of each pos-
ition in one genome to its corresponding position in
the other genome should allow the identification of
all forms of variations [3, 73]. Discontinuities that
arise from certain types of SVs during a whole-
genome alignment result in different patterns (Fig. 1).
However, although conceptually simple, genome align-
ment is computationally far from trivial [74].
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Multiple methods have been proposed to identify SVs
based on a genomic alignment. These can be distin-
guished by whether they construct an assembly graph or
operate directly on the already assembled sequences.
Methods that construct the assembly graph are typically
slower, but can provide more insights, as they are lever-
aging the read information directly. Cortex is one of
these methods that use short-read sequencing data and
can simultaneously assemble several genomes. Cortex
uses a colored de Bruijn graph (see Table 2 for defin-
ition) to simultaneously infer SVs and complex combi-
nations of SNVs, indels, and rearrangements [31]. SGVar

[32] is a more recent string graph-based (see Table 2 for
definition) de novo assembly pipeline based on the SGA
assembler [75] that also uses short-read sequencing data.
SGVar uses a stringent read preprocessing based on the
read length and read quality. It requires a perfect match
to merge reads or sequences, which improves the assem-
bly quality. Using both simulated and real data (chromo-
some six of the human genome), SGVar has been shown
to outperform other methods, such as Cortex, for inser-
tion and deletion identification [32].
The other group of methods operate based on previ-

ously assembled contigs or scaffolds and are thus

Fig. 1 Comparison between de novo assembly, short-read and long-read mapping approaches to identify structural variants. For de novo
assembly approaches, the relative positions of the segments in the dot plot indicate the type and size of the SV. For short-read-based mapping
approaches, paired-end (red) and split reads (purple) are typically used to decipher the type size and location. In addition, the coverage can be
used to improve the detection of deletions and duplications. Long-read-based mapping approaches typically leverage the alignment patterns of
long reads (green) to detect the different types of SVs
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independent of the sequencing technology (see Table 2
for definition). Basically, they rely on alignments between
an assembly and a reference assembly, computed with
aligners such as BlasR [76], MUMmmer [77], or Mini-
map2 [35]. Assemblytics [34] is a web application that re-
lies on MUMmer and identifies insertions and deletions
up to 10 kbp. It distinguishes between contractions and ex-
pansions of repetitive elements in contrast to insertions and
deletions in a unique sequence. This can be an important
distinction since it already annotates the type of event to
provide further insight. Another method paftools.js [35]
uses Minimap2 alignments, which are typically many fold
faster than MUMmmer-based approaches. Similar to
Assemblytics, it calls insertions and deletions but only runs
on the command line. SMARTie-SV was recently intro-
duced to detect insertions, deletions, and inversions, using
BlasR. It has been applied to study SVs across great apes
(gorillas, chimpanzees, orangutans) and humans [12].
Theoretically, all forms of structural variants can be

identified given a fully contiguous and complete de novo
assembly. The main strength of de novo assembly-based
approaches compared to other approaches lies in detect-
ing larger insertions (3+ kbp) [34, 32]. One major
challenge is the lack of haplotype representation. Thus,
heterozygous SVs are often missed simply by the fact
that a standard de novo assembly only represents one
haplotype. Nevertheless, there are de novo assembly
methods to account for this such as trio-sga [78],
Falcon-Unzip [79], or Trio-Canu [80] that often require
additional coverage and/or parental information. They
can provide diploid information of the genome and thus

enable a better representation of heterozygous SVs.
However, some challenges remain even for a haplotype
representation, such as the de novo assembly quality and
improving the genomic alignments by taking a larger
genomic context sequence into account. Therefore, the
de novo assembly-based approach is often used for a
small number of challenging samples or for studying or-
ganisms that do not have a genome of reference.

Short-read alignment approach
Short paired-end sequencing data dominates most of the
publicly available datasets. Typically, these paired-end
reads are mapping in the opposite orientation and within
a certain distance of each other (e.g., 500 bp). In the
presence of SVs, these pairs are abnormally oriented and
or spaced (Fig. 1). In addition, split reads can be used to
improve the breakpoint resolution (Fig. 1). SV calling
using paired-end reads is currently the standard ap-
proach and has been applied to single samples up to
large cohorts (e.g., 1000 genomes).
In this section, we first focus on DNA-Seq-based

methods then on RNA-Seq-based ones.

