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The establishment of new species by hybridization is difficult because it requires the development of reproductive isolation (RI) in

sympatry to escape the homogenizing effects of gene flow from the parental species. Here we investigated the role of two pre- and

two postzygotic mechanisms of RI in a system comprising two interdependent Pogonomyrmex harvester ant lineages (the H1 and

H2 lineages) of hybrid origin and one of their parental species (P. rugosus). Similar to most other ants, P. rugosus is characterized

by an environmental system of caste determination with female brood developing either into queens or workers depending on

nongenetic factors. By contrast, there is a strong genetic component to caste determination in the H1 and H2 lineages because the

developmental fate of female brood depends on the genetic origin of the parents, with interlineage eggs developing into workers

and intralineage eggs developing into queens. The study of a mixed mating aggregation revealed strong differences in mating

flight timing between P. rugosus and the two lineages as a first mechanism of RI. A second important prezygotic mechanism was

assortative mating. Laboratory experiments also provided support for one of the two investigated mechanisms of postzygotic

isolation. The majority of offspring produced from the few matings between P. rugosus and the lineages aborted at the egg stage.

This hybrid inviability was under maternal influence, with hybrids produced by P. rugosus queens being always inviable whereas

a small proportion of H2 lineage queens produced large numbers of adult hybrid offspring. Finally, we found no evidence that

genetic caste determination acted as a second postzygotic mechanism reducing gene flow between P. rugosus and the H lineages.

The few viable P. rugosus-H hybrids were not preferentially shunted into functionally sterile workers but developed into both

workers and queens. Overall, these results reveal that the nearly complete (99.5%) RI between P. rugosus and the two hybrid

lineages stems from the combination of two typical prezygotic mechanisms (mating time divergence and assortative mating) and

one postzygotic mechanism (hybrid inviability).
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Hybrid speciation refers to the establishment of novel hybrid lin-

eages that are reproductively isolated from their parental species.
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The establishment of such hybrid species is difficult because it

requires the development of reproductive isolation (RI) in sympa-

try to escape the homogenizing effects of gene flow from parental

species (Rieseberg 1997; Buerkle et al. 2000; Schwarz et al. 2005;

Gompert et al. 2006; Mavarez et al. 2006). It is thus not surpris-

ing that the majority of documented cases of hybrid speciation
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involve mechanisms such as chromosomal rearrangements or

polyploidization which directly interfere with meiosis in F1 hy-

brids (e.g., Rieseberg et al. 1995; Rieseberg 1997; Chapman and

Burke 2007). When the admixture of divergent genomes has no

negative effects on meiosis in hybrids, genetic and ecological fac-

tors must drastically reduce gene flow between the parental species

and the hybrid lineage for the hybrid to become reproductively iso-

lated (Schwarz et al. 2005; Gompert et al. 2006; Mavarez et al.

2006).

An unusual case of hybrid speciation has been described in

harvester ants of the genus Pogonomyrmex. Historical hybridiza-

tion between P. barbatus and P. rugosus resulted in genetically

distinct and mutually interdependent lineages, which always co-

occur as a pair at a given location (Helms Cahan and Keller 2003;

Schwander et al. 2007). Queens of both lineages are polyandrous

and mate with males of their own and of the alternate lineage; off-

spring fathered by males of the alternate lineage (inter-lineage fe-

males) develop into workers, whereas offspring fathered by males

of the same lineage (pure-lineage females) develop into queens

(Helms Cahan et al. 2002; Julian et al. 2002; Volny and Gordon

2002b; Helms Cahan and Keller 2003). In the parental species,

females can develop either into workers or queens independently

of the females’ genotype (Helms Cahan et al. 2002; Julian et al.

2002).

Although the lineages still show clear genetic signatures of

their historical hybrid origin, there is no current genetic exchange

between them and their two parental species, P. rugosus and

P. barbatus (Helms Cahan and Keller 2003; Anderson et al. 2006;

Schwander et al. 2007). RI is even complete at sites where the

lineages co-occur in sympatry with either of the parental species

(Anderson et al. 2006; Helms Cahan et al. 2006; Schwander et al.

2007), but the mechanisms that prevent gene flow between the

parental species and the lineages remain elusive (Helms Cahan

et al. 2006).

