
	
	
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 
 
	

Year : 2015 

 
Sex-chromosome evolution of Palearctic tree frogs in space and 

time 

 
Dufresnes Christophe 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dufresnes Christophe, 2015, Sex-chromosome evolution of Palearctic tree frogs in space 
and time 
 
Originally published at : Thesis, University of Lausanne 
Posted at the University of Lausanne Open Archive http://serval.unil.ch 
Document URN : urn:nbn:ch:serval-BIB_1F84E46189071 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



Département d’écologie et évolution 

Sex-chromosome evolution of Palearctic tree 
frogs in space and time 

Thèse de doctorat ès sciences de la vie (PhD) 

présentée à la 

Faculté de biologie et de médecine 
de l’Université de Lausanne 

par 

Christophe Dufresnes 
Biologiste diplômé de l’Université Joseph Fourrier de Grenoble 

Jury 

Prof. Vladimir Katanaev, Président 
Prof. Nicolas Perrin, Directeur de thèse 

Prof. John Pannell, expert 
Prof. Laurent Excoffier, expert 

Lausanne 2015 





TABLE OF CONTENTS 

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Classical model of sex-chromosome evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Alternative models and implications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Turnovers of sex chromosomes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
The evolution of XY recombination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Homomorphic sex chromosomes and speciation  . . . . . . . . . . . . . . . . . . . . . . 10

Phylogeographic view of sex-chromosome evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Model system: Palearctic tree frogs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapters overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Part 1: Evolution of sex chromosomes in Hyla arborea 

Chapter I: Conservation phylogeography: does historical diversity 

contribute to regional vulnerability in European tree frogs (Hyla arborea)?  . . . 16

Chapter II: Range-wide sex-chromosome sequence similarity supports 

occasional XY recombination in European tree frogs (Hyla arborea) . . . . . . . . . . . 33

Chapter III: Sex-chromosome differentiation parallels postglacial range 

expansion in European tree frogs (Hyla arborea)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Part 2: Evolution of sex chromosomes in Palearctic tree frogs 

Chapter IV: Cryptic diversity among Western Palearctic tree frogs: 

Postglacial range expansion, range limits, and secondary contacts of three 

European tree frog lineages (Hyla arborea group)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter V: Trans-species variation in Dmrt1 is associated with sex 

determination in four European tree-frog species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter VI: Turnovers of ever-young sex chromosomes in Palearctic 
tree frogs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3



Chapter VII: Strong between-male variation of XY recombination in 

Hyla tree frogs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

Part 3: Homomorphic sex chromosomes and speciation

Chapter VIII: Stronger transferability but lower variability in 

transcriptomic- than in anonymous microsatellites: evidence from 

Hylid frogs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter IX: First-generation linkage map for the European tree frog 

(Hyla arborea) with utility in congeneric species . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter X: Large-X effects despite sex-chromosome homomorphy 

in European tree frogs   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Conclusions and perspectives   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

The evolution of XY recombination  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

The dynamics of sex-chromosome turnovers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Homomorphic sex chromosomes and speciation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Implications for conservation  . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Appendix: Homologous sex chromosomes in three deeply-divergent 
anuran species  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Publication list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4



SUMMARY 
 
Sexual reproduction is nearly universal in eukaryotes and genetic determination of sex prevails among 
animals. The astonishing diversity of sex-determining systems and sex chromosomes is yet bewildering. 
Some taxonomic groups possess conserved and dimorphic sex chromosomes, involving a functional copy 
(e.g. mammals’ X, birds’ Z) and a degenerated copy (mammals’ Y, birds’ W), implying that sex-
chromosomes are expected to decay. In contrast, others like amphibians, reptiles and fishes yet 
maintained undifferentiated sex chromosomes. Why such different evolutionary trajectories? In this 
thesis, we empirically test and characterize the main hypotheses proposed to prevent the genetic decay of 
sex chromosomes, namely occasional X-Y recombination and frequent sex-chromosome transitions, using 
the Palearctic radiation of Hyla tree frogs as a model system. We take a phylogeographic and phylogenetic 
approach to relate sex-chromosome recombination, differentiation, and transitions in a spatial and 
temporal framework. By reconstructing the recent evolutionary history of the widespread European tree 
frog H. arborea, we showed that sex chromosomes can recombine in males, preventing their 
differentiation, a situation that potentially evolves rapidly. At the scale of the entire radiation, X-Y 
recombination combines with frequent transitions to prevent sex-chromosome degeneration in Hyla: we 
traced several turnovers of sex-determining system within the last 10My. These rapid changes seem less 
random than usually assumed: we gathered evidences that one chromosome pair is a sex expert, carrying 
genes with key role in animal sex determination, and which probably specialized through frequent reuse 
as a sex chromosome in Hyla and other amphibians. Finally, we took advantage of secondary contact zones 
between closely-related Hyla lineages to evaluate the consequences of sex chromosome homomorphy on 
the genetics of speciation. In comparison with other systems, the evolution of sex chromosomes in Hyla 
emphasized the existence of consistent evolutionary patterns within the chaotic diversity of flexibility of 
cold-blooded vertebrates’ sex-determining systems, and provides insights into the evolution of 
recombination. Beyond sex-chromosome evolution, this work also significantly contributed to speciation, 
phylogeography and applied conservation research.  
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RÉSUMÉ 
 
La reproduction sexuée est quasi-universelle chez les eucaryotes et le sexe est le plus souvent déterminé 
génétiquement au sein du règne animal. L’incroyable diversité des systèmes de reproduction et des 
chromosomes sexuels est particulièrement étonnante. Certains groupes taxonomiques possèdent des 
chromosomes sexuels dimorphiques et très conservés, avec une copie entièrement fonctionnelle (ex : le X 
des mammifères, le Z des oiseaux) et une copie dégénérée (ex : le Y des mammifères, le W des oiseaux), 
suggérant que les chromosomes sexuels sont voués à se détériorer. Cependant les chromosomes sexuels 
d’autres groupes tels que les amphibiens, les reptiles et les poissons sont pour la plupart indifférenciés. 
Comment expliquer des trajectoires évolutives si différentes? Au cours de cette thèse, nous avons étudié 
empiriquement les processus évolutifs pouvant maintenir les chromosomes sexuels intacts, à savoir la 
recombinaison X-Y occasionnel ainsi que les substitutions fréquentes de chromosomes sexuels, en 
utilisant les rainettes Paléarctiques du genre Hyla comme modèle d’étude. Nous avons adopté une 
approche phylogéographique et phylogénétique pour appréhender les événements de recombinaison, de 
différenciation et de transitions de chromosomes sexuels dans  un contexte spatio-temporel. En retraçant 
l’histoire évolutive récente de la rainette verte H. arborea, nous avons mis en évidence que les 
chromosomes sexuels pouvaient recombiner chez les mâles, empêchant ainsi leur différenciation, et que 
ce processus avait le potentiel d’évoluer très rapidement. A l’échelle plus globale de la radiation, il 
apparait que les phénomènes de recombinaison X-Y soient également accompagnés de substitutions de 
chromosomes sexuels, et participent de concert au maintien de chromosomes sexuels intacts dans les 
populations: le système de détermination du sexe des rainettes a changé plusieurs fois au cours des 10 
derniers millions d’années. Ces transitions fréquentes ne semblent pas aléatoires: nous avons identifié une 
paire de chromosomes qui présente des caractéristiques présageant d’une spécialisation dans le 
déterminisme du sexe (notamment car elle possède des gènes importants pour cette fonction), et qui a été 
réutilisée plusieurs fois comme tel chez les rainettes ainsi que d’autres amphibiens. Enfin, nous avons 
étudié l’hybridation entre différentes espèces dans leurs zones de contact, afin d’évaluer si l’absence de 
différenciation entre X et Y jouaient un rôle dans les processus génétiques de spéciation. Outre son intérêt 
pour la compréhension de l’évolution des chromosomes sexuels, ce travail contribue de manière 
significative à d’autres domaines de recherche tels que la spéciation, la phylogéographie, ainsi que la 
biologie de la conservation.  
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INTRODUCTION 
 
 
Sexual reproduction is one of the best success-
story of evolution, being nearly universal among 
eukaryotes. By mixing genomes from different 
individuals, through meiosis and fusion of 
gametes, sex allows to form new beneficial genetic 
combinations, boosting the evolutionary potential 
of organisms (Otto 2009). Despite its complexity, 
meiotic sex has a very early origin and was 
already practiced in some of the most basal 
lineages, at least one billion years ago (Ramesh et 
al. 2005). In multicellular organisms, sexual 
reproduction has led to the evolution of separate 
sexual functions, carried by separate sexes (i.e. 
male and female) or simultaneously by single 
individuals (i.e. hermaphrodites). The 
developmental pathways governing sexual 
differentiation are remarkably conserved among 
lineages (Raymond et al. 1998, Schartl 2004, 
Graves & Peichel 2010), but can be initiated in a 
diversity of ways, involving genetic and 
environmental factors (reviewed by Charlesworth 
1996, Bachtrog et al. 2014, Beukeboom & Perrin 
2014). Genetic sex determination (GSD), which is 
prevalent in eukaryotes, usually involves sex 
chromosomes with male (XY, as in mammals) or 
female (ZW, as in birds) heterogamety, multiple 
factors (e.g. XYZW, as in some fishes), as well as 
others mechanisms, like haplo-diploidy 
(unfertilized haploid eggs develop as males and 
fertilized diploid eggs develop as females, as in 
hymenopters and most acarids) or elimination of 
the paternal genome (as in most scale insects). In 
parallel, environmental sex-determination (ESD) 
is frequent in some groups (e. g. fishes, reptiles), 
where sexual development of the embryo can 
depend on temperature, but also photoperiod, 
growing conditions and social context 
(Beukeboom & Perrin 2014). Environmental and 
genetic factors may interact to determine sex in an 
additive way, as both contribute to reach (or not) 
an hormonal threshold, fating the sex of the 
individual in a dose-sensitive fashion (Bulmer & 
Bull 1982). 
 
 
CLASSICAL MODEL OF SEX-CHROMOSOME EVOLUTION 

The prevalence of sex-chromosomes across the 
tree of sex has attracted evolutionary biologists 
early on, and the evolution of sex chromosomes 
has received much interest over the last century. 
Research on model organisms, including 
mammals, birds, and Drosophila laid the ground 
work to characterize the main evolutionary steps 

(reviewed by Charlesworth & Charlesworth 
2000). Müller (1914) first proposed that the 
human X and Y evolved from an homologous pair 
of autosomes. Decades later, comparative 
genomics confirmed his theory, revealing that the 
sex chromosomes of some lineages have 
autosomal orthologues in others. For instance, the 
chicken Z chromosome largely maps to human 
chromosomes 5, 9 and 18 (Nanda et al. 2002), and 
the X-added region of therian mammals is 
homologous to chicken chromosomes 1 and 4 
(Kohn et al. 2004). Earlier on, comparative 
cytogenetic analyses across families of snakes 
reached similar conclusions (Ohno 1967).  

A first step in the evolution of sex 
chromosome from an autosome is taken with the 
appearance of a sex-determination function (SD) 
by the mutation, translocation, or duplication of 
gene(s) involved in the sex-determining pathway, 
giving rise to proto-sex chromosomes (Rice 1996; 
Figure 1a). Note that two linked functions are 
required when evolving from hermaphrodism or 
ESD, one silencing male fertility and one silencing 
female fertility (Charlesworth 1996, Bachtrog et 
al. 2011). Theory predicts that recombination at 
the sex-determining region will quickly be 
selected against in the heterogametic sex, in order 
to maintain strong linkage between co-adapted 
alleles of different genes involved in sex-
determination and differentiation, and 
neighboring sex-antagonistic (SA) loci (Bull 1983, 
Rice 1987, 1996; Figure 1b). For instance, in XY 
systems this allows male- and female-beneficial 
alleles to be exclusively inherited by sons and 
daughters respectively. The process is self-
reinforcing: tight linkage will favor the 
accumulation of new SA genes, which will in turn 
select for even tighter linkage (Rice 1987). 

However, this arrest of recombination has 
far-reaching consequences on the evolutionary 
faith of the non-recombining gametolog 
(thereafter Y). First, by being isolated from the X 
and carried by only one sex (male), the Y endures 
a drastic drop of its effective size, down to ¼ of an 
autosome (i.e. for four copies of autosomes, there 
are three copies of X and one copy of Y in natural 
populations). Müller conceptualized this enhanced 
drift as a ratchet, the diversity of the Y being 
irremediably shrunk down click after click (Müller 
1914). Second, because it acts on the entire 
chromosome as a whole, selection becomes 
inefficient on the Y. Due to linkage disequilibrium, 
slightly deleterious alleles segregate along with 
advantageous combinations at SA genes. 
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Reciprocally, selection against “bad” SA 
combinations causes the loss of “good” alleles at 
other loci. These selective sweeps, background 
selection and Müller’s ratchet combine to drive 
the non-recombining segment into degeneration, 
by fixing deleterious mutations and repetitive 
elements and eventually causing the loss of gene 
functions (Charlesworth & Charlesworth 2000; 
Figure 1c). 

At the same time, chromosomal regions at 
the border of the non-recombining segment 
become hotspots for the accumulation of new SA 
genes (Rice 1987). Like a chain reaction, the non-
recombining segment will thus tend to expand to 
these neighboring regions (Figure 1c). Such 
successive events of recombination arrest recruit 
new chromosomal portions into the non-
recombining segment, yielding evolutionary strata 
i.e. discrete genomic regions differing by stepwise 
increased amount of divergence. For instance, 
comparing X and Y sequence divergences allowed 
to identified four evolutionary strata in the 
mammalian sex chromosomes (Lahn & Page 1999, 
Hughes et al. 2012), and similar patterns were 
found in other XY and ZW systems (e.g. Handley et 
al. 2004, Nicolas et al. 2005). 

Without resuming X-Y recombination (see 
next section), the genetic decay of the non-
recombining gametolog may become irreversible. 
Structural changes through accumulation of 
repetitive sequences, transposons as well as 
inversions and large deletions dramatically alter 
the Y chromosome, and ultimately lead to sex-
chromosome heteromorphy (Charlesworth & 
Charlesworth 2000, Figure1d). At this stage, X and 
Y are not anymore homologous and X-Y 
recombination is then physically impossible, even 
in sex-reversed females. The process can go even 
further and the Y was actually lost in several 
lineages, forming XX/X0 systems (Waters et al. 

2007). 

This widely accepted model accounts for 
the high sex-chromosome differentiation found in 
mammals, birds, as well as some insects (e.g. 
Drosophila; Bachtrog 2004, Kaiser & Bachtrog 
2010) and plants (e.g. Silena, Bergero & 
Charlesworth 2011).  In mammals, ~170 My of 
evolution since the appearance of the 
masculinizing gene SRY has led the Y chromosome 
to be highly-deprecated, largely heterochromatic 
and harboring less than 50 functional genes 
(>1500 on the X) (Livernois et al. 2012). Similar 
features are shared by the female-specific 
degenerated W of birds (Handley et al. 2004). 
Note that to accommodate for such male-female 
dimorphism, these groups have evolved dosage 
compensation: in mammals this is done by female 
X-inactivation, whereas in Drosophila the males 
(XY) double the expression of their X 
chromosome; in birds sex-linked gene expression 
is equalized by subtle gene-by-gene regulations 
(Mank 2009). The evolution of dosage 
compensation may actually accelerate the 
degeneration process by further relaxing selection 
on the Y (Charlesworth 1978, Engelstädter 2008). 

More generally, this model has 
emphasized the dramatic view that sex 
chromosomes are “born to be destroyed” 
(Steinmann & Steinmann 2005). The speed of 
degeneration, however, might greatly vary 
depending on organisms. In plants, genetic decay 
may be slower than in animals because purifying 
selection is still efficient during the haploid 
gametic phase, i.e. pollen (Chibilana & Filatov 
2011). In mammals, the faith of the male Y is 
under much debate. It is predicted to ultimately 
disappear (Graves 2005, 2006; as already in some 
rodents), but seems to have remained stable over 

FIGURE 1: Classical model of sex chromosome evolution leading to sex chromosome heteromorphy 
(Charlesworth & Charlesworth 2000). SD: sex-determining locus. SA: sex-antagonistic loci, DM: 
deleterious mutations. Lines indicate X-Y recombination (horizontal) or recombination arrest 
(vertical). Steps are described in the text. 
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the past 25 My, most likely as it retained 
housekeeping genes with pleiotropic effects on 
maleness (Bellot et al. 2014, Cortez et al. 2014). 

ALTERNATIVE MODELS AND IMPLICATIONS 

The above model accounts very well for the 
extremely conserved mammalian and avian sex-
determining systems. All therian mammals share 
the same ancestral pair of sex chromosomes, 
nowadays heteromorphic, harboring the sex-
determining gene SRY (Livernois et al. 2012). In 
birds, sex is universally controlled by the 
expression level of the Z-linked DMRT1, present 
twice in ZZ males and once in ZW females (Smith 
et al. 2009). Birds ZW chromosomes are also 
widely heteromorphic (Handley et al. 2004), 
although undifferentiated sex chromosomes are 
found in a few basal species (ratites, e.g. emu), 
which evolved sex-antagonistic functions through 
sex-biased gene expression rather than sex-linked 
mutations (Vicoso et al. 2013), a rare mechanism 
considered difficult to evolve (Rice 1996). 

In striking contrast, other groups of 
vertebrates feature an astonishing diversity of 
sex-determining systems and mostly 
undifferentiated sex chromosomes, challenging 
the classical model. In amphibians, reptiles and 
fishes, sex can be determined by one or several 
genes/chromosomes, involving male or female 
heterogamety (XY, ZW), by the environment 
(especially temperature) or interactions between 
different systems. Sex chromosome differentiation 
is very rare: in amphibians, less than 4% of 
examined species show heteromorphic sex 
chromosomes (Schmid et al. 1991, Eggert 2004); 
in fish, it is about 10% (Devlin & Nagahama 2002); 

it is slightly higher in reptiles, for instance 20% in 
lizards (Ezaz et al. 2009a). As a consequence, 
these sex chromosomes are often interpreted as 
primitive, i.e. on the first steps of differentiation, 
but it is rather unlikely that all cold-blooded 
vertebrates recently evolved new GSD systems. 
Given that this prevalent homomorphy does not fit 
the predictions made for sex chromosome 
evolution, deciphering the alternative mechanisms 
involved has become an attractive question. As 
described below the last decade of research has 
seen the conceptualization of two major 
hypotheses. The main idea of this thesis was to 
test and characterize these models empirically in 
natural populations. 

TURNOVERS OF SEX CHROMOSOMES 

As noted by Schartl (2004), transitions of 
sex-determining systems are frequent in groups 
with homomorphic sex chromosomes. In cold-
blooded vertebrates, different pairs of sex-
chromosomes can be found between different 
lineages (Tanaka et al. 2007, Volff et al. 2007, Ezaz 
et al. 2009b, Mank & Avise 2009, Ross et al. 2009, 
Kitano & Peichel 2011, Kikuchi & Hamaguchi 
2013, Malcom et al. 2014), and even between 
different populations of the same species (Miura 
2007). For instance, Hillis & Green (1990) 
identified at least seven heterogametic transitions 
(i.e. from XY to ZW and vice versa) during 
amphibian evolutionary history. Such turnovers 
may thus happen frequently enough so no 
degenerated chromosome pair are observed 
(Figure 2). As illustrated by Volff et al. (2007), in 
these groups SD genes can thus be viewed as 
“ephemeral dictators” enduring frequent 

FIGURE 2: Alternative mechanisms preventing sex chromosome degeneration: occasional X-Y 
recombination (left) and transition towards another chromosome pair (right).  
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“evolutionary putsches”. These putsches occur as 
the SD gene is translocated or overridden by a 
new SD on a different chromosome pair. 

 Theoretical work has delineated several 
potential causes to these transitions. Strong sex-
antagonistic selection on an autosomal gene can 
favor the spread of a new SD gene linked to it (van 
Doorn & Kirkpatrick 2007), and causing 
heterogametic transitions (van Doorn & 
Kirkpatrick 2010). Sex chromosome turnovers 
may also be triggered by the genetic load of 
deleterious mutations accumulated on the non-
recombining Y (Blaser et al. 2013). In non-purely 
GSD systems where extreme environmental 
conditions may skew sex-ratios in populations, 
sex-ratio selection can set off new pairs of sex 
chromosomes reestablishing even male-female 
proportions (Grossen et al. 2011).  

Moreover, turnovers may be biased 
towards a limited set of chromosome pairs that 
carry important genes with upstream functions in 
the sex-determining cascade (Graves & Peichel 
2010, O’Meally et al. 2012). For instance, only five 
chromosomes out of 13 are co-opted as sex 
chromosomes among 17 species/populations of 
Ranid frogs (Miura 2007).  This pattern extends to 
single genes: the transcription co-factor DMRT1, 
which determines sex in birds (Smith et al. 2009), 
has orthologues and paralogues with key roles for 
sex-differentiation in a variety of organisms 
(reviewed by Matson & Zarkower 2012), including 
dipters (doublesex in Drosophila), nematods (mab3 
in Caenorhabditis elegans), fishes (DM-Y in Oryzias 
latipes) and amphibians (DM-W in Xenopus laevis).  

Although turnovers received clear 
supports from several systems, what we know 
regarding their dynamics and underlying causes 
mostly stem from theoretical work. Here we 
address the matter empirically in amphibians. In 
this context of rapid change, we outline 
homologies of sex-chromosomes (Appendix) and 
sex-determining genes (Chapter V), and estimate 
the timing and potential bias of turnovers in a 
well-resolved radiation (Chapter VI). 
 

 
THE EVOLUTION OF X-Y RECOMBINATION 

Even if turnovers are indeed frequent in 
some groups, it is highly unlikely that they solely 
account for the integrity of sex chromosomes 
among all animals and plants. Instead of replacing 
senescing Y chromosomes by new chromosome 
pairs, another alternative is to maintain non-zero 
rates of X-Y recombination at the same ancestral 
pair, enabling to purge and rejuvenate the Y 
(Figure 2). This implies that young sex 
chromosomes may often harbor old sex-
determining genes (i.e.  “old wine in a new bottle”, 
Perrin 2009). In theory, such amount of X-Y 

recombination should be a balance between the 
positive effects of sex-antagonistic genes (which 
prevent recombination) versus the negative effects 
of accumulating deleterious mutations (which 
favor some recombination), and extremely low 
rates seem sufficient to maintain this equilibrium 
(Grossen et al. 2012). Note that other forms of 
selection, involving overdominance in males may 
also promote recombination between sex 
chromosome (Otto 2014).  

Perrin (2009) proposed that ectothermic 
species like cold-blooded vertebrates could 
generate X-Y recombinants via rare sex-reversal 
events (the “fountain-of-youth” hypothesis), based 
on two grounds: the fact that environmental (e.g. 
temperature-induced) sex-reversal is possible in 
these species, and assuming that recombination 
rates depends on phenotypic rather than 
genotypic sex (Matsuba et al. 2010). Then, an XY 
individual, developing as a female due to extreme 
environmental conditions might recombine as a 
regular XX female and yield new Y haplotypes. At 
this point, natural selection can favor the spread 
of the fittest new Ys in populations, i.e. those free 
of deleterious mutations and that retained 
advantageous sex-antagonistic combinations. 
Instead of sex-reversal, X-Y recombination might 
also be obtained by occasional male 
recombination, which however involve different 
proximate mechanism and dynamics i.e. 
continuously low rates (opposed to rare bursts of 
recombination). This largely unexplored 
hypothesis is receiving increasing support (Stöck 
et al. 2011, 2013a; this thesis), raising interesting 
theoretical and empirical perspectives regarding 
the evolution of recombination and sex-
antagonistic genes, as well as opportunities to 
map sex-determining loci by screening Y genomic 
regions protected from recombination, as done in 
Chapter V. 

A large part of the work presented here is 
dedicated to understand how evolutionary stable 
rates of X-Y recombination evolve in the wild, 
notably by dissecting X-Y recombination variation 
between (Chapter III) and within populations 
(Chapter VII), as well as their consequences for 
the dynamics of sex-chromosome differentiation 
(Chapter II and III). Finally, we address how both 
sex-chromosome recombination and turnovers 
may co-occur and together contribute to the 
prevalence of homomorphic sex chromosomes in 
a species group (Chapter VI). 

 
 

HOMOMORPHIC SEX CHROMOSOMES AND SPECIATION 

The lack of differentiation at sex chromosomes 
can have important implications for the genetics 
of speciation. Sex chromosomes take a core place 
in reproductive, especially post-zygotic isolation 
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between incipient species (Qvarnström & Bailey 
2009). It is best illustrated by hybrid zone 
analyses in several mammalian and avian systems, 
where sex-linked loci struggle to pass interspecific 
reproductive barriers (e.g. Payseur et al. 2004, 
Carling & Brumfield 2008). 

As recently reviewed (Pesgraves 2008, 
Qvarnström & Bailey 2009, Schilthuizen et al. 
2011), several mechanisms prevail to account for 
this pattern. First, assuming degeneration of the Y, 
incompatibilities in hybrid genomes, which 
usually involve partly recessive alleles, should 
cause more problems when X-linked than 
autosomal, because of hemizygous exposure in the 
heterogametic sex (the “dominance” theory, 
Müller 1940, Turelli & Orr 1995). By increasing 
the efficiency of purifying selection, dominance 
effects are also expected to accelerate genetic 
changes on X chromosomes, which may thus 
accumulate more divergence than the rest of the 
genome (the faster-X effect, Charlesworth et al. 
1987). Faster evolution of male-expressed genes 
(e.g. through sexual selection) is expected to have 
an effect on sex-specific hybrid fitness, but it is 
unclear whether these genes non-randomly build 
up on sex chromosomes (Wu & Davies 1993, Wu 
et al. 1996). Sex-chromosomes may also be 
affected by incompatibilities between X and Y 
alleles, X-Y epistatis being important for proper 
meiotic segregation of sex chromosomes 
(McDermott & Noor 2010) and differentiation of 
the heterogametic sex. Finally, sex chromosomes 
may be involved in other types of reproductive 
barriers, like pre-mating isolation (Saetre et al. 
2003, Saether et al. 2007, Pryke 2010), also it 
remains controversial (Qvarnström & Bailey 
2009). These different mechanisms are reflected 
by two main empirical observations of sex-specific 
hybrid fitness, namely Haldane’s rule (lower 
hybrid fitness for the heterogametic sex, Haldane’s 
1922, Schilthuizen et al. 2011) and the large-X 
effect (disproportional effect of X-chromosomes 
on hybrid sterility, Turelli & Moyle 2007, Masly & 
Pesgraves 2007). 

Evidence from these processes almost 
exclusively arise from species with dimorphic sex 
chromosomes, where sex-linked dominance 
effects confound with other mechanisms. In 
species with undifferentiated sex chromosomes, 
however, the context is different as the X is not 
hemizygous and dominance effects should be 
negligible. These organisms thus offer 
opportunities to test for the role of sex-
chromosome differentiation in reproductive 
isolation, and gauge the relative contributions of 
the different mechanisms, without the 
confounding effects of dominance. We perform 
such study in Chapter X, contrasting sex-linked 
versus autosomal introgression patterns across 

hybrid zones of tree frogs, a first of this kind in an 
animal system with homomorphic sex 
chromosomes. 

PHYLOGEOGRAPHIC VIEW OF SEX-CHROMOSOME 
EVOLUTION 

Multi-level molecular ecology surveys of 
individuals, populations and species are powerful 
ways to make sense of patterns of sex-
chromosome differentiation and their underlying 
mechanisms in a natural context, but require well-
resolved phylogenetic and phylogeographic 
frameworks. Biogeographic processes obviously 
overlay with intrinsic sex chromosome dynamics 
to shape patterns of divergences and diversity at 
sex-linked markers. 

