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Abstract  

Most bacteria live in dense spatially structured communities such as biofilms. The high density 

allows cells to alter the local microenvironment, while the limited mobility can cause species 

to become spatially organized. Together these factors can spatially organize metabolic 

processes within microbial communities, so that cells in different locations perform different 

metabolic reactions. The overall metabolic activity of a community depends both on how 

metabolic reactions are arranged in space, and on how they are coupled, i.e. how cells in 

different regions exchange metabolites. Here, we review mechanisms that lead to spatial 

organization of metabolic processes in microbial systems. We discuss factors that determine 

the length scales over which metabolic activities are arranged in space and highlight how the 

spatial organization of metabolic processes affects the ecology and evolution of microbial 

communities. Finally, we define key open questions that we believe should be the main focus 

of future research.  

Introduction 

Microbial communities perform important metabolic processes that shape the health of 

humans and the planet. These metabolic processes are composed of a large number of 
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individual metabolic reactions which are often distributed among cells in the community1. 

These metabolic reactions are then coupled to each other through the exchange of 

intermediate metabolites between cells. The metabolic activity of the community emerges from 

the activities of the individual cells and their interactions. 

Most microbial communities are spatially structured biofilms, which are aggregates of cells 

with high density and limited mobility2,3. The high density allows cells to alter the local chemical 

microenvironment through the uptake and secretion of metabolites. The limited mobility can 

lead to clonal clusters of cells and reduces the mixing of species in multispecies 

communities4,5. Together these factors can spatially organize metabolic processes causing 

different metabolic reactions to take place in different locations within the community. 

Spatial organization of metabolic processes can have important consequences for the ecology 

and evolution of microbial communities. For example, spatial variation in the chemical 

microenvironment can promote phenotypic variation within clonal populations, increasing their 

resilience to environmental changes5–7. In multispecies communities, spatial variation in the 

chemical microenvironment can promote the coexistence of species with incompatible niche 

requirements, for example allowing obligate aerobes and anaerobes to co-exist in close 

proximity2. In this Perspective we will review mechanisms that drive the organization of 

metabolic processes in space and discuss how this organization affects the ecology and 

evolution of microbial communities. 

Components of spatial organization of metabolic processes 

For a metabolic reaction to occur in a certain location, two requirements have to be met: First, 

the enzymes catalyzing the reaction have to be present; Second, the chemical 

microenvironment has to be permissive for the reaction, i.e., reaction substrates should be 

present and inhibiting compounds absent. To understand the spatial organization of metabolic 

processes, we thus have to understand how enzymes and chemicals are arranged in space 

(Fig 1A).  

Spatial organization of enzymes 

In clonal populations, all cells carry the same genes. The spatial organization of enzymes is 

thus determined by where cells express them, i.e. it is determined by gene regulatory 

networks. Cells regulate gene expression based on their local microenvironment8,9. In turn, 

cells change their local microenvironment through the uptake and release of chemicals5. This 

creates a feedback loop: a change in the arrangement of chemicals leads to a change in the 

arrangement of enzymes, which in turn leads to a change in the arrangement of chemicals, 
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and so on. In clonal populations the spatial arrangement of enzymes is primarily determined 

by this feedback loop (Fig 1B). One example for this process is the spatial separation of 

different catabolic reactions that is observed in spatially structured clonal populations of 

bacteria6,10,11 and yeast12.  

Gene regulation also plays an important role in spatially organizing enzymes within 

multispecies communities. However, in these communities the arrangement of enzymes is 

subjected to an additional constraint: Each species carries genes for different sets of enzymes. 

Thus, the arrangement of species within the community, i.e. the community’s biogeography, 

constrains where enzymes can be expressed (Fig 1C). Recent studies have identified many 

of the factors that shape the biogeography of multispecies communities13–20. A first important 

factor is the physics of cell growth: as cells grow and divide they push their offspring and 

neighbors around4. The spatial distribution of growth rates and the physics of cell movement 

thus shapes the arrangement of species in the community. Stochastic factors also play an 

important role: many biofilms grow by clonal expansion from a small number of seed cells. 

