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RÉSUMÉ 

La communication est un aspect fondamental de la vie animale car elle permet la médiation des conflits 
d’intérêts entre individus, que ce soit pour les ressources limitantes (e.g. nourriture, territoire) ou pour des 
tâches collectives au sein de groupes sociaux (e.g. recherche de nourriture, défense d’un territoire). 
L’échange d’informations entre les parties quant à leur capacité, leur besoin et leur motivation à rivaliser 
permet aux compétiteurs de décider d’entrer dans la compétition, de continuer à s’y investir ou bien de s’y 
retirer en fonction de leur chance de succès.  

Au cours de cette thèse, j’ai exploré différents aspects de la communication vocale, dans le 
contexte de la compétition pour les proies amenées par les parents, chez les jeunes Chouettes effraies (Tyto 
alba). Dans ce contexte familial, les poussins ont un intérêt commun pour leurs survies mutuelles puisqu’ils 
bénéficient de la propagation de leurs gènes en commun (théorie de sélection de parentèle). En l’absence 
des parents, jusqu’à neufs poussins négocient vocalement entre eux pour l’obtention de la prochaine proie 
rapportée au nid. Cette négociation a pour but d’informer la fratrie de son niveau de faim, de dissuader les 
moins affamés de négocier en retour et, par la suite, de quémander la nourriture aux parents à leur retour. 
Pour cela, les poussins émettent un cri qu’ils font varier en nombre et en durée : un poussin affamé 
émettant plus, et de plus longs cris qu’un non affamé. 

La négociation est un processus dynamique dont chaque étape influence la suivante. Afin 
d‘améliorer l’issue de la négociation, chaque individu peut stratégiquement ajuster sa communication, en 
augmentant ou diminuant l’intensité de sa vocalisation en fonction de celle de son rival. Dans un premier 
temps, nous avons testé, à l’aide de playback interactif, l’efficacité de ces stratégies d’ajustements. Nous 
avons démontré que pour induire le retrait d’un/e frère/sœur de la compétition, le plus efficace était 
d’ajuster positivement sa durée de cri à celle de son/sa frère/sœur, tout en ajustant par contre 
négativement le nombre de cris émis. En d’autres termes, pour dominer une négociation, il est plus efficace 
de défier son/sa frère/sœur en augmentant simultanément la durée de ses cris. De plus, il est plus efficace 
de lui laisser l’opportunité de communiquer et d’attendre que celui-ci diminue son nombre de cris pour 
augmenter le sien. Nous avons également pu démontrer que ces stratégies conduisent le poussin (ici le 
playback) à émettre plus de cris et de plus longue durée. Démontrer sa motivation requiert donc un 
investissement plus important, ce qui pourrait aider au maintien de l’honnêteté de cette communication. 
Les autres stratégies étant moins efficaces, les interactions répétées entre poussins pourraient permettre 
de renforcer l’aspect coopératif de la négociation. De manière similaire, nous avons montré que les poussins 
corrigeaient leur frère/sœur lorsque celui/celle-ci ne respectait pas la règle sociale d’alterner ses cris avec 
ceux de son rival. Corriger ses frères et sœurs pourrait renforcer la stabilité évolutive de la négociation 
vocale au sein de la fratrie comme un moyen non agressif de se répartir la nourriture. 

Dans un second temps nous nous sommes intéressés au rôle que pouvait jouer la négociation pour 
décider à qui prodiguer un service tel que l’épouillage ou le don de proie. La sélection de parentèle et la 
réciprocité des services biologiques sont des explications distinctes pour l'origine et le maintien évolutif des 
comportements coopératifs et de l’altruisme. Bien que considérées comme compatibles, l'interaction entre 
ces théories et les conditions favorisant la coopération a rarement été testée. Nous avons montré que 1) 
les poussins les plus âgés et en meilleur condition sont plus enclins à partager la nourriture avec leurs frères 
et sœurs; 2) le don de proie se produit en particulier lorsque les poussins reçoivent un surplus de nourriture 
de la part des parents et lorsque la quantité totale de nourriture stockée dans le nid est abondante, c’est 
donc lorsque le coût de la renonciation à cette proie est faible qu’un poussin la donnera ; 3) le receveur du 
don de proie est de préférence un frère ou une sœur dans le besoin (le poussin qui négocie le plus avant le 
don) ou celui qui a le plus coopéré avec le donneur au préalable (le poussin qui a le plus épouillé le donneur). 

Cette thèse souligne donc l’importance de considérer la résolution de conflit comme interactive 
avec des stratégies d’ajustements, de la coopération et des règles sociales. Enfin, la chouette effraie se 
révèle être une espèce modèle pour l’étude de la communication animale et la résolution des conflits.
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SUMMARY 

Communication is a fundamental aspect of animal existence as it mediates survival and reproduction 
when conflicts of interest occur (over territory, mate or food) or for social integration (acceptation in 
a group, cooperative behaviour). Assessing a contestant’s relative resource holding potential and 
motivation to compete through signalling allows individuals to decide whether to engage, to keep 
competing or to retreat from a contest according to their chances of success. 

During this thesis, I investigated various aspects of vocal communication in the context of 
competition over prey brought by parents in broods of barn owl (Tyto alba). In this family context, 
nestlings have a common interest in their mutual survival and reproduction since they benefit from 
the propagation of their shared genes (kin selection theory). In the absence of parents, up to nine 
nestlings vocally negotiate to get the priority access to the next prey brought by parents. The purpose 
of this negotiation is to inform siblings about hunger level, dissuade the less hungry siblings from 
negotiating in return and afterwards from begging when parents arrive. To negotiate, the nestlings 
emit one type of call that vary in number and duration: a hungry nestling emitting more and longer call 
than a non-hungry. 

Negotiation is a dynamic process with each step of the process affecting the next. To improve 
its negotiation outcome, each individual can strategically adjust its communication to the contestant’s 
communication; that is to say, when and how to increase/decrease its vocal intensity according to the 
contestant’s intensity. We first tested, using interactive playback, the efficiency of these adjustment 
strategies to the contestant‘s signalling. We demonstrated that the most efficient strategy to deter a 
sibling from the competition is to match the call duration (increasing and decreasing its call duration 
simultaneously with the sibling), and to mismatch the number of calls (increasing when the sibling 
decreases its call rate and reversely). In other words, to dominate a negotiation, it is more efficient to 
challenge a sibling by simultaneously increasing the call duration. However, it is more efficient to give 
a sibling the opportunity to communicate by waiting for it to decrease its call rate before increasing its 
number of calls. We were also able to demonstrate that these strategies lead the nestling (here the 
playback) to emit more and longer calls. Transmitting motivation to a sibling requires therefore a 
higher investment which could help maintain this communication honest. Because following other 
strategies is less efficient to deter a sibling from competing, the repeated interactions between 
nestlings may reinforce the cooperative aspect of the negotiation. Similarly, we showed that nestlings 
gave social feedback when a nestling did not respect the social rule of alternating its calls with those 
of its rival. This social feedback could enhance the evolutionary stability of vocal negotiation within 
siblings as a non-aggressive way of sharing food. 

In a second time, we investigated the role that negotiation could play in deciding with whom 
to share a prey. Kin selection and the reciprocation of biological services are separate explanations for 
the origin and evolutionary maintenance of cooperative behaviours and altruism. Although considered 
as non-mutually exclusive, the cost-to-benefit balance to behave altruistically or reciprocally 
cooperate, and the conditions promoting a switch between such different strategies have rarely been 
tested. We showed that 1) older individuals in better conditions are more likely to share food with 
their siblings than nestlings in poor conditions; 2) the share of prey occurs when the nestlings receive 
extra food from the parents and the food is abundant, thus especially when the cost to renounce a 
prey is low; 3) the receiver of the prey donation is preferentially a sibling in need (the nestling who 
negotiates the most before the donation) or the one who has cooperated the most with the donor 
beforehand (the nestling that has allopreened the donor the most). 

This thesis therefore emphasizes the importance of considering the conflict resolution as an 
interactive process with strategical adjustment, cooperation and social rules. Finally, barn owls appear 
to be a key model species for the study of animal communication and conflict resolution. 
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GENERAL INTRODUCTION 

In nature, animal conspecifics are often in conflict over the share of limited resources such as 

territories, mating sites, mates or food (McGregor, 2005). To maximise their Darwinian fitness 

(i.e. survival and reproduction), the evolutionary theory predicts that individuals should 

compete to have access to these limited resources to derive the greatest benefits at the lowest 

cost (Maynard Smith, 1976). Animal communication is a fundamental aspect of animal 

existence as it functions in mediating these widespread conflicts. Indeed, rather than 

physically competing for resource access, which may lead to serious or lethal injuries, 

individuals commonly signal their ‘resource holding potential’ (i.e. fighting ability) and 

motivation to compete (Parker, 1974). Assessing a contestant’s relative resource holding 

potential and motivation through signalling allows individuals to decide whether to engage, 

to keep competing or to retreat from a contest according to their chances of success. 

A signal can be defined as “any act or structure that: (i) affects the behaviour of other 

organisms; (ii) evolves (or is maintained) because of those effects; and (iii) is effective because 

it transfers functional information to receivers” (Carazo & Font, 2010). To transmit 

information, a signal can use multiple sensory channels such as acoustic (e.g. vocalizations: 

Schwartz & Freeberg, 2008; Todt & Naguib, 2000), chemical (e.g. pheromones: Paquet & 

Fuller, 1990; Rich & Hurst, 1998) and visual (e.g. behavioural displays: Hofmann & 

Schildberger, 2001; Mercier & Dejean, 1996; or body coloration: Senar, 2006). Some signals 

become fixed at a given developmental or ontological stage, implying that they do not 

fluctuate quickly, as for instance some morphological signals such as plumage coloration in 

birds. Contrarily, many signals remain flexible through life (e.g. vocalisation, most behavioural 

displays) and signalling intensity can fluctuate over short periods of time independently of the 

sender’s condition. These quick fluctuations raise the question of how individuals adjust their 

level of investment in signalling at each time point, given their own condition and that of their 

potential audience (whether or not it is involved in the signal exchange). For instance, quick 

fluctuations can be required to avoid interferences (Brumm & Slabbekoorn, 2005; Ficken, 

Ficken, & Hailman, 1974), to adapt to the presence of an audience (Munn, 1986) or to the 

resource holding potential, motivation and condition of contestants (Bell, 2008; Godfray, 

1995; Oliveira, McGregor, & Latruffe, 1998). 
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Signal adjustment to a contestant’s signalling rules 

Game theories have studied these signal fluctuations and several models predict different 

signalling structures and dynamics (i.e. intensity escalation, contestants’ intensity adjustment) 

depending on whether the weakest contestant bases its decision of giving up the contest on: 

i) its own motivation; ii) the contestant’s motivation; or iii) the relative motivation between 

both contestants (Table 1). The ‘sequential assessment model’ is based on the assumption that 

the contestants assess each other’s quality and compare it to its own (i.e. relative quality), in 

order to allow the weakest one to give up (Enquist & Leimar, 1983). In this model, the signal 

intensity for each contestant is predicted to remain constant as the assessment is based on 

the average intensity. The signal repetition might be required simply to maximize the 

assessment accuracy in a noisy environment with assessment error. There is therefore no 

display adjustment between contestants. However, the contest can have multiple phases with 

an escalation between them if the preceding phase does not allow to distinguish the dominant 

individual. The ‘war of attrition models’ are based on the assumption that an individual signals 

to advertise endurance to a contestant, and gives up the contest when the accumulated cost 

of its own signalling process exceeds an intrinsic threshold (Bishop & Cannings, 1978; 

Hammerstein & Parker, 1982; MestertonGibbons, Marden, & Dugatkin, 1996; Payne & Pagel, 

1996). In these models, contestants are expected to match their display intensities at any time 

to avoid cheating. Indeed, if they do not match display intensity, an individual could cheat by 

delaying its display and take advantage through the exhaustion of its contestant. Finally, the 

‘cumulative assessment game model’ is based on the assumption that an individual gives up 

the contest when the accumulated cost inflicted by its contestant exceeds an intrinsic 

threshold cost (Payne, 1998). This inflicted cost does not necessarily refer to direct physical 

damage, but to any type of fitness cost (e.g. time loss or increased predation risk). In this latter 

model, there is no prediction concerning the display adjustment between contestants, and it 

can be used to explain more complex display adjustments. 

 

 

 

 



GENERAL INTRODUCTION 
 

9 
 

Table 1 – Assumptions and predictions of key theoretical models of contest behaviour (based 
on: Briffa & Sneddon, 2010) 

Model Sequential 
Assessment War of Attrition Cumulative Assessment 

Assumption 
Decision rule based 
on: 

Relative 
motivation Own motivation Other’s motivation 

Function of 
repeated display 

Reduce 
sampling error 

Advertise 
endurance 

Inflict costs directly on 
contestant 

Predictions 
Matching between 
contestants? No Yes No 

Contest structure 

Escalates 
between phases 
but constant 
within phases 

Escalates within 
phase; 
Energetic War of 
Attrition: constant, 
escalates or de-
escalates 

Constant, escalates or de-
escalates within non-
injurious phases; escalates 
within injurious phases 

 

While game theory predicts that such social interactions are interactive with tactical 

adjustments to the contestant’s behaviour (McNamara, Gasson, & Houston, 1999), very few 

empirical studies have investigated the importance of such short-term adjustment tactics for 

conflict resolution through signalling. Short-term adjustment refers to the intensity at which 

an individual should signal, according to the current contestant’s signal and intensity. In other 

words, when an individual can escalate or reduce display intensity, depending on its 

contestant’s behaviour. This adjustment might actually be as important as the global intensity 

of the contest itself. For instance, in satin bowerbirds (Ptilonorhynchus violaceus), the male 

ability to adjust the intensity of sexual displays to the female’s response explains the success 

of a male courtship to the same extent (around 30%) than the average display intensity 

(Patricelli, Uy, Walsh, & Borgia, 2002). Therefore, by examining the average signal intensity 

only, researchers risk to overlook a major aspect of information transfer and adaptive 

decision-making (Briffa, Elwood, & Dick, 1998; Patricelli, Krakauer, & McElreath, 2011; Van 

Dyk, Taylor, & Evans, 2007). 

The assessment models presented above have been mainly empirically tested in one-

off contests among non-familiar adults, which have fully incompatible interests, besides the 

common interest of signalling instead of relying on harmful aggression in order to settle a 
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contest (e.g. Keil & Watson, 2010; Reddon et al., 2011) . Nevertheless, conflicts over resources 

also occur among individuals that partially share interest in each other’s fitness (Roberts, 

2005). Indeed, when contestants are genetically related, losing the contest and authorising 

their kin access to the resources still rewards the looser individual through indirect fitness 

benefit such as increasing the survival and reproduction of its kin (Hamilton, 1964). Similarly, 

when regrouped in stable social groups, individuals repeatedly interact and benefit from 

groupmates’ survival. When interest overlaps, less aggressive contests are expected, and 

more ‘cooperative’ signal adjustments instead of ‘matching intensity escalation’ are likely to 

evolve (Cant & Young, 2013, “play aggressive away, not at home” citation from: Foley, Forber, 

Smead, & Riedl, 2018). For instance, offspring of altricial birds can modulate their begging 

intensity (i.e. signals conveyed to attract parental care) according to their siblings’ hunger 

level, by reducing signal investment if facing a highly vocal sibling (Marques, Leonard, Horn, & 

Contasti, 2011; Price, 1996; Romano, Caprioli, Boncoraglio, Saino, & Rubolini, 2012; Romano 

et al., 2015; Roulin, Kolliker, & Richner, 2000; H. G. Smith & Montgomerie, 1991). In this case, 

the adjustment of the signals intensities of the two siblings mismatches: increasing in one 

while decreasing in the other. Different mechanisms can favour this kind of cooperative 

behaviour by lowering the risk of cheating and being exploited, such as reciprocation (Trivers, 

1971), threat of punishment (Clutton-Brock & Parker, 1995) and social feedback (Vitousek, 

Zonana, & Safran, 2014). These social mechanisms are part of the social environment that 

shapes the development and the maintenance of signal behaviour.  

The social environment has been considered to play a major role in the learning and 

maintenance of vocal behaviour in vertebrates (Doya & Sejnowski, 1998; Takahashi, Liao, & 

Ghazanfar, 2017; Tschida & Mooney, 2012). Vocal behaviour refers to different aspects of 

communication skills. For instance, the presence of conspecifics during early ontogeny 

influences the acquisition of call/song structure (Adret, 2004; Eales, 1989) and the accurate 

use of call for the good function. Thanks to early social interactions, individuals acquire better 

performance skills in socially competitive situations, such as mating success (A. P. King, White, 

& West, 2003; White, Gersick, Freed-Brown, & Snyder-Mackler, 2010), dominance hierarchy 

formation (Branchi, D'Andrea, Gracci, Santucci, & Alleva, 2009), brood care (Margulis, Nabong, 

Alaks, Walsh, & Lacy, 2005), resource competition (Arnold & Taborsky, 2010). Finally, the 

social environment enables individuals to learn temporal coordination skills, such as call 
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overlap avoidance (Henry, Craig, Lemasson, & Hausberger, 2015; Takahashi, Fenley, & 

Ghazanfar, 2016). Historically considered to be required only during development stage, 

auditory feedback is actually still required after the learning stage to maintain song structure 

(Leonardo & Konishi, 1999) and social skills (Gersick, Snyder-Mackler, & White, 2012). 

Signalling in cooperation 

Among animal interactions that require signal exchange, cooperation is often disregarded 

(Noe, 2006). Although individuals compete for the access to limited resources, altruistic and 

cooperative behaviours such as allogrooming/allopreening and food sharing are widespread 

in nature. Kinship is considered to be the main mechanism that explains the evolutionary 

stability of adopting costly behaviours in favour of another individual without receiving an 

immediate benefit. Altruist behaviour can provide indirect fitness benefit through promoting 

related individuals, whenever the indirect fitness benefits of helping relatives outweigh the 

cost of performing altruistic behaviours (Hamilton, 1964). Cooperative behaviours can also 

provide direct benefit if reciprocated by counterparts (Nowak, 2006; Trivers, 1971; West, 

Griffin, & Gardner, 2007). Reciprocity can be achieved by exchanging the same social service, 

like mutual grooming/preening in mammals and birds (Adiseshan, Adiseshan, & Isbell, 2011; 

Gill, 2012; Radford & Du Plessis, 2006; Roulin et al., 2016a), or food sharing (Carter & 

Wilkinson, 2013; de Waal, 2000), but also by trading different services (de Waal, 1997; 

Fruteau, Voelkl, van Damme, & Noe, 2009; Kern & Radford, 2018; Noe & Hammerstein, 1995; 

Roulin et al., 2016a). Kin selection and reciprocation are non-mutually exclusive mechanisms 

and the interplay between them might be condition-dependent (Lehmann & Keller, 2006; 

Taborsky, Frommen, & Riehl, 2016). Indeed, in the presence of a highly needy relative, it may 

be more beneficial to perform an altruistic behaviour without receiving any direct benefit, 

whereas in other conditions it may be more rewarding to exchange commodities. Signalling is 

expected to help mediate and optimize the decision of whether to provide help to relatives or 

to the neediest individual, and at which rate. For instance in Vervet monkeys (Chlorocebus 

pygerythrus), adults display different signals (i.e. lip smacking and body part presentations) 

that induce longer grooming bouts (van de Waal, Spinelli, Bshary, Ros, & Noe, 2013). Being 

informed about other’s grooming necessity, the partner can optimally decides its investment 

in the cooperative behaviour without being exploited. 
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GOAL AND OUTLINE OF MY THESIS 

In the present PhD thesis, I will examine two complementing aspects of communication: i) 

temporal dynamics of communication among several individuals and the role of social 

feedback to reinforce communication rules and ii) the role of communication in cooperative 

behaviour. These are two key aspects to tackle in order to understand how communication 

mediates conflicts over limited resources in socially grouped animals, even if it entails the 

inherent difficulty of studying interactive communication among several individuals. Direct 

resolution over limited resources has been understudied perhaps because it is neither 

practical nor ethical to study contest behaviour that may end with physical aggression (Briffa 

& Sneddon, 2010; Elwood & Parmigiani, 1992). Offspring of altricial birds offer a good 

opportunity to investigate these aspects because they are dependent on the parental 

provisioning which can be experimentally manipulated. Furthermore, the membership of the 

brood is fixed with no alternative option (i.e. a nestling cannot change brood) and groupmates 

identity are fixed over time (i.e. a stranger nestling cannot invade a nest). 

The topic of communication within family is interesting because each member 

competes at several levels: sex conflict between parents, where parents compete over the 

parental care; parent-offspring conflict, where parents and offspring compete over the 

amount of parental care and; siblings competition, where siblings compete over the sharing 

of parental care (Mock & Parker, 1998; Morales & Velando, 2013; Trivers, 1974). In order to 

resolve these conflicts, the transfer of information between counterparts is inevitable, in 

which case a family can be viewed as a communication network (Kilner & Johnstone, 1997; 

McGregor, 2005). In birds, nestling begging behaviour in the presence of parents is particularly 

conspicuous and was comprehensively studied (Wright & Leonard, 2002). The individual 

showing the most ostentatious begging behaviour induces its parents to feed it in priority, 

because begging conveys honest information about the need for food (Godfray, 1995; Kilner 

& Johnstone, 1997; Smiseth & Amundsen, 2002). However, nestlings may also partly control 

food share by vocally and physically competing between each other (scramble competition: 

Kilner & Johnstone, 1997; Roulin, 2004a). Kin selection is expected to play a key role in the 

evolution of begging strategies by reducing individual selfishness (Godfray, 1995; Hamilton, 

1964; Mock & Parker, 1997; Moreno-Rueda, 2007; Wright & Leonard, 2002). When the 

indirect fitness benefits exceed the direct fitness costs, offspring may allow for a larger share 
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of the food to be allocated to their related hungry competitors (Forbes, 2007; Godfray, 1995; 

Wright & Leonard, 2002). Indeed, young individuals can modulate the intensity of solicitations 

to parents according to their siblings’ motivation by reducing begging investment if facing a 

highly-motivated sibling (Marques et al., 2011; Price, 1996; Romano et al., 2012; Romano et 

al., 2015; Roulin et al., 2000; H. G. Smith & Montgomerie, 1991). This suggests that offspring 

use vocal, postural and physical displays not only to solicit food from parents, but also to 

compete with siblings for the priority access to food. The ‘sibling negotiation hypothesis’ 

predicts that offspring communicate to induce their less needy siblings to withdraw from 

competition over parental food (Roulin, 2002a; Roulin et al., 2000). Nestlings that negotiate 

would optimize their energy investment by communicating according to their own motivation 

to compete but also according to their sibling’s motivation. The least hungry individuals would 

retreat from competition. They would therefore decrease their likelihood of winning the food 

contest, but would save energy that they could reallocate when the likelihood of winning is 

higher (Dreiss, Lahlah, & Roulin, 2010; Johnstone & Roulin, 2003; Roulin, 2002a; Roulin et al., 

2000). The negotiation can thus be considered as a form of altruism as its main function is to 

reduce conflict between genetically related siblings. Negotiation occurs only when sibling 

competition is costly because food is difficult to monopolize (e.g. when asynchronous brood 

leads to size hierarchy) and when there is an asymmetry in food requirement (e.g. when food 

resources brought by parents are indivisible, Johnstone & Roulin, 2003). To date, the sibling 

negotiation hypothesis has been demonstrated in the barn owl, Tyto alba, (Roulin et al., 2000), 

in the spotless starling, Sturnus unicolor (Bulmer, Celis, & Gil, 2007) and has been suggested 

in the barn swallow, Hirundo rustica (Romano, Boncoraglio, Rubolini, & Saino, 2013; Romano 

et al., 2015), but it remains poorly studied in other bird and mammal species. 

My thesis follows on from two decades of studies on vocal negotiation and more 

generally on social interactions in nestling barn owls. In order to properly appreciate the goal 

of my PhD, it is important to highlight the particularity and the complexity of social 

interactions in nestling barn owls. 
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SIBLING INTERACTIONS IN BARN OWL NESTLINGS: THE STATE OF THE ART 

The barn owl is an ideal model to study signalling interactions among siblings as a social 

network. Indeed, broods can comprise up to nine nestlings that interact during a relatively 

long rearing period, i.e. 56 days. Nestlings markedly differ in age and body size because the 

hatching is asynchronous, siblings hatching every 2.5 days (Roulin, 2002b). Nestlings are 

usually full siblings, as extra-pair copulations are very rare in this species (Roulin et al., 2004). 

Therefore, they have a common inclusive fitness interest in avoiding costly competition and 

promoting a large share of resources to hungry siblings. When the younger nestling has 

around 15 days, parents no longer stay in the nest and come only briefly to bring food at night. 

Each nestling eats on average 3 to 4 prey items (small mammals) per night that parents deliver 

(Durant & Handrich, 1998). Although parental visits are unpredictable, with two consecutive 

visits being spaced from a few minutes to hours (pers. obs.), the majority of prey items is 

brought at the beginning of the night (Roulin & Bersier, 2007). Often parents bring food faster 

than nestlings can eat it, which leads to a stock of uneaten food in the nest (Roulin, 2004b). 

Finally, parents distribute the food to the bill of a particular nestling, but because they do not 

dissect rodents, food consumption takes a long time increasing the risk of prey being stolen 

by siblings (Roulin, Colliard, Russier, Fleury, & Grandjean, 2008).  

1. The sibling negotiation 

Nestlings most often swallow the entire prey, thus only one nestling is fed per parental visit. 

This sporadic feeding leads to a high asymmetry in food requirement between siblings. The 

outcome of competition is then predictable with the neediest (i.e. hungriest) nestling being 

more motivated to compete. When parents are hunting, nestlings vocally negotiate for 

priority access to the indivisible prey item next delivered and each one can call up to 

thousands of times per night. The nestling that invests the most during the vocal negotiation 

phase ultimately begs the most when a parent arrives and thus has a higher probability to 

receive the prey item (Dreiss et al., 2010; Roulin, 2001; Roulin et al., 2000). This vocal 

negotiation is directed toward sibling and not toward parents, who forage too far from the 

nest to be able to hear nestlings and do not adjust provisioning rate to the number of 

negotiation calls nestlings emit (Roulin et al., 2000). 
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a. Information content of a nestling’s negotiation call 

Although nestling barn owls emit a single call type, they convey multiple information through 

different call features (for more details see Box 1). A hungry nestling reliably informs its sibling 

about its need by emitting many long calls (i.e. through call rate and duration; Dreiss et al., 

2010; Dreiss, Ruppli, & Roulin, 2014; Roulin, Dreiss, Fioravanti, & Bize, 2009; Roulin et al., 

2000; Ruppli, Dreiss, & Roulin, 2013) and by rapidly emitting a call after a sibling’s call ended 

(i.e. latency time; Dreiss et al., 2010; Dreiss, Ruppli, Faller, & Roulin, 2015). Age differences 

are pronounced between barn owl siblings which may favour older and hence larger nestlings 

to be better able to monopolize food by physically outcompeting their siblings (e.g. T. E. Smith, 

Leonard, & Smith, 2005). Probably in order to compensate their submissiveness, junior barn 

owl nestlings emit more negotiation calls and longer calls than seniors, independently of 

hunger level, as already observed in other species (Cotton, Wright, & Kacelnik, 1999; Dreiss et 

al., 2010; Ruppli et al., 2013; Smiseth & Amundsen, 2002). Finally, nestlings might vocally 

transmit their identity, since call structure is similar within-individual and statistically 

distinguishable between individuals (Dreiss, Ruppli, & Roulin, 2014). Nestlings have therefore 

the opportunity to distinguish, identify and characterize their siblings by age hierarchy and 

hunger level, thanks to the acoustic parameters of their negotiation calls. 
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Box 1 – Barn owl negotiation call structure and information content 
(Dreiss et al., 2010; Dreiss, Ruppli, & Roulin, 2014; Roulin, Dreiss, Fioravanti, & Bize, 2009; Roulin et al., 2000; Ruppli, Dreiss, 
& Roulin, 2013) 

Nestlings emit a single call type that they can modulate in multiple call parameters (Fig. 1). 

 
• Call rate (calls/min) 
• Call duration (sec) 
• Loudness (dB) 
• Loudness deviation (0-1): when above       

0.5, calls are louder at the end than at 
the beginning of the call. 

• Mean frequency (kHz) 
• Frequency variation (kHz): Vibrato of 

the calls 
• Upper frequency (kHz): Pitch of the 

call 
 
 

Figure 1: Frequency distribution (a) and sonogram (b)  
of a negotiation call (taken from Dreiss et al. 2014) 
 
Information available:  

Nestling identity 
 

Statistical discrimination between 
siblings occurred in 62% of the cases for 
6 nestling broods, and in 90% of the 
cases for 2 nestling broods. 
Independently of hunger state, 
individual nestling barn owls 
consistently emitted negotiation calls 
with similar structure (within-individual 
repeatability values ranged from 0.42-
0.71).  
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 Food 
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Food 
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Call duration  (11%)   
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b. Signalling adjustment to sibling vocalization 

The sibling negotiation hypothesis predicts that nestlings should reduce their investment in 

negotiation if their chance to get the next prey is low due to the presence of a hungrier, and 

thus more motivated to compete sibling. Accordingly, nestlings adjust their vocal investment 

to their chance of winning the contest. They refrain from calling (i.e. emit fewer and shorter 

calls) if facing a sibling that emits many long calls and that responds quickly after its own call 

(Dreiss et al., 2010; Roulin et al., 2000; Ruppli et al., 2013), but not if facing a sibling that emits 

loud calls (Appendix 1, Dreiss et al., 2017). Nestling barn owls also adjust their vocalizations 

according to the number of competitors that are calling, investing in vocal negotiation 

preferentially if facing a lower number of nestlings regardless of the global call rate. However, 

they preferentially invest when facing two contestants that emit fewer calls rather than one 

contestant that emits many calls (Ruppli et al., 2013). Nestlings modulate their call rate to a 

larger extent than their call duration, and the variation of an experimental playback call rate 

has a higher effect on nestling vocalization than the variation of call duration (Ruppli et al., 

2013). The most important vocal parameter to outcompete siblings seems therefore to be the 

call rate followed by the call duration. Call rate is also the vocal parameter that is the most 

influenced by hunger level (Dreiss, Ruppli, & Roulin, 2014).  

In social networks, individuals interact repeatedly with each other and can eavesdrop 

other’s social interactions to glean information. A bystander can extract information by 

observing the signalling interaction of social groupmates (e.g. resource holding potential, 

courtship vigour; reviewed in Earley, 2010) and fuse this gleaned information with their 

personal information gained through direct interaction, in order to optimize their social 

decisions (Peake, Terry, McGregor, & Dabelsteen, 2002). Accordingly, nestlings adjust their 

vocalization to the motivation and the age hierarchy of competitors gleaned from a previous 

vocal exchange between competitors, investing in vocal negotiation preferentially if facing a 

younger and less motivated competitor (Dreiss, Ruppli, Faller, & Roulin, 2012).  

Evolutionary theories predict that an individual should rely on memory as long as the 

behavioural decision taken based on the past interaction information derived enough benefits 

to outweigh the cognitive costs of retaining information (Dukas, 1999; Mery & Kawecki, 2005). 

Then, if the information is not relevant anymore because of internal or external change (e.g. 

food supply or individual condition), memorised information should be updated or ignored in 
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the decision process (Dunlap, McLinn, MacCormick, Scott, & Kerr, 2009; McNamara & 

Houston, 1987). Parental visits in barn owl are unpredictable (Roulin & Bersier, 2007) with two 

visits potentially spaced by several hours. Although retaining information on sibling 

motivation could be of high interest to limit the cost of vocal negotiation, nestlings rely on 

memory for only a few minutes (Dreiss et al., 2012). They therefore need to continuously 

display, in order to efficiently trigger the withdrawal of a sibling. Multiple hypotheses can be 

proposed: first, because of assessment error, repetition is required to enhance the estimation 

accuracy of the competitors’ motivation (Payne & Pagel, 1996, 1997). Second, but not 

mutually exclusive, nestling motivation can change over a too short period of time because of 

a parental visit or because of the consumption of a prey item stored in the nest. In such cases, 

the time at which information is accurate is unpredictable, meaning that it might rather be 

safer to rely on short-term vocal negotiation rather than on relative long-term memory. 

c. Coordination rules in communication: turn-taking 

When the decision of giving up a contest relies on information exchanged through signals, the 

accuracy of the information assessment is crucial. The avoidance of signal interference is 

therefore an important component of animal communication (Brumm & Slabbekoorn, 2005), 

and temporal coordination rules might be required. The turn-taking rules firstly described by 

Sacks et al. (Sacks, Schegloff, & Jefferson, 1978) can be considered as a universal feature within 

human cultural differences (Stivers et al., 2009) and is acquired during development even 

before the gestural and linguistic skills (Bateson, 1975). Turn-taking rules apply to dyadic 

interactions as well as group interactions with two main temporal rules: alternation of 

utterance between parties and avoidance of simultaneous speakers. In order to facilitate 

overlap avoidance, interlocutors often change multiple vocal parameters (e.g. frequency 

decreases, gazing changes) and perform particular gestures at the end of their turn so that 

counterparts can anticipate when resuming (Chen, 1970). Although originally thought to have 

evolved only in human species, it appears to be increasingly clear that such temporal 

coordination is shared across taxa (reviewed by Pika, Wilkinson, Kendrick, & Vernes, 2018).  

Overlap avoidance (antiphony) is common in the context of social call exchanges (e.g., 

Carter, Skowronski, Faure, & Fenton, 2008; Ghazanfar, Smith-Rohrberg, Pollen, & Hauser, 

2002; Soltis, Leong, & Savage, 2005; Versace, Endress, & Hauser, 2008), but also in the context 

of competitive call exchanges (Popp, 1989; Stokes & Williams, 1968; Wilson, Ratcliffe, & 



GENERAL INTRODUCTION 
 

19 
 

Mennill, 2016; Yang, Ma, & Slabbekoorn, 2014). Barn owl nestlings overlapped calls five times 

less often than expected by chance, which represents only 2% of the emitted calls. The call 

overlap occurrence was also not correlated with the within-brood age hierarchy, neither to 

the hunger level, which suggests that overlapping is not used by nestlings to demonstrate a 

physical nor a motivation dominance (Dreiss et al., 2013). 

Recently, Takahashi et al. confirmed similarity between turn-taking dynamic in humans 

and in marmoset monkeys (Callithrix jacchus) using a coupled oscillator model (Takahashi, 

Narayanan, & Ghazanfar, 2013). Moreover, in Japanese monkeys (Macaca fuscata) and vervet 

monkeys (Chlorocebus pygerythrus), individuals decrease the fundamental frequency at the 

end of a call bout so that their counterpart can anticipate when they will call and avoid overlap 

(Hauser & Fowler, 1992). The sibling negotiation in barn owls can be separated in two sub-

phases according to the temporal coordination of utterance. Siblings communicate either in 

‘solo’ during which only one nestling calls for at least 10 consecutive calls which represents 

67% of the calls emitted, or through frequent vocal alternation during which individuals 

exchange turns rapidly (Dreiss et al., 2015). A nestling’s solo can be composed by 10 calls or 

by a thousand calls which raises the question of how a sibling decides to resume. When 

communicating in solo, a nestling does not keep its call rate and call duration constant but 

progressively decreases its call rate and increases its call duration. The probability that a 

sibling interrupts a nestling’s solo is higher when a sibling or the playback starts to decrease 

its call duration in addition to the decreasing call rate. These coordination rules were found 

irrespectively of the within-brood age hierarchy and hunger level, suggesting that these 

temporal adjustments can be considered as social convention (Dreiss et al., 2015). 

d. Real-time adjustment rule 

Although the main goal of vocal negotiation is to emit more and longer calls than a sibling, 

when focusing on the short-term adjustment between contestants (i.e. last 10 calls emitted), 

call duration of sibling pairs appears to be positively correlated (i.e. the duration of both 

contestant calls increases and decreases simultaneously) in natural vocal exchanges (Dreiss et 

al., 2015; Roulin et al., 2009). Conversely, the call rate between contestants is negatively 

correlated (Dreiss et al., 2015). Because call duration and rate intermittently increase and 

decrease with time, these positive and negative correlations are not due to an increasing 

hunger level. 
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2. Cooperative behaviour 

Allopreening and food sharing are two cooperative behaviours that are widely performed by 

nestling barn owls (Roulin, Da Silva, & Ruppli, 2012; Roulin et al., 2016b). Allopreening 

behaviour is considered to have a hygienic function as it consists of removing parasites from 

a sibling’s body. This is especially important if it is directed towards body parts that are not 

easily accessible by the receiver nestling (i.e. preenee, Gill, 2012; Villa, Goodman, Ruff, & 

Clayton, 2016). Allopreening may also have a function of appeasement as it may induce a 

reduction of stress level in both the preener and the preenee (Fraser & Bugnyar, 2010; Gill, 

2012; Radford & Du Plessis, 2006). In the latter case, both individuals benefit from performing 

allopreening. The hygienic and appeasement functions are non-mutually exclusive (e.g. 