In the northern hemisphere, the climatic 
oscillations experienced by our planet over the 
last few million years induced Quaternary 
glaciations, a series of long cold and dry glacials 
interspersed with short warm and wet 
interglacials (Hewitt 2000). For instance, the last 
glacial cycle a.k.a. the Würm, spanned from 
110’000 to 21’000 years ago (Figure 3), after 
which Earth climate quickly warmed up again. The 
repeated shifts between glacial and interglacial 
periods had tremendous consequences on the 
distribution and genetic diversity of animal and 
plant biota (reviewed by Hewitt 2000 and Schmitt 
2007). In Europe, where northern habitats 
became unsuitable during ice ages, most species 
were restricted to so-called glacial refugia, located 
across southern Mediterranean Peninsula as well 
as eastern continental lowlands (Figure 3). 
Disconnection of these separate populations 
resulted in genetic divergences, nowadays 
forming distinct lineages in many organisms. In 
addition, refugial areas feature high amounts of 
genetic diversity, both because of the long-term 
demographic stability of populations (i.e. they 
survived several ice-ages) and because their 
topographic complexity made them hotspots for 
regional allopatric diversifications (i.e. refugia 
within refugia, Gómez & Lunt 2007). In contrast, 
northern populations originated from recent (i.e. 
post-glacial) recolonization, during which much 
diversity was lost due to expansion-associated 
drift: as a result, only a subset of the refugial 
diversity is found in post-glacial populations. 
Although location of refugia and post-glacial 
routes of recolonization varies given historical 
distributions, ecological requirements and life-
history traits of species, comparative 
phylogeographies delineated major biogeographic 
paradigms, pinpointing hotspots of diversity and 
divergences, emphasizing the role of major 
mountain ranges as barriers to recolonization, and 
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identifying secondary contact zones (Hewitt 2000, 
2011, Schmitt 2007). 

Studying sex-chromosome evolution at 
the intraspecific level thus demands knowledge of 
the basal amounts of diversity and divergences, 
their distributions, along with reconstruction of 
the demographic events stemming from refugial 
maintenance and post-glacial expansions. Chapter 
I provides such analyses for the widespread 
European tree frog (Hyla arborea), used as a 
framework for subsequent phylogeographic 
surveys of sex-linked markers (Chapter II and 
III). Multi-species comparisons also necessitate 
prerequisites on phylogenetic relationships and 
divergence times (Chapter V, VI), as well as 
location of hybrid zones (Chapter X), which we 
assessed beforehand in Chapter IV. 

MODEL SYSTEM: PALEARCTIC TREE FROGS 

Hylid tree frogs or “true” tree frogs constitute one 
of the richest amphibian family worldwide, 
widespread over temperate and tropical parts of 
the Nearctic, Neotropic, Palearctic and 
Australasian ecozones (Wiens et al. 2010). 
Palearctic species originated from the Nearctic, 
through several successive colonization waves via 
northern landbridges which regularly connected 

North-America to Eastern-Asia over the last 60 My 
(Smith et al. 2005). The Western-Palearctic 
radiation diversified within the last 10 My, giving 
rise to at least ten lineages (some of them still to 
be described taxonomically) distributed around 
the Mediterranean Basin (Stöck et al. 2008), 
including the type species Hyla arborea. 

European Hyla tree frogs are small and 
slender (3-5 cm long), mainly of uniform green 
coloration (with variation from grey to brown), 
and equipped with characteristic toe discs, used 
for climbing. Adults are sexually dimorphic, with 
males possessing a dark vocal sac on the throat, 
absent in females. Tree frogs are lek-breeding 
species: males gather at suitable water bodies 
(shallow and sunny temporary ponds) during the 
breeding season (February-June), and nightly call 
in chorus to attract females. Male and female mate 
by pairing together in amplexus (Figure 4), and 
the female lay ~200-400 eggs on the aquatic 
vegetation, externally fertilized by the male. Eggs 
hatch after approximately one week, depending 
on water temperature, and tadpoles continue 
growing up to metamorphosis (two-three months 
after hatching). Juveniles then become sexually-
mature after 1-2 years (males) or 2-3 years 
(females) and can live up to 7-10 years in the wild 
(Arnold & Ovenden 2002). Because of their noisy 

FIGURE 3: Europe during the last glacial maximum (21’000 years ago): glacial 
vegetation (layout from Ruddiman 2008), mainland refugia and major routes of post-
glacial recolonization. 
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calls (easily detectable for census) and local 
abundances, tree frogs are popular umbrella 
species and have received interest in various 
fields of ecological and evolutionary research, 
such as metapopulation dynamics (e.g. Andersen 
et al. 2006), mating systems (e.g. Broquet et al. 
2009) and landscape genetics (e.g. Dubey et al. 
2009). Like most amphibians, Hyla populations 
are threatened in many regions and countries and 
benefit from the conservation perspectives of 
population genetics and phylogeographic studies 
(c.f. Chapter I). 
Over the last decade, the European tree frog Hyla 
arborea has also become a model system for 
studying sex-chromosome evolution. All Eurasian 
species have homomorphic sex chromosomes 
(Anderson 1991). Discovery of sex-linked 
anonymous microsatellite markers revealed male 
heterogamety (XY; Berset-Brändli et al. 2006), and 
sibship analyses in Swiss populations evidenced 
recombination arrest between X and Y (Berset-
Brändli et al. 2008), in line with the impoverished 
effective size of the latter (Berset-Brändli et al. 
2007). Although seemingly nascent, comparative 
linkage mapping showed that these XY sex 
chromosomes were shared by the closely related 
taxa H. molleri, H. intermedia and H. orientalis, 
where male recombination is also suppressed 
(Stöck et al. 2011, 2013b). However, despite this 
apparent recombination arrest, patterns of X-Y 
similarities between H. arborea, H. intermedia and 
H. molleri still indicate some gene exchange 
between X and Y since the splits of these species 
5-7 Mya, supporting the occasional recombination 

model, but raising a series of questions regarding 
the proximate mechanisms and their extent across 
the radiation (Stöck et al. 2011, Guerrero et al. 
2012). 

CHAPTERS OVERVIEW 

In the first part of this work (Chapter I-
III), we solve this paradox by exposing how sex-
chromosome recombination evolved in the 
widespread H. arborea, through intraspecific 
phylogeographic analyses. We set an autosomal 
and mitochondrial phylogeographic framework 
(Chapter I), contrast range-wide sex-chromosome 
sequence similarities (Chapter II) and trace the 
evolution of X-Y recombination and differentiation 
combining sibship analyses with fine-scale 
phylogeographic reconstruction of X and Y 
haplotypes, a first of its kind in a species with 
homomorphic sex chromosomes (Chapter III). 

In the second part (Chapter IV-VII), we 
conduct multi-species analyses to understand how 
sex-determination and sex-chromosomes evolved 
in the radiation. We clear up distributions and 
divergences of Western-Palearctic lineages in a 
phylogenetic framework (Chapter IV), screen for 
patterns of X-Y divergence to isolate the sex-
determining gene of the youngest species 
(Chapter V), test for turnovers versus X-Y 
recombination models over ~40My of Hyla sex-
chromosome evolution (Chapter VI), and dissect 
individual variation of X-Y recombination across 
diverged species (Chapter VII). 

FIGURE 4: Life cycle of European 
tree frogs. For population 
genetics analyses, adults are 
caught by night during the 
breeding season (February-
June) and DNA is collected with 
non-invasive buccal swabs. For 
sibship analyses, breeding pairs 
(usually captured in amplexus, 
top picture) are kept in tanks 
until spawning, and young 
tadpoles are sampled (ethanol-
fixed) after hatching, ~1 week 
later. For phenotypic sexing 
(identification of gonads), 
offspring are raised in the lab 
until several weeks after 
metamorphosis. 
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The third part (Chapter VIII-X) is 
dedicated to document the influence of the tree 
frogs’ homomorphic sex chromosomes on 
reproductive isolation. We develop (Chapter VIII) 
and map (Chapter IX) cross-amplifying and 

species diagnostic genetic markers, and contrast 
introgression at sex-linked versus autosomal loci 
across natural hybrid zones (Chapter X). 
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PART 1 
EVOLUTION OF SEX CHROMOSOMES IN

HYLA ARBOREA 



CHAPTER I 
CONSERVATION PHYLOGEOGRAPHY: DOES HISTORICAL DIVERSITY 
CONTRIBUTE TO REGIONAL VULNERABILITY IN EUROPEAN TREE FROGS 
(HYLA ARBOREA)? 
Christophe Dufresnes, Jérôme Wassef, Karim Ghali, Alan Brelsford, Matthias Stöck, Petros 
Lymberakis, Jelka Crnobrnja-Isailovic and Nicolas Perrin 

This chapter is published in Molecular Ecology (2013) 
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Abstract

Documenting and preserving the genetic diversity of populations, which conditions

their long-term survival, have become a major issue in conservation biology. The loss

of diversity often documented in declining populations is usually assumed to result

from human disturbances; however, historical biogeographic events, otherwise known

to strongly impact diversity, are rarely considered in this context. We apply a multilo-

cus phylogeographic study to investigate the late-Quaternary history of a tree frog

(Hyla arborea) with declining populations in the northern and western part of its dis-

tribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diver-

sity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations.

While two of the main refugial lineages remained limited to the Balkans (Adriatic

coast, southern Balkans), a third one expanded to recolonize Northern and Western

Europe, loosing much of its diversity in the process. Our findings show that mobile

and a priori homogeneous taxa may also display substructure within glacial refugia

(‘refugia within refugia’) and emphasize the importance of the Balkans as a major

European biodiversity centre. Moreover, the distribution of diversity roughly coincides

with regional conservation situations, consistent with the idea that historically impov-

erished genetic diversity may interact with anthropogenic disturbances, and increase

the vulnerability of populations. Phylogeographic models seem important to fully

appreciate the risks of local declines and inform conservation strategies.

Keywords: biodiversity, conservation genetics, Hyla arborea, phylogeography, Quaternary refu-

gia, red list status
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Introduction

Documenting and maintaining the genetic diversity of

populations are becoming a central issue in conserva-

tion biology (Beebee 2005; Hughes et al. 2008). A link

between diversity and viability has been established

across many taxonomic groups (e.g. Oostermeijer et al.

1995; Rowe et al. 1999; Luijten et al. 2000; Hansson &

Westerberg 2002; Reed & Frankham 2003), and genetic

erosion is thought to be a major player of extinction

vortices (e.g. Newman & Pilson 1997; Saccheri et al.

1998; Westemeier et al. 1998; Rowe & Beebee 2003;

Frankham 2005). In addition, intraspecific variability
Correspondence: Nicolas Perrin, Fax: +41(0)21 692 41 65;

E-mail: Nicolas.Perrin@unil.ch
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represents an adaptive potential to face sudden envi-

ronmental changes and conditions the capacity of popu-

lations to colonize and survive in suboptimal habitats

(e.g. Meagher 1999; Frankham 2005; Rowe & Beebee

2005). As a consequence, conservation measures are

designed to maximize the amount of protected diver-

sity, especially through the management of evolutionary

significant units (ESU, ‘phylogeographic’ approach,

Moritz 1994) or evolutionary populations (‘demo-

graphic’ approach, Waples & Gaggiotti 2006).

Anthropogenic factors, such as land use or climate

change, are often proposed as the main triggers for the

decrease in biodiversity worldwide (e.g. Vitousek et al.

1997; Epps et al. 2005). Especially, genetic impoverish-

ment is usually assumed to result from population

disconnection in fragmented landscapes (van Dongen

et al. 1998; Buza et al. 2000; Madsen et al. 2000). How-

ever, Quaternary climatic oscillations have already

strongly influenced the distribution of genetic variation

(Hewitt 2000). Formerly, glaciated regions are expected

to feature shallow genetic structure, with poor intraspe-

cific variation, as a result of multiple bottlenecks during

post-glacial expansions from a single or a few source

population(s) (Hewitt 2000). In contrast, refugial areas

that survived several northern glaciations constitute hot-

spots of diversity (Petit et al. 2003), because of both a

higher demographic stability and more pronounced

structure due to allopatric differentiation (‘refugia

within refugia’, G�omez & Lunt 2007). As a consequence,

ancient and genetically rich southern populations are

expected to be in better condition to withstand anthro-

pogenic factors than are recently expanded and geneti-

cally impoverished northern populations (Schmitt 2007),

a prediction that has rarely been tested (Schmitt & He-

witt 2004). Species with wide distributions and regional

information on their conservation status are best suited

to address this fundamental question.

The European tree frog (Hyla arborea) recently

expanded from the Balkan Peninsula, from which it

recolonized most parts of Central and North-Western

Europe (St€ock et al. 2012). Interestingly, its conservation

situation across the range is much contrasted: while the

species is not considered threatened in south-eastern

Europe, it is mostly declining and regionally endan-

gered in northern and western ranges (Fig. S1 and

Table S1, Supporting information). A recent study by

Luquet et al. (2011) evidenced a positive correlation

between heterozygosity and fitness in tree frogs, high-

lighting the importance of genetic diversity for popula-

tion viability. In line, several population genetics

surveys independently documented low levels of vari-

ability in Western Europe, where H. arborea is the most

vulnerable (Edenhamn et al. 2000; Andersen et al. 2004;

Arens et al. 2006; Dubey et al. 2009). Although this was

attributed to population bottlenecks associated with

landscape management, these studies did not recover

signs of disconnection within metapopulations. Alterna-

tively, we propose that historical expansions from

southern refugia could account for this reduced diver-

sity and potentially increase the susceptibility of Wes-

tern European populations to the current anthropogenic

pressures responsible for their severe decline (especially

industrial agriculture, Br€uhl et al. 2013).

From previous phylogenetic and phylogeographic

studies (St€ock et al. 2008b, 2012), H. arborea forms a

genetically poor monophyletic clade with little variation

across its range, suggesting one uniform glacial refu-

gium with a global post-glacial expansion. Nevertheless,

cytochrome b networks identified a few slightly diverged

haplotypes in some of the southern localities (St€ock

et al. 2012; see also St€ock et al. 2008b for nuclear data),

potentially indicative of cryptic structure. In this study,

we use a higher-resolution framework, with faster-

evolving molecular markers and denser sampling, (i) to

test whether the vulnerable condition of Western Euro-

pean H. arborea populations is consistent with a biogeo-

graphic loss of variability and (ii) to search for possible

cryptic structures associated with refugia and re-expan-

sions during and after the last glaciations, asking in

particular whether recently diverged populations are

relevant for defining conservation units.

Methods

DNA extraction

A total of 779 specimens from 65 localities (considered

as separated populations) covering the entire distribu-

tion range of H. arborea were included in this study

(Table S2 and S3, Supporting information). Genomic

DNA was extracted from ethanol-preserved tissues

(tadpole tail-tips, adult vouchers) and noninvasive

buccal swabs (live adults; Broquet et al. 2007) with the

Qiagen DNeasy Tissue kit or the Qiagen BioSprint

robotic workstation.

Sequence data

Two mitochondrial and one nuclear marker were

sequenced in representative subsets of samples.

Detailed protocols and primer information are provided

in Data S1 and Table S4 (Supporting information).

Following St€ock et al. (2008b, 2012), we first amplified

the mitochondrial gene cytochrome b (957 bp) in 211 new

samples, complemented by 27 cyt b sequences from

St€ock et al. (2012). Second, we developed new primers

(adapted from Goebel et al. 1999) to sequence 590 bp

from the 5′ hypervariable region of the mitochondrial

© 2013 John Wiley & Sons Ltd
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D-loop (Table S4, Supporting information) in these 238

individuals. In addition, we sequenced the D-loop in

two H. orientalis samples for which cyt b was already

available. Mitochondrial sequences could then be con-

catenated (238 H. arborea samples representing 59 locali-

ties, + two individuals of H. orientalis). Third, based on

the alignment of sequences available on GENBANK, new

primers were designed to amplify a portion of the

nuclear gene rag-1 (737 bp; Table S4, Supporting infor-

mation) in 100 individuals. This was complemented by

eight published sequences (St€ock et al. 2008b, 2012), for

a total of 108 H. arborea (55 localities), and we also

included rag-1 sequences from closely related hylid spe-

cies. All sequences were visualized on an ABI-3730

sequencer (APPLIEDBIOSYSTEMS, INC.) and aligned using

SEAVIEW 4.2 (Gouy et al. 2010). For rag-1, haplotypes of

heterozygous individuals were reconstructed with the

phase algorithm implemented in DNASP 5 (Librado &

Rozas 2009), using a recombination model with no

assumption about rate variation and an initial estimate

of 0.0004. The MCMC chain was run for 1000 iterations

with a burnin of 100 and a thinning interval of 1, and

output probability thresholds were set to 0.9.

Microsatellite data

Seventeen previously published autosomal microsatel-

lites (Arens et al. 2000; Berset-Br€andli et al. 2008a,b)

were used in this study. We also included three new

autosomal microsatellite loci recently developed on

the basis of transcriptomic sequences from H. arborea

(Brelsford et al. 2013) and took advantage of this tran-

scriptome to develop ten additional polymorphic

microsatellites, following the exact same methodology.

Altogether, 750 individuals from 53 populations were

genotyped for these 30 markers (see Data S1 and

Table S4, Supporting information for information on

protocols and primers). In most cases, PCRs were per-

formed in multiplex. Amplicons were subsequently

analysed on an ABI-3100 sequencer and allele sizes

scored using the size standards ROX-350 or ROX-500

(GENEMAPPER 4.0; APPLIEDBIOSYSTEMS, INC.). We checked

for genotyping errors due to stuttering, allelic dropout

and null alleles with MICRO-CHECKER 2.2.3 (van Oo-

sterhout et al. 2004) and performed corrections when

necessary.

Phylogenetic analyses, molecular dating and Bayesian
phylogeographic reconstruction

Maximum-likelihood phylogenetic reconstructions

(PHYML 3.0, Guindon & Gascuel 2003) were performed

on a concatenated data set of the two mitochondrial

markers (1547 bp) and separately on the rag-1 data set

(737 bp). In both cases, we used a HKY+G+I model

(JMODELTEST 0.1.1, Posada 2008) and tested the robust-

ness of topologies by 1000 bootstrap replicates. We esti-

mated the divergence time between major haplogroups

from our cyt b data set in BEAST 1.6.2 (Drummond &

Rambaut 2007), using a strict molecular clock (ucld.st-

dev parameter < 1 with a frequency histogram abutting

0 when testing with a relaxed clock, BEAST manual

version July 2007) and a coalescent prior (appropriate

for intraspecific radiations). To decide which one to use,

we performed short runs (1 chain of 5 million itera-

tions) with the different coalescent priors available in

BEAST and choose the one with the highest likelihood

(coalescent: exponential growth). We used a HKY+G+I
model of sequence evolution (JMODELTEST), and the tree

was calibrated to the splits of H. meridionalis, H. sav-

ignyi/H. felix arabica, H. arborea and H. orientalis/H. mol-

leri (respectively, approximately 10, 6.2, 6.1, and

3.7 Mya, based on previous work, Smith et al. 2005;

St€ock et al. 2012; using sequences available on GENBANK,

see Table S3, Supporting information), with normally

distributed priors. We ran three independent chains of

30 million iterations each and used TRACER 1.5 (http://

tree.bio.ed.ac.uk/software/tracer/) to check for conver-

gence and combine the results.

We reconstructed the phylogeographic history of

H. arborea by a Bayesian phylogeographic analysis of

our mtDNA data set using spatial continuous diffusion

models (Lemey et al. 2010) in BEAST 1.7.5 (Drummond

et al. 2012), following the methodology recommended

by Suchard & Lemey (2013). Four different models

were ran (homogeneous Brownian diffusion across

branches, branch-specific diffusion rates (relaxed-

random walks, RRWs): Gamma RRW, Cauchy RRW

and Lognormal RRW) during 100 million iterations

(sampling every 10 000), with a strict molecular clock

(see above) and the Bayesian skyline plot as a flexible

demographic prior. To perform model selection, we

computed marginal likelihoods with 100 power poste-

riors along the path between prior and posterior (each

of 100 000 iterations following 10 000 of burn-in, sam-

pling every 1000) and estimated log marginal likeli-

hoods using path and stepping stone sampling (shown

to outperform other estimators, Baele et al. 2012, 2013).

For the best-fitting diffusion model, the maximum

clade credibility (MCC) tree was computed and anno-

tated using the BEAST module TREEANNOTATOR 1.7.5.

We then used SPREAD 1.0.4 (available: http://www.

phylogeography.org/SPREAD.html) to project the

MCC phylogeny in a spatial framework and summa-

rized the full posterior distribution of trees to calculate

the 80% highest posterior density (HPD) of node loca-

tions. Final results were visualized in GOOGLE EARTH

(http://earth.google.com/).

© 2013 John Wiley & Sons Ltd
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Analyses of genetic structure

For sequence data (concatenated mtDNA, rag-1), we

built statistical parsimony networks with TCS 1.21

(Clement et al. 2000) which connects haplotypes under

a parsimony limit (set to 95%). For both data sets, the

main haplogroups were defined with the individual-

based, spatially explicit BAPS model (version 6.0,

Corander et al. 2008) for clustering DNA sequence data

(Cheng et al. 2013). This model combines sample loca-

tions with likelihood of the genetic data and is particu-

larly efficient with large data sets (Cheng et al. 2013).

We performed analyses using default parameters and

following the software manual (version 21.12.2012).

Several runs were repeated to ensure convergence and

consistency of the results.

For microsatellites, we conducted individual-based

assignment with the Bayesian algorithm of STRUCTURE

2.3.3 (Pritchard et al. 2000), using an admixture ancestry

model with sampling locations as prior, and correlated

allele frequencies between populations (as recom-

mended for subtle population structure). Ten replicates

(each consisting of 105 iterations following a burn-in of

104) were performed for every number of clusters (K)

between 1 and 11, from which we computed the corre-

sponding DK ad hoc statistics (Evanno et al. 2005) with

STRUCTURE HARVESTER 0.6.92 (Earl & VonHoldt 2012,

http://taylor0.biology.ucla.edu/struct_harvest). Repli-

cates were combined with CLUMPP (full search algo-

rithm, Jakobsson & Rosenberg 2007) and graphs of

assignment probabilities built using DISTRUCT 1.1 (Rosen-

berg 2004). We conducted hierarchical analyses, by

rerunning STRUCTURE within each of the major clusters,

including populations assigned with a probability of at

least 80%. In addition, population differentiation was

inferred by a principal component analysis (PCA) on

allelic frequencies with PCAGEN 1.2 (http://www2.

unil.ch/popgen/softwares/pcagen.htm), which evalu-

ates the significance of axes by permutations. To esti-

mate the level of isolation by distance, we also

performed Mantel tests of genetic (FST) versus geo-

graphic distances (ARLEQUIN 3.5, Excoffier et al. 2005)

across populations (where n ≥ 6 individuals) assigned

to the main groups defined by STRUCTURE (with a proba-

bility of at least 80%).

Analyses of genetic diversity

For mtDNA and rag-1, we computed (ARLEQUIN) the

haplotype (Hd) and nucleotide diversity (p) within pop-

ulations where n ≥ 4 sequences. For microsatellites

where no null allele was detected, we assessed allelic

richness and heterozygosity for populations where

n ≥ 6 genotyped samples with FSTAT, which performs

a rarefaction procedure to a common sample per locus

(Goudet 1995).

Demographic analyses

The demographic fluctuations of the main identified

haplogroups were inferred from our sequence data sets

(cyt b, D-loop, rag-1) by three separate approaches. First,

we performed Bayesian coalescent-based analyses to

evaluate the historical demographic fluctuations within

each of the main haplogroups using the Extended

Bayesian Skyline Plot (EBSP, Heled & Drummond 2008)

implemented in BEAST 1.6.2. The EBSP can combine

several sequence sets (in our case: cyt b, D-loop, rag-1)

and fits different demographic scenarios by allowing

changes in population size overtime. For all three mark-

ers, we used HKY+G+I models (JMODELTEST). The clock

rate (l) of the D-loop and rag-1 was estimated from cyt

b, where l was fixed to the value previously obtained

from the molecular calibration. Other parameters were

either left as default or optimized for the EBSP (follow-

ing Heled 2010), and chains were run for 60 million

iterations. We used TRACER to assess burn-in and effec-

tive sample sizes (ESS) of parameters.

Second, we performed analyses of mismatch distribu-

tions, by comparing observed pairwise number of

differences to distributions simulated under models of

demographic (Schneider & Excoffier 1999) and range

expansions (Excoffier 2004), as implemented in ARLE-

QUIN. These models estimate the parameters of popula-

tion expansion using a generalized least-square

approach and compute their confidence intervals by

bootstrapping (10 000 replicates in our case). Tests of

goodness-of-fit (sum of squared deviation and

Harpending’s raggedness index) were computed to

measure departures between observed and simulated

distributions (ARLEQUIN). For each mitochondrial haplo-

group, we estimated the time since expansion from the

parameter s (s = 2lt, where l is the mutation rate, and

t the time since expansion) and given the clock rates

previously estimated by BEAST.

Finally, for mtDNA (concatenated cyt b/D-loop) and

rag-1, we computed (DNASP 5) the following tests of

selective neutrality within each of the main haplo-

groups: Fu’s Fs, Tajima’s D and Ramos-Onsins and

Rozas’s R2, which has more statistical power for small

sample sizes (Ramos-Onsins & Rozas 2002). Their sig-

nificances were tested by coalescent analyses (10 000

replicates).

Intergroups gene flow

To measure the level of gene flow between the main

clusters, we calculated the demographic parameters h
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(h = xNel, where Ne is the effective size, l the mutation

rate and x a multiplier depending on the ploidy and

the inheritance of the data: x = 1, 2 or 4 for mtDNA,

haploid or diploid data, respectively) and M (M = m/l,
with m the immigration rate) from sequences (combin-

ing cyt b, D-loop, rag-1), and microsatellite data sets.

From the product of h and M, we can calculate the

number of immigrant genes per generation (xNem)

from one cluster to another. Population boundaries can

be defined when xNem < 1 but values up to 25 can still

reflect departure from panmixia (Waples & Gaggiotti

2006). We delimited our candidate groups according to

the main distribution of haplogroups and microsatellite

clusters, and estimated h and M with MIGRATE 3.5.1 (full

migration rates matrix, Beerli & Felsenstein 2001) using

the Bayesian inference search strategy (Beerli 2006). We

first performed preliminary runs to optimize the prior

distributions and burn-in periods. Relative mutation

rates among loci were directly inferred from the data

(through measures of Watterson’s h; microsatellites) or

calculated from the BEAST estimates (sequences). For

microsatellites, we used the Brownian motion approxi-

mation to the ladder model, which gives very similar

results to the stepwise-mutation model but with much

faster parameter estimation (MIGRATE manual, version

16.05.2012). In the final analyses, we ran one MCMC

chain per locus (50 000 recorded genealogies among

5 000 000 visited), with burn-ins of 500 000 (combined

sequence data set) or 20 000 steps (microsatellite data

set). We monitored the effective sample sizes (ESS) of

each parameter (including the likelihood) to make sure

that the chains ran long enough (ESS > 1000, MIGRATE

manual). Each data set was re-analysed several times to

ensure the consistency of the results.

Results

Phylogenetic analyses, molecular dating and Bayesian
phylogeographic reconstruction

Phylogenetic analyses of mtDNA (112 haplotypes,

1547 bp) revealed a supported clade restricted to the

north-eastern Adriatic coast (H1–H7), and a paraphylet-

ic group distributed across the rest of the range

(Fig. S2, Supporting information). The rag-1 phylogeny

(27 haplotypes) displayed a large polytomy involving

our H. arborea sequences and several close relatives

(H. molleri, H. intermedia and H. orientalis) with incom-

plete lineage sorting (Fig. S3, Supporting information).

