Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex

Alberto Corcoba¹,², Rolf Gruetter¹,³,⁴, Kim Q. Do²,§, João M.N. Duarte¹,§

§ Equal contribution

Affiliations:
¹ Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Switzerland
² Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Switzerland
³ Department of Radiology, University of Lausanne, Switzerland
⁴ Department of Radiology, University of Geneva, Switzerland

Correspondence: João M. N. Duarte
EPFL, LIFMET - Station 6
1015 Lausanne, Switzerland
Telephone: 0041 21 69 37 995
e-mail: joao.duarte@epfl.ch

Running title: Impact of stress and glutathione deficiency

Keywords: social isolation, neurodevelopmental, metabolism, neurochemical profile, magnetic resonance spectroscopy

Abbreviations: Ala, alanine; Asc, ascorbate; Asp, aspartate; Cre, creatine; CRLB, Cramér-Rao lower bound; GABA, γ-aminobutyrate; Gln, glutamine; Glu, glutamate; GSH, glutathione; Gly, glycine; GPC, glycerophosphorylcholine; Glc, glucose; Ins, myo-inositol; Lac, lactate; Mac, macromolecule; MRS, magnetic resonance spectroscopy; MSUS, unpredictable maternal separation combined with unpredictable maternal stress; NAA, N-acetylaspartate; NAAG, N-acetylaspartylglutamate; NMDA, N-methyl-D-aspartate; PE, phosphorylcholine; PCho, phosphocholine; PCre, phosphocreatine; scylo, scyllo-inositol; Tau, taurine; tCho, total choline-containing compounds; tCre, total creatine.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jnc.14116
This article is protected by copyright. All rights reserved.
Abstract

Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine to glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, P<0.05) and larger Gln/Glu (+7.6%, P<0.05), relative to those in group housing. Furthermore, glutathione deficiency caused a reduction of whole brain volume and enlargement of ventricles, but social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis.

Introduction

Chronic stress is a major risk factor for several neuropsychiatric disorders, including anxiety, depression and schizophrenia (de Kloet et al., 2005; Leuner & Shors, 2013; Schiavone et al., 2013). Psychosocial stress disrupts oxidation-reduction (redox) homeostasis by both impairing antioxidant defences and promoting free radical formation in the hippocampus and prefrontal cortex (Filipović et al., 2017). On the other hand, genetic predisposition for impaired glutathione synthesis increases susceptibility to oxidative stress, and has been proposed as a risk factor for schizophrenia (Tosic et
al., 2006; Gysin et al., 2007, 2011). Therefore, redox imbalance appears to be a converging hub for genetic and environmental risk factors in schizophrenia (Do et al., 2009). In particular, impairments in redox homeostasis are linked to glutamatergic dysfunction due to hypoactive N-methyl-D-aspartate (NMDA) receptors, to degeneration of fast-spiking parvalbumin-positive GABAergic interneurons that are essential for fast local neuronal synchronization, to dysfunctional oligodendrocytes resulting in poor myelination and thus impairing axonal integrity and signal conduction across brain areas, and to neuroinflammation (Steullet et al., 2016).

