ASYMPTOTIC DOMINATION OF SAMPLE MAXIMA

ENKELEJD HASHORVA AND DIDIER RULLIÈRE

Abstract

For a given random sample from some underlying multivariate distribution F we consider the domination of the component-wise maxima by some independent random vector \boldsymbol{W} with distribution function G. We show that the probability that certain components of the sample maxima are dominated by the corresponding components of \boldsymbol{W} can be approximated under the assumptions that both F and G are in the max-domain of attraction of some max-stable distribution functions. We study further some basic probabilistic properties of the dominated components of sample maxima by \boldsymbol{W}.

Key Words: Max-stable distributions; records; domination of sample maxima; extremal dependence; de Haan representation; infargmax formula;

AMS Classification: Primary 60G15; secondary 60G70

1. Introduction

Let $\boldsymbol{Z}_{i}, i \leq n$ be independent d-dimensional random vectors with common continuous distribution function (df) F and denote by \boldsymbol{M}_{n} their component-wise maxima, i.e., $M_{n j}=\max _{1 \leq k \leq n} Z_{k j}, j \leq d$. If \boldsymbol{W} is another d-dimensional random vector with continuous df G being further independent of \boldsymbol{M}_{n} the approximation of the probability that at least one component of \boldsymbol{W} dominates the corresponding component of \boldsymbol{M}_{n} is of interest since it is related to the dependence of the components of \boldsymbol{M}_{n}, see e.g., [1]. In the special case that \boldsymbol{W} has a max-stable df with unit Fréchet marginal df's $\Phi(x)=e^{-1 / x}, x>0$ and \boldsymbol{M}_{n} has almost surely positive components, we simply have

$$
\mathbb{P}\left\{\exists i \leq d: W_{i}>M_{n i}\right\}=1-\mathbb{P}\left\{\forall i, 1 \leq i \leq d: M_{n i} \geq W_{i}\right\}=1-\mathbb{E}_{M_{n}}\left\{\exp \left(-\mathbb{E}_{\mathcal{W}}\left\{\max _{1 \leq i \leq d} \frac{\mathcal{W}_{i}}{M_{n i}}\right\}\right)\right\}
$$

where $\mathcal{W}=\left(\mathcal{W}_{1}, \ldots, \mathcal{W}_{d}\right)$ being independent of \boldsymbol{M}_{n} is a spectral random vector of G which exists in view of the well-known de Haan representation, see e.g., [2] and (2.1) below. Note that the assumption that W_{i} has unit Fréchet df implies that $\mathbb{E}\left\{\mathcal{W}_{i}\right\}=1$.
The above probability is referred to as the marginal domination probability of the sample maxima. If F is also a max-stable df with unit Fréchet marginals, then by definition M_{n} / n has for any $n>0$ df F and consequently

$$
\text { 1) } n\left[1-\mathbb{P}\left\{\forall i, 1 \leq i \leq d: M_{n i} \geq W_{i}\right\}\right]=n\left[1-\mathbb{E}_{\mathcal{Z}}\left\{\exp \left(-\frac{1}{n} \mathbb{E}_{\mathcal{W}}\left\{\max _{1 \leq i \leq d} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\}\right)\right\}\right] \sim \mathbb{E}\left\{\max _{1 \leq i \leq d} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\}
$$

where \sim means asymptotic equivalence as $n \rightarrow \infty$ and $\mathcal{Z}=\left(\mathcal{Z}_{1}, \ldots, \mathcal{Z}_{d}\right)$ has df F being further independent of \mathcal{W}. Under the above assumptions, we have

$$
\begin{equation*}
p_{n, T}(F, G)=\mathbb{P}\left\{\forall i, 1 \leq i \leq d: W_{i}>M_{n i}\right\} \sim \frac{1}{n} \mathbb{E}\left\{\min _{1 \leq i \leq d} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\}, \quad T=\{1, \ldots, d\} \tag{1.2}
\end{equation*}
$$

as $n \rightarrow \infty$, which follows by (1.1) and the inclusion-exclusion formula or directly by [1][Thm 2.5 and Prop 4.2].
Here $p_{n, T}(F, G)$ is referred to as the probability of the complete domination of sample maxima by \boldsymbol{W}. In the particular case that $F=G$ it is related to the probability of observing a multiple maxima or concurrence probability, see [3-9].
Between these two extreme cases, of interest is also to consider the partial domination of the sample maxima. Let therefore below $T \subset\{1, \ldots, d\}$ be non-empty and consider the probability that only the components of \boldsymbol{W} with indices in T dominate \boldsymbol{M}_{n}, i.e.,

$$
\mathbb{P}\left\{\forall i \in T: W_{i}>M_{n i}, \forall i \in \bar{T}: W_{i} \leq M_{n i}\right\}=: p_{n, T}(F, G),
$$

where $\bar{T}=\{1, \ldots, d\} \backslash T$. Note that $p_{n, T}(F, F)$ relates to the probability of observing a T-record, see [10]. By the continuity of F and G we simply have

$$
p_{n, T}(F, G)=\int_{\mathbb{R}^{d}} \mathbb{P}\left\{\forall i \in T: W_{i}>y_{i}, \forall i \in \bar{T}: W_{i} \leq y_{i}\right\} d F^{n}(\boldsymbol{y})
$$

which cannot be evaluated without knowledge of both F and G. In the particular case that F and G are max-stable df's as above, using (1.1) and the inclusion-exclusion formula we obtain

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n p_{n, T}(F, G)=\mathbb{E}\left\{\left(\min _{i \in T} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}-\max _{i \in \bar{T}} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right)_{+}\right\} \tag{1.3}
\end{equation*}
$$