The aim of the present study is to identify mechanisms of RI

between the parental species and the hybrid lineages. We focus

on RI between P. rugosus and the H1 and H2 lineages [labeled

according to the site in which they were first described (Helms Ca-

han and Keller 2003)] because there is a well-studied population

in southeast Arizona where the three groups occur in sympatry

(Helms Cahan et al. 2006). We tested four mechanisms that might

explain the lack of gene flow between P. rugosus and the two H

lineages and quantified the relative contribution of each mecha-

nism to the total RI between the two groups. First, we assessed

whether the timing for the nuptial flight differs between P. ru-

gosus and the H lineages. Distinct flight timing is considered an

important mechanism for prezygotic isolation in ants (Hölldobler

and Wilson 1990). Second, we tested if matings are assortative

within a mixed mating aggregation. Third, we measured the vi-

ability of P. rugosus-H hybrids by two different approaches. For

one approach, we created reciprocal P. rugosus-H crosses through

controlled matings in the field to test whether P. rugosus-H hy-

brid eggs can develop into adults. For the other approach, we

used microsatellite analyses to identify P. rugosus-H hybrids in

eggs and adult offspring produced by naturally mated queens col-

lected from a mixed mating aggregation. Finally, we investigated

whether gene flow may be reduced because P. rugosus-H hy-

brids are preferentially shunted into the worker caste rather than

the queen caste (Helms Cahan et al. 2006). Because workers in

Pogonomyrmex are functionally sterile, shunting of P. rugosus-H

hybrids into the worker caste would result in the RI of P. rugosus

and the H lineages and suggest genetic caste determination as a

mechanism favoring speciation. We tested this by comparing the

overall proportion of P. rugosus-H hybrids among workers to that

among daughter queens.

Methods
In Pogonomyrmex ants, matings typically occur in large mat-

ing aggregations comprising thousands of males and females

(Hölldobler 1976). To investigate the mechanisms preventing

gene flow between P. rugosus and the H lineages, we stud-

ied a single mating aggregation at site “PC,” located at the

upper end of the San Simon Valley, Cochise County, Arizona

(N32◦17.555/W109◦20.235) on 16 July 2004. A previous census

of adult colonies at this site revealed that 68% of the colonies

are headed by a P. rugosus queen, 3% by a H1 queen and 29%

by a H2 queen, but the proportions can be variable at a micro-

geographic scale due to significant clustering of colonies of a

given type (Helms Cahan et al. 2006). We divided the duration

of the mating aggregation into five time intervals of 30 min each,

from the beginning of the mating aggregation (1745 h) through

dusk (2015 h). During each of the five time intervals we col-

lected three types of samples: males and females randomly col-

lected from the mating aggregation (290–376 per time interval),

pairs collected in copula (50–61 pairs per interval), and mated

queens walking on the soil surface in the vicinity of the swarm

site after they dealated (33–88 queens per interval). The wing-

less queens were brought to the laboratory and raised under stan-

dard conditions (Schwander et al. 2006) whereas individuals from

the two other samples were frozen at −20◦C and stored in 75%

ethanol until further analyses. For all individuals, we determined

whether they belonged to P. rugosus, H1, or H2 by analyzing a

430-bp portion of the mitochondrial sequence COI as described

in Helms Cahan et al. (2006) and/or by microsatellite genotyp-

ing at six loci informative for distinguishing the three groups

[L-18 from Foitzik et al. (1997), Myrt-3 from Evans (1993), Pb-

5 and Pb-7 from Volny and Gordon (2002a), Pr-1 from Gadau

et al. (2003) and PO-8 from Wiernasz et al. (2004), Helms Ca-

han et al. (2006); Schwander et al. (2007)]. To avoid sacrificing
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mated queens, we extracted DNA from a piece of the mid hind

leg.

To test whether flight timing differed between P. rugo-

sus and the H1 and H2 lineages, we ranked individuals from

the random samples according to the time interval (1–5) dur-

ing which they were collected. We then tested for differences in

mean rank between P. rugosus, H1, and H2 separately for males

and females using Kruskal–Wallis tests and appropriate post-hoc

comparisons.