Thus, the spatial arrangement of the first colonizing cells can affect the biogeography of the 

community at later times4,21,22.  

The biogeography of a community is also shaped by physical properties of cells: Cells that 
differ in size or shape tend to self-organize into distinct regions. For example, rod and coccoid 

shape cells can sort into different regions23,24. Adhesive properties can also play a role in 

organizing cells25. Differential adhesion, where cells preferentially stick to cells of another 

species, can promote species mixing. Species specific adhesion instead leads to the sorting 

of different species26. Also the physical properties of the extracellular matrix can play an 

important role. For example, Pseudomonas aeruginosa and Staphylococcus aureus form 

biofilms that are either well-mixed or segregated depending on the make-up of the extracellular 

matrix27. Cells can also actively organize themselves in space through motility28,29. Undirected 

motility could increase species mixing. Directed motility, through chemotaxis, could allow cells 

to migrate to regions with preferred microenvironmental conditions. This could both promote 

species mixing or segregation, depending on how the different species move.  

There is also a strong feedback between the spatial arrangement of species and chemicals 

(Fig 1C). The growth rate of a cell depends on its local microenvironment; this local 

microenvironment, in turn, is shaped by the metabolic reactions performed by the neighboring 

cells2,5. Species can thus be enriched in specific microenvironments where they grow 

well4,19,30. For example, when cells require metabolites produced by a different species, their 

growth becomes limited to regions where this other species is present. As the community 

grows, this feedback shapes the biogeography of the community (Fig 1C). 
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Spatial arrangement of chemicals 

The spatial arrangement of chemicals depends both on the chemical and physical properties 

of the external environment and on the modification of this environment through the metabolic 

activity of microbial cells (Fig 1A). Biofilms typically have sizes that range from micrometers to 

millimeters. Over these lengths scales, diffusion can quickly homogenize the concentration of 

chemicals when there are no active sources or sinks. However, strong heterogeneities in 

concentration can form when there is active uptake and release of chemicals by cells5,6,10,11,31. 

Spatial variation in chemicals thus typically emerges as a consequence of the activity of cells.  

The external environment can shape how chemicals organize in space. For example, nutrients 

typically enter a biofilm from the surrounding fluid or growth substrate. Cells in the outer biofilm 

layers, close to the nutrient source, can rapidly deplete the incoming nutrients and in the 

process secrete secondary metabolites. Cells can thus generate strong chemical gradients 

between the inner and outer layers of the biofilm10,11,32. Chemical gradients can also be formed 

by the amplification of external gradients, i.e. gradients that are also present in the absence 

of any microbial activity. For example, gradients can form around floating organic particles in 

water, or at the interface between a surface and a liquid flow33. These external gradients can 

also be caused by convection, i.e. by a flow of nutrients in the environment. Biofilms can alter 

these gradients, for example by altering the flow of nutrients34,35, or by creating a nutrient 

depleted region downstream of the biofilm36. Finally, external gradients can be created by 

hosts, for example in the animal gut37,38 or around plant roots39. The metabolic activity of cells 

strengthens these pre-existing, external, gradients, or in other words, reduces the length 

scales over which chemicals vary. 

Stochastic variation in enzyme expression can also shape how chemicals organize in space. 

Protein levels can vary in the absence of genetic or environmental variation due to stochastic 

fluctuations in gene expression40–42. Stochastic fluctuations in enzyme levels in turn can cause 

fluctuations in the rate of metabolic reactions43. The feedback loop between a cell’s metabolic 

activity and the state of its local environment can amplify these stochastic differences. The 

resulting spatial patterns depend on the type of feedback loop. With positive feedback, higher 

metabolic activity in one cell induces higher activity in neighboring cells. This can create 

clusters of cells with similar metabolic activities44. This is often seen in the regulation of 

exoenzymes where reaction products stimulate the production or export of the exoenzymes. 