Like in other tissues, cells in the brain are protected from oxidative stress by an antioxidant system that comprises a set of redox reactions, including the equilibrium between glutathione and glutathione disulphide (Dringen & Hirrlinger, 2003). Glutathione levels are decreased in cerebrospinal fluid and medial prefrontal cortex of schizophrenia patients (Do et al., 2000; Matsuzawa & Hashimoto, 2011). Moreover, subjects carrying polymorphisms in the gene coding for the catalytic subunit of the glutamate-cysteine ligase (Gclc) that are associated with high risk of developing schizophrenia (Gysin et al., 2007) display lower glutathione concentration in the medial prefrontal cortex than low-risk genotype subjects (Xin et al., 2016). Transgenic mice have been generated to mimic this condition. While Gclc knockout mice are not viable (Dalton et al., 2000), mice with a functional deletion in the modulatory subunit of the glutamate-cysteine ligase (Gclm) display impaired glutathione synthesis leading to reduced glutathione levels, as well as reduced ratio of reduced-to-oxidised glutathione in the brain (Chen et al., 2012). Compared to wild-type mice, Gclm -/- mice were reported to have delayed oligodendrocyte maturation and myelination in the anterior cingulate cortex, and impaired white mater integrity (Monin et al., 2015; Corcoba et al., 2016). Furthermore, early-life insults inducing oxidative stress in Gclm -/- mice are detrimental to immature parvalbumin-immunoreactive interneurons and have consequences for anterior cingulate cortex functioning in adulthood (Cabungcal et al., 2013).
An environmental condition proposed very early as one of the possible causes of schizophrenia was social isolation (Faris, 1934). In rodents, the exposure to social isolation is recognized to induce anxiety and depressive-like behaviours (e.g. Ieraci et al., 2016; Haj-Mirzaian et al., 2016). Interestingly, mice exposed to social isolation stress after weaning display mitochondrial dysfunction and increased oxidative stress in cortical areas (Jiang et al., 2013; Haj-Mirzaian et al., 2016), which further impacts oligodendrocytes in the prefrontal cortex, and results in impaired myelination (Liu et al., 2012; Makinodan et al., 2012). Indeed, oligodendrocytes are particularly susceptible to oxidative stress (Back et al., 1998). Their proliferation and differentiation is influenced by the intracellular redox state (French et al., 2009; Smith et al., 2000). Neurodegeneration of parvalbumine-positive neurons and neuroinflammation have also been shown in the prefrontal cortex of isolation-reared rats (Schiavone et al., 2009).

In this work we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and impacts the frontal cortex, resulting in local metabolic alterations. Regional concentrations of brain metabolites measured non-invasively by 1H magnetic resonance spectroscopy (MRS), the so-called neurochemical profiles, have been widely used to identify specific biomarkers of neuropathology (Duarte, Schuck et al., 2014). Decrements of N-acetylaspartate levels across different brain regions have been observed in schizophrenia patients relative to healthy controls (Steen et al., 2005; Schwerk et al., 2014). However, others have demonstrated increased N-acetylaspartate levels in hippocampus of chronic patients (Lutkenhoff et al., 2010) and prefrontal cortex of high-risk adolescents (Keshavan et al., 2009). Bustillo et al. reported recently that, with age, N-acetylaspartate increases in cortical gray matter and decreases in white matter of schizophrenia patients (Bustillo et al., 2016). Alterations have also been abundantly reported for glutamine and glutamate concentrations: increased glutamine, glutamate and/or and the ratio of glutamine-to-glutamate (Gln/Glu) have been found in early stages of the disease (Tibbo et al., 2004; Hashimoto et al., 2004; Bustillo et al., 2009, 2016; de la Fuente-Sandoval et al., 2011, Brandt et al.,
2016; Merritt et al., 2016), whereas decreased levels of these amino acids have often been observed in chronic patients (Tayoshi et al., 2009; Ohrmann et al., 2009; Chapelli et al., 2015; Brandt et al., 2016; Wijtenburg et al., 2017). Moreover, meta-analyses suggested a decline with age and disease duration in the levels of glutamate and glutamine (Schwerk et al., 2014), as well as N-acetylaspartate (Brugger et al., 2011). Schizophrenia has also been associated with alterations in myo-inositol levels (Chang et al., 2007; Chapelli et al., 2015).

MRS can be applied in both clinical and pre-clinical settings, and thus represents a valuable method for translational research in the realm of schizophrenia. Indeed, we previously reported elevated Gln/Glu ratio in the frontal cortex of the Gclm -/- mouse, relative to controls (Duarte, Kulak et al., 2012; Corcoba et al., 2016). Napolitano et al. reported that social isolation results in an altered response to a ketamine (NMDA receptor antagonist) challenge in mice, namely an exacerbated ketamine-induced glutamine increase and a reduction of GABA concentration in the prefrontal cortex (Napolitano et al., 2014). Vernon et al., reported altered metabolite concentrations in the prefrontal cortex of adult mice born from females exposed to immune activation during gestation, namely decreased levels of glutathione, taurine and N-acetylaspartate (Vernon et al., 2015).

In this study, we employed state-of-the-art, high-resolution MRS to measure brain neurochemical alterations in the mouse frontal cortex caused by social isolation stress, redox dysregulation, and their combination.