When $F=G$ the above result is known from [10][Prop 2.2]. Moreover, in the special case that T consists of one element, then the right-hand side of (1.3) is equal to $\mathbb{P}\{C(T) \subset \bar{T}\}$, where $C(T)$ is the tessellation as determined in [11]. If we are not interested on a particular index set T, where the domination of sample maxima by \boldsymbol{W} occurs but simply on the number of components being dominated, i.e., on the random variable (rv)

$$
N_{n}=\sum_{i=1}^{d} \mathbb{1}_{\left\{W_{i}>M_{n i}\right\}}
$$

a question of interest is if N_{n} can be approximated as $n \rightarrow \infty$. We have that N_{n} has the same distribution as

$$
\sum_{i=1}^{d} \mathbb{1}_{\left\{W_{i} / n>\mathcal{Z}_{i}\right\}}
$$

provided that F is max-stable as above and \mathcal{Z} has df F being further independent of \boldsymbol{W}. Hence if W_{i} 's are unit Fréchet rv's, then

$$
\lim _{n \rightarrow+\infty} n \mathbb{E}\left\{N_{n}\right\}=\sum_{i=1}^{d} \lim _{n \rightarrow+\infty} n \mathbb{P}\left\{W_{i}>n \mathcal{Z}_{i}\right\}=\sum_{i=1}^{d} \lim _{n \rightarrow+\infty} n\left[1-e^{-\mathbb{E}\left\{\frac{1}{n \mathcal{Z}_{i}}\right\}}\right]=d
$$

Consequently, the expected number of components of sample maxima being dominated by the components of \boldsymbol{W} decreases as d / n when n goes to infinity. Moreover, the dependence of both \boldsymbol{W} and \boldsymbol{M}_{n} does not play any role. This is however in general not the case for the expectation of $f\left(N_{n}\right)$, where f is some real-valued function, since the dependence of both \boldsymbol{M}_{n} and \boldsymbol{W} influence the approximation as we shall show in the next section.

From our discussion above the assumptions that F and G are max-stable df's with unit Fréchet marginals lead to tractable asymptotic formulas for various quantities related to the domination of sample maxima \boldsymbol{M}_{n} by \boldsymbol{W}.

In view of [1] we know that both (1.1) and (1.2) are valid in the more general setup that both F and G are in the max-domain of attraction of some max-stable df's (see next section for details). We shall show in this paper that the same assumptions lead to tractable approximations of both $p_{n, T}(F, G)$ and $\mathbb{E}\left\{f\left(N_{n}\right)\right\}$ as $n \rightarrow \infty$.

Brief organisation of the paper: Section 2 presents the main results concerning the approximations of the marginal domination probabilities and the expectation of $f\left(N_{n}\right)$. Section 3 is dedicated to properties of $\mathcal{W} / \mathcal{Z}$ which we call the domination spectral vector. All the proofs are relegated to Section 4.

2. Main Results

We shall recall first some basic properties of max-stable df's, see [2, 12-14] for details. A d.dimensional df \mathcal{G} is max-stable with unit Fréchet marginals if

$$
\mathcal{G}^{t}\left(t x_{1}, \ldots, t x_{d}\right)=\mathcal{G}\left(x_{1}, \ldots, x_{d}\right)
$$

for any $t>0, x_{i} \in(0, \infty), 1 \leq i \leq d$. In the light of De Haan representation

$$
\begin{equation*}
\mathcal{G}(\boldsymbol{x})=\exp \left(-\mathbb{E}\left\{\max _{1 \leq j \leq d} \mathcal{W}_{j} / x_{j}\right\}\right), \quad \boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \in(0, \infty)^{d} \tag{2.1}
\end{equation*}
$$

where \mathcal{W}_{j} 's are non-negative rv's with $\mathbb{E}\left\{\mathcal{W}_{j}\right\}=1, j \leq d$ and $\mathcal{W}=\left(\mathcal{W}_{1}, \ldots, \mathcal{W}_{d}\right)$ is a spectral vector for \mathcal{G} (which is not unique).

In view of multivariate extreme value theory, see e.g., [14] d-dimensional max-stable df's \mathcal{F} are limiting df's of the component-wise maxima of d-dimensional iid random vectors with some $\mathrm{df} F$. In that case, F is said to be in the max-domain of attraction (MDA) of \mathcal{F}, abbreviated $F \in M D A(\mathcal{F})$. For simplicity we shall assume throughout in the following that F has marginal df's F_{i} 's such that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} F_{i}^{n}(n x)=\Phi(x), \quad x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

for all $i \leq d$, where we set $\Phi(x)=0$ if $x \leq 0$. We have thus that $F \in M D A(\mathcal{F})$ if further

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \sup _{x_{i} \in \mathbb{R}, 1 \leq i \leq d}\left|F^{n}\left(n x_{1}, \ldots, n x_{d}\right)-\mathcal{F}\left(x_{1}, \ldots, x_{d}\right)\right|=0 \tag{2.3}
\end{equation*}
$$

In the following \mathcal{F} is a d-dimensional max-stable df of some random vector \mathcal{Z} with unit Fréchet marginals and \mathcal{G} is another max-stable df with unit Fréchet marginals and spectral random vector \mathcal{W} independent of \mathcal{Z}.

Below we extend [15][Prop 1] which considers the case $F=G$.
Proposition 2.1. If F and G have continuous marginal distributions satisfying (2.2) and $F \in M D A(\mathcal{F}), G \in$ $M D A(\mathcal{G})$, then for any non-empty $T \subset\{1, \ldots, d\}$ we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n p_{n, T}(F, G)=\mathbb{E}\left\{\left(\min _{i \in T} \mathcal{W}_{i} / \mathcal{Z}_{i}-\max _{i \in \bar{T}} \mathcal{W}_{i} / \mathcal{Z}_{i}\right)_{+}\right\}=: \lambda_{T}(\mathcal{F}, \mathcal{G}) \tag{2.4}
\end{equation*}
$$

Remark 2.2. Define for a non-emtpy index set T the rv $K_{n}=\sum_{j=1}^{n} \mathbb{1}_{\left\{\forall i \in T: W_{i}>M_{j i}, \forall i \in \bar{T}: W_{i} \leq M_{j i}\right\}}$. Under the assumptions of Proposition 2.1 we have (see also [16][Corr 3.2]) that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\mathbb{E}\left\{K_{n}\right\}}{\ln n}=\lambda_{T}(\mathcal{F}, \mathcal{G}) \tag{2.5}
\end{equation*}
$$

Example $2.3\left(\mathcal{F}\right.$ comonotonic and \mathcal{G} a product df). Suppose that \mathcal{F} is comonotonic, i.e., $\mathcal{Z}_{1}=\cdots=\mathcal{Z}_{d}$ almost surely and let \mathcal{G} be a product df with unit Fréchet marginals df's and let N be rv on $\{1, \ldots, d\}$ with $\mathbb{P}\{N=i\}=$ $1 / d, i \leq d$. A spectral vector \mathcal{W} for \mathcal{G} can be defined as follows

$$
\left(\mathcal{W}_{1}, \ldots, \mathcal{W}_{d}\right)=\left(d \mathbb{1}_{\{N=1\}}, \ldots, d \mathbb{1}_{\{N=d\}}\right)
$$