Two examples are metal-bound siderophores, which increase siderophore production, and 

carbon monomers, which increase the production of enzymes that degrade polymers into 

monomers45–47. With negative feedback, higher metabolic activity in one cell reduces the 

activity in neighboring cells. For example, the metabolic products of one cell could inhibit the 
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reactions in neighboring cells through end-product inhibition. This can create patterns where 

neighboring cells specialize in different metabolic activities. For example, in filamentous 

cyanobacteria nitrogen fixation and photosynthesis are performed by distinct cell 

populations48. Stochastic gene expression combines with negative feedback to ensure that 

the nitrogen fixing cells are evenly spaced along the filament49.  

Difference in spatial arrangement of enzymes and chemicals  

There is an important difference in how chemicals and enzymes are arranged in space: most 

enzymes are confined to cells, whereas most chemicals are freely exchanged through the 

environment. The confinement of enzymes to cells adds a strong constraint on which reactions 

can take place at different locations7,10,50. A metabolic reaction can only take place in a region 

if a species that can perform it is actually located there. This can generate correlations in the 

spatial organization of different enzymes, with enzymes produced by the same species co-

occurring. Moreover, the production of multiple enzymes is often genetically co-regulated, and 

this also contributes to the spatial correlation of different enzymes.  

Coupling metabolic reaction across space  

When metabolic reactions are distributed in space, the overall metabolic activity of the 

community depends critically on the effectiveness with which these metabolic reactions are 

coupled in space. An important question thus arises: how are metabolites exchanged between 

cells1,51? 

Metabolite exchange through direct cell-cell interactions 

In some cases cells can directly exchange metabolites through physical connections. For 

example, in filamentous bacteria, neighboring cells can exchange molecules through pores in 

the membrane48,52,53. Direct cytosolic exchange, both within and between species, can also 

occur through membrane fusion or possibly nanotubes54–56. Finally, electrons can be 

exchanged through nanowires or extracellular DNA57,58. For example, in ocean sediments 

nutrients are located within the sediment layer, but oxygen (required as an electron acceptor) 

is located in the aqueous phase59,60. Centimeter long nanowires allow the microbial community 

to connect complementary reactions occurring in these two distinct regions. 

Metabolite exchange through the environment  

Most metabolites within microbial communities are exchanged by diffusion through the 

environment5. The effectiveness of metabolic coupling then depends on the length scales over 

which chemicals can be exchanged.  
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Length scales of spatial organization of enzymes and chemicals 

We use the term length scale to refer to the characteristic distance over which the 

concentration of chemicals varies in the environment or the characteristic distance over which 

gene expression states change within the community. For example, in Fig 2 we defined the 

length scale as the distance at which the concentration of chemicals has decreased to 37% 

(=1/e) of that at the source. Here we will discuss the biological and physical factors that 

determine these length scales  

Lengths scale of spatial organization of enzymes 

An important driver of the spatial organization of enzymes is the feedback loop between the 

chemical microenvironment and gene regulatory dynamics. Due to the complexities of this 

feedback it is generally not feasible to predict the length scale over which enzymes vary. 

However, this length scale can be measured experimentally and for sufficiently simple and 

well studied systems it can even be predicted61. In multispecies communities an additional 

important length scale is that of spatial organization of species. In particular the size of clonal 

patches is an important quantity as it determines the distance between spatial domains where 

different metabolic reactions take place. The size of these patches depends on the physics of 

cell growth, as well as the other drives of biogeography4,17,62–64. 

Lengths scale of spatial organization of chemicals 

Chemicals become arranged in space through the uptake and release of molecules by cells. 

Recent studies have identified a number of biophysical parameters that determine the length 

scale over which this happens18,19,31,65–71. Specifically, cell density, nutrient uptake rate, and 

diffusion rate are the most important parameters setting this length scale19,72–74. High cell 

densities and/or uptake rates lead to short length scales, while high diffusion rates lead to long 

length scales. The length scale can also depend on the external environment, for example on 

the external nutrient concentration. Finally, it also depends on the spatial organization of 

enzymes, as this determines the rate at which molecules are consumed and released at each 

location. Because of this complexity, we generally can only calculate this length scale for very 

simple communities. 