Methods

This study was conducted on male Gclm -/- (n=21), +/- (n=22) and +/+ (n=19) mice from an in-house breeding colony (C57BL/6 background; details in Duarte, Kulak et al., 2012) according to the Swiss animal welfare legislation, and under approval of the local ethics committee (EXPANIM-SCAV). Mice were housed with controlled temperature (20-22 °C) and humidity (50-56%) and free
access to food and water, under a 12-hour light-dark cycle (light off at 19h00). Upon weaning at post-natal day 21±1, animals were housed alone or in groups of 3 to 5 individuals until they were scanned at postnatal day 65. To minimize litter effects in the data, animals from the same litter were randomly (based on coin tossing) assigned to both experimental groups whenever the litter size allowed it. This study focused on male mice avoid gender effects on the neurochemical profile (see Duarte et al., 2014). Mice were taken from a total of 24 litters. From 7 litters, only one male mouse was available. Mice allocated to be reared in isolation and group originated from 20 and 17 litters, respectively. Sample size estimation was based on previous experiments (Duarte, Kulak et al., 2012; Corcoba et al., 2016; Gapp et al., 2017).

All experiments were carried out in a 14.1 T magnet with a horizontal bore of 26 cm (Magnex Scientific, Abingdon, UK), equipped with a 12-cm internal diameter gradient coil insert (400 mT/m, 200 μs), and interfaced to a DirectDrive console (Agilent Technologies, Palo Alto, CA, USA). Radio frequency transmission and reception were achieved with a home-built quadrature surface coil resonating at 600 MHz. Spontaneously breathing mice were anaesthetised with 1-1.5% isoflurane (Animalcare Ltd., York, UK) in a 1:1 O₂:air mixture, and fixed in a home-built mouse holder with a bite bar and two ear inserts. Body temperature was maintained at 37 °C by a warm water circulation system receiving feedback from a rectal temperature probe. Respiration and temperature were continuously monitored using a MR-compatible system (Small Animal Instruments, Inc., Stony Brook, NY, USA). It should be noted that although blind scanning was not possible because mice were housed either alone (social isolation) or in group, spectra were analysed in an automated manner, without interference of the researchers.

T₂-weighted anatomical scans were acquired using a fast-spin-echo sequence with 3.3 s repetition time, 43.36 ms echo time, echo train length of 8, inter-echo spacing of 10.81 ms, field of view of 20x20 mm, matrix size of 128x128, 0.4 mm slice thickness, 37 slices, and 5 averages. Brain
and ventricular volumes were assessed by manual segmentation of these anatomical images using FSLview (FMRIB'S Software Tools, Oxford, UK), as described previously (Corcoba et al., 2016).

The volume of interest (VOI) for MRS was precisely placed in the frontal cortex (4×0.9×1.6 mm³) according to anatomical landmarks in fast-spin-echo images, reproducing the location in previous studies on the gclm -/- mouse (Duarte, Kulak et al., 2012; Corcoba et al., 2016). Field homogeneity in the VOI was achieved with FAST(EST)MAP (Gruetter & Tkac, 2000). Spectra were acquired using SPECIAL with echo time of 2.8 ms and repetition time of 4 s (Mlynarik et al., 2006). The transmitter frequency was set on the water resonance for acquisition of a reference spectrum (8 scans) without VAPOR water suppression. The water-suppressed spectrum to analyse metabolites (240 scans) was acquired with transmission at 2.7 ppm. Chemical shift displacement errors were below 8%, 6% and 7% in the x, y and z directions, respectively.

Metabolite concentrations were determined with LCModel (Stephen Provencher Inc., Oakville, Ontario, Canada), including a macromolecule (Mac) spectrum in the database and using the unsuppressed water signal measured from the same VOI as internal reference (Duarte, Do et al., 2014). The following metabolites were included in the analysis: alanine (Ala), ascorbate (Asc), aspartate (Asp), creatine (Cr), γ-aminobutyrate (GABA), glutamine (Gln), glutamate (Glu), glutathione (GSH), glycine (Gly), glycerophosphorylcholine (GPC), glucose (Glc), lactate (Lac), myo-inositol (Ins), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), phosphorylethanolamine (PE), phosphorylcholine (PCho), phosphocreatine (PCr), scyllo-inositol (Scylo), taurine (Tau). The Cramér-Rao lower bound (CRLB) was provided by LCModel as a measure of the reliability of the quantification for each metabolite. Glycerophosphorylcholine and phosphorylcholine displayed high spectral correlation and were reported as their sum, hereafter termed choline-containing compounds. In most measured spectra, scyllo-inositol was below the detection limit, and was excluded from subsequent analysis. With the exception of glutathione, metabolites with CRLB below 30% were also excluded from statistical analysis. Two wild type mice were excluded from the MRS
analysis because of abnormally high glutamine levels (outliers in a Tukey box plot), likely due to congenital portosystemic shunting (Cudalbu et al., 2013).