Short-read DNA-Seq mapping
Over the past decade, more than 100 short read-based
mappers have been introduced, yet read mapping is still
not entirely solved—for example, when it comes to reli-
ably aligning reads to highly polymorphic regions [81].
Once the reads are mapped, their insertion size, orienta-
tion, and alignment length can be used to identify SVs
candidates. Figure 1 gives a detailed overview of the

Fig. 2 Qualitative overview of structural variant calling methodology using short reads and long reads and their associated costs. a, A qualitative
comparison of the different SV methodologies ranging across technologies (whole genome and RNA-Seq using short and long reads) to different
approaches (mapping vs. assembly) with respect to their costs and recall. b, The ratio of improvement in the number of SVs detected from using
long reads across four human and two non-human studies. Overall, each study shows a clear improvement of using the longer reads.
Additional file 1: Table S1 shows the details of each study
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Table 1 Overview of multiple methods representative for the different SV methodologies currently used. Input types indicate the
required data at start being either: De novo assembly (a), Oxford Nanopore (o), PacBio (p), 10X Genomics (x), Hi-C (h), Strand-Seq (t),
Optical mapping (c) or Short reads (s)

Category Name Input types
(a, c, h, o, p,
s, tx)

Description Link Paper

De novo
assembly

Cortex s Insertions, deletions, combinations of SNVs—
inversions and deletions—rearrangements

http://cortexassembler.
sourceforge.net/

[31]

SGVar s Large insertions and deletions, complex SV [32]

HySA p, s Small (11 to 50 bp) to large (> 50 bp) insertions
and deletions, complex SV

https://bitbucket.org/
xianfan/hybridassemblysv/
overview

[33]

Assemblytics a Insertions and deletions (1 bp to 10 kb), repeat
expansions/contractions

https://github.com/
MariaNattestad/
Assemblytics

[34]

Paftools a Insertions, deletions https://github.com/lh3/
minimap2/tree/master/
misc

[35]

Smartie-sv a Insertions, deletions, inversions https://github.com/zeeev/
smartie-sv

[12]

BreaKmer s Insertions, deletions, translocations, inversions,
duplications

https://github.com/ccgd-
profile/BreaKmer

[36]

novoBreak s Deletions, duplications, inversions, translocations https://sourceforge.net/
projects/novobreak/

[37]

Short-read
mapping

BreakDancer s Deletions, insertions, inversions, intra-chromosomal
and inter-chromosomal translocations

https://github.com/
genome/breakdancer

[38]

BreakSeq Insertions, deletions, translocations, inversions,
duplications

http://sv.gersteinlab.org/
breakseq/

[39]

CREST s Insertions, deletions, translocations, inversions,
duplications

https://www.
stjuderesearch.org/site/lab/
zhang

[40]

DELLY s Deletions, inversions, duplications, inter-
chromosomal translocations

https://github.com/
dellytools/delly

[41]

EricScript s Gene fusion https://sourceforge.net/
projects/ericscript/

[42]

FusionCatcher s Gene fusion https://github.com/
ndaniel/fusioncatcher

[43]

GRIDSS s Insertions, deletions, translocations, inversions,
duplications

https://github.com/
PapenfussLab/gridss

[44]

Gustaf s Deletions, inversions, duplications, translocation http://www.seqan.de/
apps/gustaf/

[45]

IDP-fusion p, s Gene fusion https://www.healthcare.
uiowa.edu/labs/au/IDP-
fusion/

[46]

JAFFA p, s Gene fusion https://github.com/
Oshlack/JAFFA/wiki

[47]

LUMPY s Deletions, duplications, inversions, translocations https://github.com/arq5x/
lumpy-sv

[48]

Manta s Insertions, deletions, translocations, inversions,
duplications

https://github.com/
Illumina/manta

[49]

Meerkat s Insertions, deletions, translocations, inversions,
duplications

http://compbio.med.
harvard.edu/Meerkat/

[50]

Pindel s Insertions, deletions, translocations, inversions,
duplications

https://github.com/
genome/pindel

[51]

STAR-Fusion s Gene fusion https://github.com/STAR-
Fusion/STAR-Fusion/wiki

[52]

SQUID s Gene fusion https://github.com/ [53]
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Table 1 Overview of multiple methods representative for the different SV methodologies currently used. Input types indicate the
required data at start being either: De novo assembly (a), Oxford Nanopore (o), PacBio (p), 10X Genomics (x), Hi-C (h), Strand-Seq (t),
Optical mapping (c) or Short reads (s) (Continued)

Category Name Input types
(a, c, h, o, p,
s, tx)

Description Link Paper

Kingsford-Group/squid

TARDIS s Discovery of tandem and interspersed segmental
duplications

https://github.com/
BilkentCompGen/tardis

[54]