Indeed $\mathbb{E}\left\{\mathcal{W}_{k}\right\}=d \mathbb{P}\{N=k\}=1$ for any $k \leq d$ and

$$
\mathbb{E}\left\{\max _{1 \leq i \leq d} \mathcal{W}_{i} / x_{i}\right\}=\sum_{k=1}^{d} \mathbb{E}\left\{\max _{1 \leq i \leq d} \mathcal{W}_{i} / x_{i} \mathbb{1}_{\{N=k\}}\right\}=\sum_{k=1}^{d} \mathbb{E}\left\{\mathcal{W}_{k} / x_{k} \mathbb{1}_{\{N=k\}}\right\}=d \sum_{k=1}^{d} \mathbb{E}\left\{\mathbb{1}_{\{N=k\}} / x_{k}\right\}=\sum_{k=1}^{d} 1 / x_{k}
$$

for any x_{1}, \ldots, x_{d} positive. In particular, for a non-empty index set $K \subset\{1, \ldots, d\}$ with m elements we have

$$
\mathbb{E}\left\{\max _{i \in K} \mathcal{W}_{i}\right\}=d \sum_{k \in K} \mathbb{E}\left\{\mathbb{1}_{\{N=k\}}\right\}=m
$$

Consequently, using further that (see the proof of Proposition 2.1)

$$
\lambda_{T}(\mathcal{F}, \mathcal{G})=\sum_{j=0}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j} \mathbb{E}\left\{\max _{i \in J \cup \bar{T}} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\}
$$

we obtain

$$
\lambda_{T}(\mathcal{F}, \mathcal{G})=\sum_{j=0}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j} \mathbb{E}\left\{\max _{i \in J \cup \bar{T}} \mathcal{W}_{i}\right\}=\sum_{j=0}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j}(j+d-k)
$$

If $k=d$, then from above

$$
\begin{equation*}
\lambda_{T}(\mathcal{F}, \mathcal{G})=\sum_{j=0}^{d}(-1)^{j+1} \sum_{J \subset T:|J|=j} j=d(1-1)^{d-1}=0 \tag{2.6}
\end{equation*}
$$

A direct probabilistic proof of (2.6) follows by the properties of \mathcal{W}, namely when $k=d \geq 2$

$$
\left.\lambda_{T}(\mathcal{F}, \mathcal{G})=\mathbb{E}\left\{\min _{1 \leq i \leq d} \mathcal{W}_{i} / \mathcal{Z}_{i}\right\}=\mathbb{E}\left\{\min _{1 \leq i \leq d} \mathcal{W}_{i}\right\}=d \mathbb{E}\left\{\min _{1 \leq i \leq d} \mathbb{1}_{\{N=i\}}\right)\right\}=0
$$

Now, let us investigate the number N_{n} of dominations defined as in Introduction by $\sum_{i=1}^{d} \mathbb{1}_{\left\{W_{i} / n>Z_{i}\right\}}$.
For a given function $f:\{0, \ldots, d\} \rightarrow \mathbb{R}$ we shall be concerned with the behaviour of

$$
\mathbb{E}\left\{f\left(N_{n}\right)\right\}=\sum_{k=0}^{d} f(k) \mathbb{P}\left\{N_{n}=k\right\}
$$

when n tends to $+\infty$. Throughout in the sequel we set

$$
\mathcal{D}=\{1, \ldots, d\}
$$

In Proposition 2.4 below, we first express this expectation as a function of minima or maxima of $\mathcal{W}_{i} / \mathcal{Z}_{i}$'s.
Proposition 2.4. If F and G are as in Proposition 2.1, then we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n \mathbb{E}\left\{f\left(N_{n}\right)\right\}-n f(0)=\sum_{k=1}^{d} \Delta^{k} f(0) \sum_{K \subset \mathcal{D},|K|=k} \mathbb{E}\left\{\min _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}\right\} \tag{2.7}
\end{equation*}
$$

or alternatively

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n \mathbb{E}\left\{f\left(N_{n}\right)\right\}-n f(0)=\sum_{k=1}^{d}(-1)^{k+1} \Delta^{k} f(d-k) \sum_{K \subset \mathcal{D},|K|=k} \mathbb{E}\left\{\max _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}\right\} \tag{2.8}
\end{equation*}
$$

where Δ is the difference operator, $\Delta f(x)=f(x+1)-f(x)$.

Proposition 2.5. If F and G are as in Proposition 2.1, then we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} n \mathbb{E}\left\{f\left(N_{n}\right)\right\}-n f(0)=\sum_{k=1}^{d} g(k) \mathbb{E}\left\{(\mathcal{W} / \mathcal{Z})_{(k)}\right\}=\sum_{k=0}^{d} f(k)\left[(\mathcal{W} / \mathcal{Z})_{(d-k+1)}-(\mathcal{W} / \mathcal{Z})_{(d-k)}\right], \tag{2.9}
\end{equation*}
$$

where $(\mathcal{W} / \mathcal{Z})_{(1)} \leq \ldots \leq(\mathcal{W} / \mathcal{Z})_{(d)}$ are the order statistics of $\mathcal{W}_{i} / \mathcal{Z}_{i}, i \leq d$ and $g(k)=f(d-k+1)-f(d-k)$, with the convention $(\mathcal{W} / \mathcal{Z})_{(0)}=(\mathcal{W} / \mathcal{Z})_{(d+1)}=0$.