For simple communities, we can analytically calculate the length scales over which chemicals 

vary in space. Specifically, we can do this when cells are densely and uniformly spaced, and 

when all cells take up the chemical of interest at the same rate. Under these conditions, we 

can calculate how far chemicals can—on average—travel before they are consumed (Fig 2A). 

This length scale depends on the ratio of the uptake to the diffusion rate, and on the cell 
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density (Fig 2B). These conditions are often met in cross-feeding communities, where mutually 

dependent strains exchange essential cellular building blocks. For example, mathematical 

models predict that yeast strains can exchange cellular building blocks across a range of about 

100 μm, and experiments revealed that Escherichia coli bacteria exchange molecules on 

length scales of only a few micrometers19,65,66,75. Importantly, the length scale can vary 

dramatically between chemicals. While cell density alters the length scale of all chemicals in 

the same way, the other parameters modulate them differentially. Especially uptake rates of 

chemicals can vary by orders of magnitude, which in turn can lead to different length 

scales19,76.  

To derive the analytical length scale above we assumed that all cells take up nutrients at the 

same rate. However, often this assumption does not hold. For example, uptake rates often 

saturate at high nutrient concentrations (e.g., following Monod kinetics77). As a result, the 

length scale depends on the concentration of the supplied nutrient, and thus varies between 

environments (Fig 2C). Moreover, uptake rates depend on the enzymes and transporter 

proteins expressed by a cell and these could be regulated in response to the local nutrient 

concentration9. As long as the uptake rate only depends on the local concentration of the 

nutrient that is taken-up, we could potentially still calculate the length scale over which 

chemicals vary, provided that we have detailed physiological knowledge of the system. 

However, in many communities the uptake rate also depends on other factors. For example, 

uptake rates can vary between different species. In this case, we cannot even define a concept 

of a length scale over which chemicals vary in space because it will be different in each 

direction (Fig 2C). In this case the spatial arrangement of chemicals is determined by the 

location of the sources and sinks of these chemicals. In regions where cells take up chemicals, 

their concentration decreases exponentially, with a length scale that is set by the ratio of the 

uptake over diffusion rate (Fig 2D). In regions where chemicals are not taken up, they can 

rapidly spread by diffusion, and their concentration only slowly decreases with distance (Fig 

2D)31,78. 

So far, we have only discussed metabolic interactions within a single biofilm, however 

chemicals can also be exchanged between biofilms. A striking example comes from Bacillus 

subtilis biofilms, where chemical and electrical oscillations can couple metabolic reactions in 

cells that are part of different biofilms. As a result, the  metabolic activities of biofilms separated 

by several mm can fluctuate either in phase or anti-phase depending on nutrient 

concentrations32,79. 
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Examples of spatial organization of enzymes and chemicals 

In the previous sections we described the physical and biological factors that shape the spatial 

organization of enzymes and chemicals in microbial communities. As we showed, there are a 

number of important feedbacks that can lead to complex spatial patterns. In this section we 

discuss a number of examples to illustrate these points.  

Anabolic cross-feeding in multispecies communities 

Multispecies communities often contain auxotrophic species that cannot produce one or more 

essential metabolites. These auxotrophs can only grow by consuming metabolites that are 

leaked into the environment by nearby producers80–82. Producing these metabolites requires 

more energy than importing them from the environment, so typically all cells, producers and 

auxotrophs, take up these metabolites when they are present in the environment. The 

concentration of these metabolites thus rapidly (i.e. exponentially) decreases with distance 

from producing cells78. In the simplest scenario, when all species have comparable uptake 

pathways, it is possible to predict analytically the range over which metabolites are exchanged 

(Fig 2AB)19. Moreover, for two species communities it is possible to derive analytical 

predictions for the overall steady state properties of the community when the spatial 

arrangement of cell types is fully determined by the local growth dynamics76.  

Catabolic cross-feeding in multispecies communities 

Catabolic pathways for both carbon and nitrogen are often divided between different species. 