From cyt b (estimated clock rate = 0.036 substitution/

My), we dated the divergence of the mitochondrial

Adriatic isolate to be approximately 180 kya (95%

CI = 70–300; approximately two ice-ages). The time to

the most recent common ancestor of the main clade

roughly corresponds to the end of the last interglacial

(90 kya, 95% CI = 40–160). All chains yielded nearly

identical estimates, suggesting convergence. Because of

its unresolved phylogeny, we did not date divergence

times between rag-1 haplogroups.

The pattern and timing of dispersal of H. arborea

mitochondrial haplogroups were best inferred from

the Lognormal RRW diffusion model (Table S5,

Supporting information). The analysis estimated the

location of ancestor sequences on the Adriatic coast,

from which the southern Balkans were early colonized

and then diversified, particularly south-east and

north-west of the Pindus mountain range (Data S2).

From the latter, Central and Western Europe were

recently invaded by a first wave of colonization and

frogs later expanded to northern areas. At the same

time, the Hellenic peninsula and then Crete were fully

colonized from central Greece. The analysis also

depicted recent southward migrations, from Central

Europe to the Balkans.

Genetic structure and diversity

The spatial clustering method of BAPS defined three

major groups from our mtDNA data set (optimal parti-

tion, log(likelihood) = �2622.5; Fig. 1): the Adriatic

isolate (H1-7, haplogroup 1), sequences from southern

and eastern Greece (H79-H112, haplogroup 2), and a

widespread haplogroup distributed throughout the

range (H8-78, haplogroup 3), with some geographic

association of haplotypes (H31-45: only North and Wes-

tern Europe; H54-59: only north-eastern Adriatic coast;

H60-H78: only southern Balkans). Haplotype diversity

(Hd) was greatly variable throughout the range (Table

S2, Supporting information), but nucleotide diversity

(p) shows some geographic differences, being higher in

the southern and western Balkans (Fig. 2b). Accord-

ingly, the architecture of our mtDNA network (Fig. 1)

was more complex for haplotypes occurring in the

southern Balkans and on Crete (H60-H78, H79-H93),

contrasting with the starlike shapes of haplotypes sam-

pled further north (e.g. H94-H112, H54-H59, H8-H30,

H31-H46).

Clustering analyses (BAPS) of the nuclear rag-1 (opti-

mal partition: 4 groups, log(likelihood) = �731.1; Fig. 3)
also distinguished western Balkans (H1-3, haplogroup 1)

from southern Balkans (H4-H10, H13-H17, haplogroup 2)

and the rest of the range (H18-27, haplogroup 3). A

fourth cluster includes two haplotypes (H11-12, haplo-

group 4) occurring in the most eastern populations from

Romania (loc. 41), Serbia (loc. 21–22) and Greece (loc. 11),

at the contact zone with H. orientalis and clustering with

alleles from this latter species. Because this haplogroup

probably originated from introgression events (no similar
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cluster was found from the other markers), and also

based on a very limited sample size, it was not included

in the demographic analyses. The distribution of the rag-

1 diversity is similar as for mtDNA, where the most

southern haplogroup (haplogroup 2) is also the richest

(Table S2, Supporting information, Fig. 2c) and the most

complex (Fig. 3). In both BAPS analyses, permuting

sequences between groups resulted in substantial

decreases in log(likelihood) (on average �42.6 for

mtDNA, ranging from �9.4 to �79.1; on average �21.4
for rag-1, ranging from �1.4 to �42.6), suggesting robust

assignments.

Individual-based clustering of microsatellite geno-

types with STRUCTURE suggested two major groups
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(K = 2, highest DK = 704.4; Fig. S4, Supporting

information) contrasting southern (loc. 1–7) and cen-

tral/north-western (loc. 34–65) populations (Fig. 4).

Populations parapatric to these two groups featured

intermediate probabilities of assignment (loc. 8–33). We

could detect fine substructure within each cluster

(Fig. 4). In southern Greece (K = 2, highest DK = 601.2;

Fig. S4, Supporting information), STRUCTURE distin-

guished Crete (loc.1) from Thessaly and Evia Island

(loc. 4–7) with admixed populations in the Peloponnese

Peninsula (loc. 2–3). In the rest of the range (K = 2,

highest DK = 755.1; Fig. S4, Supporting information),

populations from France and western Switzerland (loc.

56–65) were differentiated from Central Europe (loc.

37–45). The populational PCA (Fig. S5, Supporting

information) also contrasted Southern from Central

Europe (N-S gradient, first axis) and depicted differen-

tiation between eastern and western populations from

the continental part of the range (E-W gradient, second

axis). Both axes were significant. As null alleles were

detected for several markers, especially in southern

populations, we reran our analyses by (i) discarding

the corresponding loci and (ii) considering null alleles

as missing data. In both cases, results from STRUCTURE

and the PCA remained unchanged. Finally, we found

striking differences in microsatellite variability (allelic

richness and heterozygosity) between the Balkans, Cen-

tral and North-Western Europe, which are strongly

decreasing with distances from southern areas (Table

S2, Supporting information, Fig. 2a). Southern insular

populations (Crete: loc.1, Evia: loc. 5) were also geneti-

cally poorer than neighbouring mainland areas (Table

S2, Supporting information, Fig. 2a).

The correlation between pairwise FST values and geo-

graphic distances was significant for the central/north-

western microsatellite cluster (loc. 34–65; correlation

coefficient = 0.74; regression coefficient = 0.000158), but

not for the southern group (loc. 1–7).

Demographic analyses

The extended Bayesian skyline plot reconstructed a

recent increase in population size for haplogroups 2

and 3 since the last glacial maximum (Fig. 5). Interest-

ingly, the expansion was much stronger (100-fold

increase) for haplogroup 3 than haplogroup 2 (10-fold

increase) and indicated that the latter maintained a

higher effective size during the last glaciation. In con-

trast, the 95% posterior distribution of the number of

changes in population size (demographic.population-

SizeChanges) does include 0 for haplogroup 1 (which is

not the case for haplogroups 2 and 3). The unimodal

distributions of pairwise nucleotide differences within

the three main mtDNA and rag-1 haplogroups suggest

past population expansions (Fig. 5). Based on the sum

of squared differences and raggedness index, the fits to

the spatial expansion model could never be rejected for

mtDNA
Nucleotide diversity

< 0.0010

0.0010 – 0.0029

> 0.0029

Microsatellites 
Allelic richness

< 2.7

2.7 – 3.4

> 3.4

rag-1
Nucleotide diversity

< 0.0010

0.0010 – 0.0034

> 0.0034

(a)

(b)

(c)

Fig. 2 Distribution of microsatellite allelic richness (scaled to 5

individuals; a) and mitochondrial (concatenated cyt b + D-loop;

b) and rag-1 nucleotide diversity (c). Classes were built from

natural breaks (Jenks) in ARCGIS 9.3 (ESRI). Details are avail-

able in Table S2 (Supporting information).
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any haplogroups of the two markers (Table 1). The mis-

match distribution simulated under the model of demo-

graphic expansion was significantly different from

observed distributions only for the rag-1 southern

haplogroup 2 (Table 1). Calculated from the parameter

s, the time since expansion pointed to the late-Pleisto-

cene for all mitochondrial haplogroups (Table 1).

Accordingly, tests for departure from neutrality were

significant for the main mitochondrial haplogroups 2

and 3 but not for haplogroup 1 (Table 1). For rag-1,

departure from neutral values could only be ascertained

for haplogroup 3 (Table 1).

Intergroups gene flow

Because the distributions of nuclear and mitochondrial

haplogroups/clusters defined by BAPS and STRUCTURE

were congruent, but not strictly identical across markers

(with many admixed localities), it was difficult to define

precise spatial boundaries between the three main

genetic groups. Therefore, we delimited candidate

populations according to the geographic regions where

these haplogroups principally occurred: southern

Balkans (loc. 1–31), northern Adriatic (loc. 32–37) and

Central/North-Western Europe (loc. 38–65). Multiple

runs of MIGRATE performed on this framework led to

similar estimates, and all parameters had unimodal

posterior distributions, suggesting that single optima

were reached. Because the posterior distribution abutted

0 for most parameters, we preferred the modes to the

medians for calculating the demographic estimator

xNem (= h 9 M). Migration estimates (xNem) ranged

from 0.6 to 8.5 for sequence data and from 6.2 to 19.2

for microsatellites (Fig. S6, Supporting information),

which is below the cut-off values for departures from

panmixia (xNem < 25). The estimated gene flows were

mostly asymmetric, with the expanding groups (south-

ern Balkans, Central/North-Western Europe) providing

migrants to the Adriatic populations (Fig. S6, Support-

ing information). Table S6 (Supporting information) dis-

plays the parameters estimated by MIGRATE and their

95% posterior distribution.
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Discussion

Our study provides a fine-scale reconstruction of the

phylogeography of the widespread European tree frog

H. arborea. Our dense sampling and multilocus

approach allowed us to uncover hidden diversity, and

were especially suitable to test assumptions regarding

the distribution of genetic variation and its implications

for conservation. First, cryptic structure could be docu-

mented across the Balkan Peninsula, allowing us to

check whether the recently diverged groups match the

commonly used criteria for ESUs and evolutionary

populations. Second, we could accurately assess the

geographic patterns of diversity and map them to the

regional levels of vulnerability.

Refugia within refugia: insights into the Balkans
biogeography

One aim of our study was to test whether southern

areas exhibit cryptic structuring, as previously

suspected (St€ock et al. 2008b, 2012) and expected under

the ‘refugia within refugia’ paradigm (G�omez & Lunt

2007). Indeed, although there were a few discrepancies

on the precise boundaries, our mitochondrial and

nuclear data sets were largely congruent in support of a

late-Pleistocene diversification. This involved several

major genetic groups in southern areas (western Adriat-

ic coast; southern Balkans), of which one recently

expanded across the rest of the range, from the Balkans

to Western Europe. The only exception came from the

Adriatic group, which does not significantly stand out

from our microsatellite data set, maybe because of

recent backcrossing by southern and Central European

immigrants (see below). In addition, it is unclear

whether the fourth rag-1 haplogroup found in the most

eastern populations stem from an ancestral polymor-

phism or (more probably) from introgressive hybridiza-

tion with the proximate H. orientalis (St€ock et al. 2012),

which displays closely related haplotypes (Fig. 3). We

further detected subtle structure from our microsatellite

data set (consistent with spatial association of mtDNA
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haplotypes), pointing out recent contact between Crete

and the Peloponnese (probably when sea levels

dropped in the Ionian Sea; Perissoratis & Conispoliatis

2003), and population differentiation across recently

colonized areas (Central, North-Western Europe) which

might stem from isolation by distance (as reported),

gene surfing (Excoffier et al. 2009) or post-glacial climate

and range changes (e.g. the Younger Dryas, 11 kya; see

Taberlet & Cheddadi 2002 and references therein). The

latter could particularly explain why the most northern

areas were colonized by a last, most recent wave of

invasion, as depicted by the mtDNA phylogeographic

inference.

Our findings are thus in line with the view that south-

ern refugial areas host ‘refugia within refugia’ (G�omez

& Lunt 2007), generating cryptic structure and maintaining
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high genetic diversity. Increasing empirical evidence in

support of this pattern is coming from taxa across a

diversity of regions (Iberia: e.g. Mart�ınez-Solano et al.

2006; Rowe et al. 2006; Gonc�alves et al. 2009; Italy: e.g.

Canestrelli et al. 2012; Nearctic: e.g. Nielson et al. 2001).

So far, the Balkans have received less attention (Hewitt

2011), but signatures of multiple refugia have been

found for a few species, both in Mediterranean (e.g. Ur-

senbacher et al. 2008; Bu�zan et al. 2010) and nonMediter-

ranean parts of the Peninsula (Provan & Bennett 2008;

e.g. Kry�stufek et al. 2009; Fijarczyk et al. 2011). In partic-

ular, the northern Adriatic coast seems to have acted as

a remote sanctuary for several Balkanic species (e.g.

green toads, St€ock et al. 2008a; nose-horned viper, Ur-

senbacher et al. 2008), including tree frogs. There and in

other parts (i.e. southern Balkans), population mainte-

nance might have been tightly linked to the glacial dis-

tribution of deciduous forests (supposedly restricted to

the southern and eastern Balkans, the Carpathian belt

and south of the Alpine Glaciers, Adams & Faure 1997),

and post-glacial expansions were probably associated

with the recolonization of tree species (Taberlet &

Cheddadi 2002; St€ock et al. 2012). Our results then sup-

port the view that the Balkan Peninsula is an important

centre of European biodiversity, especially for the herpe-

tofauna (Crnobrnja-Isailovi�c 2007).

Multiple subrefugia are typical for low-vagility organ-

isms such as newts (Sotiropoulos et al. 2007) or snakes

(Ursenbacher et al. 2008) and are usually easier to detect

given that populations have experienced long periods

of allopatry. In contrast, tree frogs have a relatively

high dispersal capacity for an amphibian (up to 4 km /

year, Vos et al. 2000) so that ancestral populations may

have regularly merged during interglacials, engulfing

traces of multiple refugia (e.g. St€ock et al. 2012). The

increasing appeal to multilocus genomic data will give

exciting insights into the glacial and post-glacial

phylogeography of genetically uniform taxa that might

similarly hide cryptic population differentiations

(Emerson et al. 2010).

Defining recently diverged management units

An important question raised by this cryptic diversity is

whether conservation units can be defined from such

recently diverged lineages, that is, do they match the

criteria for ESUs or evolutionary populations’ para-

digms? Evolutionarily significant units can be defined

provided that genetic distinctiveness of populations

matches other features (e.g. geographic distribution,

adaptive phenotypic variation) and is supported by

mitochondrial monophyly and reciprocal significant

nuclear divergence (Moritz 1994). Here, we did find

some concordance between multiple molecularT
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polymorphisms and their geographic distribution. How-

ever, only the Adriatic mitochondrial clade was signifi-

cantly supported, and populations carrying this

mitochondrial lineage did not form a distinct cluster

based on microsatellites. Our groups also exhibited con-

siderable mixing where they come into contact, consis-

tent with ongoing gene flow. Therefore, these clusters

hardly fulfil the requirements of ESUs. On the other

hand, despite a rough choice of population boundaries

that should have led to overestimate the amount of

gene flow (particularly since haplogroup 2 and 3 seem

to have originated from proximate areas), patterns still

reflect a departure from panmixia: even though most

migration estimates are above the stringent cut-off

value of xNem < 1, they indicate isolation with migra-

tion (xNem < 25) compatible with the evolutionary pop-

ulation concept proposed by Waples & Gaggiotti (2006).

Thus, although our clusters might be too young and

insufficiently resolved to be considered ESUs, they fea-

ture enough genetic isolation to deserve special atten-

tion for wildlife management. The demographic

approach thus seems more powerful to assess the evo-

lutionary significance and conservation values of young

subspecific radiations. Nevertheless, management

design based only on the levels of gene flow may still

miss significant divergences. In our case, the northern

Adriatic coast can be viewed as a hotspot of genetic

diversity, but experienced the highest levels of migra-

tion. New estimators combining both phylogeographic

and demographic information (as well as adaptive vari-

ation, when applicable) might allow considering all

valuable entities. In addition, the future development of

specific criteria for discriminating different levels of

population cohesion would be useful to set priorities

for the definition of conservation units (Reilly et al.

2012).

Biogeographic loss of diversity and regional
vulnerability

One main goal of our study was to assess whether the

vulnerability of Western European populations was

consistent with a biogeographic loss of genetic diver-

sity. Higher amounts of microsatellite and sequence

polymorphisms were indeed found in Southern Europe,

which, from our analyses, seems largely explained by

the maintenance of distinct ancestral demes and demo-

graphic stability of these populations. We could also

document post-glacial expansions across most parts of

the range (see also St€ock et al. 2012), leading to a severe

loss of variability resulting from colonization-associated

drift (Excoffier et al. 2009). Thus, the low levels of

genetic diversity in Western and Northern Europe, also

reported from previous regional studies (Edenhamn

et al. 2000; Andersen et al. 2004; Arens et al. 2006;

Dubey et al. 2009), might stem from historic/phylogeo-

graphic reasons more than from human disturbances.

From our results, this geographic trend in genetic

diversity approximately corresponds to regional conser-

vation status: south-eastern H. arborea populations are

not considered threatened, which clearly contrasts with

the precarious situation of the species in the north and

west of Europe (Fig. S1, Supporting information).

Although the level of threat must largely depend on the

intensity of disturbances (especially land use and pollu-

tion), it is tempting to suggest that biogeographic

history predisposes population vulnerability to current

environmental pressures, even though this cannot be

formally tested with the data in hand. Such natural

genetic impoverishment might impact the sensitivity of

populations to identified threats, like habitat destruction

and pesticide exposure (an alarming cause of decline,

Br€uhl et al. 2013), and accelerate their deterioration.

Furthermore, Northern and Western European amphib-

ian communities are especially challenged by the chy-

trid fungus, which does not yet affect Balkanic regions

(RACE 2013). Whether the amount of genetic diversity

conditions the susceptibility to infection is unclear (May

et al. 2011), but it is known to improve fitness in our

study species (Luquet et al. 2011). Experimental work

aiming to understand the interaction between variabil-

ity, fitness and known threats (e.g. pollutants) would be

particularly relevant to test these hypotheses (e.g. Pear-

man & Garner 2005).

A few studies have empirically explored the link

between genetic variation and population trends in

plants (e.g. Br€utting et al. 2012) and animals (e.g. Kvist

et al. 2011). However, to our knowledge, only Schmitt &

Hewitt (2004) had previously investigated this relation-

ship in a biogeographic context. These authors showed

that European butterflies performed better in refugial

areas (eastern and southern Europe) than in recently

deglaciated regions and discussed the lack of adaptabil-

ity of the genetically poor northern and western popu-

lations. Many widespread species thrive in the central

part of their distribution but are regionally endangered

at the periphery (Hoffmann & Blows 1994). This range

limit effect might have biogeographic origins in post-

glacial areas, at least in species where differences in

genetic variation could be detected across the range

(Channell 2004).

Future studies should not only assess the role of

landscape changes, but also account for the basal diver-

sity historically present in a region. Especially, large-

scale phylogeographic surveys of widespread taxa,

where knowledge of regional population dynamics is

available, would be most relevant to address this

issue. In our case, we benefited from the relatively

© 2013 John Wiley & Sons Ltd
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well-covered conservation situation of H. arborea

(although assessment data were too heteroclite for accu-

rate analyses), most likely because it can be considered

as an umbrella species, and populations are easy to

detect and monitor by call census (Pellet & Schmidt

2005). Amphibians are especially good candidates to

test this relationship, because they seem particularly

susceptible to diversity loss (Allentoft & O’Brien 2010).

Phylogeographic analyses such as ours thus lay the

ground work for conservation planning and identifica-

tion of the potentially most sensitive regions. Even

without fine-scale genetic data, general ideas of the

main historical events (e.g. range expansion from a

putative refugia) could be used to draw assumptions

regarding their impact on diversity. In complement to

the commonly used criteria (observed and forecast spe-

cies abundance, population trends, potential threats,

e.g. IUCN 2001), we propose that the geographic distri-

bution (i.e. refugial vs post-glacial) should be consid-

ered when assessing regional risks and red lists.
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Abstract

In contrast with mammals and birds, most poikilothermic vertebrates feature structurally undifferentiated sex
chromosomes, which may result either from frequent turnovers, or from occasional events of XY recombination. The
latter mechanism was recently suggested to be responsible for sex-chromosome homomorphy in European tree frogs (Hyla
arborea). However, no single case of male recombination has been identified in large-scale laboratory crosses, and
populations from NW Europe consistently display sex-specific allelic frequencies with male-diagnostic alleles, suggesting the
absence of recombination in their recent history. To address this apparent paradox, we extended the phylogeographic
scope of investigations, by analyzing the sequences of three sex-linked markers throughout the whole species distribution.
Refugial populations (southern Balkans and Adriatic coast) show a mix of X and Y alleles in haplotypic networks, and no
more within-individual pairwise nucleotide differences in males than in females, testifying to recurrent XY recombination. In
contrast, populations of NW Europe, which originated from a recent postglacial expansion, show a clear pattern of XY
differentiation; the X and Y gametologs of the sex-linked gene Med15 present different alleles, likely fixed by drift on the
front wave of expansions, and kept differentiated since. Our results support the view that sex-chromosome homomorphy in
H. arborea is maintained by occasional or historical events of recombination; whether the frequency of these events indeed
differs between populations remains to be clarified.
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Introduction

Sex chromosomes have evolved along dramatically divergent

pathways among vertebrates, depending on lineages. Most

mammals and birds present strongly differentiated sex chromo-

somes, with highly degenerated Y and W chromosomes in males

and females, respectively; in sharp contrast, many fishes, reptiles

and amphibians present morphologically undistinguishable sex

chromosomes. Two non-exclusive causes have been invoked to

account for this homomorphy. On one hand, occasional turnovers

may replace established sex chromosomes before they had time to

decay (e.g. [1,2]). On the other hand, occasional XY recombina-

tion may rejuvenate senescing Y chromosomes by purging the load

of deleterious mutations that accumulate in non-recombining

genomic regions [3]; very rare events of X-Y recombination seem

sufficient to prevent Y degeneration [4].

The XY-recombination model recently received support from

studies of European tree frogs. Several species of the Hyla arborea

radiation inherited the same pair of sex chromosomes from a

common ancestor (.5 Mya); despite arrest of recombination in

males, the X and Y allelic sequences of sex-linked genes cluster by

species, not by gametologs [5,6], pointing to occasional events of

recombination. Guerrero et al. [7] reached the same conclusion by

analyzing with Approximate Bayesian Computations the patterns

of XY divergence at sex-linked microsatellite loci. Surprisingly,

however, no single event of male recombination could be detected

by sibship analyses, despite thousands of offspring obtained in

controlled crosses (e.g. [5,6,8]). Furthermore, West-European

populations of the nominal species (Hyla arborea) consistently

display sex-specific allelic frequencies at series of sex-linked

microsatellite markers, often with male-diagnostic alleles (e.g.

[5,8]), pointing to the absence of XY recombination in their recent

history.

To address this apparent paradox, we decided to extend

investigations on the patterns of XY differentiation to a broader

phylogeographic framework. West-European populations of H.

arborea are of recent origin [9,10]. The patterns of mitochondrial

and nuclear diversity testify to a post-glacial expansion from

southeastern Europe, where three main haplogroups (with ,200

ky divergence) survived in distinct refugia across the Balkan

Peninsula. While two of these mitochondrial lineages remained

limited to the Balkans (Adriatic coast and southern Balkans;
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orange area in Fig. 1a), a third one expanded after the Last Glacial

Maximum (,15 kya) to recolonize first the Pannonian Basin

(violet area), then from there Western and Northern Europe (green

area), losing much of its diversity during this process [10]. In the

present study, we use intraspecific sequence polymorphism of

three sex-linked markers to seek evidence for possible events of XY

recombination during this species’ late Pleistocene history.

Methods

DNA Sampling and Study Animals
DNA was sampled in 91 adult H. arborea (37 females, 54 males)

using non-invasive buccal swabs in 87 live individuals or ethanol-

preserved tissues in four collection specimens, and extracted

manually (DNeasy kit, Qiagen) or with the Qiagen Biosprint

robotic workstation. Samples were chosen to represent populations

from the entire distribution range, from southern Greece to

Western Europe (Fig. 1a, Table S1, Supporting Information). Live

individuals were captured during the breeding period, and could

be sexed unambiguously through secondary sexual traits; males

being characterized by dark vocal sacs, nuptial excrescences, and

mating calls. The four collection specimens were also sexed

unambiguously by anatomical observation of either ovaries or

testes. Our study was approved by the relevant Institutional

Animal Care and Use Committee (IACUC), namely the Service

de la Consommation et des Affaires Vétérinaires du Canton de

Vaud (Epalinges, Switzerland); no live animal was sacrificed for

the study (sampling only using non-invasive buccal swabs); other

samples came from scientific collections specified in Table S1,

Supporting Information.

PCR Amplification, Cloning and Sequencing
We amplified three sex-linked markers: parts of the transcrip-

tion co-factorMed15 (including two exons and two introns; n = 55),

the non-coding Ha-A103 (n = 33), and one intron from the gene

Smarcb1 (n = 16), as described [5,11]. Except for four Smarcb1

samples, which we sequenced directly, all PCR products were

cloned using the Promega pGEM-T Easy or Invitrogen TOPO-

TA cloning kits. In most cases, at least eight clones per sample

could be sequenced on an ABI3730 (Applied Biosystems), and

consensuses were produced with Seaview [12]. When fewer than

eight clones were obtained (24 cases) individuals were considered

homozygous if at least six clones were identical. Two individuals

only yielded three identical clones; we labeled the other allele as

missing data and discarded these two individuals from the pairwise

distance analyses. For directly sequenced Smarcb1, haplotypes

Figure 1. Sampling localities (a) and haplotype networks of Smarcb1 (b),Med15 (c) and Ha-A103 (d). For each allele, labels indicate locality
number, followed by the sex of the individual (black for females and white for males), a sample number, and the letter a or b (discriminating two
alleles of heterozygotes; written ‘‘ab’’ for homozygotes). The colors of haplotypes correspond to the main phylogeographic regions across
H. arborea’s present distribution range (as described by Stöck et al. 2012, and Dufresnes et al. 2013), delimited by thin dashed lines on the map
(orange: southeastern European refugia; violet: Pannonian basin; green: NW Europe). Arrows show post-glacial recolonization routes.
doi:10.1371/journal.pone.0097959.g001
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could be reconstructed manually: two individuals were homozy-

gous, and the other two shared identical genotypes with closely

related alleles (differing by two polymorphic sites).

Data Analyses
Sequences were manually aligned in Seaview, and analyzed by

statistical parsimony networks with TCS (v. 1.21 [13]; parsimony

limit set to 95%), which allows taking indel polymorphisms into

account (option ‘‘gap as fifth base’’). In addition to SNPs, Med15

and Ha-A103 contain microsatellite-like repeats [5], which were

re-coded so that one tandem repeat difference corresponds to one

mutational step. To confirm proper amplification and observed

length differences within Med15 and Ha-A103, we compared this

data with results from microsatellite genotyping at these loci

(details in [5,8]). We followed the same re-coding strategy for two

large indels (37 bp and 473 bp) within Ha-A103 (Fig. 1d).

Although the two copies of a male necessarily comprise an X

and a Y allele, it was a priori not possible to assign any specific copy

to either the X or the Y chromosome (except for Med15 in NW

Europe populations; see Results and Discussion). Thus, X-Y and

X-X divergence were compared by measuring, for each marker,

the pairwise nucleotide differences pd (in DnaSP v. 5 [14]) between

the two copies of every male (X-Y difference) and female (X-X

difference). Comparisons between sexes and regions were assessed

by analyses of variance (ANOVA) of pd, using a non-parametric

permutation procedure to test the significance of differences

(109000 replicates; performed in R 2.13.1 [15]). The geographic

regions were defined according to the phylogeographic structure of

the species as inferred by multilocus nuclear and mtDNA data by

Dufresnes et al. [10].