Radford & Du Plessis, 2006). As mentioned earlier in this introduction, providing benefit to a 

conspecific with a costly behaviour is evolutionary stable as long as the donor received indirect 

benefit by promoting kin rather than non-kin and/or received direct benefit through 

reciprocation of this costly behaviour. Roulin et al. (2016b) showed that nestling barn owls 

reciprocate these cooperative behaviours with a nestling being more inclined to allopreen 

(allofeed) a sibling if in turn this sibling allopreens (allofeeds respectively) it too. Nestlings not 

only trade the same commodities, but will also trade different commodities with a nestling 

being more inclined to allofeed a sibling by whom the said nestling has been allopreened. In 

barn owl nestlings, allofeeding is mainly performed by older nestlings, while allopreening is 

mainly performed by younger ones (Roulin et al., 2012; Roulin et al., 2016b). Older nestlings 

are stronger than younger ones, and might be better in monopolizing food items. Allofeeding 

a sibling may be thus less costly to perform by older than by younger nestlings, which could 

explain this difference of strategy between younger and older siblings. In turn, and potentially 

as a means of compensation, younger siblings allopreen more often than older ones.  
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PART 1: SIGNAL TEMPORAL AND INTENSITY ADJUSTMENT RULES TO 

CONTESTANT’S SIGNALLING 

The first goal of my PhD was to study dynamic aspects of communication among several 

nestlings by experimentally testing the temporal and intensity adjustment rules to 

contestant‘s signalling observed in barn owl nestlings [Chap 1 and 2]. I designed two studies 

to tackle this question. The advances in computer science now enable the development of a 

new generation of interactive playback that improves accuracy in testing hypotheses on the 

temporal dynamics of communication. Playback is considered as “interactive” as soon as one 

parameter is interactive, for instance, when the starting time of the playback depends on the 

focal individual or when the vocal exchange, broadcast by the playback, represents an 

interactive vocal exchange (S. L. King, 2015). By new generation of interactive playback, I mean 

an automated routine that continually takes decisions on the type and timing of calls to 

broadcast based on the animal’s currently changing vocal behaviour. The main limitation of 

this tool is that one needs a good background knowledge on the study model to develop a 

meaningful routine. For barn owls, such a background knowledge is available. 

In natural vocal exchanges between two live siblings, nestlings positively adjust call 

durations to their contestant’s call duration (Dreiss, Ruppli, Antille, & Roulin, 2014) while 

nestlings negatively adjust call rate to their contestant’s call rate (Dreiss et al., 2015). First, we 

investigated the impact of the moment that a nestling decides to escalate vocal competition 

(increases its call duration and its call rate) according to its contestant vocal behaviour 

[Chapter 1]. We designed two different interactive playback experiments, one for testing the 

call duration and another one for testing the call rate (the two main call parameters). The 

playback follows two different strategies: the “matching” strategy in which playback escalates 

when nestling escalates and the “mismatch” strategy in which playback escalates when 

nestling reduces. We hence predicted that a playback following the matching strategy for the 

call duration and the mismatching strategy for the call rate would better succeed in deterring 

the sibling from competing. Because the playback broadcast depends on the vocalization of a 

live nestling, the design enabled us to investigate the impact of these strategies on the 

playback broadcast. To prevent dishonesty, signalling should entail costs, either realization 

costs (the handicap principle: Grafen, 1990; Zahavi, 1974), performance costs or potential 
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costs of cheating (Lachmann, Szamado, & Bergstrom, 2001). We hence predicted that if 

matching duration and mismatching call rate is more efficient to deter a sibling from 

competition, following these strategies should be costlier than not following them in terms of 

number of calls and call duration emitted. 

In a second study [Chapter 2], we investigated the role of social feedback in 

maintaining social coordination rules. Social control through auditory feedback might play a 

role in the low occurrence of call overlap observed during sibling negotiation in barn owl (2%) 

(Dreiss et al., 2013). The aim of my second chapter was to investigate the existence of social 

control if a nestling overlaps the call of a sibling by using an interactive playback that either 

overlaps or does not overlap the call of a nestling, keeping other call parameters constant. It 

has been repeatedly demonstrated that by increasing call rate and duration, nestlings deter 

siblings from competing, thus getting access to the next food item. We therefore predicted 

that when overlapped by a playback call, a nestling should increase its call duration and rate 

in order to give a social feedback.  

PART 2: DOES A NESTLING RELY ON VOCAL NEGOTIATION TO DECIDE TO 

WHOM IT WILL SHARE A PREY? 

Kin selection and reciprocation are non-mutually exclusive mechanisms that explain the 

evolution and maintenance of cooperative behaviours. A previous study showed that nestling 

barn owls trade food sharing with allopreening, a nestling being more inclined to give a prey 

to the sibling by whom it was allopreened the most (Roulin et al., 2016a). However, the 

occurrence of allopreening and food sharing has been studied only under an experimentally 

reduced brood (i.e. two or three nestlings) that was fed ad libitum, and did not take into 

account the level of vocal negotiation. Two aspects have not been investigated in this design: 

the market quality in which the trade is made (i.e. food abundance) and the role of the 

negotiation in the decision process to favour indirect benefit only (feed the neediest sibling) 

over additional direct benefit (feed the sibling that allopreened you). The goal of my third 

chapter was therefore to investigate the cost-to-benefit balance of allofeeding behaviour 

considering prey abundance, vocal negotiation and allopreening behaviour. To this end, I 

monitored these social behaviours (i.e. allopreening, allofeeding and vocal negotiation) during 
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two consecutive nights, in a complete brood in natura under two different feeding conditions 

(food supplemented, or naturally fed by parents). By doing this experiment in natura we 

succeeded in monitoring parental food provisioning, which might also play an important role. 

We predicted that a nestling will be more inclined to allofeed a sibling if the food is abundant 

(food supplemented condition) and/or if parents unequally distribute food by favouring this 

nestling. Second, when a nestling is facing the choice of to whom it will provide food, a nestling 

should favour the sibling that preened it the most except if there is a highly needy sibling 

(highly vocal). 

REFERENCES 

Adiseshan, A., Adiseshan, T., & Isbell, L. A. (2011). Affiliative Relationships and Reciprocity Among Adult 
Male Bonnet Macaques (Macaca radiata) at Arunachala Hill, India. American Journal of 
Primatology, 73(11), 1107-1113. https://doi.org/10.1002/ajp.20987 

Adret, P. (2004). Vocal imitation in blindfolded zebra finches (Taeniopygia guttata) is facilitated in the 
presence of a non-singing conspecific female. Journal of Ethology, 22(1), 29-35. 
https://doi.org/10.1007/s10164-003-0094-y 

Arnold, C., & Taborsky, B. (2010). Social experience in early ontogeny has lasting effects on social skills 
in cooperatively breeding cichlids. Animal Behaviour, 79(3), 621-630. 
https://doi.org/10.1016/j.anbehav.2009.12.008 

Bateson, M. C. (1975). Mother-Infant Exchanges - Epigenesis of Conversational Interaction. Annals of 
the New York Academy of Sciences, 263(Sep19), 101-113. https://doi.org/10.1111/j.1749-
6632.1975.tb41575.x 

Bell, M. B. (2008). Strategic adjustment of begging effort by banded mongoose pups. Proceedings of 
the Royal Society B-Biological Sciences, 275(1640), 1313-1319. 
https://doi.org/10.1098/rspb.2008.0173 

Bishop, D. T., & Cannings, C. (1978). Generalized War of Attrition. Journal of Theoretical Biology, 70(1), 
85-124. https://doi.org/10.1016/0022-5193(78)90304-1 

Branchi, I., D'Andrea, I., Gracci, F., Santucci, D., & Alleva, E. (2009). Birth spacing in the mouse 
communal nest shapes adult emotional and social behavior. Physiology & Behavior, 96(4-5), 
532-539. https://doi.org/10.1016/j.physbeh.2008.12.003 

Briffa, M., Elwood, R. W., & Dick, J. T. A. (1998). Analysis of repeated signals during shell fights in the 
hermit crab Pagurus bernhardus. Proceedings of the Royal Society B-Biological Sciences, 
265(1404), 1467-1474. https://doi.org/10.1098/rspb.1998.0459 

Briffa, M., & Sneddon, L. U. (2010). Contest behavior. Evolutionary behavioral ecology, 246e265.  
Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. Advances in the Study of 

Behavior, Vol 35, 35, 151-209. https://doi.org/10.1016/S0065-3454(05)35004-2 
Bulmer, E., Celis, P., & Gil, D. (2007). Parent-absent begging: evidence for sibling honesty and 

cooperation in the spotless starling (Sturnus unicolor). Behavioral Ecology, 19(2), 279-284. 
https://doi.org/10.1093/beheco/arm134 

Cant, M. A., & Young, A. J. (2013). Resolving social conflict among females without overt aggression. 
Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1631). 
https://doi.org/10.1098/rstb.2013.0076 

Carazo, P., & Font, E. (2010). Putting information back into biological communication. Journal of 
Evolutionary Biology, 23(4), 661-669. https://doi.org/10.1111/j.1420-9101.2010.01944.x 

https://doi.org/10.1002/ajp.20987
https://doi.org/10.1007/s10164-003-0094-y
https://doi.org/10.1016/j.anbehav.2009.12.008
https://doi.org/10.1111/j.1749-6632.1975.tb41575.x
https://doi.org/10.1111/j.1749-6632.1975.tb41575.x
https://doi.org/10.1098/rspb.2008.0173
https://doi.org/10.1016/0022-5193(78)90304-1
https://doi.org/10.1016/j.physbeh.2008.12.003
https://doi.org/10.1098/rspb.1998.0459
https://doi.org/10.1016/S0065-3454(05)35004-2
https://doi.org/10.1093/beheco/arm134
https://doi.org/10.1098/rstb.2013.0076
https://doi.org/10.1111/j.1420-9101.2010.01944.x


GENERAL INTRODUCTION 
 

24 
 

Carter, G. G., Skowronski, M. D., Faure, P. A., & Fenton, B. (2008). Antiphonal calling allows individual 
discrimination in white-winged vampire bats. Animal Behaviour, 76(4), 1343-1355. 
https://doi.org/10.1016/j.anbehav.2008.04.023 

Carter, G. G., & Wilkinson, G. S. (2013). Food sharing in vampire bats: reciprocal help predicts donations 
more than relatedness or harassment. Proceedings of the Royal Society B-Biological Sciences, 
280(1753). https://doi.org/10.1098/rspb.2012.2573 

Chen, M. (1970). Vowel length variation as a function of the voicing of the consonant environment. 
Phonetica, 22(3), 129-159.  

Clutton-Brock, T. H., & Parker, G. A. (1995). Punishment in Animal Societies. Nature, 373(6511), 209-
216. https://doi.org/10.1038/373209a0 

Cotton, P. A., Wright, J., & Kacelnik, A. (1999). Chick begging strategies in relation to brood hierarchies 
and hatching asynchrony. American Naturalist, 153(4), 412-420. 
https://doi.org/10.1086/303178 

de Waal, F. B. M. (1997). The chimpanzee's service economy: Food for grooming. Evolution and Human 
Behavior, 18(6), 375-386. https://doi.org/10.1016/S1090-5138(97)00085-8 

de Waal, F. B. M. (2000). The first kiss: foundations of conflict resolution research in animals: University 
of California Press. 

Doya, K., & Sejnowski, T. J. (1998). A computational model of birdsong learning by auditory experience 
and auditory feedback. Central Auditory Processing and Neural Modeling, 77-88.  

Dreiss, A. N., Ducouret, P., Ruppli, C. A., Rossier, V., Hernandez, L., Falourd, X., . . . Roulin, A. (2017). No 
need to shout: Effect of signal loudness on sibling communication in barn owls Tyto alba. 
Ethology, 123(6-7), 419-424. https://doi.org/10.1111/eth.12612 

Dreiss, A. N., Lahlah, N., & Roulin, A. (2010). How siblings adjust sib–sib communication and begging 
signals to each other. Animal Behaviour, 80(6), 1049-1055. 
https://doi.org/10.1016/j.anbehav.2010.09.012 

Dreiss, A. N., Ruppli, C. A., Antille, S., & Roulin, A. (2014). Information Retention During Competitive 
Interactions: Siblings Need to Constantly Repeat Vocal Displays. Evolutionary Biology, 42(1), 
63-74. https://doi.org/10.1007/s11692-014-9299-y 

Dreiss, A. N., Ruppli, C. A., Faller, C., & Roulin, A. (2012). Big brother is watching you: eavesdropping to 
resolve family conflicts. Behavioral Ecology, 24(3), 717-722. 
https://doi.org/10.1093/beheco/ars210 

Dreiss, A. N., Ruppli, C. A., Faller, C., & Roulin, A. (2015). Social rules govern vocal competition in the 
barn owl. Animal Behaviour, 102, 95-107. https://doi.org/10.1016/j.anbehav.2014.12.021 

Dreiss, A. N., Ruppli, C. A., Oberli, F., Antoniazza, S., Henry, I., & Roulin, A. (2013). Barn owls do not 
interrupt their siblings. Animal Behaviour, 86(1), 119-126. 
https://doi.org/10.1016/j.anbehav.2013.04.019 

Dreiss, A. N., Ruppli, C. A., & Roulin, A. (2014). Individual vocal signatures in barn owl nestlings: does 
individual recognition have an adaptive role in sibling vocal competition? Journal of 
Evolutionary Biology, 27(1), 63-75. https://doi.org/10.1111/jeb.12277 

Dukas, R. (1999). Costs of memory: Ideas and predictions. Journal of Theoretical Biology, 197(1), 41-
50. https://doi.org/10.1006/jtbi.1998.0856 

Dunlap, A. S., McLinn, C. M., MacCormick, H. A., Scott, M. E., & Kerr, B. (2009). Why some memories 
do not last a lifetime: dynamic long-term retrieval in changing environments. Behavioral 
Ecology, 20(5), 1096-1105. https://doi.org/10.1093/beheco/arp102 

Durant, J. M., & Handrich, Y. (1998). Growth and food requirement flexibility in captive chicks of the 
European barn owl (Tyto alba). Journal of Zoology, 245(2), 137-145. 
https://doi.org/10.1111/j.1469-7998.1998.tb00083.x 

Eales, L. A. (1989). The Influences of Visual and Vocal Interaction on Song Learning in Zebra Finches. 
Animal Behaviour, 37, 507-508. https://doi.org/10.1016/0003-3472(89)90097-3 

Earley, R. L. (2010). Social eavesdropping and the evolution of conditional cooperation and cheating 
strategies. Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1553), 
2675-2686. https://doi.org/10.1098/rstb.2010.0147 

https://doi.org/10.1016/j.anbehav.2008.04.023
https://doi.org/10.1098/rspb.2012.2573
https://doi.org/10.1038/373209a0
https://doi.org/10.1086/303178
https://doi.org/10.1016/S1090-5138(97)00085-8
https://doi.org/10.1111/eth.12612
https://doi.org/10.1016/j.anbehav.2010.09.012
https://doi.org/10.1007/s11692-014-9299-y
https://doi.org/10.1093/beheco/ars210
https://doi.org/10.1016/j.anbehav.2014.12.021
https://doi.org/10.1016/j.anbehav.2013.04.019
https://doi.org/10.1111/jeb.12277
https://doi.org/10.1006/jtbi.1998.0856
https://doi.org/10.1093/beheco/arp102
https://doi.org/10.1111/j.1469-7998.1998.tb00083.x
https://doi.org/10.1016/0003-3472(89)90097-3
https://doi.org/10.1098/rstb.2010.0147


GENERAL INTRODUCTION 
 

25 
 

Elwood, R. W., & Parmigiani, S. (1992). Ethical Recommendations for Workers on Aggression and 
Predation in Animals. Aggressive Behavior, 18(2), 139-142. https://doi.org/10.1002/1098-
2337(1992)18:2<139::Aid-Ab2480180207>3.0.Co;2-Q 

Enquist, M., & Leimar, O. (1983). Evolution of Fighting Behavior - Decision Rules and Assessment of 
Relative Strength. Journal of Theoretical Biology, 102(3), 387-410. 
https://doi.org/10.1016/0022-5193(83)90376-4 

Ficken, R. W., Ficken, M. S., & Hailman, J. P. (1974). Temporal Pattern Shifts to Avoid Acoustic 
Interference in Singing Birds. Science, 183(4126), 762-763. 
https://doi.org/10.1126/science.183.4126.762 

Foley, M., Forber, P., Smead, R., & Riedl, C. (2018). Conflict and convention in dynamic networks. 
Journal of the Royal Society Interface, 15(140). https://doi.org/10.1098/rsif.2017.0835 

Forbes, S. (2007). Sibling symbiosis in nestling birds. Auk, 124(1), 1-10. https://doi.org/10.1642/0004-
8038(2007)124[1:Ssinb]2.0.Co;2 

Fraser, O. N., & Bugnyar, T. (2010). The quality of social relationships in ravens. Animal Behaviour, 
79(4), 927-933. https://doi.org/10.1016/j.anbehav.2010.01.008 

Fruteau, C., Voelkl, B., van Damme, E., & Noe, R. (2009). Supply and demand determine the market 
value of food providers in wild vervet monkeys. Proceedings of the National Academy of 
Sciences of the United States of America, 106(29), 12007-12012. 
https://doi.org/10.1073/pnas.0812280106 

Gersick, A. S., Snyder-Mackler, N., & White, D. J. (2012). Ontogeny of social skills: social complexity 
improves mating and competitive strategies in male brown-headed cowbirds. Animal 
Behaviour, 83(5), 1171-1177. https://doi.org/10.1016/j.anbehav.2012.02.005 

Ghazanfar, A. A., Smith-Rohrberg, D., Pollen, A. A., & Hauser, M. D. (2002). Temporal cues in the 
antiphonal long-calling behaviour of cottontop tamarins. Animal Behaviour, 64(3), 427-438. 
https://doi.org/10.1006/anbe.2002.3074 

Gill, S. A. (2012). Strategic use of allopreening in family-living wrens. Behavioral Ecology and 
Sociobiology, 66(5), 757-763. https://doi.org/10.1007/s00265-012-1323-6 

Godfray, H. C. J. (1995). Signaling of Need between Parents and Young: Parent-Offspring Conflict and 
Sibling Rivalry. The American Naturalist, 146(1), 1-24. https://doi.org/10.1086/285784 

Grafen, A. (1990). Biological Signals as Handicaps. Journal of Theoretical Biology, 144(4), 517-546. 
https://doi.org/10.1016/S0022-5193(05)80088-8 

Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of theoretical biology, 
7(1), 17-52.  

Hammerstein, P., & Parker, G. A. (1982). The Asymmetric War of Attrition. Journal of Theoretical 
Biology, 96(4), 647-682. https://doi.org/10.1016/0022-5193(82)90235-1 

Hauser, M. D., & Fowler, C. A. (1992). Fundamental frequency declination is not unique to human 
speech: Evidence from nonhuman primates. The Journal of the Acoustical Society of America, 
91(1), 363-369.  

Henry, L., Craig, A. J., Lemasson, A., & Hausberger, M. (2015). Social coordination in animal vocal 
interactions. Is there any evidence of turn-taking? The starling as an animal model. Frontiers 
in Psychology, 6, 1416. https://doi.org/10.3389/fpsyg.2015.01416 

Hofmann, H. A., & Schildberger, K. (2001). Assessment of strength and willingness to fight during 
aggressive encounters in crickets. Animal Behaviour, 62, 337-348. 
https://doi.org/10.1006/anbe.2001.1746 

Johnstone, R. A., & Roulin, A. (2003). Sibling negotiation. Behavioral Ecology, 14(6), 780-786. 
https://doi.org/10.1093/beheco/arg024 

Keil, P. L., & Watson, P. J. (2010). Assessment of self, opponent and resource during male-male contests 
in the sierra dome spider, Neriene litigiosa: Linyphiidae. Animal Behaviour, 80(5), 809-820. 
https://doi.org/10.1016/j.anbehav.2010.07.013 

Kern, J. M., & Radford, A. N. (2018). Experimental evidence for delayed contingent cooperation among 
wild dwarf mongooses. Proceedings of the National Academy of Sciences of the United States 
of America, 115(24), 6255-6260. https://doi.org/10.1073/pnas.1801000115 

https://doi.org/10.1002/1098-2337(1992)18:2%3c139::Aid-Ab2480180207%3e3.0.Co;2-Q
https://doi.org/10.1002/1098-2337(1992)18:2%3c139::Aid-Ab2480180207%3e3.0.Co;2-Q
https://doi.org/10.1016/0022-5193(83)90376-4
https://doi.org/10.1126/science.183.4126.762
https://doi.org/10.1098/rsif.2017.0835
https://doi.org/10.1642/0004-8038(2007)124%5b1:Ssinb%5d2.0.Co;2
https://doi.org/10.1642/0004-8038(2007)124%5b1:Ssinb%5d2.0.Co;2
https://doi.org/10.1016/j.anbehav.2010.01.008
https://doi.org/10.1073/pnas.0812280106
https://doi.org/10.1016/j.anbehav.2012.02.005
https://doi.org/10.1006/anbe.2002.3074
https://doi.org/10.1007/s00265-012-1323-6
https://doi.org/10.1086/285784
https://doi.org/10.1016/S0022-5193(05)80088-8
https://doi.org/10.1016/0022-5193(82)90235-1
https://doi.org/10.3389/fpsyg.2015.01416
https://doi.org/10.1006/anbe.2001.1746
https://doi.org/10.1093/beheco/arg024
https://doi.org/10.1016/j.anbehav.2010.07.013
https://doi.org/10.1073/pnas.1801000115


GENERAL INTRODUCTION 
 

26 
 

Kilner, R., & Johnstone, R. A. (1997). Begging the question: are offspring solicitation behaviours signals 
of needs? Trends in Ecology & Evolution, 12(1), 11-15. https://doi.org/10.1016/S0169-
5347(96)10061-6 

King, A. P., White, D. J., & West, M. J. (2003). Female proximity stimulates development of male 
competition in juvenile brown-headed cowbirds, Molothrus ater. Animal Behaviour, 66, 817-
828. https://doi.org/10.1006/ambe.2003.2280 

King, S. L. (2015). You talkin' to me? Interactive playback is a powerful yet underused tool in animal 
communication research. Biology Letters, 11(7). https://doi.org/10.1098/rsbl.2015.0403 

Lachmann, M., Szamado, S., & Bergstrom, C. T. (2001). Cost and conflict in animal signals and human 
language. Proceedings of the National Academy of Sciences of the United States of America, 
98(23), 13189-13194. https://doi.org/10.1073/pnas.231216498 

Lehmann, L., & Keller, L. (2006). The evolution of cooperation and altruism - a general framework and 
a classification of models. Journal of Evolutionary Biology, 19(5), 1365-1376. 
https://doi.org/10.1111/j.1420-9101.2006.01119.x 

Leonardo, A., & Konishi, M. (1999). Decrystallization of adult birdsong by perturbation of auditory 
feedback. Nature, 399(6735), 466-470. https://doi.org/10.1038/20933 

Margulis, S. W., Nabong, M., Alaks, G., Walsh, A., & Lacy, R. C. (2005). Effects of early experience on 
subsequent parental behaviour and reproductive success in oldfield mice, Peromyscus 
polionotus. Animal Behaviour, 69, 627-634. https://doi.org/10.1016/j.anbehav.2004.04.021 

Marques, P. A. M., Leonard, M. L., Horn, A. G., & Contasti, A. (2011). How Nestling Tree Swallows 
(Tachycineta bicolor) Integrate their Responses to Hunger and Signalling by Nestmates. 
Ethology, 117(2), 163-170. https://doi.org/10.1111/j.1439-0310.2010.01859.x 

Maynard Smith, J. (1976). Evolution and the theory of games: in situations characterized by conflict of 
interest, the best strategy to adopt depends on what others are doing. American scientist, 
64(1), 41-45.  

McGregor, P. K. (2005). Animal communication networks: Cambridge University Press. 
McNamara, J. M., Gasson, C. E., & Houston, A. I. (1999). Incorporating rules for responding into 

evolutionary games. Nature, 401(6751), 368-371. https://doi.org/10.1038/43872 
McNamara, J. M., & Houston, A. I. (1987). Memory and the Efficient Use of Information. Journal of 

Theoretical Biology, 125(4), 385-395. https://doi.org/10.1016/S0022-5193(87)80209-6 
Mercier, J. L., & Dejean, A. (1996). Ritualized behavior during competition for food between two 

Formicinae. Insectes Sociaux, 43(1), 17-29. https://doi.org/10.1007/Bf01253952 
Mery, F., & Kawecki, T. J. (2005). A cost of long-term memory in Drosophila. Science, 308(5725), 1148-

1148. https://doi.org/10.1126/science.111131 
MestertonGibbons, M., Marden, J. H., & Dugatkin, L. A. (1996). On wars of attrition without 

assessment. Journal of Theoretical Biology, 181(1), 65-83. 
https://doi.org/10.1006/jtbi.1996.0115 

Mock, D. W., & Parker, G. A. (1997). The evolution of sibling rivalry. Oxford Series in Ecology and 
Evolution.  

Mock, D. W., & Parker, G. A. (1998). Siblicide, family conflict and the evolutionary limits of selfishness. 
Animal Behaviour, 56, 1-10. https://doi.org/10.1006/anbe.1998.0842 

Morales, J., & Velando, A. (2013). Signals in family conflicts. Animal Behaviour, 86(1), 11-16. 
https://doi.org/10.1016/j.anbehav.2013.04.001 

Moreno-Rueda, G. (2007). Is there empirical evidence for the cost of begging? Journal of Ethology, 
25(3), 215-222. https://doi.org/10.1007/s10164-006-0020-1 

Munn, C. A. (1986). Birds That Cry Wolf. Nature, 319(6049), 143-145. 
https://doi.org/10.1038/319143a0 

Noe, R. (2006). Cooperation experiments: coordination through communication versus acting apart 
together. Animal Behaviour, 71, 1-18. https://doi.org/10.1016/j.anbehav.2005.03.037 

Noe, R., & Hammerstein, P. (1995). Biological Markets. Trends in Ecology & Evolution, 10(8), 336-339. 
https://doi.org/10.1016/S0169-5347(00)89123-5 

https://doi.org/10.1016/S0169-5347(96)10061-6
https://doi.org/10.1016/S0169-5347(96)10061-6
https://doi.org/10.1006/ambe.2003.2280
https://doi.org/10.1098/rsbl.2015.0403
https://doi.org/10.1073/pnas.231216498
https://doi.org/10.1111/j.1420-9101.2006.01119.x
https://doi.org/10.1038/20933
https://doi.org/10.1016/j.anbehav.2004.04.021
https://doi.org/10.1111/j.1439-0310.2010.01859.x
https://doi.org/10.1038/43872
https://doi.org/10.1016/S0022-5193(87)80209-6
https://doi.org/10.1007/Bf01253952
https://doi.org/10.1126/science.111131
https://doi.org/10.1006/jtbi.1996.0115
https://doi.org/10.1006/anbe.1998.0842
https://doi.org/10.1016/j.anbehav.2013.04.001
https://doi.org/10.1007/s10164-006-0020-1
https://doi.org/10.1038/319143a0
https://doi.org/10.1016/j.anbehav.2005.03.037
https://doi.org/10.1016/S0169-5347(00)89123-5


GENERAL INTRODUCTION 
 

27 
 

Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science, 314(5805), 1560-1563. 
https://doi.org/10.1126/science.1133755 

Oliveira, R. F., McGregor, P. K., & Latruffe, C. (1998). Know thine enemy: fighting fish gather 
information from observing conspecific interactions. Proceedings of the Royal Society B-
Biological Sciences, 265(1401), 1045-1049. https://doi.org/10.1098/rspb.1998.0397 

Paquet, P. C., & Fuller, W. A. (1990). Scent Marking and Territoriality in Wolves of Riding Mountain 
National-Park. Chemical Signals in Vertebrates 5, 5, 394-400.  

Parker, G. A. (1974). Assessment Strategy and Evolution of Fighting Behavior. Journal of Theoretical 
Biology, 47(1), 223-243. https://doi.org/10.1016/0022-5193(74)90111-8 

Patricelli, G. L., Krakauer, A. H., & McElreath, R. (2011). Assets and tactics in a mating market: Economic 
models of negotiation offer insights into animal courtship dynamics on the lek. Current 
Zoology, 57(2), 225-236.  

Patricelli, G. L., Uy, J. A. C., Walsh, G., & Borgia, G. (2002). Male displays adjusted to female's response 
- Macho courtship by the satin bowerbird is tempered to avoid frightening the female. Nature, 
415(6869), 279-280. https://doi.org/10.1038/415279a 

Payne, R. J. H. (1998). Gradually escalating fights and displays: the cumulative assessment model. 
Animal Behaviour, 56, 651-662. https://doi.org/10.1006/anbe.1998.0835 

Payne, R. J. H., & Pagel, M. (1996). Escalation and time costs in displays of endurance. Journal of 
Theoretical Biology, 183(2), 185-193. https://doi.org/10.1006/jtbi.1996.0212 

Payne, R. J. H., & Pagel, M. (1997). Why do animals repeat displays? Animal Behaviour, 54, 109-119. 
https://doi.org/10.1006/anbe.1996.0391 

Peake, T. M., Terry, A. M. R., McGregor, P. K., & Dabelsteen, T. (2002). Do great tits assess rivals by 
combining direct experience with information gathered by eavesdropping? Proceedings of the 
Royal Society B-Biological Sciences, 269(1503), 1925-1929. 
https://doi.org/10.1098/rspb.2002.2112 

Pika, S., Wilkinson, R., Kendrick, K. H., & Vernes, S. C. (2018). Taking turns: bridging the gap between 
human and animal communication. Proceedings of the Royal Society B-Biological Sciences, 
285(1880). https://doi.org/10.1098/rspb.2018.0598 

Popp, J. W. (1989). Temporal Aspects of Singing Interactions among Territorial Ovenbirds (Seiurus 
Aurocapillus). Ethology, 82(2), 127-133. https://doi.org/10.1111/j.1439-0310.1989.tb00493.x 

Price, K. (1996). Begging as competition for food in Yellow-headed Blackbirds. Auk, 113(4), 963-967. 
https://doi.org/10.2307/4088883 

Radford, A. N., & Du Plessis, M. A. (2006). Dual function of allopreening in the cooperatively breeding 
green woodhoopoe, Phoeniculus purpureus. Behavioral Ecology and Sociobiology, 61(2), 221-
230. https://doi.org/10.1007/s00265-006-0253-6 

Reddon, A. R., Voisin, M. R., Menon, N., Marsh-Rollo, S. E., Wong, M. Y., & Balshine, S. (2011). Rules of 
engagement for resource contests in a social fish. Animal Behaviour, 82(1), 93-99. 
https://doi.org/10.1016/j.anbehav.2011.04.003 

Rich, T. J., & Hurst, J. L. (1998). Scent marks as reliable signals of the competitive ability of mates. 
Animal Behaviour, 56, 727-735. https://doi.org/10.1006/anbe.1998.0803 

Roberts, G. (2005). Cooperation through interdependence. Animal Behaviour, 70, 901-908. 
https://doi.org/10.1016/j.anbehav.2005.02.006 

Romano, A., Boncoraglio, G., Rubolini, D., & Saino, N. (2013). Parent-absent signalling of need and its 
consequences for sibling competition in the barn swallow. Behavioral Ecology and 
Sociobiology, 67(5), 851-859. https://doi.org/10.1007/s00265-013-1508-7 

Romano, A., Caprioli, M., Boncoraglio, G., Saino, N., & Rubolini, D. (2012). With a little help from my 
kin: barn swallow nestlings modulate solicitation of parental care according to nestmates' 
need. Journal of Evolutionary Biology, 25(9), 1703-1710. https://doi.org/10.1111/j.1420-
9101.2012.02571.x 

Romano, A., Rubolini, D., Caprioli, M., Musitelli, F., Ambrosini, R., & Saino, N. (2015). Parent-Absent 
Begging in Barn Swallow Broods: Causes of Individual Variation and Effects on Sibling 

https://doi.org/10.1126/science.1133755
https://doi.org/10.1098/rspb.1998.0397
https://doi.org/10.1016/0022-5193(74)90111-8
https://doi.org/10.1038/415279a
https://doi.org/10.1006/anbe.1998.0835
https://doi.org/10.1006/jtbi.1996.0212
https://doi.org/10.1006/anbe.1996.0391
https://doi.org/10.1098/rspb.2002.2112
https://doi.org/10.1098/rspb.2018.0598
https://doi.org/10.1111/j.1439-0310.1989.tb00493.x
https://doi.org/10.2307/4088883
https://doi.org/10.1007/s00265-006-0253-6
https://doi.org/10.1016/j.anbehav.2011.04.003
https://doi.org/10.1006/anbe.1998.0803
https://doi.org/10.1016/j.anbehav.2005.02.006
https://doi.org/10.1007/s00265-013-1508-7
https://doi.org/10.1111/j.1420-9101.2012.02571.x
https://doi.org/10.1111/j.1420-9101.2012.02571.x


GENERAL INTRODUCTION 
 

28 
 

Interactions and Food Allocation. Evolutionary Biology, 42(4), 432-442. 
https://doi.org/10.1007/s11692-015-9336-5 

Roulin, A. (2001). Food supply differentially affects sibling negotiation and competition in the barn owl 
( Tyto alba ). Behavioral Ecology and Sociobiology, 49(6), 514-519. 
https://doi.org/10.1007/s002650100322 

Roulin, A. (2002a). The sibling negotiation hypothesis The evolution of begging (pp. 107-126): Springer. 
Roulin, A. (2002b). Tyto alba Barn owl.  
Roulin, A. (2004a). Effects of hatching asynchrony on sibling negotiation, begging, jostling for position 

and within-brood food allocation in the barn owl, Tyto alba. Evolutionary Ecology Research, 
6(7), 1083-1098.  

Roulin, A. (2004b). The function of food stores in bird nests: Observations and experiments in the Barn 
Owl Tyto alba. Ardea, 92(1), 69-78.  