Primary degraders partly catabolize the primary nutrient to intermediate metabolites that can 

be consumed by secondary degraders. The consumption of these metabolites is typically 

limited to distinct populations. As a result, consumers and producers do not have to be 

physically adjacent, as long as cells in between them do not take up the exchanged 

metabolite10,83. However, within each patch of consumer cells, the concentration of the 

metabolite again decreases exponentially. This sets a limit on how big these patches can 

grow. The overall arrangement of metabolic activity is thus primarily shaped by the growth 

dynamics of the different cell types84–87. 

Catabolic cross-feeding in clonal populations 

Emergent gradients in chemicals can combine with gene regulatory networks to create 

metabolic interaction within clonal populations83. For example, E. coli switches to overflow 

metabolism when the carbon source (e.g., glucose) is available in growth saturating 

concentrations88. In this process cells ferment glucose to short chain fatty acids, such as 

acetate, which are released into the environment. Cells can respire this acetate, but only when 



 

9 

there is no glucose around: in the presence of glucose, acetate metabolism is inhibited by 

catabolite repression8. Catabolite repression thus drives the organization of metabolic 

activities in space, with glucose fermenting cells close to the nutrient source, followed at 

successively larger distances by glucose respiring cells, and acetate respiring cells6,7,83. More 

generally, gene regulation can cause cells to release metabolic intermediates when they grow 

in nutrient rich microenvironments1,83,89,90. These intermediates could then be consumed in 

cells in regions of the community where the primary nutrient has become depleted. 

Coupling metabolic reactions across microenvironments 

In spatially structured communities multiple gradients can form in different directions5,83. For 

example, at air-liquid interfaces, nutrients and oxygen are supplied from opposite sides. 

Similarly, in communities growing on nutrient rich substrates, nutrients and oxygen can enter 

the community from opposing directions. This creates distinct microenvironments each 

allowing for different reactions. This phenomenon has been well characterized in controlled 

laboratory conditions, for example by growing single-species colonies on agar. These colonies 

obtain nutrients from the bottom (i.e. from the agar), but oxygen from the top; in these 

conditions, a cross-feeding interaction based on carbon and/or nitrogen can form between 

fermenting cells at the bottom and respiring cells at the top10,11. Similarly, cross-feeding 

interactions can occur in more complex natural communities. For example, in sediments and 

wastewater biofilms, interactions are common between aerobic species growing near the 

oxygen rich liquid interface, and anaerobic species growing in oxygen depleted regions91.  

Consequences of spatial organization of metabolism 

The spatial organization of metabolic activities can have important functional consequences 

for the ecology and evolution of microbial communities. Here we will give some examples.  

Resolving metabolic incompatibilities 

Incompatibilities between metabolic reactions can be resolved by segregating incompatible 

reactions to different spatial locations. These incompatibilities can have two main causes: 

First, the products of one reaction could inhibit a second reaction. In this case, splitting 

reactions between different cell types can resolve the incompatibility. For example, 

cyanobacteria require both photosynthesis and nitrogen fixation for growth. However, oxygen 

produced during photosynthesis deactivates the enzymes required for nitrogen fixation. 

Filamentous cyanobacteria thus separate these two processes into distinct cell types that are 

spatially organized along the filament52,92. Second, metabolic reactions could require 

fundamentally different microenvironments. In this case, metabolic coupling between cells 

growing in different microenvironments is required. For example, most sulfate reducing 
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bacteria are obligate anaerobes. In wastewater biofilms these bacteria grow within the anoxic 

core of the biofilm and interact metabolically with aerobic species growing in the oxic outer 

zone93. 

Incompatibilities can also be caused by gene regulation: two reactions might be biochemically 

compatible, but regulation might prevent both reactions from occurring simultaneously. As 

discussed above, E. coli performs overflow metabolism when grown on high glucose 

concentrations. Although cells could theoretically respire the produced acetate under these 

conditions, catabolite repression prevents them from doing so. In well-mixed systems this 

leads to a diauxic shift, where cells first ferment glucose and then respire acetate, provided 

that the acetate is not lost through flow. However, in spatially structured systems glucose 

fermentation and acetate respiration can occur simultaneously, as different regions specialize 

on different tasks7,10. As a result, the secreted acetate can be consumed even in the presence 

of flow.  