Results and Discussion

Sequences (Alignment S1, Supporting Information) of Med15

(992 bp) were the most polymorphic (64 variable sites, 33

parsimony-informative), followed by Ha-A103 (504 bp without a
473 bp indel found in 2 individuals, 19 variable sites, 15

parsimony-informative) and Smarcb1 (411 bp, 8 variable sites, all
parsimony-informative). Most of the diversity was found in

southeastern Europe, and the Pannonian Basin (Fig. 1: orange
and violet areas); for all three markers, postglacial populations
from Northern and Western Europe (green area) harbor fewer
haplotypes. These results corroborate evidence from autosomal

and mitochondrial data of a large-scale post-glacial colonization of
the Pannonian Basin from several glacial refugia in southeastern
Europe, namely the southern Balkans and the Adriatic coast,
followed by a later expansion to Western and Northern Europe,
during which much variance was lost [10].
Haplotypic networks (Fig. 1b–d) show a generally large mix of

male and female alleles. Averaged over all individuals and

populations, alleles were not more diverged in males (X-Y) than

in females (X-X) at all three loci (for Ha-A103: F1,31 = 0.43, p-

value = 0.55; for Smarcb1: F1,14 = 0.14, p-value = 0.72; for Med15

(F1,51 = 0.44, p-value = 0.50). Many males presented identical X

and Y haplotypes, or shared both of their alleles with females

(Fig. 1b–d). Interestingly, two large indels in Ha-A103 were shared

by X and Y haplotypes: the same 37 bp deletion occurred on the

two copies of males from southeastern Europe (e.g. 3-=1, 7-=1
and 9-=3), the Pannonian Basin (e.g. 18-=2, 19-=3) and NW

Europe (20-=1); similarly, the same 473 bp insertion was shared

by the X and Y alleles of two males from the Pannonian Basin (15-

=2 and 18-=1). Given that Ha-A103 (as well as Med15) display

perfect lineage sorting by species in Hyla arborea, H. molleri, H.

intermedia [5], these patterns cannot be accounted for by the

maintenance of ancestral polymorphisms predating speciation,

and thus provide clear evidence for XY recombination events,

postdating species divergence.

However, closer inspection reveals some differences between

phylogeographic regions. In particular, the patterns of diversity

and differentiation at Med15 display a clear trend with geography

(Fig. 1c). Whereas male alleles from southeastern refugial (orange)

and Pannonian (violet) populations mix randomly with female

alleles in the network, sex-differences occur for NW Europe (green,

loc. 20–30). With the single exception of individual 29-=1, all
males harbor one and only one copy of allele H16, otherwise

identified from sibship analyses as the Y allele in several Swiss and

French populations (referred to as allele Ha5-22 236 in [8,16].

This allele was only found in males throughout the H. arborea range

covered by our study, including some from the Pannonian Basin

(violet) and southeastern European glacial refugia (orange), where

it might also occur on the Y. The second allele (i.e., the X copy)

from all Western and Northern European Hyla males belongs to

the H1–H15 haplogroup, otherwise shared by all females from

these populations, plus some from the Pannonian Basin. This was

the only haplogroup found in females from Western and Northern

Europe, but many more segregated in females from the Pannonian

Basin and southeastern European refugial populations. Accord-

ingly, a two-way ANOVA, with sex and geographic region (North-

Western Europe versus Pannonian and southeastern populations) as

factors, identified significant effects for both the region

(F1,49 = 12.5, p-value = 0.009) and the interaction between sex

and region (F1,49 = 3.38, p-value = 0.023). As shown in Fig. 2, this

reflects respectively the higher diversity of southeastern European

and Pannonian populations (pd =8.2 as opposed to 3.3 in

Northern and Western Europe) and the strong XY differentiation

in North-Western Europe (pd =5.1 in males versus 1.4 in females)

compared to the rest of the range (pd =8.9 in males versus 7.4 in

females). The only exception (male 29-=1, from the westernmost

part of the distribution range) deserves special mention: given the

strong differentiation between the haplotypes H3 and H4 harbored

by this male on one hand, and the haplotype H16 fixed on the Y of

other males on the other hand, the pattern observed is most likely

to result from a recent (post-glacial) event of XY recombination.

No such interaction was identified for Ha-A103 and Smarcb1,

which might however result from a lower power due to smaller

sample sizes, and to lower levels of polymorphism. Markers Ha-

Figure 2. Pairwise nucleotide differences (pd) between the two 
Med15 alleles of every male (white bars) and female (black 
bars). Larger values are found in southeastern Europe and the 
Pannonian Basin (left) than in NW Europe (right), and, in the latter 
region, in males than in females.
doi:10.1371/journal.pone.0097959.g002
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A103 and Smarcb1 were clearly less variable than Med15, and our

range-wide samples appear to represent most of their diversity.

The XY overlap found in NW Europe populations for these two

markers are compatible with post-glacial XY recombination, but

might also stem from ancestral polymorphisms shared by the X

and Y chromosomes that contributed to the post-glacial expansion

towards NW Europe.

Conclusion

Our study provides range-wide empirical evidence that X and Y

chromosomes have exchanged genetic material until recently, and

are possibly still recombining occasionally in the southern part of

H. arborea geographic range. Although our results solve the

apparent paradox mentioned in the Introduction, they also raise

new questions, by suggesting that XY recombination rate might

vary phylogeographically, being higher in refugial populations

than in post-glacial-origin populations of NW-Europe. Patterns at

Med15 in particular suggest that different X and Y alleles have

been fixed by drift in the wave of expanding populations, and were

maintained differentiated over the last 10 ky. Whether the amount

of recombination significantly between regions, however, remains

to be clarified. More accurate reconstruction of the phylogeo-

graphy of Y haplotypes, using a larger number of fast-evolving

markers, should help to better characterize the spatial and

temporal dynamics of recombination episodes in H. arborea.
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Occasional XY recombination is a proposed explanation for the sex-chromosome homomorphy in European tree frogs. Numerous

laboratory crosses, however, failed to detect any event of male recombination, and a detailed survey of NW-European Hyla arborea

populations identified male-specific alleles at sex-linked loci, pointing to the absence of XY recombination in their recent history.

Here, we address this paradox in a phylogeographic framework by genotyping sex-linked microsatellite markers in populations and

sibships from the entire species range. Contrasting with postglacial populations of NW Europe, which display complete absence

of XY recombination and strong sex-chromosome differentiation, refugial populations of the southern Balkans and Adriatic coast

show limited XY recombination and large overlaps in allele frequencies. Geographically and historically intermediate populations of

the Pannonian Basin show intermediate patterns of XY differentiation. Even in populations where X and Y occasionally recombine,

the genetic diversity of Y haplotypes is reduced below the levels expected from the fourfold drop in copy numbers. This study is the

first in which X and Y haplotypes could be phased over the distribution range in a species with homomorphic sex chromosomes; it

shows that XY-recombination patterns may differ strikingly between conspecific populations, and that recombination arrest may

evolve rapidly (<5000 generations).

KEY WORDS: Amphibians, phylogeography, sex-chromosome evolution, XY recombination.

The strongly differentiated sex chromosomes of many bird, mam-

mal, and insect species have attracted much attention from evo-

lutionary biologists very early on (Muller 1914, 1918; Fisher

1935; Ohno 1967). Converging empirical and theoretical stud-

ies concluded that sex chromosomes originate from autosomes

(Ohno 1967). A first step in this evolution occurs when an auto-

somal gene, involved in the sex-determination cascade, mutates

to such a form that individuals heterozygous for the mutation

Data archival: Adult and family microsatellite genotypes, including males

phased sex haplotypes, have been archived http://doi.org/10.5061/dryad.45j84

develop into one sex, whereas homozygotes develop into the other.

As a second step, this new sex determinant will favor the spread

of sexually antagonistic mutations in its vicinity. If autosomal,

such mutations can only spread if the benefits conferred to one

sex exceed the costs paid by the other; when tightly linked to

the sex-determining mutation, however, they can spread even if

strongly detrimental to the homogametic sex, being only rarely

transmitted to this sex. Accruing sexually antagonistic genes will

then, as a third step, favor a progressive arrest of XY recombi-

nation, so that male-beneficial alleles are always transmitted to

sons, and female-beneficial alleles to daughters (Rice 1987, 1996;

1
C© 2014 The Author(s).
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Charlesworth and Charlesworth 2000; Charlesworth et al. 2005).

Note that, when evolving from a hermaphroditic state, genetic sex

determination involves more than one mutation (one to suppress

male fertility, the other to suppress female fertility), so that re-

combination arrest is also required to prevent the production of

neuter individuals (Bachtrog et al. 2011).

As a side effect, however, recombination arrest necessarily

induces a drastic drop in the effective population size of Y chro-

mosomes due to a fourfold decrease in the number of copies per

mating pair and Hill–Robertson interferences. Deleterious mu-

tations will accumulate under the combined forces of Muller’s

ratchet, background selection, and selective sweeps, resulting in

the progressive decay of the nonrecombining Y chromosome. Im-

portantly, loss-of-function mutations create a gene imbalance that

is bound to reduce fitness in the heterogametic sex. Some lineages

accommodate this decay via dosage compensation, through either

a global mechanism (such as found in mammals, flies, or nema-

todes), or a more subtle gene-by-gene regulation, such as found

in birds or moths (Mank 2009). Alternatively, as theory suggests,

this accumulating deleterious load may induce sex-chromosome

turnovers (Blaser et al. 2013, 2014), or select for some nonzero

level of XY recombination (Grossen et al. 2012). The evolution-

arily stable rate of recombination that results from the conflicting

forces of sexually antagonistic selection and deleterious mutations

is expected to be quite low: very rare events of XY recombina-

tion seem sufficient to purge the load (reviewed in Grossen et al.

2012). Sex-chromosome turnovers and XY recombination are not

mutually exclusive processes: both are thought to contribute to the

rarity of differentiated sex chromosomes among poikilothermic

vertebrates (e.g., Stöck et al. 2013a; van Doorn 2014).

In this context, European tree frogs present an interesting

case. Several species from this radiation (namely Hyla arborea,

H. orientalis, H. intermedia, and H. molleri; see Stöck et al.

2012 for phylogenetic relationships and species distributions)

share the same pair of homomorphic sex chromosomes, inherited

from a common ancestor more than five million years ago (Stöck

et al. 2011, 2013b). The sequences of sex-linked genes along

this chromosome cluster by species, not by gametologs, which

implies some nonzero rate of XY recombination throughout all

lineages (Stöck et al. 2011; Guerrero et al. 2012). Surprisingly,

however, male recombination has never been documented in labo-

ratory crosses, despite genotyping of thousands of offspring with

known pedigree from several populations of all four species (e.g.,

Berset-Brändli et al. 2008a; Stöck et al. 2011, 2013b). In addi-

tion, males and females are genetically differentiated in all West-

and North-European H. arborea populations investigated so far,

with Y-specific alleles found at several sex-linked markers, attest-

ing the absence of XY recombination in their recent evolutionary

history.

To address this paradox, we undertook to seek insights into

deeper events of H. arborea’s evolutionary history, by extending

the phylogeographic scope of our investigations. North- and

West-European H. arborea populations are very recent. As shown

from autosomal markers and mitochondrial DNA (Dufresnes

et al. 2013), refugial populations survived the last glaciations

in southern Balkans and at the Adriatic coast, where three main

haplogroups, with some 200 ky divergence, were maintained in

distinct regions. Although two of these lineages remained limited

to refugial areas (Adriatic coast and southern Balkans), a third

one expanded after the Last Glacial Maximum (about 12–15 kya)

to recolonize first the Pannonian Basin (a large lowland area of

Central Europe surrounded by the Alpine, Carpathian, Dinaric,

and Balkan mountain ranges), followed by Western and Northern

Europe, losing much of its diversity in the process (Dufresnes

et al. 2013). By analyzing the sequences of three sex-linked

markers throughout the whole species distribution, Dufresnes

et al. (2014) uncovered a significant effect of geography on XY

differentiation at the Med15 gene: contrasting with recent NW-

European populations, which showed a clear pattern of XY dif-

ferentiation, populations from ancient refugia (southern Balkans,

Adriatic coast) and Pannonian Basin displayed a mix of X and Y

alleles in haplotype networks.

The question then arises: Is this pattern specific to a sin-

gle gene, or does it extend to other sex-linked markers? And if

general, does the increased XY differentiation stem from the en-

hanced genetic drift that accompanies colonization events, or does

it instead signal a decrease in XY recombination rate with range

expansion? In the present study, we provide a phylogeographic

analysis of sex-chromosome haplotypes in H. arborea. By sam-

pling adults throughout their geographic range as well as offspring

from family crosses, and genotyping them with a series of sex-

linked microsatellite markers, we could phase X and Y haplotypes

throughout the species distribution, and thereby reconstruct the

recent evolutionary history of H. arborea sex chromosomes. Our

specific aims were to further document the consequences of the

species’ recent range expansion on the genetic diversity of X

and Y chromosomes, genetic differentiation between sexes, and

dynamics of XY recombination.

Methods
SAMPLING, DNA EXTRACTION, AND GENOTYPING

Our phylogeographic survey included 670 field-captured individ-

uals (416 adult males, 175 adult females, and 79 larvae) from 42

populations, all but one (loc. 66) analyzed by Dufresnes et al.

(2013), and from which we kept the same locality numbers. File

S1 summarizes information on sample types, localities, and sizes.

DNA samples were collected using noninvasive buccal swabs

2 EVOLUTION 2014
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(adults, Broquet et al. 2007) or ethanol-fixed tissues (larvae). In

addition, some males and females were mated in the field (see

Dufresnes et al. 2011 for methods), and a subset of their progeny

fixed in ethanol after hatching (on average �20 offspring per fam-

ily). As there is no sperm storage in frogs (fertilization is external),

all offspring obtained were necessarily full sibs (as otherwise con-

firmed by genotypes). A total of 55 families (1176 offspring) from

17 populations were suitable for sibship analyses. For one family

from population 1 (Crete), we additionally raised 16 offspring

to several weeks after metamorphosis for anatomical/histological

sexing (following Ogielska and Kotusz 2004; Haczkiewicz and

Ogielska 2013).

DNA was extracted with the Qiagen Biosprint workstation.

For all individuals (field samples and families), we amplified (us-

ing four multiplex PCR reactions) and genotyped 14 microsatel-

lite markers from linkage group 1, shown to be sex-linked in

all species from the H. arborea group studied so far (see Arens

et al. 2000; Berset-Brändli et al. 2008a,b; Stöck et al. 2011; Brels-

ford et al. 2013; and File S2 for details and methods). To identify

the genetic sex of the 79 larvae sampled in the field, we geno-

typed an SNP in the sex-linked gene Dmrt1 (Brelsford et al. 2013),

which perfectly associates with phenotypic sex across the whole

H. arborea range (A. Brelsford et al. unpubl. ms.).

RECOMBINATION RATES, SEX LINKAGE, AND SEX

HAPLOTYPES

Sex-specific recombination rates were measured from family data

using CRIMAP (Green et al. 1990). The order of loci was deter-

mined using the function all based on the entire dataset because

some markers were not polymorphic in all geographic regions.

Sex-specific recombination distances were then calculated using

the function build, and linkage maps constructed with MAPCHART

(Voorrips 2002) independently for the main phylogeographic re-

gions identified by Dufresnes et al. (2013). Morton’s M-tests

were computed to test whether recombination rates differ between

geographic regions (Morton 1956).

In the absence of XY recombination, X and Y chromo-

somes are expected to diverge, allowing assessment of sex linkage

through sex-specific differences in allele frequencies. Sex linkage

was indeed obvious in many Central- and NW-European popu-

lations (as previously shown, e.g., by Berset-Brändli et al. 2006;

Stöck et al. 2011). In one population with low XY differentia-

tion (loc. 1, Crete), sex linkage was independently confirmed by

phenotypic sexing of offspring from a full sibship.

Sex haplotypes were inferred from males in two ways. In

Central- and NW-Europe populations, X and Y alleles were read-

ily identified from adult genotypes based on sex differences in

allele, genotype, and haplotype frequencies: males were consis-

tently heterozygous for certain alleles, and these male-specific

alleles formed identifiable Y haplotypes that recurred within

populations or in neighboring ones (see File S3, loc. 56, for

an illustration). In refugial populations (southern Balkans and

Adriatic coast), X and Y chromosomes often shared the same

alleles (see Results), but could still be phased based on sex dif-

ferences in allele and haplotype frequencies (the same Y allele or

haplotype was often fixed in all males from the same population)

combined with pedigrees: thanks to the extremely low rate of re-

combination in males (see Results), genetic maps obtained from

family data allowed us to infer the entire phase whenever the Y

allele at any sex-linked locus was identifiable (see File S4, loc. 1,

for an illustration). Independent validation of this approach was

provided in the population of loc. 1 (Crete) by direct phenotypic

sexing of offspring in one family.

XY DIFFERENTIATION, GENETIC STRUCTURE AND

DIVERSITY

Genetic differentiation between males and females (FST per locus)

was computed for all populations with at least seven individuals of

each sex (FSTAT 2.9.3; Goudet 1995). Furthermore, in populations

where sex haplotypes could be recovered from at least five males,

we calculated the average overlap (over the n loci) between X

and Y allele frequencies as 1
n

∑
i

∑
j Min

[
pi j X , pi jY

]
, where

pijX and pijY represent the frequency of allele j at locus i in X and

Y haplotypes, respectively.

We conducted individual-based Bayesian clustering of X and

Y haplotypes with Structure 2.3.3 (Pritchard et al. 2000), testing

from one to 11 groups (K). Ten replicates were performed for each

K value and the Evanno method (Evanno et al. 2005) was applied

to identify the most appropriate clustering solution (STRUCTURE

HARVESTER, Earl and VonHoldt 2012). For graphical visualiza-

tion, we first combined replicate runs with CLUMPP (Jakobsson

and Rosenberg 2007), and then used DISTRUCT (Rosenberg 2004)

to build barplots. We also performed a principal component analy-

sis (PCA) to visualize the main factors of haplotype differentiation

(R package adegenet; Jombart 2008). Allelic richness k and ex-

pected heterozygosity H for X and Y haplotypes were calculated

(FSTAT) in all populations with at least five males, and compared

with published autosomal data (Dufresnes et al. 2013). Allelic

richness measures the average number of alleles per locus in a

population (standardized for sample size), and is expected to be

more sensitive to founder effects than H. Furthermore, the genetic

diversity index θ was calculated from H as θ = 1
2

(
1

(1−H )2 − 1
)
,

assuming a stepwise mutation model (Kimura and Ohta 1975). At

neutral equilibrium, the θ value for locus i is expected to reflect

the effective population size Ne, mutation rate μi, and number of

copies per breeding pair ci: θi = ciNeμi. Thus, values for X- and

Y-linked markers should represent ¾ and ¼ of autosomal val-

ues, respectively, assuming similar effective population sizes and
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Southern Balkans
loc. 1-8 (383 offspring)

Adriatic coast
loc. 32-37 (392 offspring)

Central-Western Europe
loc. 38-57 (401 offspring)

♀ ♂ ♀ ♂ ♀ ♂

A B C

Figure 1. Regional sex-specific linkage maps of H. arborea’s sex chromosomes, based on 14 microsatellites. Recombination distances

between markers (centiMorgan) are indicated. For clarity, simplified marker labels are used.

mutation rates, and absence of recombination. Geographic dis-

tance of each population from the refugial area (delimited as south

of the Dinaric and Balkan mountain ranges) was computed to ana-

lyze the effect of postglacial recolonization on allelic richness and

sex-chromosome differentiation. The geographic distances calcu-

lated were corridor-type, taking into account the possible routes

for migration connecting populations (see main text and Data S2

in Dufresnes et al. 2013 for details).

Results
RECOMBINATION MAPS

From our sibship analyses, recombination rates differed signifi-

cantly not only between sexes, but also between geographic re-

gions (Fig. 1; Table 1). XY recombination occurred at low levels in

males from refugial populations of the southern Balkans (Fig. 1A)

and Adriatic coast (Fig. 1B), but was absent in postglacial popu-

lations of Central and NW Europe (loc. 38–57; Fig. 1C, Table 1).

Female recombination was high over all regions, although slightly

reduced in postglacial populations (Fig. 1C) relative to refugial

ones (Fig. 1A, B), but these differences were not significant based

on Morton tests (Table 1).

Table 1. Morton tests of recombination rate heterogeneity be-

tween regions, combined over sexes, and for males and females

separately.

χ2 df P

Sexes combined
S-Balkans versus N-Adriatic 72.6 56 0.07
S-Balkans versus Central/NW Europe 133.8 71 <0.001
N-Adriatic versus Central/NW Europe 193.0 73 <0.001
Among all regions 297.4 176 <0.001

Females
S-Balkans versus N-Adriatic 25.7 39 0.95
S-Balkans versus Central/NW Europe 29.4 45 0.97
N-Adriatic versus Central/NW Europe 26.6 48 0.99

Among all regions 57.6 106 1.00
Males

S-Balkans versus N-Adriatic 52.4 43 0.15
S-Balkans versus Central/NW Europe 108.3 62 <0.001
N-Adriatic versus Central/NW Europe 160.6 66 <0.001
Among all regions 238.9 170 <0.001

Statistically significant values are indicated in bold.

GENETIC DIFFERENTIATION BETWEEN THE SEXES

Differentiation between the sexes varied significantly with geog-

raphy, with a trend of increased FST with distance from refugia
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(File S5; Fig. 2B). Differentiation was strong in postglacial

populations (Pannonian Basin and NW Europe), where all loci

but three carried male-diagnostic alleles (File S6). The excep-

tions were Ha-T52, Ha-T3, and Ha-H107, which mapped to the

terminal position on the linkage map (Fig. 1) and featured low

male–female FST in all populations (File S5). This strong sex

differentiation allowed identification of one sex-reversed (XY)

female, caught in amplexus with an XY male in population 40

(Pannonian Basin), which carried a male allele at each infor-

mative marker (File S7). This individual was removed from the

subsequent population genetics analyses.

In contrast, sex differentiation was much lower in refugial

populations (Adriatic coast and southern Balkans), with a sharing

of male and female alleles at most loci (File S6). However, sex

linkage was still unambiguous in all populations, with significant

sex differences in allele frequencies at several loci (File S6). In

the population from Crete investigated for offspring phenotypic

sexes, sibship data unambiguously confirmed sex linkage, with a

clear pattern of male heterogamety: one paternal haplotype (Y)

was inherited by all sons, and the other (X) by all daughters

(χ2 = 16.0, P < 0.0001, df = 1).

XY DIVERSITY AND DIFFERENTIATION

X and Y haplotypes could be phased for 11 markers in a total of

458 males from 41 populations. The θ values of diversity, calcu-

lated from expected heterozygosity H, were significantly lower

for Y than for X haplotypes (0.15 ± 0.11 vs. 0.73 ± 0.35, re-

spectively, averages and SD over loci and populations; ANOVA:

F1,44 = 55.8, P < 0.0001, based on 10,000 permutations), and

both were reduced compared to autosomal values (1.44 ± 0.77).

In both cases, the ratios obtained (0.10:0.51:1) are lower than ex-

pected (¼:¾:1) assuming similar effective population sizes and

mutation rates. Allelic richness was also significantly lower for

Y than for X haplotypes, and both had reduced values compared

to autosomal markers (Fig. 2C, data from Dufresnes et al. 2013).

Richness was homogeneously low for Y markers over the en-

tire geographic range, but decreased significantly with distance

from refugial areas for X and autosomal markers (Fig. 2C). Diver-

sity statistics of X and Y haplotypes are available for each locus

and population in File S8. In line with the patterns of sex differ-

entiation (Fig. 2B), XY overlap in allele frequencies decreased

significantly with distance from refugial areas (Fig. 2A), being

highest in southern Greece, and lowest in NW Europe (see also

Fig. 3B).

The same trend in XY differentiation was uncovered by

Bayesian assignments of individual haplotypes using STRUC-

TURE (Fig. 3): X and Y haplotypes cluster together in south-

ernmost populations (Crete and Peloponnese), but not in the

postglacial populations of Central and NW Europe, a result that

holds across different K values (File S9). The best clustering
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Figure 2. Relationship between geographic distance from glacial

refugia and X–Y overlap of allele frequencies (A), male–female FST

(B) and allelic richness (C). Allelic richness was computed for au-

tosomes (data from Dufresnes et al. 2013), X and Y haplotypes,

all scaled to five individuals. Linear regressions are significant for

autosomes (R2 = 0.39, F1, 25 = 16.1, P < 0.001) and X haplotypes

(R2 = 0.35, F1, 21 = 11.2, P = 0.003), but not Y haplotypes (R2 =
0.03, F1, 21 = 0.74, P = 0.40). Allelic richness, and its relationship

with the distance from refugial areas both significantly differ be-

tween marker sets (marker sets: ANCOVA’s F2,67 = 172.1, P < 0.001;

interaction between marker sets and distance: ANCOVA’s F2,67 =
5.6, P = 0.005).
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solution comprises four groups (K = 4), associated with game-

tologs and geography (Fig. 3). X haplotypes are split in two clus-

ters (Greece vs. N-Adriatic/Central/NW Europe) and Y haplo-

types in three (southern Greece/N-Adriatic vs. Balkans/Central

Europe vs. NW Europe), with the southernmost cluster (blue

in Fig. 3) including both X and Y haplotypes. Interestingly,

this cluster also comprises Y haplotypes north of the Adri-

atic coast (loc. 32 and 37), whereas other males from the re-

gion (including the close-by population of Krk island, loc. 33)

harbor the Y haplotypes characteristic of the Pannonian Basin

(red cluster) and NW-Europe populations (green cluster), the

latter being also present at low frequency in the Pannonian

loc. 44.

Similar patterns result from the PCA analyses (Fig. 4). The

first axis (horizontal in the upper panel; 7.2% of variance ex-

plained) accounts for the progressive differentiation of X haplo-

types from southern Greece (blue crosses on the right) to NW

Europe (green crosses on the left). The second axis (vertical in

the upper panel, horizontal in the lower panel; 6.1% of variance

explained) opposes the Y haplotype group that expanded to NW

Europe (dark green triangles; green cluster on STRUCTURE graphs)

to all others. The third axis (vertical in the lower panel; 3.4% of

variance explained) accounts for the high genetic diversity within

the southern-Greece group of X and Y haplotypes (dark blue

crosses and triangles; blue on the STRUCTURE graphs). This high

diversity may seem to contrast with the low richness values doc-

umented for Y haplotypes throughout refugial areas (Fig. 2C),

but this apparent discrepancy is easily solved by noting that Fig-

ure 2C plots within-population diversity (allelic richness per lo-

cality), whereas the spread of haplotypes along the third PCA

factor (Fig. 4) expresses among-population diversity: Y chromo-

somes within populations tend to fix one or few alleles from the

local distribution, which differ between populations. The three

axes considered here only account for �17% of the total variance,

meaning that a large part of the intra- and interpopulation variance

is not accounted for in these plots. This is however to be expected

because each of the 106 axes (corresponding to the total number

of alleles) accounts for <1% of the variance on average (see plot

of ordered eigenvalues in Fig. 4). Both panels clearly illustrate

the strong XY differentiation in NW Europe (dark green sym-

bols), contrasting with the high XY overlap in southern Balkans.

The least differentiated X and Y haplotypes are found in southern

Greece (dark blue), whereas haplotypes from northern Greece and

the Pannonian Basin show intermediate levels of differentiation.

Three discrete Y clusters of the Adriatic coast are visible (yellow

triangles), with one haplogroup (loc. 32 and 37) clustering with

Balkanic X haplotypes (yellow and purple crosses), the second

shared with Y from the Pannonian Basin (light green triangles),

and the third (loc. 33, Krk island) clustering with NW-European

Y haplotypes (dark green triangles).

Discussion
PATTERNS OF XY GENETIC DIVERSITY AND

GEOGRAPHIC STRUCTURE

Genetic diversity was much lower on sex chromosomes than on

autosomes (Fig. 2C). The θ values for X and Y chromosomes

only represent one-half and one-tenth of autosomal values, re-

spectively, pointing to the action of Hill–Robertson interferences

in addition to the mere decrease in the number of copies per mat-

ing pair. Notwithstanding this lower overall diversity, X chromo-

somes displayed very similar patterns to those found in autosomes

(Dufresnes et al. 2013). The same signature of expansion could be

identified, namely a significant decline in allelic richness with dis-

tance from refugia (Fig. 2C). Geographic structures also showed

strong parallelism: STRUCTURE identified two main groups, one

dominant in Greece (pops 1–28), the other spread through the

Adriatic coast, Pannonian Basin, and NW Europe (compare our

Fig. 3D with Fig. 4 in Dufresnes et al. 2013).