Roulin, A., & Bersier, L. F. (2007). Nestling barn owls beg more intensely in the presence of their mother 
than in the presence of their father. Animal Behaviour, 74, 1099-1106. 
https://doi.org/10.1016/j.anbehav.2007.01.027 

Roulin, A., Colliard, C., Russier, F., Fleury, M., & Grandjean, V. (2008). Sib-sib communication and the 
risk of prey theft in the barn owl Tyto alba. Journal of Avian Biology, 39(6), 593-598. 
https://doi.org/10.1111/j.1600-048X.2008.04472.x 

Roulin, A., Da Silva, A., & Ruppli, C. A. (2012). Dominant nestlings displaying female-like melanin 
coloration behave altruistically in the barn owl. Animal Behaviour, 84(5), 1229-1236. 
https://doi.org/10.1016/j.anbehav.2012.08.033 

Roulin, A., Des Monstiers, B., Ifrid, E., Da Silva, A., Genzoni, E., & Dreiss, A. N. (2016a). Reciprocal 
preening and food sharing in colour-polymorphic nestling barn owls. Journal of Evolutionary 
Biology, 29(2), 380-394. https://doi.org/10.1111/jeb.12793 

Roulin, A., Des Monstiers, B., Ifrid, E., Da Silva, A., Genzoni, E., & Dreiss, A. N. (2016b). Reciprocal 
preening and food sharing in colour polymorphic nestling barn owls. Journal of Evolutionary 
Biology, 29(2), 380-394. https://doi.org/10.1111/jeb.12793 

Roulin, A., Dreiss, A. N., Fioravanti, C., & Bize, P. (2009). Vocal sib–sib interactions: how siblings adjust 
signalling level to each other. Animal Behaviour, 77(3), 717-725. 
https://doi.org/10.1016/j.anbehav.2008.12.004 

Roulin, A., Kolliker, M., & Richner, H. (2000). Barn owl (Tyto alba) siblings vocally negotiate resources. 
Proceedings of the Royal Society B-Biological Sciences, 267(1442), 459-463. 
https://doi.org/10.1098/rspb.2000.1022 

Roulin, A., Muller, W., Sasvari, L., Dijkstra, C., Ducrest, A. L., Riols, C., . . . Lubjuhn, T. (2004). Extra-pair 
paternity, testes size and testosterone level in relation to colour polymorphism in the barn owl 
Tyto alba. Journal of Avian Biology, 35(6), 492-500. https://doi.org/10.1111/j.0908-
8857.2004.03294.x 

Ruppli, C. A., Dreiss, A. N., & Roulin, A. (2013). Efficiency and Significance of Multiple Vocal Signals in 
Sibling Competition. Evolutionary Biology, 40(4), 579-588. https://doi.org/10.1007/s11692-
013-9233-8 

Sacks, H., Schegloff, E. A., & Jefferson, G. (1978). A simplest systematics for the organization of turn 
taking for conversation Studies in the organization of conversational interaction (pp. 7-55): 
Elsevier. 

Schwartz, J. J., & Freeberg, T. M. (2008). Acoustic interaction in animal groups: Signaling in noisy and 
social contexts. Journal of Comparative Psychology, 122(3), 231. 
https://doi.org/10.1037/0735-7036.122.3.231 

Senar, J. C. (2006). Color displays as intrasexual signals of aggression and dominance. Bird coloration, 
2, 87-136.  

Smiseth, P. T., & Amundsen, T. (2002). Senior and junior nestlings in asynchronous bluethroat broods 
differ in their effectiveness of begging. Evolutionary Ecology Research, 4(8), 1177-1189.  

Smith, H. G., & Montgomerie, R. (1991). Nestling American Robins Compete with Siblings by Begging. 
Behavioral Ecology and Sociobiology, 29(4), 307-312. https://doi.org/10.1007/Bf00163989 

https://doi.org/10.1007/s11692-015-9336-5
https://doi.org/10.1007/s002650100322
https://doi.org/10.1016/j.anbehav.2007.01.027
https://doi.org/10.1111/j.1600-048X.2008.04472.x
https://doi.org/10.1016/j.anbehav.2012.08.033
https://doi.org/10.1111/jeb.12793
https://doi.org/10.1111/jeb.12793
https://doi.org/10.1016/j.anbehav.2008.12.004
https://doi.org/10.1098/rspb.2000.1022
https://doi.org/10.1111/j.0908-8857.2004.03294.x
https://doi.org/10.1111/j.0908-8857.2004.03294.x
https://doi.org/10.1007/s11692-013-9233-8
https://doi.org/10.1007/s11692-013-9233-8
https://doi.org/10.1037/0735-7036.122.3.231
https://doi.org/10.1007/Bf00163989


GENERAL INTRODUCTION 
 

29 
 

Smith, T. E., Leonard, M. L., & Smith, B. D. (2005). Provisioning rules and chick competition in 
asynchronously hatching common terns (Sterna hirundo). Behavioral Ecology and 
Sociobiology, 58(5), 456-465. https://doi.org/10.1007/s00265-005-0956-0 

Soltis, J., Leong, K., & Savage, A. (2005). African elephant vocal communication I: antiphonal calling 
behaviour among affiliated females. Animal Behaviour, 70(3), 579-587. 
https://doi.org/10.1016/j.anbehav.2004.11.015 

Stivers, T., Enfield, N. J., Brown, P., Englert, C., Hayashi, M., Heinemann, T., . . . Yoon, K.-E. (2009). 
Universals and cultural variation in turn-taking in conversation. Proceedings of the National 
Academy of Sciences, 106(26), 10587-10592.  

Stokes, A. W., & Williams, H. W. (1968). Antiphonal Calling in Quail. The Auk, 85(1), 83-89. 
https://doi.org/10.2307/4083626 

Taborsky, M., Frommen, J. G., & Riehl, C. (2016). Correlated pay-offs are key to cooperation. 
Philosophical Transactions of the Royal Society B-Biological Sciences, 371(1687). 
https://doi.org/10.1098/rstb.2015.0084 

Takahashi, D. Y., Fenley, A. R., & Ghazanfar, A. A. (2016). Early development of turn-taking with parents 
shapes vocal acoustics in infant marmoset monkeys. Philosophical Transactions of the Royal 
Society B-Biological Sciences, 371(1693). https://doi.org/10.1098/rstb.2015.0370 

Takahashi, D. Y., Liao, D. A., & Ghazanfar, A. A. (2017). Vocal Learning via Social Reinforcement by 
Infant Marmoset Monkeys. Current Biology, 27(12), 1844-+. 
https://doi.org/10.1016/j.cub.2017.05.004 

Takahashi, D. Y., Narayanan, D. Z., & Ghazanfar, A. A. (2013). Coupled oscillator dynamics of vocal turn-
taking in monkeys. Current Biology, 23(21), 2162-2168. 
https://doi.org/10.1016/j.cub.2013.09.005 

Todt, D., & Naguib, M. (2000). Vocal interactions in birds: The use of song as a model in communication. 
Advances in the Study of Behavior, 29(2000), 247-296. https://doi.org/10.1016/S0065-
3454(08)60107-2 

Trivers, R. L. (1971). Evolution of Reciprocal Altruism. Quarterly Review of Biology, 46(1), 35-&. 
https://doi.org/10.1086/406755 

Trivers, R. L. (1974). Parent-Offspring Conflict. American Zoologist, 14(1), 249-264.  
Tschida, K., & Mooney, R. (2012). The role of auditory feedback in vocal learning and maintenance. 

Current Opinion in Neurobiology, 22(2), 320-327. https://doi.org/10.1016/j.conb.2011.11.006 
van de Waal, E., Spinelli, M., Bshary, R., Ros, A. F. H., & Noe, R. (2013). Negotiations over Grooming in 

Wild Vervet Monkeys (Chlorocebus pygerythrus). International Journal of Primatology, 34(6), 
1153-1171. https://doi.org/10.1007/s10764-013-9729-1 

Van Dyk, D. A., Taylor, A. J., & Evans, C. S. (2007). Assessment of repeated displays: a test of possible 
mechanisms. Journal of Experimental Biology, 210(17), 3027-3035. 
https://doi.org/10.1242/jeb.007492 

Versace, E., Endress, A. D., & Hauser, M. D. (2008). Pattern recognition mediates flexible timing of 
vocalizations in nonhuman primates: experiments with cottontop tamarins. Animal Behaviour, 
76(6), 1885-1892. https://doi.org/10.1016/j.anbehav.2008.08.015 

Villa, S. M., Goodman, G. B., Ruff, J. S., & Clayton, D. H. (2016). Does allopreening control avian 
ectoparasites? Biology Letters, 12(7). https://doi.org/10.1098/rsbl.2016.0362 

Vitousek, M. N., Zonana, D. M., & Safran, R. J. (2014). An integrative view of the signaling phenotype: 
Dynamic links between signals, physiology, behavior and social context. Current Zoology, 60(6), 
739-754. https://doi.org/10.1093/czoolo/60.6.739 

West, S. A., Griffin, A. S., & Gardner, A. (2007). Social semantics: altruism, cooperation, mutualism, 
strong reciprocity and group selection. Journal of Evolutionary Biology, 20(2), 415-432. 
https://doi.org/10.1111/j.1420-9101.2006.01258.x 

White, D. J., Gersick, A. S., Freed-Brown, G., & Snyder-Mackler, N. (2010). The ontogeny of social skills: 
experimental increases in social complexity enhance reproductive success in adult cowbirds. 
Animal Behaviour, 79(2), 385-390. https://doi.org/10.1016/j.anbehav.2009.11.014 

https://doi.org/10.1007/s00265-005-0956-0
https://doi.org/10.1016/j.anbehav.2004.11.015
https://doi.org/10.2307/4083626
https://doi.org/10.1098/rstb.2015.0084
https://doi.org/10.1098/rstb.2015.0370
https://doi.org/10.1016/j.cub.2017.05.004
https://doi.org/10.1016/j.cub.2013.09.005
https://doi.org/10.1016/S0065-3454(08)60107-2
https://doi.org/10.1016/S0065-3454(08)60107-2
https://doi.org/10.1086/406755
https://doi.org/10.1016/j.conb.2011.11.006
https://doi.org/10.1007/s10764-013-9729-1
https://doi.org/10.1242/jeb.007492
https://doi.org/10.1016/j.anbehav.2008.08.015
https://doi.org/10.1098/rsbl.2016.0362
https://doi.org/10.1093/czoolo/60.6.739
https://doi.org/10.1111/j.1420-9101.2006.01258.x
https://doi.org/10.1016/j.anbehav.2009.11.014


GENERAL INTRODUCTION 
 

30 
 

Wilson, D. R., Ratcliffe, L. M., & Mennill, D. J. (2016). Black-capped chickadees, Poecile atricapillus, 
avoid song overlapping: evidence for the acoustic interference hypothesis. Animal Behaviour, 
114, 219-229. https://doi.org/10.1016/j.anbehav.2016.02.002 

Wright, J., & Leonard, M. L. (2002). The evolution of begging: competition, cooperation and 
communication: Dordrecht: Kluwyer Academic Publishers. 

Yang, X. J., Ma, X. R., & Slabbekoorn, H. (2014). Timing vocal behaviour: Experimental evidence for song 
overlap avoidance in Eurasian wrens. Behavioural Processes, 103, 84-90. 
https://doi.org/10.1016/j.beproc.2013.11.011 

Zahavi, A. (1974). Value of Handicap Principle in Evolution of Communication Systems between Rivals. 
Israel Journal of Zoology, 23(3-4), 201-201.  

 

https://doi.org/10.1016/j.anbehav.2016.02.002
https://doi.org/10.1016/j.beproc.2013.11.011


 

31 
 

  



 

32 
 

 

 



CHAPTER 1: SHORT-TERM ADJUSTMENT OF VOCAL COMMUNICATION 
 

33 
 

 

CHAPTER 1 

 

 

 

Test for the optimal strategy of vocal adjustment during sibling 

competition. Real time adjustment with an automated interactive 

playback. 

 

PAULINE DUCOURET1, AMELIE N. DREISS1, PATRICK MARMAROLI2 and ALEXANDRE ROULIN1 

 

1- Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015 
Lausanne, Switzerland 

2- PRONA, Rue du Valentin 18, Case postale 1106, CH-1401 Yverdon-les-Bains, Switzerland 

 

 

 

 

 

 

Keywords: Communication, Interactive Playback, Sibling Negotiation, Temporal Dynamics, 

Matching, Mismatching, Tyto alba  

  



CHAPTER 1: SHORT-TERM ADJUSTMENT OF VOCAL COMMUNICATION 
 

34 
 

ABSTRACT 

During animal conflict, the role of signal performance to outcompete a contestant is well 

known, however dynamic adjustments to the contestant’s signalization can be as important, 

but remains understudied. Here we use an automatic interactive playback experiment to test 

the efficiency of different adjustment strategies in the barn owl (Tyto alba) nestlings that 

vocally negotiate for food when the parents are absent. We found that to induce the 

withdrawal of a focal nestling from the competition, it is more efficient to match its call 

duration (i.e. mimicking the live nestling’s change) and to mismatch its call rate (i.e. doing the 

opposite change than the live nestling’s change). By analysing the effect of the adjustment 

strategies on the interactive playback broadcast, we found that these most efficient strategies 

require a higher investment of the playback (more and longer calls) than the less efficient 

strategy. Although the most efficient strategy is to give one’s sibling the opportunity to call by 

waiting for a relaxation of its call rate before increasing one’s own number of calls, in the end 

it is actually costlier than escalating over the contestant’s vocalization. Our result highlight the 

importance of signalling adjustment which might be species and context dependent.  
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INTRODUCTION 

To resolve conflicts over limited resources or collaborative tasks, animals communicate to 

assess their relative motivation to compete, to decide to retreat or keep investing in the 

contest (Maynard Smith, 1982; Parker, 1974). Although some signals are fixed, such as 

colouration, transient signals can vary quickly independently of changes in internal condition 

(Briffa, Elwood, & Dick, 1998; Greenfield, Tourtellot, & Snedden, 1997). Such communication 

is well-known to be an interactive process (Briffa et al., 1998; Enquist & Leimar, 1983; Enquist, 

Leimar, Ljungberg, Mallner, & Segerdahl, 1990; Payne & Pagel, 1996). However, the 

adjustment strategies at a small time scale and their impacts are yet understudied, despite 

having a potentially large impact on conflict outcome (Briffa et al., 1998; Dreiss, Ruppli, Faller, 

& Roulin, 2015; Patricelli, Uy, Walsh, & Borgia, 2002; Van Dyk, Taylor, & Evans, 2007). To 

outcompete conspecifics, the adjustment strategy – that is to say, when to escalate and when 

to de-escalate according to the contestant’s communication – may be as crucial as the average 

signal strength (Patricelli et al., 2002).  

In the context of conflict over territory, for which the role of communication has been 

described in depth, signalling has been mainly studied through the use of aggressive signals in 

order to demonstrate the contestants’ dominance and/or motivation to compete (Searcy & 

Beecher, 2009). A signal is considered as aggressive when it signals a willingness to escalate 

the conflict. The use of aggressive signals leads therefore to an escalation over signalization 

until one of the contestants retreats or physical fight arises (Enquist & Leimar, 1983; Enquist 

et al., 1990). A fine scale adjustment has been reported during territorial conflict where 

competitive males match the contestant’s song type (Akcay, Tom, Campbell, & Beecher, 2013; 

Beecher, Stoddard, Campbell, & Horning, 1996; Burt, Campbell, & Beecher, 2001; Krebs, 

Ashcroft, & Vanorsdol, 1981) or acoustic cues like call frequency (Otter, Ratcliffe, Njegovan, & 

Fotheringham, 2002) which is considered to be an aggressive signal too in such context. In the 

context of conflict over food, passerine nestlings mainly escalate begging behavior toward 

each other’s begging (Leonard & Horn, 1998; Price & Ydenberg, 1995; Smith & Montgomerie, 

1991). However, in passerines this adjustment appears to be inevitable because parents 

deliver food during a very short period of time, implying that nestlings have to beg rapidly at 

a precise time point. However, when conflict of interest occurs in social group context and 

time is not limited, the use of escalation strategy could be counterproductive because it is 
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likely that future interactions will occur between the same individuals. The evolution of 

communication strategies that do not lead to physical aggression and in which individuals are 

keener to withdraw in front of motivated competitors could emerge (Crowley, 2001; Franz, 

van der Post, Schulke, & Ostner, 2011). Studying the short-term adjustment should hence 

provide key elements to understanding the interactive dynamics that lead to the resolution of 

a conflict in a non-aggressively social context. 

In the present study, we investigated the impact of adjustment strategies of vocal 

communication in the context of family conflict among barn owl siblings (Tyto alba). While 

waiting for the food item brought by a parent, barn owl siblings “negotiate” to set up the 

priority access to it. The nestling that succeeds in silencing its siblings would most likely obtain 

the prey item. To do so, nestlings use one call type that they modulate in rate and duration 

(Johnstone & Roulin, 2003; Roulin, Kolliker, & Richner, 2000). Negotiation occurs for each prey 

item, which correspond to 2-4 preys per nestling and per night on average (Taylor, 2004).  

Therefore, the context of negotiation is a long-term interaction during which multiple 

negotiation sessions occur with the same participants that are kin, hence sharing indirect 

genetic benefits. The use of aggressive signals should therefore be avoided. Accordingly, two 

main rules are used. First, the hungrier a nestling is, the more and longer calls it emits. Second, 

nestlings call less and emit shorter calls when facing a sibling emitting long calls at a high rate 

on average (Dreiss, Lahlah, & Roulin, 2010; Roulin, Dreiss, Fioravanti, & Bize, 2009; Ruppli, 

Dreiss, & Roulin, 2013). Hence, the sibling negotiation process does not escalate, with 

nestlings tending to withdraw when confronted with vocal siblings, if the likelihood of 

receiving the next indivisible prey is low. However, on a fine scale, the process is more complex 

and it appears that nestlings assess a contestant‘s acoustic change (an increase or decrease) 

and use it to decide when they engage in a negotiation session (Dreiss et al., 2015). Nestlings 

are more likely to start vocalizing when the contestant decreases its call rate and call duration. 

Furthermore, siblings can adjust to each other during rapid vocal exchange. When two live 

sibling are exchanging calls, they globally adjust their call duration positively to that of their 

contestants (Dreiss, Ruppli, Antille, & Roulin, 2014) while negatively adjusting call rate (Dreiss 

et al., 2015). In other words, each duration of call is positively correlated to the duration of 

the contestant’s previous calls while the call rate at small time scale (10th previous calls) is 

negatively correlated to contestant’s call rate during the same time lapse. These suggest that 
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nestlings match others’ change for the call duration and mismatch others’ change for the call 

rate. Although these adjustment strategies have been observed in vocal exchanges between 

two nestlings and between a nestling and a playback broadcast, no experiment has been 

developed to test whether these vocal adjustment strategies were optimal to silence a 

contestant. We hence predicted that following these adjustment strategies would increase 

the chances of reaching an agreement, resulting in the retreat of the less hungry nestling.  

To test these predictions, we designed two automated interactive playback 

experiments, which varied in the way the playback adjusted its broadcasted calls to the 

nestlings’ vocal behaviour. The first experiment tested the effect of call duration adjustments 

and the second tested call rate adjustments. A playback is considered as “interactive” if one 

parameter is interactive, for instance, when the starting time of the playback depends on the 

focal individual or, when the vocal exchange broadcasted by the playback represents an 

interactive vocal exchange (King, 2015). By automated interactive playback, we mean an 

automated routine that continually makes decisions on the type and timing of calls to 

broadcast based on the animal’s changing vocal behaviour. In our design, playback calls varied 

depending on proximal changes of the focal nestling’s calls parameters. The playback follows 

two adjustment strategies: the “matching” adjustment in which the playback matches the 

contestant’s vocalization (i.e. increases when nestling increases vocal investment and 

reversely) and the “mismatching” adjustment in which the playback mismatches the 

contestant’s vocalization (increases when nestling decreases vocal investment and reversely). 

Throughout these experiments, we were able to analyse the direct impact of defined 

adjustment strategies on a focal nestling’s vocalization, for the mean value and the change of 

its acoustic cues. On the other hand, we were able to analyse the direct impact on the playback 

vocalization following the defined adjustment. 

METHODS 

General procedures 

This study was performed on a wild barn owl population in western Switzerland (46°4’N, 

6°5’E). Between April 30th and September 2nd 2015, 114 nestlings were brought to the 

laboratory for 3 days and 2 nights (age: 34±0.5 days; range 22-41 days; 52 males, 57 females 
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and 5 of unknown sex). The first night was an acclimation period during which siblings stayed 

together in a wood nest-box (similar to the one where they were raised). They were fed ad 

libitum (67g of mice per nestling, (Durant & Handrich, 1998)). At 08:00 the following morning, 

the remaining food was removed. Then, at 12:00, all nestlings were weighed and isolated in 

separated experimental wood nest-boxes to allow for habituation to the new environment 

before 22:00, when the experiment started. Between 22:00 and 01:00, the “call duration” 

interactive playback was performed and between 1:30 and 4:30, the “call rate” interactive 

playback was performed. On the following morning, nestlings were fed and returned to their 

original nest. 

The experimental nest-box was similar to the one in which the nestlings were raised 

but was divided in two equal parts by a thin wooden wall pierced with five holes. A 

loudspeaker (near05 experience, ESI Audiotechnik GmbH, Leonberg, Germany) was placed in 

one of the partitions while the nestling occupied the second. Two microphones (MC930, 

Beyeradjustment GmbH & Co KG, Heilbronn, Germany) per nest-box were fixed on the roof 

and were oriented toward the nestling. One microphone was used to record the nestling all 

night long and the other was used for the interactive playback programs developed in Matlab 

R2012b 8.0.0.783 (MathWorks. Natick, MA, U.S.A.). 

Playback experiment design 

The program detected in real time the calls emitted by the nestling and determined their 

duration (for detail on acoustic criteria used see Supplementary S1 and Ducouret, Dreiss, 

Marmaroli, Falourd, & Roulin, 2016).  

a. Playback adjustment in Call Duration.  

In order to assess the global variation of the call duration of focal nestlings, at the end of each 

10s lapse, the computer program compared the mean nestling call duration with the mean 

duration during the previous 10s lapse. In this experiment, the playback broadcasted one call 

every 10s so the playback call rate was 6 calls/min, corresponding to the mean call rate 

observed in two-nestling broods when food deprived (Ruppli et al., 2013). According to this 

comparison, the playback modified its call duration, following two different inter-individual 

adjustments (Figure 1, for an example of calculation see Supplementary S2). (1) In the 

matching adjustment (termed “Match-Call Duration”), the playback modified its call duration 
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in the same manner as the sibling. If the nestling increased (or decreased) its call duration 

between two successive 10s lapses, the playback broadcasted a call with the same extent of 

increase (or decrease) in duration. (2) In the mismatching adjustment (termed “Mismatch-Call 

Duration”), the playback modified its call duration in the opposite direction as the nestling. If 

the nestling increased (or decreased) its call duration between two successive 10s lapses, the 

playback broadcasted a call with a decreased (or increased) call duration within the same 

extent. In the two above adjustments, playback’s call duration remained constant when no 

call was emitted by the nestling during a 10s lapse. The playback followed a unique adjustment 

during 15min, before changing to another adjustment (randomly selected). At the end of the 

first 10s lapse of each 15min period, the playback emitted a call with the same duration as the 

nestling’s mean call duration. 

 

Figure 1 – Two periods illustration of interactive playback experiment on call duration. The 
computer program automatically detects the calls emitted by a focal nestling and measures 
its duration. Then, the program compares this duration to the previous one and, according to 
this duration change, chooses a call to broadcast of a duration based on a pre-programmed 
calling strategy. Two strategies were developed: under matching strategy, left part of the 
graphic, the playback changes its call duration similarly to the nestling and under the 
mismatching strategy, right part of the graphic, changes its call duration reversely to the 
nestling. Each treatment lasted 15 minutes and were randomly ordered across the 4 hour 
experiment. 
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b. Playback adjustment in Call Rate.  

The second interactive playback was developed with the same approach as the above 

experiment but focusing on the number of calls emitted by the nestling and not on the call 

duration (for an example see Supplementary S3). As such, (1) in the matching adjustment 

(termed “Match-Call Rate”), if the nestling emitted x more (or less) calls than during the 

previous 10s lapse, the playback broadcasted x more (or less) calls than during the previous 

10s lapse. (2) In the mismatching adjustment (termed “Mismatch-Call Rate”), if the nestling 

emitted x more (or less) calls than during the previous 10s lapse, the playback broadcasted x 

less (or more respectively) calls than during the previous 10s lapse. In the two adjustments 

above, the playback’s calls were distributed during the 10s lapse. We fixed the broadcast call 

duration at 800ms on average (SE = 50 ms), the average value obtained from interacting pairs 

of nestlings (Ruppli et al., 2013). The playback followed a unique adjustment during 15min, 

before changing to another adjustment (randomly selected). At the second 10s lapse of each 

15min period, the playback emitted the same number of call as the nestling during the first 

10s lapse. 

Construction of playback soundtracks 

Calls broadcasted by the playback were isolated from four different individuals (age mean ± 

SE: 32.5 ± 2.25 days, two males and two females) recorded in a three-nestling brood 

experiment conducted in 2011 (for experimental setup details see Dreiss et al., 2017). At the 

beginning of the experiment, a unique individual was selected randomly by the computer to 

be broadcasted to one focal nestling. Therefore, a focal nestling faced a unique playback 

individual. In total, 120 calls were isolated, 15 in each of the eight call-duration groups: 300-

400ms, 400-500ms, 500-600ms, 600-700ms, 700-800ms, 750-850ms, 800-900ms, 900-

1000ms and 1000-1100ms. The computer randomly picked up one call within the relevant 

group. For the call rate experiment, only calls from the 750-850ms group were picked up by 

the playback. Each call was first normalized to have the same loudness using Matlab R2012b. 

Acoustic analyses 

In order to detect a call emitted by the nestling in “pseudo” real time, the audio record was 

analysed each 46ms time windows to determine if there is an acoustic event or not with the 

sound pressure level. Then, to determine if this call is a negotiation call, we use 2 frequency 
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descriptors and a temporal descriptor. For further technical details see Ducouret et al. (2016) 

and supplementary S1. We tested the accuracy of this detection in pseudo real time by 

comparing manually 180.5 hours of a recording including 55247 negotiation calls of an 

interacting pair of nestlings made in similar conditions with the same acoustic material. We 

achieved an accuracy of 97% of true detection (97% of the negotiation call were correctly 

detected) and 3% of wrong detection (the software detect another type of call or noise as a 

negotiation call). 

Statistical analyses 

Overall, 55 nestlings either did not emit any call, called less than five calls per period or only 

called during one period in the call duration experiment. These individuals were removed from 

the subsequent analyses. The absence of calls may be explained by a playback call rate 

representing a more competitive individual than the tested nestling. For the call rate 

experiment, a total of three individuals were removed from the analyses due to their absence 

of calls during the 3-hour experiment.  

All the statistical analyses were done with the R software (2.15.2 version, The R Project 

for Statistical Computing). The package used for performing linear mixed models was “lme4” 

(Linear mixed-effects models using Eigen and s4). Residuals were checked for 

homoscedasticity for each model. 

In each model presented below, the order in which the adjustment strategies appeared 

as well as the nestling’s age and sex were included as covariates and cofactor. Nestling 

identity, nested within its brood identity, was included as a random factor to control for 

pseudoreplication. 

Impact of playback adjustments on the absolute value of nestling’s and playback’s call 
parameters 

We investigated the global effect of the adjustment strategies (Match- and Mismatch-Call 

Duration and Rate) by considering the total number of calls and the mean call duration 

emitted by the nestling and by the playback in each 15-min period for both experiments. We 

then tested the effect of the two adjustments strategies on the focal parameter (i.e. the call 

rate for the call rate experiment and the call duration for the call duration experiment) and 

the cross effect on the other call parameter (i.e. the call rate for the call duration experiment 
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and reversely). We ran two independent but similar linear mixed models for the focal 

parameter, one to investigate the effect on the nestling’s call parameters and one on the 

playback’s call parameters. Concerning the cross effect on the other call parameters, we ran 

two independent but similar linear mixed models for the call duration and the call rate. Call 

rate was boxcox transformed in order to analyse it as Gaussian variable. 

Impact of playback adjustments on the trend of nestling’s call parameters 

We investigated the change of nestling’s focal call parameters in function of time using a cubic 

linear mixed model for the call duration experiment and a generalized cubic mixed model with 

“Poisson” distribution for the call rate experiment. We included a comparison between 

adjustment strategies, incorporating the factor treatment in interaction with each time 

parameter. We centred each time variable to correct for collinearity and we controlled for the 

overdispersion of the call rate analyses by incorporating a observation variable as random 

factor (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). We used the call rate per minute to assess 

the change in function of time.  

Impact of playback dynamics on the negotiation outcome: focal nestling withdrawal  

In order to assess the efficiency of an adjustment strategy in inducing the focal nestling to 

retreat, we calculated the duration of the final phase during which the focal nestling didn’t 

emit calls. We considered that a nestling had retired when it stopped emitting calls for more 

than one minute before the end of each 15-min periods (thresholds of 30 s and 2 min were 

also tested and lead to similar results). Because of the high number of zeros, which correspond 

to individuals that did not stop vocalising, we investigated if the probability that a nestling 

retired was higher when playback used one or another adjustment strategy using a 

generalized mixed model with binomial distribution. 

Ethical notes 

Experiments were done at a rearing stage (on average mean ± SD: 34 ± 0.5 days) at which it 

does not disturb parental care as parents stay outside the nest and only enter briefly to bring 

the hunted prey. At least two nestlings were left at the natural nest to continue stimulating 

the parental care and prevent abandon which was not observed during the experiment. It was 

already shown that this type of experiment does not stress nestlings and does not lead to a 

worse condition at the fledgling stage. Experiments were carried out within University of 



CHAPTER 1: SHORT-TERM ADJUSTMENT OF VOCAL COMMUNICATION 
 

43 
 

Lausanne’s facilities, in hold of all required permits from the veterinary services (authorization 

2109.2).  

RESULTS 

Impact of playback adjustment strategies on nestling vocalization 

a- Playback adjustment in Call Rate 

The best playback strategy to induce a nestling to emit fewer calls was to mismatch its call 

rate, i.e. stay almost silent when the nestling is calling but increase call rate when the 

contestant decreased the number of emitted calls (Table 1a, Figure 2a). When facing a 

playback that mismatched their call rate, nestlings reduced call rate more rapidly than when 

facing a playback that matched their call rate, as shown by the cubic equation of the number 

of nestling calls in function of time (Table 2, Figure 2c). The mismatching strategy also led the 

nestlings to total silence more (Χ2 = 89.98, P < 0.001, mean probability of becoming silent was 

0.65 and 0.13 for the mismatching and matching strategy, respectively; Table 4). Nestlings that 

listened to a playback that mismatched the call rate also emitted shorter calls than when they 

listened to a playback that matched call rate (estimate ± SD: -0.018 ± 0.0086 s, Table 3).  

b- Playback adjustment in Call Duration 

The best negotiation strategy for adjusting call duration was exactly the opposite of the one 

for call rate. To induce nestlings to emit shorter calls, playbacks had to emit calls that matched 

rather than mismatched the duration of the nestlings’ calls (Table 1a, Figure 2b). Nestlings 

delayed the moment when they started to increase call duration and this increase was less 

pronounced when listening to a playback that matched call duration, as confirmed by the 

cubic equation of call duration in function of time (Table 2, Figure 2d). Nestlings that listened 

to match and mismatch strategies called at a similar rate and were as likely to stop vocalizing 

(probability is 0.17, Χ2 = 0.30, P = 0.58, Tables 3 and 4), indicating that when the playback 

modulates call duration this affects nestling call duration but not call rate.  
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Figure 2 – Mean call rate (a) and mean call duration (b) of live nestlings and of the playback 
matching and mismatching strategies. P-values (*** is for P < 0.001 and ** for P < 0.01) are 
derived from the linear mixed model presented in Table 1. Fitted number of calls (c) and call 
duration (d) emitted by nestling barn owls in relation to time (an experiment lasted 15 
minutes), based on the cubic models presented in Table 2. All other numeric covariates of the 
final model were set at their means. 
 

Impact of playback adjustment strategies on playback call parameters 

Mismatch-Call Rate strategy led the playback to broadcast more calls than Match-Call Rate 

(Table 1, Figure 2a). Match-Call Duration strategy led the playback to broadcast longer calls 

than Mismatch-Call Duration (Table 1b, Figure 2b). By following the adjustment strategies that 

are the most efficient to restrain a nestling from vocalising (i.e. Match-Call Duration and 

Mismatch-Call Rate), the playback vocalized more intensely, emitting more calls during the 

call rate experiment and longer calls during the call duration experiment.  
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Table 1 – Effect of the playback negotiation strategies on the vocal behaviour of nestling barn 
owls (a) and of the playback itself (b). (a) Linear mixed models testing whether the duration 
of nestling negotiation calls and the rate at which they were emitted are related to the 
matching vs. mismatching playback strategies. (b) Similar models testing whether the playback 
emits more or shorter calls when its strategy is to match the nestling behaviour rather than 
when mismatching the nestling behaviour. Nestling identity nested in brood identity was 
included as random factor to correct for pseudoreplication. 

(a) Nestling call rate  Nestling mean call duration 

Fixed effects Estimate (SE) F P-value  Estimate (SE) F P-value 
Playback strategy -0.77(0.043) F1,517 = 315.03 <0.001  15.47(6.98) F1,262 = 4.91 0.028 
Nestling age -0.034(0.014) F1,86 = 5.74 0.019  -0.22(5.81) F1,47 = 0.001 0.97 
Nestling sex -0.17(0.10) F1,80 = 2.67 0.11  -81.58(46.39) F1,48 = 3.09 0.085 
Order of playback 
strategies 

-0.013(0.007) F1,516 = 3.29 0.070  7.07(1.21) F1,263 = 34.20 <0.001 

      
(b)  Playback call rate  Playback mean call duration 
Fixed effects Estimate (SE) F P-value  Estimate (SE) F P-value 
Playback strategy 1.30(0.036) F1,540 = 1300.1 <0.001  -79.27(14.77) F1,295 = 28.80 <0.001 
Order of playback 
strategies -0.0038(0.006) F1,539 = 0.42 0.52  3.94(2.52) F1,312 = 2.44 0.12 

 

Table 2 – Temporal effect of the playback negotiation strategy on the vocal behaviour of 
nestling barn owls. A cubic linear mixed model tested the temporal change in the duration of 
nestling calls and a cubic generalized linear mixed model tested the temporal change in the 
rate at which nestlings called. The time, time2 and time3 were standardized to correct for 
collinearity and nestling identity nested in brood identity was included as random factor to 
correct for pseudoreplication. 

 Nestling call rate  Nestling mean call duration 
Fixed effects Estimate (SE) Chisq P-value  Estimate (SE) F P-value 
Playback 
strategy 

-0.79(0.021) 1218.3 <0.001  18.36(1.94) F1,13651 = 89.16 <0.001 

Time -0.13(0.032) 89.05 <0.001  -8.98(13.28) F1,13648 = 3.48 0.062 
Time2 0.015(0.0046) 41.15 <0.001  36.75(31.74) F1,13647 = 14.18 <0.001 
Time3 -0.00057(0.00019) 26.18 <0.001  -21.5(19.85) F1,13647 = 17.47 <0.001 
Nestling age -0.035(0.013) 7.31 0.0068  -0.75(5.69) F1,46 = 0.02 0.90 
Nestling sex -0.19(0.096) 3.9 0.048  -89.64(45.51) F1,48 = 3.88 0.055 
Order of 
playback 
strategies 

-0.0070(0.0033) 4.51 0.034  8.13(0.33) 
F1,13658 = 
585.78 

<0.001 

Time x Playback 
strategies -0.31(0.053) 33.12 <0.001  -16.56(18.44) F1,13647 = 0.81 0.37 

Time2 x Playback 
strategies 

0.026(0.0079) 10.64 0.0011  93.02(44.05) F1,13647 = 4.46 0.035 

Time3 x Playback 
strategies -0.00071(0.00034) 4.41 0.036  -72.56(27.53) F1,13647 = 6.95 0.0084 
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Table 3 – Cross-effects of the playback strategies on the vocal behaviour of nestling barn owls. 
Linear mixed models tested whether the two call duration playback strategies (matching vs. 
mismatching) affected the rate at which nestling vocalized and whether the two call rate 
playback strategies affected the duration of nestling calls. Nestling identity nested in brood 
identity was included as random factor to correct for pseudoreplication.  