Increasing resilience to environmental change  

Spatial organization of metabolism often creates phenotypic variation which in turn might 

increase the resilience of a community or a clonal population to environmental change. The more 

phenotypic variation a community has, the higher the chances are that some cells have the 

ability to cope well with a rapid shift in the external conditions94. For example, biofilms often 

have a core of slow growing cells which has been linked to an increase in the tolerance to 

many environmental stressors95,96. Likewise, cells in different layers of the biofilm often 

specialize on different metabolic reactions, increasing the probability that some cells can adapt 

to a change in nutrient conditions7,10,11.  

Increasing species diversity 

Chemical heterogeneities in the environment can promote biodiversity by allowing coexistence 

of species that specialize on different nutrients or that require different microenvironments for 

growth62,90,97–99. The resulting increase in diversity can promote ecosystem functioning across 

a variety of habitats, such as the soil100,101 and the gut102,103. Moreover, spatial structure can 

facilitate interactions between species with incompatible niches. For example, obligate 

aerobes and anaerobes cannot grow together in a well-mixed system. However, the strong 

oxygen gradients in spatially structured communities create both oxic and anoxic niches 

allowing both to thrive within a short distance of each other2. 
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Modulating interspecies interactions 

Spatial organization can modulate how species within a community interact with each other. 

In a well-mixed system, all cells interact equally with all other cells. However, in spatially 

structured systems the strength of interaction depends on the distance between cells and on 

the distance over which chemicals can be exchanged. Typically, cells only interact with a small 

subset of other cells19,104. In multispecies communities this can moreover limit interactions to 

a subset of the other species in the community. This can have important consequences for 

the ecology of the community. For example, it can shield cells from negative interspecies 

interactions, but also prevent cells from interacting with the partner species they need to grow 

well4,72,75,85,104. Limiting interactions to a smaller subset of cells can also affect the evolution of 

microbial communities, for example by stabilizing cooperative interactions4,72,73,75,85,104 by 

slowing the rate of adaptation105, or by modulating the optimal production levels of inhibiting 

compounds106. 

Open questions 

In recent years, we have gained much insight on how metabolic processes become spatially 

organized and on how this affects the functionality of the community. However, there are still 

many open questions that we believe are promising directions for future research. 

How does the spatial organization of metabolic activities evolve?  

The spatial organization of metabolism arises from the feedback between the organization of 

enzymes and chemicals. The arrangement of enzymes, in turn, is primarily the result of gene 

regulation and the spatial arrangement of cells. Both of these factors depend at least partly on 

cellular traits that are under genetic control. Did gene regulatory networks and other cell 

properties evolve to organize metabolic activities in space to improve the growth or survival of 

cells in these spatial communities?  

Take, for example, overflow metabolism and catabolite repression. Previous studies have 

shown that overflow metabolism corresponds to a proteome allocation pattern that maximizes 

growth in well-mixed, high-nutrient, conditions88. Likewise, catabolite repression is often seen 

as a strategy for E. coli to adapt to temporally fluctuating environments107. However, these two 

regulatory pathways also give rise to a cross-feeding interaction within spatial populations6,83. 

Did selection on spatial patterns play any role in how these networks function? Or did they 

purely evolve for the previously stated reasons?  

More generally, the evolution of gene-regulatory networks is often discussed in the context of 

how it allows cells to cope with temporal changes in the environment108. But in the natural 
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environment of bacteria, spatial variation is likely as important a factor as temporal variation. 

To what extent did gene regulatory networks evolve to organize metabolic activities in space? 

We believe this is an important question to address in future theoretical and experimental 

work.  

Does spatial organization of metabolism follow some optimality principle?  