TIGRA s Insertions, deletions https://bitbucket.org/
xianfan/tigra

[55]

Tophat-
Fusion

s Gene fusion http://ccb.jhu.edu/
software/tophat/fusion_
index.shtml

[56]

Ulysses s Insertions, deletions, translocations, inversions,
duplications

https://github.com/gillet/
ulysses

[57]

SvABA s Insertion, deletions, somatic rearrangments https://github.com/walaj/
svaba

[58]

Long-read
mapping

NanoSV o Local SV (LSV): duplications, deletions, inversions;
insertions (transposons, intra-chromosomal
(> 1 Mb away) and inter-chromosomal insertions)

https://github.com/
mroosmalen/nanosv

[59]

PBHoney p Insertions, deletions, duplications, inversions,
translocations

https://sourceforge.net/
projects/pb-jelly/

[60]

PBSV p Insertions (20 bp to 5 kb), deletions (20 bp to 100 kb),
inversions (200 bp to 5 kb), intra-chromosomal
(> 100 kb away) and inter-chromosomal translocations,
complex SV

https://github.com/
PacificBiosciences/pbsv

SMRT-SV p Insertions, deletions, duplications, inversions,
translocations

https://github.com/EichlerLab/
pacbio_variant_caller

[61]

Sniffles o, p Insertions, deletions, translocations, inversions,
duplications, complex SV (nested SV)

https://github.com/
fritzsedlazeck/Sniffles

[62]

Multimethods SV
caller

FusorSV s Combining LUMPY, DELLY, and GenomeSTRiP https://github.com/
TheJacksonLaboratory/SVE

[63]

MetaSV s Combining BreakSeq, Breakdancer, Pindel,
CNVnator

http://bioinform.github.io/
metasv/

[64]

Parliament2 s Combining LUMPY, DELLY, Manta, BreakSeq,
CNVnator

https://github.com/
dnanexus/parliament2

[65]

SURVIVOR a, o, p, s Can combine/compare any SVs VCF https://github.com/
fritzsedlazeck/SURVIVOR

[10]

Hi-C technology Hic_
breakfinder

h Detects SVs based on optical mapping, Hi-C,
short reads

https://github.com/
dixonlab/hic_breakfinder

[66]

HiCnv h Pipeline to identify CNVs from Hi-C data https://github.com/ay-lab/
HiCnv

[67]

HiCtrans h Identify potential translocations using change-
point statistics

https://github.com/ay-lab/
HiCtrans

[67]

Optical mapping c Commercial tools; visualization and analysis of
Bionano data

https://bionanogenomics.
com/support-page/
bionano-access-software/

Strand-Seq
technology

Strandseq-
InvertR

t R package to locate putative inversions https://sourceforge.net/
projects/strandseq-invertr/

[68]

10x Genomics Gemtools x Downstream and in-depth analysis of SVs from
linked-read data

https://github.com/
sgreer77/gemtools

[69]

GROC-SVs x Identify large-scale SVs based on barcode
information

https://github.com/
grocsvs/grocsvs

[70]

LongRanger x Align reads, call and phase SNPs, indels,
identify SVs

https://support.1
0xgenomics.com/genome-
exome/software/

[16]
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patterns of abnormally mapped paired reads and how
they relate to SVs types. For example, a deletion in a se-
quenced sample leads to a larger insert size (the distance
of the pairs). In addition, the coverage in the allele is half
(heterozygous) or zero (homozygous) compared to the
surrounding regions. For duplications, the coverage is
increased, and for rearrangements, the pairs are abnor-
mally spaced or oriented while the coverage is not
affected. This signal is often filtered by coverage, mapp-
ability, or other measurements, such as an increase in
substitutions.
The methods for detecting SVs from short reads vary

in the type of information they exploit. Early methods
relied exclusively on the distance and orientation of
paired-end reads (Fig. 1). For example, BreakDancer [38]
classifies each read into normal or SV depending on the
mapping distance and orientation between the read and
its mate. Regions with an excess of reads fitting into an

SV category are then identified and assigned a confi-
dence score. This can lead to missed variations, e.g.,
smaller deletions, for which the length is within the vari-
ability of the paired-end distribution. To increase the
resolution, split reads can also be used. DELLY [41] inte-
grates the analysis of split reads into its search of abnor-
mal distances and orientations among pairs of reads.
Although this increases the accuracy of breakpoint
prediction and enables the detection of smaller deletions
(20+ bp), the larger events remain hard to distinguish
from mapping artifacts. To overcome this, some
methods have integrated coverage information as a third
kind of input signal. For example, LUMPY [48] does a
joint analysis of the read depth, paired-end read discord-
ance, and split-reads. Another tool that leverages all
three types of information is Manta [49], which includes
a highly parallel strategy that can be used on an individ-
ual sample or on a small set of samples including