 Nestling call duration 
(Call rate experiment) 

 Nestling call rate 
(Call duration experiment) 

Fixed effects Estimate (SE) F P-value  Estimate (SE) F P-value 
Playback strategy -0.018(0.0086) F1,313 = 4.56 0.033  0.023(0.071) F1,264 = 0.11 0.74 
Nestling age -0.0088(0.006) F1,67 = 2.15 0.15  -0.061(0.027) F1,38 = 4.98 0.031 
Nestling sex -0.12(0.044) F1,60 = 7.55 0.0079  -0.034(0.22) F1,37 = 0.024 0.88 
Order of playback 
strategies 

0.00099(0.0014) F1,314 = 0.48 0.49  0.0017(0.012) F1,268 = 0.018 0.89 

 

Table 4 – Effect of the playback negotiation strategies on the probability that nestling barn 
owls became silent at least 1 minute before the end of the 15-min experimental period. 
Generalized linear mixed models (binomial) testing whether the probability that barn owl 
nestlings retreat from vocally negotiating is related to the playback matching vs. mismatching 
strategies for call rate and call duration. Nestling identity nested in brood identity was 
included as random factor to correct for pseudoreplication. 

 Probability that nestling became silent 
 Call rate experiment  Call duration experiment 

Fixed effects Estimate (SE) Chisq P-value  Estimate (SE) Chisq P-value 
Playback strategy 2.50(0.26) 89.98 <0.001  0.17(0.32) 0.30 0.58 
Nestling age 0.039(0.041) 0.89 0.34  0.0023(0.059) 0.0015 0.97 
Nestling sex 0.46(0.31) 2.25 0.13  0.59(0.46) 1.62 0.20 
Order of playback strategies 0.037(0.035) 1.11 0.29  0.00049(0.055) 0.0001 0.99 

 

DISCUSSION 

Using automated interactive playback, experiments that modify in real time the broadcasted 

calls’ parameters according to nestling’s call parameters, we have pinpointed the importance 

of short time scale adjustments during the resolution of food conflict in barn owl nestlings. 

We demonstrated that Match-Call Duration strategy (i.e. increasing and decreasing call 

duration at the same time as the contestant) and Mismatch-Call Rate strategy (i.e. increasing 

the call rate when the contestant decreases its call rate and reversely) lead to a de-escalation 

in the contestant’s vocalization (shorter and fewer calls respectively). By naturally following 

these adjustment strategies during the sibling negotiation process, nestlings establish 

dominance without inducing vocal escalation from their contestant (Dreiss et al., 2010; Roulin 
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et al., 2009; Ruppli et al., 2013). In the present study, we also obtained clear evidence that by 

following these strategies, the playback gradually intensifies its signal (more and longer calls). 

It is, to the best of our knowledge, the first implementation of such interactive playback design 

that allowed to investigate at the same time the receiver and the sender perspective. We 

believe that this design will be very fruitful in future studies of complex animal signalling 

systems.  

In barn owl nestling negotiation, although call duration and call rate are signals used 

to resolve the same conflict over food, adjustment strategies have opposite effects on the 

resolution. Indeed, Match-Call Rate induces an increase of contestant’s call rate whereas 

Match-Call Duration induces a decrease of contestant’s call duration. This suggests that these 

two signals may have two different functions within the same conflict resolution. During 

territorial conflict, male song sparrows (Melospiza melodia) also use different threatening 

signals with a hierarchical temporality, song type matching being an early threatening signal, 

followed by soft-song emission and finally wing waves (Akcay et al., 2013). By gradually 

emitting different signals, an individual gives the contestant the possibility to abandon the 

contest at an early stage without having invested too much in competition. Barn owl nestlings 

emit only one type of call but can follow different adjustment strategies. Call duration appears 

to be used as a challenging parameter, as the most efficient adjustment is to escalate and 

deescalate at the same time as the contestant, probably to test how far the contestant is 

willing to vocally compete. Contrarily, call rate seems to be used as a deterring parameter, as 

the most efficient dynamic is to escalate only when the contestant relaxes. It is also during the 

Mismatch-Call Rate treatment that the probability that nestlings retreated (i.e. stopped 

calling) before the end of the 15 min period is clearly the highest (i.e. 0.53 vs 0.20 for Constant 

Rate and 0.09 for Match-Call Rate and 0.17 for each adjustments strategies during the call 

duration experiment). Mismatch-Call Rate seems to be the ultimate signal that deters 

contestants from the contest. We hypothesize that vocal negotiation in nestling barn owl is a 

hierarchical signalling system. A nestling could challenge a sibling first by emitting a low rate 

of calls but matching sibling’s call duration in order to assess the other’s motivation. Next, 

when a dominance appears because a sibling relaxes its call rate, the nestling could increase 

its call rate to clearly demonstrate its dominancy and momentarily deter its sibling from 

calling. The negotiation call is also used as an alarm call by increasing its duration up to 3s. 
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During negotiation, nestlings emit calls at a duration far from their maximum (less than 1.5s) 

which suggests that such small increases are less costly than an increase of the number of 

calls. By doing so, an individual would only gradually engage during the negotiation to invest 

just enough to take the lead on the conflict. Future studies should take account such 

temporality in vocal competition strategies during vocal negotiation.  

We have also shown that Match-Call Duration and Mismatch-Call Rate, the most 

efficient strategies, require a higher investment in terms of number of calls and call duration 

emitted by the sender, here the playback. Signalling its resource holding potential, motivation 

or quality when a conflict of interest occurs only is evolutionary stable as long as signals 

contain reliable information about sender (Maynard Smith & Harper, 2003; Searcy & Nowicki, 

2005). To prevent dishonesty, signalling should entail costs (handicap principle: Grafen, 1990; 

Zahavi, 1974). In barn owl nestlings, displaying a high motivation by matching the contestant’s 

call duration and mismatching the contestant’s call rate requires a higher investment in 

vocalization with more and longer calls. Even if emitting calls might not be primarily costly (i.e. 

metabolic cost), demonstrating a high motivation by following the most efficient strategy 

requires not only a higher investment with more and longer calls but also a particular attention 

to the contestant’s vocalization that could be costly because of processing of received signals. 

This result concerning the sender vocalization (here the playback) is inherent to the 

species model as the playback broadcast depends on the live individual. We however could 

imagine that the result observed is also inherent to the adjustment rule defined. We chose to 

keep the playback’s call parameter constant when the nestling did not emit any call during the 

previous 10s lapse. This choice could be questionable. Indeed in natural vocal exchange, 

nestlings decrease their call duration and rate after having deterred a sibling and such 

decrease is used as a signal to re-enter into the vocal negotiation (Dreiss et al., 2015). By not 

decreasing the playback’s call parameter after having silenced the nestling could explain why 

the playback emitted so many calls during the Mismatch-Call Rate treatment for example. 

However, we did the same analysis by limiting the data to the ones where the nestlings kept 

calling and found similar results to those presented here. We can therefore consider fairly that 

our results are not artefacts of algorithm rules.  

By waiting until their contestant relaxes before increasing their call rate, nestlings 

favour the exchange of information and give the opportunity for a sibling to vocalize. This 
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finding confirms what previous studies demonstrated that barn owl nestlings avoid 

overlapping sibling’s call to limit signal interference (Dreiss et al., 2013) and favour alternation 

of monologue (i.e. only one nestling emits a series of calls during a period of time) to rapid 

alternation of senders (Dreiss et al., 2015). However, it is difficult to understand why an 

individual would wait to demonstrate its motivation knowing the risk that a parent could 

arrive at any moment. Two important aspects in barn owl nestlings could explain it: temporal 

and context. First, in barn owl, parental absence can be up to multiple hours and thus the 

negotiation process is a long-lasting one. This contrasts with many other birds where offspring 

signal only during the parents visits which are quick. In such species, offspring adjust also their 

level of begging to each other’s (Blanc, Ogier, Roux, Denizeau, & Mathevon, 2010; Leonard & 

Horn, 2001), however this usually induces offspring to escalate their begging behaviour in an 

attempt to be louder than their siblings quickly. Second, barn owl nestling negotiate with full 

siblings. The contested resource is thus consumed by a genetically related individual, providing 

inclusive fitness benefits to the individual that gave up (Hamilton, 1964). Moreover, this 

negotiation process occurs for each prey brought back by the parents every night during the 

rearing period. Nestlings can thus be considered as a social group within which multiple 

negotiation processes occur between the same participants. Giving the opportunity to a 

sibling to communicate without involving an escalation could be beneficial as it could appease 

vocal exchange and increase the trust between negotiators for future negotiation which could 

counter-balance the risk that a parent arrives.  

Thanks to automated interactive playback we succeed in testing the impact of specific 

adjustment strategies, not only on the receiver response but also on the sender vocalization. 

However, three aspects have to be highlighted. First, since the playback analysed individual 

behaviour in pseudo-real time, the detection has to be reliable to be automatized. Second, a 

good knowledge of the species model is required to cover all the possible scenarios. Third, the 

parameter of interest has to be well defined in order to fix as much as possible the remaining 

parameters. Nevertheless, we believe that this design will be very rewarding in future studies 

of complex animal signalling systems because it refines the analyses of a dynamic process to 

a reduced time scale. It would be interesting to apply such design in different contexts of 

competition and species model to understand how such adjustments could be differently 

costly and have different signification.  
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SUPPLEMENTARY MATERIAL 

S1. Detection of nestlings’ calls on pseudo-real time 

The nestlings’ calls have been recorded through one channel of a Presonus Firestudio sound 

card of 8 channels (i.e. maximum 8 parallel experiments were possible), sampled at 44100 Hz. 

The detection consists in considering recordings as a succession of small frames of N = 2048 

samples which correspond approximatively to 46 ms. For each frame the algorithm answers 

two questions:  

- Does an acoustic event occur? 

- Does this acoustic event is a negotiation call or something else?  

The first question is simply answered by comparing the noise level to a threshold (-10dB). The 

noise level is calculated through the sound pressure level Lp (in dB) by using the equation (1): 

𝐿𝐿𝑝𝑝[𝑞𝑞] = 20 log10

⎝

⎛�
1
𝑁𝑁
�𝑦𝑦𝑞𝑞[𝑘𝑘]2
𝑁𝑁

𝑘𝑘=1

2𝑒𝑒−5�

⎠

⎞ 

 

(1) 

where 𝑦𝑦𝑞𝑞 is the sound pressure amplitude (in Pascal) of the current frame q with a size of 𝑁𝑁x1 

The answer of the second question is more complex and is based on three audio descriptors 

detailed below. 

First descriptor: the spectral variance  

Figure s1.a represent waveforms and spectrograms of a negotiation call and a chirp call 

emitted by the same nestling. The distribution of the average sound level of each frequency 

bin is also represented. A clear difference of the harmonicity of the calls emitted can be 

observed. Chirps have a marked harmonicity (a fundamental frequency and its integer 

multiples) which contrasts to the negotiation calls that cover the entire bandwidth uniformly. 
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Figure s1.a – Waveform and spectrogram of a negotiation call on the top and of a chirp on 

the bottom of a barn owl nestling. Color scale is in dB. 
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Evaluating the more or less harmonic nature of a signal is a time-consuming process. We are 

therefore interested in observing an indirect consequence of this presence or not of 

harmonicity, using the variance of the spectrum, with the underlying idea that a negotiation 

call has a wider spectral range than chirps. We define this descriptor D1 according to equation 

(2): 

 

D1[q] = log10(Var(|𝐘𝐘q|))   

 

         (2) 

where 𝐘𝐘𝐪𝐪 is the Short Time Fourier Transform (STFT) of the 𝑞𝑞th frame 

Second descriptor: minimal value of cepstral coefficients 

Figure s1.b shows the evolution of cepstral coefficients (MFCC) of the same two calls than in 

Figure s1.a. We notice a fall of the third cepstral band value for the negotiation call, which 

does not appear for the chirp call. It was therefore decided to establish a descriptor D2 to 

return the minimum value of the cepstral coefficient, as defined by equation (3): 

 

D2[q] = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌q) (3) 

 

where 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐪𝐪 are the cepstral coefficient of the 𝑞𝑞th frame 
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Figure s1.b – Cepstrogram of a negotiation call on the top with a fall in the third cepstral 

band value and of a chirp call on the bottom. Color scale is in dB. 

To be considered as a negotiation call the current frame has to respect the condition (4), which 

correspond to a high variance and a minimum value of weak MFCC. 

 

D1[q] >  λ1  𝑎𝑎𝑚𝑚𝑎𝑎  D2[q] <  λ2  (4) 

 

where λ1 et λ2 are empirically defined thresholds. λ1 =  −6 ; λ2 =  −0.5 
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Third descriptor: temporal consistency 

A third descriptor, called temporal consistency, consists in considering the acoustic event as a 

negotiation call if it last at least 322ms which correspond to seven consecutive frames.  In 

other words, seven frames must consecutively verify the condition (4) to be effectively 

considered as a negotiation call. 

S2. Interactive playback experiment design for call duration: a one minute example 

 

 

10s 

time 

lapse 

Nestling call 

duration (ms) 

Playback soundtrack call duration 

(ms) 

Matching Mismatching 

T1 DT1 = MEAN(DN1,y) DP1 = DT1 DP1 = DT1 

T2 DT2 = MEAN(DN2,y) DP2 = DT2 DP2 = DP1 - (DT2 - DT1) 

T3 DT3 = DN3,1 DP3 = DT3 DP3 = DP2 – (DT3 – DT2) 

T4 DT4 = NA DP4 = DP3 DP4 = DP3 

T5 DT5 = MEAN(DN5,y) DP5 = DT5 DP5 = DP4 – (DT5 – DT3) 

T6 DT6 = MEAN(DN6,y) DP6 = DT6 DP6 = DP5 – (DT6 – DT5) 

 

Figure s2 – Example of one-minute interactive playback on the call duration. Tx: xth time lapse 

of 10s, Nx,y: yth call emitted by the nestling during xth time lapse, Px: call broadcasted by the 

loudspeaker at the end of the xth time lapse of 10s, DNx,y: duration of the call Nx,y, DTx: average 

duration of the call emitted by the nestling during the xth time lapse of 10s, DPx: duration of 

the call emitted by the playback at the end of the xth time lapse. 
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S3. Interactive playback experiment design for call rate: a one minute example 

 

 

 

10s 

time 

lapse 

Nestling 

number of 

call (/10s) 

Playback soundtrack call rate (/10s) 

Matching Mismatching 

T1 RT1 = 3 RP1 = RT1  3 RP1 = RT1  3 

T2 RT2 = 2 RP2 = RT2  2 
RP2 = RT1 – (RT2 – RT1) 

 4 

T3 RT3 = 1 RP3 = RT3  1 
RP3 = RT2 – (RT3 – RT2) 

 5 

T4 RT4 = 0 RP4 = RT4  0 
RP4 = RT3 – (RT4 – RT3) 

 6 

T5 RT5 = 4 RP5 = RT5  4 
RP5 = RT4 – (RT5 – RT4) 

 2 

T6 RT6 = 2 RP6 = RT6  2 
RP6 = RT5 – (RT6 – RT5) 

 4 

 

Figure s3 – Example of a one-minute interactive playback on the call rate. Tx: xth time lapse of 

10s, Nx,y: yth call emitted by the nestling during the xth time lapse of 10s, Px: call broadcasted 

by the loudspeaker at the end of the xth time lapse of 10s, RTx: nestling’s call rate during the 

xth time lapse of 10s, RPx: playback call rate during the x+1th time lapse. 
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increases the individual's likelihood of obtaining the next food item. Such social feedback could reinforce
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ogy and Evolution, University

ucouret).

lf of The Association for the Study
specific contest. Not being accurately informed about each other's
motivation to compete due to signal interference should be detri-
mental for competitors (McGregor & Peake, 2000; Todt & Naguib,
2000) and thus should be avoided.

Call alternation (i.e. when an opponent starts a call after its
counterpart has terminated its call) is widely accepted as a strategy
to avoid communicative interference. The avoidance of call overlap
has beenwell studied in the context of noncompetitive (e.g. Carter,
Skowronski, Faure, & Fenton, 2008; Ghazanfar, Smith-Rohrberg,
Pollen, & Hauser, 2002; McCauley & Cato, 2000; Miller, Iguina, &
Hauser, 2005; Schulz, Whitehead, Gero, & Rendell, 2008; Soltis,
Leong, & Savage, 2005; Versace, Endress, & Hauser, 2008) and
competitive vocal interactions (e.g. Dreiss et al., 2013; Popp, 1989;
Stokes & Williams, 1968; Wasserman, 1977; Wilson, Ratcliffe, &
Mennill, 2016; Yang, Ma, & Slabbekoorn, 2014). When two calls
overlap, the transfer of information through vocal signals of both
of Animal Behaviour.

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:pauline.ducouret@unil.ch
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anbehav.2018.09.003&domain=pdf
www.sciencedirect.com/science/journal/00033472
http://www.elsevier.com/locate/anbehav
https://doi.org/10.1016/j.anbehav.2018.09.003
https://doi.org/10.1016/j.anbehav.2018.09.003
https://doi.org/10.1016/j.anbehav.2018.09.003


P. Ducouret et al. / Animal Behaviour 145 (2018) 51e5752
the interrupted and the interrupting individuals are likely to be
blurred, while when the calls are produced one after the other, the
transfer of information is optimized. However, in some contexts
call overlap cannot be avoided. In altricial species, parents often
allocate food to their offspring according to ostentatious signals
produced by their progeny referred to as ‘begging’ (Godfray, 1995;
Kilner & Johnstone, 1997; Wright & Leonard, 2002). In species in
which parents stay a limited amount of time with their offspring to
decide to which individual(s) to allocate food, nestmates call
simultaneously to attract the attention of the feeding parent. In
situations where young nestmates vocalize for much longer to
decide which one will be prioritized during feeding, they tend to
call one after the other by carefully avoiding overlapping nest-
mates' calls. For instance, in meerkats, Suricata suricatta, parents
and helpers forage close to their offspring and hence can hear their
begging calls. In this system, the pups are constantly begging
without interrupting each other, which increases total feeding rate
(Madden, Kunc, English, Manser,& Clutton-Brock, 2009). In species
such as the European starling, Sturnus vulgaris (Chaiken, 1990) and
the barn owl, Tyto alba (Roulin, Kolliker,& Richner, 2000), offspring
also vocalize in the long absence of the parents which forage far
from the nest. In this case, the vocalizations, produced at a rela-
tively low rate, are directed to siblings rather than to parents and
tend not to be produced simultaneously (Dreiss et al., 2013).
Although call overlap is avoided and not used as a signal of
dominance, it can still occur accidentally when individuals call
during the same period of time (Helfer & Osiejuk, 2015).

To avoid being interrupted, individuals should leave enough
time between two calls to give conspecifics the opportunity to
vocalize (Camacho-Schlenker, Courvoisier, & Aubin, 2011) and, to
avoid interrupting conspecifics, individuals should wait until an
opponent has finished its call before starting to vocalize (Versace
et al., 2008). Adhering to these specific alternation rules might
not be innate but learned through ‘social feedback’ from conspe-
cifics. Typically, human children speak simultaneously more often
if they are neglected by their parents (Black & Logan, 1995). Simi-
larly, in the European starling, when nestlings are raised in captivity
without any contact with adults, they sing continuously without
giving conspecifics the opportunity to call without being inter-
rupted. This suggests that starlings learn to avoid interrupting
conspecifics through social feedback from adults (Henry, Craig,
Lemasson, & Hausberger, 2015). In line with this idea, common
marmoset parents, Callithrix jacchus, stop vocalizing when an
offspring interrupts their calls. By doing so, parents inform their
offspring not to interrupt them again (Chow, Mitchell, & Miller,
2015). Once the rules to avoid vocalizing simultaneously to con-
specifics are learned, social feedback should still be used if an in-
dividual persists in interrupting conspecifics.

In the present study, we examined the hypothesis that inter-
rupting conspecifics is socially controlled with ‘social feedback’. To
this end, we considered the barn owl where young siblings vocally
negotiate priority of access to the next prey item delivered by a
parent (Roulin et al., 2000). Each nestling produces thousands of
calls per night during the prolonged absence of the parents while
these are foraging. In our population, each nestling consumes three
to four prey items per night, usually voles. Since at each parental
visit, occurring every 45 min on average, the delivered indivisible
prey item is consumed by a single nestling, siblings differ strongly
in food need. For this reason, the outcome of sibling competition is
predictable, with the hungriest individual being most likely to
monopolize the next food item, given its high motivation to
compete (Johnstone & Roulin, 2003; Roulin, 2002). Nestlings
therefore vocalize in the absence of parents to inform their siblings
about their relative motivation to compete with the most vocal
individual indicating to its siblings its intention to compete fiercely
for access to the next food item. As a response, its less hungry
siblings momentarily refrain from competing until the likelihood of
successfully monopolizing a food item increases (Dreiss, Lahlah, &
Roulin, 2010; Roulin, Dreiss, Fioravanti, & Bize, 2009; Ruppli,
Dreiss, & Roulin, 2013). This communication system, referred to
as ‘sibling negotiation’, is directed to siblings rather than to parents
which hunt too far from the nest to hear their offspring (Roulin
et al., 2000).

It has already been shown that siblings interrupt each other
five times less often than expected by chance, which corresponds
to only 2% of the calls produced by an individual in nonexperi-
mental conditions. Moreover, nestlings actively avoid interrupting
playback calls (Dreiss et al., 2013). The tendency to interrupt does
not vary with nestling age, position in the within-brood age hi-
erarchy (in this species there is a pronounced age hierarchy
resulting from staggered hatching) and hunger level, suggesting
that this behaviour is used neither as a signal to dominate siblings
nor to transmit information about the motivation to compete. We
thus believe that interrupting siblings is not done on purpose but
occurs by chance (Dreiss et al., 2013). Interestingly, bystander
nestlings engage in more intense vocal negotiation when listening
to a playback in which they could hear a nestling interrupted by
another individual (Dreiss et al., 2013). This reaction to inter-
rupted calls could be social feedback to inform siblings to avoid
calling simultaneously. Such social feedback could help maintain
the very low rate of overlapping calls observed by Dreiss et al.
(2013).

The response to being interrupted has not yet been tested
because it requires a highly sensitive interactive playback that
would be able to interrupt very short calls (owlet calls last 0.8 s on
average). To this end, we developed an ‘automated interactive
playback’ that detects negotiation calls produced by a nestling in
real time. The playback then broadcasts a prerecorded call that
either does or does not overlap the nestling's call. We predicted that
when a nestling is interrupted by the interactive playback, it should
vocalize more intensely than when not interrupted, to send social
feedback. Intensifying vocal behaviour after having been inter-
rupted would reduce the likelihood of the interrupter getting the
next food item. The interrupter would thus be motivated to take
more care not to interrupt its siblings again. This interpretation is
based on the fact that by vocalizing more intensely, an individual
induces its siblings to withdraw from a contest (Dreiss et al., 2010;
Roulin et al., 2009; Ruppli et al., 2013). The production of social
feedback could therefore reinforce the evolutionary stability of
vocal sibling negotiation by reducing interference while commu-
nicating which would improve signal transmission (McGregor &
Peake, 2000; Todt, 1981; Todt & Naguib, 2000).

METHODS

Experimental Procedure

The study was performed on 10 free-living broods of barn owls
in western Switzerland (46�40N, 6�50E). Between 8 August and 9
September 2014, 23 male and 15 female nestlings aged 41 days on
average (range 30e48 days) were brought to the laboratory for 3
full days (and hence 2 nights). During the first night of acclimation,
siblings were placed together in a wooden nestbox similar to the
one where they were raised. Upon arrival at the laboratory in the
morning, they were fed ad libitum (67 g of mice per nestling;
Durant & Handrich, 1998). At 08:00 the next morning, the uneaten
food was removed and at 12:00, all nestlings were weighed and
isolated in experimental wooden nestboxes to allow them to get
used to their new environment and to avoid disturbance prior to
the experiment. The interactive playback was performed from
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22:00 to 02:00. In the morning, nestlings were offered food and
brought back to their original nest.

The experimental wooden nestbox was divided in half by a thin
wooden wall pierced with five holes. A loudspeaker (near 05
experience, ESI Audiotechnik GmbH, Leonberg, Germany) was
placed in one of the partitions and the nestling in the other. In each
nestbox, we fixed two microphones (MC930, Beyerdynamic GmbH
& Co KG, Heilbronn, Germany) on the roof oriented towards the
nestling. One microphone was connected to a preamplifier Pre-
SonusDigimax FS and a computer with the interactive playback
algorithm developed in Matlab R2012b 8.0.0.783 (MathWorks,
Natick, MA, U.S.A.). To increase the computing capacity, the recor-
ded calls were deleted as soon as they were analysed. For this
reason, we used a second microphone connected to a preamplifier
Steinberg UR44 and to a second computer to record all calls pro-
duced during the 4 h experiment. Nestboxes were acoustically
isolated with fibreglass so that external noises were not audible to
the nestling and not recordable by the microphone.

Interactive Playback

The computer algorithm automatically detected the nestlings'
calls and measured their duration (the script is provided as
Supplementary Material). The detection consists in considering
recordings as a succession of small frames of approximately 48 ms.
For each frame, the algorithm detects through the noise level
whether there is an acoustic event or not. Then, three different
acoustic descriptors (i.e. the spectral variance, the skewness and
the dominant spectral component) are calculated based on the
spectrogram to distinguish negotiation calls from other acoustic
events (i.e. other calls or noise).

To keep the call rate as constant as possible, we split time into
periods of 10 s with the computer playing a call only after the first
call produced by the nestling during the 10 s period (Fig. 1). If the
individual did not vocalize during this time, the computer did not
play any call. The rate at which playback calls were produced thus
varied between 0 and 6 calls/min, with 6 calls/min corresponding
to themean call rate of food-deprived nestlings (Ruppli et al., 2013).
The playback algorithm randomly selected a call from 36 different
calls of a mean duration of 800 ms (SD 50 ms), which corresponds
to the mean call duration of food-deprived nestlings (Ruppli et al.,
Overlapped
call

First
following

call

Other
calls

PB

PB

PB
1.5 s

0.5 s

1 s

0

Figure 1. Playback experimental design. In each treatment a call was played only after the fi

call’ and ‘Other calls’). The call was played at three different latencies (i.e. the time between t
nestling was interrupted, whereas with a latency of 1 s and 1.5 s the nestling was not inte
experiment.
2013). Computing constraints meant we could isolate calls from
only one nestling recorded in 2008. However, we did a second
interactive playback the following year with four different in-
dividuals and no effect of the broadcast individuals was detected.

A prerecorded call was played 0.5, 1 or 1.5 s after the beginning
of a call produced by a nestling (Fig. 1). In the present study, the
mean duration of nestling calls was 0.89 ± 0.23 s (SD, minimum
0.20 s and maximum 2.13 s). Therefore, with a latency of 0.5 s the
computer played a call before the nestling call ended in 99.6% of
cases (i.e. the nestling calls were overlapped). With a latency of 1
s there was almost no silence interval between the call of the
nestling and the playback (silence duration 0.18 ± 0.08 s, only 0.47%
of nestlings' calls were overlapped). Finally, with a latency of 1.5 s,
the silence interval between the nestling and playback calls cor-
responded approximately to the mean call duration (silence dura-
tion 0.70 ± 0.095 s and only 0.1% of nestlings' calls were
overlapped). The small proportion of overlapped calls during the 1 s
and 1.5 s treatments did not modify the results and were therefore
kept for the analyses. The experiment lasted 4 h and was divided
into 16 periods of 15 min. Every 15 min, the computer randomly
chose a new latency time.

Statistics

To investigate whether being overlapped affected nestling vocal
response, we analysed (1) the duration of the nestlings' calls (i.e.
mean duration calculated for each 15 min period) (2) the call rate
(i.e. number of calls in each 15 min period), and (3) the response
time (i.e. time between the beginning of a playback call and the
next nestling call). We investigated whether the call that was
overlapped by the playback (‘overlapped call’), the subsequent call
(‘first following call’) and the next calls (‘other calls’) differed in
duration (Fig. 1). In each statistical model, the treatment, treatment
order and individual sex and age were included as independent
variables. Nestling identity, nested in brood identity, was included
as a random factor to control for repeated measures. Call rate and
the response time were log-transformed to obtain normally
distributed data to use in linear mixed models. Model assumptions
were verified (normal distribution of residuals and homoscedas-
ticity) and P values smaller than 0.05 were considered significant.
Statistics were conducted with R software (2.15.2 version, The R
Playback (PB)
latency:
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PB
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0.5 s

1.5 s

1 s
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rst nestling's call within a 10 s period and not after the following calls (‘First following
he start of the nestling call and the start of the playback call). With a latency of 0.5 s, the
rrupted. Treatments lasted 15 min and were randomly ordered across the 4 h of the
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Project for Statistical Computing, Vienna, Austria), package ‘lme4’
(linear mixed-effects models using ‘Eigen’ and S4; version 1.1e15).

Of the 38 nestlings, five did not call and one produced fewer
than 10 calls during the 4 h experiment. We therefore removed
these six individuals from the analyses. In one further case, the
computer did not play any calls because of an unknown detection
problem. Therefore, the final sample sizewas 31 nestlings. A similar
number of calls were played during each experimental treatment
(ANOVA: F2,365 ¼ 0.97, P ¼ 0.15).
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Ethical Note

After hatching, the mother stays inside the nestbox to feed and
keep the offspring warm. At the age of 30 days, nestlings are
thermo-independent and can swallow an entire prey item by
themselves. From this stage onwards, the parents visit the nest only
to bring prey items at night (Taylor, 2004). To reduce disturbance as
much as possible, we performed the experiments only once the
nestlings were at least 30 days of age, with age being estimated
shortly after hatching bymeasuring the length of the left wing from
the bird's wrist to the tip of the longest primary (Roulin, 2004). As
the parents roost during the daylight hours outside the nestbox, we
could manipulate the offspring without disturbing them. We
brought two to six chicks per nest to the laboratory and always left
at least two nestlings inside the nestbox to ensure that parents did
not abandon the nest, which they never did. The 10 manipulated
broods had a slightly higher fledging rate (0.72) than the 88 un-
manipulated broods (0.64) monitored from the same population
(Student's t test: t ¼ 2.05, P ¼ 0.048). Nestlings brought to the
laboratory and those that remained in their nest had a similar body
condition measured as the weight divided by the length of wing
when fledged (Wilcoxon signed-rank tests: W ¼ 137, N ¼ 9,
P ¼ 0.13). Experiments were carried out under the legal authori-
zation of the veterinary service of the ‘canton de Vaud’ (authori-
zation 2109.2).
0.5 1 1.5

Overlapped

12

Playback latency (s)

Figure 2. Mean (a) call rate ±SE and (b) response time ±SE of barn owl nestlings
hearing playback calls at three latencies (i.e. the time between the start of the nestling
RESULTS

When calls were overlapped by the playback (0.5 s treatment),
the nestlings responded quicker to the playback and produced
more calls thanwhen the nestling calls were not overlapped (1 and
1.5 s treatments, Table 1, Fig. 2). During the 0.5 s treatment, the call
produced just after the overlapped call (‘first following call’) was
particularly long, whereas the subsequent calls (‘other calls’) had a
Table 1
Linear mixed models testing whether call rate and call response time of barn owl
nestlings are related to the timing of a playback call after a nestling starts a call (0.5,
1.0 or 1.5 s)

Fixed effect Call rate Response time

F t P F t P

Treatment order F1,343.6 ¼ 6.93 0.009 F1,344.1 ¼ 9.04 0.003
Sex F1,28.6 ¼ 2.58 0.12 F1,28.6 ¼ 1.46 0.24
Age F1,25.5 ¼ 0.32 0.58 F1,26.0 ¼ 0.88 0.36
Playback

response time
F2,341.2 ¼ 10.25 <0.001 F2,341.7 ¼ 5.23 0.006

0.5 s vs 1 s �3.17 0.002 2.32 0.021
0.5 s vs 1.5 s �4.42 <0.001 3.14 0.002
1 s vs 1.5 s �1.40 0.16 0.92 0.36

Nestling call response time corresponds to the time between the beginning of a
playback call and the next call produced by the nestling. We used backward model
selection; final models only contained significant effects (P < 0.05). The significant
effect of the factor ‘Treatment order’ indicates that as time passed, nestlings
increased call rate and decreased their response time. Significant P values are shown
in bold.

call and the start of the playback call): 0.5, 1 or 1.5 s. Levels of significance (*P < 0.05,
**P < 0.01, ***P < 0.001) are derived from mixed models presented in Table 1. Nestling
sex, age and the order in which treatments appeared were included as independent
variables. Nestling identity, nested in brood identity, was included as a random factor
to control for repeated measures.
similar duration as the overlapped call (Table 2, Fig. 3). Regardless
of the order of the calls, nestlings produced longer calls with the
playback latency of 1 s thanwith the latency of 1.5 s after a nestling
call (Table 2, Fig. 3). Finally, during the 0.5 s treatment, the call
produced just after the overlapped call (‘first following call’) was on
average longer than the first following call during the 1 s treatment
and any calls during the 1.5 s treatment, regardless of the order of
the calls (Table 2, Fig. 3).

DISCUSSION

We have shown that when a barn owl nestling is vocally inter-
rupted by a nestmate, it responds faster with a long call and in-
creases the call rate. As previously shown, the propensity to



Table 2
Linear mixedmodels testing whether call duration of barn owl nestlings is related to
the timing of a playback call after a nestling starts a call (0.5, 1.0 or 1.5 s)

F t P

Treatment order F1,784.7 ¼ 32.69 <0.001
Sex F1,25.5 ¼ 4.05 0.055
Age F1,26.7 ¼ 0.70 0.41
Playback response time F3,782.9 ¼ 4.39 <0.001
Overlapped
call 0.5 s

vs first following call 0.5 s 2.27 0.023
vs other calls 0.5 s �1.28 0.20
vs first following call 1 s 0.91 0.36
vs other calls 1 s 0.06 0.95
vs first following call 1.5 s �0.66 0.51
vs other calls 1.5 s �2.38 0.017

First following
call 0.5 s

vs. other calls 0.5 s �3.40 <0.001
vs first following call 1 s �1.35 0.18
vs other call 1 s �2.19 0.028
vs first following call 1.5 s �2.87 0.004
vs other call 1.5 s �4.55 <0.001

Other call 0.5 s vs first following call 1 s 2.14 0.033
vs other call 1 s 1.34 0.18
vs first following call 1.5 s 0.64 0.52
vs other call 1.5 s �0.99 0.32

First following
call 1 s

vs other call 1 s �0.89 0.37
vs first following call 1.5 s �1.60 0.11
vs other call 1.5 s �3.36 <0.001

Other call 1 s vs first following call 1.5 s �0.74 0.46
vs other call 1.5 s �2.51 0.012

First following
call 1.5 s

vs other call 1.5 s �1.78 0.075

We distinguished between calls that were overlapped (‘Overlapped call’), the sub-
sequent call (‘First following call’) and calls produced afterwards (‘Other calls’). We
used backward model selection; final models only contained significant effects (P <
0.05). The significant effect of the factor ‘Treatment order’ indicates that as time
passed, nestlings increased the duration of their calls. Significant P values are shown
in bold.
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interrupt siblings is not related to either the position in the within-
brood age hierarchy or to hunger level indicating that interrupting
siblings is not a strategy to compete for food but rather occurs by
chance (Dreiss et al., 2013). Since nestlings retreat from a contest
when facing a voluble sibling (Dreiss et al., 2010; Roulin et al., 2009;
Ruppli et al., 2013), we suggest that by intensifying vocal commu-
nication, the interrupted individual decreases the likelihood that
the interrupter gets the next prey item rendering call overlap
counterproductive. This would dissuade siblings from interrupting
again. Even if calling one after the other is beneficial by limiting
interference, social feedback is crucial to learn when to call, as
shown in European starlings, common marmosets and humans
(Black & Logan, 1995; Chow et al., 2015; Henry et al., 2015). In the
barn owl, social feedback might be useful when siblings persist in
interrupting conspecifics on purpose or by chance, a social control
that may limit the occurrence of call overlap.