Remark 2.6 (retrieving simple cases). For particular cases of f we have:

- From Proposition 2.4, setting $f(x)=\mathbb{1}_{\{x=d\}}$, one can check that $\Delta^{k} f(0)=0$ when $k<d$ and $\Delta^{d} f(0)=1$, so that Equation (2.7) implies (1.2). Alternatively, by Proposition 2.5 since $g(1)=f(d)-f(d-1)=1$ and $g(k)=f(d-k+1)-f(d-k)=0-0=0$ if $k>1$ we have that $\lim _{n \rightarrow+\infty} n \mathbb{E}\left\{f\left(N_{n}\right)\right\}-n f(0)=$ $\mathbb{E}\left\{(\mathcal{W} / \mathcal{Z})_{(1)}\right\}$.
- In view of Proposition 2.4, setting $f(x)=\mathbb{1}_{\{x \geq 1\}}, \Delta^{k} f(d-k)=\sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i} f(d-k+i)$. Thus $\Delta^{k} f(d-k)=0$ if $k<d$. If $k=d$, then

$$
\Delta^{k} f(d-k)=\Delta^{d} f(0)=(1-1)^{d}-(-1)^{d}=(-1)^{d+1}
$$

and Equation (2.8) implies (1.1). Alternatively, by Proposition 2.5 since if $k<d, g(k)=f(d-k+1)-$ $f(d-k)=1-1=0$ and $g(d)=f(1)-f(0)=1$ we obtain $\lim _{n \rightarrow+\infty} n \mathbb{E}\left\{f\left(N_{n}\right)\right\}-n f(0)=\mathbb{E}\left\{(\mathcal{W} / \mathcal{Z})_{(d)}\right\}$.

- By Proposition 2.5, setting $f(x)=x$, we easily retrieve $\left.\lim _{n \rightarrow+\infty} n \mathbb{E}\left\{N_{n}\right)\right\}=\sum_{k=1}^{d} \mathbb{E}\left\{(\mathcal{W} / \mathcal{Z})_{(k)}\right\}=d$, as seen previously.

Remark 2.7 (Interpretation of $\left.(\mathcal{W} / \mathcal{Z})_{(j)}\right)$. Let $f(k)=\mathbb{1}_{\{k \geq d-j+1\}}$, for any $j, k \in \mathcal{D}$. Then $g(k)=f(d-k+1)-$ $f(d-k)=\mathbb{1}_{\{k=j\}}$. In this case, $f(0)=0$ and $\mathbb{E}\left\{f\left(N_{n}\right)\right\}=\mathbb{P}\{N \geq d-j+1\}$, thus

$$
\mathbb{E}\left\{(\mathcal{W} / \mathcal{Z})_{(j)}\right\}=\lim _{n \rightarrow+\infty} n \mathbb{P}\left\{N_{n} \geq d-j+1\right\}
$$

3. Domination spectrum

In the previous results, we have considered a particular setting, and we have expressed the domination probability and some expectations relying on number of dominations (see Section 2). We have seen that all these results were expressed as a function of

$$
\mathcal{W} / \mathcal{Z}=\left(\frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right)_{i \in \mathcal{D}}
$$

By the definition $\mathcal{W}_{i} / \mathcal{Z}_{i}$'s are nonnegative, and are such that, by independence, $\mathbb{E}\left\{\mathcal{W}_{i} / \mathcal{Z}_{i}\right\}=\mathbb{E}\left\{\mathcal{W}_{i}\right\} \mathbb{E}\left\{\frac{1}{\mathcal{Z}_{i}}\right\}=1$. Thus in view of the De Haan representation $\mathcal{W} / \mathcal{Z}$ can be viewed as the spectral random vector of some max-stable d-dimensional distribution. Since $\mathcal{W} / \mathcal{Z}$ is related to the domination of \boldsymbol{M}_{n} by \boldsymbol{W}, we will refer to it by the term domination spectrum. In this section we shall explore some basic properties of the domination spectrum.
Next, assume that \mathcal{W} has a copula $C_{\mathcal{W}}$ and suppose further that \mathcal{Z} has a copula $C_{\mathcal{Z}}$. Note in passing that the latter copula is unique since the marginals of \mathcal{Z} have continuous df.

We shall first study the link between the diagonal sections of both copulas $C_{\mathcal{W}}$ and $C_{\mathcal{Z}}$, defined for all $u \in[0,1]$ by

$$
\delta_{\mathcal{W}}(u)=C_{\mathcal{W}}(u, \ldots, u) \quad \text { and } \quad \delta_{\mathcal{Z}}(u)=C_{\mathcal{Z}}(u, \ldots, u)
$$

We recall that the diagonal section characterizes uniquely many Archimedean copulas (under a condition that is called Frank's condition, see e.g., [17]), some non-parametric estimators of the generator of an Archimedean copulas directly rely on this diagonal section. We consider here the case where the df of \mathcal{Z} has spectral random vector \mathcal{W}. Notice that the upper tail dependence coefficients can be deduced from the regular variation properties of $\delta_{\mathcal{Z}}$ and $\delta_{\mathcal{W}}$, which is straightforward for $\delta_{\mathcal{Z}}$ in the following result.

Proposition 3.1. Consider a d-dimensional random vector \mathcal{Z} having max-stable df with Fréchet unit marginals and with copula $C_{\mathcal{Z}}$. If the random vector \mathcal{Z} has df $H(\boldsymbol{y})=\exp \left(-\mathbb{E}\left\{\max _{1 \leq j \leq d} \frac{\mathcal{W}_{j}}{y_{j}}\right\}\right)$, where all \mathcal{W}_{j} are nonnegative rv's with mean 1, then

$$
\delta_{\mathcal{Z}}(u)=u^{r \mathcal{W}} \quad \text { with } \quad r_{\mathcal{W}}=\mathbb{E}\left\{\max _{j \in \mathcal{D}} \mathcal{W}_{j}\right\}
$$

In particular, when $r_{\mathcal{W}}>1$, this diagonal section $\delta_{\mathcal{Z}}(u)$ is the one of a Gumbel copula with parameter

$$
\begin{equation*}
\theta=\frac{\ln d}{\ln r_{\mathcal{W}}} \tag{3.1}
\end{equation*}
$$

Furthermore, if the components of \mathcal{W} are identically distributed and if $F_{\mathcal{W}_{1}}$ is invertible, then we have

$$
r_{\mathcal{W}}=\int_{0}^{1} F_{\mathcal{W}_{1}}^{-1}(s) d \delta_{\mathcal{W}}(s)
$$