In contrast, Y chromosomes displayed different patterns from

autosomes and X chromosomes, revealing their distinct dynamics.

First, allelic richness was homogeneously reduced, independent

of distance from refugia (Fig. 2C). Second, Bayesian clustering

identified three main groups of haplotypes, with strong geographic

structuring but complex distribution (Fig. 3C). One haplogroup

with high similarity to local X haplotypes dominates in the refu-

gial populations of southern Greece and Adriatic coast. A second

group, mildly differentiated from local X haplotypes, is largely

spread from the northern Greek refugium to the Pannonian Basin.

A third main haplogroup, strongly differentiated from local X

haplotypes, characterizes the populations that expanded into NW

Europe, but also occurs in one population from the Pannonian

Basin (loc. 44), and seems fixed on the island of Krk (Adri-

atic coast, loc. 33), which was also recently invaded by expand-

ing Central-European frogs (Data S2 in Dufresnes et al. 2013).

Such patterns are expected from the neutral processes of genetic

drift and gene surfing on the front wave of expansions (Excoffier

et al. 2009), but one cannot a priori exclude a role for selective

sweeps of haplotypes favored by male-beneficial combinations of

sexually antagonistic genes.

PATTERNS OF XY DIFFERENTIATION AND

RECOMBINATION

Two lines of evidence point to a geographic trend in XY recom-

bination. First, the genetic maps obtained from 55 families (17

populations) reveal a significant reduction in recombination with

postglacial range expansion. Male recombination, which occurs

at a nonzero level in refugial populations, is completely absent

in postglacial populations from the Pannonian Basin and NW

Europe. Second, indirect evidence comes from the increased XY

differentiation with distance from refugia. Negligible in southern
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Greece (despite direct evidence for sex linkage gathered from sib-

ship analyses), differentiation becomes marked in the Pannonian

Basin, and is strongest in the most recently established popula-

tions of NW Europe, except for three loci in a distal position that

might still display occasional recombination (although too rare to

be observed in family studies). This corroborates sequence data

from the sex-linked gene Med15 (Dufresnes et al. 2014), for which

NW-European populations show a male-specific allele, whereas

both sexes share the same alleles in the Balkans. From our results,

therefore, the stronger XY differentiation in NW Europe does not

result solely from the genetic drift that affects expanding popula-

tions, but clearly associates with a more complete arrest of male

recombination. It should be noted that despite similar absence

of recombination in family studies, X and Y haplotypes are less

differentiated in the Pannonian Basin than in NW Europe. This

difference might stem from lower genetic drift (fewer bottlenecks

during range expansion and larger local population sizes), residual

recombination (although still too rare to be detected in our fam-

ily studies) or inflow of Y haplotypes from southern (refugial)

populations.

Using an approximate Bayesian computation (ABC) frame-

work, Guerrero et al. (2012) estimated the amount of XY recombi-

nation to be about 10−5 lower than XX recombination in European

tree frogs. This value was obtained assuming a homogeneous rate

across times and lineages. As our present results show, this latter

assumption may not entirely hold, and parameter estimates might

require some reevaluation. Interestingly, however, XY recombi-

nation is clearly too rare, even in the southernmost populations,

to counteract the strong genetic drift affecting Y chromosomes

and refuel their allelic richness (Fig. 2C). A new analysis im-

plemented using the values of within- and between-population

diversity and differentiation of X and Y haplotypes in an ABC

framework might help to further characterize the interplay be-

tween drift and recombination, and their relative influences on

the evolutionary dynamics of young sex chromosomes.

This geographic trend in XY recombination raises a series

of questions regarding ultimate causes and evolutionary implica-

tions. Several alternative interpretations are compatible with our

data. On one hand, the trend might simply result from phenotypic

plasticity. Postglacial populations are experiencing novel environ-

ments; differences from refugial areas, notably in terms of climate,

are likely to affect many physiological processes, the more so in

ectotherms. Meiotic recombination has been shown to vary with

temperature in a diversity of organisms, including insects (e.g.,

Plough 1917; Hayman and Parsons 1960; Grell 1978), nema-

todes (Rose and Baillie 1979; Lim et al. 2008), and ascomycetes

(McNelly-Ingle et al. 1966; Lamb 1969; Saleem et al. 2001). Other

environmental factors have been shown to play a role, leading up

to the idea that recombination rate increases with several forms of

stress (Parsons 1988; Zhong and Priest 2011). In the present case,

however, a reverse trend would be expected, namely an increased

recombination rate in the new, stressful postglacial environments.

Reciprocal transplant experiments should help to test this point.

On the other hand, regional differences might be genetic.

Recombination is known to differ between Drosophila lines, and

to respond quickly to selection (Chinnici 1971a,b; Kidwell 1972;

Charlesworth and Charlesworth 1985; Brooks and Marks 1986;

Brooks 1988). In mammals, multiple loci contribute to genome-

wide recombination (Murdoch et al. 2010); allelic variation at the

Prdm9 gene was recently shown to account for a large component

of intra- and interpopulation variance in recombination patterns

(Baudat et al. 2010; Berg et al. 2010; Fledel-Alon et al. 2011).

Crossing individuals from refugial and postglacial populations

and analyzing recombination in the offspring should reveal the

genetic architecture of XY recombination in tree frogs.

Assuming a genetic component, recombination arrest might

merely arise from the fixation by genetic drift of recombina-

tion suppressor alleles in postglacial populations. This hypothesis

seems plausible if recombination is controlled by one or two

genes with few alleles, but much less so if multiple loci are in-

volved (recombination arrest would require the fixation of the

no-recombination allele at each locus). Alternatively, recombina-

tion arrest might arise from selection: evolutionarily stable rates

of recombination result from a balance between sexually antag-

onistic selection (which favor a complete arrest of recombina-

tion) and the accumulation of deleterious mutations (which favor

some recombination). Selection was invoked to account for the

recent extension of the nonrecombining region of Silene latifolia

sex chromosomes, based on the short evolutionary time involved

(few million years; Bergero et al. 2013). In the case of tree frogs,

the time involved is two orders of magnitude shorter, suggesting

stronger selective pressures. A possible scenario might be that

Y haplotypes with male-beneficial alleles, spread by selective

sweeps during range expansion, indirectly selected for recombi-

nation arrest. It is not clear, however, why sexual selection would

be stronger in postglacial than in refugial populations.

CONCLUSIONS AND PERSPECTIVES

This study provides several important new insights on the evo-

lutionary dynamics of young sex chromosomes. Recombination

arrest is generally assumed to constitute a crucial initial step in

this context, and takes a core place in classical models of sex-

chromosome evolution. Recent work on European tree frogs has

challenged this view by providing indirect but compelling ev-

idence that recombination arrest is not a necessary step in the

evolution of sex chromosomes (Stöck et al. 2011; Guerrero et al.

2012). Here, we provide direct evidence not only for XY recom-

bination, but also for differences between conspecific populations

that diverged <15 ky ago (i.e., <5000 generations). This shows

that populations from different geographic or environmental
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contexts may differ with respect to this crucial feature, and that

changes in XY recombination rates can proceed quickly. These re-

sults open unique opportunities to investigate the selective forces

acting on sex-chromosome recombination and the evolutionary

consequences of recombination arrest. Contrasting with the XY

recombination in southern populations, which occurs at a level

sufficient to prevent the differentiation and decay of Y chromo-

somes (although insufficient to refuel their genetic diversity), the

complete arrest of recombination documented in NW-European

populations should favor the accumulation of both sexually an-

tagonistic and deleterious mutations. Reciprocally, the limited

recombination rate in southern populations opens opportunities

to identify the sex-determination gene(s), by searching genomic

regions displaying fixed sex differences (such an approach would

not be feasible in NW-European populations, given that sex hap-

lotypes are transmitted as a whole). Moreover, our study is the

first in which X and Y haplotypes could be phased over the distri-

bution range of a species with homomorphic sex chromosomes.

This result provides access to the contrasting dynamics of nascent

X and Y haplotypes during range expansion, and similarly opens

unique opportunities to investigate the dynamics of X and Y diver-

sity and differentiation under the evolutionary forces of genetic

drift and XY recombination.
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We characterize divergence times, intraspecific diversity and distributions for recently recognized lin-
eages within the Hyla arborea species group, based on mitochondrial and nuclear sequences from 160
localities spanning its whole distribution. Lineages of H. arborea, H. orientalis, H. molleri have at least Pli-
ocene age, supporting species level divergence. The genetically uniform Iberian H. molleri, although lar-
gely isolated by the Pyrenees, is parapatric to H. arborea, with evidence for successful hybridization in
a small Aquitanian corridor (southwestern France), where the distribution also overlaps with H. meridio-
nalis. The genetically uniform H. arborea, spread from Crete to Brittany, exhibits molecular signatures of a
postglacial range expansion. It meets different mtDNA clades of H. orientalis in NE-Greece, along the Car-
pathians, and in Poland along the Vistula River (there including hybridization). The East-European H. ori-
entalis is strongly structured genetically. Five geographic mitochondrial clades are recognized, with a
molecular signature of postglacial range expansions for the clade that reached the most northern lati-
tudes. Hybridization with H. savignyi is suggested in southwestern Turkey. Thus, cryptic diversity in these
Pliocene Hyla lineages covers three extremes: a genetically poor, quasi-Iberian endemic (H. molleri), a
more uniform species distributed from the Balkans to Western Europe (H. arborea), and a well-structured
Asia Minor-Eastern European species (H. orientalis).

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

For many European vertebrate species including amphibians,
phylogeographic hypotheses have been established in the last dec-
ade (for review: Hewitt, 2011). While morphological or behavioral
traits mark the boundaries of some species (e.g. Fijarczyk et al.,
2011), the situation is less clear for sibling species and cryptic lin-
eages, which are revealed only by the recent application of molec-
ular markers (e.g. Stöck et al., 2006; Teacher et al., 2009;
Hauswaldt et al., 2011; Recuero et al., 2012; Bisconti et al., 2011;
Garcia-Porta et al., 2012). Western Palearctic tree frogs of the Hyla
arborea group provide a good example (Faivovich et al., 2005;
Smith et al., 2005; Wiens et al., 2005, 2010). Until recently, most
European populations were considered to belong to a single spe-
ll rights reserved.
cies, H. arborea (e.g. Schneider and Grosse, 2009; http://www.
iucnredlist.org/apps/redlist/details/10351/0), except for the Apen-
nine Peninsula (plus Sardinia and Corsica), where H. intermedia
(resp. H. sarda) had been assigned species status, confirmed by
the lack of introgression at a contact zone with H. arborea (Verardi
et al., 2009). A phylogenetic analysis based on 3200 bp of mito-
chondrial and 860 bp of coding nuclear DNA (Stöck et al., 2008a)
revealed this former, wide-ranging H. arborea to comprise three
highly diverged lineages: H. arborea, occurring from Greece to
northwestern France including Central Europe with the restricted
type locality (Zurich; Dubois, 1996); H. molleri (previously consid-
ered a subspecies of H. arborea), known from the Iberian Peninsula;
and H. orientalis, ranging from Asia Minor to northeastern Europe,
and not previously distinguished from H. arborea. Phylogenies
based on mtDNA show that H. molleri and H. orientalis are as much
diverged from H. arborea as is the recognized species H. intermedia,
hence supporting a similar taxonomic status.

http://www.iucnredlist.org/apps/redlist/details/10351/0
http://www.iucnredlist.org/apps/redlist/details/10351/0
http://dx.doi.org/10.1016/j.ympev.2012.05.014
mailto:nicolas.perrin@unil.ch
http://dx.doi.org/10.1016/j.ympev.2012.05.014
http://www.sciencedirect.com/science/journal/10557903
http://www.elsevier.com/locate/ympev
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Based on phylogeographic patterns of European anurans (Stöck
et al., 2006; Hofman et al., 2007), and given the constraints
imposed by high altitudes and latitudes on the relatively thermo-
philic European tree frogs (e.g. Schneider and Grosse, 2009), we
hypothesized that the Carpathians, Alps and Pyrenees play major
roles in maintaining allopatry (leaving potential for secondary
contacts and hybridization in surrounding lowlands). The age of
hybridizing lineages experiencing secondary contact after Quater-
nary separation may vary from Late Pleistocene to the Late
Miocene (cf. Hewitt, 2011). In the context of our previous work
on tree frogs (Stöck et al., 2008a), we further expect to find varying
amounts of geographic genetic structuring within these lineages,
with distinctly lower genetic diversity in the northern regions
and higher endemism in the southern ones, which have had a
relatively more stable climate since the Last Glacial Maximum
(Sandel et al., 2011).

Given that the whole cytochrome b has been shown to be the
most informative of several tested mitochondrial markers (Stöck
et al., 2008a; Gvozdik et al., 2010), we used this mitochondrial
and one nuclear intronic marker to delineate the ranges of these
three species lineages, evaluate intraspecific diversity, estimate
divergence times, examine signatures of postglacial range expan-
sions, and localize secondary contacts.
2. Methods

2.1. Amplification, cloning, and alignment of sequences

Samples of 462 frogs covering the whole European Hyla distri-
bution (Fig. 1) were collected from living adults (buccal swabs),
tadpoles (tail tips), or tissues from adult voucher individuals stored
in scientific collections (Appendix S1). Buccal swabs were stored at
�20 �C, tissue samples in 100% ethanol. DNA was extracted with
Qiagen DNeasy Tissue Kit or the BioSprint robotic workstation
(Qiagen), eluted in a 200 ll Qiagen Buffer AE and stored at
�18 �C. The mitochondrial cytochrome b (ca. 1 kb) was amplified
with primers L0 and H1046 as described (Stöck et al., 2008a). To
amplify ca. 545 bp of intron 1 of Fibrinogen A, alpha-polypeptide,
Fig. 1. Map with approximate range limits of Western Palearctic tree frogs (range lim
www.iucnredlist.org/initiatives/amphibians) with sampling localities (see Map IDs in App
‘‘Hyla meridionalis s.l.’’; H. intermedia and ‘‘new taxon 2’’ (Stöck et al., 2008a) as ‘‘Hyla i
ranges or deficiency of knowledge.
we used two primers (MVZ47: 59_AGTGAAAGATACAGTCACAG
TGCTAGG_39; MVZ48: 59_GGAGGATATC-AGCACAGTCT-AAAAAG_
39) and the following protocol: PCRs were performed in 12.5 ll
reactions containing 7.55 ll H2O, 1.25 ll of PCR buffer including
1.5 mM MgCl2, 0.1 ll of dNTPs, 0.1 ll Taq QIAGEN, 0.75 ll of each
primer having a concentration of 10 mM, and 2 ll of genomic DNA
with a concentration of 20 ng/ll. For subsequent cloning, two such
reactions from each individual were pooled to increase volume.
The PCR protocol followed a ‘‘touch-up’’ approach with 10 cycles
of annealing temperatures (55–60 �C) increasing by 0.5� each cycle
(with 30 s at 95 �C, 30 s at annealing temperature, and 45 s at
72 �C), followed by 25 cycles with 30 s at 94 �C, 30 s at 56 �C, and
45 s at 72 �C, and a final extension of 7 min at 72 �C. All PCR-prod-
ucts (each clone of Fibrinogen; direct sequencing of PCR products of
cytochrome b) were sequenced in both directions, visualized on an
ABI 3730 sequencer, and aligned with Sequencher 4.9, followed by
the algorithms as implemented in Seaview (Gouy et al., 2010).
2.2. Phylogenetic analyses

In a first step, we reduced the total number of mtDNA se-
quences to the number of haplotypes found at each locality. Max-
imum likelihood (ML) phylogenies were generated with PhyML 3.0
(Guindon et al., 2010) using the GTR model for cytochrome b and
HKY model for the Fibrinogen alpha nuclear marker. For each case,
we chose a BioNJ tree as a starting tree and used the combined sub-
tree pruning and regrafting (SPR) plus nearest neighbor inter-
change (NNI) options for tree improvement. All other parameters
were set as default (http://atgc.lirmm.fr/phyml/). Bootstrap values
were based on 1000 (mtDNA) or 100 (nuDNA) resampled datasets.
Bayesian phylogenetic analysis using the reported marker-specific
substitution models was performed in MrBayes v3.1.0 (Ronquist
and Huelsenbeck, 2003), with the default heating values for three
out of four chains, running 20 � 106 generations separately for
the mtDNA and nDNA datasets, with tree sampling every 1000
generations. The ‘‘burnin’’-value was selected by visualizing the
log likelihoods associated with the posterior distribution of trees
in the program Tracer (http://tree.bio.ed.ac.uk/software/tracer/).
its according to maps available through the Global Amphibian Assessment http://
endix S1). Hyla meridionalis and ‘‘new taxon 1’’ (acc. Stöck et al., 2008a) are united as

ntermedia s.l.’’. Approximated range limits in interleaved colors indicate parapatric

http://atgc.lirmm.fr/phyml/
http://tree.bio.ed.ac.uk/software/tracer/
http://www.iucnredlist.org/initiatives/amphibians
http://www.iucnredlist.org/initiatives/amphibians
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All trees generated before the log likelihood curve flattened were
discarded.

2.3. Demographic analyses and estimates of divergence time

We used DnaSP v.5 (Librado and Rozas, 2009) to calculate and
visualize the distributions of observed and expected pairwise
nucleotide site differences (‘mismatch distributions’), between all
individuals within the mtDNA clades of Hyla arborea, H. molleri,
and subclades within H. orientalis, as well as the respective ex-
pected values for growing populations (Librado and Rozas, 2009).
We included only cytochrome b markers for which >904 bp 100%
readable sequences were available (H. arborea: 86%, H. orientalis:
94% H. molleri: 100%, total: 92%).

Divergence times to the most recent common ancestors were
estimated from the cytochrome b and Fibrinogen alpha markers
independently, assuming an uncorrelated exponential relaxed
molecular clock (BEAST v. 1.6; Drummond et al., 2006; http://
beast.bio.ed.ac.uk/Main_Page). In the absence of appropriate fos-
sils, we based our prior on results from previous work (Smith
et al., 2005; Stöck et al., 2008a), assuming a normal distribution
for the divergence time between H. meridionalis and other tree
frogs, with a mean of 10 millions of years ago (Mya) and standard
deviation of 1 My (thus effectively spanning a large range from 7.5
to 12.5 Mya).

We applied the marker specific models of sequence evolution as
described for PhyML, and a Yule tree prior (constant speciation rate
per lineage) as most appropriate for species-level divergences
(Drummond et al., 2007). DNA cytochrome b data were analyzed
both with and without codon partition, with different partitions
for codons 1 + 2 and 3.
Outgroup
(H. japonica)

0.04 subst./site
100/100

Fig. 2. Schematic maximum likelihood tree obtained with the program PhyML
based on ca. 1 kb of mtDNA cytochrome b (a detailed version with all individual
labels is shown in Fig. S1) with bootstrap support values obtained from 1000
resampled data sets (major nodes below 50% remained unlabeled; before ‘‘/’’),
followed by Bayesian posterior support values (%) for major respective nodes (after
the ‘‘/’’) from analysis using Mr. Bayes v3.1.0. Color codes of clades correspond to
those of localities in Fig. 1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
3. Results

Maximum likelihood and Bayesian phylogenetic analyses
yielded mtDNA trees with congruent topologies (Figs. 2 and S1).
The same clades were recovered for the nuDNA tree, but with
markedly lower support (Fig. 3). Results turned out to be very ro-
bust regarding partitioning. In the following, we focus on each of
the three species lineages of the Hyla arborea group.

3.1. European tree frog (Hyla arborea)

This species ranges from the Western Balkan Peninsula across
Central into mainland Western Europe (Fig. 1), showing almost
no genetic structure on the mitochondrial or the nuclear level
(Figs. 2 and 3). Specifically, it occurs on Crete (locs. 94, 97–101),
the Peloponnesus and mainland Greece (locs. 81–83, 89), along
the eastern Adriatic coast (locs. 54–56, 58, 71, 77, 78), and
throughout the Eastern Pannonian Basin (Hungary, NE-Romania,
W-Ukraine: locs. 75, 85–87), where it is separated from the eastern
tree frog (H. orientalis) by the Carpathian Arc. Hyla arborea is the
only tree-frog taxon occurring from central Poland (west of the
Vistula River: locs. 65–67, 70) throughout central (locs. 52 and
53) to northwestern (locs. 34–41, 43) and western Europe (locs.
28, 31, 32). The mtDNA mismatch distribution (Fig. 4a) shows
significantly high matching of simulated and observed curves
(Table 1), pointing to a recent and rapid expansion.

3.2. Eastern tree frog (Hyla orientalis)

Our data show that this lineage, whose old name was resur-
rected when molecular evidence showed its mitochondrial and
nuclear divergence from H. arborea (Stöck et al., 2008a; Gvozdik
et al., 2010), in fact represents a genetically very diverse and
well-differentiated group of lineages based on both mtDNA
(Figs. 2 and 5a) and nuclear DNA (Fig. 3). Using mtDNA, we
found five well-supported subclades (Fig. 5): one in the Talysh
Range (locs. 154–158), and a second well-structured one in the
Caucasus and adjacent areas (locs. 134–139, 147–149, 153); for
both, mismatch distribution analyses (Figs. 5b and c) failed to
reach significance (Table 1). Another well-structured mtDNA-
group with two subclades inhabits western Asia Minor (locs.
107, 118–120) and the western coast of the Black Sea (locs.
108, 111, 112, 114, 121), without signs of recent demographic
changes (Table 1). Finally, a well-supported, widespread haplo-
type clade with almost no substructure inhabits the Crimea,
the northwestern coast of the Black Sea and the entire northeast-
ern European region including Ukraine, Belarus, Russia, and Po-
land, with the Vistula River as its approximate western border.
For this latter group, demographic analyses revealed an almost
perfect match of simulated to empirical data (Fig. 5e and Table 1),
also pointing to a recent expansion.

The two groups of subclades based on mtDNA (i: Caucasus and
Talysh vs. ii: Asia Minor and Black Sea, Eastern Europe and Crimea;
Fig. 5a) are not entirely recovered based on nuDNA, where two
weakly supported subclusters (Fig. 3) unite Eastern European and
Talysh with western Asia Minor frogs.

http://beast.bio.ed.ac.uk/Main_Page
http://beast.bio.ed.ac.uk/Main_Page


Fig. 3. Maximum likelihood tree obtained with the program PhyML based on 545 bp of nuDNA fibrinogen alpha (intron 1). The number of identical clones obtained for each
sequence is given after the sample ID (as in Appendix S1), and before the locality ID (as in Fig. 1 and Appendix S1). Bootstrap support values from 100 resampled data sets
(normal font) for this tree are followed by Bayesian posterior support values (%) for major respective nodes in bold italics (after the ‘‘/’’) from analysis using Mr. Bayes v3.1.0.
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Fig. 4. Mismatch distributions from 905 bp of mitochondrial cytochrome b. The
dotted lines show the frequency distribution of the observed pairwise differences;
the solid lines show the frequency distribution of the expected pairwise differences
under the sudden expansion model, performed in DnaSP v.5.

Table 1
Demographic analyses of mitochondrial haplotypes in three species (six clades) of
European tree frogs as obtained using DnsSP v.5 (Librado and Rozas, 2009); for details
see text.

Species N Theta R2 Tajima’s D

Hyla molleri 24 4.41 0.088 NS �0.786 NS
Hyla arborea 56 2.75 0.036** �2.48***

Hyla orientalis
Talysh 6 2.47 0.156 NS �0.351 NS
Caucasus 19 5.65 0.098 NS �0.823 NS
Asia Minor and W-coast of Black Sea 16 8.38 0.119 NS �0.168 NS
Eastern Europe and Crimea 46 1.67 0.035** �2.290***

** p < 0.01.
*** p < 0.001.
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3.3. Iberian or Moller’s tree frog (Hyla molleri)

Samples from Spain (locs. 4, 9, 14, 16–27), Portugal (loc. 6), and
southwestern France (locs. 29–30a) harbor H. molleri (including
hybrids, as concluded from occurrence in both nuDNA clades, e.g.
sample Fig. 3: HylaDordogne06, loc. 30a, or mismatch between
mtDNA and nuDNA clade membership, Figs. S1 and S3), with a rel-
atively shallow genetic structure across frogs from all localities.
Demographic analyses using DnaSP did not yield significant results
(Fig. 4b and Table 1).

3.4. Secondary contact zones in Western Palearctic tree frogs

We newly localized five major contact zones: First, in north-
eastern Greece, we narrowed the potential contact between H.
arborea and H. orientalis to less than 70 km (locs. 83a and 105a),
without evidence of genetic interactions. Second, the Western Car-
pathians of Serbia (loc. 77a) show co-occurrence of H. arborea and
H. orientalis mtDNAs. Thirdly, to the north of the Carpathian Arc, in
the lowlands of central Poland, we have evidence for parapatric
ranges of H. arborea and H. orientalis (locs. 68 and 69), with the Vis-
tula River representing a reasonable approximation for range bor-
ders of both lineages. Fourth, near the Atlantic coast of SW-France
(locs. 30–30a), we found range overlap and hybridization of H.
arborea and H. molleri, as nuclear intron alleles from H. arborea
were detected in two individuals with H. molleri mtDNA; one frog
also possessed nuclear alleles from both H. arborea and H. molleri
(Fig. 5). Fifth, we found a contact zone between H. orientalis and
H. savignyi in SW-Anatolia (loc. 120), where we indentified an
apparently re-combined nuclear allele, seemingly stemming from
successful hybridization of both species that occur in geographic
proximity. Hyla orientalis and H. savignyi have close geographic
proximity in the south of the Great Caucasus (locs. 145–148), but
no documented hybridization.
3.5. Divergence-time estimates

The posterior predictions for the divergence time between Hyla
meridionalis and other Western Palearctic Hyla lineages were very
close to the mode assumed for the prior, and very consistent be-
tween mtDNA and nuDNA (namely, 9.7 and 9.8 Mya for the cyto-
chrome b and Alpha-Fibrinogen, respectively; Table 2). For the
inner groups, the mtDNA and nuDNA markers also yielded similar
and widely overlapping ranges of the divergence-time estimates
(Table 2), with most lineages formed between late Miocene and
lower Pliocene time periods (H. sarda, H. savignyi, H. felixarabica,
H. arborea), while the remaining lineages (H. molleri, H. orientalis)
are suggested to be of Pliocene age. The mean substitution rates
predicted for cytochrome b and Alpha-Fibrinogen were 0.0161 and
0.00262 per lineage per million years respectively, similar to those
found in other anurans (e.g. Mulcahy and Mendelson, 2000; Hoegg
et al., 2004).
4. Discussion

4.1. Cryptic diversity

Throughout the European range of H. arborea, we show great
mtDNA homogeneity (Figs. 2 and S1), and also nuDNA-uniformity.
A fast postglacial range expansion of the H. arborea mtDNA haplo-
type group from a Balkanian refugium into its entire current range
is very well documented by the mtDNA mismatch distribution
(Fig. 4a and Table 1) and the corresponding haplotype network
(Fig. S2), which shows the most frequently represented haplotype
(Fig. S2: rectangle) ranging from western France to Western Uk-
raine (Fig. 1: locs. 28 and 88) with its closest relatives at the Adri-
atic coast (Albania: loc. 78; Croatia: e.g. locs. 71) and in Greece (e.g.
loc. 83). The Balkanic region harbors a greater diversity of haplo-
types than does the rest of Europe (Fig. S2). Our previous study
based on the coding nuclear Rag-1 for a small subset of samples
(Stöck et al., 2008a) also detected a larger amount of genetic diver-
sity in the south of the range, interpreted as diversity in the pro-
posed Pleistocene refugium, the Balkan Peninsula and Adriatic
coast.

Despite limited sampling from some regions for H. molleri, we
covered most geographic extremes of the range including its north-
ern limits in southwestern France. As recently concluded by Barth
et al. (2011), who had larger sample sizes for the western range, we
find that the Iberian endemic H. molleri exhibits little mtDNA
diversity throughout its range. As for many Iberian species, it could
circumvent the Pyrenees only to the West but has spread to north-
ern latitudes much less than has H. arborea.