Increasing call rate after having been interrupted can also be a
way to repeat the blurred message to make sure that the infor-
mation about current need for food is well understood. If this
interpretation is correct, social feedback may be limited to the
production of a single call very quickly after having been inter-
rupted to indicate that calling simultaneously should be avoided.
Such social feedback could therefore not be very costly and it now
remains to demonstrate that it is efficient and provides an
adaptive benefit to the interrupted individual. A potential exper-
iment would be to broadcast long calls more rapidly after a target
nestling has overlapped a sibling to test whether this individual is
less likely to interrupt siblings again compared to when shorter
calls are broadcast long after a target nestling has overlapped a
sibling.
1 1 1.5 1.5
First Others First Others

k latency (s)

**
***

tencies (i.e. the time between the start of the nestling call and the start of the playback
ck (‘Overlapped’), the subsequent call (‘First’) and the next calls (‘Others’) differed in
d models presented in Table 2. Nestling sex, age and the order in which treatments
ty, was included as a random factor to control for repeated measures.
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We performed our study in the context of sibling negotiation
between young animals that are still dependent upon parental
feeding and in which call interruption does not seem to be used as
a signal. Similar reactions to vocal interruption have been
repeatedly found in the context of sexual selection. Nightingale,
Luscinia megarhynchos, males increased call rate after having
listened to a playback of two males that overlapped their songs
compared to a playback in which two males sang one after the
other (Naguib, Fichtel, & Todt, 1999). In black-capped chickadees,
Poecile atricapillus, and great tits, Parus major, males modified the
structure of their song when interrupted by a conspecific
(Dabelsteen, McGregor, Shepherd, Whittaker, & Pedersen, 1996;
Mennill & Ratcliffe, 2004). This suggests that this is a general
response to vocal interruption regardless of the competitive
context. There might still be situations where interrupting an
opponent is done on purpose as an aggressive or threatening
signal. Although this has been the prevailing hypothesis in the past
(Naguib & Mennill, 2010), it is currently debated (Searcy &
Beecher, 2009, 2011) because the probability that an individual
interrupts the calls of conspecifics does not usually exceed the
random expectation.

The interactive playback experiment allowed us to control when
a nestling was interrupted regardless of other parameters, such as
call duration, call rate or any other behaviour. Although we could
not disentangle whether the vocal response of the interrupted
nestlings was specific to being overlapped by a sibling's negotiation
call rather than by any noise, we are confident that this response
was directed to the interrupting nestling. Indeed, nestlings can
discriminate noise from negotiation calls with nestlings producing
hissing calls in response to unknown noises (van den Brink, Dolivo,
Falourd, Dreiss, & Roulin, 2012), something that did not occur
during our experiment. We can therefore objectively argue that a
nestling is able to detect and recognize calls of opponents even if
they overlap its call.

Our study highlights that experiments based on automated
interactive playbacks are ideal to evaluate the adaptive function
of specific turn-taking rules in animal communication and could
hence be expanded to other biological systems. A major prob-
lem in animal communication is that researchers cannot ‘force’
animals to behave in a specific way, which prevents a formal
test of the function of specific behaviours (King, 2015). An
automated interactive playback mimics an individual that
adopts certain behavioural conventions. This method allows
researchers to observe the reaction in controlled conditions.
However, to perform biologically relevant experiments it is vital
to know the species well. It is also important to have a back-up
record to manually verify that the automatic detection of calls is
correct.

To conclude, our study suggests the existence of social feed-
back in owlets, which could help explain the low occurrence of
nestlings calling simultaneously and improve information trans-
mission. Such social feedback can be adaptive by improving the
efficiency of sibling negotiation and may promote the evolution of
specific turn-taking rules. Automated interactive playback could
be used to test the existence of such social feedbacks in other
biological systems.
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ABSTRACT 

Kin selection and reciprocation of biological services are distinct explanations invoked for the 

origin and evolutionary maintenance of altruistic and cooperative behaviours. Although these 

behaviours are considered as non-mutually exclusive, the cost-to-benefit balance to behave 

altruistically or reciprocally cooperate, and the conditions promoting a switch between such 

different strategies have rarely been tested. Here we examined the association between food 

gift, allopreening and vocal solicitation in wild broods of the barn owl (Tyto alba) under 

different food abundance conditions: natural food provisioning and after an experimental 

food supplementation. Allofeeding was mainly performed by elder nestlings (hatching is 

asynchronous) in prime condition, especially when the cost to renounce to a prey was small 

(when parents allocated more preys to the food donor and after food supplementation). 

Nestlings preferentially shared food with the sibling that vocally solicited food the most, thus 

maximizing indirect fitness benefits, or the one that provided more allopreening to the donor, 

thus promoting direct benefits from reciprocation. Finally, allopreening was mainly directed 

towards older siblings, perhaps in the hope to be fed in return. Helping behaviour among 

relatives can therefore be driven by both kin selection and direct cooperation, although it is 

dependent on the contingent environmental conditions. 
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INTRODUCTION 

Ever since Darwin (Darwin, 1859), the presence of altruistic and cooperative behaviours in 

non-human species has fascinated biologists (Axelrod & Hamilton, 1981; Hamilton, 1964; 

Hammerstein & Noe, 2016; Lehmann & Keller, 2006; Nowak, 2006; Trivers, 1971; West, Griffin, 

& Gardner, 2007). Theoretical explanations for the origin and evolutionary maintenance of 

cooperation are classified into two broad categories, depending on whether the actor receives 

indirect (Breed, 2014; Hamilton, 1964) or direct (Leimar & Hammerstein, 2010; Trivers, 1971) 

fitness benefits as a consequence of adopting a costly action in favour of another individual. 

Kinship is considered a major promoter for the occurrence of cooperation, because the 

indirect fitness benefits of positively influencing reproduction and/or survival of relatives can 

outweigh the cost of performing altruistic behaviours (Hamilton, 1964). Kin selection has in 

fact been invoked to be the primary driver for the emergence of (pro)social behaviours in 

animal societies (Hamilton, 1964). However, cooperation also occurs among non-relative 

individuals, and even between members of different species (Clutton-Brock, 2009), thus 

leading to the identification of other mechanisms, based on direct fitness returns, that can 

explain its evolutionary stability (Lehmann & Keller, 2006; Noe, 2006; Nowak, 2006; Queller, 

2011; West et al., 2007). A cooperative behaviour yields direct fitness benefits when the 

fitness of the individual performing the action is increased through reciprocation, thus 

resulting in a mutual advantage for both the counterparts (Nowak, 2006; Trivers, 1971; West 

et al., 2007). Reciprocity can be realized by exchanging the same social service, like mutual 

grooming/preening in mammals and birds respectively (Adiseshan, Adiseshan, & Isbell, 2011; 

Gill, 2012; Radford & Du Plessis, 2006; Roulin et al., 2016), or food sharing (Carter & Wilkinson, 

2013; de Waal, 2000), but also trading different commodities (de Waal, 1997; Fruteau, Voelkl, 

van Damme, & Noe, 2009; Kern & Radford, 2018; Noe & Hammerstein, 1995; Roulin et al., 

2016). Empirical evidence is accumulating for immediate commodity trades as a key element 

of intra- and inter-specific cooperation in non-primate species (Hammerstein & Noe, 2016), 

but there is a dearth of studies about interactions involving a temporal delay between the 

behaviours that are exchanged (but see Kern & Radford, 2018).  

The tendency to cooperate and reciprocate is expected to vary according to the cost-

to-benefit balance to be competitive, cooperative or altruist, which is expected to depend on 

the contingent environment to which both the donor and the receptor are exposed, as well 
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as to their condition (e.g. Dolivo & Taborsky, 2015; Fruteau et al., 2009). Therefore species 

and phenotypes, but also single individuals across their life, can vary in their cooperation level. 

Both mechanisms can simultaneously act in the same social context, and a given individual is 

expected to switch between different strategies depending on the consequent putative fitness 

payoffs (Lehmann & Keller, 2006). A pure altruistic behaviour without receiving any direct 

advantage should be favoured in the presence of a needy relative, whereas in other conditions 

it can be more convenient to act cooperatively with others in order to exchange reciprocal 

services. Unfortunately, to the best of our knowledge, the fitness payoffs between direct and 

indirect benefits and costs of behaving altruistically vs. directly cooperating has never been 

tested in any species the wild. 

A natural setting where direct cooperation and kin selected altruism can evolve and 

coexist is the brood of young animals, which rely on parental care, because offspring of altricial 

species are constrained in a small space where they compete for a long time for the same 

resources. This should be especially the case for populations/species where the extra-pair 

paternity is negligible, and broods are composed by full siblings. However, sibling interactions 

have been always considered as more competitive than harmonious (Mock & Parker, 1997; 

Trivers, 1974), and prosocial and altruistic behaviours in young animals have been examined 

only rarely (Forbes, 2007; Romano, Caprioli, Boncoraglio, Saino, & Rubolini, 2012; Roulin, Da 

Silva, & Ruppli, 2012; Roulin et al., 2016; Smale, Holekamp, Weldele, Frank, & Glickman, 1995).  

In this study, we investigated food sharing and allopreening behaviours in entire 

broods of the barn owl (Tyto alba) recorded in natural conditions. Allofeeding and 

allopreening, where individuals feed and preen each other, are appropriate behaviours to 

investigate the fitness payoffs of complex social interactions, also because they are repeated 

events that involve two or more individuals, which can reciprocate the service (Gill, 2012; 

Radford & Du Plessis, 2006; Roulin et al., 2016). Allofeeding consists in the donation of a food 

item from one individual to another, and it is usually interpreted as a mechanism that 

reinforces social bonds (Smith, 1980). Indeed, it has been reported mostly in adult birds during 

courtship and in cooperative breeders (Kalishov, Zahavi, & Zahavi, 2005; Smith, 1980), but very 

rarely in nestlings (Roulin et al., 2016; Stamps, Clark, Arrowood, & Kus, 1985). Allopreening is 

considered as a prosocial behaviour because it confers protection against ectoparasites, 

particularly when it is directed to body parts that cannot be self-reached (e.g. typically neck 
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and head; Radford & Du Plessis, 2006; Villa, Goodman, Ruff, & Clayton, 2016). It can also have 

a role in social interactions by reducing conflicts and stress (Fraser & Bugnyar, 2010; Gill, 2012; 

Radford, 2008; Radford & Du Plessis, 2006), and may thus provide mutual benefits to the 

donor and the recipient when it is reciprocated. Hygienic and social bond functions are not 

mutually exclusive, and have been proven to occur in the same avian systems (e.g. Radford & 

Du Plessis, 2006).  

The barn owl is an ideal model organism to examine the payoff between competition 

and cooperation among nestlings because they live in a narrow space where they share the 

same parental food for a prolonged period. Albeit a large hatching asynchrony generating a 

considerable size hierarchy among chicks, which in most bird species cause a food 

monopolization by the oldest, biggest siblings (Mock & Parker, 1997), different cooperative 

behaviours have been observed in barn owl nestlings. They have been generally interpreted 

as a common strategy to reduce the costs associated to sib-sib competition (Roulin et al., 

2012; Roulin et al., 2016; Roulin, Kolliker, & Richner, 2000). In particular, when parents are 

absent from the nest, siblings vocally negotiate which individual will have priority access to 

the next prey delivered by parents (Roulin et al., 2000). When an individual negotiates the 

most, its siblings refrain to compete for the next indivisible food item delivered by parents. In 

addition, owlets can exchange allopreening among each other, share food with siblings, and 

can also trade food sharing with allopreening (Roulin et al., 2016). However, the occurrence 

of allopreening and food sharing has been studied only under laboratory experimental 

conditions involving two or three nestlings, a number significantly lower than the average 

brood size (4-5 chicks), which can reach up to 9 chicks.  

Here, we expanded the scope of previous studies on complete brood (Roulin et al., 

2012; Roulin et al., 2016) by investigating the occurrence of allofeeding and its trade in 

exchange with allopreening by also taking into account the level of vocal negotiation and the 

food abundance level. We tested the following straightforward predictions: 1) individuals in 

better condition (i.e. oldest chicks) should be more inclined to share food with siblings than 

the chicks in poor conditions; 2) food share should especially occur when the cost to renounce 

to an indivisible food item is small (i.e. when chicks received a surplus of food by parents 

and/or when the amount of food stored in the nest is abundant); 3) the receptor of the prey 

donation should preferentially be either a very needy sibling (i.e. a chick that negotiates 
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intensely prior to the food share event) or the sibling that previously cooperated the most 

with the donor (i.e. the chick that provided the donor with the largest allopreening); 4) if 

allofeeding is traded against allopreening and is performed mostly by oldest chicks, 

allopreening should be mainly directed towards high-ranking dominant siblings. To these 

aims, we recorded the aforementioned behaviours (allofeeding, allopreening and negotiation) 

in entire broods during two consecutive nights under different conditions of food abundance: 

one night under the natural food provisioning regimes provided by parents and a second one 

after an experimental food supplementation. Notably, by using new developed miniaturized 

microphones, we were able for the first time to assign each negotiation call to its emitter in 

natural condition. 

MATERIALS AND METHODS 

Study population and field procedures 

The study was performed in a population of barn owls breeding in Western Switzerland 

(46°49ʹN/06°56ʹE) from April to September 2016. Adults breed in wood nest boxes installed in 

private barns (size of nest boxes is 65.2 × 35.9 × 46 cm) and composed by a main room, where 

eggs are laid, and the nestlings are reared and an entrance hall. The hatching is asynchronous 

with 2.5 days difference between each chick, which leads to a large within-brood size-

hierarchy. Parents hunt small mammals at night to feed their offspring (Roulin, 2004). At two 

to three weeks of age, offspring are thermo-independent and can swallow entire prey item by 

themselves. Once this age is reached, parents enter the nest only to bring preys at night. The 

experiment was performed when the oldest nestling was 40 days old to avoid disturbing 

parents, and before nestlings take their first flight when they are ca. 55 days old. The sex of 

each nestling was determined using molecular markers (Py, Ducrest, Duvoisin, Fumagalli, & 

Roulin, 2006) and age by measuring the left wing from the bird’s wrist to the tip of the longest 

primary (Roulin, 2004). 

Behaviours of 127 nestlings (56 males, 70 females, 1 of unknown sex; age range 20-42 

days) were monitored from 27 broods (brood size: mean = 4.7 ± 0.8 SD chicks; range = 3-6 

chicks) during two consecutive days and nights. In one of the two experimental nights, 

randomly chosen, a food supplementation treatment was applied to each brood. The 

treatment consisted on adding two laboratory white mice Mus musculus per nestling which 
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corresponds to half of their daily diet (Durant & Handrich, 1998) around 30 minutes before 

the sunset (e.g. in a 4-chicks brood 8 mice were added). The remaining night no experimental 

food supplementation was applied to the broods, so nestlings received only parental food. At 

the same time, microphones were turned on and nestlings were weighed. Every morning, at 

around 9 am, the remaining food on the nest was removed in order to homogenize the hunger 

level of each nestling before experimental observations. Experiments were carried out under 

the legal authorization of the veterinary service of the “Canton de Vaud” (authorization 

2109.2). 

Experimental set up 

Four infrared miniature cameras (Active Media Concept – Technologie & Systèmes, CCTV 

miniature camera 520 lines with invisible infrared) were fixed on the nest box ceiling to video 

record the nest content. Two cameras were disposed at the entrance hall and two in the main 

room. Each nestling of the brood was equipped with a microphone recorder to identify which 

nestling emitted a call (see S1 for details). Six out of the 127 chicks could not be equipped with 

microphone because they were too small to hold it (threshold: wing <10 cm). Finally, a marker 

representing a geometric shape was added to the microphone to individually identify nestlings 

on video footages. The microphone had an autonomy of 10 hours, which allowed us to record 

complete nights. All the materials were installed (but turned off) 24h before the beginning of 

the experiment in order to allow chicks and parents to get used to recording equipment.  

Behavioural data 

Information about parental feeding behaviour and nestling social behaviours (allofeeding, 

allopreening and negotiation) was collected by watching video footages. Each parental visit 

was monitored and the identity of the nestling receiving the prey recorded. Thanks to these 

observations, we could estimate if parents equally distributed food among their offspring or 

if some of them were over selected. To this aim, we calculated an ‘index of parental food 

distribution inequity’ as the total number of prey items received by a nestling during each 

night minus the expected number of preys received per nestling if the distribution would be 

equitable (i.e. total number of preys brought divided by the brood size). In addition, we 

collected information about the allofeeding between chicks (i.e. who gave the prey and who 

received it) and the allopreening bout between chicks (i.e. who preened whom). An 

allofeeding event is defined as a behaviour through which a nestling gave a prey to a sibling 
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directly to its beak or deposited it at its feet. This behaviour is easy to be identified because 

the donor steps back immediately after giving the prey. During this experiment, allofeeding 

events happened only at night as we removed the remaining food in the morning. The 

allopreening bout is defined as a nestling preening a sibling with its beak. Data about 

allopreening behaviour were collected only during the 6h preceding the sunset because 

previous studies documented a peak of allopreening during this period (Roulin et al., 2016; 

Scriba et al., 2017). This peak was confirmed on 10 broods for which we watched the video 

footage of the entire experiment (34% of allopreening bouts were given during these 6h, 

which is significantly larger than expected: t = 2.92, P = 0.01). Moreover, the number of 

allopreening bouts given per nestling during these 6h was highly correlated with the number 

observed during 24h (Pearson correlation of paired samples: t = 11.13, P <0.001, estimate = 

0.77 ± 0.088 (SE)). To be considered as two allopreening bouts, a pause of at least 2s was 

required (see also (Roulin et al., 2016)). We calculated the number of allofeeding events and 

allopreening bouts per donor and receptor per night. The number of allopreening bouts is a 

good proxy of the total allopreening given and received (correlation between number of 

allopreening bouts and total allopreening duration: Spearman’s ρ = 0.92), which also accounts 

for the number of direct interactions among siblings.  

A program on Matlab R2012b 8.0.0.783 (MathWorks, Natick, MA, U.S.A.) was 

developed to post-process the vocal soundtracks to determine which nestlings emitted each 

call (details in S1). Afterward, we calculated the call rate of each nestling during each 

negotiation session, which corresponds to the period between two parental visits. 

Statistical analyses  

Statistical analyses were performed with the software R.3.4.0. All generalized linear mixed 

models (GLMM) included individual identity nested within brood identity as random effect to 

correct for pseudoreplication. Non-significant interaction terms were removed from final 

models. Homoscedasticity has been checked for each model.  

What predicts allofeeding occurrence?  

To investigate whether the number of allofeeding events per night varied with nestling 

condition (hypothesis 1) and with the food abundance (hypothesis 2), we used a GLMM with 

Poisson error distribution. We included the position in the within-brood age hierarchy based 

on hatching order (hereafter “rank hierarchy”) and body mass corrected by age (i.e. residuals 
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of the regression of body mass on age) to test whether nestlings in better condition were more 

inclined to allofeed a sibling. We included the food supplementation treatment (i.e. food 

supplemented or control night) and the index of parental food distribution inequity to test 

whether food supply induces generosity. Interaction between the food supplementation 

treatment and the index of parental food distribution inequity was also included. To properly 

compare the rank hierarchy of nestlings across broods that vary in size (brood sizes varied 

between 3 and 6 chicks), we assigned the category “junior”, “middle-born” or “senior” to each 

nestling depending on hatching order (see S2). Qualitatively similar results were obtained 

when ‘hatching order’ was set as a continuous covariate (results not shown). We also included 

the nestling’s sex and the brood size as independent variables. Each continuous variable was 

standardized.  

Who receives allofeeding?  

To test whether social behaviours (vocal negotiation and allopreening) encourage an 

individual to give a prey to a particular sibling (hypothesis 3), we focused our analyses on the 

15 broods where allofeeding event occurred and on the siblings’ behaviour toward the food 

donor (each sibling except the donor). As dependent variable we used a dichotomous variable 

indicating whether a given individual received a prey or not from siblings in a GLMM with 

binomial distribution. For each individual, we included as predictors the number of 

allopreening bouts given to the food donor and the call rate emitted during the negotiation 

phase preceding each allofeeding event. The rank hierarchy (junior, middle-born or senior) 

and the sex of each potential receptor were also included, as well as the interaction between 

the call rate and the number of allopreening bouts given. Due to technical issues, 4 broods 

had to be removed from this analysis because of missing negotiation (e.g. the microphone 

applied to a nestling did not work) or allopreening (e.g. the cameras did not record the entire 

nest box content) data.  

Who receives allopreening?  

To test whether the frequency of allopreening was related to the rank hierarchy and the sex 

of the donor and receptor of allopreening (hypothesis 4), we ran a GLMM with Poisson error 

distribution with the number of allopreening bouts as the dependent variable. As independent 

variables we included hierarchy rank of the donor and of the receptor as well as their 

interaction. We also included the sex of the donor and of the receptor as well as their 
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interaction. Because of the large number of comparisons between different levels of the 

interaction between donor and receptor ranks, we corrected the p-value for multiple tests 

with the false discovery rate method (Nakagawa, 2004). 

RESULTS 

We observed 45 allofeeding events (60% directly to the sibling’s beak and 40% to its feet) 

performed by 28 out the 127 nestlings in 15 out of the 27 experimental broods. Nestlings 

performed on average 1.95 allopreening bouts (SD = 1.93) per hour (mean bout length = 16.57 

± 19.78 s), which corresponds to a total duration of 32.39 s per hour on average (SD = 36.93). 

Table 1 – Generalized linear mixed model testing whether the number of allofeeding events 

is related to individual condition (weight and rank hierarchy category) and to food abundance 

(food supplementation treatment and index of parental food distribution inequity). Sex and 

brood size were also included as predictors. Nestling identity nested within brood identity was 

included as random factor. Sample size was 127 nestlings from 27 broods. 

Predictors Estimate (SE) χ2 z P 
Rank category  13.43  0.0012 

     Junior vs. Middle-born -0.53 (0.68)  -0.78    0.44 

     Junior vs. Senior -1.87 (0.59)  -3.18    0.0014 

     Middle-born vs. Senior -1.34 (0.52)  -2.55    0.011 

Sex -0.26 (0.42) 0.37  0.54 

Body mass 0.020 (0.0091) 4.79  0.028 
Food supplementation treatment -0.77 (0.36) 4.56  0.033 
Index of food distribution inequity 0.51 (0.15) 11.62  0.00065 

Brood size 0.16 (0.25) 0.41  0.52 

 

What predicts allofeeding occurrence?  

The occurrence of allofeeding depended on the rank of the donors (Table 1) with senior 

nestlings sharing more food items with siblings than junior and middle-born individuals, while 

no difference was observed between junior and middle-born chicks (Table 1, Figure 1a). 

Nestlings allofed more often in nights when we experimentally added food compared to 

control nights (Table 1, Figure 1b). A nestling was more inclined to allofeed when it received 

the main share of parental feedings (i.e. index of parental food distribution inequity; Table 1, 

Figure 1c). Finally, nestlings with larger body mass relative to their age allofed more often than 
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lighter nestlings (Table 1). Brood size, nestling sex and the interactions between food 

supplementation and the index of parental food distribution inequity did not significantly 

predict the number of allofeeding events neither the interaction between food 

supplementation and the index of parental food distribution inequity (Table 1). 

 

Figure 1 – Relationship between the number of allofeeding events given and a) position in the 
within-brood age hierarchy of the food donor (i.e. rank), b) the food supplementation 
treatment and c) the index of parental food distribution inequity (a positive value indicates 
that a nestling was fed by parents more often than expected if food was allocated equally 
among the progeny). Predicted value (continuous line) and 95% confidence interval (dotted 
lines) are based on the model in Table 1. Asterisks indicate significant differences between 
groups (**: P<0.01 and *: P<0.05).  
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Who receives allofeeding?  

The probability of being fed by a sibling was significantly related to the interaction between 

the call rate emitted during the preceding negotiation phase and the allopreening given to the 

food donor (χ2 = 4.24, P = 0.039; Figure 2). In particular, prey donation was mainly directed 

towards either the sibling that emitted very intense negotiation calls prior to the food share, 

irrespective of its allopreening behaviour, or under low-to-medium level of negotiation to the 

one that provided the donor with the largest allopreening (Figure 2). The probability of 

receiving a prey was not related to nestling’s sex (χ2 = 0.25, P = 0.61) and rank hierarchy (χ2 = 

0.60, P = 0.74).  

 

 

Figure 2 – Predicted probability to receive a prey item from a sibling according to the number 
of allopreening bouts given to the food donor when vocal negotiation was at the first quartile 
value (black); at the mean value (dark grey) and at the third quartile value (light grey). These 
values have been chosen to illustrate the interaction between two continuous variables. The 
predicted lines are based on the model presented in Table 2. Each other predictor was set at 
their mean values. Note that the light grey curve (third quartile of vocal negotiation) is not 
significant.  

 

Who receives allopreening?  

A nestling allopreened a sibling differently according to its rank and the rank of the receptor 

(interaction between the donor’s and the receptor’s ranks: χ2 = 47.66, P < 0.001, Table S3a, 

Figure 3). Whatever the rank of the donor, nestlings allopreened higher ranked siblings. In 

other words, middle-born nestlings allopreened more their senior siblings compared to 
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middle-born and junior ones (Table S3b, Figure 3), and junior nestlings allopreened more both 

middle-born and senior siblings than junior ones (Table S3b, Figure 3). Finally, senior nestlings 

allopreened more other senior than middle-born and junior siblings (Table S3b, Figure 3). 

However, a nestling allopreened a sibling regardless its sex and the sex of the receptor (Table 

in S3a). 

 

 

Figure 3 – Number of allopreening bouts given according to the donor’s and the receptor’s 
rank hierarchy. Only statistical significant comparisons within each donor’s rank hierarchy 
block are presented and are based on the model in Table S3. P-values have been corrected for 
multiple testing with the false discovery rate method. Asterisks indicate significant differences 
between groups after correction (***: P<0.001; **: P<0.01; *: P<0.05). 

DISCUSSION 

One of our main findings was that within a brood the barn owl chicks in better condition 

(oldest and heaviest relatively to their age) were more prone to give an indivisible prey item 

to siblings than younger nestling. This result is coherent with previous studies performed on 

experimentally reduced broods where nestlings were selected to maximize their rank 

difference (Roulin et al., 2012; Roulin et al., 2016). The observed pattern of food sharing was 

expected because this behaviour is predicted to entail some direct fitness costs that only 

dominant chicks can sustain because they potentially have a privileged access to parental 

resources, and because they are more responsive to modulate their behaviour according to 
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siblings’ need (Dreiss, Ruppli, Delarbre, Faller, & Roulin, 2017). Indeed, it is not surprising that 

this was especially the case when the nestling naturally received a higher number of parental 

food and when the number of preys stored in the nest was experimentally enhanced, thus 

suggesting that this helping behaviour is condition-dependent, being favoured when the cost 

to renounce to food is lowered.  

The costs of allofeeding behaviour should be overcompensated by some fitness 

advantages to the donor to be maintained (Hammerstein & Noe, 2016; Lehmann & Keller, 

2006; Nowak, 2006; West et al., 2007). In the barn owl, extra-pair paternity is almost nihil (ca. 

1% in our study population; Henry et al., 2013), and nest mates are full siblings. Under such 

circumstances, allofeeding may confer indirect benefits through kin selection processes by 

enhancing the condition of a needy sibling, but also direct benefits if this behaviour is 

reciprocated through mutual exchange of services or if it appeases siblings and social 

interactions. These two processes, which have been often considered independent to explain 

the origin and the evolutionary stability of cooperation, can instead synergistically interact 

(Lehmann & Keller, 2006; Van Cleve & Akcay, 2014), but unfortunately no study had 

investigated their interplay in determining individual behavioural strategies in young animals. 

Another main finding of our study seems, at least partly, to fill this gap because we showed 

that chicks can optimally modulate food sharing according to the balance between direct and 

indirect fitness benefits and costs of behaving altruistically vs. directly cooperating. Indeed, 

food share mainly occurred with the neediest sibling (i.e. the one emitting intense negotiation 

calls) irrespective of its allopreening behaviour, or with the most cooperative sibling (i.e. the 

one providing the largest allopreening) even if it did not negotiate. On the one hand, this 

choice is expected to have a positive impact on the indirect fitness of the donor because it 

should enhance the pre-fledging survival prospects of a kin (see below), especially when the 

kin is particularly hungry and therefore when the value of a food item is high. On the other 

hand, in the absence of very needy siblings, food donation was directed towards the nestlings 

that had previously provided the largest allopreening to the donor, suggesting that siblings 

exchange commodities (food against allopreening), as previously demonstrated in 

experimentally reduced brood (Roulin et al., 2012; Roulin et al., 2016).  

Allopreening is mainly directed to body regions that are difficult to self-preen, such as 

head, neck and back, thus potentially conferring direct advantages to the receptor in terms of 
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ectoparasite removal (Radford & Du Plessis, 2006; Villa et al., 2016), other than through a 

decrease in social stress (Fraser & Bugnyar, 2010; Gill, 2012; Radford, 2008; Radford & Du 

Plessis, 2006; Stowe et al., 2008). Unfortunately, with the present data we are not in the 

position to disentangle which one of these mechanisms (or even both simultaneously) is 

responsible for the observed exchange of commodities among owlets. Nevertheless, 

allopreening is preferentially directed to chicks of higher rank than the donor. This is not 

surprising because it can be subsequently rewarded by a food donation, while the opposite is 

not the case (i.e. food donation to later obtain allopreening), as suggested by the lack of an 

effect of food received during a night on allopreening given the subsequent day (see S4 for 

details). Irrespective of the proximate benefits from receiving allopreening, barn owl nestlings 

seem to optimally trade different services with the siblings and to modulate this reciprocation 

according to the contingent context, as predicted by the ‘biological market’ theory 

(Hammerstein & Noe, 2016; Noe & Hammerstein, 1995). The dynamics of reciprocity in 

cooperative behaviour is indeed expected to vary according to the conditions of each 

participant and to the value that both the donor and the receptor attribute to the traded 

commodities (i.e. demand and supply of each commodity), which, in turn, depends on their 

availability on the market (Hammerstein & Noe, 2016; Noe & Hammerstein, 1995). To this 

complex puzzle for evolution of cooperation, we add a further level of complexity by 

suggesting that, among relatives, a commodity in the biological market can also be traded 

against an indirect fitness return (i.e. food consumption by very needy sibling) in case it is 

larger than a direct benefit (i.e. allopreening received). Interestingly, a preliminary analysis on 

the same sample of broods showed that the fledging rate (i.e. proportion of chicks that 

fledged) was significantly larger in the broods where allofeeding was observed comparing to 

those where it was not (ANOVA: F1,25 = 5.93, P = 0.022). This was especially the case for middle-

born and junior chicks (ANOVA: F1,25 = 8.42, P = 0.0076). Although this is a partial analysis 

including only two days of allofeeding data, potentially not entirely reflecting the total 

allofeeding propensity during the entire rearing period, this finding suggests that food sharing 

may have an effective positive role to promote sibling survival, and thus to increase the 

inclusive fitness of the donors. It therefore has the potential to be evolutionary maintained.  

Interestingly, allopreening is mostly performed during daytime while allofeeding 

exclusively during the night (Roulin et al., 2016; present study), thus indicating that sibling 
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cooperation involves a temporal delay between the traded behaviours. The existence of 

delayed cooperation in non-primate animals has been questioned (Barrett, Henzi, & Rendall, 

2007; Stevens & Hauser, 2004). However, convincing evidence has been provided that this 

type of cooperation can also occur in species other than primates (vampire bats: Carter & 

Wilkinson, 2013; mongooses: Kern & Radford, 2018; birds: Krams, Krama, Igaune, & Mand, 

2008). Here we provided the first documented evidence of delayed cooperation in young 

animals. This observation implies the ability by barn owl chicks to recognize the nest mates 

individually, as previously suggested because of the presence of individual-specific vocal 

signatures (Dreiss et al., 2013; Dreiss, Ruppli, & Roulin, 2014), but also to memorize the actors 

of past behaviours and act accordingly.  

We showed that individuals were more inclined to share a prey if they received more 

food from parents. An open question remains about why such unfair parental distribution was 

observed only in a part of the studied broods. One scenario envisages the possibility that in 

some families, parents might ‘delegate’ the oldest chicks to distribute food to their siblings. 

Such a helping behaviour by ‘responsible’ chicks may allow parents to limit the time spent in 

the nest and therefore to increase their hunting activities, with a common benefit for the 

entire brood. This form of parent-juvenile cooperation (see Kramer, 2011) might especially 

occur in broods reared by only one parent, because of the death or the abandon of the other 

one (especially the female) to do a second brood, as it is common in our population (Beziers 

& Roulin, 2016). In addition, this behaviour can be beneficial also because the ‘responsible’ 

chick should discriminate better than parents which is the neediest nest mate to be fed 

because of direct and prolonged comparison between the degree of negotiation among all the 

siblings. Alternatively, the oldest chicks could easily monopolize parental resources by, for 

instance, occupying the most favourable position in the nest to receive food (e.g. close to the 

nest-box entrance), and then redistributed it according to its own advantage. However, the 

observation that chicks provided food to siblings when they negotiate conspicuously also the 

receiver did not directly cooperate with the donor makes this scenario as an unlikely one.  

In conclusion, we showed a complex interplay between allofeeding, allopreening and 

negotiation among barn owl siblings, corroborating the hypotheses that helping behaviour 

among relative individuals can be driven by both kin selection and direct cooperation, as well 

as that it varies depending on the food availability. Future studies in other non-primate species 
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combining information on individual relatedness, reciprocal exchange of different social 

services and variation in their value on the biological market will allow to test for the generality 

of the patterns documented here. 
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SUPPLEMENTARY MATERIAL 

S1. Individual microphone recorder description 

We modified a pre-existing microphone recorder (Spy USB microphone recorder). We 

externalized the microphone in order to place it as close as possible to the nestling’s bill with 

a steep pole. We added a resistor between the microphone and the record system in order to 

decrease the sensitivity. The microphone was fixed on a piece of leather (2mm thick) before 

fixing it as a bag back on the nestling. The microphone recorder measured 3 cm width, 9 cm 

length, and weighed 15.7g, which represents between 3.8% and 7.5% of the nestling body 

mass at the age of 25 to 42 days.  

Identifying the individual that emitted the calls was based on the comparison of sound 

intensity between each microphone. In order to correct for potential differences between 

microphones, a white noise and a sweep noise (sound which increases in frequency from 60 

Hz to 10 kHz) was recorded before each experiment. A program on the software Matlab 

R2012b 8.0.0.783 (MathWorks, Natick, MA, U.S.A.) was developed to post-process the vocal 

soundtracks by 1) correcting for potential microphone differences using the sweep and white 

noise records, 2) detecting the calls, and 3) performing the multi-intensity comparison of all 

microphone records to determine which individual emitted each call. Before this procedure 

had been applied, the recordings of each microphone were synchronized on time thanks to a 

“clap” that we made at the beginning of each recording. The “clap” consisted of a noise made 

by two wood pieces close enough to the nestling to be present on each microphone. 

S2. Rank hierarchy categorization 

Table representing the classification of the hatching order within a brood into a three level 

rank hierarchy category: i.e. “senior”, “middle-born” and “junior” 

 Rank hierarchy category 
Brood size Senior Middle-born Junior 
3 chicks 1st   2nd 3rd  
4 chicks 1st  2nd and 3rd  4th  
5 chicks 1st and 2nd  3rd  4th 5th  
6 chicks 1st and 2nd   3rd and 4th  5th and 6th  
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S3. Relationship between nestling rank and allopreening 

(a) Generalized linear mixed model testing whether nestlings allopreened sibling according to 

their own rank in the within-brood age hierarchy and sex and according to the receptor’s rank 

and sex. Nestling identity nested in brood identity was included as random factor. (b) Post hoc 

multiple comparisons for the interaction between donor and receptor rank. P-values have 

been corrected for multiple comparisons with the false discovery rate method (see Fig. 3). 

Sample size is 110 nestlings from 23 broods. 

(a)   
Predictors Χ2 P 
Donor’s sex 0.14 0.71 
Receptor’s sex 0.0038 0.95 
Donor rank 10.99 0.0041 
Receptor rank 157.72 <0.001 
Donor sex × Receptor sex 0.065 0.80 
Donor rank × Receptor rank 38.02 <0.001 

 

(b)      

Donor / Receptor Rank Donor / Receptor Rank Estimate (SE) z P Adjusted 
P 

Senior / Senior vs. 