Example 3.2 (From independence to comonotonicity). Let $\mathcal{W}_{j}=B d \mathbb{1}_{\{I=j\}}+(1-B) \delta_{1}$, for all $j \in \mathcal{D}$, where I is a uniformely distributed rv's on \mathcal{D}, B is a Bernoulli rv with $\mathbb{E}\{B\}=\alpha \in(0,1]$ and δ_{1} is a Dirac mass at 1 , all these rv's being mutually independent. In this case, $r_{\mathcal{W}}=\mathbb{E}\left\{\max _{j \in \mathcal{D}} \mathcal{W}_{j}\right\}$ in Proposition 3.1 becomes $r_{\mathcal{W}}=\alpha d+1-\alpha$. As a consequence, $\delta_{\mathcal{Z}}$ is the diagonal of a Gumbel copula which goes from the independence $(\alpha=1)$ to the comonotonicity ($\alpha \rightarrow 0$), with parameter

$$
\theta=\frac{\ln d}{\ln (1+\alpha(d-1))}
$$

Furthermore, we have when all $t_{j}>0$,

$$
\mathbb{E}\left\{\max _{j \in K} \frac{\mathcal{W}_{j}}{t_{j}}\right\}=\alpha \sum_{j \in K} \frac{1}{t_{j}}+(1-\alpha) \frac{1}{\min _{j \in K} t_{j}}
$$

Let $t>0$ and suppose that K has cardinal $|K|>1$. By conditioning over B, we get

$$
\mathbb{P}\left\{\forall i \in K, \mathcal{W}_{i} / \mathcal{Z}_{i}>t\right\}=(1-\alpha) \mathbb{P}\left\{\forall i \in K, \mathcal{Z}_{i}<1 / t \mid B=0\right\}
$$

since $\mathbb{P}\left\{\forall i \in K, \mathcal{W}_{i} / \mathcal{Z}_{i}>t \mid B=1\right\}=0$ when $|K|>1$, because in this case at least one component $\mathcal{W}_{i}, i \in K$, is zero when $B=1$. Recall that \mathcal{Z} is independent from \mathcal{W} and B, thus for $t>0$ and $|K|>1$

$$
\mathbb{P}\left\{\min _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}>t\right\}=(1-\alpha) \exp \left(\mathbb{E}\left\{-\max _{j \in K} \frac{\mathcal{W}_{j}}{(1 / t)}\right\}\right)=(1-\alpha) \exp (-t(1+\alpha|K|-\alpha))
$$

When $|K|=1$, we show similarly that $\mathbb{P}\left\{\min _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}>t\right\}=(1-\alpha) \exp (-t)+\alpha \frac{1}{d} \exp \left(-\frac{t}{d}\right)$. In both cases $|K|=1$ and $|K|>1$, the survival function $\mathbb{P}\left\{\min _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}>t\right\}$ is a linear combination of exponential functions, and thus can be shown to be a discrete mixture of exponential distributions:

$$
\begin{cases}\min _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i} & \stackrel{d}{=}(1-B) \epsilon_{1+\alpha(|K|-1)}+\mathbb{1}_{\{|K|=1\}} B \mathbb{1}_{\{I=1\}} \epsilon_{1 / d} \\ \mathbb{E}\left\{\min _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}\right\}= & =\frac{1-\alpha}{1+\alpha(|K|-1)}+\mathbb{1}_{\{|K|=1\}} \alpha\end{cases}
$$

where B is a Bernoulli r.v. of parameter $\alpha, \epsilon_{1+\alpha(|K|-1)}$ and $\epsilon_{1 / d}$ are exponentially distributed r.v. with respective parameters $1+\alpha(|K|-1)$ and $1 / d$, I an uniformly distributed r.v. over \mathcal{D}, all being mutually independent (for simplicity, we denote $\mathbb{1}_{\{|K|=1\}}$ the variable whose value is 1 if $|K|=1$ or 0 otherwise). Then all results about the limit law of N_{n} follow immediately, using Equation (2.7) in Proposition 2.4. Notice that one could also determine $r_{(\mathcal{W} / \mathcal{Z})}$ from this, and by application of Proposition 3.1, assess the dependence structure of the random vector whose spectrum is $(\mathcal{W} / \mathcal{Z})$.

4. Proofs

We first give hereafter some combinatorial results that show how quantities depending on a number of events can be related to quantities involving only intersections or unions of those events. This generalizes inclusion-exclusion formulas that will correspond to very specific functions f and g.

Lemma 4.1 (Inclusion-exclusion relations). Let $\mathcal{D}=\{1, \ldots, d\}$ and let $B_{i}, i \in \mathcal{D}$ be events. Consider the number of realized events $N=\sum_{i \in \mathcal{D}} \mathbb{1}_{\left\{B_{i}\right\}}$. Then for any function $f:\{0, \ldots, d\} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\sum_{k=0}^{d} f(k) \mathbb{P}\{N=k\}=f(0)+\sum_{j=1}^{d} S_{j} \Delta^{j} f(0)=f(0)+\sum_{j=1}^{d} \bar{S}_{j}(-1)^{j+1} \Delta^{j} f(d-j) \tag{4.1}
\end{equation*}
$$

and similarly for any function $g: \mathcal{D} \rightarrow \mathbb{R}$

$$
\begin{equation*}
\sum_{k=0}^{d} g(k) \mathbb{P}\{N \geq k\}=\sum_{j=1}^{d} S_{j} \Delta^{j-1} g(1)=\sum_{j=1}^{d} \bar{S}_{j}(-1)^{j+1} \Delta^{j-1} g(d-j+1), \tag{4.2}
\end{equation*}
$$

where $S_{j}=\sum_{J \subset \mathcal{D},|J|=j} \mathbb{P}\left\{\bigcap_{i \in J} B_{i}\right\}$ and $\bar{S}_{j}=\sum_{J \subset \mathcal{D},|J|=j} \mathbb{P}\left\{\bigcup_{i \in J} B_{i}\right\}$.
Proof of Lemma 4.1. The first equality in Equation (4.1) is known in actuarial sciences under the name of Schuette-Nesbitt formula, see [18, section 8.5]. This formula does not require any independence assumption, it is a simple development of $f(N)=\left(I+\mathbb{1}_{\left\{B_{1}\right\}} \Delta\right) \cdots\left(I+\mathbb{1}_{\left\{B_{d}\right\}} \Delta\right) f(0)$ where I and Δ are the identity and the difference operators respectively. To prove the second equality in Equation (4.1), let us denote $p_{J}=\mathbb{P}\left\{\cap_{i \in J} B_{i}\right\}$ and $\bar{p}_{J}=\mathbb{P}\left\{\cup_{i \in J} B_{i}\right\}$. By inclusion-exclusion principle, we get

$$
\begin{equation*}
S_{k}=\sum_{K \subset \mathcal{D},|K|=k} \sum_{j=1}^{k}(-1)^{j+1} \sum_{J \subset K,|J|=j} \bar{p}_{J}=\sum_{j=1}^{k}(-1)^{j+1}\binom{d-j}{k-j} \bar{S}_{j} . \tag{4.3}
\end{equation*}
$$