Table 2 Glossary. Here, positive (P) or negative (N) describes the SV detection (or SV calling), and true (T) or false (F) describes if the
calling was correct. Thus, SVs are true positive (TP) if they are called or false negatives (FN) if they are not called but present in the
sample. Conversely, SVs that are not in the sample are true negatives (TN) if they are not called or false positives (FP) if they are
called

Word Definition

Accuracy Proportion of correctly identified events (T) to the overall events: (TP + TN)/(TP + TN + FP + FN).

Breakpoints Positions on the genome denoting the start and end of SVs relative to the reference genome.

Contigs Contiguous sequence stretches assembled from reads.

De Bruijn graph Directed graph consisting of nodes with exactly n incoming and n outgoing edges. In genome assemblies, a de
Bruijn graph is built where the nodes are k-mers (sequences of length k) and the edges correspond to the overlap
on k − 1 bases between nodes.

String graph-based assembly Similar method to De Bruijn graph-based assembly, but in this case, the overlaps between all read pairs (instead of
k-mers) are computed to construct a string graph based on the overlaps.

Insert size The distance between the two paired-end reads.

Overhang Portion of a mapped read that cannot be aligned and thus could indicate a structural variation.

Phasing The identification of two or more heterozygous variations are co-occurring on the same or different DNA molecule.

Precision (or positive predictive
value)

Proportion of predictions (FP + TP) that are correct (TP).

Recall (or sensitivity or true-
positive rate)

Proportion of the total positives (FN + TP) that were correctly identified (TP).

Scaffold Connected contiguous sequence stretches, with unresolved sequence stretches in between.

Split reads Reads containing parts that map in different loci on the reference genome. They are found by splitting the read in
sub-segments, align individually each sub-segment, and then grouping sub-fragments from one read.

Tandem sequence A specific type of repetitive region that was repeated directly adjacent to each other.

Table 1 Overview of multiple methods representative for the different SV methodologies currently used. Input types indicate the
required data at start being either: De novo assembly (a), Oxford Nanopore (o), PacBio (p), 10X Genomics (x), Hi-C (h), Strand-Seq (t),
Optical mapping (c) or Short reads (s) (Continued)

Category Name Input types
(a, c, h, o, p,
s, tx)

Description Link Paper

downloads/latest

NAIBR x Identifies novel adjacencies created by
SVs events

https://github.com/raphael-group/
NAIBR

[71]
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tumor-normal pairs. This is achieved by parallelly build-
ing graphs across regions of the genome and testing for
a specific variant hypothesis. The nodes of such graphs
are regions that may contain one or more breakpoints,
and the edges represent the evidence (i.e., reads) of
breakpoints between the regions (see Table 2 for defin-
ition). The evidence accumulated around every pair of
genomic regions is then evaluated for specific SVs hy-
potheses. GRIDSS [44], on the other hand, retains only
the reads that provide evidence for SVs and then assem-
bles them via a positional de Bruijn graph. The align-
ment of the subset of reads enhances the accurate
identification of SVs, thus achieving an increased recall.
Regarding precision (the proportion of inferred SVs that
are correct), GRIDSS’s authors show similar perform-
ance to LUMPY, with an estimated precision rate of 90%
(evaluated from 1000 previously validated deletions)
[44]. In the same study, BreakDancer, Pindel, DELLY,
and Manta exhibited lower precision rates, ranging from
70 to 85%. However, GRIDSS has the disadvantage of
reporting any type of SV event as a simple breakpoint
(i.e., BND), and this makes the interpretation of the
underlying SV type difficult. More recently, to detect
more complex events such as a tandem duplication
where the second copy is inverted, methods such as
TARDIS have been proposed [54].
The aforementioned methods specialize in the detec-

tion of specific types of variants, but none of them is
able to reliably identify all SV types and size regimes [5,
10, 82, 83]. Meta-methods seek to fill in this gap by
combining calls from different tools and selecting the
variants identified by multiple methods. Ideally, meta-
methods can combine the strengths of multiple methods
while overcoming their individual weaknesses. In prac-
tice, this works up to a certain point, but these methods
can also serve to adjust the precision-recall trade-off
more flexibly. MetaSV [64], Parliament2 [65], and SUR-
VIVOR [10] have been reported to yield higher recall
than a single caller, at the cost of moderately reduced
precision. Using different parameters, SURVIVOR can
also be used to increase precision, at the cost of a mod-
erately reduced recall [10, 19]. Furthermore, SURVIVOR
can also incorporate the information from short and
long reads to further improve precision and recall.
Overall, short-read-based methods are well estab-