To test whether males and females of P. rugosus and of the

two H lineages mate assortatively, we first estimated the expected

proportion (pe) of matings between P. rugosus and the H lin-

eages for each time interval under the assumption of random mat-

ing. This proportion is given by pe = frug × (mH1 + mH2) +
mrug × (f H1 + f H2) where frug, f H1, and f H2 are the proportions

of females of P. rugosus, H1 and H2, respectively and mrug, mH1

and mH2 are the proportions of males of P. rugosus, H1 and H2,

respectively. The proportions of males and females of the three

groups were estimated from the random samples collected from

the mating aggregation. We then compared the expected and ob-

served proportion of copulations between P. rugosus and the H

lineages across the five time intervals.

The level of P. rugosus-H hybrid viability was estimated by

two different means. First, we crossed P. rugosus and the H lin-

eages under controlled conditions to test whether P. rugosus-H

hybrid eggs can develop into adults. For logistic reasons, these

crosses were performed both at PC and at a second site located in

El Paso, TX where P. rugosus also occurs in sympatry with the

H1 and H2 lineages (site “AH”; [Schwander et al. 2007]). The

protocol used at both sites was identical. To elicit mating flights,

we watered colonies with 25 L of water late in the afternoon and

again with 25 L on the following morning. Colonies from which

sexuals did not emerge were watered again the following day. We

captured males and females in traps consisting of conical wire

mesh as they flew out of their mother colony during the late after-

noon. When both sexes were captured from a single colony they

were separated immediately to avoid inbreeding. We next released

males and females from pairs of different colonies into 50 × 30

cm buckets with a ca 4:1 male biased sex ratio. We used individ-

uals from 15 colonies to conduct these mating experiments. As

soon as they separated from their mate, queens were transferred

to glass vials and kept under standard laboratory conditions to al-

low them to initiate new colonies. Their insemination status was

verified at the end of the experiment by dissecting the spermath-

eca and checking whether it contained sperm. Unmated females

(8 of 62, 13%) were excluded from analyses. The remaining 54

females comprised 31 P. rugosus queens mated to a P. rugosus

male (nine different colonies), 11 P. rugosus queens mated to a

H2 male (seven different colonies), four H1 and four H2 queens

mated to a P. rugosus male and four H2 queens mated to a H1

male (three different colonies; see also Table 2). Females of the

H lineages were crossed only with a male of the alternate H lin-

eage as within-lineage crosses produce only queen-destined eggs

and virtually no workers (Helms Cahan et al. 2004). For each

queen, we noted the most advanced developmental stage reached

by her offspring twice per week during the 10 weeks following

mating.

Second, we determined the fate of P. rugosus-H hybrid off-

spring of naturally mated queens collected from the mating aggre-

gation at PC. Because Pogonomyrmex queens mate multiple times

(Hölldobler 1976; Gadau et al. 2003), naturally mated queens

should mate with both conspecific and heterospecific males. We

used microsatellite genotyping to identify P. rugosus-H hybrids in

the offspring of the naturally mated queens. We selected queens

collected at the beginning and end of the mating aggregation be-

cause this is when the proportions of P. rugosus and the H lineages

were most unbalanced (see Results). We did not include H1 queens

for these experiments because they were too rare overall (only two

H1 wingless queens were collected during the first time interval

and none during the last time interval of the mating aggregation).

Of the 121 dealate P. rugosus queens collected from the mating

aggregation, we used all seven P. rugosus queens sampled during

the first time interval and eight P. rugosus queens of the second

time interval. Of the 199 wingless H2 queens collected from the

mating aggregation, we used 15 H2 queens sampled during the

last time interval of the mating aggregation. To identify P. rugo-

sus-H hybrids among the offspring of each of these 30 queens, we

genotyped 20 eggs and 20 workers at the six microsatellite loci and

used the population assignment software Structure 2.1 (Pritchard

et al. 2000) to identify P. rugosus-H2 and P. rugosus-H1 hybrids

[see Helms Cahan et al. (2006) for details].

When genotyping the offspring of naturally mated queens

we found that four of the 15 H2 queens sampled during the last

time interval of the mating aggregation produced adult P. rugo-

sus-H offspring (see Results). To obtain an overall estimation of

the proportion of H2 queens producing viable P. rugosus-H hybrid

offspring we used the 15 H2 colonies founded from queens col-

lected during the last time interval and genotyped 374 additional

workers from the 184 remaining colonies headed by H2 queens

collected from the mating aggregation during all time intervals

(ntot = 199 colonies).