Senior / Middle-born -0.71 (0.09) -7.91 <0.001 <0.001 
Senior / Junior -0.97 (0.088) -11.03 <0.001 <0.001 
Middle-born / Senior -0.66 (0.17) -3.95 <0.001 <0.001 
Middle-born / Middle-born -1.32 (0.20) -6.60 <0.001 <0.001 
Middle-born / Junior -1.24 (0.17) -7.13 <0.001 <0.001 
Junior / Senior -0.77 (0.16) -4.74 <0.001 <0.001 
Junior / Middle-born -0.87 (0.17) -5.25 <0.001 <0.001 
Junior / Junior -1.17 (0.19) -6.28 <0.001 <0.001 

Senior / Middle-born vs. 

Senior / Junior -0.26 (0.084) -3.09 0.0020 0.0055 
Middle-born / Senior 0.055 (0.16) 0.34 0.73 0.73 
Middle-born / Middle-born -0.61 (0.20) -3.07 0.0021 0.0055 
Middle-born / Junior -0.52 (0.17) -3.07 0.0021 0.0055 
Junior / Senior -0.056 (0.16) -0.35 0.72 0.73 
Junior / Middle-born -0.16 (0.16) -0.95 0.34 0.42 
Junior / Junior -0.45 (0.18) -2.47 0.013 0.027 

Senior / Junior vs. 

Middle-born / Senior 0.32 (0.16) 1.92 0.054 0.089 
Middle-born / Middle-born -0.35 (0.20) -1.74 0.081 0.13 
Middle-born / Junior -0.26 (0.17) -1.53 0.12 0.19 
Junior / Senior 0.20 (0.16) 1.26 0.21 0.28 
Junior / Middle-born 0.10 (0.16) 0.63 0.53 0.59 
Junior / Junior -0.19 (0.18) -1.05 0.29 0.37 

Middle-born / Senior vs. 

Middle-born / Middle-born -0.66 (0.14) -4.83 <0.001 <0.001 
Middle-born / Junior -0.58 (0.087) -6.68 <0.001 <0.001 
Junior / Senior -0.11 (0.16) -0.69 0.49 0.57 
Junior / Middle-born -0.21 (0.17) -1.27 0.20 0.28 
Junior / Junior -0.51 (0.19) -2.72 0.0064 0.014 

Middle-born / Middle-born 
vs 

Middle-born / Junior 0.085 (0.14) 0.59 0.56 0.61 
Junior / Senior 0.55 (0.20) 2.77 0.0057 0.014 
Junior / Middle-born 0.45 (0.20) 2.24 0.025 0.045 
Junior / Junior 0.15 (0.22) 0.71 0.48 0.57 

Middle-born / Junior vs. 
Junior / Senior 0.47 (0.17) 2.74 0.0061 0.014 
Junior / Middle-born 0.37 (0.17) 2.13 0.033 0.057 
Junior / Junior 0.072 (0.19) 0.37 0.71 0.73 

Junior / Senior vs. Junior / Middle-born -0.10 (0.079) -1.25 0.21 0.28 
Junior / Junior -0.40 (0.11) -3.50 <0.001 0.0015 

Junior / Middle-born vs. Junior / Junior -0.30 (0.12) -2.45 0.014 0.027 
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S4. Allopreening given according to allofeeding received during the previous night  

To examine if the relationship between allopreening and allofeeding is uni- or bidirectional, 

we tested if the total number of allopreening bouts received in a day was predicted by the 

allofeeding given during the night before. To this purpose we ran a GLMM assuming a Poisson 

error distribution, including brood identity as a random factor. This model included as 

predictors a dichotomous factor indicating whether an individual gave a prey or not, as well 

as the rank hierarchy and the sex of the chicks receiving allopreening. Unfortunately, this 

analysis could be performed only for one night (the first experimental night and the 

subsequent day) because we did not collect any data before the first experimental day and 

after the second experimental night.  

The analysis showed that nestlings did not receive more allopreening bouts from a 

sibling if it shared a prey the night before compared to if it did not share a prey the night 

before (Table S4).  

Table S4 – Generalized linear mixed model testing whether the number of allopreening bouts 

received by a nestling is related to the fact that the same nestling shared food the night before. 

We included the rank hierarchy, the food supplementation treatment and the sex of this 

nestling. Brood identity was included as random factor. Sample size was 65 nestlings from 13 

broods. 

Predictors Estimate (SE) Χ2 z P 
Rank category  26.45  <0.001 
     Junior vs. Middle-born -0.45 (0.11)  -3.90    <0.001 
     Junior vs. Senior -0.64 (0.13)  -5.04    <0.001 
     Middle-born vs. Senior -0.19 (0.11)  -1.81    0.07 
Give a prey Yes vs. No -0.21 (0.16) 1.81  0.18 
Food supplementation treatment 0.66 (0.38) 2.99  0.083 
Sex 0.13 (0.10) 1.47  0.22 
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GENERAL DISCUSSION 

During my PhD, I went a step further in the understanding of vocal communication in the 

context of food competition in nestling barn owls. Since genetically related siblings present a 

high asymmetry in food requirement (i.e. food items are indivisible and there is an important 

age and size hierarchy), a negotiation process has evolved between the two to nine siblings of 

barn owl broods. By transmitting information about its hunger level in the absence of the 

parents, a nestling deters the less needy siblings from competing and thereby from getting 

priority access to the next prey. In this species, sibling negotiation can therefore be considered 

as a ‘cooperative’ behaviour that promotes food access to the neediest individual. However, 

despite lowering their chance to get the next prey when withdrawing from the negotiation, 

nestlings also save energy that will be available later when their chance to obtain the prey is 

higher. The resolution of conflict over parental food includes therefore interconnected 

negotiation phases in which the same individuals are involved. Because these repeated 

negotiation phases take place between genetically related individuals, ‘cooperative’ 

communication strategies may have evolved. By cooperative communication strategies I refer 

to strategies that lead to reduce the overall investment in the communication of each 

contestant and to increase the transmission efficiency (e.g. call overlap avoidance). Indeed, I 

highlighted in Chapter 1 and 2, using innovative interactive playback experiments, the 

importance of short-term adjustment of vocal communication between contestants (i.e. 

temporal and intensity adjustment) in order to dominate the negotiation process. In these 

two chapters I also highlighted the potential role of contestant in reinforcing communication 

strategies by rendering other strategies inefficient and sending social feedback to correct a 

sibling when the latter does not follow a communication rule (Chapter 2, call overlap 

avoidance). I also uncovered in Chapter 3 the importance of vocal negotiation in the decision 

process of whom to share a prey with, and the environmental condition that favours food 

sharing. I will first briefly discuss these results in the context of the barn owl as well as in the 

broader context of communication, and then I will present those aspects that need to be 

explored in future studies. This latter perspective part includes, among others, studies that 

will be conducted soon using the behavioural data collected in 2016 and that were partially 

used in Chapter 3. 
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PART 1: SIBLING NEGOTIATION IN NESTLING BARN OWLS: A DYNAMIC AND 

INTERACTIVE PROCESS 

To dominate a negotiation process, nestlings have to succeed in producing more and longer 

calls than their siblings (Dreiss, Lahlah, & Roulin, 2010; Roulin, Dreiss, Fioravanti, & Bize, 2009; 

Roulin, Kolliker, & Richner, 2000). It has already been shown that nestlings assess the temporal 

variation of the sibling’s call parameters (i.e. an increase or decrease of call duration and rate) 

and use it to decide when resuming the negotiation (Dreiss, Ruppli, Faller, & Roulin, 2015). 

Nestlings also use these temporal variations to adjust their call parameters at a fine-time scale 

to those of their siblings, by matching call duration (i.e. increasing and decreasing call duration 

at the same time as the contestant) and mismatching call rate (i.e. increasing the call rate 

when the contestant decreases its call rate and reversely; Dreiss, Lahlah, et al., 2010; Dreiss 

et al., 2015; Roulin et al., 2009; Ruppli, Dreiss, & Roulin, 2013). In Chapter 1, we experimentally 

showed that these strategies, even if reversed (i.e. positive or negative adjustment), are the 

most efficient to induce the withdrawal (fewer and shorter calls) of a sibling from the vocal 

negotiation. Call rate has been repeatedly demonstrated to be the most important call 

parameter within the negotiation process, i.e. a parameter that is modulated to a larger extent 

according to hunger level and has the most pronounced influence on a sibling’s withdrawal 

(Dreiss, Lahlah, et al., 2010; Roulin et al., 2000; Ruppli et al., 2013). This was also confirmed in 

Chapter 1 as the probability that nestlings retreated (i.e. stopped calling) was clearly the 

highest during Mismatch-Call Rate. 

The call duration is used in a competitive manner by increasing and decreasing at the 

same time as the contestant’s (i.e. matching strategy) probably to test how far the contestant 

is willing to vocally compete. According to the prediction of the different game theories 

presented in introduction, it seems that the call duration is used to advertise endurance (i.e. 

the war of attrition models: Bishop & Cannings, 1978). By contrast, the call rate is used in a 

more ‘cooperative’ manner by waiting until the sibling’s decrease in call rate before increasing 

its own call rate, and reversely. This strategy might be counterintuitive as it seems risky to wait 

to signal its hunger level when a parent might arrive at any moment. However, by doing so, 

nestlings give a sibling the opportunity to communicate without having to both escalate at the 

same time. This ‘gentle’ strategy could ultimately be beneficial to appease vocal exchange and 
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hence reduce the cost (i.e. overall emission rate) of a long-lasting negotiation process. Indeed, 

barn owl nestlings negotiate during the absence of the parents that can last more than an 

hour, as well as for all the prey brought across the night and rearing period. Exchanging long 

utterance (i.e. monologue) rather than frequently changing the calling turn might therefore 

have common benefits for both contestants by lowering the overall number of calls and 

increasing the information transmission. This observation could explain the high proportion 

of ‘solo’ during the negotiation process (67%: Dreiss et al., 2015). This high percentage of 

monologue suggests that the number of calls emitted during such a monologue is responsible 

at a large extent for the overall call rate of a complete negotiation phase. It would be 

interesting to investigate whether a monologue is a temporary success or a part of a longer 

process.  Indeed, succeeding to call alone in a solo may confer the nestling with the advantage 

that if a parent arrives at this moment, this nestling will get priority access to the prey. It may 

also be a part of a longer process of long utterance exchanges and if the nestling is not the 

one that called the most in general, it will not get the prey no matter if it is the one that calls 

in the last monologue. In other words, is the nestling that get access to the prey the one that 

calls in the monologue preceding parental arrival or is it the one that calls the most during the 

entire negotiation phase? In the first case (the last ‘monologuer’, the winner), the risk of 

allowing a sibling to call alone by mismatching the call rate is more risk than in the second case 

(the most frequent monologuer, the winner). This is however a tricky question because the 

nestling that is hungriest is expected to call the most and thus to be the one that calls the most 

in monologue. Therefore, the probability that a parent arrives when this hungrier nestling is 

calling is higher than when a less hungry sibling is calling and thus both cases are confounded. 

It would therefore be necessary to manipulate the moment when a parent arrives according 

to the sibling vocal negotiation. 

When nestlings do not follow these strategies (i.e. Match-Call Duration and Mismatch-

Call Rate) they are less efficient in deterring siblings from vocalizing. This observation suggests 

that the social environment and experience through repeated interactions might play a 

reinforcement role of these communication strategies (i.e. social skill). This might explain why 

the responsiveness (i.e. the extent to which a nestling adjusts its vocal behaviour to a sibling’s 

behaviour) of barn owl nestlings increases with age (Dreiss, Ruppli, Delarbre, Faller, & Roulin, 

2017). In accordance, we also showed in Chapter 2 that social environment might reinforce 
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the temporal coordination rule (turn-taking rule). Indeed, when interrupted by the playback, 

nestlings immediately intensified vocal communication by quickly producing a long call and 

more calls. This response renders the call overlap inefficient in deterring siblings from 

competition and thus from obtaining the next food item. This social feedback might explain 

the very few occurrences of call overlap during sibling negotiation (2%: Dreiss, Ruppli, et al., 

2013) and could be a mechanism that reinforces the evolutionary maintenance of vocal sibling 

negotiation as a nonaggressive way to share food. The role of social feedback in learning 

conversational turn-taking rules has already been demonstrated in the European starling 

(Sturnus vulgaris, Henry, Craig, Lemasson, & Hausberger, 2015) and in the common marmoset 

(Callithrix jacchus, Chow, Mitchell, & Miller, 2015). However, to the best of our knowledge, no 

study has investigated its role in the maintenance of turn-taking rules (i.e. after the learning 

stage), although it has been demonstrated that such social feedback is essential to maintain 

song structure (Leonardo & Konishi, 1999) and social skills required during mating competition 

(Gersick, Snyder-Mackler, & White, 2012). Here we showed that social feedback is still used 

after the turn-taking rule was acquired although we do not know if call overlap avoidance is 

acquired earlier during development or if it is innate in nestling barn owls.  

We demonstrated that these social adjustment strategies (i.e. Match-Call Duration and 

Mismatch-Call Rate) are more efficient in deterring siblings from vocalizing and therefore 

could be considered as a signal by itself. As for any signals, mechanism(s) to prevent 

individuals from dishonestly following these strategies are required. Indeed, one of the most 

puzzling aspects of the evolutionary stability of signalling under conflict of interest is that the 

signal must honestly reflect the non-observable quality (i.e. resource holding potential, 

motivation or condition) and not be exaggerated or misused by a contestant. To prevent 

dishonesty, signalling should entail costs (Enquist, Hurd, & Ghirlanda, 2010; Grafen, 1990; 

Searcy & Nowicki, 2005; Vehrencamp, 2000; Zahavi, 1974) so that it is too costly to cheat (i.e. 

the handicap principle: Grafen, 1990) or might be too costly in case of potential social 

punishment (i.e. inflicted cost: Lachmann, Szamado, & Bergstrom, 2001). Interestingly, we 

have also shown that Match-Call Duration and Mismatch-Call Rate, the most efficient 

strategies in deterring sibling from competing, require a higher investment in terms of number 

of calls and call duration emitted by the sender, here the playback. Although producing calls 

may not be primarily costly (Bachman & Chappell, 1998; McCarty, 1996), demonstrating a high 
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motivation by following the most efficient strategies requires at least a higher investment with 

more and longer calls (i.e. marginal cost). It requires also a particular vigilance to the 

contestant’s vocalization which could be costly due to attention requirement and received 

signals processing (Szamado, 2011).  

Communication during conflicts of interest has mainly been studied through the 

duration of the contest and the contest outcome rather than as an interactive process with 

response rules (Arnott & Elwood, 2009; Payne, 1998). Although these different rules might 

have evolved due to kin selection in our case, other mechanisms that lead to a common 

interest in contestants’ fitness (e.g. interdependency) might be responsible for them too. 

Investigating these strategical adjustments across the continuum of overlap interest level 

between contestants would be highly valuable to better understand their roles in the decision-

making process (Fleck, Volkema, & Pereira, 2016). To the best of our knowledge, similar 

adjustment strategies have been studied only in the context of males that seek reproduction 

with females (Patricelli, Uy, Walsh, & Borgia, 2002). Another interesting case to study would 

be, for instance, siblings that seek to receive food in the presence of parents (when parents 

stay long enough to enable an adjustment between siblings’ signalling). Indeed in other 

altricial species, siblings may also cooperatively beg in the presence of parents to keep a 

constant global intensity and elicit care provisioning by parents (Bell, 2007; Forbes, 2007; 

Johnstone, 2004; Mathevon & Charrier, 2004). A nestling’s begging intensity is thus negatively 

related to the overall begging intensity of the brood. However, in these cases, communication 

influences parental provisioning and is thus considered to be directed toward the parents. 

Therefore, no study has investigated in what way siblings decide how the global intensity is 

shared among them. It would be interesting to replicate similar interactive playback 

experiments in such species to test how nestlings decide the intensity at which they beg 

according to others’ begging intensity and condition. Other interesting cases to study would 

be neighbours that seek to settle territorial boundaries (e.g. Vehrencamp, Ellis, Cropp, & Koltz, 

2014) or groupmates that seek to coordinate cooperative behaviours (e.g. Bell, Radford, 

Smith, Thompson, & Ridley, 2010; Palagi, 2008). Using interactive playback is also a promising 

tool because it allows biologists to investigate not only the impact on the focal individuals of 

particular strategical adjustment (i.e. receiver point of view) but also the impact on individuals 

that follow them (i.e. sender point of view). This is particularly interesting because such impact 
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of adjustment strategy on the individual that follows them is species and condition dependent. 

Therefore, a same adjustment strategy might have different impacts according to the context 

and the level of common interest between contestants. 

PART 2: DO NESTLINGS RELY ON VOCAL NEGOTIATION TO DECIDE WITH 

WHOM TO SHARE A PREY? 

Being integrated in a social group forces individuals to repeatedly interact with each other to 

resolve conflicts (e.g. limited resources and collaborative tasks). The ‘market’ quality, i.e. the 

supply (e.g. food abundance) and the demand (e.g. the brood size) to which the individuals 

are exposed, as well as their personal conditions, may promote intense agonistic, cooperative 

or altruistic behaviour (e.g. Dolivo & Taborsky, 2015; Fruteau, Voelkl, van Damme, & Noe, 

2009). In accordance, we showed in Chapter 3 that nestlings were more prone to share a prey 

with siblings when the food was abundant (i.e. during the food supplemented nights of the 

experiment) and when they received more prey items from the parents than they should have 

received in case of equal food distribution. Nestlings were also more prone to share a prey if 

they were in better condition (i.e. older and heavier), confirming the results from previous 

studies (Roulin, Da Silva, & Ruppli, 2012; Roulin et al., 2016). This results were expected as 

sharing a prey rather than eating it entails a direct cost that only individuals in better condition 

can handle especially when the value of a prey is low given its abundance. 

Although cooperative behaviours entail costs, they may confer indirect benefits 

through kin selection mechanisms when helping a genetically related sibling (Hamilton, 1964), 

and/or direct benefits if this behaviour is reciprocated through the exchange of the same or 

other commodities (Nowak, 2006; Trivers, 1971; West, Griffin, & Gardner, 2007). These two 

processes can synergistically interact (Lehmann & Keller, 2006; Van Cleve & Akcay, 2014), but 

studies investigating their interplay are still scarce. We showed in Chapter 3 that nestlings can 

optimally modulate their decision of whom to share a prey with using vocal negotiation. 

Indeed, when all the conditions that favour the share of prey are met, nestling barn owls have 

to choose to either receive indirect fitness benefits only, as extra paternity is rare in this 

species, or receiving additional direct benefits through reciprocation. We showed that a 

nestling is more inclined to share food with a sibling that has previously provided him 
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allopreening service (i.e. direct benefice), as has been previously showed (Roulin et al., 2016), 

but only if there is not a highly vocal and thus, highly needy sibling around. In this case, a 

nestling favours the highly needy sibling regardless of the amount of allopreening received 

from this needy sibling. Thanks to the vocal negotiation, nestlings are better informed of their 

siblings’ current needs and are thus better able to accurately decide towards whom displaying 

a cooperative behaviour to potentially gain the highest benefit. Our findings therefore 

highlight the importance of investigating cooperative behaviour taking into account each 

potential cost and benefit and the interplay between them, in order to fully tackle the 

mechanisms responsible for the emergence and maintenance of cooperative behaviour. 

PERSPECTIVES 

Ontogeny of the sibling negotiation behaviour 

It remains unclear how and when the social rules examined here appear during development. 

Three hypotheses can be proposed: first, the negotiation rules are innate and the presence of 

conspecifics is not required to develop them; second, the negotiation rules are learned by 

“trial-error” and might not require the presence of adults, but can be learnt within successive 

sibling interactions (i.e. social reinforcement); finally, negotiation rules are learned through 

active guidance by parents (Henry et al., 2015; Hudson & Trillmich, 2007). In order to 

experimentally test these three hypotheses, nestlings from the same brood should be raised 

in different conspecific presence conditions, i.e. with parents, with siblings only and alone, 

and then test whether negotiation rules are followed by the nestlings in the different settings. 

This experimental design would be possible only with captive individuals. It has been shown 

that older nestlings are more responsive to sibling vocal communication than younger ones 

(Dreiss et al., 2017). Two hypotheses have been proposed, either because cognitive capacities 

increase with age or because nestlings adopt different strategies according to their within-

brood age hierarchy. In Chapter 1, we highlighted a third hypothesis that individuals improve 

their skill due to repeated social interaction. 

Prey theft to punish cheater 

As mentioned earlier in the discussion, theory predicts that signals have to be costly to be 

honest if there is conflict of interest between individuals (handicap principle: Grafen, 1990; 

Zahavi, 1974). However, many signals have been demonstrated to be relatively cheap rather 
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than costly and more recent theories state that honest signalling without realized cost paid by 

the signallers can be maintained if the potential cost of cheating is sufficiently high (Hurd, 

1995; Lachmann et al., 2001). Szamado (2011) reviewed different mechanisms that can be 

responsible for potentially enhancing cheating costs. Among those mechanisms, two can 

primarily act within grouped animals: the inclusive fitness mechanism if groupmates are 

genetically related (Johnstone, 1999) and the social cost mechanism by 

punishment/retaliation (Lachmann et al., 2001). In the first mechanism, an individual that 

obtained the resource by exaggerating its signal would directly increase its own fitness, but, 

at the same time, would reduce its inclusive fitness, as the resource would no longer be 

available for its kin (Moreno-Rueda, 2007). In the second case, cheating can be assessed by a 

groupmate, which will punish the cheater. Therefore, the risk of being caught and punished 

should be sufficient to discourage dishonest signalling. 

Thanks to an individual recognition mechanism presented in the introduction (Dreiss, 

Ruppli, & Roulin, 2014), nestling barn owls have the opportunity to verify that a sibling does 

not cheat by monopolizing a prey without having negotiated beforehand. In case of cheating, 

nestlings may punish the cheater in different ways. For instance, a nestling may physically 

harass the cheater (Clutton-Brock & Parker, 1995). This is unlikely to be the case because 

aggressions are very rarely observed in barn owl nestlings (Roulin et al., 2012, pers. obs.). A 

second option, one that is frequently observed, is the theft of prey (Roulin, Colliard, Russier, 

Fleury, & Grandjean, 2008; Roulin et al., 2012). This hypothesis will be investigated thanks to 

the data collected for Chapter 3, in which 101 food stealing events were observed. Therefore, 

we are able to investigate whether the individual from whom the prey was stolen had 

‘cheated’ according to its previous vocal negotiation and whether the stealer is the one that 

negotiated the most beforehand, and thus the one that should have received the prey.  

Plasticity and interplay between competitive, cooperative and altruistic behaviour  

The quality of the environment in which individuals interact, as well as each individual’s 

condition, can promote intense agonistic, cooperative or altruistic behaviours (e.g. Dolivo & 

Taborsky, 2015; Fruteau et al., 2009). Offspring of several altricial species are well known not 

to only use vocal signals but also physical behaviours (e.g. push to access the closest positions 

to where parents predictably deliver food in the nest) to resolve the conflict over food (Wright 

& Leonard, 2002). When the resources are scarce, more competitive behaviour is predicted 
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than if they are abundant, when more cooperative and altruistic behaviour is then expected. 

This was confirmed in Chapter 3 with the probability to observe food sharing being higher 

when the brood was food supplemented. The rearing environment quality (i.e. that relies on 

parental hunting efficiency and habitat quality in the case of altricial nestlings) is to some 

extent stochastic, fluctuating quickly. Individuals should therefore efficiently choose between 

competitive, cooperative and altruistic behaviour according to this change. Future studies 

should thus investigate the interplay between the multiple components of begging within and 

across sensory modalities to understand their relative function taking into account the 

environment quality. In the barn owl, nestlings can vocally negotiate in the main part of the 

nest box and only some nestlings briefly approach a parent that enters the nest box to deliver 

a prey. In contrast, all nestlings can vocally negotiate and push each other to get the place 

closest to the nest box entrance (Dreiss, Calcagno, et al., 2013, pers. obs.). In the latter case, 

each nestling is amassed together in the nest box corridor. In the 2016 experiment, every 

morning we removed the prey that had not been eaten during the night in order to 

standardize the hunger level of each nestling (i.e. each nestling did not eat during at least 12 

hours). We will thus be able to investigate whether nestlings choose between competitive or 

cooperative strategy according to their short-term conditions (i.e. beginning vs. end of the 

night), the recent quality of the environment (i.e. feeding rate during the night before) or long-

term quality of the environment (i.e. growth rate and body condition). Concerning the long-

term quality, we will be able to calculate an index that reflects the life history of a nestling 

thanks to repeated measures of body condition done during the rearing period (25 days, 35 

days and 40 days). We predict that nestlings should rely on long-term quality to decide on 

whether to act competitively. Indeed, pushing their way closest to the entrance largely 

increases the risk of falling down the nest and die, something that we have observed.  

Cooperation between parent(s) and older nestlings 

We showed in Chapter 3 that individuals were more inclined to share a prey if they received 

a disproportionately larger amount of food from the parents. We articulated 2 hypotheses to 

explain why unequal parental distribution of prey was observed only in a part of the studied 

broods depending on whether it is due to parents or to the older nestlings. Parents may 

purposely over-select older nestlings to ‘delegate’ the food distribution. By doing so, a parent 

would limit the time spent in the nest and reallocate this time to hunting. This could be seen 
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as a parent-older nestling cooperation (see Kramer, 2011) and might especially occur in single 

parental broods to increase feeding efficiency. Mono paternal care is widespread in the barn 

owl either because of the death of the female or her abandonment to do a second brood 

(Beziers & Roulin, 2016). This behaviour would be beneficial also because the ‘responsible’ 

nestling would discriminate better than the parents which nest mate most needs to be fed 

due to the vocal negotiation. Alternatively, the oldest nestlings could monopolize parental 

resources thanks to their size advantage and then redistribute it according to their own 

benefit. To do that however, the distinction between male and female provisioning rate is 

required to fully tackle this issue which we don’t have from experiment. In addition, older 

positioning in the nest would be a good proxy to evaluate its role in this unfair distribution. 

GENERAL CONCLUSION 

To conclude, social behaviours that act to resolve conflicts of interest emerge as highly 

dynamic through the different chapters of my thesis. This highlights the importance of 

investigating behaviour in an interactive manner both within a particular behaviour (e.g. vocal 

negotiation) and between behaviours (e.g. interplay between vocal negotiation, allofeeding 

and allopreening). The different social skills studied here appear in early life, in a species with 

no particular social organization at the adult stage. This suggests that it might not require a 

high cognitive complexity (Barrett, Henzi, & Rendall, 2007). Moreover, the signal rate and the 

signal length are commonly used by vertebrates and invertebrates to compete and 

communicate as shown in non-human primates (Palagi, 2008), birds (Todt & Naguib, 2000), 

frogs (Reichert, 2014) and insects (Takeuchi & Imafuku, 2005). Hence, the dynamic rules 

observed in barn owls might be broadly shared. Finally, barn owl nestlings appear to be a 

powerful model to study conflict over resources and animal communication. Because parents 

quit the nest early in the rearing process, visiting only briefly to provide prey, behaviour can 

be studied in the wild as well as in laboratory conditions without impacting fledgling success 

and with minimal stress (Chapter 2; Dreiss, Henry, Ruppli, Almasi, & Roulin, 2010). 
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Afin de résoudre la compétition liée aux ressources, les animaux peuvent échanger des informations quant à leur 
capacité et leur motivation à rivaliser. En se basant sur ces informations, les compétiteurs peuvent décider de 
continuer d’investir dans la compétition ou bien de se retirer. En l’absence des parents, les membres d’une même 
fratrie de chouettes effraies (Tyto alba) négocient vocalement pour se défier les uns les autres et gagner la 
priorité sur la prochaine proie amenée par les parents. Celui qui fait taire ses frères et sœurs, dominant ainsi cette 
phase de négociation, aura de grande chance d’obtenir la proie au retour des parents. L’investissement vocal 
fourni dans la négociation ne dépend pas seulement de la motivation personnelle à obtenir une proie mais 
également de celle de ses frères et sœurs. Les poussins suivent des règles sociales pour prendre la parole lors de 
cette interaction vocale. Ces règles ne se basent pas uniquement sur la valeur absolue des paramètres vocaux du 
rival (nombre de cris et durée du cri) mais aussi sur l’évolution dans le temps de ces paramètres, d’où 
l’importance d’étudier cette communication de manière interactive. Quelle est la meilleure stratégie d’interaction 
vocale pour dissuader un rival et prendre la place de dominant lors de l’interaction ? Pour répondre à cette 
question, deux expériences de playback interactif ont été réalisées afin de comparer l’efficacité de différentes
stratégies vocales. Trois stratégies centrées sur l’évolution des cris du poussin ont été définies : i) ajustement 
positif : l’investissement du playback augmente si celui du poussin augmente et inversement, ii) ajustement 
négatif : l’investissement du playback diminue si celui du poussin augmente et inversement, iii) contrôle :
investissement du playback reste constant quel que soit celui du poussin. Cette technique de playback nous 
permet de déterminer expérimentalement si le poussin suit la stratégie la plus efficace pour écarter ses rivaux.

1 Introduction
La communication est un aspect fondamental de la vie 

animale car elle permet la médiation des conflits sur les 
ressources limitantes telles que la nourriture, le partenaire 
ou encore le territoire. Un individu qui exhibe des signaux 
(ornementaux, de couleur ou bien acoustique) plus 
ostentatoires que son rival aura une plus grande probabilité 
de recevoir la ressource [1-3]. Même si certains signaux 
sont fixes à court terme tel que la coloration, la plupart 
d’entre eux peuvent fluctuer rapidement tel que les signaux 
acoustiques et la plupart des comportements. Ainsi, le 
niveau des signaux envoyés peut fluctuer rapidement afin 
d’éviter les interférences [4], de s’adapter à la présence 
d’une audience [5] ou à son rival [6, 7]. L’issue du conflit 
est donc le résultat d’un processus interactif. Ces 
fluctuations de signaux lors de ces interactions soulèvent la 
question de comment un individu décide d’entrer ou de 
sortir de la compétition pour la ressource mais surtout 
comment un individu ajuste son investissement dans la 
communication à chaque instant en fonction de sa propre 
condition et de celle de son rival.

Ces rapides fluctuations du signal acoustique lors 
d’interactions compétitives soulèvent la possibilité que les 
individus analysent la dynamique temporelle du signal d’un 
rival et non sa valeur absolue [8]. Les interactions sociales 
ont majoritairement été étudiées dans le cadre de la théorie 
des jeux. Cependant, la dynamique temporelle reste encore 
peu explorée expérimentalement. Ces études nous 
permettraient pourtant d’augmenter notre compréhension 
des règles de décisions sociales qui régissent ces 
interactions.

Une raison pour laquelle cette dynamique reste peu 
étudiée vient probablement du fait de la difficulté à mettre 
en place des protocoles expérimentaux permettant de 
l’étudier. En effet, la majorité des études concernant la 
communication vocale sont soit corrélatives soit 
expérimentales, utilisant alors des playbacks non interactifs.
De telles expériences de playback permettent de comparer 
la réponse d’un animal à l’écoute de différents sons.

Les moyens informatiques actuels nous permettent
désormais de développer une « nouvelle génération » de 
playback interactif, permettant d’évaluer l’impact de la 

dynamique temporelle du signal. Un playback est considéré 
comme interactif dès lors qu’au moins un paramètre de 
l’expérience est fonction du comportement de l’individu 
focal. Par exemple, l’instant de diffusion d’un 
enregistrement ou encore le type de son émis par le 
playback. Cependant, la majorité des playback interactifs 
existants se base sur le type de cri émis et non sur
l’évolution de ce cri dans le temps [9]. Nous entendons par 
« nouvelle génération » de playback interactif, une routine 
automatique qui prend continuellement des décisions quant 
au paramètre du cri émis. Ces décisions sont basées sur 
l’évolution en temps réel des signaux émis par l’individu 
focal.

Dans cette étude, nous utilisons cette nouvelle 
génération de playback interactif afin de tester 
expérimentalement l’importance du moment auquel un
individu décide d’escalader dans la compétition vocale. 
Nous nous intéressons pour cela au comportement de 
négociation vocal au sein de la fratrie qui a lieu chez la 
chouette effraie (Tyto alba) [10, 11]. Lorsque les parents 
sont en train de chasser et donc absents du nid, les poussins 
négocient vocalement l’obtention de la prochaine proie 
indivisible apportée par les parents. Durant cette phase de 
négociation, l’individu qui vocalise le plus (i.e. émet plus 
de cris et plus longs) aura une plus grande probabilité de 
recevoir la proie au retour des parents que l’individu qui 
vocalise moins. Chaque individu investit dans cette 
communication en fonction de son niveau de faim –
l’individu le plus affamé produit plus de cris et de plus 
longue durée – mais également en fonction de la 
communication de ses frères et sœurs – un individu face à 
un frère émettant de longs et nombreux cris aura tendance à 
se retirer de la compétition [12, 13]. Ce comportement 
permettrait d’optimiser l’énergie investie dans la 
compétition en ne défiant ses frères et sœurs que lorsque la 
probabilité d’obtenir une proie est forte. 

Durant cette phase de négociation, chaque poussin 
devrait avoir pour but de dissuader ses rivaux afin de 
prendre la place de dominant dans la compétition (être celui 
qui émet le plus de cris). Un but sous-jacent est d’obtenir 
l’information sur le niveau de faim de la fratrie afin de ne 
pas gâcher de l’énergie dans la compétition quand la 
probabilité de gagner est faible. En effet, l’asymétrie du 
niveau de faim entre les jeunes et le fait que la proie est 
indivisible (seul un jeune sera nourri) rend la compétition 



relativement prévisible, l’individu le plus affamé ayant une 
plus forte motivation à entrer en compétition vocalement et 
physiquement [10]. Une précédente étude corrélative a
montré que les individus suivent des règles sociales pour 
prendre la parole lors de l’interaction vocale. Ces règles ne 
se basent pas sur la valeur absolue des paramètres (nombre 
de cris et durée du cri) mais sur l’évolution dans le temps 
de ces paramètres. Le poussin semble ajuster positivement 
la durée de ses cris à celle des cris de son rival et semble 
ajuster négativement son taux de cris à celui de son rival
[14, 15].

Nous présentons ici deux expériences de playbacks 
interactifs indépendantes mimant plusieurs stratégies de
dynamique temporelle des paramètres acoustiques pour 
l’obtention de la proie. Notre postulat de départ est que les 
stratégies observées dans la nature chez les jeunes chouettes 
devraient être les plus efficaces pour dissuader les frères et 
sœurs de rester dans la compétition. Les expériences de
playback interactif nous permettront d’évaluer quels
paramètre et stratégie sont les plus efficaces.

2 Méthodes générale
Les expériences ont eu lieu du 30 avril au 2 septembre 

2015 au laboratoire de l’Université de Lausanne. Chaque
poussin de chouette effraie a été amené et placé dans un 
nichoir similaire au nichoir naturel. Au total, 114 poussins 
âgés de 34 0.5 jour (de 22 à 41 jours) ont été étudiés dont 
54 mâles, 56 femelles et 5 de sexe inconnu. Chaque nichoir 
est composé de deux compartiments : un pour le poussin, 
l’autre pour un haut-parleur simulant son rival (near05
experience, ESI Audiotechnik). Deux microphones 
(MC930, Beyerdynamic GmbH & Co KG, Heilbronn, 
Germany) sont fixés au couvercle et dirigés vers le poussin.
Un des microphones est connecté à une carte son type 
Steinberg UR44 afin d’enregistrer la totalité de la nuit.
L’autre microphone, respectivement le haut-parleur, est 
connecté à une entrée, respectivement une sortie, d’une 
carte son type PreSonusDigimax FS afin de réaliser le 
playback interactif. L’acquisition, le traitement des signaux 
audio et le pilotage des haut-parleurs est gérée par un script
Matlab et l’utilitaire Playrec. L’expérience sur la durée des 
cris a eu lieu de 22h00 à 01h00 et celle sur le taux de cris de 
01h30 à 04h30.