lished and widely used. Nevertheless, the recall is often
reported to be between 10 [61] and 70% [1, 5, 10] and
the false-positive rates are very high (up to 89%) [60,
73, 84, 85] depending on the size and type of SVs.
While rearrangements or certain larger (500+ bp) dele-
tions are robustly identified, mid to larger size inser-
tions remain a major challenge. These insertions are
often disturbing the accurate alignment of reads and
thus can lead to misinterpretations [5]. These cases

might be resolved by using a localized assembly ap-
proach, for example using SvABA [58]. In addition,
these methods are often blind to certain regions (e.g.,
low complexity, highly repetitive, highly mutated) of
the genome. To sum up, while we can control the pre-
cision of these short-read-based methods, the recall can
only reach a certain point and certain complex types of
SVs will remain hidden [1, 5, 19, 82]. Thus, we may be
reaching the limits of DNA mapping approaches based
on short reads. Indeed, the emergence of meta-methods
may well be indicative of diminishing returns in a ma-
turing field.

RNA-Seq mapping
In contrast to the genome approaches, RNA-Seq-based
approaches focus only on expressed regions. Here, the
challenges are different, and thus, specialized methods
have been proposed. In general, RNA-Seq methods aim
to identify gene fusions, which are connections between
parts or full lengths of two or more genes. Using RNA-
Seq, we can detect if the variant observed is expressed
and measure the amount of expression in comparison
with other genes.
Multiple methods have been developed to detect gene

fusions. These methods work based on mapping of short
RNA-Seq paired-end reads to the reference genome and
or transcriptome. Subsequently, the abnormal spaced
paired and split reads (see Table 2 for definition) be-
tween different genes are identified, summarized, and
filtered. Recent benchmarks highlighted the impact of
the read quality and length to detect gene fusions but
disagreed about their recommendation [46, 86–88].
For gene fusion detection, the methods mainly differ

in how strictly they use existing gene annotations. Reli-
ance on gene and exon annotations can increase preci-
sion by disregarding or correcting mapping errors. For
instance, methods such as FusionCatcher [43] and Eric-
Script [42] inherently focus on the annotated parts of
the genome. FusionCatcher is designed to identify som-
atic fusion genes, by aligning reads to a transcriptome
using Bowtie [89] guided by Ensembl annotation. It
removes the reads that align to rRNA and tRNA or trim
them if they have a low base quality to improve the
prediction of gene fusions. EricScript follows a novel
approach mapping first the paired-end reads and per-
forming a localized assembly across fusion candidates to
obtain better exon junction candidates. The reads are
then mapped back to the fusion catalog, and annotation
candidates are subsequently scored and filtered.
On the other hand, methods that do not strictly rely

on the annotation of a genome can have a higher sensi-
tivity. Indeed, annotations are typically incomplete, even
for well-characterized organisms such as humans [90],
let alone for non-model organisms. A loose reliance on
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annotations is further relevant when dealing with cancer
samples [19], which can contain complex non-canonical
gene fusion patterns. One of the earliest fusion detection
methods was TopHat-Fusion [56], which used a special-
ized version of TopHat [91]. Of note, TopHat is out-
dated, and its authors recommend to use HISAT2 [92]
instead. STAR-Fusion [52] is leveraging the speed and
accuracy of the STAR RNA-Seq aligner [93] by selecting
parameters optimized for gene fusion detection (e.g.,
allowing chimeric alignments, setting a low minimum
overhang for a chimeric junction) (see Table 2 for defin-
ition). STAR-Fusion uses single or paired-end reads
mapped to a reference and annotation index. SQUID
[53] constructs a graph based on the regions with dis-
cordant reads. The graph represents candidates of gene
fusions and the reference where the individual neighbor-
ing regions (nodes) are connected. The connections are
subsequently weighted by the number of supportive
reads. Linear programming is then used to traverse the
graph and report gene fusions.
The last group of RNA-Seq fusion detection methods

has been conceived to also take advantage of long
reads—in particular, those obtained from the PacBio Iso-
form Sequence protocol. IDP-fusion [46] and Jaffa [47]
are gene fusion identification tools that consolidate
long-read with short-read RNA sequencing data. IDP-
fusion requires both long and short reads while it is op-
tional for Jaffa. The long reads are used primarily to
identify fusion candidates. Subsequently, short reads are
used to improve the breakpoint accuracy and precision.
Overall, RNA-Seq-based SV detection has the advan-