Although we observed that up to 16% P. rugosus queens in

the mating aggregation mated with males of the H-lineages (see

Results, Table 1), we detected no P. rugosus-H hybrids eggs or

workers among offspring produced by P. rugosus queens. Because

a previous study revealed that DNA from eggs that abort during

their development cannot be successfully amplified (Schwander

et al. 2006), we tested whether P. rugosus-H hybrid eggs could

be detected by microsatellite genotyping, by measuring the am-

plification success of eggs from the controlled crosses (using
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Table 1. Sample sizes for mating pairs collected from the mating aggregation. Pobs, observed proportion of matings between individuals

of P. rugosus (Rug) and the H lineages (H); Pexp, expected proportion between individuals of P. rugosus and the H lineages under random

mating and given the sex-specific proportions of each group in the mating aggregation.

Intraspecific mating pairs Interspecific mating pairs

Interval Time Total Total Female Rug Female H Total Female Rug Female H Pobs Pexp

1 17.15 51 51 0 51 0 0 0 0.00 0.10
2 17.45 61 59 16 43 2 1 1 0.03 0.33
3 18.15 58 50 19 31 8 2 6 0.14 0.44
4 18.45 54 39 21 18 15 7 8 0.28 0.51
5 19.15 50 40 31 9 10 6 4 0.20 0.49

six markers allowing species identification). The genotyping of

24 eggs (1 to 3 eggs per queen) from the crosses between the

H lineages and P. rugosus and 24 eggs (1 to 3 eggs per queen)

from crosses within the H lineages and within P. rugosus revealed

that P. rugosus-H hybrid eggs had a very low amplification suc-

cess (0 eggs out of 24) whereas the amplification success for eggs

from within species crosses was 91.7% (22 out of 24; Fisher’s

exact test P < 0.0001). Nonamplifying eggs laid by P. rugosus

queens were thus considered as P. rugosus-H hybrids for further

analyses.

To test for a preferential shunting of P. rugosus-H hybrids

into the worker or queen caste, we raised the 320 colonies founded

by naturally mated H2 (199 colonies) and P. rugosus queens (121

colonies) for over two years in the laboratory. Laboratory colonies

occasionally produce a small number of daughter queens along

with workers, which allowed us to collect a total of 86 P. rugo-

sus daughter queens (produced by 27 out of the 121 P. rugosus

colonies) and 13 H2 daughter queens (produced by 6 out of the

199 H2 colonies). We used these queens to compare the propor-

tion of colonies producing P. rugosus-H hybrid queens to the pro-

portion of colonies producing P. rugosus-H workers separately for

P. rugosus and H2 colonies. To estimate the proportion of colonies

producing hybrid workers, we used all colonies from the previous

analyses (199 H2 colonies and 15 P. rugosus colonies) with ad-

ditional genotyping of 200 P. rugosus workers from 10 colonies

for a total of 25 P. rugosus colonies. Queen and worker hybrids

were identified as described above by analyzing their genotypes

at the six microsatellite markers with the software Structure 2.1

(Pritchard et al. 2000).

We found that three of the four investigated mechanisms con-

tributed significantly to RI between P. rugosus and the H-lineages

(see Results). To quantify the contribution of each of the three

mechanisms to total RI we applied a method proposed by Coyne

and Orr (1989) and extended by Ramsey et al. (2003). This method

quantifies the cumulative RI between two groups as a multiplica-

tive function of the individual components of RI at sequential

stages in the life history. RI-values specify the strength of RI for

a given pre- or postzygotic barrier, and generally vary between

zero and one. A given reproductive barrier eliminates gene flow

that has not already been prevented by previous stages of RI. The

absolute contribution (AC) of a component of RI at stage n is

calculated as [for further details see Ramsey et al. (2003)]

ACn = RI n

(
1 −

n−1∑
i=1

ACi

)

The RI-value for differences in mating flight timing between

P. rugosus and the H-lineages was computed as the expected

proportion of P. rugosus-H matings given the observed timing

difference, divided by the expected proportion of P. rugosus-H

matings without a timing difference (assuming random mating

in each case). The first value was calculated by averaging the

expected proportion of P. rugosus-H matings over the five time

intervals. The second was calculated as 2(pRug)(1 − pRug) whereby

pRug is the overall proportion of P. rugosus individuals in the mat-

ing flight. The RI-value for assortative mating was computed as

the observed proportion of P. rugosus-H matings (averaged over

time intervals) divided by the expected proportion given the ob-

served timing difference (see above). As an estimate for RI through

hybrid inviability, we used the proportion of colonies producing

viable hybrids. Because hybrid inviability differed between off-

spring produced by P. rugosus queens and the H-lineage queens

(see Results), we computed it independently for each group as

well as for both combined.