Now using Equation (4.3),

$$
\sum_{k=1}^{d} \Delta^{k} f(0) S_{k}=\sum_{k=1}^{d} \Delta^{k} f(0) \sum_{j=1}^{k}(-1)^{j+1}\binom{d-j}{k-j} \bar{S}_{j}=\sum_{j=1}^{d} \bar{S}_{j}(-1)^{j+1} \Delta^{j}(I+\Delta)^{d-j} f(0),
$$

and since $(I+\Delta)^{d-j} f(0)=f(d-j)$, the second equality in Equation (4.1) holds. Similarly, the first equality in Equation (4.2) is a known Schuette-Nesbitt formula, see [18, Section 8.5], and one can retrieve the second equality by using Equation (4.3). Alternatively, one can also deduce (4.2) from (4.1) by setting $f(0)=0$ and $g(k)=\Delta f(k-1)$ for all $k \in \mathcal{D}$. The formulas in Lemma 4.1 generalize a very old formula of Waring which give $\mathbb{P}\{N=k\}, k \in \mathcal{D}$. They also generalize the classical inclusion exclusion formula which can be retrieved by setting in (4.1) $f(k)=1$ if $k \geq 1$, and $f(k)=0$ otherwise.

Proof of Proposition 2.1. By inclusion-exclusion formula for a given index set $T \subset\{1, \ldots, d\}$ with $k=|T|$ elements we have

$$
\begin{aligned}
\mathbb{P}\left\{\forall i \in \bar{T}: W_{i} \leq y_{i}, \exists i \in T: W_{i} \leq y_{i}\right\} & =\sum_{j=1}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j} \mathbb{P}\left\{\forall i \in(J \cup \bar{T}): W_{i} \leq \mathcal{W}_{i}\right\} \\
& =\sum_{j=1}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j} G_{J \cup \bar{T}}(\boldsymbol{y}),
\end{aligned}
$$

where $G_{L}(\boldsymbol{y})=\mathbb{P}\left\{\forall i \in L: W_{i} \leq y_{i}\right\}$ is the L-th marginal df of G. In particular, letting $\mathcal{W}_{i} \rightarrow \infty, i \leq d$ yields

$$
1=\sum_{j=1}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j} 1 .
$$

Consequently, for all $n>1$

$$
\begin{aligned}
p_{n, T}(F, G) & =\int_{\mathbb{R}^{d}} \mathbb{P}\left\{\forall i \in T: W_{i} \geq y_{i}, \forall i \in \bar{T}: W_{i}<y_{i}\right\} d F^{n}(\boldsymbol{y}) \\
& =\int_{\mathbb{R}^{d}} \mathbb{P}\left\{\forall i \in \bar{T}: W_{i} \leq y_{i}\right\} d F^{n}(\boldsymbol{y})-\int_{\mathbb{R}^{d}} \mathbb{P}\left\{\forall i \in \bar{T}: W_{i} \leq y_{i}, \exists i \in T: W_{i} \leq y_{i}\right\} d F^{n}(\boldsymbol{y}) \\
& =1-\int_{\mathbb{R}^{d}} \sum_{j=1}^{k}(-1)^{j+1} \sum_{J \subset K:|J|=j} G_{J \cup \bar{T}}(\boldsymbol{y}) d F^{n}(\boldsymbol{y})-\left(1-\int_{\mathbb{R}^{d}} G_{\bar{T}}(\boldsymbol{y}) d F^{n}(\boldsymbol{y})\right) \\
& =\sum_{j=0}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=i} \int_{\mathbb{R}^{d}}\left[1-G_{J \cup \bar{T}}(\boldsymbol{y})\right] d F^{n}(\boldsymbol{y}) \\
& =\sum_{j=0}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j} \int_{\mathbb{R}^{m+i}}\left[1-G_{J \cup \bar{T}}(\boldsymbol{y})\right] d F_{J \cup \bar{T}}^{n}(\boldsymbol{y})
\end{aligned}
$$

In view of [1][Prop 4.2] we obtain

$$
\lim _{n \rightarrow+\infty} n \int_{\mathbb{R}^{m+|J|}}\left[1-G_{J \cup \bar{T}}(\boldsymbol{y})\right] d F_{J \cup \bar{T}}^{n}(\boldsymbol{y})=-\int_{\mathbb{R}^{m+|J|}} \ln Q_{J \cup \bar{T}}(\boldsymbol{y}) d H_{J \cup \bar{T}}(\boldsymbol{y})
$$

Further by [1][Thm 2.5 and Prop 4.2]

$$
-\int_{\mathbb{R}^{m+|J|}} \ln Q_{J \cup \bar{T}}(\boldsymbol{y}) d H_{J \cup \bar{T}}(\boldsymbol{y})=\mathbb{E}\left\{\max _{i \in J \cup \bar{T}} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\}
$$

Consequently, we have

$$
\lim _{n \rightarrow+\infty} n p_{n, T}(F, G)=\sum_{j=0}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=j} \mathbb{E}\left\{\max _{i \in J \cup \bar{T}} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\}
$$