3 Règle de décision du playback

3.1 Playback interactif : durée des cris 

Le programme Matlab détecte (Cf chapitre 4) en pseudo 
temps réel les cris émis par le poussin et en détermine la 
durée. Toutes les 10 secondes, les durées collectées sont 
comparées à la durée moyenne des cris obtenue durant les 
10 secondes précédentes. D’après cette comparaison, trois 
stratégies ont été développés : la stratégie de « l’ajustement 
positif », la stratégie de « l’ajustement négatif » et la 
stratégie de « contrôle ». Dans la stratégie d’ajustement 
positif : le playback escalade vocalement (ou désescalade) 
en même temps et dans les mêmes proportions que le 
poussin (augmentation de la durée des cris émis par le haut-
parleur si augmentation de la durée des cris émis par le 
poussin et inversement). Dans la stratégie d’ajustement 

négatif : le playback escalade vocalement quand le poussin 
désescalade (augmentation de la durée des cris émis par le 
haut-parleur si diminution de la durée des cris émis par le 
poussin et inversement). Dans la stratégie de contrôle : le 
playback émet des cris d’une durée constante (Figure 1).
Les stratégies sont alternées toutes les 15 minutes et chaque 
stratégie est répétée quatre fois durant l’expérience de 3
heures. L’ordre d’apparition des stratégies est aléatoire et la 
succession de deux stratégies identiques est évitée.

Laps
de 
10s

Durée des cris du 
poussin (ms)

Durée du cri du playback (ms)

Similaire Inverse Constante

T1 DT1 = Moy(DN1,y) DP1 = DT1 DP1 = DT1 DP1 = 800

T2 DT2 = Moy(DN2,y) DP2 = DT2
DP2 = DP1 -
(DT2 - DT1) DP2 = 800

T3 DT3 = DN3,1 DP3 = DT3
DP3 = DP2 –
(DT3 – DT2) DP3 = 800

T4 DT4 = NA DP4 = DP3 DP4 = DP3 DP4 = 800

T5 DT5 = Moy(DN5,y) DP5 = DT5
DP5 = DP4 –
(DT5 – DT3) DP5 = 800

T6 DT6 = Moy(DN6,y) DP6 = DT6
DP6 = DP5 –
(DT6 – DT5) DP6 = 800

Figure 1 : Exemple de playback interactif sur une minute 
faisant varier la durée des cris. Tx: xème laps de temps de 
10s, Nx,y: yème cri émis par le poussin pendant le xème laps de 
temps de 10s, Px: cri émis par le haut-parleur à la fin du xème

laps de temps de 10s, DNx,y: durée du cri Nx,y, DTx: durée 
moyenne des cris émis par le poussin pendant le xème laps 
de temps de 10s, DPx: durée du cri émis par le playback à la 
fin du xème laps de temps de 10s.

Le playback émet un cri toute les 10 secondes afin de 
garder son taux de cris constant (6 cris/min : valeur
moyenne du taux de cris observé lors de l’expérience de 
2008 durant laquelle deux poussins affamés vocalisaient 
librement). Les cris émis par le playback proviennent de 4 
individus (âge moyen SE: 32.5 2.3 jours, deux mâles et 
deux femelles) d’une précédente expérience en 2011 durant 
laquelle trois poussins interagissaient vocalement 
librement. Nous avons isolés 120 cris au total par poussin
répartis dans 8 groupes de durée : 300-400 ms, 400-500 ms, 
500-600 ms, 600-700 ms, 700-800 ms, 800-900 ms, 900-
1000 ms et 100-1100 ms. Le programme sélectionne 
aléatoirement le cri à diffuser parmi le groupe de cris 
désiré. Chaque cri a été normalisé en amplitude pour 
minimiser les différences d’intensités entre les cris.

En cas d’absence de cri du poussin lors d’un laps de 
temps de 10 secondes, le playback considère la valeur de 
durée moyenne obtenue lors du précédent laps de temps. Le 
playback garde donc constant la durée de son cri jusqu’à ce 
que le poussin émette un cri.



3.2 Playback interactif : taux de cris

Cette seconde expérience ressemble en tout point à la 
précédente (laps de temps de 10s, stratégies) mis à part que 
l’on s’intéresse cette fois à l’évolution du taux de cris du 
poussin et non plus à l’évolution de la durée de ses cris. 
Nous avons donc fixé la durée des cris à 800 ± 50ms (durée 
moyenne des cris observée lors de l’expérience de 2008 
durant laquelle deux poussins affamés vocalisaient 
librement). Le playback émet les cris répartis de manière 
régulière pendant le laps de temps de 10 secondes suivant.

Laps
de 
10s

Nombre 
de cris du 
poussin 
(/10s)

Nombre de cri du playback (/10s)

Similaire Inverse Constante

T1 RT1 = 3 RP1 = RT1

3 RP1 = RT1 3 RP1 = 1

T2 RT2 = 2 RP2 = RT2 

2
RP2 = RT1 – (RT2 – RT1)

4 RP2 = 1

T3 RT3 = 1 RP3 = RT3

1
RP3 = RT2 – (RT3 – RT2)

5 RP3 = 1

T4 RT4 = 0 RP4 = RT4

0
RP4 = RT3 – (RT4 – RT3)

6 RP4 = 1

T5 RT5 = 4 RP5 = RT5

4
RP5 = RT4 – (RT5 – RT4)

2 RP5 = 1

T6 RT6 = 2 RP6 = RT6

2
RP6 = RT5 – (RT6 – RT5)

4 RP6 = 1

Figure 2 : Exemple de playback interactif sur une 
minute faisant varier le taux de cris. Tx: xème laps de temps 
de 10s, Nx,y: yème cri émis par le poussin pendant le xème laps
de temps de 10s, Px: cri émis par le hautparleur à la fin du 
xème laps de temps de 10s, RTx: taux de cris du poussin 
pendant le xème laps de temps de 10s, RPx: taux de cris du 
playback pendant le xème laps de temps de 10s.

4 Détection d’un évènement
Les algorithmes de playback présentés plus haut 

(sections 3.1 et 3.2) supposent une détection pseudo temps 
réelle des cris de négociation. La fréquence 
d’échantillonnage des signaux audio enregistrés est de 
44.1 kHz. Les signaux audio sont traités par trames de 2048 
échantillons, soit environ 46 ms. Pour chacune de ces 
trames, l’algorithme de détection doit répondre aux 
questions suivantes :

Cette trame contient-t-elle un évènement sonore ?
Si oui, est-ce un cri de négociation ou bien un autre 

bruit ?

La réponse à la première question s’obtient aisément, 
par exemple, en appliquant un seuil empirique sur le niveau 
sonore de la trame courante. Ce niveau sonore peut 
s’exprimer sous la forme d’un niveau de pression Lp, en dB, 
suivant l’équation (1) :

(1)

Où est la qème trame de signal (convertie en Pascal) 
de taille x1, et représente l’indice de l’échantillon 
considéré, 

La réponse à la deuxième question est plus complexe et 
nous décrivons ci-après la stratégie déployée pour identifier 
si un évènement sonore correspond ou pas à un cri de 
négociation. Cette détection repose sur l’implémentation de 
deux descripteurs fréquentiels et d’un descripteur temporel.

4.1 Premier descripteur fréquentiel : la 
variance spectrale

La figure 3 et la figure 4 représentent respectivement les 
formes d’ondes et les spectrogrammes d’un cri de 
négociation et de gazouillis produits par le même poussin.
La distribution du niveau sonore moyen de chaque bin 
fréquentiel est également représentée. On constate 
immédiatement une différence relative à l’harmonicité des 
cris produits. Les gazouillis présentent une harmonicité 
marquée (une fréquence fondamentale et ses multiples 
entiers) contrairement aux cris de négociation qui couvrent  
l’ensemble de leur bande passante de manière plus 
uniforme. Ces deux cris peuvent être écoutés en cliquant 
sur le lien [16].

Figure 3 : Forme d’onde et spectrogramme d’un cri de 
négociation de chouette effraie. L’échelle de couleurs est 

exprimée en dB (relatif).



Figure 4 : Forme d’onde et spectrogramme de gazouillis 
de chouette effraie. L’échelle de couleurs est exprimée en 

dB (relatif).

L’évaluation du caractère plus ou moins harmonique 
d’un signal est un processus coûteux en temps de calcul. 
Nous nous sommes donc intéressé à observer une 
conséquence indirecte de cette présence ou non 
d’harmonicité, à savoir la variance du spectre, avec l’idée 
sous-jacente qu’un cri de négociation a une étendue 
spectrale plus large que des gazouillis. Nous définissions ce 
descripteur selon l’équation (2) :

   
 

         (2) 

Où est la transformée de Fourier discrète de la ème

trame de signal, pondérée par une fenêtre de Hann.

L’analyse ROC de ce descripteur appliqué sur une base 
de données de 500 cris de négociation et 500 gazouillis 
retourne un taux de détection vraie de 80% et un taux de 
fausse alarme de 16%. La plage de fréquence pour 
l’application de ce descripteur a été judicieusement choisie 
pour optimiser ces scores.

4.2 Deuxième descripteur fréquentiel :
valeur minimale des coefficients cepstraux

La figure 5 et la figure 6 montrent l’évolution des 
coefficients cepstraux (MFCC) des deux mêmes cris. On 
remarque pour le cri de négociation une chute de la valeur 
de la troisième bande cepstrale, laquelle n’apparait pas sur 
les gazouillis. Il a donc été décidé d’établir un descripteur 

visant à renvoyer la valeur minimale des coefficients 
cepstraux, comme défini par l’équation (3) :

 (3) 

Où sont les coefficients cepstraux de la ème

trame de signal.

Figure 5 : Cepstrogramme d’un cri de négociation (chute de 
la 3e bande MFCC). L’échelle de couleurs est exprimée en 

dB (relatif).

Figure 6 : Cepstrogramme d’un gazouillis (pas de chute de 
valeurs). L’échelle de couleurs est exprimée en dB (relatif).

L’analyse ROC de ce descripteur appliqué sur une base 
de données de 500 cris de négociation et 500 gazouillis 
retourne un taux de détection vraie de 75% et un taux de 
fausse alarme de 13%.

La validité d’une trame sur le plan fréquentiel est ainsi 
jugée sur le respect de la condition (4), à savoir, une 
simultanéité entre une variance élevée et une valeur 
minimale de MFCC faible :

 (4) 

où et sont des seuils définis empiriquement d’après 
les analyses ROC précédentes.

4.3 Troisième descripteur : consistance 
temporelle

La distinction entre cris de négociation, gazouillis et 
autre bruits s’opère également par l’étude de leur durée. Un 
troisième descripteur, dit de consistance temporelle, 
consiste à ne pas considérer les signaux constitués d’un 
nombre insuffisant de trames valides au sens de la condition 
(4), parce que trop courts. En effet, les cris de négociations 
ont une durée minimale d’environ 300 ms. La prise en 
compte de cette information améliore la robustesse de 
l’algorithme de détection. Dans notre algorithme, sept 
trames (soit 322 ms) doivent consécutivement vérifier la 



condition (4) pour être effectivement considérée comme un 
cri de négociation.

4.4 Score

Une comparaison manuelle opérée sur 180.5 heures
d’enregistrements, comprenant 55247 cris, montre que 
l’algorithme de détection pseudo temps réel basé sur les 
trois descripteurs décrit précédemment atteint un taux de 
détection vraie de 97% et un taux de fausse alarme de 3%. 
Ces scores assurent une excellente fiabilité pour le 
dimensionnement d’expériences de playback automatique 
de longue durée et sur 8 individus en parallèle.

5 Conclusion
Ce papier décrit le protocole expérimental du playback 

interactif mis au point pour étudier la dynamique 
temporelle de communication vocale chez la chouette 
effraie. Ce protocole est basé sur la connaissance du modèle 
biologique et le développement d’une routine automatique 
qui prend continuellement des décisions quant au paramètre 
du cri émis (durée ou nombre). Les résultats sont en cours 
d’analyse et devraient confirmer l’importance de considérer 
la communication de manière interactive et non pas 
statique. En effet, les poussins de chouette effraie décident 
d’escalader dans la communication (augmenter le nombre 
et la durée des cris) de manière non aléatoire mais 
dépendamment de la communication de leur rival. Cet 
ajustement permet d’améliorer l’efficacité de la négociation
et donc d’améliorer la résolution du conflit. Le playback 
interactif nous permet également d’identifier la stratégie 
optimale concernant la dynamique de communication. Il 
faut néanmoins avoir conscience des implications lié à cette 
méthode. Premièrement, étant interactif, chaque paramètre
est susceptible d’être modifié au cours de l’expérience.
Deuxièmement, la prise de décision se faisant en fonction 
de l’animal en temps réel, l’anticipation de tous les 
scénarios possibles est primordiale, d’où l’importance 
d’avoir au préalable une bonne connaissance du modèle 
biologique. Troisièmement, la détection et l’analyse en 
temps réel doit être fiable pour automatiser les expériences, 
d’où la nécessité de développer un logiciel dédié.
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Abstract
In	animal	communication,	signal	loudness	is	often	ignored	and	seldom	measured.	We	
used	a	playback	experiment	to	examine	the	role	of	vocal	loudness	(i.e.,	sound	pressure	
level)	in	sibling	to	sibling	communication	of	nestling	barn	owls	Tyto alba.	In	this	species,	
siblings	vocally	negotiate	among	each	other	 for	priority	access	 to	parental	 food	re-
sources.	Call	rate	and	call	duration	play	key	roles	in	this	vocal	communication	system,	
with	the	most	vocal	nestlings	deterring	their	siblings	from	competing	for	access	to	the	
food	 item	next	delivered	by	parents.	Here,	we	broadcast	calls	at	different	 loudness	
levels	and	call	rate	to	live	nestlings.	The	loudness	of	playback	calls	did	not	affect	owl-
ets’	investment	in	call	rate,	call	duration	or	call	loudness.	The	rate	at	which	playback	
calls	were	broadcast	affected	owlets’	call	rate	but	did	not	influence	their	response	in	
terms	of	loudness.	This	suggests	that	selection	for	producing	loud	signals	may	be	weak	
in	this	species,	as	loud	calls	may	attract	predators.	Moreover,	given	that	owlets	do	not	
overlap	their	calls	and	that	they	communicate	to	nearby	siblings	in	the	silence	of	the	
night,	 loud	signals	may	not	be	necessary	to	convey	reliable	 information	about	 food	
need.

K E Y W O R D S

acoustics,	amplitude,	begging,	communication,	competition,	multiple	signals,	negotiation,	
playback

1  | INTRODUCTION

Loudness	 has	 been	 largely	 understudied	 in	 animal	 acoustic	 com-
munication.	 Researchers	 usually	 focus	 on	 the	 frequency	 spectrum	
of	 signals,	 their	 duration	 and	 the	 rate	 at	 which	 they	 are	 emitted.	
However,	loudness	can	encode	important	information	that	is	relevant	
to	assess	quality	or	motivation	of	the	signaller.	For	 instance,	eastern	
screech-	owls	Megascops asio	that	beg	louder	are	fed	first	by	parents	
(Hofstetter	 &	 Ritchison,	 1998).	 The	 begging	 loudness	 usually	 de-
creases	with	the	relatedness	level	within	broods,	suggesting	that	high	
competition	levels	favours	loud	calls	(Briskie,	Naugler,	&	Leech,	1994).	
Some	female	birds	prefer	 to	mate	with	males	producing	 loud	rather	

than	weak	songs	 (red-	winged	blackbirds	Agelaius phoeniceus,	Searcy,	
1996;	zebra	finches	Taeniopygia guttata,	Ritschard,	Riebel,	&	Brumm,	
2010).	Producing	louder	signals	may	not	have	strong	metabolic	costs	
(Zollinger,	Goller,	&	Brumm,	2011),	although	it	may	require	a	slightly	
higher	oxygen	consumption	(Oberweger	&	Goller,	2001)	and	stronger	
respiratory	muscle	activity	and	hence	be	condition	dependent	(Goller	
&	Cooper,	2004).	The	main	cost	may	be	a	stronger	social	aggression	
from	 competitors	 or	 higher	 detectability	 by	 predators	 (reviewed	 in	
Zollinger	&	Brumm,	2015).

One	 of	 the	 reasons	why	 signal	 loudness	 is	 often	 overlooked	 in	
animal	communication	studies	 is	 the	difficulty	 in	accurately	measur-
ing	loudness,	especially	in	the	field.	The	difficulty	in	estimating	sound	
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loudness	 rises	 in	 the	necessity	 to	account	 for	signaller’s	orientation,	
sound	 propagation	 in	 the	 environment	 and	 distance	 to	 the	 micro-
phone.	In	the	laboratory,	by	measuring	from	a	fixed	distance	and	di-
rectly	from	above	the	animal,	these	problems	can	be	solved	(Brumm	
&	Todt,	2002).	Here,	we	report	an	experiment	performed	in	the	lab-
oratory	 to	 examine	 the	 effect	 of	 loudness	 variation	 in	 sibling	 vocal	
communication	of	barn	owl	Tyto alba	nestlings.	When	owlets	are	alone	
in	the	nest	waiting	for	a	parent	to	come	back	with	a	prey	item,	they	
continuously	exchange	hissing	calls	to	advertise	their	hunger	levels	to	
siblings.	Hungry	individuals	produce	more	calls	and	longer	calls,	which	
progressively	deters	their	siblings	from	calling	and	competing	for	the	
food	item	next	delivered	by	the	parent	(Dreiss,	Ruppli,	Faller,	&	Roulin,	
2015;	 Ruppli,	 Dreiss,	 &	 Roulin,	 2013).	 This	 communication	 system	
reduces	 the	 cost	 of	 sibling	 competition	 between	 related	 individuals	
(Johnstone	&	Roulin,	2003).	Although	hungry	owlets	produce	louder	
calls	 (Dreiss,	 Ruppli,	 &	Roulin,	 2014),	 the	 effect	 of	 call	 loudness	 on	
sibling	propensity	 to	compete	or	 to	retreat	 from	sibling	competition	
is	yet	unknown.	This	aspect	has	to	be	tackled	experimentally	because	
call	loudness	is	correlated	with	call	rate	and	call	duration	(Dreiss	et	al.,	
2014).

Identifying	the	full	range	of	signalling	components	used	by	young	
animals	is	important	to	understand	how	they	resolve	competition	over	
shared	resources.	So	far	we	have	demonstrated	that	call	rate,	call	du-
ration	and	the	rapidity	at	which	nestlings	call	after	a	sibling	play	some	
role	in	sibling	negotiation	(Dreiss,	Ruppli,	Faller,	&	Roulin,	2013;	Ruppli	
et	al.,	 2013).	 Multiple-	component	 signalling	 across	 or	 within	 sen-
sory	modalities	 is	 frequent	 in	animal	displays	 (Bro-	Jørgensen,	2010).	
Because	displaying	several	signals	may	seem	wasteful	 if	one	type	of	
signal	efficiently	repels	rivals	and	predators	or	attracts	mates,	hypoth-
eses	have	been	proposed	to	explain	the	maintenance	of	multiple	sig-
nalling.	Using	multiple	“redundant”	signals	may	be	a	way	to	reinforce	
communication	efficiency.	For	instance,	eastern	grey	squirrels	Sciurus 
carolinensis	showed	enhanced	responses	to	multisensory	alarm	signals	
compared	 to	 single-	sensory	 signals	 (Partan,	 Larco,	&	Owens,	2009).	
Additionally,	redundant	signals	enable	signaller	to	increase	a	modality	
if	another	modality	is	restrained.	For	instance,	tree	swallow	Tachycineta 
bicolor	nestlings	reinforce	their	call	rate	when	they	are	physically	con-
strained	and	cannot	approach	the	nest	entrance	where	parents	deliver	
food	(Leonard,	Horn,	&	Parks,	2003).	The	use	of	multiple	parameters	
can	alternatively	allow	for	encoding	of	different	 information.	For	 in-
stance,	 different	 song	 traits,	 consistency	 and	 repertoire	 size,	 of	 the	
great	tit	Parus major	are	related	to	different	male	attributes,	age	and	
survival	(Rivera-	Gutierrez,	Pinxten,	&	Eens,	2010).

A	major	function	of	loud	signals	is	to	ensure	that	an	individual	is	
heard	over	 long	distances	 (Klump,	1996)	or	detected	 in	an	environ-
ment	with	a	 lot	of	background	noise	 (Brumm,	2004;	Leonard,	Horn,	
Oswald,	&	McIntyre,	2015).	It	may	also	help	being	heard	when	several	
individuals	are	calling	simultaneously,	as	 in	begging	 litters	of	broods	
(Brumm	&	Todt,	2004).	In	the	barn	owl,	selection	may,	however,	not	
favour	the	evolution	of	loud	calls	for	several	reasons.	First,	nestlings	
are	aggregated	in	narrow	nests	and	hence	siblings	can	easily	hear	each	
other.	The	need	to	call	loudly	may	be	less	pronounced	than	in	diurnal	
species	because	at	night	background	noise	is	usually	less	pronounced	

than	during	 the	day.	 Second,	 calling	 loudly	may	attract	predators	 in	
young	birds	(McDonald,	Wilson,	&	Evans,	2009;	Roulin,	2001),	an	issue	
that	may	 be	 particularly	 relevant	 in	 the	 barn	 owl	 because	 nestlings	
produce	thousands	of	calls	in	a	single	night,	a	behaviour	that	is	already	
enough	conspicuous	to	predators.	To	reduce	predation	risk,	nestlings	
may	therefore	be	selected	to	produce	informative	vocal	signals	with-
out	having	to	call	very	loudly	(Briskie,	Martin,	&	Martin,	1999).	More	
specifically,	nestling	barn	owls	follow	specific	turn-	taking	rules	(Dreiss,	
Ruppli,	Faller,	et	al.,	2015)	allowing	 them	to	avoid	calling	 simultane-
ously	(Dreiss,	Ruppli,	Oberli,	et	al.,	2013).	Hence,	they	would	not	need	
to	call	very	loudly	to	overcome	siblings.	The	above	arguments	support	
the	expectation	of	a	minor	role	of	call	loudness	in	the	barn	owl	sibling	
negotiation	 process.	On	 the	 other	 hand,	 because	 hungrier	 nestlings	
produce	louder	calls	in	this	species	(Dreiss	et	al.,	2014),	we	would	ex-
pect	siblings	to	vocally	withdraw	in	front	of	a	loud	nestmate.

To	investigate	the	potential	role	of	loudness	in	sibling	negotiation,	
we	played-	back	calls	at	 three	 loudness	 levels	and	three	call	 rates	to	
experimental	three-	chick	broods.	Age	hierarchy	among	siblings	affects	
call	 production,	younger	 siblings	producing	more,	 louder	 and	 longer	
calls	 (Dreiss,	 Lahlah,	 &	 Roulin,	 2010;	 Dreiss	 et	al.,	 2014),	 probably	
as	a	way	 to	compensate	 their	competitive	 inferiority.	We	thus	anal-
ysed	owlets’	response	according	to	their	position	in	the	age	hierarchy.	
Similar	playback	settings	were	successful	in	confirming	the	role	of	call	
rate	and	duration	in	sibling	negotiation	(Ruppli	et	al.,	2013).	We	hence	
examined	the	effect	of	playback	call	rates	on	nestling	calls’	loudness.	
If	nestlings	adjusted	loudness	in	a	similar	way	as	call	rate	and	duration,	
we	expected	that	they	would	produce	louder	calls	when	facing	a	play-
back	nestmate	displaying	a	low	motivation	(low-	call	rate)	rather	than	a	
high	motivation	to	compete	(high-	call	rate).	We	then	examined	the	ef-
fect	of	playback	loudness	on	nestling	vocal	production.	If	call	loudness	
is	perceived	as	a	competitive	signal,	we	expected	that	nestlings	would	
withdraw	from	the	vocal	contest	when	hearing	loud	calls;	hence	loud	
playback	calls	would	trigger	less	numerous	and	shorter	calls	in	owlets	
than	quiet	playback	calls.

2  | METHODS

2.1 | Experimental procedure

The	study	was	performed	in	western	Switzerland	(46°4′N,	6°5′E)	on	a	
population	of	wild	barn	owls	breeding	in	nest	boxes	located	in	barns.	
From	2nd	June	to	22nd	September	2011,	three	siblings	from	28	broods	
(42	female	and	42	male	nestlings)	were	brought	to	the	laboratory	at	
12:00.	Nestlings	(age	32.5	±	0.5	days;	range	21–40)	were	placed	in	a	
circular	box	(diameter	100	cm,	height	51	cm,	Supplementary	Material	
S.1)	 divided	 into	 three	 equal	 parts	with	wire	mesh,	 each	 individual	
in	a	separated	part.	 In	each	part,	we	placed	on	the	floor	51	±	1	g	of	
mice	(Mus musculus).	In	a	central	cylinder	(diameter	15	cm),	we	placed	
a	 loudspeaker	 (W2-	800SL;	 Tangband,	 Taipei,	 Taiwan,	 R.O.C.)	 con-
nected	to	a	monitor	(6301B;	Fostex,	Tokyo,	Japan).	Due	to	staggered	
hatching,	 siblings	differed	 in	age,	 and	each	experiment	comprised	a	
junior	(21–36	day-	old),	middle-	born	(27–38	day-	old)	and	senior	nest-
ling	(31–40	day-	old).
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We	broadcast	nine	playback	sequences	in	a	row	from	00:30,	each	
sequence	lasting	4	min,	with	periods	of	10	min	of	silence	between	two	
sequences.	The	nine	 sequences	corresponded	 to	 the	nine	combina-
tions	of	three	call	loudness	relative	levels	(−64,	−56	and	−48	dB,	from	
the	softest	to	the	loudest)	and	three	call	rates	(2,	6	and	10	calls/min).	
We	allocated	the	nine	sequences	in	a	random	order	across	the	broods.	
The	call	rate	values	correspond	to	the	mean	values	and	to	the	lowest	
and	highest	10%	of	the	distributions	observed	in	the	two-	chick	broods	
recorded	in	2008	(Ruppli	et	al.,	2013)	and	the	call	loudness	levels	were	
chosen	by	ear	by	A.D.	so	that	they	matched	the	natural	range	of	loud-
ness	heard	in	natural	conditions.	Recordings	of	the	present	experiment	
confirmed	that	playback	loudness	was	within	natural	range,	as	nestling	
call	loudness	ranged	from	−88	to	−19	dB	(lowest	and	highest	10%	of	
the	values:	−59	and	−27	dB).	The	loudness	is	negative	because	it	was	
calculated	as	 the	 logarithm	of	 the	 ratio	between	 the	amplitude	 (Pa)	
of	the	detected	call	and	a	reference	value,	empirically	chosen	to	im-
prove	 the	detection	 rate	during	 the	automated	call	detection	phase	
(Supplementary	 S.2,	 Leqm).	 The	 loudness	 level	 of	 the	median	 treat-
ment	 corresponded	 to	 the	 absolute	 levels	 of	 51	dB	 SPL,	 measured	
with	a	sonometer	(Nor118;	Norsonic	AS,	Lierskogen,	Norway)	placed	
at	1	m	of	the	loudspeaker;	the	background	noise	level	was	estimated	
at	4.8	dB.	Call	loudness	of	broadcast	calls	was	manipulated	using	nor-
malisation	procedure	of	Audacity	v.1.3	Beta	(http://audacityteam.org).	
To	avoid	pseudo-	replication,	each	brood	heard	a	unique	combination	
of	calls,	built	with	a	set	of	24	different	calls	(0.8	s	each,	corresponding	
to	average	value	of	call	duration)	emitted	by	a	single	young	recorded	in	
the	laboratory	in	2008	(Ruppli	et	al.,	2013).	We	used	in	total	seven	sets	
of	24	calls,	providing	from	seven	young	(four	males	and	three	females,	
aged	29	±	2	days).

2.2 | Acoustic analyses

Eight	microphones	 (Perception	170;	AKG	Acoustics,	Northridge,	CA	
91329,	USA)	were	fixed	on	the	box	roof	constituted	of	rigid	wire	mesh	
to	 record	nestlings’	 response.	During	 the	4	min	playback	sequences	
nestling	 calls	 were	 detected	 automatically	 (see	 Supplementary	
Material	S.2)	using	a	post-	processing	Matlab	script	(version	R2012b,	
MathWorks,	Natick,	MA,	USA)	and	measured	for	duration	(s)	and	mean	
loudness	(i.e.,	sound	pressure	level	in	dB,	Supplementary	Material	S.2).	
By	comparing	the	recordings	at	the	eight	microphones,	the	 localisa-
tion	of	the	sound	was	estimated	with	the	SRP-	PHAT	method	(DiBiase,	
2000),	and	the	identity	of	the	caller	was	determined	(junior,	middle-	
born	 or	 senior).	 For	 further	 technical	 details,	 see	 Supplementary	
Material	(S.3).	Approximately	5.7%	of	calls	(241	of	4230)	could	not	be	
assigned	to	a	specific	nestling,	because	they	were	emitted	too	close	
from	the	wire	mesh	separating	two	nestlings,	and	were	discarded.

2.3 | Statistical analyses

To	determine	whether	playback	call	 loudness	and	playback	call	 rate	
affected	nestling	vocal	 response,	we	analysed	nestling	vocalisations	
within	each	of	the	nine	playback	sequences	of	4	min	for	the	28	three-	
chick	broods.	For	each	statistical	model,	we	set	as	independent	factors	

the	playback	call	rate	and	loudness,	the	order	at	which	the	playback	
sequence	was	broadcast	(1st	to	9th),	the	age	rank	of	the	experimental	
nestling	(junior,	middle-	born	or	senior),	its	sex,	and	the	interaction	be-
tween	playback	call	rate	and	loudness.	The	interactions	were	removed	
from	the	final	models	when	non-	significant	(p-	values	smaller	than	.05).	
As	a	random	factor,	we	set	nestling	identity	nested	in	the	brood.	To	
determine	whether	playback	 loudness	affects	nestling	probability	to	
vocally	 respond,	we	 used	 a	 generalised	mixed	model	with	 binomial	
distribution,	with	as	dependant	variable	the	probability	of	emitting	a	
call	during	a	playback	sequence.	For	the	nestlings	producing	at	least	
one	call	and	which	vocalised	within	at	least	three	4-	min	playback	se-
quences,	we	then	examined	whether	the	call	duration	 (with	a	 linear	
mixed	model),	 the	 number	 of	 calls	 emitted	 (with	 generalised	mixed	
model	with	Poisson	distribution)	and	the	call	loudness	(Box-	Cox	trans-
formed,	with	a	linear	mixed	model)	were	affected	by	playback	treat-
ments.	 Model	 assumptions	 were	 checked	 (departure	 of	 the	 scaled	
Pearson	 statistic,	 normal	 distribution	 of	 residuals	 and	 homoscedas-
ticity).	All	statistical	analyses	were	performed	with	the	software	SAS	
v.9.3	(SAS	Institute	Inc.,	Cary,	NC,	USA).

2.4 | Ethical notes

At	the	time	of	the	experiment,	nestlings	were	old	enough	to	thermoreg-
ulate	and	feed	on	dead	rodents	without	parental	help.	Moreover,	they	
are	used	to	parental	absence,	as	parents	rest	outside	the	nest	and	only	
visit	the	nest	during	the	night	to	bring	prey	items.	The	laboratory	mice	
Mus musculus	were	euthanised	by	CO2	(bought	frozen	from	an	animal	
house,	Reptiles	Farm,	Servion,	Switzerland).	Nestlings	returned	to	their	
natural	 nest	 box	 after	 two	 nights	 at	 the	 laboratory.	We	 always	 left	
one	or	two	nestlings	in	the	natural	nest	and	removing	several	nestlings	
from	a	nest	during	two	nights	never	induced	parents	to	abandon	their	
brood.	Nestlings	were	 transported	 in	 opaque	 aerated	 plastic	 boxes,	
with	a	foam	floor.	In	the	laboratory,	nestlings	were	not	physiologically	
stressed,	as	shown	by	the	absence	of	a	rise	in	baseline	corticosterone	
level	compared	to	the	situation	prevailing	under	natural,	undisturbed	
conditions	 (Dreiss,	Henry,	Ruppli,	Almasi,	&	Roulin,	2010)	or	behav-
ioural	signs	of	stress.	The	stay	at	the	laboratory	did	not	negatively	af-
fect	their	body	condition	and	fledging	success	(Dreiss,	Ruppli,	Antille,	
&	Roulin,	2015).	The	experiment	was	carried	out	under	the	legal	au-
thorisation	of	the	Veterinary	Service	of	Vaud	canton	(N°2109.1).

3  | RESULTS

Owlets	emitting	 louder	calls	produced	 longer	and	more	calls	on	av-
erage	 (Spearman	 correlation:	 r72	=	.32,	p = .006; r72	=	.46,	p < .0001; 
respectively),	as	shown	previously	in	another	set	of	individuals	(Dreiss	
et	al.,	2014).	Nestlings	produced	louder,	longer	and	more	calls	later	in	
the	night	(playback	order	effect,	Table	1).

The	probability	of	a	nestling	emitting	at	least	one	call	was	not	re-
lated	to	playback	call	 loudness	or	call	rate	(Table	1a).	Playback	 loud-
ness	 did	 not	 affect	 any	 call	 feature,	 that	 is,	 nestlings’	 call	 loudness,	
number	of	calls	and	call	duration	(Table	1,	Figure	1).	By	contrast	and	

http://audacityteam.org
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as	already	demonstrated	before	(Ruppli	et	al.,	2013),	higher	playback	
call	rates	induced	nestlings	to	produce	fewer	calls	and	to	some	extent	
shorter	calls	(Table	1bc,	Figure	1).	However,	it	did	not	significantly	af-
fect	nestlings’	call	loudness	(Table	1d).	Playback	call	rate	affected	nest-
mate	call	production	whatever	the	loudness	at	which	these	calls	were	
broadcast,	as	shown	by	the	lack	of	statistical	interaction	between	call	
rate	and	loudness	(Table	1).

Younger	owlets	were	more	 likely	 to	 call	 than	 their	older	 siblings	
(Table	1a),	 similarly	 to	 what	 was	 found	 in	 previous	 studies	 (Dreiss,	
Lahlah,	et	al.,	2010;	Dreiss	et	al.,	2014).	Contrary	to	previous	studies,	
age	 rank	was	 not	 significantly	 related	 to	 call	 duration	 and	 loudness	
(Dreiss,	 Lahlah,	 et	al.,	 2010;	Dreiss	 et	al.,	 2014).	Vocal	 females	 pro-
duced	slightly	more	calls	than	males	(Table	1b).

4  | DISCUSSION

Extensive	variation	in	playback	loudness	did	not	significantly	influence	
the	investment	of	barn	owl	nestlings	in	sibling	competition,	contrary	

F IGURE  1 Effect	of	playback	call	loudness	and	call	rate	on	barn	
owlets’	number	of	calls,	call	duration	(s)	and	loudness	(dB)	during	a	
4-	min	playback	sequence.	Means	are	represented	with	SE
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to	variation	in	call	rate	and	duration	(present	study	and	Ruppli	et	al.,	
2013;	Dreiss,	Ruppli,	Faller,	et	al.,	2015).	Call	 loudness	had	weak	or	
no	 influence	 on	 the	 negotiation	 process,	 as	 the	 playback	 loudness	
treatment	 did	 not	 affect	 the	 key	 acoustic	 parameters	 (call	 rate	 and	
duration)	 used	 in	 sibling	 negotiation.	 Moreover,	 the	 call	 rate,	 the	
most	efficient	parameter	of	sibling	competition	 (Ruppli	et	al.,	2013),	
did	not	influence	the	loudness	of	nestling	calls.	Call	loudness	is	hence	
not	likely	to	be	used	as	a	primary	signal	of	motivation	to	compete	for	
food.	Because	altricial	barn	owl	nestlings	are	in	close	proximity	to	one	
another	and	because	altricial	nestlings	are	easy	targets	for	predators,	
this	result	may	not	be	surprising.	Sibling	barn	owls	would	hence	little	
rely	on	variations	of	loudness	to	communicate.