Results
The mating aggregation at PC was composed of individuals be-

longing to P. rugosus (31%), the H1 lineage (11%), and H2 lin-

eage (58%) with an approximately 3:1 male-biased sex ratio (74%

males). The shift in the relative proportions of the three groups

over the five time intervals revealed a difference in flight timing

between P. rugosus and the H1 and H2 lineages. Pogonomyrmex

rugosus males and females appeared significantly later in the mat-

ing aggregation than males and females of the H1 and H2 lineages

(Kruskal–Wallis tests; males: � 2
2 = 188.7, P < 0.0001, post hoc

tests both P < 0.0001; females: � 2
2 = 98.2, P < 0.0001, post
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Figure 1. Proportion over time of randomly collected males and

females of the H lineages and of P. rugosus in a mating aggregation

at PC. For the proportions, each sex is considered separately; the

overall sex ratio was male biased (3:1).

hoc tests both P < 0.05; Fig. 1). At the beginning of the mat-

ing aggregation, the majority of males (85%) and females (90%)

were of the H2 lineage. Their frequency decreased over time and

during the last time interval of the mating aggregation, H2 females

(17%) and males (29%) were less frequent than P. rugosus females

(75%) and males (51%, Fig. 1). H1 males (13% overall) and fe-

males (3% overall) were rare throughout the five time intervals of

the mating aggregation. Similarly, the proportion of P. rugosus,

H1, and H2 wingless queens (n = 431) was also very unbalanced

with 173 (40%) P. rugosus queens, 240 (56%) H2 queens, and

only 18 (4%) H1 queens. Because of the small sample size for

individuals (especially females) of the H1 lineage we pooled data

of the H1 and H2 individuals (thereafter H lineages) for further

statistical analyses. Assuming random mating, the observed dif-

ference in flight timing between P. rugosus and the H-lineages

would result in 35.7% P. rugosus-H matings across the five time

intervals whereas 42.5% would be expected if the two groups had

simultaneous mating flights.

The proportions of P. rugosus and H lineages males and fe-

males collected in copula showed that 12.8% of all collected pairs

were between P. rugosus and the H lineages. Copulations be-

tween P. rugosus and the H lineages were significantly rarer than

expected under random mating (� 2
4: 47.21, P < 0.0001) with a

10–30% deficit of P. rugosus-H lineage copulations in each of

the five time intervals of the mating aggregation (Table 1). Both

reciprocal matings occurred at similar frequencies; P. rugosus fe-

male were found in copula with a male of the H lineages (16 out

of 35 copulas; 45.7%) and queens of the H lineages were found

in copula with a P. rugosus male (19 out of 25 copulas; 54.3%,

binomial test P = 0.73; Table 1).

Table 2. Proportion of queens from controlled crosses producing

adult worker offspring. The numbers in brackets indicate the num-

ber of colonies from which males and queens were collected and

the total number of singly mated queens per cross.

Male P. rugosus H lineages
Female

P. rugosus 94% (9, 31) 0% (7, 11)
H lineages 0% (7, 8) 100% (3, 4)

The controlled reciprocal P. rugosus-H crosses and the anal-

ysis of offspring of naturally mated queens revealed an extremely

low viability of P. rugosus-H hybrids. In the controlled crosses,

none of the 11 P. rugosus queens mated to a H2 male and none of

the four H1 and four H2 queens mated to a P. rugosus male raised

any larvae or workers. Although all 19 queens laid eggs (14.7

± 8.5 eggs per queen), none of these eggs hatched. In contrast,

P. rugosus queens mated to a P. rugosus male and H2 queens

mated to an H1 male were significantly more successful in raising

workers than queens from the crosses between P. rugosus and the

H lineages (Fisher’s exact test, P < 0.0001; Table 2). Twenty-nine

of the 31 P. rugosus queens mated with a P. rugosus male and all

four H2 queens mated with a H1 male produced adult worker

offspring.

The analysis of offspring from the 15 naturally mated

P. rugosus queens from the first time interval of the mating aggre-

gation revealed that their P. rugosus-H hybrid eggs also aborted.