Statistical analyses were performed in R (R Foundation for Statistical Computing 2012). All variables were analysed by two-way ANOVAs using genotype, housing and their interaction as fixed factors. Significant effects of genotype were further investigated by Tukey honest significant difference (HSD) post-hoc pairwise comparisons. Visual inspection of residual plots revealed no deviation from normality and F-ratio tests were performed to assess homoscedasticity. Data are presented as mean±SEM unless otherwise stated. When exact P-values are not provided, significant differences were considered for P<0.05.

Results

To determine major brain anatomical differences between groups we assessed the total brain and ventricular volume from the T2-weighted images that were acquired for VOI positioning in MRS scans at postnatal day 65, as well as the body weight before scanning (figure 1). We found a significant effect of genotype on body weight ($F_{2,56}=7.6$, $P=0.001$), and post-hoc analyses revealed lower weight in -/- animals when compared to +/- (-6.8±3.0%, $P=0.02$) or to +/+ mice (-8.3±3.0, $P=0.004$), but no differences between +/- and +/+ animals (-1.6±3.0%, $P=0.8$). Differences in total brain volume between genotypes ($F_{2,56}=4.4$, $P=0.02$) were also analysed post-hoc: -/- mice had smaller volumes relative to +/- mice (-3.5±1.4%, $P=0.01$), but not +/+ mice (-2.1±1.5%, $P=0.2$); whole brain volume was similar in +/- and +/+ mice (+1.5±1.5%, $P=0.5$). Post-hoc investigation of genotype effects on ventricular volume ($F_{2,56}=5.3$, $P=0.01$), revealed considerably bigger ventricles in -/- than in +/- (+24.4±9.5%, $P=0.007$) and also +/+ mice (+17.3±9.3%, $P=0.06$), but no differences between +/- and +/+ genotypes (-5.7±9.2%, $P=0.7$). The housing conditions had also an effect on the body weight ($F_{56}=11.1$, $P=0.002$), isolated animals showing a mean reduction of 6.4±2.1% with respect to group-housed mice. No significant effects of housing on either brain ($F_{1,56}=0.2$, $P=0.7$) or ventricular
(F\textsubscript{1,56}=0.5, P=0.5) volumes were found, and interactions between genotype and housing did not reach statistical significance.

To determine metabolic alterations induced by glutathione deficiency and social isolation stress, we measured the neurochemical profile in the frontal cortex of mice of all three genotypes housed in either group or isolation (figure 2). Notably, glutathione was reduced to undetectable levels in the frontal cortex of $Gclm^{-/-}$ mice (CRLB>30%), and ANOVA to $Gclm^{+/+}$ and +/- mice revealed a significant genotype effect on its concentration ($F_{1,35}=5.7$, P<0.05). We further observed significant effects of genotype on the concentration of glutamine ($F_{2,54}=9.3$, P<0.001), the ratio Gln/Glu ($F_{2,54}=8$, P<0.001), N-acetylaspartate ($F_{2,54}=5.2$, P=0.01), myo-inositol ($F_{2,54}=3.6$, P=0.03), alanine ($F_{2,54}=9.2$, P<0.001) and choline-containing compounds ($F_{2,54}=6.2$, P=0.004), in general agreement with previous reports (Duarte, Kulak et al., 2012; Corcoba et al., 2016). The magnitude of each significant metabolic modification caused by the $Gclm$ genotype in the frontal cortex is shown in table 1. Housing conditions had an effect on the concentration of myo-inositol ($F_{1,54}=6.8$, P=0.01), with isolated animals displaying a 8.4±3.3% reduction with respect to mice housed in groups. Gln/Glu was also affected by social isolation stress ($F_{1,54}=4.6$, P=0.04), with isolated animals showing a 7.6±3.8% increase when compared to group-housed mice. This increase in Gln/Glu was mainly caused by the tendency for lower glutamate levels in isolated mice (-3.0±1.7%, $F_{1,54}=3.7$, P=0.06). Notably, interactions between genotype and housing were not significant for any of the metabolites analysed.