However,	nestlings	modulated	their	call	loudness,	producing	louder	
calls	when	hungrier	as	shown	experimentally	by	Dreiss	et	al.	 (2014).	
Calls	became	louder	with	time	in	the	present	study,	which	could	also	
reflect	an	effect	of	increased	hunger.	Younger	nestlings	were	shown	to	
produce	louder	calls,	as	well	as	more	calls	and	longer	calls	(Dreiss	et	al.,	
2014),	but	this	result	was	not	confirmed	in	the	present	study,	younger	
siblings	only	producing	more	calls.	Call	 loudness	was	also	positively	
correlated	with	call	duration	and	call	rate	(Dreiss	et	al.,	2014	and	pres-
ent	results),	two	parameters	that	determine	the	negotiation	outcome	
(Dreiss,	Lahlah,	et	al.,	2010)	and	are	finely	adjusted	to	sibling	vocalisa-
tion	(Dreiss,	Ruppli,	Faller,	et	al.,	2015;	Ruppli	et	al.,	2013).	However,	
owlets	modify	their	call	loudness	to	a	lower	extent	than	their	number	
of	calls	and	the	duration	of	their	calls	(Dreiss	et	al.,	2014).

Several	hypotheses	could	account	for	the	observed	modulation	of	
call	 loudness.	 Producing	 louder	 calls	may	 be	 a	way	 to	 be	 identified	
more	 easily	 by	 competing	 siblings	 when	 hungry	 and	 when	 in	 low-	
ranking	position.	Hungry	nestlings	would	 indeed	benefit	 from	being	
identified	when	they	call,	 in	order	to	be	given	the	priority	access	to	
the	 impending	 food	 item.	 Hungry	 nestlings	were	 indeed	more	 eas-
ily	 distinguishable	 from	 one	 another	 than	 satiated	 nestlings	 (Dreiss	
et	al.,	2014),	 and	 they	may	use	a	 loud	 signal	 to	 favour	 this	 recogni-
tion.	Alternatively,	loudness	may	be	a	“backup”	or	“redundant”	signal	
(Johnstone,	 1996),	which	 has	 low	effect	 but	may	 enhance	message	
transmission	and	detection	(Rowe	&	Guilford,	1999).	Loud	calls	would	
hence	be	used	by	lower	competitive	younger	nestlings,	in	combination	
with	more	calls	and	longer	calls,	maybe	as	a	mean	to	counterbalance	
their	low-	ranking	position.

We	can	also	hypothesise	that	loudness	is	used	in	some	particular	
contexts.	For	 instance,	 if	nestlings	are	 limited	 in	the	number	of	calls	
they	 can	emit,	 they	may	compensate	by	producing	 loud	calls,	when	
in	presence	of	highly	vocal	siblings	(Dreiss,	Ruppli,	Faller,	et	al.,	2015)	
or	 in	noisy	environments	(Johnstone,	1996).	This	could	be	tested	by	
broadcasting	 longer	 playback	 sequences	 than	 the	 4-	min	 sequences	
used	in	the	present	experiment,	by	broadcasting	much	higher	playback	
call	rate	(call	rate	could	be	up	to	45	calls/min),	or	by	manipulating	the	
background	noise.	We	have	shown	here	 that	playback	 loudness	did	
not	affect	nestling	vocal	production,	but	we	could	also	speculate	that	
this	lack	of	effect	was	due	to	nestlings	only	adjusting	here	to	the	most	
relevant	signals	 (call	 rate)	of	 the	two	playback	acoustic	signals	 (Rubi	
&	Stephens,	2016).	To	test	this	hypothesis,	we	would	need	to	broad-
cast	 a	 playback	 varying	 only	 in	 call	 loudness	 and	 examine	whether	

it	 triggers	a	differential	 response	 from	nestlings.	Further	studies	are	
hence	needed	to	test	these	alternative	hypotheses	and	to	deepen	our	
understanding	of	use	of	loudness	in	various	contexts.
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Abstract Temporal variation in physical activity is mainly

determined by the day–night cycle. While this may be true

for diurnal species whose vision at night is often poor, the

situation might be more complex in nocturnal animals as

many such species can see both in the dark and in the

daylight. We examined in Barn Owl (Tyto alba) nestlings

whether temporal variation of behavioural activities and

sleep is shaped by parental feeding visits occurring during

the first part of the night and the extent to which they also

occur during daylight hours. We measured several beha-

viours in 280 individuals from 90 broods recorded in 4

years. Parental feeding visits progressively declined in

frequency from the beginning to the end of the night, and a

number of offspring behaviours followed the same pattern

of activity (feeding, vocalization and self-preening). Sur-

prisingly, nestlings were awake not only at sunset, but also

at sunrise. Several behaviours (locomotion, wing flapping

and sibling interactions, such as pecking and allopreening

among nestlings) showed peaks of activity at sunset and

sunrise, suggesting that they were performed for other

reasons than to interact with parents. Allopreening was

performed more often during the day than at night. We

conclude that although adult Barn Owls are nocturnal,

nestlings display a complex temporal pattern of activity

that is governed not only by feeding but also by other

unknown factors.

Keywords Barn Owl � Behaviour � Bimodality � Diel

organization � Ontogeny � Sleep

Zusammenfassung

Nächtliche, tägliche und bimodale Muster der

Lokomotion, der Interaktionen mit Geschwistern und

des Schlafs bei Schleiereulennestlingen

Der zeitliche Verlauf der körperlichen Aktivität wird

hauptsächlich vom Tag-Nacht-Rhythmus bestimmt.

Besonders tagaktive Arten sind oft nicht in der Lage

nachts zu sehen, während nachtaktive Arten sowohl am

Tag als auch nachts sehen können. Wir untersuchten an

Schleiereulennestlingen (Tyto alba), ob zeitliche Variation

von Verhalten und Gehirnaktivität von den elterlichen

Besuchen in der ersten Hälfte der Nacht abhängen und ob

Aktivitäten während des Tages ausgeführt werden. Wir

bestimmten Verhaltensweisen von 280 Individuen aus 90

Bruten über vier Jahre. Elterliche Fütterungsbesuche

nahmen über die Nacht stetig in der Frequenz ab, und

einige der Verhaltensweisen der Nestlinge folgten diesem

Muster (Fressen, Rufen und Putzen). Erstaunlicherweise

waren Nestlinge nicht nur bei Sonnenuntergang wach,

sondern auch bei Sonnenaufgang. Einige Verhaltensweisen

(Lokomotion, Flügel schlagen und Interaktionen mit
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Geschwistern wie Picken und gegenseitiges Putzen)

zeigten hohe Aktivität bei Sonnenuntergang und

–aufgang, was darauf hindeutet, dass sie aus anderen

Gründen ausgeführt wurden als mit den Eltern zu

interagieren. Gegenseitiges Putzen wurde tagsüber öfter

durchgeführt als nachts. Zusammenfassend ist zu sagen,

dass Schleiereulen zwar nachtaktiv sind, Nestlinge aber ein

komplexes Aktivitätsmuster zeigen, das durch die

elterliche Fütterung vorgegeben ist, aber auch durch

weitere, noch unbekannte Faktoren bestimmt ist.

Introduction

Specific behaviours should be expressed at the appropriate

time of the day or night to maximize the associated benefits

while minimizing the costs. An animal’s activity pattern

can be shaped by environmental factors, such as food

availability, temperature and light intensity, or by the social

environment (Vasquez 1996; Elvert et al. 1999; Mrosovsky

1999; Boydston et al. 2001). For example, in teleost fishes,

rain improves nocturnal foraging efficiency, which in turn

induces them to switch their activity period from diurnal to

nocturnal (Payne et al. 2012). Predation risk can also limit

the activity of prey species to the periods with the lowest

risk of predation. Three-toed sloths (Bradypus variegatus)

exposed to nocturnal predators preferentially sleep at night,

whereas the pygmy sloth (Bradypus pygmaeus) living on

an island without any predator shows no preference for

sleeping during the night or day (Voirin et al. 2014).

Although numerous studies demonstrate the influence of

environmental and species-specific adaptation on activity

pattern in adults (Hut and Beersma 2011), few studies have

examined the activity and sleep–wakefulness patterns

during development. Studies from a wide range of taxa are

required to determine the major underlying factors that

influence temporal variation in sleep–wakefulness states

and locomotor activity (e.g. Scriba et al. 2013b). Nocturnal

species are interesting because their visual systems allow

for active behaviour during both the day and night (Hall

and Ross 2007; Hall 2008). Consequently, nocturnal ani-

mals may be more flexible in their timing of activity than

diurnal species (Hoogenboom et al. 1984; Levy et al. 2007;

Daan et al. 2011).

We have been studying whether Barn Owl (Tyto alba)

nestlings are primarily active at night, like their parents

(Erkert 1969; Scriba et al. 2013a), or throughout both the

day and night. Although nocturnal provisioning by the

parents might favour nocturnal activity in nestlings, the

storage of food in the nest may free nestlings to also feed

during the daylight hours (Roulin 2004). Furthermore,

nestlings experience various environmental and social

influences, such as environmental disturbances during the

day and interactions with siblings.

We thus designed a study in which we recorded a

number of behaviours in different individuals monitored in

2007, 2011, 2012 and 2014. These behaviours included the

timing of nestling cerebral wakefulness and sleep, parental

food provisioning, nestling feeding, preening of themselves

and of their siblings (i.e. allopreening), locomotion, wing

flapping, vocalization and competitive behaviour (peck-

ing). We assessed these activities in the field and also in the

laboratory in the absence of the parents. We predicted that

some activities, such as feeding and vocal competition for

food, would follow the nocturnal timing of the parental

visits. This nocturnal pattern may however shift to

bimodality if there is some benefit in performing activities

at different times of day (e.g., exposure to different cues,

for improved sensory development or having many bouts

of sleep for cognitive development). As a consequence,

nestlings might be highly active shortly after sunset and

around sunrise. In rats, the rhythmic clock gene expression

important for a circadian rhythm develops gradually during

the first weeks after birth (Vallone et al. 2007). In young

quail, a circadian rhythm for feeding activity first occurs

with 4–6 weeks of age (Formanek et al. 2011). These

findings raise the interesting possibility that nestlings might

not yet display a circadian rhythm in various behaviours at

this stage of their development as they live in a non-

rhythmic or slightly rhythmic environment (e.g. Kouba

et al. 2014). Digestive constraints might also lead to cyclic

behaviour. When the owlet’s stomach is full, it may be best

to invest in sleep-related functions. In particular, sleep is an

important state for learning, memory, the immune system,

energy homeostasis and brain maintenance (Vyazovskiy

et al. 2008; Markwald et al. 2013; Rasch and Born 2013;

Xie et al. 2013; Opp and Krueger 2015), and sleep depri-

vation negatively impacts physiology and cognition (Van

Dongen et al. 2003). Hence, nestlings are likely to be

awake only during some parts of the nights. Superimposed

on this expected nocturnal or bimodal activity pattern,

nestlings may also have an endogenous need for sleep at

regular short intervals, since developing animals spend

more time asleep than adults (e.g. Roffwarg et al. 1966).

Additionally, interactions between siblings are important

before the night, as nestlings show reciprocation between

allopreening taking place during the day and food-sharing

at night (Roulin et al. 2016). Nestling Barn Owls vocally

negotiate the priority of access to the impending food, a

process that takes time and hence is already expressed

during the day (Dreiss et al. 2016a). The use of prosocial

behaviour allows animals to reduce the cost of competition,

but this activity is commonly time consuming (Lewis et al.

2007), implying that such behaviours may have to be

expressed not only at night but also during the day.

1002 J Ornithol (2017) 158:1001–1012

123



Furthermore, nestlings can feed on stored food at any time

of the day or night to optimize energy intake (Roulin

2004). Hence, some behaviour directed towards siblings,

such as allopreening and pecking, may show a more even

temporal distribution. Answering all of these questions is a

huge undertaking, and a first approach to tackle this

research agenda is to perform a descriptive study that

describes the temporal pattern of activity in many beha-

viours. This was the goal of the study reported here.

Methods

Study system

We studied a population of Barn Owls breeding in nest

boxes (62 9 56 9 37 cm) fixed to the external wall of

barns in western Switzerland (46�490N, 06�560E). Hence,

nestlings were exposed to the light–dark cycle through

the nest box entrance hole (13 9 20 cm), and they could

hear sounds in the environment from a variety of external

sources, including humans. We also studied nestlings in

the laboratory in similarly sized, ventilated nest boxes

with a weak light source (LEDs, 1 W), switched on

during natural daytime. Nestlings in the laboratory were

therefore also exposed to the light–dark cycle, as in

nature. We recorded behaviour and electroencephalo-

grams (EEG) in nestlings at about 4 weeks of age when

they were able to thermoregulate and eat without

maternal help (we regularly visited nests to determine

hatching dates of all siblings after measuring wing length

a few days after hatching; Roulin 2004). At this time, the

parents were not sleeping in the nest box, but somewhere

close by during the daytime. For each behaviour, we

calculated the mean hourly values 4 h before and after

sunset and sunrise, respectively; specific details includ-

ing sample sizes and behavioural definitions are provided

in the following sections for each of the different aspects

of this study. We recorded nestlings between May and

October, during which time day length varies by about

4 h. Therefore, we examined locomotion, sleep and

behavioural pattern in relation to sunset and sunrise

rather than the exact time of the day or night. For each

1-h interval around sunset and sunrise (up to 4 h before

and after these specific time points), we recorded beha-

viours and cerebral activity to evaluate temporal varia-

tion in relation to natural light conditions to

accommodate seasonal changes in night length. We

chose this methodology, because we predicted that

nestling behaviour would be sensitive to the day–night

cycle. Indeed, Barn Owl parents bring the first prey item

of the night at around 2230 hours in June but at 1830

hours in October (personal observation).

Sleep and locomotor activity in the field in 2011

The Barn Owl, like other birds and mammals, exhibits two

sleep states, namely REM (rapid eye movement) and non-

REM sleep, which alternate in short intervals and can be

recorded with EEG (Rattenborg et al. 2011). Between May

and October 2011 we recorded the brain activity of nest-

lings continuously for about 5 days using minimally

invasive subcutaneous electrodes. This was done in the

field in 29 broods involving 31 male and 35 female nest-

lings, aged 27–48 days [mean ± standard deviation (SD)

38.2 ± 0.6 days]. Using Somnologica software (Medcare,

Embla Systems Europe, Amsterdam, The Netherlands), a

single person analysed the last 24-h period of the record-

ings. Only one 24 h-period was analysed in order to

exclude the periods during which owlets habituated to the

recording device. The EEG signals were scored for wake-

fulness, REM and non-REM sleep in 4-s epochs, and

epochs containing more than one state were scored

according to the predominant state. Wakefulness was

characterized by low-amplitude, high-frequency EEG

activity, but it was often also accompanied by movement

artefacts characterized by high frequency and amplitude

activity when the birds were engaged in active behaviour.

Non-REM sleep consisted of low-frequency, high-ampli-

tude EEG activity. REM sleep was characterized by low-

amplitude, fast-frequency activity, accompanied by head

dropping or swaying of the body detected via accelerom-

eter recordings (for more details, see Scriba et al. 2013a, b;

2014). We calculated the fraction of time per hour spent

awake, in non-REM and REM sleep, respectively. The

recording equipment, which weighed at most 2.1% of the

bird’s body weight, did not seem to have an adverse effect

on the nestlings, as all of the birds fledged, and recruitment

into the breeding population in the following year was

actually higher in those Barn Owl nestlings which had their

sleep recorded (26.3%) than in those that had not (19.0%;

Scriba et al. 2013a, b; 2014). Furthermore, we installed the

device on the nestlings during daylight hours, and they

usually went asleep a few minutes after we completed the

procedure, demonstrating that our method allowed us to

record brain activities without artefacts. We found that the

temporal variation in REM and non-REM sleep was very

similar (Electronic Supplementary Material Fig. 1),

because REM sleep mostly takes place after a bout of non-

REM sleep; hence we report here only temporal variation

in wakefulness (we nevertheless separately examined

whether REM and non-REM sleep are more often per-

formed at day than night). We did not examine how the

number and duration of wakefulness–sleep bouts vary over

a 24-h period, because this is closely associated with the

percentage of time spent asleep. However, we did examine

whether the number and duration of wakefulness and REM
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and non-REM sleep bouts differ between the light and dark

phase.

To record locomotor activity, a neurologger (Neu-

rologger 2A; Vyssotski et al. 2009, http://www.vyssotski.

ch/neurologger2) equipped with an accelerometer to mon-

itor locomotor activity at 200 Hz was placed on the head of

the nestling (Scriba et al. 2013a; Anisimov et al. 2014).

The logger electronics was complemented with a board

carrying a three-dimensional (3D) accelerometer chip

(LIS302DLH; STMicroelectronics Inc., Calamba, Laguna,

Philippines) and communication microcontroller

PIC18LF13K22 (Microchip Technology Inc., Chandler,

AZ). Acceleration in each direction was measured in the

range ±2 g and stored as an 8-bit value. Acceleration data

were analysed in R (version 2.15.2; R Core Team 2012)

using custom written scripts. To estimate the amount of

body movement, the absolute value of the 3D acceleration

vector was computed, and the variance of this vector was

taken as an estimate of locomotor activity. We obtained

activity data for 64 of the 66 nestlings for the same period

of time during which we recorded their EEG.

Feeding, allopreening, pecking and wing flapping

in the field in 2007

Between May and September 2007, we artificially reduced

21 broods to three nestlings to better score nestling beha-

viour of 49 individuals for which we successfully obtained

data from the video footage. The other nestlings were kept

in ventilated boxes (with food) at some distance from the

nests. The older nestlings of these three-chick broods were

on average 42 days old (range 35–50 days), the middle-

born individuals 38 (range 28–47) days and the juniors 34

(range 21–44) days. We used two infrared-sensitive video

cameras per nest box to film under dark conditions from

1900 to 0700 hours. All of the video recordings were

analysed by the same observer, who was blind to the study

question. For each hour, this observer counted the number

of times nestlings were pecking and allopreening each

other. Pecking is an agonistic behaviour characterized by

one individual hitting another one with its beak, while

allopreening involves one individual using its beak to preen

its sibling. The observer also scored for each hour the

number of times nestlings were flapping their wings.

Finally, the observer recorded the time when parents were

bringing food to the nest and when nestlings were eating.

Vocal negotiation in the field in 2014

Barn Owl nestlings communicate vocally during the night

while parents are foraging with the purpose to negotiate

which individual will have priority access to the next

delivered prey item (Roulin 2001). Between June and

August 2014 we installed microphones inside of ten nest

boxes containing on average 5.7 (range 4–9) nestlings with

a mean age of 36.9 (range 20–45) days. We counted the so-

called ‘‘negotiation calls’’ of the entire broods (calls could

not be assigned to specific individuals) using Matlab

(R2012b 8.0.0.783; MathWorks, Natick, MA). For each

1-h interval around sunset and sunrise, we divided the total

number of calls by the number of nestlings. Calls were

recorded from 2000 or 2200 hours to 0400 or 0700 hours

during the dark period, explaining why we could not

always count calls up to 4 h before sunset and 4 h after

sunrise.

Locomotor activity, self-preening, allopreening,

vocal negotiation and feeding in the laboratory

in 2012

Between May and August 2012, we brought 116 nestlings

(average age 30.6 days; range 16–39 days) from 30 broods

to nest boxes in the laboratory. These boxes were sound-

proofed so that nestlings placed in one box could not hear

other individuals placed in neighbouring boxes. From 1400

hours to 1300 hours the following day, we recorded their

behaviour using video cameras (TVCCD-150SET; Mona-

cor International GmbH and Co. KG, Bremen, Germany)

and microphones (MC930; Beyerdynamic GmbH and Co.

KG, Heilbronn, Germany). Each nestling was recorded

alone for one 23-h period and with another sibling during

the next 23-h period (or the other way round, with the order

randomized). Nestlings are known to produce negotiation

calls also when they are alone in the nest box.

We recorded the number of negotiation calls per nestling

in the same way as described in section ‘‘Vocal negotiation

in the field in 2014’’. Locomotor and feeding behaviours

were assessed in a randomly chosen subsample of 44

nestlings from 13 broods, and self-preening and allo-

preening were assessed in 79 randomly chosen nestlings

from 20 broods and placed alone (to measure self-preen-

ing) or in pairs (to measure self-preening and allopreening).

We considered a subsample because measuring these

behaviours during a 23-h period cannot be done automat-

ically but manually, which is very time-intense. Nestlings

were fed ad libitum at 1400 hours so that we could monitor

the time when they consumed food. Video images of boxes

were divided in 5 9 4 squares to measure locomotor

activity. The video recording was split in 1-min episodes,

and nestlings were considered to be active if they moved

from one square to another. Allopreening was measured as

explained in section ‘‘Feeding, allopreening, pecking and

wing flapping in the field in 2007’’. An individual was

considered to be self-preening when it touched its feathers

with its bill or scratched its body with its feet. We mea-

sured the amount of time nestlings were self-preening and,
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for each hour, we calculated the proportion of time nest-

lings were self-preening.

Temporal variation in the frequency of allopreening

was very similar in 2012 in the laboratory as in 2007 in

the wild (data not shown). Therefore, for each year we

standardized the data [(value - mean)/SD] and combined

the 2 years of data to calculate the mean standardized

frequency of allopreening for each hour in relation to

sunset and sunrise.

Statistical analyses

The time of sunset and sunrise had been obtained from the

Astronomical Almanac by the H.M. Nautical Almanac

Office in the UK and the U.S. Naval Observatory. We

calculated the frequency of each behaviour in relation to

time to sunset (i.e. 4, 3, 2 or 1 h before sunset; during the

hour comprising sunset; and 1, 2, 3 and 4 h after sunset). A

similar procedure was applied to sunrise. We used this

approach (i.e. calculate mean hourly values) and stan-

dardized the data [i.e. (value - mean)/SD] to compare all

behaviours between each other and in relation to sunset and

sunrise. The data were normally distributed, and hence we

used parametric paired t tests to determine if behaviours

differed between light and dark periods, using average

values per brood. Note that, with the exception for sleep

and locomotor activity in nature, we did not record beha-

viours during the entire dark–light period. We therefore

compared the mean values of light and dark periods during

the studied period only. We performed non-parametric

Spearman’s correlations when samples sizes were small.

All P values are two-tailed, and P\0.05 was considered to

be significant. Statistical analyses were performed with the

JMP software version 11.0. Using the Hartigan’s dip test

statistic for unimodality (package ‘diptest’; Maechler 2012;

version 0.75-74, in R), we tested if the distribution of each

behaviour (using the recorded 16-h periods) departs from

unimodality.

Results

Comparison between diurnal and nocturnal

behaviour

Parental feeding visits, nestling feeding, calling, locomo-

tion and self-preening behaviours were significantly more

often performed at night than during the day. Cerebral

wakefulness, wing flapping, pecking and REM sleep were

observed as often at night as during the daylight hours.

Only allopreening in the field and non-REM sleep were

significantly more frequent during the day than at night

(Fig. 1).

Temporal variation in nocturnal behaviours

In the field, feeding activities were synchronized with the

parental visits (parents brought food to the nest). There was

a strong correlation between the mean hourly parental

feeding visits and the number of prey items offspring

consumed at night (Spearman’s correlation rs = 0.88,

n = 9 night periods of 1 h, P = 0.002; Fig. 2). Parental

feeding visits and offspring feeding mainly started 1 hour

after sunset (Fig. 2) and progressively declined throughout

the night (parents: rs = -0.69, n = 9, P = 0.038; off-

spring: rs = -0.83, n = 9, P = 0.005). A similar pattern

of nestling feeding activity was observed in the laboratory,

although it was significant only in the situation when

nestlings were placed alone in a nest box for 23 h

(rs = -0.67, n = 9, P = 0.049; Fig. 2) but not when

placed in a nest box in pairs (rs = -0.12, n = 9,

P = 0.77). Not surprisingly, the temporal pattern of nest-

ling vocal negotiation followed the same trend, with high

vocal activity at the beginning of the night followed by a

progressive decline over the night (rs = -0.83, n = 9,

P = 0.005; Fig. 3). Finally, self-preening activities fol-

lowed a similar temporal pattern at night (rs = -0.93,

n = 9, P = 0.002; Fig. 4).

Do behaviours show a bimodal pattern of nocturnal

activity?

According to the Hartigan’s dip test statistic, allopreening,

pecking, wing flapping, feeding, self-preening, activity and

wakefulness were weakly bimodally distributed (HDS,

P values between 0.06 and 0.09), whereas parental visits and

calls followed an unimodal distribution (P[ 0.13).

In the field, nestlings slept mainly during the daylight hours

and in the middle of the night until sunrise when there was a

sudden and strong peak of cerebral wakefulness (filled sym-

bols in Fig. 5a). Another, less pronounced peak of wakeful-

ness took place during the first 3 h after sunset (Fig. 5a).

Locomotor activity showed a similar temporal pattern when

measured in the same individuals (Fig. 5a) and in another set

of individuals in the laboratory (Fig. 5b). Although the mean

hourly values of the frequency of nestlings flapping their

wings, pecking each other or allopreening were not signifi-

cantly different from each other (paired t tests, P[ 0.05),

there were two peaks of maximal activity at sunset and sunrise,

respectively (Figs. 6, 7).

Discussion

Studying temporal variation in locomotor activity and sleep

in young birds is particularly interesting in the context of

examining whether activity is mainly governed by feeding
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or whether it is also sensitive to social interactions among

family members. When sibling competition is mainly dic-

tated by size-related dominance, social interactions may be

relatively simple and take place mainly when parents bring

food to the nest. In systems where young siblings can

behave altruistically or cooperatively to obtain food,

interactions may be more complex because prosocial

interactions may take time and involve multiple

Fig. 1 Extent to which

behaviour and cerebral activity

are nocturnal vs. diurnal in Barn

Owl (Tyto alba) nestlings. Bars

represent brood average values

for the daylight and dark periods

divided by the daylight and dark

average, respectively, to obtain

a percentage. *, **,

*** Difference (according to

paired t test on mean values per

brood) is significant at

P\ 0.05, P\ 0.001 and

P\ 0.0001, respectively. n.s.

Non-significant

Fig. 2 Parental feeding visits and nestling feeding activities in the

Barn Owl. Data points are mean standardized hourly values [whiskers

standard error (SE)] according to time to sunset and time after sunrise

as indicated by 0 (i.e. up to 4 h before and 4 h after each of these time

points, respectively). Shaded area dark period. Data on feeding in

nestlings were collected in 21 three-chick broods in the field in 2007

and in the laboratory in 44 nestlings from 13 broods in 2012. The data

were standardized for each year, and mean values are presented. Data

on parental food provisioning in the field were collected in the same

21 three-chick broods in 2007 (note that we fed the nestlings in the

laboratory therefore cannot provide these data for the laboratory)
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behaviours, such as allopreening, allofeeding, pecking and

vocal negotiation. For these reasons, the temporal pattern

of behaviours may not always follow the pattern of feeding

activities, and hence individuals may not show circadian

rhythms, but rather complex temporal patterns of activity.

This is an interesting aspect to study, but, to the best of our

knowledge, we are not aware of any other similar study

performed in other animals, thus preventing us from

comparing our findings with other systems.

The adult Barn Owl is mainly nocturnal (Scriba et al.

2013b), and in our study parents were not sleeping in

their nest during daylight hours but at some distance

from the nest. However, our results show that the tem-

poral variation in nestling behaviour is more complex.

Nestlings are not strictly nocturnal, with some behaviour

being displayed as often during the daylight hours as at

night (wing flapping, pecking; Fig. 1) and some beha-

viour (locomotor activity, wing flapping, pecking and

Fig. 3 Vocal negotiation in Barn Owl nestlings. Data points are

mean standardized hourly number of calls per nestling (whiskers SE)

according to sunrise and sunset as indicated by 0 (i.e. up to 4 h before

and 4 h after each of these time points, respectively). Shaded area

dark period. Negotiation calls were recorded in the field in 2014 in 10

broods and in the laboratory in 2012 in 116 nestlings from 30 broods

placed alone (‘solo’) or in pairs (‘duo’) in a nest box during a 23-h

period (for each individual a mean value of the two recorded values—

solo and duo—was calculated). Values obtained in the field and in the

laboratory were separately standardized before being averaged and

shown in this figure. Different symbols (squares, circle, triangles)

indicate that values are significantly different from each other using

paired t test analyses

Fig. 4 Self-preening in Barn

Owl nestlings in the laboratory.

Data points are mean hourly

values (whiskers SE) of self-

preening events according to

sunrise and sunset as indicated

by 0 (i.e. up to 4 h before and

4 h after each of these time

points, respectively). Shaded

area dark period. Self-preening

was recorded in the laboratory

in 2012 in 79 nestlings placed in

pairs or alone in the nest box.

For each individual, a mean

value was calculated
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allopreening; Figs. 5, 6 and 7) showing a bimodal pat-

tern of activity with a first peak at sunset and a second

peak at sunrise. Our recordings revealed that allopreen-

ing was slightly more frequent during the day (Fig. 1), at

least when measured in the field. The activity patterns

show a second peak in nestling activity at sunrise that

did not coincide with feeding activities, which were low

at this time (Fig. 2).

Bimodal pattern

Nestlings behaved differently at different times of the 24-h

period. As expected, nestlings were physically active

around sunset—but, rather surprisingly, they were as active

around sunrise. These two peaks in activity apply, for

example, to locomotion, wing flapping and to sibling

interactions (pecking and allopreening). We can only

speculate on the potential reasons why nestlings are active

around sunrise. Bimodal activity patterns are common in

animals and can be a strategy to reduce daily energy

expenditure (Erkert and Kappeler 2004). Alternatively,

nestlings may move and flap their wings to warm up in the

cold early morning. Movements performed at sunset may

also correspond to maintenance behaviours, which are less

important at night when the owlets compete for food. Wing

flapping is an important maintenance behaviour as nest-

lings need to adjust their body mass to reach aerodynam-

ically appropriate wing loadings at fledging (Wright et al.

2006). Accordingly, in our study the propensity to flap

wings increased with age, as also observed in Tengmalm’s

Owls (Aegolius funereus) (Kouba et al. 2014). Addition-

ally, nestlings might be active at sunrise to find a place in

Fig. 5 Sleep-wakefulness and

locomotor activity in Barn Owl

nestlings in nature recorded in

2011 (a) and in the laboratory

recorded in 2012 (b). Data

points are mean hourly

standardized values (whiskers

SE) according to sunrise and

sunset as indicated by 0 (i.e. up

to 4 h before and 4 h after each

of these time points,

respectively). Shaded area dark

period. a Data were collected on

66 nestlings from 29 broods in

the field in 2011. b Locomotor

activity was recorded in the

laboratory in 44 nestlings in

2012. Different symbols

(triangles, diamonds, squares

and circles) indicate whether

within individuals the amount of

time spent awake or physically

active was sequentially

significant according to paired

t test analyses
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their nest where they will rest and huddle during the day

(Dreiss et al. 2016b). Because huddling implies close

contact between siblings, they may engage in diverse social

interactions, including pecking and allopreening, the latter

behaviour being known to reduce social stress and conflicts

(Lewis et al. 2007; Fraser et al. 2008; Fraser and Bugnyar

2011).

These temporal patterns of activity indicate that in

nestlings, at least in the range of age considered in the

present study (16–50 days), nocturnality has not yet been

established. A similar result was found in Tengmalm’s Owl

nestlings which were spending time at the nest box

entrance not only during night when the parents came with

food, but also during daylight (Kouba et al. 2014). This

daytime behaviour might occur as a preparation for fledg-

ing, as we found that older nestlings spent more time at the

entrance or in the alert state if a predator was trying to enter

the nest. Additionally, the cost for being active at any time

of day or night might be low for the nestlings. From the

data obtained in this study, we cannot draw any conclusion

on circadian rhythmicity; for this, recordings of the

behavioral pattern are needed over several 24-h periods.

Fig. 6 Wing flapping and

pecking in Barn Owl nestlings

in nature in relation to sunrise

and sunset. Data points on wing

flapping (open diamonds) and

pecking (filled circles) are given

as mean standardized hourly

values (whiskers SE) according

to sunrise and sunset as

indicated by 0 (i.e. up to 4 h

before and 4 h after each of

these time points, respectively).

Shaded area dark period. Mean

hourly values were not

significantly different from each

other according to the paired

t test. Data are from 21 three-

chick broods in 2007

Fig. 7 Allopreening in Barn Owl nestlings. Data points (whiskers

SE) are given as mean hourly values according to sunrise and sunset

as indicated by 0 (i.e. up to 4 h before and 4 h after each of these time

points, respectively). Shaded area dark period. Data were collected in

the field in 21 three-chick broods in 2007 and in the laboratory in 20

two-chick broods in 2012. Because the pattern of temporal variation

was globally similar in 2007 as in 2012, we standardized the data

collected in each year and then calculated a mean overall value. Mean

hourly values were not significantly different from each other

according to the paired t tests
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Daylight activities

During the daylight hours (excluding the period around

sunset) nestlings were mostly physically inactive and

engaged in more and longer sleep bouts. Nonetheless,

nestlings did not sleep continuously during the light phase,

and the duration of time spent awake was the same during

the day and night. It is possible that the nestlings are dis-

turbed by human activity during the day since Barn Owls

breed in nest boxes placed in barns. This interpretation is

consistent with the finding that nestlings are physiologi-

cally more stressed, as measured by blood circulating

corticosterone, when located closer to inhabited houses and

livestock (Almasi et al. 2015). Alternatively, some beha-

viours may be realized during the day for adaptive reasons,

which would explain the time spent awake in the day.

During the light period nestlings sometimes eat prey

remains (Roulin 2004), as also observed in the present

study (Fig. 2). The duration of digestion might prevent

individuals from ingesting the daily food intake within a

short time interval at night, since the egestion of a pellet

takes about 6.5–10 h after feeding (Smith and Richmond

1972), which might explain why nestlings sometimes feed

during the day. Furthermore, social interactions, such as

allopreening and pecking, occurred during the light period,

especially before sunset. Nestlings may anticipate parental

visits with prosocial (allopreening) and competitive

(pecking) behaviours, to induce siblings to later share food.

As we recently showed, reciprocation does occur between

food-sharing and allopreening in owl nestlings. An indi-

vidual that preens its sibling during daylight hours is more

likely to be later fed by this sibling. These behaviours may

reduce the level of sibling competition (Roulin et al. 2016).

Locomotor and vocal activities resume around sunset,

before the first parental feeding visit. Nestlings may be

active before the sun goes down to position themselves

closer to the nest box entrance where the likelihood of

being fed by parents is higher (Dreiss et al. 2013a, b;

Kouba et al. 2014). Siblings vocally negotiate priority

access to the impending food items. In the Barn Owl,

parents bring a single non-divisible food item per visit that

is consumed by a single offspring. Each individual eats

three to four items per night, and there is a pronounced

asymmetry in food need between the differently aged sib-

lings. Indeed, as soon as one individual has consumed a

food item, it is much less hungry than its siblings. To

reduce the level of competition, siblings communicate

vocally, a process referred to as ‘‘sibling negotiation’’.

Because such a process takes a long time (Dreiss et al.

2015), nestlings start to vocally negotiate long before the

first parental feeding visit explaining, in part, why they can

be active during the daylight hours.

Ethics statement

All experiments were performed under the legal authoriza-

tion of the Veterinary Office (Vaud Canton, Switzerland).

Nestlings recorded in the laboratory were not physiologi-

cally stressed, as shown by the absence of a rise in baseline

corticosterone levels compared to the situation prevailing

under natural, undisturbed conditions (Dreiss et al. 2010).

Keeping owlets at the university for a few days did not

negatively affect their body condition, since mean body mass

and survival at fledgling did not differ between experimental

nestlings and nestlings remaining in their nest during all

rearing period (Dreiss et al. 2013a, b). The minimally inva-

sive EEG recording method did not appear to have any long-

term adverse effects on the Barn Owl nestlings, as all nest-

lings in which the brain activity had been recorded fledged,

and the number of owls coming back for breeding in the

following year was even higher in owls in which we recorded

sleep (26.3%), than in those without sleep recording (19.0%).

Also the owls habituated to the electrodes and data logger

quickly within a few hours and behaved normally afterwards

(as confirmed by video recordings), and nestlings were

sleeping as early as 5–10 min after being placed back into the

nest box after electrode placement.
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