The proportion of P. rugosus females in copula with a male of

the H lineages was 6% in the second time interval (1 out of 16,

Table 1) predicting at least 6% P. rugosus-H hybrid eggs in

colonies headed by P. rugosus queens from the first and second

time interval (no P. rugosus queens were collected in copula during

the first time interval). Given the complete failure of amplifica-

tion for P. rugosus-H hybrid eggs from the controlled crosses, we

thus expected at least 6% amplification failure for eggs laid by

P. rugosus queens. Of the 300 analyzed eggs laid by 15 of these

queens, 34 (11.2%) failed to amplify and none (0%) of the remain-

ing 266 eggs had a P. rugosus-H hybrid genotype. The proportion

of nonamplifying eggs laid by the naturally mated P. rugosus

queens did not differ significantly from the expected proportion

of hybrid eggs (Fisher’s exact test: P = 0.99). In line with the com-

plete lack of P. rugosus-H hybrid genotypes among viable eggs

from P. rugosus queens, we also did not find a single P. rugosus-H

hybrid worker of the 300 workers (15 colonies) genotyped.

Most H2 queens also failed to produce P. rugosus-H hybrid

eggs detectable by genotyping; however, a small number of H2

queens produced hybrid eggs and workers. Four of the 15 H2

queens collected during the last time interval from the mating

aggregation produced almost exclusively hybrid workers (95–

100%). One additional queen had a single P. rugosus-H hybrid
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Figure 2. Overall proportion and binomial SD of P. rugosus-H hy-

brids in worker offspring and the proportion of P. rugosus-H hybrid

queens for the subset of colonies that produced new queens. The

numbers indicate the number of colonies used to estimate each

proportion.

egg, while the remaining 11 queens had no hybrid eggs or workers

at all. The abortion of P. rugosus-H hybrid eggs in the 10 colonies

without any P. rugosus-H genotypes was revealed by significantly

lower egg-amplification success than in the five colonies with hy-

brid eggs and/or workers (W = 38, p = 0.045). Genotyping of 374

workers produced by the remaining 184 H2 queens from the mat-

ing aggregation showed that overall 3% of H2 queens produced

adult P. rugosus-H workers (four out of the 15 queens from the

last time interval of the mating aggregation and two out of the

remaining 184 queens).

There was no evidence for a preferential shunting of

P. rugosus-H hybrids into workers rather than queens in colonies

with a H2 mother queen. To the contrary, only 3% (six out of

199) of these colonies produced P. rugosus-H hybrid workers

whereas among the H2 colonies that produced new queens (n =
6), 67% produced P. rugosus-H hybrid queens (Fisher’s exact test

P = 0.0004; Fig. 2). This difference stems from H2 colonies with

P. rugosus-H hybrid workers being more likely (4 out of 6, 67%)

to produce new queens (with a P. rugosus-H hybrid genotype)

than colonies without P. rugosus-H hybrid workers (2 out of 193

colonies, 1%; Fisher’s exact test P < 0.0001). We could not test

for a preferential shunting of P. rugosus-H hybrids into workers

rather than queens in P. rugosus colonies because none of these

colonies produced P. rugosus-H hybrid workers (out of the 500

workers from 25 colonies genotyped) or queens (out of 86 queens

from 27 colonies).

The quantification of the contribution of the addressed repro-

ductive barriers revealed that prezygotic mechanisms explained

Figure 3. Total reproductive isolation (99.5%) between P. rugosus

and the H-lineages decomposed into pre- and postzygotic compo-

nents following the method described by Ramsey et al. (2003).

almost 70% of the observed RI between P. rugosus and the H-

lineages (Fig. 3). The difference in mating flight timing reduced

the opportunities for interspecific matings by 15.9% as compared

to simultaneous flight times. Assortative mating reduced inter-

specific crosses by additional 53.5%. The combination of these

two prezygotic mechanisms with the high level of observed hy-

brid inviability (100% in P. rugosus offspring and 95% in H-

lineage offspring, accounting overall for 30.1% of RI) resulted in

nearly complete RI between P. rugosus and the H-lineages (99.5%;

Fig. 3).

Discussion
We investigated four different possible mechanisms of RI be-

tween the H lineages of hybrid origin and one of their parental

species, P. rugosus. We found that three of the four mechanisms,

two prezygotic (differences in timing for the mating aggregation

and assortative mating) and one postzygotic (hybrid inviability),

strongly reduced gene flow between P. rugosus and the H lineages,

whereas there was no evidence for the direct contribution of the

second postzygotic mechanism (genetic caste determination).