In sharp contrast to H. arborea and H. molleri, we found sub-
stantial mtDNA but also nuDNA-based genetic structure within



Fig. 5. Mitochondrial DNA-diversity within Hyla orientalis. (a) Unrooted maximum-likelihood tree for 905 bp of cytochrome b (for details: legend of Fig. 2). (b–e) Mismatch
distributions from 905 bp of mitochondrial cytochrome b for the corresponding haplotype clades as shown in (a). The dotted line shows the frequency distribution of the
observed pairwise differences; the solid line shows the frequency distribution of the expected pairwise differences under the sudden expansion model, performed in DnaSP
v.5. (f) Geographical representation of clades shown in (a–e).
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Table 2
Divergence time (millions of years, My) to the most recent common ancestor (including stem), estimates based on the program BEAST using mitochondrial (cytochrome b; mean
rate: 0.0161 per lineage per million years) and nuclear (Fibrinogen alpha; mean rate 0.00262 per lineage per million years) DNA sequences.

Species H. meridionalis H. sarda H. savignyi H. felixarabica H. arborea H. intermedia H. molleri H. orientalis

Marker mtDNA nuDNA mtDNA nuDNA mtDNA nuDNA mtDNA nuDNA mtDNA nuDNA mtDNA nuDNA mtDNA nuDNA mtDNA nuDNA

My 9.7
(7.7–
11.6)

9.8
(7.6–
12.0)

6.1
(4.3–
8.3)

7.7
(4.5–
11.1)

6.2
(4.3–
8.4)

5.2
(2.9–
7.9)

6.2
(4.3–
8.4)

3.9
(2.0–
6.1)

6.1
(4.3–
8.1)

4.5
(2.3–
7.0)

6.1
(4.5–
8.2)

3.6
(1.7–
5.8)

3.7
(2.6–
5.0)

3.5
(1.7–
5.4)

3.7
(2.6–5-
5)

4.6
(2.4–
6.9)
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the recently recognized Eastern tree frog H. orientalis (Figs. 3 and
5). Much of H. orientalis’ diversity occurs in Asia Minor and sug-
gests circum-Black Sea Pleistocene refugia. The clade that
post-glacially colonized the northern latitudes shows high
mtDNA-uniformity and significant signs of recent range expan-
sion (Fig. 5e), similar to the signature across all of H. arborea’s
mtDNA (Fig. 4a). The reason that Gvozdik et al. (2010) found
all their ‘‘H. orientalis samples (to) form a compact cluster with
substantial genetic variation, although without any deep diver-
gences’’ appears to result from sampling only some Asia Minor
and Caucasian regions.

4.2. Divergence times

The posterior predictions for the divergence time with H. merid-
ionalis are extremely close to the mode assumed for the prior and
very consistent between cytochrome b and Alpha-Fibrinogen. Fur-
thermore, the associated mean substitution rates are similar to
those found in other anurans (e.g. Mulcahy and Mendelson,
2000; Hoegg et al., 2004), providing support for our calibration of
the phylogenies with Hyla meridionalis

Despite previous estimates of divergence time for some Wes-
tern Palearctic tree frog species (Canestrelli et al., 2007: H. interme-
dia; Recuero et al., 2007: H. meridionalis), Gvozdik et al., 2010: H.
orientalis, H. savignyi, H. felixarabica, H. meridionalis), our study is
the first that includes all extant species, and that uses mitochon-
drial and nuclear sequence markers. As far as comparable (diver-
gence of H. orientalis vs. H. savignyi + H. felixarabica) our
estimates are compatible, given the highest posterior density
interval spanning ‘‘the period from the Early Pliocene through
the Miocene, between 4.9 and 23.0 My’’ (Gvozdik et al., 2010).

Some of the discrepancies between our mtDNA and nuDNA-
based estimates (Table 2) may be explicable by fewer data on the
nuclear than on the mtNDA level for several clades. We confirm
considerable divergences between two subclades of both ‘‘H.
meridionalis s.l.’’ and ‘‘H. intermedia s.l.’’ (Fig. 2), as previously
shown by other authors and markers (Recuero et al., 2007;
Canestrelli et al., 2007), and temporarily called ‘‘new taxa1 and
2’’ (Stöck et al., 2008a). More work is needed to understand poten-
tial taxonomic implications for these lineages but is beyond the
scope of this paper.

4.3. Contact and hybrid zones

The Eastern Mediterranean contains several major Pleistocene
refugia, with the territory of Greece representing a meeting zone
of faunal elements of Asia Minor and of Balkan Peninsular (plus
African) origin (Lymberakis and Poulakakis, 2010). Western
Greece, Crete and some western Aegean islands are colonized by
the mitochondrial lineage that also occurs on the western Balkan
Peninsula and stretches into Central and even Western Europe
(H. arborea), while the eastern Greek provinces of Macedonia,
Thrace and the eastern Aegean islands are phylogenetically close
to the clade of Asia Minor origin (H. orientalis). Although we nar-
rowed the potential contact to ca. 70 km (locs. 83a and 105a),
our data are not sufficient yet to reveal potential contacts of
tree-frog lineages in northeastern Greece and the Aegean islands.
To the north of Greece, the Carpathians represent a major barrier
for tree frogs. West of this mountain range occurs the H. arborea
haplotype group, and to the east of the Carpathian Arc that of H.
orientalis, which also inhabits the entire rest of the Eastern Euro-
pean Hyla range. Large Carpathian river valleys provide rare oppor-
tunities for secondary contacts, with so far one locality of co-
occurrence of both mtDNAs (loc. 77a). To the north of the Carpa-
thian Arc, secondary contact and hybridization between H. arborea
and H. orientalis are documented by mtDNA and microsatellite data
from the lowlands of Poland (Borzée, 2010, in prep.). Interestingly,
the mtDNA subclade of H. orientalis that meets the uniform H. arbo-
rea in Poland (Fig. 1 and 5) differs from the subclade (Figs. 1 and
4d: triangles) that is in potential contact in Serbia and northeastern
Greece. This offers interesting comparative research opportunities
on secondary contacts of differently, but quite closely related
populations.

Since the splitting of H. molleri from H. arborea by Stöck et al.
(2008a), occurrence and range limits at the Atlantic coast of SW-
France, in the Aquitaine region, have been ambiguous with respect
to species (see also Barth et al., 2011). Our new data (locs. 29–30a)
not only revealed the only Western Palearctic region with three co-
occurring tree frog taxa but also (at least) F1-hybridization be-
tween H. molleri and H. arborea. As in the overlapping distributions
of H. meridionalis and H. molleri, in the Spanish Sistema Central
Mountains, few hybridization events have been reported (Oliveira
et al., 1991; Barbadillo and Lapena, 2003); even genetic interac-
tions between three species appear possible, but more research is
required.

In addition to the three newly localized contact zones of H.
arborea with H. orientalis (NE-Greece, Poland), and with H. molleri
(SW-France), a well-known contact zone with H. intermedia exists
in NE-Italy (Verardi et al., 2009), where neither hybrids nor back-
crosses were identified, indicating a lack of current gene exchange
between the two species. However, introgressed alleles appeared
in both species, indicating past introgressive hybridization. Using
bioacoustic inference, pending genetic confirmation, Schneider
(2001) narrowed the contact between H. orientalis (as ‘‘H. arborea’’)
and H. savigny to less than 10 km in the Anamur plain of south-
west Anatolia. Parapatry with one documented locality of hybrid-
ization (Karkom, Israel) has been shown between H. savignyi and
H. felixarabica (Gvozdik et al., 2010).

4.4. Comparisons with phylogeographic patterns of other terrestrial
groups

Our data contribute to knowledge of the evolutionary history
of Western Palearctic tree frogs as well as the comparative phy-
logeography of Europe, and should improve conservation mea-
sures. As recently noted by Rissler and Smith (2010) for North
America: ‘‘Identifying congruence in the geographical position
of lineage breaks and species range limits across multiple taxa
is a focus (. . .) of comparative phylogeography. These regions
are biogeographical hotspots for investigations into the pro-
cesses driving divergence at multiple phylogenetic levels’’. In-
deed, the postglacial colonization routes and resulting



8 M. Stöck et al. / Molecular Phylogenetics and Evolution 65 (2012) 1–9

60
secondary hybrid zones of tree frogs in the Western Palearctics
coincide with several of those known from other terrestrial spe-
cies. Namely, the postglacial colonization route of H. arborea
resembles that of the grasshopper Chorthippus parallelus, and
the advance of beech (Fagus sylvatica) and black alder (Alnus
glutinosa) from their Balkanian refugia (King and Ferris, 1998;
Hewitt, 1999, 2004; Magri, 2008), with the broad-leaf forest
providing direct summer habitats for tree frogs, suggesting par-
tial co-colonization. As do H. arborea and H. molleri, these three
species meet Iberian counterparts in the Pyrenees (Hewitt,
1999) and form hybrid zones in their vicinity. Postglacial colo-
nization of northeastern Europe to the east of the Carpathians
by H. orientalis resembles that by the green toad Bufo variabilis
(Stöck et al., 2006, 2008b).

4.5. Implications for conservation of European tree frogs

Amphibians are undergoing a massive and extensive crisis
(Wake and Vredenburg, 2008; Hoffmann et al., 2010), with com-
plex causes that include land-use changes (Hof et al., 2011). The
remaining amphibian biodiversity should thus be especially
assessed and protected in regions with industrial agriculture and
intense land use and fragmentation (such as Western Europe) or
currently facing major land-use changes due to political and
economic transformations (such as Eastern Europe). While most
Hyla species are still common in parts of their Western Palearctic
range, habitats are fragmented, and these frogs are in significant
decline over much of their Western European distribution
(http://www.iucnredlist.org/apps/redlist/details/10351/0), mainly
by ‘‘loss of breeding habitats, habitat isolation, fragmentation,
and pollution’’. Tree frogs are considered less threatened in Eastern
Europe (www.amhibiaweb.org, incl. refs.). However, land-use
changes caused by ongoing political and economic transformation
pose upcoming threats also for the latter regions. Our data there-
fore support conservation efforts by fine-tuning measured loca-
tions of refugia harboring great genetic diversity (e.g. Moritz,
2002), which are ‘‘essential refuges for Earth’s many small-ranged
species’’ (Sandel et al., 2011). The localized areas of secondary con-
tact should be considered ‘‘natural arenas to investigate processes
driving speciation’’ (Rissler and Smith, 2010), which require special
conservation efforts.
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ABSTRACT 

There is accumulating evidence that a small number 
of genes repeatedly become the master sex 
determination switch in many systems with 
otherwise different sex chromosomes. The gene 
Dmrt1 and its paralogs are known to control sex 
determination in birds and at least one fish and one 
frog species, and Dmrt1 is located on the sex 
chromosomes of several other amphibian species. 
Here, we demonstrate that Dmrt1 is also the master 
sex determining gene in four European tree-frog 
species. We identified trans-species variation 
specific to Y chromosomes in Dmrt1 exon 1, but not 
in exon 3 or other neighboring genes. A genome 
scan of over 29,000 SNPs identified no additional 
trans-species Y-specific markers. This discovery 
lends strong support to the hypothesis that certain 
genes in the conserved sex determination pathway 
recurrently become the master sex determining 
gene. Moreover, the sex-specific markers we identify 
will enable research on environmental sex reversal 
in a wider range of frog species. 
 
 
INTRODUCTION 

The field of sex chromosome evolution has recently 
expanded beyond the typically old and stable sex 
determination systems of mammals, flies, and birds, 
to include organisms with genetic sex determination 
controlled by undifferentiated chromosome pairs 
(Bachtrog et al. 2014). Most amphibians and fish fall 
into the latter category, and there is an emerging 
consensus that sex-chromosome turnovers 
contribute to this pattern (Kikuchi and Hamaguchi 
2013, Malcom et al. 2014).  Against this background 
of rapid change, we are interested in whether any 
consistent patterns emerge in the genes or genomic 
regions responsible for sex determination.  
 Graves and Peichel (2010) noted that some 
ancestral vertebrate chromosomes have repeatedly 
become sex-linked in different organisms, 
hypothesizing that there are “limited options” for 
sex determination, and that a few important genes 
are particularly likely to take over the function of 
sex determination. Of the small but growing set of 
identified sex-determining genes, many have been 

shown to be involved in the sex differentiation 
cascade across diverse vertebrate groups.  In therian 
mammals, Sry is known to be the master sex 
determination gene (Sekido & Lovell-Badge 2008), 
and recent evidence suggests that the gene from 
which it is derived, Sox3, also plays a major role in 
sex determination in the fish Oryzias dancena 
(Takehana et al. 2014) and the frog Rana rugosa 
(Oshima et al. 2009). Several fish have converged on 
another pathway in the same cascade. Amh, which is 
essential for testis development throughout 
vertebrates, is a strong candidate for the sex-
determining gene in monotremes (Cortez et al. 
2014); a paralog controls sex differentiation in the 
Patagonian pejerrey Odontesthes hatcheri (Hattori et 
al. 2012), and its receptor Amhr2 provides a similar 
function in the fugu Takifugu rubripes (Kamiya et al. 
2012). Dmrt1 is another gene that is likely to play a 
role in sex determination across a diverse range of 
species (Matson & Zarkower 2012). This gene 
contributes to sex differentiation in organisms as 
diverse as nematodes, insects, and mammals; it is 
the master sex determination gene in birds (Smith 
et al. 2009), and likely a dosage-dependent sex-
determining gene in the tongue sole Cynoglossus 
semilaevis (Chen et al. 2014). Partial duplicates of 
Dmrt1 are also the master sex determiners in the 
African clawed frog Xenopus laevis (Yoshimoto et al. 
2008) and the medaka fish Oryzias latipes (Nanda et 
al. 2002; Matsuda et al. 2002). The chromosome 
harboring Dmrt1 has been independently co-opted 
for sex in three deeply divergent lineages of frogs, 
the green toad (Bufo viridis), common frog (Rana 
temporaria), and European tree frog (Hyla arborea) 
species groups (Brelsford et al. 2013).  

Within the H. arborea radiation, Dmrt1 is 
sex-linked in four species that share a common 
ancestor 5-7 million years ago, namely H. arborea, H. 
intermedia, H. molleri and H. orientalis (Stöck et al. 
2011, 2013; Brelsford et al. 2013). Stöck et al. 
(2011) pointed out that, despite the absence of 
recombination between X and Y chromosomes in 
experimental crosses (Berset-Brändli et al. 2008, 
Stöck et al. 2011, 2013), the Y chromosomes of each 
species are more similar to the X chromosomes of 
the same species than to Y chromosomes of related 
species, strongly suggesting a history of X-Y 
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recombination after the species diverged. However, 
as pointed out by Blaser et al. (2014), such a 
clustering of alleles by species (rather than by 
gametologs) might in principle also stem from 
recurrent homologous transitions (sensu van Doorn 
& Kirkpatrick 2007, 2010); namely, recurrent 
masculinizing mutations of the female-determining 
X allele. Fully excluding this possibility requires a 
phylogenetic analysis of the sex-determining gene 
itself: the homologous-transition hypothesis 
predicts shallow phylogenies for all sex-linked 
genes, including the sex-determining ones (Figure 
1A), while the XY-recombination hypothesis 
predicts shallow phylogenies for all genes except 
those involved in sex determination. If the four tree-
frog species retain an ancestral sex-determining 
gene, the Y-linked alleles of this gene should cluster 
together across all four species, with the X-linked 
alleles forming a separate cluster (Figure 1B). 
Finding a genomic region where coalescence time 
for the X and Y gametologs predates species 
divergence would not only help identify the sex-
determination locus itself, but also provide further 
support for the XY-recombination model, by 
falsifying the homologous-transition alternative. 
 Here, we search the Hyla genome for trans-
species Y-specific polymorphism using two 
approaches, one focused on the candidate gene 
Dmrt1 and another genome-wide scan using 
genotyping-by-sequencing. Our aims are to identify 
the sex-determining locus of European tree frogs, to 
test whether sex-chromosome homomorphy in this 
group stems from XY recombination or from 
homologous transitions, and to demonstrate the 
utility of trans-species association studies for fine-
scale genetic mapping, particularly in regions of low 
recombination. 
 
 
METHODS 

DMRT1 CANDIDATE GENE APPROACH 

We used multiple rounds of marker development 
and genotyping to isolate the small genomic region 
that shows no evidence of recombination between X 
and Y chromosomes in four related tree frog species.  
Initially, we genotyped a single-nucleotide 
polymorphism in Dmrt1, which showed sex-
diagnostic variation across all sampled populations 
of H. arborea. We then scanned other genes flanking 
Dmrt1.  For each subsequent scan, we identified 
fixed differences between X and Y gametologs, and 
then developed new markers to search a reduced 
region of the sex chromosome around the marker(s) 
displaying this pattern (see Table S1 for a complete 

list of markers; see results section for additional 
details of the order of marker development). 
 
New genomic resources developed for H. arborea 
facilitated our scans of the sex chromosome.  We 
used both a transcriptome (Brelsford et al. 2013) 
and a newly developed low-coverage draft genome 
sequence. Genome sequencing and assembly 
followed methods described in Purcell et al. (in 
press). Briefly, we assembled quality-trimmed reads 
from a single Illumina paired-end library, sequenced 
to 5x depth, using Abyss (Simpson et al. 2009). We 
then scaffolded the resulting assembly with SSPACE 
(Boetzer et al. 2011). To identify genetic differences 
between X and Y gametologs, we combined Sanger 
sequencing of markers developed from the draft 
genome sequence, and SNPs from the 
transcriptome.  
 
 
GENOTYPING-BY-SEQUENCING GENOME SCAN APPROACH 

We also conducted a genome scan using a 
genotyping-by-sequencing approach, seeking 
markers that showed consistent differences 
between four males and four females across the four 
related frog species (32 frogs in total).  We used the 
genotyping-by-sequencing procedure described by 
Parchman et al. (2012) with slight modifications. 
Briefly, genomic DNA was digested with restriction 
enzymes EcoRI-HF and MseI (New England Biolabs), 
ligated to Illumina sequencing adapters, and PCR 
amplified. The PCR reaction used one selective 
primer designed to amplify a subset of restriction 
fragments; we modified the primer design of 
Parchman et al. (2012) to include phosphorothioate 
bonds at both ends of the primer to prevent 
degradation by high-fidelity polymerase, which can 
otherwise reduce the specificity of PCR 
amplification (Brelsford et al. 2011). PCR reactions 
were pooled, and amplicons of 400-500 bp were 
isolated by agarose gel extraction. The library was 
sequenced on the Illumina Hiseq 2000 platform at 
the Lausanne Genomic Technologies Facility. 
 
Raw reads were demultiplexed and quality filtered 
using the process_radtags module of Stacks 
(Catchen et al. 2013), and mapped to the H. arborea 
draft genome using Bowtie2 (Langmead and 
Salzberg 2012). Variants were identified using 
Samtools mpileup (Li et al. 2009). These variants 
were then quality-filtered using Vcftools (Danacek 
et al. 2011). Genotypes with quality scores <20 were 
converted to missing data, and loci with >20% 
missing data were removed. Finally, loci with a 
minor allele frequency <3% were removed. We then 
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used Vcftools and custom shell scripts to identify 
markers polymorphic within one species, 
polymorphic in multiple species, or fixed between 
species, and to search for markers heterozygous in 
all males and homozygous in all females. 

RESULTS 

DMRT1 CANDIDATE GENE APPROACH 

First, we genotyped a single-nucleotide 
polymorphism (SNP) previously identified in Dmrt1 
(Brelsford et al. 2013) in 217 samples distributed 
throughout the H. arborea species range (Table S1). 
This non-synonymous SNP was heterozygous for the 
C and T alleles in all adult males and homozygous 
for the C allele in all adult females, strongly 
suggesting that the C allele (encoding threonine) is 
fixed on the X chromosome and the T allele 
(encoding alanine) on the Y chromosome. 

We then tested whether the range-wide sex-
diagnostic region of the chromosome encompassed 
two genes located on each side of Dmrt1 on the 

Xenopus genome sequence, Dock8 and Map1b, by 
genotyping four SNPs in these genes (genotyping 
details in Table S2) in populations from Greece, 
which exhibit occasional recombination and low 
differentiation between X and Y chromosomes 
(Dufresnes et al. in press). None of the four SNPs 
were sex-diagnostic (Table S1). Assuming that gene 
order is conserved between X. tropicalis and H. 
arborea, this narrowed the potentially sex-
diagnostic region to the interval between Dock8 and 
Map1b, which spans 5.4 Mbp and contains 52 genes 
in X. tropicalis genome. 

Next, we used the H. arborea transcriptome 
sequence (Brelsford et al. 2013) to identify SNPs in 
six genes between Dock8 and Map1b. These SNPs 
were then genotyped in the same adults from 
Greece (SNP and genotyping information in tables 
S1 and S2). All SNPs presented genotype patterns 
similar to Dock8 and Map1b, with no sex-diagnostic 
variants found. This narrowed the potentially sex-
diagnostic region to the 0.5 Mbp interval between 
Kank1 and Smarca2, which contains three genes: 
Dmrt1, Dmrt3, and Dmrt2. 

FIGURE 1: Hypothetical gene trees illustrate alternative scenarios of Hyla sex chromosome 
evolution. Clustering by species (A) is observed across most of the sex chromosome (Stöck et al. 
2011), and is expected even at the sex-determining locus under the “homologous transitions” model. In 
contrast, the “fountain of youth” model predicts clustering by gametolog (B) at the sex-determining 
locus, and clustering by species (A) elsewhere on the sex chromosome. A tree based on mitochondrial 
DNA (C) illustrates the colors used to represent each species. 
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We then designed primers from a low-coverage 
draft assembly of the H. arborea genome (Supp. 
Mat.) to amplify exons 1 and 3 of Dmrt1 and intron 
10 of Kank1, located in the region of Kank1 closest to 
Dmrt1. We sequenced these three loci in males and 
females of four Hyla species that share the same sex 
chromosome (H. arborea, intermedia, molleri, 
orientalis; Stöck et al. 2011, 2013), as well as in H. 
meridionalis as an outgroup. Amplicons were 
sequenced on both strands by Microsynth (Balgach, 
Switzerland) on an ABI 3730XL sequencer. 
Haplotypes were inferred with PHASE (Stephens 
and Donnelly 2003). For each male, the haplotype 
most similar to a female haplotype was designated a 
putative X-linked sequence, and the other allele was 
designated a putative Y-linked sequence. We then 
inferred a gene tree at each locus using PhyML 
(Guindon et al. 2009). For Dmrt1 exon 1, all putative 
Y haplotypes of the H. arborea, intermedia, molleri, 
and orientalis formed one clade, which excluded all 
known X-linked sequences from females and 
putative X-linked sequences from males. In contrast, 
Dmrt1 exon 3 and Kank1 intron 10 showed a more 
complex pattern with some clades containing both 
X-linked and Y-linked sequences (Figure 2). 

To confirm the male-specificity of the putative Y-
linked sequences, we identified a SNP that was 
heterozygous in all sequenced males and 
homozygous in all sequenced females, 248 bp 
upstream of Dmrt1 exon 1. Based on comparison 
with the H. meridionalis outgroup, the SNP is a G-to-
C substitution on the Y chromosome. We genotyped 
this SNP in 20 males and 20 females of three of the 
four focal Hyla species; in the fourth, H. orientalis, 
we genotyped 20 males and eight females (see Supp. 
Mat. for genotyping details). All genotyped males 
were G/C heterozygous and all females G/G 
homozygous, with the exception of two 
heterozygous H. molleri females, confirming that this 
marker is sex-diagnostic across three species of tree 
frogs and strongly associated with sex in a fourth.  

GENOME SEQUENCING 

We obtained 28.8 Gbp of raw sequence data from a 
Swiss male H. arborea, 21.3 Gbp of which was 
retained after filtering and quality trimming. 
Assembly with Abyss (k=44) and scaffolding with 
SSPACE produced a highly fragmented low-coverage 
draft genome sequence, with length 1.2 Gbp and 
N50 1.2 kbp excluding gaps. This sequence is 
considerably smaller than the 5 Gbp expected 

genome size of H. arborea (Borkin et al. 2005), but 
contains four of the five exons of Dmrt1. 

GENOTYPING-BY-SEQUENCING GENOME SCAN 

We identified 29186 SNPs in 10536 scaffolds of the 
low-coverage genome assembly, including 21588 
polymorphic within one species, 3031 fixed 
differences between species, and 4567 
polymorphisms shared between multiple species. 
None of the shared polymorphisms matched the 
pattern of Dmrt1 exon 1, with one allele being found 
in all males and absent in females. The Hyla genome 
is approximately 5 Gbp giving an expected interval 
of 475 kbp between scaffolds for which we obtained 
GBS data. This can be taken as an approximate 
upper limit of the size of the sex-diagnostic region of 
the genome, an order of magnitude larger than the 
42 kbp separating Dmrt1 exon 3 from Kank1 intron 
10 in X. tropicalis. 

DISCUSSION 

Our results strongly suggest that Dmrt1 is the 
master sex-determining gene in at least four 
European tree-frog species. The first exon of Dmrt1 
is the only one of 29186 examined loci where 
sequences cluster perfectly by gametolog rather 
than by species, as predicted for an ancestral sex-
determining locus. This pattern does not hold at two 
tightly linked loci, Dmrt1 exon 3 (22 kb downstream 
in X. tropicalis) and Kank1 intron 10 (20 kb 
upstream in X. tropicalis): some Y haplotypes are 
closer to X haplotypes of the same species than to Y 
haplotypes of other species, indicating that 
recombination occurred between gametologs 
subsequent to species divergence. These contrasted 
topologies between neighboring genes also further 
support the XY-recombination model of sex 
chromosome homomorphy, by dispelling the 
alternative hypothesis of homologous transitions 
(recurrent masculinizing mutations of X alleles). As 
developed in the introduction, this latter model 
would predict shallow phylogenies for all sex-linked 
genes, including those involved in sex 
determination.  

Our method, like that of Kamiya et al. (2012) shows 
that when the genetic basis of a trait is shared 
across multiple species, it is possible to fine-map the 
responsible locus to below the gene level using 
trans-species variation. Notably, this is true even 
when recombination rates are extremely low, as is 
the case in Hyla sex chromosomes (Guerrero et al. 
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FIGURE 2: Sequences of four Hyla species at Dmrt1 exon 1 cluster by gametolog and not by species. In contrast, at Dmrt1 exon 3 and intron 10 of the adjacent 
gene Kank1, some Y-chromosomal sequences cluster with the X-linked alleles of the same species rather than with the Y-linked alleles of other species. Distances 
between loci are from the X. tropicalis genome; the Hyla genome is approximately three times larger so the true distances in Hyla may be greater.  
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2012). We also demonstrate the continued utility of 
candidate gene approaches, despite the increasing 
ease of generating large population-genomic 
datasets, since our genome survey with GBS 
markers failed to detect the small trans-species sex-
diagnostic region. 

This study contributes to a growing understanding 
that certain genes are especially likely to take over 
the role of sex determination. Dmrt1 occupies a vital 
place in the highly conserved sex-determination 
pathway (Matson & Zarkower 2012), and this gene 
or its paralogs have been coopted as master sex 
determining genes in at least 4 independent cases 
(see Introduction). Future work should investigate 
the potential mechanism by which Dmrt1 
determines sex in tree frogs, by analyzing temporal 
expression patterns of the X and Y copies of Dmrt1. 