In the light of [10][Lem 1] for given constants c_{1}, \ldots, c_{d}

$$
\sum_{j=0}^{k}(-1)^{j+1} \sum_{J \subset T:|J|=i} \max _{i \in J \cup \bar{T}} c_{i}=\max \left(\max _{i \in \bar{T}} c_{i}, \min _{i \in T} c_{i}\right)-\max _{i \in \bar{T}} c_{i}=\left(\min _{i \in T} c_{i}-\max _{i \in \bar{T}} c_{i}\right)_{+}
$$

implying the claim.
Alternatively, we have using again inclusion-exclusion formula

$$
\begin{aligned}
p_{n, T}(F, G) & =\int_{\mathbb{R}^{d}} \mathbb{P}\left\{w_{i} \geq M_{i}, i \in T, \quad w_{i}<M_{i}, i \in \bar{T}\right\} d G(\boldsymbol{w}) \\
& =\int_{\mathbb{R}^{d}} \mathbb{P}\left\{M_{i} \leq w_{i}, i \in T\right\} d G(\boldsymbol{w})-\int_{\mathbb{R}^{d}} \mathbb{P}\left\{M_{i} \leq w_{i}, i \in T, \exists i \in \bar{T}: M_{i} \leq w_{i}\right\} d G(\boldsymbol{w})
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}^{d}} F_{T}^{n}(\boldsymbol{w}) d G_{T}(\boldsymbol{w})-\int_{\mathbb{R}^{d}} \sum_{j=1}^{m}(-1)^{j+1} \sum_{J \subset \bar{T}:|J|=j} F_{J \cup T}^{n}(\boldsymbol{w}) d G(\boldsymbol{w}) \\
& =\sum_{j=0}^{d-k}(-1)^{j} \sum_{J \subset \bar{T}:|J|=j} \int_{\mathbb{R}^{k+j}} F_{J \cup T}^{n}(\boldsymbol{w}) d G_{J \cup T}(\boldsymbol{w}) .
\end{aligned}
$$

Applying [1][Thm 2.5 and Prop 4.2] we obtain

$$
\lim _{n \rightarrow+\infty} n \int_{\mathbb{R}^{k+i}} F_{J \cup T}^{n}(\boldsymbol{y}) d G_{J \cup T}(\boldsymbol{y})=\mathbb{E}\left\{\min _{i \in J \cup T} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\}
$$

and thus

$$
\begin{equation*}
\mu_{T}(H, Q)=\sum_{j=0}^{d-k}(-1)^{i} \sum_{J \subset \bar{T}:|J|=j} \mathbb{E}\left\{\min _{i \in J \cup T} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right\} . \tag{4.4}
\end{equation*}
$$

By [10][Lem 1] we obtain further

$$
\mu_{T}(H, Q)=\mathbb{E}\left\{\min _{i \in T} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}-\min \left(\min _{i \in T} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}, \max _{i \in T} \frac{\mathcal{W}_{i}}{\mathcal{Z}_{i}}\right)\right\}
$$

hence the proof is complete.
Proof of Proposition 2.4. In view of the first equality in Equation (4.1)

$$
\mathbb{E}\left\{f\left(N_{n}\right)\right\}=f(0)+\sum_{k=1}^{d} \Delta^{k} f(0) \sum_{K \subset \mathcal{D},|K|=k} \mathbb{P}\left\{\forall i \in K, W_{i} \geq M_{n i}\right\} .
$$

Alternatively, using the second equality in Equation (4.1)

$$
\mathbb{E}\left\{f\left(N_{n}\right)\right\}=f(0)+\sum_{k=1}^{d}(-1)^{k+1} \Delta^{k} f(d-k) \sum_{K \subset \mathcal{D},|K|=k} \mathbb{P}\left\{\exists i \in K, W_{i} \geq M_{n i}\right\} .
$$

Thus using (1.1) establishes the claim.
Proof of Proposition 2.5. Let us consider $\mathbb{P}\left\{(\mathcal{W} / \mathcal{Z})_{(k)} \leq x\right\}=\mathbb{P}\left\{\right.$ at least k events $\left[\mathcal{W}_{i} / \mathcal{Z}_{i} \leq x\right]$ are realized, $\left.i \in \mathcal{D}\right\}$. Using the first equality in Equation (4.2), for any function $g:\{1, \ldots, d\} \rightarrow \mathbb{R}$ we obtain

$$
\sum_{k=1}^{d} g(k) \mathbb{P}\left\{(\mathcal{W} / \mathcal{Z})_{(k)} \leq x\right\}=\sum_{k=1}^{d} \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D},|K|=k} \mathbb{P}\left\{\forall i \in K, \mathcal{W}_{i} / \mathcal{Z}_{i} \leq x\right\}
$$

and hence letting $x \rightarrow \infty$ we have

$$
\sum_{k=1}^{d} g(k)=\sum_{k=1}^{d} \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D},|K|=k} 1
$$

Consequently, for any real x

$$
\sum_{k=1}^{d} g(k) \mathbb{P}\left\{(\mathcal{W} / \mathcal{Z})_{(k)}>x\right\}=\sum_{k=1}^{d} \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D},|K|=k} \mathbb{P}\left\{\max _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}>x\right\} .
$$

By the assumptions

$$
\mathbb{E}\left\{\max _{1 \leq i \leq d} \mathcal{W}_{i} / \mathcal{Z}_{i}\right\} \leq \sum_{i=1}^{d} \mathbb{E}\left\{\mathcal{W}_{i} / \mathcal{Z}_{i}\right\}=d
$$

hence since $\mathcal{W}_{i} / \mathcal{Z}_{i}$'s are non-negative it follows that

$$
\sum_{k=1}^{d} g(k) \mathbb{E}\left\{(\mathcal{W} / \mathcal{Z})_{(k)}\right\}=\sum_{k=1}^{d} \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D},|K|=k} \mathbb{E}\left\{\max _{i \in K} \mathcal{W}_{i} / \mathcal{Z}_{i}\right\}
$$

Finally, in order to retrieve Equation (2.8), we must have for any $k \in\{1, \ldots, d\}$

$$
\Delta^{k-1} g(1)=(-1)^{k+1} \Delta^{k} f(d-k)
$$

Now, assuming that for all $k \in\{1, \ldots, d\}, g(k)=f(d-k+1)-f(d-k)=\Delta f(d-k)$, then denoting by $T=\Delta+I$ the translation operator

$$
\Delta^{k-1} g(1)=\sum_{i=0}^{k-1}\binom{k-1}{i}(-1)^{k-1-i} T^{-i} \Delta f(d-1)
$$

This implies

$$
\Delta^{k-1} g(1)=\left(-I+T^{-1}\right)^{k-1} \Delta f(d-1)=(-1)^{k-1}\left(T^{-1}(T-I)\right)^{k-1} \Delta f(d-1)
$$

Thus, for all $k \in\{1, \ldots, d\}$ we have

$$
\Delta^{k-1} g(1)=(-1)^{k+1} \Delta^{k} f(d-k)
$$

and hence the claim follows.