Differences in mating flight timing between sister species is

a typical pattern for contact zones in ants (Hölldobler and Wil-

son 1990). However, although males and females of the H lin-

eages were present in the mating aggregation at site PC before

P. rugosus males and females (Fig. 1) and this timing difference

reduced interspecific mating opportunities by approximately 16%

(Fig. 3), it is unlikely to have evolved as a mechanism of reinforce-

ment. Observations of mating aggregations at sites comprising

only P. rugosus or the H lineages revealed similar timing differ-

ences. Mating aggregations of the H lineages in Hidalgo County,

NM [site H in Helms Cahan et al. (2006)] typically start around

16 h (n = 3 mating aggregations) whereas P. rugosus mating ag-

gregations in Bowie, AZ [site B in Helms Cahan et al. (2006)]
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start around 18h (n = 2). These patterns thus suggest that differ-

ent flight timing of P. rugosus and the H lineages has evolved in

allopatry, and that P. rugosus and the H lineages exhibited different

circadian rhythms when they came into secondary contact.

Preferential mating among males and females of P. rugosus

and among males and females of the H lineages acts as a sec-

ond prezygotic mechanism for RI (Table 1) and accounted for the

largest part of RI between the two groups (Fig. 3). Such assortative

mating may be driven by both sexes that could use pheromones or

hydrocarbon patterns to distinguish between con- and heterospe-

cific mates. Pheromones are of primary importance for synchro-

nization of nuptial flights and mate attraction in various ant species

(e.g., Cherix et al. 1993; Buschinger 2003; Greenberg et al. 2004)

and cuticular hydrocarbons are used as recognition cues to de-

termine species and colony membership (e.g., Lahav et al. 1999;

Wagner et al. 2000). Two genetic caste determining lineages not

considered in this study (J1-J2 lineages) display lineage-specific

hydrocarbon patterns in males, which could be used as cues for

species discrimination (Volny et al. 2006). Alternatively, differ-

ences in male body size and shape, shown to influence male mat-

ing success in P. occidentalis (Abell et al. 1999) may also play a

role in assortative mating. Interestingly, high levels of assortative

mating are also critical in reducing gene flow between incipient

hybrid species and their parents in Heliconius butterflies (Mavarez

et al. 2006). Contrary to the majority of described animal hybrid

species (Mallet 2007), Heliconius and Pogonomyrmex hybrids oc-

cupy similar habitats as their parents. In the absence of strong habi-

tat divergence, mating cues that are more similar among hybrids

than between hybrids and the parental species from the very first

hybrid generation, may be fundamental for reticulate speciation.

In addition to the two prezygotic mechanisms, a high level

of hybrid inviability also contributes to the RI between P. rugosus

and the H1-H2 lineages. Hybrid inviability was expressed very

early during the development as revealed by the controlled P. ru-

gosus-H lineages crosses invariably resulting in inviable eggs. The

vast majority of P. rugosus-H hybrid offspring of naturally mated

queens also appeared to abort at the egg stage. Six to 25% of

P. rugosus queens mated with a male of the H-lineages depending

on the time of the mating aggregation (Table 1). These matings

resulted in the production of inviable eggs, as indicated by the

complete lack of P. rugosus-H hybrid genotypes and the amplifi-

cation failure for many eggs laid by naturally mated queens. The

majority of naturally mated H2 queens (97%) also failed to pro-

duce viable hybrids and only 3% of them produced significant

numbers of P. rugosus–H hybrid eggs and workers.

The low viability of P. rugosus-H hybrids is somewhat sur-

prising because analyses of sequence divergence suggest a rela-

tively recent separation between the lineages and their parents,

P. rugosus and P. barbatus. Both H-lineages have mitochon-

drial sequences derived from P. barbatus (Anderson et al. 2006;

Schwander et al. 2007). The observed level of sequence divergence

between P. barbatus from Texas populations and the H-lineages

is 5.4–5.6% (Anderson et al. 2006) which, assuming the conven-

tional insect divergence rate (DeSalle et al. 1987), suggests that

the H-lineages originated approximately 2.8 million years ago.