tage of determining if an allele is expressed or not. Al-
though this is no guarantee that this variant has an
impact on the phenotype (the protein might not be
translated or stable), RNA-Seq helps with prioritizing
fusions that affect gene structure. However, there are
multiple disadvantages. First, the underlying SV type can
be uncertain for the gene fusion. This might complicate
the interpretation, as well as the validation. Second, the
coverage levels vary with the expression of the gene.
Thus, lower expressed genes and their variations are
likely to be missed. Third, SVs that impact promoter re-
gions, introns, or non-transcribed regions are not detect-
able. This is especially the case for some of the methods
penalizing read mapping outside of annotated regions.
And fourth, previous benchmarks have shown that gene
fusion studies often suffer from high false-positive rates,
for example, due to chimeric regions [94].

Long-read mapping-based approach
Long reads are advantageous for SV calling because they
can span repetitive or other problematic regions. Thus,
these longer reads (5+ kbp) have the potential to im-
prove the mapping and also to capture larger SVs better

compared to short reads alone [5, 60, 76, 82, 83]. Both
PacBio and Oxford Nanopore methods can generate
reads of thousands of base pairs but present two major
disadvantages. First, the costs for sequencing are higher
to obtain the same coverage compared to short-read se-
quencing. Second, the high sequencing error rate (~ 8–
20%) [95] has to be considered for both alignment and
SV calling steps. Thus, specialized methods to align long
reads such as BLASR [76], Minimap2 [35], and NGMLR
[5] were recently developed. The identification of SVs is
still at an early stage with only a few methods available.
With long reads, the SV detection methods are often

tailored to the underlying technology—mainly PacBio or
Oxford Nanopore. One exception is Sniffles [5], which
employs a parameter estimation in the beginning and
thus adjusts itself to the underlying error model. Sniffles
operates on a per read base, also capable of reporting
very low-frequency SVs in the sample. This is particu-
larly useful in cancer or in mosaic variation. Further-
more, Sniffles allows the detection of more complex or
adjacent SVs such as inversions flanked by deletions or
inverted tandem duplications. It implements a statistical
framework to reduce the number of false-positive calls.
For PacBio, three main specialized methods have been

proposed. PBHoney [60] uses coverage and split read in-
formation relying on BLASR alignments. PacBio struc-
tural variant calling and analysis tools (PBSV) is a
method developed by PacBio to detect SVs within the
range of 20+ bp (https://github.com/PacificBiosciences/
pbsv). Reads supporting a putative SV are used to gener-
ate a consensus, which is then re-aligned to the reference
genome. SMRT-SV [61] includes de novo assembly and a
specialized genotyping module. Reads are first aligned to
the reference and, subsequently, a local assembly is per-
formed for each multiple kbp window across the entire
genome. The resulting assemblies are then aligned back to
the reference, and structural variants (insertion, deletions,
and inversions) are identified.
For Oxford Nanopore, NanoSV was one of the first

methods developed [59]. NanoSV preferentially uses as in-
put an alignment from LAST [96], which uses adaptive seed
rather than fixed-length seed for speed optimization [96].
Of note, NanoSV reports only breakpoints (BND) which
again makes the interpretation of the SVs type difficult.
Overall, long-read mapping-based methods for SV

calling often show a better performance than short-read
ones (Fig. 2). Indeed, longer continuous reads can be
aligned more accurately, even after accounting for the
higher sequencing error rate. Furthermore, the enhanced
length enables a full capture of most of the alleles for
SVs—in contrast to short reads where multiple pieces of
information have to be put together to infer single SVs.
However, there are still some performance deficiencies
for larger (5+ kbp) insertions compared to de novo
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assemblies. This is because, as with short reads, the allele
is getting longer than the read itself. Current efforts per-
form a localized assembly to improve, but do not fully
solve, this issue when looking at very large insertions or
inversions that are flanked with large low-complexity re-
peats (e.g., 5 kbp). Nevertheless, multiple papers have re-
ported a significant improvement in precision and recall
for SV calling using long reads compared to short-read
mapping approaches [2, 5, 19, 82, 97–99].