Discussion

This study investigated for the first time the combined effect of genetically-induced redox imbalance and psychosocial stress on the concentration of metabolites in the frontal cortex. Both insults resulted in increased ratio of glutamine-to-glutamate (Gln/Glu) and decreased myo-inositol levels, suggesting an overlapping action on cortical metabolism.
Social isolation caused an increase in Gln/Glu in the frontal cortex and a trend towards a decrease in glutamate concentration. In rats, social isolation has been reported to decrease glutamate as well as glutamine concentration in the hippocampus but not in the cortex, and to reduce antioxidant enzymatic capacity in both brain areas (Shao et al., 2015). Other studies have reported reduced levels of glutamate receptors in cortex and hippocampus upon chronic social isolation stress (Hermes et al., 2011; Sestito et al., 2011), suggesting alterations in glutamatergic neurotransmission. Glutamate, the most concentrated amino acid in the frontal cortex, is primarily located in neurons, and neuronal loss or reduced neuronal processes are likely to result in decreased tissue glutamate content (Duarte, Lei et al., 2012). Indeed, chronic stress was reported to result in a marked reduction of the dendritic arborisation in the medial prefrontal cortex (Radley et al., 2004; Brown et al., 2005; Liston et al., 2006).

Consistent with the results reported previously (Corcoba et al., 2016; Duarte, Kulak et al., 2012) we found an increase of glutamine (and Gln/Glu) in the frontal cortex of Gclm -/- with respect to +/+ and +/- mice. The common effect of social isolation and Gclm deletion thus highlights glutamatergic neurotransmission as one of the pathways on which genetic and environmental risk factors may converge to trigger pathology in schizophrenia and other neuropsychiatric disorders. In line with our findings, increased Gln/Glu was found in the cerebrospinal fluid of schizophrenia patients, relative to healthy subjects (Hashimoto et al., 2004). An increase in glutamate plus glutamine levels was also found in the right medial frontal cortex of adolescents at high risk versus low risk for developing schizophrenia (Tibbo et al., 2004). Bustillo et al. reported higher anterior cingulate Gln/Glu in minimally treated patients than in control subjects (Bustillo et al., 2009). Interestingly, glutamate was reported to be higher in young schizophrenia patients, but to decrease with age, relative to healthy subjects (Brandt et al., 2016; Schwerk et al., 2014).
Other changes in the neurochemistry of Gclm -/- mice included an increase in N-acetylaspartate levels, also reported in previous experiments (Corcoba et al., 2016; Duarte, Kulak et al., 2012), which could be a consequence of impaired asparoacylase activity in oligodendrocytes, with potential consequences for myelination (discussed in Corcoba et al., 2016; Monin et al., 2015). Indeed, the rate of glutathione synthesis is crucial to maintain normal balance between reduced and oxidised glutathione states (Dringen & Hirrlinger, 2003), which has a role on cell maturation, namely of oligodendrocytes (discussed in Monin et al., 2015; Corcoba et al., 2016). While this early N-acetylaspartate increase (our mice were young adults – P65) may be associated with myelination deficits, it is possible that it decreases at later ages, following what has been observed in patients. A meta-analysis of 64 clinical MRS studies (mostly including chronic patients) indicate decrease in brain N-acetylaspartate in schizophrenia (Steen et al., 2005). However, early drug naive or minimally treated patients were reported to display unaltered N-acetylaspartate in the anterior cingulate (Ohrmann et al., 2005). Interestingly, reported that while cortical N-acetylaspartate is unchanged in young patients relative to controls, it tends to increase with age in grey matter, while it decreases in white mater (Bustillo et al., 2016).