Finally, we have documented an assay for molecular 
sexing of three European tree-frog species. Sex 
reversal due to extreme temperature events or 
synthetic endocrine disruptors is a conservation 
concern for amphibians (e.g. Hayes et al. 2002, 
2006), but studies of this phenomenon are limited 
by the ability to reliably determine the genetic sex of 
individuals. Indeed, the two H. molleri females with 
anomalous male-like Dmrt1 genotypes may indicate 
environmental sex reversal in this population, 
although we cannot rule out rare XY recombination 
as an alternative explanation. Our reliable and 
inexpensive SNP assay will facilitate future studies 
of environmental sex reversal in H. arborea, H. 
intermedia, H. molleri, and H. orientalis. 
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Table S1 : List of markers used 

gene 

gene start 
position in  

X. tropicalis 
scaffold 1 

primer f primer r restriction enzyme(s) reference 

phase 1 (H. arborea) 
Dmrt1 96303907 CACACAGCATTCCTTATGTTGA CGATGAATAGCCATGGTTCC HinfI Brelsford et al 2013 

Dock8 96078164 TTGAGCCACTGTTTGCAACT GCCGTAGATATTGTTTGAATGC AluI, AvaII, MseI Brelsford et al 2013 

Map1B 101456644 CCGCTTGTAAAATCAAAAACTAAAA CGGCACACAGAAGCAAAATA AvaII Brelsford et al 2013 

phase 2 (H. arborea, H. orientalis) 
Gldc 98254152 CATCTATGGCGACCAACATTT CCACAGGGTTATGGAGAGGAT MluCI this study 

Smarca2 96769565 ACCACAGATACCTCCAGCACA TGCAGGTAGGGTTCTCTTTCC SacI this study 

Smn2 101248089 GCACACAAAGTAAGGGTCTGG TGAAGTTGAGGGCATTTCCTA BsiEI,Hpy166II this study 

Kank1 96235063 TGGTGCTGATGAAAACATGAA GCAGCTTCCAACAGAACAGTC TaqI,XmnI this study 

Cdc37l1 97709307 GCAGAGGAACAAGGGTATTTTG TGGCTAAAACATTGTACTTTCATATT Hpy166II this study 

Kiaa0020 97016505 GGATTCTGCAGTACGACAACG TTGCCACCAGGTAGAAAATCT RsaI this study 

phase 3 (5 species) 
Dmrt1Ex1 96303907 ACCCTGCAGGTTTACCTATGA CTTTCTGCACTGGCAGTCTCT Sanger sequence this study 

Dmrt1Ex3 96303907 CATTTCAGGCCAGTTTCACTC TTCATCCTACCAGATGGCTGT Sanger sequence this study 

Kank1 96235063 ATGAGTGGTTCCGTGTGTCA TCTGGTGGTTTACGTTGCAC Sanger sequence Brelsford et al 2013 

phase 4 (4 species) 

Dmrt1 96303907 AAATATTTAACTTTTCATACCCTGCAGGTTTACCTATGA TTTCMATATCCCTCCCACAATC BccI this study 
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Table S2 : SNP genotyping information 

number of individuals per genotype 

male female 

gene enzyme species region AA AB BB AA AB BB 

dmrt1 hinfI H. arborea Greece 63 30 

dmrt1 hinfI H. arborea Adriatic 55 16 

dmrt1 hinfI H. arborea Danube 14 9 

dmrt1 hinfI H. arborea NW Europe 18 12 

dock8 aluI H. arborea Greece 49 15 11 17 

dock8 avaII H. arborea Greece 11 53 1 27 

dock8 mseI H. arborea Greece 28 33 28 

map1b avaII H. arborea Greece 4 63 28 

smarca2 saci H. arborea Switzerland 3 4 

gldc mluci H. arborea Switzerland 3 1 3 1 

smn2 bsiei H. arborea Switzerland 2 2 2 2 

smn2 hpy166II H. arborea Switzerland 2 2 2 2 

cdc37l1 hpy166II H. arborea Switzerland 1 3 1 3 

kiaa0020 rsaI H. arborea Switzerland 4 4 

kiaa0020 scrfI H. arborea Switzerland 4 4 

kank1 xmnI H. arborea Switzerland 4 4 

kank1 taqi H. arborea Switzerland 4 4 

gldc mluci H. arborea Greece 11 49 28 

smarca2 saci H. orientalis Serbia 3 1 2 1 1 

smarca2 saci H. arborea Greece 17 39 3 12 13 

smn2 bsiei H. orientalis Serbia 4 4 

smn2 bsiei H. arborea Greece 7 30 23 4 9 13 

smn2 hpy166II H. orientalis Serbia 2 1 2 1 

smn2 hpy166II H. arborea Greece 8 28 25 1 4 22 

kank1 taqi H. orientalis Serbia 2 3 

kank1 taqi H. arborea Greece 58 28 

kank1 xmni H. orientalis Serbia 4 4 

kank1 xmni H. arborea Greece 60 28 

cdc37li hpy166II H. orientalis Serbia 3 1 3 1 

cdc37li hpy166II H. arborea Greece 33 24 22 5 

dmrt1 bcci H. arborea Greece 4 4 

dmrt1 bcci H. orientalis Serbia 10 8 

dmrt1 bcci H. molleri Spain 20 2 18 

dmrt1 bcci H. intermedia Switzerland 20 20 

dmrt1 bcci H. orientalis Greece 10 

dmrt1 bcci H. arborea Switzerland 5 5 

dmrt1 bcci H. arborea Danube 5 4 

dmrt1 bcci H. arborea Adriatic 5 5 
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ABSTRACT 

Homomorphic sex chromosomes are 
hypothetically maintained through frequent sex 
chromosomes transitions or recurrent X-Y 
recombination. The latter have kept the sex 
chromosomes of closely-related European Hyla 
tree frogs ever-young for at least the past 5 My. 
Here we extend investigations of this chromosome 
pair (referred to as linkage group 1, LG1) to test 
whether the same pattern holds across ten 
Eurasian Hyla lineages, diverged by 3 to 40 Mya. 
Phylogenetic patterns of sex-linkage suggests 
several sex chromosome transitions (including 
one heterogametic switch) over the last 10 My, 
and sex-determination by LG1 in at least six out of 
nine resolved cases. As revealed by sibship 
analyses, males face a phylogenetic inertia of 
nearly zero recombination in all European species 
at LG1, regardless of sex-linkage, which may relate 
to its predisposition for sex. In parallel, 
phylogenies of sex-linked markers are consistent 
with chromosome-wide recurrent recombination 
within all species investigated. We conclude that 
both the frequent transitions and occasional 
recombination models operate in Palearctic tree 
frogs, and that the homomorphic Hyla linkage 
group LG1, which carries key genes for sexual 
development, is specialized in sex determination. 

INTRODUCTION 

Sex-chromosomes have evolved along drastically 
different trajectories between lineages. Mammals 
and birds feature remarkably stable genetic 
systems of sex determination, involving dimorphic 
sex chromosomes with respectively male (XY) and 
female (ZW) heterogamety. This dimorphism is 
the final stage of a long process initiated by 
recombination arrest between gametologs: more 
than 120 million years without recombination has 
driven the mammalian Y and avian W into 

progressive degeneration, by the accumulation of 
deleterious mutations through processes such as 
Muller’s ratchet, hitchhiking with favorable 
mutations at other genes, background selection 
and insertion of repetitive elements, ultimately 
causing gene losses and drastic structural changes 
(reviewed by Charlesworth & Charlesworth 
2000). 

In contrast, in other groups genetic sex 
determination is way more labile. Many species of 
fish, amphibians and reptiles possess 
undifferentiated, seemingly nascent sex-
chromosomes, testifying to distinct dynamics 
(Bachtrog et al. 2014). There are two main 
explanations for this pattern. On the one hand, it is 
widely accepted that senescing sex chromosomes 
may be frequently replaced through sex-
chromosomes transitions (Schartl 2004, Volff et al. 
2007). Comparative mapping showed that sex-
determining systems can switch rapidly in 
amphibians and fishes (Malcom et al. 2014, 
Kikuchi & Hamaguchi 2013),  leading to different 
sex chromosome pairs between closely-related 
species (Kitano & Peichel 2011, Mank & Avise 
2009), or even between conspecific populations 
(Miura 2007). Theory predicts that several forces 
may drive these transitions, such as sex-
antagonistic selection (van Doorn & Kirkpatrick 
2007, 2010), sex-ratio selection (Grossen et al. 
2011), and rescue of the Y genetic load (Blaser et 
al. 2013). Furthermore, the homologies noted 
between the sex-chromosomes of deeply diverged 
lineages have led up to the view that turnovers 
could be biased towards a limited set of 
chromosomes that carries important upstream 
genes from the sex-determining cascade (Graves & 
Peichel 2010, Brelsford et al. 2013), and so their 
dynamics may be more conserved than previously 
imagined. 

On the other hand, it was recently 
proposed that old sex-determining systems can 
persist provided senescing Y chromosomes 
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rejuvenate via occasional events of recombination 
with the X, thus remaining “ever-young” (Perrin 
2009, Stöck et al. 2011). Studies of X-Y 
differentiation at sex-linked markers provided 
convincing evidence for this model in a few 
amphibian groups (Stöck et al. 2011, 2013a). 
Evolutionary stable rates of XY recombination, 
which should be mediated by two main opposing 
forces (sex-antagonistic selection versus genetic 
load) may occur via two mechanisms. First, Perrin 
(2009) emphasized sex-reversal as a “fountain of 
youth” for Y chromosomes in ectothermic species 
(e.g. fish, reptiles and amphibians). As 
environmental factors (e.g. temperature) interfere 
with sex-determination, sex-reversed XY embryos 
developing into females will recombine sex 
chromosomes at meiosis, assuming recombination 
to depend on phenotypic rather than genetic sex 
(Perrin 2009). Second, Y copies may also 
recombine directly in some males (Stöck et al. 
2013a, Dufresnes et al. 2014d). In theory, very 
little recombination is sufficient to renew and 
maintain old Y chromosomes in stable sex 
determining systems (Grossen et al. 2012). 

The occasional recombination model 
received much support from the European tree 
frogs species complex (Hyla arborea group). In 
this group, X-Y recombination has kept sex 
chromosomes undifferentiated since the last 5 My: 
the same XY pair is shared among four recently-
diverged lineages (namely H. arborea, H. 
intermedia, H. molleri and H. orientalis, Berset-
Brändli et al. 2006, Stöck et al. 2011, 2013b; 
mapped as linkage group LG1, Berset-Brändli et al. 
2008, Dufresnes et al. 2014c) and X and Y 
haplotypes are genetically homogeneous within 
species, indicative of recurrent gene exchange 
since they speciated (Stöck et al. 2011, Guerrero et 
al. 2012). Only a <50Kb portion surrounding the 
probable sex-determining gene DMRT1 has 
remained X- and Y-specific through their 
diversification (Brelsford et al. in prep). This 
system being stable for at least 5 My, it becomes 
interesting to know how longer X-Y 
recombination have been at work to prevent 
genetic decay of this old sex chromosome pair. 
Does it still apply to deeper diverged Hyla species, 
or did some experienced sex chromosomes 
turnovers? 

Despite substantial theoretical 
consideration, the evolutionary dynamics of 
turnovers and XY recombination are still largely 
unexplored in natural systems; estimating their 
relative contributions within a well-resolved 
radiation thus makes an important empirical 
question. Furthermore, in Hyla, one interesting 
aspect is that LG1 may be predisposed for sex: this 
pair carries genes that have been repeatedly co-
opted to govern the vertebrate sex-determining 

cascade (e.g. DMRT1, AMH, Graves & Peichel 2010, 
Matson & Zarkower 2012, Breslford et al. 2013), 
and it is homologous to the sex-chromosomes of 
distant anuran species, including bufonids and 
ranids (Breslford et al. 2013). In this context, we 
were particularly interested to characterize how 
conserved sex-determination with LG1 was in 
Hyla. 

To address these issues, we extended the 
survey to the rest of European radiation of tree 
frogs, namely the basal lineages H. sarda, H. 
savignyi, H. felixarabica and H. meridionalis (which 
arose 5-10 Mya, Stöck et al. 2012), as well as their 
Asian relatives H. japonica and H. suweonensis 
(diverged 30-40 Mya from European taxa, Smith 
et al. 2005). Phylogenetic relationships are shown 
in Figure 1. Through comparative linkage 
mapping, population genetic and phylogenetic 
analyses, (1) we test whether the same linkage 
group (LG1) is also sex-linked in these species; (2) 
we contrast its sex-specific recombination rates; 
and (3) we examine phylogenetic relationships of 
sex-linked sequence data to underline signs of 
recurrent X-Y recombination. 

METHODS 

SAMPLING AND DNA EXTRACTION 

Adult samples comprised males and females from 
the same populations of H. sarda, H. savignyi, H. 
meridionalis, H. japonica, H. suweonensis and 
males from H. felixarabica. To obtain family 
samples (parents + offspring), mating pairs were 
caught during the breeding season and we raised 
their offspring to hatching (methods: Dufresnes et 
al. 2011), or for a subset, several months after 
metamorphosis, when phenotypic sex can be 
unambiguously determined by morphological 
identification of gonads (Haczkiewicz & Ogielska 
2013). The final pedigree resource totalized 1896 
offspring from 60 informative families of H. 
meridionalis, H. sarda, H. savignyi and H. japonica, 
including phenotypically sexed juveniles for the 
later three species. Details on sample sizes and 
origins are provided in File S1. 

DNA was sampled using non-invasive 
buccal swabs (adults; Broquet et al. 2007), or 
ethanol fixed tissues (larvae, dissected froglets), 
and extracted with the Qiagen Biosprint Robotic 
workstation. 

MARKER GENOTYPING AND SEQUENCING 

In each species, we tested 15 microsatellite 
markers shown to be sex-linked in H. arborea and 
mapped as linkage group 1 (LG1, following Berset-
Brändli et al. 2008 and Dufresnes et al. 2014c). 
These include the 14 loci used by Dufresnes et al. 
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(2014d; see their File S2 for the list of markers 
and methods), plus one additional microsatellite 
located within intron 7 of the gene Smarcb1 
(methods: Brelsford et al. 2013). Primers were re-
designed for amplifying microsatellite Ha-A103 in 
several species (forward: 5’-
GGGACCTATGGATTAAAG-3’; reverse: 5’-
CAATTCACACCCAAATCAGAT-3’). PCR products 
were run on an ABI-3100 genetic analyzer 
(Applied Biosystem, Inc.), and peaks were scored 
with Genemapper 4.0 (Applied Biosystems, Inc.). 
For each species, usable loci were genotyped in all 
adults and families. 

We generated sequence data from four 
markers widely distributed across LG1 in adults 
from both sexes of each species under focus when 
possible, in complement to published sequences 
(Stöck et al. 2011, Dufresnes et al. 2014b). The 

four markers consisted of parts of the gene Med15 
(~1000bp, expect in H. sarda where it included a 
~600bp insertion; encompassing introns 7, 8 and 
exons 7, 8), intronic sequences from the genes 
SmarcB1 (~500bp encompassing intron 7) and ɑ-
Fibrinogen (~500bp encompassing intron 1), and 
flanking regions of the non-coding microsatellite 
Ha-A103 (~500bp, expect in H. meridionalis 
where it included a 700bp insertion). PCRs were 
carried out as described (Med15, ɑ-Fibrinogen and 
Ha-A103: Stöck et al. 2011; SmarcB1: Brelsford et 
al. 2013), using re-designed primers for Med15 
(forward: 5’-TAGCATTAGCTATTAAGCATACTCG-
3’, reverse: 5’-TTACAGCAACAGCAAATGG-3’), ɑ-
Fibrinogen (forward: 5’-
AGATACAGTCACAGTGCTAGGTTC-3’, reverse: 5’-
GGAGGATATCAGCACAGTCTAAA-3’) and Ha-A103 
(forward: 5’-ATGAATGGGCAAACTTTCCAT-3’, 

FIGURE 1: LG1 tree of sex in Palearctic tree frog lineages.  Tree topology and approximate divergence 
times (My: Million years) were adapted from mitochondrial phylogenies and molecular dating by Smith et 
al. (2005) and Stöck et al. (2012). H. suweonensis unambiguously branched as a sister taxon of H. japonica. 
Symbols show patterns of sex-linkage for H. arborea’s linkage group LG1 (auto.: autosomal). Uncertainty 
remains for H. felixarabica since only adult males were analyzed. 
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taxon LG1 sex-linked? evidence references 

H. arborea yes, XY sex-specific alleles in populations 
sex-specific inheritance of alleles 

Berset-Brändli et al. 2006 
Dufresnes et al. 2014d 

H. intermedia yes, XY sex-specific alleles in populations Stöck et al. 2011 

H. molleri yes, XY sex-specific alleles in populations Stöck et al. 2011 

H. orientalis yes, XY sex-specific inheritance of alleles Stöck et al. 2013 

H. sarda no absence of sex-specific alleles in populations this study 
random inheritance of alleles this study 

H. savignyi no absence of sex-specific alleles in populations this study 
random inheritance of alleles this study 

H. felixarabica prob not as XY autosomal-like male genotypes in populations this study 

H. meridionalis yes, XY sex-specific alleles in populations this study 

H. japonica* no absence of sex-specific alleles in populations this study 
random inheritance of alleles this study 

H. suweonensis yes, ZW sex-specific alleles in populations this study 

* an XY system was identified in this species (Kawamura & Nishioka 1977), although not on LG1. 

TABLE 1: Sex-linkage of Hyla linkage group LG1 in the Eurasian tree frogs investigated
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reverse: 5’-GCCTAGAAATGTGCAGTGATC-3’, for H. 
meridionalis, alternative forward: 5’-
CCAAGACCTCTTGTCCAACATTAGT-3’) optimized 
for cross-amplification. PCR products were cloned 
with the TOPO TA cloning kit (Life Technologies) 
or pGEM-easy vector system (Promega), from 
which at least 8 clones per sample were 
sequenced. A few samples were sequenced 
directly (SmarcB1, n=13). In these cases, 
heterozygous positions were visualized from 
electropherograms in MEGA 5.0 (Tamura et al. 
2011).  All sequences were edited and aligned in 
Seaview (Gouy et al. 2010). Only Ha-A103 
sequences could not be generated in the two Asian 
species. Samples origins and GenBank accessions 
are provided in File S2. 

DATA ANALYSIS 

We refer to Stöck et al. (2012) and Smith 
et al. (2005) for phylogenetic relationships and 
fossil-calibrated divergence times of the 
considered Hyla species (Figure 1). In 
complement, the position of H. suweonensis was 
inferred from published mitochondrial 
cytochrome-b sequences (GenBank KF564855-
KF564864), branched on the cyt-b tree of Stöck et 
al. (2012) using a similar maximum-likelihood 
reconstruction. 

Sex-linkage of LG1 was ascertained on 
two grounds. First, we compared adult male and 
female microsatellite genotypes directly, and by 
estimating allele frequencies and male-female 
pairwise differentiation (FST) in Fstat (Goudet 
1995). Sex-linked loci are expected to carry sex-
specific alleles and genotypes, i.e. heterozygotes in 
the heterogametic sex, and resulting in male-
female differentiation. Potential patterns of sex-
linkage were tested specifically with combinatory 
statistics. Second, in families with phenotypically 
sexed offspring, we tested whether the inheritance 
of maternal or paternal alleles was sex-specific by 
Fisher’s exact tests (Rodrigues et al. 2013). 

Species- and sex-specific microsatellite 
linkage maps of LG1 were computed using Crimap 
(Green et al. 1990). For each species, we first 
deduced the most likely order of loci with LOD 
scores (functions all and flips) and then calculated 
sex-specific recombination distances (function 
build). Final maps were produced with MapChart 
(Voorrips 2002). 

We performed separate maximum-
likelihood phylogenetic reconstructions of Med15, 
SmarcB1, ɑ-Fibrinogen and Ha-A103 sequences 
with PhyML (Guindon et al. 2009), using 
respectively GTR+G, GTR+G, HKY+G and GTR 
models of sequence evolution (MrAIC, Nylander 
2004) and 1000 bootstrap replicates. To avoid 
artefacts due to misalignments, microsatellite-like 

indels were discarded from the analyses. 
Following the rational of Stöck et al. (2011; see 
their Figure 1), males and female alleles should 
cluster together by species if LG1 is sex-linked and 
gametologs occasionally recombine. Obviously, 
such a pattern is also expected if LG1 is autosomal. 

RESULTS 

SEX-LINKAGE OF LG1 

LG1 mapped to the sex chromosomes of H. 
meridionalis and H. suweonensis with respectively 
male (XY) and female (ZW) heterogamety, based 
on sex-specific alleles and genotypes (File S3 and 
S4). In contrast, LG1 was autosomal in H. sarda, H. 
savignyi and H. japonica: similar alleles segregated 
in males and females and were not inherited in a 
sex-specific way (File S4). Male LG1 genotypes of 
H. felixarabica did not support an XY system (File 
S4). Overall, LG1 was thus confirmed as the sex 
chromosome pair in six cases (5 XY, 1 ZW) and as 
an autosomal pair in three (Figure 1, Table 1). 

SEX-SPECIFIC RECOMBINATION RATES 

We documented extremely low male compared to 
female recombination rates at LG1 for the 
European H. sarda (36 fold difference), H. savignyi 
(26 fold difference), and H. meridionalis (23 fold 
difference). In these lineages, males featured a 
large non-recombining segment encompassing 
most of the linkage group, comparable to other 
European species (Figure 2). In contrast, on 
average the Asian H. japonica did not feature sex-
specific recombination rates at LG1, neither a non-
recombining segment, but limited crossovers in 
both sexes (Figure 2). Closer inspection of the 
family data suggests strong within-individual 
variation in recombination: some males and some 
females show almost complete absence of 
crossovers, whereas others freely recombine all 
markers. 

PHYLOGENY OF THE LG1 MARKERS 

LG1 sequences distinguished between all the 
lineages considered, excepted for incomplete 
lineage sorting of the youngest H. molleri and H. 
orientalis in Med15 and Ha-A103 trees (Figure 3). 
All male and female sex-linked alleles clustered by 
species, consistent with occasional XY and ZW 
recombination (Figure 3). 

DISCUSSION 

We show that both XY recombination and 
frequent transitions model coexist within the Hyla 
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FIGURE 2: Sex-specific linkage maps of linkage group LG1. Loci orders were calculated separately for 
each species, and are based on the highest likelihood (CRI-MAP). The H. arborea map was adapted 
from Dufresnes et al. 2014c), including most of the loci cross-amplifying in congenerics. Maps of H. 
molleri, H. intermedia and H. orientalis were adapted from Stöck et al. 2011 and 2013b. Given trans-species 
similitudes in recombination rates, we extrapolated recombination distances to non-available peripheral 
markers for visual comparison (dash lines). Recombination distances are displayed in centiMorgan (cM). 
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tree frog radiation. As previously shown for H. 
arborea, H. molleri and H. intermedia (Stöck et al. 
2011), all sex-linked sequences from both sexes 
grouped by species, reflecting strong X-Y and Z-W 
similarities, and supporting recurrent sex 
chromosomes recombination also within H. 
orientalis, H. meridionalis and H. suweonensis 
(Figure 3). This result yet contrasts with our 
failure to detect male recombination over most 
parts of LG1 in crosses of H. meridionalis (expect 
for terminal markers) and other European Hyla 
(Figure 2), suggesting cryptic mechanisms like 
sex-reversal events (Perrin 2009) or recent arrest 
of male recombination, as shown in some 
populations of H. arborea (Dufresnes et al. 2014d). 

However, occasional XY recombination 
was apparently not sufficient to maintain the sex-
determining system of tree frogs stable for more 
than 5 My. In parallel, patterns of sex-linkage at 
LG1 indicate several sex-chromosome transitions 
within the last 10 My, in both the European and 
Asian radiations (Figure 1). In Europe, assuming 
the mitochondrial phylogeny to reflect the true 
topology (Stöck et al. 2012; supported by genome-
wide genotyping-by-sequencing data, A. Breslford, 
unpublished data), at least two turnovers are 
necessary to explain the LG1 tree of sex. (Figure 
4). The different sex-determining systems 
between the two Asian species further involve a 
switch in heterogamety: we confirmed a ZW 
system in H. suweonensis, previously suggested 
from cytogenetics (Yu & Lee 1990), whereas the 
sister species H. japonica was shown to follow an 
XY system (Kawamura & Nishioka 1977), though 
not involving LG1. 

Both alternative models of sex 
chromosome evolution can thus account for the 
maintenance of homomorphic sex chromosomes 
in Hyla i.e. frequent turnovers against a 
background of sex-chromosome recombination, 
highlighting their non-exclusiveness (Perrin 
2009). Their combined actions raise interesting 
insights on the evolutionary dynamics of 
turnovers. We can rule out the accumulation of 
deleterious mutations (Blaser et al. 2013) as a 
transition’s trigger in Hyla since the genetic load 
of the Y is recurrently purged by XY 
recombination. Nonetheless, the homomorphy 
maintained by occasional recombination may 
have promoted turnovers by other mechanisms, 
like sex-antagonistic selection (van Doorn & 
Kirkpatrick 2007), which is expected to induce 
shifts in heterogamety (van Doorn & Kirkpatrick 
2010). 

Our results bring significant support to 
the view that some chromosomes are better than 
other for sex determination (Graves & Peichel 
2010, Bachtrog et al. 2011, O’Meally et al. 2012, 
Brelsford et al. 2013). Out of twelve chromosome 

pairs (Anderson 1991), Hyla LG1 was confirmed 
sex-linked in six out of nine resolved cases, 
despite a context of rapid changes. In the 
European radiation, it is unclear whether LG1 was 
recently co-opted for sex in most species (Figure 
4a, c), or if it was conserved as the sex 
chromosome throughout the radiation, being 
replaced only recently in H. sarda and H. savignyi 
(Figure 4b). Phylogenetic analyses of DMRT1 
rather argue against the latter: trans-species X-Y 
differentiation shared by H. 
arborea/intermedia/orientalis/molleri at exon 1 is 
not shared by H. meridionalis (Figure 2 in 
Breslford et al. in prep), suggesting these lineages 
acquired sex-determination on LG1 independently 
(i. e. Figure 4a, c). It will be interesting to map the 
sex-chromosomes of H. sarda, H. savignyi, H. 
felixarabica and H. japonica to further reconstruct 
the history of turnovers. Testing cross-amplifying 
markers from other H. arborea linkage groups 
(Dufresnes et al. 2014a, 2014c) so far remained 
unfruitful (C. Dufresnes, unpublished data). 

The frequent participation of LG1 in sex 
determination within hylids and other amphibians 
like bufonids and ranids (Brelsford et al. 2013) 
likely relates to its gene content. DMRT1 and its 
paralogs have key roles in sex-differentiation in 
birds, fish and amphibians (Matson & Zarkower 
2012). Assuming homology with Xenopus 
chromosome 1 (Brelsford et al. 2013), Hyla LG1 
also carries the anti-Müllerian hormone gene 
AMH, required for testis development in mammals 
and probably determining sex in monotremes 
(Cortez et al. 2014). In addition, LG1 may have 
adapted to its recurrent role in sex. Chromosomes 
that are repeatedly sex-linked are expected to 
accumulate genes with sex-antagonistic effects, in 
turn making them more likely to recapture sex-
determination functions in future turnovers (van 
Doorn & Kirkpatrick 2007, Blaser et al. 2014). 
Another presumed adaptation is the evolution of 
recombination rates, which can further 
predispose transitions towards former sex 
chromosomes.  In the European radiation, LG1 
faces a phylogenetic inertia of extremely reduced 
recombination in males from all species, even 
where it is autosomal (H. sarda and H. savignyi, 
Figure 2). Male recombination is globally 
repressed over the whole genome in H. arborea 
(Berset-Brändli et al. 2008, Dufresnes et al. 
2014c), but ratios of female over male 
recombination are at least twice higher for LG1 
(about 36 in H. sarda, 26 in H. savigny) compared 
to autosomes (in H. arborea: 14.3, Berset-Brändli 
et al. 2008; 13.7, Dufresnes et al. 2014c). It is then 
tempting to suggest that such inertia results from 
the specialization of LG1 as an XY pair of sex 
chromosomes in these lineages, and remained 
conserved across the entire radiation, suggesting 
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FIGURE 3: Maximum-likelihood phylogenies of four LG1-linked markers. The top schematic illustrates rough relative position of these markers across LG1, based on linkage 
analyses (Figure 2) and homologies with Xenopus tropicalis (Brelsford et al. 2013); the shaded area corresponds to the non-recombining region of European males. Bootstrap values 
are shown for the main branches, when above 50%. Colors code for species (following Stöck et al. 2012). Sequence labels feature species, sex, ID number and allele (a, b or ab for 
homozygotes). Male alleles correspond to X and Y copies in H. arborea, H. molleri, H. orientalis, H. intermedia and H. meridionalis, and female alleles correspond to Z and W copies in H. 
suweonensis; these always group together by species for all four markers, consistent with chromosome-wide occasional XY and ZW recombination. Only the youngest H. orientalis 
(dark blue) and H. molleri (grey) show incomplete lineage sorting for Med15 and Ha-A103. 
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some chromosome-specific regulation of 
recombination in males. In mammals, 
recombination hot spots were shown to evolve 
rapidly, being mostly specified by the gene Prdm9 
(Baudat et al. 2013), and sequence variation at 
RNF212 directly associates with sex-specific 
recombination (Kong et al. 2008). 