Alternative approaches for the identification of
structural variants
While this review focuses on SV calling methods util-
izing short and long reads, there are other technolo-
gies that have recently improved our ability to call
SVs. In this section, we provide a brief overview of
these technologies and the associated software pack-
ages and refer the interested reader to other reviews
for more details [95, 100–102].
Linked reads produced by 10x Genomics enable to

pair reads over distances of up to 150 kb, and multiple
methods have been developed to detect SVs from the
linked reads. The challenge here is to identify an SV
based on sparse coverage of the molecule with paired-
end Illumina reads. These methods typically have a
specific target SV size resolution because the barcode
identifying the paired-end reads per molecule is not
unique and the distance between the individual paired-
end reads is undefined. Prominent methods for this
technology include LongRanger [16] (50+ bp for dele-
tions, 30+ kbp for rearrangements), GROC-SVs [70]
(min 10 kbp) utilizing a localized assembly, and NAIBR
(1+ kbp) [71], which uses a probabilistic model that
combines multiple signals in barcoded reads.
Another technology relying on short-read sequencing is

Hi-C, which is used to identify regions that are in close
proximity in 3D space, which provides longer-range infor-
mation than standard short read. An alteration of these
pairs is likely caused by an SV allele at the location. Several
methods have been devised to directly detect SVs based on
Hi-C data. While some methods, such as Hic_breakfinder
(1+ Mbp), can potentially identify all types of SVs [66],
others, such as HiCnv (> 1 Mbp) and HiCtrans [67], only
aim to detect CNVs and translocations, respectively.
Strand-Seq is a new sequencing method that preserves

strand directionalities. Thus, when the reads are aligned to
the reference genome, the individual homologs for each
chromosome can be distinguished [101]. This helps in iden-
tifying inversions, for example, using Strandseq-InvertR [68]
(min ~ 1 kbp), and can also be applied at a single-cell level.
Optical mapping, e.g., provided by BioNano, uses a differ-

ent approach based on restriction enzyme maps which
labels 7-bp markers. Optical mapping is a highly cost-
efficient method to detect SVs but is often limited in terms

of breakpoint accuracy and in terms of distinguishing SVs
that are close to one another. Furthermore, BioNano can-
not provide the sequence of an allele (e.g., insertions). SV
calling from BioNano data can be performed using the ven-
dor’s software, called BioNano Access (https://bionanoge-
nomics.com/support-page/bionano-access/).

Discussion
SVs are increasingly being recognized as an important
class of variants, which need to be considered in evolu-
tionary, population, and clinical genomics. In this review,
we delved into different available algorithms to call SVs,
highlighting their advantages and disadvantages. It tran-
spires that SV calling methods based on short-read
mapping offer a cost-efficient way to search for most
known SV alleles (genotyping) [103], but they struggle to
detect novel SVs, especially insertions [5, 82, 83]. On the
other hand, SV calling approaches from de novo
assembly require a contiguous, haplotype-resolved and
complete representation of the sample, something which
can only be achieved through costly high-coverage se-
quencing. This makes them currently impractical when
dealing with multiple samples (e.g., > 20)—which, for in-
stance, is needed for population-scale studies. However,
they are necessary to reliably detect and resolve complex
SVs alleles. As for the long-read-based SV mapping
approaches, they are at the “bleeding edge”. Long-read
sequencing is currently more expensive and less wide-
spread than short-read sequencing. However, this is cur-
rently changing with continuous reductions from both
Oxford Nanopore and PacBio cost per base. It is already
apparent that SV calling from long-read mapping can be
more effective than from short-read mapping ap-
proaches. In addition, mapping approaches are often less
expensive than de novo assemblies. For applications re-
quiring the elucidation of very long or very complex
SVs, it is still possible to perform a localized long-read
de novo assembly. Phasing SVs can further improve the
overall quality by identifying which SVs violate the dip-
loid genome assumption. Clearly, this needs to be
adopted, given copy number alterations or genomes with
higher ploidy. Due to the complexity, only few studies
were able to do this so far with a success of 78.7%, even
though parental genomic data was used [59].
Regardless of the sequencing technology and SV call-