The overall metabolic activity and growth of a community depends on how its metabolism is 

organized in space. This raises an important question: what arrangement of metabolic 

reactions does best achieve a certain objective function? This objective function can take 

many different forms: in a biotechnology setting maximizing the rate at which a certain 

chemical is produced or degraded might be the relevant objective function. While in an 

evolving community, the long term growth and survival rate might be the relevant objective 

function. Given an appropriate objective function for the system under consideration, the 

question is then how metabolic reactions should be arranged in order to maximize the 

objective. Theoretical approaches can help answer this question61,109.  

Once we know the optimal arrangement, we can also assess to what extent natural or 

engineered communities approach this optimal solution. If cells evolved to organize 

metabolism in space, we would expect a rather close match between the observed and 

expected arrangements. However, reactions are packed in individual cells, and the growth 

dynamics of these cells can cause the community to move away from an optimal arrangement. 

For example, interspecies cross-feeding interaction would work optimally in highly mixed 

systems, however cell growth decreases the degree of mixing of a community by creating 

clonal clusters19,110. To what extent did cells find strategies to maintain close-to-optimal 

arrangements? And for communities that are far from optimal, could we find strategies to make 

them function better? For this last question, experimental evolution and synthetic biology 

approaches can make important contributions111–113. These questions are not just of 

intellectual interest: a better understanding of how to optimally organize metabolism in space 

can also help improve engineered communities. 

How are single- and multispecies biofilms different? 

Metabolic processes can become spatially organized in both single- and multispecies biofilms, 

however there are some important differences. In single-species biofilms all cells share the 

same genome. The spatial organization of metabolic activities is thus fully under control of a 

shared gene regulatory-network. Moreover, each cell in the biofilm can found a new “offspring” 

biofilm with the same genetic makeup114. In this regard, single-species biofilms are thus similar 

to multicellular organisms that organize their activities in space through a developmental 
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process. Moreover, single-species biofilms are often formed by the clonal expansion of a 

single cell114. They thus undergo a single-cell bottleneck, which potentiates higher order 

selection (i.e. selection acting on group level properties such as the spatial organization of 

metabolic activity) by alleviating conflicts of interest between the individual and the 

community115,116.  

In contrast, in multispecies biofilms, the biogeography puts a strong constraint on how 

metabolic activities can be arranged. This can prevent a community from reaching a spatial 

organization that maximizes growth. Moreover, multispecies biofilms by definition require 

multiple cells to found a new biofilm, this makes it harder to produce “offspring” biofilms that 

have the same genetic make-up. In addition, in the absence of single-cell bottlenecks, 

mutations that give rise to conflicts of interests between individuals and the community are 

likely to spread116. As a result, higher order selection is typically much less effective in 

multispecies biofilms compared to single species biofilms. However, if multispecies biofilms 

“reproduce” by releasing small multicellular aggregates, higher order selection can still 

occur117. Moreover, even in the absence of higher order selection, spatial organization of 

metabolic activities and metabolic interactions can still (co)-evolve through selection at the 

individual level.  

Higher order selection can allow for the evolution of spatial organization of metabolic activities 

that optimize the growth of the entire community, even when it (slightly) reduces the growth of 

individual community members. We would thus expect to find this kind of spatial organization 

primarily within single species biofilms. For example, many anabolic pathways show 

economies of scale: the cost of producing one extra molecule is lower the more molecules a 

cell produces118. In well-mixed systems, cross-feeding communities that divide anabolic labor 

grow faster than clonal populations that do not51,80. Could spatial structure allow clonal 

populations to benefit from a similar division of labor? For example, neighboring cells could 

potentially divide labor by producing complementary sets of metabolites. The ubiquity of post-

translational regulation makes it hard to test this hypothesis experimentally, and so far only 

very circumstantial evidence has been found44. However, with new technologies it has become 

possible to revisit the question to what extent clonal populations have evolved to spatially 

organize metabolism11. 

How can we study spatial organization in natural systems? 