Proof of Proposition 3.1. For the first equality, since \boldsymbol{Z} has unit Fréchet marginals for any $u>0$ we have

$$
C_{\boldsymbol{Z}}(u, \ldots, u)=H\left(\frac{1}{-\ln u}, \ldots, \frac{1}{-\ln u}\right)=\exp \left(\mathbb{E}\left\{\max _{1 \leq j \leq d} \ln (u) \mathcal{W}_{j}\right\}\right)=u^{\mathbb{E}\left\{\max _{j \in \mathcal{D}} \mathcal{W}_{j}\right\}}
$$

and thus $\delta_{\boldsymbol{Z}}(u)=u^{r_{\boldsymbol{Y}}}$. Since the diagonal section of a d-dimensional Archimedean copula with parameter θ is $u^{d^{1 / \theta}}$ we obtain the formula for θ. This is consistent with the fact that the Gumbel copula is an Extreme Value Copula (the only Archimedean one, see [19]).
For the last equality, setting $\mathcal{W}_{j}=F_{\mathcal{W}_{1}}^{-1}\left(U_{j}\right)$, we get $\max _{j \in \mathcal{D}} \mathcal{W}_{j}=\max _{j \in \mathcal{D}} F_{\mathcal{W}_{1}}^{-1}\left(U_{j}\right)$. Assuming further that all \mathcal{W}_{i} 's have a common df $F_{\mathcal{W}_{1}}$, then $\max _{j \in \mathcal{D}} F_{\mathcal{W}_{1}}^{-1}\left(U_{j}\right)=F_{\mathcal{W}_{1}}^{-1}\left(\max _{j \in \mathcal{D}}\left(U_{j}\right)\right.$. Using further

$$
\mathbb{P}\left\{\max _{j \in \mathcal{D}} U_{j} \leq u\right\}=\mathbb{P}\left\{U_{1} \leq u, \ldots U_{d} \leq u\right\}=C_{\boldsymbol{Y}}(u, \ldots, u)=\delta_{\boldsymbol{Y}}(u)
$$

we get $\mathbb{E}\left\{\max _{j \in \mathcal{D}} \mathcal{W}_{j}\right\}=\int_{0}^{1} F_{\mathcal{W}_{1}}^{-1}(s) d \delta_{\boldsymbol{Y}}(s)$.
Acknowledgments: EH is partially supported by SNSF Grant 200021-175752/1 and PSG 1250 grant. We also thank the anonymous reviewer for very helpful comments and suggestions.

References

[1] E. Hashorva, "Domination of sample maxima and related extremal dependence measures," Depend. Model., vol. 6, no. 1, pp. 88-101, 2018.
[2] L. de Haan, "A spectral representation for max-stable processes," Ann. Probab., vol. 12, no. 4, pp. 1194-1204, 1984.
[3] A. V. Gnedin, "On a best-choice problem with dependent criteria," J. Appl. Probab., vol. 31, no. 1, pp. 221-234, 1994.
[4] A. V. Gnedin, "Conical extremes of a multivariate sample," Journal of Research of National Institute of Standards and Technology, vol. 99, pp. 511-511, 1994.
[5] A. V. Gnedin, "Records from a multivariate normal sample," Statist. Probab. Lett., vol. 39, no. 1, pp. 11-15, 1998.
[6] E. Hashorva and J. Hüsler, "On asymptotics of multivariate integrals with applications to records," Stoch. Models, vol. 18, no. 1, pp. 41-69, 2002.
[7] E. Hashorva and J. Hüsler, "Multiple maxima in multivariate samples," Statist. Probab. Lett., vol. 75, no. 1, pp. 11-17, 2005.
[8] C. Dombry, M. Ribatet, and S. Stoev, "Probabilities of concurrent extremes," J. Amer. Statist. Assoc., vol. 113, no. 524, pp. 1565-1582, 2018.
[9] S. Stoev and Y. Wang, "Exchangeable random partitions from max-infinitely-divisible distributions," Statist. Probab. Lett., vol. 146, pp. 50-56, 2019.
[10] C. Dombry and M. Zott, "Multivariate records and hitting scenarios," Extremes, vol. 21, no. 2, pp. 343-361, 2018.
[11] C. Dombry and Z. Kabluchko, "Random tessellations associated with max-stable random fields," Bernoulli, vol. 24, no. 1, pp. 30-52, 2018.
[12] S. I. Resnick, Extreme values, regular variation, and point processes, vol. 4 of Applied Probability. A Series of the Applied Probability Trust. New York: Springer-Verlag, 1987.
[13] J. Beirlant, Y. Goegebeur, J. Teugels, and J. Segers, Statistics of extremes. Wiley Series in Probability and Statistics, John Wiley \& Sons, Ltd., Chichester, 2004.
[14] M. Falk, J. Hüsler, and R. D. Reiss, "Laws of Small Numbers: Extremes and Rare Events," in DMV Seminar, vol. 23, Basel: Birkhäuser, third ed., 2010.
[15] C. Dombry and M. Zott, "Multivariate records and hitting scenarios," Extremes, vol. 21, no. 2, pp. 343-361, 2018.
[16] C. Dombry, M. Falk, and M. Zott, "On Functional Records and Champions," J. Theoret. Probab., vol. 32, no. 3, pp. 1252-1277, 2019.
[17] A. Erdely, J. M. González-Barrios, and M. M. Hernández-Cedillo, "Frank's condition for multivariate archimedean copulas," Fuzzy Sets and Systems, vol. 240, pp. 131-136, 2014.
[18] H. U. Gerber, Life insurance mathematics. Springer Science \& Business Media, 2013.
[19] C. Genest and L.-P. Rivest, "A characterization of gumbel's family of extreme value distributions," Statistics © Probability Letters, vol. 8, no. 3, pp. 207-211, 1989.

Enkelejd Hashorva, Department of Actuarial Science University of Lausanne,, UNiL-Dorigny, 1015 Lausanne, Switzerland
E-mail address: Enkelejd.Hashorva@unil.ch

Didier Rullière, Ecole ISFA, LSAF, université Lyon 1, 69366 Lyon, France
E-mail address: didier.rulliere@univ-lyon1.fr