ing algorithm, a challenge that remains is the compari-
son and interpretation of SVs. For example, a tandem
duplication will result in having the second paired read
or part of the read mapped before the first (Fig. 1). Inter-
spersed duplications induce very different mapped read
patterns, which can easily be confounded with an inver-
sion or deletion (if the duplication is on the same
chromosome) or with a translocation (duplication on a
different chromosome). This is caused by molecules that
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have recombined between different regions, an event
which can occur in cancer. In such cases, the reads of
these regions will map back to their original locations
along the genomes, forming larger gaps in their align-
ments. These gaps are then misinterpreted sometimes as
different SV types flanking the duplicated regions, de-
pending on their distance to each other (Fig. 1). As for
insertions, while a novel sequence will indeed be identi-
fied as an insertion, a sequence that is similar to a region
in the genome (e.g., 80% identity or more) can be called
depending on the location of the region as a transloca-
tion, inversion, or deletion event. Lastly, when compar-
ing de novo assembly-based calls and mapping-based
calls, duplications and insertions can be hard to distin-
guish: while a genomic alignment may indicate a novel
sequence between two genomes, mapping-based ap-
proaches might highlight the same event as a tandem
duplication if the inserted sequence shares similarity to
the neighboring region. As these examples illustrate,
comparing different SV call sets and reconciling them
can add a whole new layer of difficulty to the problem.
For methods to progress, benchmarking is critical.

Currently, the performance of each method remains
hard to assess, because precision and recall are typically
estimated on different datasets, each presenting different
challenges, often using inconsistent operational defini-
tions (e.g., a minimum length of 20 vs. 50 bp to be con-
sidered a SV). Furthermore, most benchmarks to date
are limited to simulated datasets: this is advantageous in
that the truth is known with certainty, but it is often
unclear how such results generalize to real datasets. To
establish gold standards and facilitate the comparison of
different methods, several efforts are underway, such as
Genome in a Bottle (led by the US National Institute of
Standards and Technology) and SEQC2 (lead by the US
Food and Drug Administration). Both seek to obtain a
better gold standard and understanding of the under-
lying bias. This is achieved by sequencing trios very
deeply with multiple technologies (Genome in a Bottle)
or sequencing a sample multiple times by different la-
boratories and different sequencing machines (SEQC2).
The results of these studies will further highlight the
advantages of certain approaches over others.
Ultimately, for SVs to be routinely considered in

evolutionary and medical studies, standard methods
and reference databases will be required. An im-
proved differentiation between germline and somatic
SVs would be desirable, similar to that of SNVs, to
improve the categorization of SVs. Currently, only
few methods exist that offer an initial assessment
(e.g., Manta [49]). Databases of allele frequencies such
as gnomAD [104] are available for SNVs, but we
completely lack them for SVs. The annotation of SVs
is often more difficult because their length needs to

be taken into account, and the underlying sequence
itself needs to have a reliable allele frequency assess-
ment. Furthermore, although SVs can be reported
using the standard Variant Call Format (VCF), there
are inconsistencies in the way different methods re-
port SVs. Some methods fail to report sufficient in-
formation to determine the exact type of SV or
report valuable extra information in an ad hoc for-
mat. Standardization would greatly facilitate SV call-
ing across multiple samples. One possible solution
would be to extend the format in a similar way as
with the Genomic VCF format (gVCF) for SNVs. In
that format, for SNVs and smaller insertion and dele-
tions, the reference information is also included to
enable subsequent genotyping of variants that might
not have been called in the initial assessment. Such
an approach greatly speeds up the assessment and
often increases the accuracy.
Likewise, before SV calling becomes routine in clinical

settings, several challenges will need to be overcome. Be-
sides the challenges in detection and correct genotyping,
we are lacking an assessment and annotation of SVs.
One of the best indicators if a variant is a candidate for
pathogenicity is if this variant occurs at a low frequency
(e.g. < 0.5%) in the population. While it is possible to as-
sess the frequency of SNVs using reference datasets such
as gnomAD/ExAC [104], this is much more difficult for
SVs [103]. Indeed, while there is only a small number of
possible SNVs at each site (typically one or two alleles,
but only up to four given the nature of DNA), the num-
ber of possible SVs affecting each site is much larger,
due to their size and type differences. This also compli-
cates our ability to compare SVs with each other. Finally,
because of the need for certification and quality assur-
ance in a clinical setting, the aforementioned lack of for-
mat standardization and metadata information is even
more acute in clinical applications than in research.
In conclusion, the current state of SV calling is akin to

that of SNV calling about 10 years ago: its value is unques-
tionable, but the technology and methods are still evolving
very rapidly, and the lack of standard protocols, bench-
marks, and reference databases means that SV calls re-
quire careful interpretation. Considering the intense
competition among long-read sequencing providers and
the need for SV characterization for clinical applications—
in particular for cancer diagnostic and treatment—it will
not be long before SV analysis becomes routine.
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4. Aggregated top 100 paths for Cortex SD: interactions
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6. Aggregated top 100 paths for Liver NSD: interactions
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8. Aggregated top 100 paths for Liver SD: interactions
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9. Aggregated top 100 paths for Liver SD: interactors
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