Many insights into how metabolism becomes spatially organized have come from studies of 
synthetic lab systems of low complexity. We still have a poor understanding of how these 

findings translate to more complex natural communities. Bridging this knowledge gap should 

be a central research goal in the coming years. To reach this goal we need to measure the 
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metabolic activity of cells at high spatial resolution within natural communities. This remains 

highly challenging, but recent technological advances that allow for spatially resolved 

measurements of metabolic activity (e.g., Nanosims) and transcriptional activity (e.g., 

seqFISH), are starting to make this possible11,69,119–123. A promising way forward would be to 

combine bottom-up approaches, such as microfluidic systems, where we can measure the 

activity of cells at high spatiotemporal resolution in semi-realistic settings, with top-down 

approaches where we obtain more coarse-grained measurements of communities in more 

realistic settings. These approaches yield complementary insight and an effort should be made 

to connect them together.  

What role does temporal variation play in spatially organizing metabolism?  

So far we have only talked about space, but time is equally important108. Natural environments 

are hardly ever constant, and changes in the external environment can lead to substantial 

changes in the arrangement of chemicals and enzymes within the community. Moreover, 

microbial communities themselves can change drastically over time. Ephemeral particles, 

such as marine snow, show quick succession dynamics with a rapid turn-over of species as 

the particle is degraded and metabolites accumulate33,124. Many biofilms are seeded by a small 

number of cells that expand over time114. As cell number and species composition changes, 

so does the chemical environment. Moreover, metabolic activities can show complex 

spatiotemporal patterns, such as spiral waves of metabolic activity within biofilms125. Finally, 

vastly different time scales play a role: diffusion acts on the second scale, gene regulation on 

the minute scale, and cell growth on the hour scale. Thus, an important question is how all 

these temporal scales combine to determine the spatial organization of metabolic activities in 

microbial communities.  

Conclusion 

The metabolic processes performed by microbes are of critical importance for the health and 

wellbeing of humans and the planet. Many of these processes depend on the spatial 

organization of metabolic reactions within the microbial community. For example, the overall 

metabolic activity of wastewater biofilms depends critically on metabolic interactions between 

cells growing in the anoxic core with those in the oxic surface layer. We have learned a lot 

about how cells in lab conditions can spatially organize their metabolic activities and how this 

impacts the community function. However, we have only started to scratch the surface on how 

these processes work in natural communities and how these processes have evolved. We 

believe these are exciting and important questions that will drive the field forward in the years 

to come. 
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Figures 

 

Figure 1  

A) The spatial arrangement of enzymes and chemicals determines where metabolic reactions 

can take place. Together they thus determine the spatial organization of metabolic processes 

within spatially structured communities. B) In single species systems, the spatial arrangement 

of enzymes and chemicals is primarily the result of the feedback loop between the regulation 

of enzyme expression (governed by gene regulatory networks) and the local 

microenvironment that a cell experiences. The arrangement of chemicals is in addition shaped 

by the external environment. C) In multispecies systems, the spatial arrangement of species 

adds an important constraint on how enzymes can be arranged in space. In turn, the spatial 

arrangement of species depends on the arrangement of chemicals, adding a second feedback 

loop. 
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Figure 2  

A) When chemicals are taken up by all cells at the same rate, their concentration decreases 

exponentially with the distance from the source. This decay has a length scale, which is 

independent of the source concentration (dark gray arrow, corresponding to the distance at 

which the chemical concentration has decreased by a factor of 1/e). B) This length scale (l) 

depends on cell density (⍴) and the ratio of the uptake rate (up) over the diffusion rate (D). 

Parameter values are based on those for small molecules such as amino acids19: up=10 1/s, 

D=800 μm/s2, and ⍴=0.65. C) When uptake rates are saturating (e.g., follow Monod kinetics), 

the length scale over which chemicals vary depends on the chemical concentration at the 

source. D) When uptake rates vary between cells, because they are of different species or 

use different uptake pathways, there is no longer a unique length scale over which chemicals 

vary in space. The length scale instead depends on the biogeography and is different in each 

direction. E) Chemical concentrations only decrease slowly with distance in regions where 

cells do not take up the chemicals. In regions where chemicals are taken up, their 

concentration decreases exponentially.  
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