Impaired myelination by oligodendrocytes (Monin et al., 2015) is also consistent with the observed reduction in levels of choline-containing compounds in -/- relative to +/+ mice. Phosphorylcholine and glycerophosphorylcholine are the major water-soluble choline-containing compound observed in brain MRS, and their reduction has been associated with impaired turnover of cellular membranes (Duarte, Lei et al., 2012). These choline-containing compounds are precursors of phosphatidylcholine and, in turn, of sphingomyelin, which is necessary for adequate myelination of axons (Oshida et al., 2003). In addition to integrating membranous myelin sheaths surrounding axons, sphingomyelin has been implicated in immune responses (Li et al., 2015).
Reduced levels of myo-inositol in Gclm -/- mice when compared to controls may also reflect impaired cell membrane turnover. myo-inositol is a precursor of the membrane lipid phosphatidylinositol, and the concentrations of both compounds increase steadily after birth in the mouse brain (Yao et al., 1999; Kulak et al., 2010). In addition, mice reared in social isolation displayed reduced myo-inositol concentration in the frontal cortex, compared to those in group housing. In line with a role of myo-inositol in cell membrane metabolism, mice exposed to social isolation stress after weaning display alterations in the morphology of oligodendrocytes and in the thickness of the myelin sheaths enwrapping axons of the pre-frontal cortex, as well as reduced expression of myelin-related genes (Liu et al., 2012; Makinodan et al., 2012).

Impaired myelination during development is likely to affect connectivity across brain areas. Recently, neuroimaging methods were able to identify disrupted brain connectivity in mice housed in isolation for one month from post-natal day 35 onwards, prominently affecting the dorsolateral orbitofrontal cortex (Liu et al., 2016). In humans, controlled studies on the effect of severe social isolation are rare due to the ethical implications, but a recent follow-up study of children reared in orphanages showed that institutionalized children had smaller cortical white matter volumes (Sheridan et al., 2012) and reduced fractional anisotropy (a putative MRI marker of white matter integrity) in the uncinate fasciculus (Eluvathingal et al., 2006).

Anatomical images acquired for guidance upon VOI placement in MRS scans were further analysed for gross anatomical morphology. Volumetric measurements of the brain of Gclm -/- mice detected an increase in the ventricular volume with respect to +/- and a trend in the same direction when compared to +/+ animals. This increase stands out because -/- mice were smaller than the other two groups both in body weight and in brain volume. Moreover, this increased ventricular volume replicates previously published findings (Corcoba et al., 2016). Interestingly, ventricular enlargement has been suggested to constitute a neuroanatomical hallmark of schizophrenia (Wright...
et al., 2000; Shenton et al., 2001; van Erp et al., 2016) that appears already in first episode patients (Steen et al., 2006; Vita et al., 2006).

No effect of social isolation on ventricular or total brain volume were observed, even though isolated animals had consistently lower body weights than their group-housed littermates. A previous study reported increased size of the lateral but not third ventricles together with a decrease in brain size and body weight in male rats reared in isolation for 15 weeks after weaning (Fabricius et al. 2010). In our study, with mice reared in isolation after weaning during 6 weeks, volumes of the whole brain and ventricles were similar to controls. The discrepancy between our study and that of Fabricius et al. (2010) is likely due to the shorter isolation period in our study, although it cannot be excluded that the effect of isolation may be different in the two animal species. Noteworthy, although mice exposed to social isolation stress were smaller than those reared in group, the lack of significant isolation-induced effects on the volumes of the brain and ventricles remained when body weight was used as covariate in the statistical analyses (not shown). Moreover, it has been reported that substantial variability in the brain anatomy exists in both inbred and outbred mouse strains (Scholz et al., 2016). When brain volume was used as a covariate in the analysis of ventricular volume, statistical outcomes remained unchanged, that is, there was an effect of genotype (P=0.010) but not of isolation stress (P=0.499; interaction P=0.536).

In our study, MRS was performed on a VOI in the frontal cortex that included prefrontal as well as motor areas, matching previous work in this animal model (Duarte, Kulak et al., 2012; Corcoba et al., 2016). Despite not specific to a subcortical region, these results demonstrate that environmental stress impacts the neurochemical profile in the frontal cortex, and may accentuate metabolic alterations caused by redox imbalance in Gclm-/- mice. In particular, we further conclude that Gln/Glu and myo-inositol constitute good candidate biomarkers for schizophrenia research as they were prominently affected both by redox dysregulation and social isolation stress.
If yes: Informed consent & ethics approval achieved:
 => if yes, please ensure that the info "Informed consent was achieved for all subjects, and
the experiments were approved by the local ethics committee." is included in the Methods