This divergence time is likely to be overestimated as the P. bar-

batus populations from Texas are probably highly differentiated

from the parental source populations (Schwander et al. 2007). In-

deed, P. barbatus mitochondrial sequences from Mexico would

instead suggest 1.3–1.4 million years of divergence (2.6–2.7%

sequence divergence) between P. barbatus and the H lineages cal-

culated from (Anderson et al. 2006). The minimum time for total

hybrid inviabililty to evolve has been estimated 2 million years in

Drosophila (Coyne and Orr 1997), 4 million years in Lepidoptera

(Presgraves 2002), 5.5 million years in birds (Lijtmaer et al. 2003)

and even over 20 million years in Centrarchid fish (Bolnick and

Near 2005). An important mechanism for hybrid nonviablility and

postzygotic isolation between two different species are deleterious

epistatic interactions between a recessive allele on a sex chromo-

some and an autosomal locus (Coyne and Orr 2004). Such a mech-

anism does not apply for ants and other Hymenoptera because of

the haplo–diploid sex determination mechanism (there are no sex-

ual chromosomes). Further studies are thus needed to investigate

why hybrid inviability has evolved so rapidly in Pogonomyrmex.

The fact that some H2 queens but no P. rugosus queens pro-

duced adult P. rugosus-H hybrids suggests a maternal effect on

hybrid viability. Additional support for this view comes from anec-

dotal data of a previous field study (Helms Cahan et al. 2006).

Two colonies at a site comprising almost exclusively P. rugosus

colonies [site “F” in Helms Cahan et al. (2006)] were headed by

an F1 P. rugosus-H hybrid queen; both had a mitochondrial haplo-

type typical for the H2 lineage, suggesting they were offspring of

a H2 queen mated to a P. rugosus male. Viability asymmetries de-

pending on which species is the female (or male) parent have been

documented in a wide range of organisms, including Drosophila

and various plants (Wu and Davis 1993; Tiffin et al. 2001). The

asymmetrical viability of reciprocal hybrids argues for a major

role of interactions between haploid (e.g., mitochondrial loci) and

diploid genes, or cytonuclear interactions in postzygotic isolation.

We found no evidence for genetic caste determination as

a second, postzygotic mechanism reducing gene flow between

P. rugosus and H lineages as P. rugosus-H hybrids were not

shunted specifically into the worker caste. Pogonomyrmex rugo-

sus-H hybrids that survived the egg stage appeared to be phenotyp-

ically plastic. When considering all H2 colonies, the proportion of

P. rugosus-H hybrid daughter queens was even significantly larger

than the proportion of hybrid workers. The higher proportion of

P. rugosus-H hybrid queens than workers stems from the fact

that colonies with P. rugosus-H hybrid individuals were more

likely to produce queens (with P. rugosus-H hybrid genotypes)
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than colonies without P. rugosus-H hybrids. Because queens were

also produced in a larger proportion in P. rugosus colonies (22%,

27 out of 121) than H colonies (3%, 6 out of 199), these results

suggest that caste determination in P. rugosus-H hybrids might be

nongenetic, hence resulting in the production of a small number

of daughter queens in the laboratory.

The measured reproductive barriers are sufficient to cause

complete or nearly complete isolation between P. rugosus and the

H-lineages (Fig. 3). Although introgression through backcrossing

can occur even when F1 hybrids are rare (e.g., Cruzan and Arnold

1993; Rieseberg 1997; Arnold et al. 1999), the opportunity for

introgressive hybridization in these two groups is severely lim-

ited by both pre-and postzygotic barriers. This nearly complete

RI is in accordance with extremely high levels of genetic isola-

tion revealed in previous studies (Helms Cahan and Keller 2003;

Anderson et al. 2006; Schwander et al. 2007) and may contribute

to the maintenance of variation in the caste determination mech-

anisms in Pogonomyrmex.

In conclusion, this study shows that differences in flight tim-

ing, assortative mating, and relatively high levels of hybrid non-

viability all contribute to the nearly complete RI between the H

lineages and their parent P. rugosus. Pogonomyrmex rugosus-H

hybrids are not shunted preferentially into the worker caste so that

caste determination does not play a direct role in the current isola-

tion between the environmental caste determining species P. rugo-

sus and the lineages with genetic caste determination. The current

RI between P. rugosus and the lineages can thus be explained

by a combination of two typical prezygotic and one postzygotic

mechanism.
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