ARRIVE guidelines have been followed:
Yes
=> if No or if it is a Review or Editorial, skip complete sentence => if Yes, insert "All experiments were conducted in compliance with the ARRIVE
guidelines." unless it is a Review or Editorial

Conflicts of interest: none
=> if 'none', insert "The authors have no conflict of interest to declare."
=> otherwise insert info unless it is already included

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNSF, #31-116689 to
KQD), the SNSF National Center of Competence in Research (NCCR) “SYNAPSY - The Synaptic Bases
of Mental Diseases” (#51AU40_125759 to KQD), the Avina Foundation, the Damm-Etienne
Foundation, the Alamaya Foundation, and the CIBM of the EPFL, UNIL, UNIGE, HUG, CHUV and the
Leenaards and Jeantet Foundations. JMND was supported by a SNSF Ambizione grant (#148250).

Author contribution statement

KQD conceptualized the study, AC and JMND designed the study. AC performed
experiments. All authors interpreted results and contributed to write the manuscript.

Disclosure/Conflict of interest

The authors do not have any conflict of interest in relation to this work.
References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Schiavone S., Sorce S., Dubois-Dauphin M., Jaquet V., Colaianna M., Zotti M., Cuomo V., Trabace L.,

This article is protected by copyright. All rights reserved.
Psychiatry 188, 510-518.

Wright I. C., Rabe-Hesketh S., Woodruff P. W., David a S., Murray R. M., Bullmore E. T. (2000) Meta-
analysis of regional brain volumes in schizophrenia. Am. J. Psychiatry 157, 16-25.

Table 1. Differences in metabolite concentrations between *Gclm* genotypes calculated from post-hoc pairwise comparisons (see figure 2). P-values are from post-hoc Tukey tests. *a* Glutathione was undetectable in *Gclm* -/- mice.

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>Comparison</th>
<th>Difference±SD (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>glutathione (GSH) a</td>
<td>+/-</td>
<td>-/- - +/-</td>
<td>-14±6</td>
</tr>
<tr>
<td>glutamine (Gln)</td>
<td>+/-</td>
<td>-/- - +/-</td>
<td>15±5</td>
</tr>
<tr>
<td>Gln/Glu</td>
<td>+/-</td>
<td>-/- - +/-</td>
<td>17±6</td>
</tr>
<tr>
<td>N-acetylaspartate (NAA)</td>
<td>+/-</td>
<td>-/- - +/-</td>
<td>2±6</td>
</tr>
<tr>
<td>myo-inositol (Ins)</td>
<td>+/-</td>
<td>-/- - +/-</td>
<td>8±4</td>
</tr>
<tr>
<td>alanine (Ala)</td>
<td>+/-</td>
<td>-/- - +/-</td>
<td>14±5</td>
</tr>
<tr>
<td>choline-containing compounds</td>
<td>+/-</td>
<td>-/- - +/-</td>
<td>10±4</td>
</tr>
<tr>
<td></td>
<td>+/-</td>
<td>+/+ - +/+</td>
<td>2±4</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Figure 1. Body weight, total brain volume and ventricular volume in Gclm +/+, +/- and -/- mice housed in either group (open bars) or isolation (filled bars). Data are shown as mean±SEM; the number of mice per group is indicated at the bottom of each bar; * P<0.05, ** P<0.01 from Tuckey post-hoc analyses of the genotype effects. Housing conditions had a significant effect only on the body weight (F$_{1,56}$=11.1, P=0.002).

Figure 2. Neurochemical profile in the anterior cortex of Gclm +/+, +/- and -/- mice housed either in group (open bars) or social isolation (filled bars). The brain image on the top right depicts the typical position of the voxel used for acquisition. Glutathione was not detectable (n.d.) in Gclm -/- mice. Data are shown as mean±SEM; the number of mice per group is indicated in each bar; * P<0.05, ** P<0.01 from Tuckey post-hoc analyses of the genotype effects. Significant housing effects were observed on the concentration of myo-inositol (F$_{1,54}$=6.8, P=0.01), and on Glu/Glu (F$_{1,54}$=4.6, P=0.04). Abbreviations: Gln/Glu, glutamine-to-glutamate ratio; GABA, γ-aminobutyrate; NAAG N-acetylaspartylglutamate; PCho+GPC, phosphorylcholine plus glycerophosphorylcholine; PE, phosphorylethanolamine.