In contrast, the complex situation in H. 
japonica, involving strongly-reduced 
recombination at LG1 in several individuals from 
both sexes, is difficult to interpret. If LG1 
recombination rates are indeed fine-tuned during 
episodes of sex-linkage, this polymorphism may 
relate to the co-occurrence of different 
heterogametic systems in the closely-related 
Asian species. Comparison with genome-wide 
recombination would be a first step to understand 
this pattern. Further investigations are obviously 
required, and should notably aim at measuring 
LG1 recombination rates in the ZW H. suweonensis, 
as well as estimating the contribution of LG1 for 
sex-determination in other Asian lineages. 
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File S1: Origin and number of samples used in population and sibship analyses for each Hyla species investigated. 

Species Origin Geographic coordinates (Lat/long) loci Nm Nf Np No 

    Hyla sarda France, Corsica 43.000° 9.404° 8 24 24 21 713 (80) 

    Hyla savignyi Cyprus, Drouseia 34.971° 32.406° 6 18 18 17 504 (13) 
Cyprus, Kannaviou 34.933° 32.573° 6 - - 4 116 

Hyla felixarabica Jordan, Canjon S Dana 30.661° 35.622° 5 10 0 - - 

   Hyla meridionalis France, La-Tour-du-Valat 43.500° 4.700° 4 20 20 13 361 

Hyla japonica South-Korea, Seocheon 36.076° 126.852° 5 11 9 - - 
South-Korea, Andong 36.472° 128.167° 5 14 4 - - 
South-Korea, Gwanak-gu 37.460° 126.952° 5 - - 5 202 (107) 

Hyla suweonensis South-Korea, Siheung 37.410° 126.805° 1 5 7 - - 
South-Korea, Geumcheon 37.750° 126.758° 1 18 0 - - 

Nm: number of males, Nf: number of females (used in population genetics analyses); Np: number of pairs (families); No: number 
of offspring (incl. sexed offspring in brackets) 

84



File S2: Samples used in phylogenetic analyses of LG1 
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H. arborea-♀01 H. arborea F Croatia, Istria 45.34 13.81 - - × - 

H. arborea-♀02 H. arborea F Croatia, Karlovac 45.54 15.57 × - - - 

H. arborea-♀03 H. arborea F Greece, Crete 35.19 25.46 - - - × 

H. arborea-♀04 H. arborea F Netherlands, Lochem 52.12 6.48 - - × - 

H. arborea-♀05 H. arborea F Serbia, SE-Serbia 42.33 21.90 - - - × 

H. arborea-♀06 H. arborea F Serbia, Vojvodina 44.74 20.14 - - - × 

H. arborea-♀07 H. arborea F Switzerland, Vaud 46.50 6.42 - × - - 

H. arborea-♀08 H. arborea F Switzerland, Vaud 46.50 6.42 - × - × 

H. arborea-♂01 H. arborea M Croatia, Karlovac 45.54 15.57 × - - - 

H. arborea-♂02 H. arborea M Croatia, Krk 45.17 14.62 - - × - 

H. arborea-♂03 H. arborea M Greece, Crete 35.19 25.46 - - - × 

H. arborea-♂04 H. arborea M Netherlands, Lochem 52.12 6.48 - - × - 

H. arborea-♂05 H. arborea M Netherlands, Lochem 52.12 6.48 - - × - 

H. arborea-♂06 H. arborea M Serbia, SE-Serbia 42.33 21.90 - - - × 

H. arborea-♂07 H. arborea M Serbia, Vojvodina 44.74 20.14 - - - × 

H. arborea-♂08 H. arborea M Switzerland, Vaud 46.50 6.42 - - - × 

H. arborea-♂09 H. arborea M Switzerland, Zürich 47.58 8.60 - × - - 

H. arborea-♂10 H. arborea M Switzerland, Zürich 47.58 8.60 - × - - 

H. felixarabica-♀01 H. felixarabica F Syria, Jebbel Druz 32.66 36.73 - - - × 

H. felixarabica-♂01 H. felixarabica M Jordan, Canjon S Dana 30.66 35.62 × - - × 

H. felixarabica-♂02 H. felixarabica M Jordan, Canjon S Dana 30.66 35.62 - - × - 

H. felixarabica-♂03 H. felixarabica M Jordan, Canjon S Dana 30.66 35.62 - × × - 

H. felixarabica-♂04 H. felixarabica M Jordan, Canjon S Dana 30.66 35.62 - × - - 

H. felixarabica-♂05 H. felixarabica M Syria, Jebbel Druz 32.66 36.73 - - - × 

H. felixarabica-♂06 H. felixarabica M Yemen, S Yarim 14.22 44.39 - - - × 

H. intermedia-♀01 H. intermedia F Switzerland, Piazzogna 46.14 8.82 × - - - 

H. intermedia-♀02 H. intermedia F Switzerland, Piazzogna 46.14 8.82 - × - - 

H. intermedia-♀03 H. intermedia F Switzerland, Piazzogna 46.14 8.82 - × - - 

H. intermedia-♀04 H. intermedia F Switzerland, Piazzogna 46.14 8.82 - × - - 

H. intermedia-♀05 H. intermedia F Switzerland, Piazzogna 46.14 8.82 × - × × 

H. intermedia-♀06 H. intermedia F Switzerland, Piazzogna 46.14 8.82 × - - × 

H. intermedia-♀07 H. intermedia F Italy, Calabria 39.35 16.03 - - - × 

H. intermedia-♀08 H. intermedia F Italy, Calabria - - - - - - 

H. intermedia-♂01 H. intermedia M Switzerland, Piazzogna 46.14 8.82 × - - - 

H. intermedia-♂02 H. intermedia M Switzerland, Piazzogna 46.14 8.82 - × - - 

H. intermedia-♂03 H. intermedia M Switzerland, Piazzogna 46.14 8.82 - × - - 

H. intermedia-♂04 H. intermedia M Switzerland, Piazzogna 46.14 8.82 - - - × 

H. intermedia-♂05 H. intermedia M Switzerland, Piazzogna 46.14 8.82 × - × × 

H. intermedia-♂06 H. intermedia M Italy, Sicily 37.29 15.00 - - - × 

H. intermedia-♂07 H. intermedia M Italy, Sicily 38.10 15.14 - - - × 

H. intermedia-♂08 H. intermedia M Italy, Sicily 38.14 15.05 - - - × 
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H. intermedia-♂09 H. intermedia M Italy, Sicily 37.33 15.08 - - - × 

H. japonica-♀01 H. japonica F Japan, Hiroshima 34.43 132.74 - × - × 

H. japonica-♀02 H. japonica F Japan, Hiroshima 34.43 132.74 × - - - 

H. japonica-♂01 H. japonica M Japan, Hiroshima 34.43 132.74 - × - × 

H. japonica-♂02 H. japonica M Japan, Hiroshima 34.43 132.74 × - - - 

H. japonica-♂03 H. japonica M Japan, Hiroshima 34.43 132.74 - - - × 

H. meridionalis-♀01 H. meridionalis F France, Camargue 43.52 4.70 - - × - 

H. meridionalis-♀02 H. meridionalis F France, Camargue 43.52 4.70 - × - - 

H. meridionalis-♀03 H. meridionalis F France, Camargue 43.52 4.70 × - - - 

H. meridionalis-♀04 H. meridionalis F France, Camargue 43.52 4.70 - × - - 

H. meridionalis-♀05 H. meridionalis F France, Camargue 43.52 4.70 - - - × 

H. meridionalis-♀06 H. meridionalis F France, Camargue 43.52 4.70 - - - × 

H. meridionalis-♂01 H. meridionalis M France, Camargue 43.52 4.70 - - × - 

H. meridionalis-♂02 H. meridionalis M France, Camargue 43.52 4.70 - × - - 

H. meridionalis-♂03 H. meridionalis M France, Camargue 43.52 4.70 × - - - 

H. meridionalis-♂04 H. meridionalis M France, Camargue 43.52 4.70 - × - - 

H. meridionalis-♂05 H. meridionalis M Portugal, Algarve 37.31 -8.60 - - - × 

H. meridionalis-♂06 H. meridionalis M Portugal, Algarve 37.31 -8.60 - - - × 

H. meridionalis-♂07 H. meridionalis M Spain, Tenerifa 28.40 -16.53 - - - × 

H. meridionalis-♂08 H. meridionalis M Spain, Tenerifa 28.40 -16.53 - - - × 

H. molleri-♀01 H. molleri F Spain, Valdemanco 40.85 -3.65 - - × - 

H. molleri-♀02 H. molleri F Spain, Valdemanco 40.85 -3.65 - - - × 

H. molleri-♀03 H. molleri F Spain, Cantera 40.21 -4.65 - × - - 

H. molleri-♀04 H. molleri F Spain, Cantera 40.21 -4.65 × - - - 

H. molleri-♀05 H. molleri F Spain, Cantera 40.21 -4.65 - - - × 

H. molleri-♂01 H. molleri M Spain, Valdemanco 40.85 -3.65 - - × - 

H. molleri-♂02 H. molleri M Spain, Valdemanco 40.85 -3.65 - - - × 

H. molleri-♂03 H. molleri M Spain, Cantera 40.21 -4.65 - × - - 

H. molleri-♂04 H. molleri M Spain, Cantera 40.21 -4.65 × - - - 

H. molleri-♂05 H. molleri M Spain, Cantera 40.21 -4.65 - - - × 

H. orientalis-♀01 H. orientalis F Greece, Rhodos 36.36 28.12 - - - × 

H. orientalis-♀02 H. orientalis F Greece, Thrace 41.41 26.63 - - - × 

H. orientalis-♀03 H. orientalis F Serbia, SE-Serbia 43.06 22.68 × × × - 

H. orientalis-♂01 H. orientalis M Azerbaijan, Lenkoran 38.65 48.82 - - × × 

H. orientalis-♂02 H. orientalis M Greece, Lesvos 39.23 26.03 - - - × 

H. orientalis-♂03 H. orientalis M Greece, Rhodos 36.36 28.12 - - - × 

H. orientalis-♂04 H. orientalis M Serbia, SE-Serbia 43.06 22.68 - × - - 

H. orientalis-♂05 H. orientalis M Serbia, SE-Serbia 43.06 22.68 × - × - 

H. sarda-♀01 H. sarda F France, Corsica 43.00 9.40 - - × - 

H. sarda-♀02 H. sarda F France, Corsica 43.00 9.40 - - × - 

H. sarda-♀03 H. sarda F France, Corsica 43.00 9.40 - × - - 

H. sarda-♀04 H. sarda F France, Corsica 43.00 9.40 - × - - 

H. sarda-♀05 H. sarda F France, Corsica 43.00 9.40 × - - - 

H. sarda-♀06 H. sarda F Italy, Sardinia 40.82 8.49 - - - × 

H. sarda-♂01 H. sarda M France, Corsica 43.00 9.40 - - × - 

H. sarda-♂02 H. sarda M France, Corsica 43.00 9.40 - - × - 

H. sarda-♂03 H. sarda M France, Corsica 43.00 9.40 - × - - 

H. sarda-♂04 H. sarda M France, Corsica 43.00 9.40 - × - - 
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H. sarda-♂05 H. sarda M France, Corsica 43.00 9.40 × - - - 

H. sarda-♂06 H. sarda M Italy, Sardinia 40.82 8.49 - - - × 

H. savignyi-♀01 H. savignyi F Cyprus, Drouseia 34.97 32.41 × - - - 

H. savignyi-♀02 H. savignyi F Cyprus, Drouseia 34.97 32.41 - × - - 

H. savignyi-♀03 H. savignyi F Cyprus, Kannaviou 34.93 32.57 - × - - 

H. savignyi-♀04 H. savignyi F Cyprus, Sotira 34.71 32.85 - - × × 

H. savignyi-♀05 H. savignyi F Cyprus, Sotira 34.71 32.85 - - × - 

H. savignyi-♂01 H. savignyi M Cyprus, Drouseia 34.97 32.41 × - - - 

H. savignyi-♂02 H. savignyi M Cyprus, Drouseia 34.97 32.41 - × - - 

H. savignyi-♂03 H. savignyi M Cyprus, Kannaviou 34.93 32.57 - × - - 

H. savignyi-♂04 H. savignyi M Cyprus, Sotira 34.71 32.85 - - × × 

H. savignyi-♂05 H. savignyi M Cyprus, Sotira 34.71 32.85 - - - × 

H. suweonensis-♀01 H. suweonensis F South-Korea, Siheung 37.41 126.80 × × - - 

H. suweonensis-♀02 H. suweonensis F South-Korea, Siheung 37.41 126.80 × × - × 

H. suweonensis-♂01 H. suweonensis M South-Korea, Siheung 37.41 126.80 × × - × 

H. suweonensis-♂02 H. suweonensis M South-Korea, Siheung 37.41 126.80 × × - × 
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File S3: sex-linked microsatellite genotypes in adults of H. meridionalis (a) and H. suweonensis (b). 

File S3a: genotypes of four LG1 markers in 20 females and 20 males of H. meridionalis 

Sample Sex Ha-T52 SmarcB1 Ha-T45 Ha-T11 

HmerF11 F 365 365 NA NA 209 209 333 330 
HmerF12 F 365 365 NA NA 209 209 330 330 
HmerF13 F 365 365 239 240 209 209 333 330 
HmerF14 F 356 365 239 240 209 209 333 330 
HmerF15 F 356 365 239 240 209 209 333 333 
HmerF16 F 356 365 239 239 209 209 333 330 
HmerF17 F 365 365 NA NA 209 209 333 330 
HmerF18 F 365 365 NA NA 209 209 333 330 
HmerF06 F 365 365 239 239 209 209 330 330 
HmerF07 F 356 365 239 240 209 209 333 330 
HmerF08 F 365 365 239 239 209 209 333 333 
HmerF09 F 356 365 239 239 209 209 330 330 
HmerF10 F 365 365 239 239 209 209 333 330 
HmerF19 F 365 365 239 239 209 209 333 333 
HmerF20 F 356 365 239 239 209 209 333 330 
HmerF21 F 365 365 239 240 209 209 336 333 
HmerF22 F 365 365 239 240 209 209 333 330 
HmerF23 F 365 365 239 240 209 209 333 330 
HmerF24 F 356 365 239 240 209 209 333 330 
HmerF25 F 365 365 239 239 209 209 330 330 

HmerM11 M 365 365 NA NA 209 212 333 330 
HmerM12 M 365 365 NA NA 209 212 330 330 
HmerM13 M 356 365 240 240 209 212 330 330 
HmerM14 M 365 365 239 239 209 212 330 330 
HmerM15 M 365 365 239 239 209 212 333 330 
HmerM16 M 365 365 239 240 209 212 333 330 
HmerM17 M 365 365 NA NA 209 212 333 330 
HmerM18 M 356 365 NA NA 209 212 330 330 
HmerM06 M 356 365 239 239 209 212 330 330 
HmerM07 M 365 365 239 240 209 212 330 330 
HmerM08 M 356 365 239 240 209 212 333 330 
HmerM09 M 365 365 239 240 209 212 333 330 
HmerM10 M 365 365 NA NA 209 212 330 330 
HmerM19 M 365 365 239 239 209 212 336 330 
HmerM20 M 356 365 239 239 209 212 333 330 
HmerM21 M 356 365 239 239 209 212 330 330 
HmerM22 M 365 365 239 240 209 212 330 330 
HmerM23 M 356 365 239 239 209 212 330 330 
HmerM24 M 365 365 239 240 209 212 333 330 
HmerM25 M 356 365 239 239 209 212 330 330 

At locus Ha-T45, all females are homozygous 209/209 and all males are heterozygous 209/212, suggesting 
an XY pattern. Males also possess at least one copy of Ha-T11 allele 330, which co-segregates with Ha-T45 
allele 212 on the Y (blue color). F: female, M: male, NA: missing data
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File S3b: genotypes of marker WHA5-22 in males and females from H. suweonensis 

Sample Sex WHA5-22 

Locality Siheung 
14SUR48 F 228 228 
14SUR50 F 228 234 
14SUR51 F 231 234 
14SUR52 F 228 234 
14SUR53 F 228 234 
14SIH03 F 228 231 
14SIH04 F 228 234 

14SIH01 M 228 228 
14SIH02 M 228 228 
14SUR49 M 228 228 
14SUR55 M 228 228 
14SUR56 M 228 228 

Locality Geumcheon 
13BHV383 M 228 228 
13BHV386 M 228 231 
13BHV387 M 228 228 
13BHV389 M 228 231 
13BHV390 M 228 231 
13BHV391 M 228 231 
13BHV384 M 228 228 
13BHV393 M 228 228 
13BHV394 M 228 231 
13BHV396 M 228 231 
13BHV397 M 228 228 
13BHV398 M 228 231 
13BHV399 M 228 231 
13BHV400 M 228 231 
13BHV401 M 228 231 
13BHV403 M 228 228 
13BHV404 M 228 231 
13BHV416 M 228 231 

Most females are heterozygotes with a specific allele 234, not found in any males, suggesting a ZW pattern.
F: female, M: male.
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File S4: Inference of sex-linkage from adult and family data 

File S4a: data interpretation 

Two lines of evidence support autosomal location of linkage group 1 in H. sarda, H. savignyi and H. 
japonica. First, males and females did not carry sex-specific alleles in these species, and their genotypes 
did not suggest any pattern of heterogamety (File S4c). Statistically, this translated into an absence of 
male-female differentiation (i.e. non-significant FST), as reported (File S4b). Second, inheritance of alleles 
from parents to offspring was not associated to sex (File S4b), providing direct evidence that LG1 does not 
lie within the sex-chromosomes in these species. 

In H. felixarabica, male genotypes and allele frequencies were not consistent with an XY system 
(no pattern of male heterogamety; File S4c), but an hypothetical ZW system cannot be ruled out without 
female samples, not available here. 

In H. meridionalis, marker Ha-T45 displays a perfect XY pattern. At this locus, every 20 males were 
genotyped 209/212, and every 20 females were genotyped 209/209 (File S3). From combinatorial 
statistics, the probability that this occurs by chance, assuming autosomal localization, is obtained as the 
ratio of 20!

20! 0!
220 (number of combinations of 20 copies of allele 212 among 20 males, one copy each) over 

80!
20! 60!

 (number of combinations of these 20 copies among 80 copies of genes), which amounts to p = 
2.97×10-13. The obvious parsimonious explanation is that allele 212 is fixed on the Y, and that allele 209 is 
fixed on the X. Departure from autosomal expectations at LG1 was also depicted by the significant male-
female FST (File S4b). 

In H. suweonensis, 5 out of the 7 females from locality Siheung were heterozygotes at locus WHA5-
22, harboring one copy of allele 234, which was not present in any of the 5 males from the same 
population, and neither from the 18 males sampled at locality Geumcheon (apart from Siheung by 
<50km). In Siheung, the probability that such sex bias arose by chance corresponds to the ratio 7!

5! 2!
25 

(number of combinations of 5 copies of allele 234 among 7 females, maximum one copy each) over 24!
5! 19!

(number of combinations of these five copies among 24 copies of genes), which amounts to p = 0.016. 
Consequently, females are significantly differentiated from males based on this marker (Table S4b). The 
most parsimonious explanation is that LG1 constitutes a ZW pair of sex chromosomes in this taxon, with 
WHA5-22 allele 234 segregating on the W, as otherwise suggested from cytogenetics (Yu & Lee 1990). 
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File S4b: Summary statistics used to document sex-linkage 

Taxon Fisher’s exact test ♀-♂ FST 

Hyla sarda NS in 11 tested families 0.006NS 

Hyla savignyi NS in 2 tested families 0.0143NS 

Hyla meridionalis - 0.1764* 

Hyla japonica NS in 5 tested families 0.0006NS (Seocheon) 
0.0121NS (Andong) 

Hyla suweonensis - 0.3242* (Siheung) 

NS: non-significant; *: p<0.05, highlighted in bold. Fisher's exact test: test of sex-specific allele inheritance 
in families with sexed offspring.
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File S4c: Sex-specific allele frequencies

H. sarda 

Ha-T52 Ha-T51 WHA5-22 SmarcB1 Ha-H108 Ha-T11 Ha-T45 Ha-A103 
♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 

352 0.229 0.229 372 0.396 0.458 222 0.021 0.042 242 0.458 0.542 203 0.125 0.229 329 0.15 0.17 209 0.042 0 178 0.125 0.229 
371 0.375 0.292 374 0.438 0.479 225 0 0.063 243 0.542 0.458 221 0 0.042 332 0.854 0.833 215 0.958 1 191 0.479 0.563 
373 0.396 0.479 376 0.042 0 228 0.146 0.146 230 0.271 0.375 193 0 0.021 

378 0.125 0.063 231 0.833 0.75 237 0.604 0.354 195 0.354 0.146 
197 0.021 0.042 
199 0.021 0 

H. savignyi 

Ha-T52 Ha-T51 WHA5-22 SmarcB1 Ha-T45 Ha-A103 
♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 

367 0.5 0.361 374 1 0.806 234 0 0.056 246 0.056 0.056 206 0.056 0.139 186 0.083 0.139 
372 0.5 0.639 376 0 0.194 236 0.111 0.222 247 0.167 0.194 212 0.944 0.861 188 0.083 0.194 

239 0.861 0.722 248 0.778 0.75 190 0.278 0.222 
242 0.028 0 192 0.167 0.194 

194 0.111 0.111 
198 0.278 0.139 

H. felixarabica 

Ha-T52 Ha-T51 WHA5-22 Ha-M2 SmarcB1 
 ♂  ♂  ♂  ♂  ♂ 

356 0.1 374 0.70 214 0.15 108 0.05 241 0.95 
374 0.9 376 0.05 217 0.2 121 0.95 244 0.05 

378 0.25 219 0.05 
222 0.6 
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H. meridionalis 

Ha-T52 SmarcB1 Ha-T11 Ha-T45 
♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 

356 0.175 0.2 239 0.75 0.733 330 0.5 0.775 209 1 0.5 
365 0.825 0.8 240 0.25 0.267 333 0.475 0.2 212 0 0.5 

336 0.025 0.025 

H. japonica (Seocheon) 

Ha-T52 Ha-T51 WHA5-22 SmarcB1 Ha-T11 
♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 

355 0.313 0.136 374 0.63 0.35 219 0.00 0.05 220 0.00 0.14 325 0.11 0.00 
356 0.313 0.500 375 0 0.05 222 0.111 0.091 222 1 0.864 328 0.056 0.136 
357 0.188 0.136 376 0.063 0.15 225 0.389 0.455 331 0.778 0.864 
358 0.125 0.227 377 0 0.05 228 0.5 0.409 334 0.056 0 
360 0.06 0.00 378 0.125 0.2 

379 0.063 0.1 
380 0 0.05 
383 0 0.05 
387 0.063 0 
389 0.063 0 

H. japonica (Andong) 

Ha-T52 Ha-T51 WHA5-22 SmarcB1 Ha-T11 Ha-T45 
♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ ♀ ♂ 

355 0 0.214 374 0.25 0.23 219 0.00 0.04 218 0.00 0.04 325 0.38 0.04 209 0 0.036 
356 0.625 0.357 375 0.375 0.154 222 0.00 0.036 220 0 0.036 328 0 0.143 212 1 0.964 
357 0.375 0.25 376 0.25 0.192 225 0.875 0.607 222 1 0.929 331 0.625 0.821 
358 0 0.107 378 0 0.269 228 0.125 0.286 
359 0.00 0.071 379 0.125 0.077 231 0 0.036 

381 0 0.038 
383 0 0.038 

H. suweonensis 

WHA5-22 
Siheung Geumcheon 
♀ ♂ ♂ 

228 0.5 1 0.67 
231 0.14 0 0.33 
234 0.36 0 0 
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ABSTRACT 

Recombination between sex chromosomes 
conditions their evolutionary fate. The arrest of 
recombination between mammals and birds’ sex 
chromosomes drove them into degeneration. In 
contrast, low rates of X-Y recombination 
maintained sex chromosome homomorphic in tree 
frogs, but the dynamics of this process are still 
obscure. Here we report strong heterogeneity of 
male recombination at the sex chromosomes of 
Palearctic Hyla tree frogs: only few individuals 
produced the observed XY recombinants, whereas 
recombination is completely suppressed in most 
males. This phenotypic variation may reflect some 
balanced selection on XY recombination resulting 
from the counteracting effects of sex-antagonistic 
selection (favoring full linkage) and genetic load 
(favoring recombination). Interestingly, the same 
pattern holds in Hyla species where this 
chromosome pair is not sex-linked, suggesting 
conserved mechanisms. As discussed for the 
European tree frog H. arborea, the documented 
variance will be important to consider in our 
comprehension of evolutionary stable sex 
chromosome recombination in future empirical 
and theoretical studies. 
 
 
INTRODUCTION 

Recombination between sex chromosomes is the 
key factor driving their evolutionary fate. Sex-
chromosome dimorphism, as found in mammals 
and birds, is the result of a long process initiated 
by the arrest of recombination between 
gametologs in the heterogametic sex (XY males, 
ZW females). Classical models of sex-chromosome 
evolution predict that, soon after the appearance 
of the sex-determining locus, the suppression of 
XY recombination constitutes a crucial first step to 
promote full linkage between this locus and 
neighboring sex-antagonistic genes, so that male- 
and female-beneficial alleles are only transmitted 
to son and daughters respectively (Rice 1987, 
1996). This arrest of recombination has far-
reaching consequences for the non-recombining 
gametolog: unable to purge deleterious mutations 
that tend to get fixed under the combined effects 
of enhanced drift, selective sweeps, background 
selection and Müller’s ratchet, Y chromosomes 
starts to progressively degenerate, by losing gene 
functions, accumulating repetitive elements, and 

ultimately facing irreversible structural changes 
(reviewed by Charlesworth & Charlesworth 
2000). 

In other lineages however, recent 
empirical studies imply that XY recombination 
arrest is not a necessary step (Stöck et al. 2011, 
2013, Dufresnes et al. 2014b).  
Theory suggests that non-zero evolutionary stable 
rates of XY recombination can be selected in 
populations (Grossen et al. 2012), as a balance 
between sex-antagonistic selection (which should 
favor absolute linkage) and genetic load (which 
should favor some purging recombination). These 
stable rates can remain quite conserved 
throughout radiations: Dufresnes et al. (in prep) 
outlined a phylogenetic inertia of extremely low 
recombination at one particular chromosome pair 
among several closely-related species of tree frogs 
(Hyla sp), regardless of its function as a sex-
chromosome or as an autosome. Furthermore, 
superimposed on this long-term inertia, rates of 
XY recombination may show fine-scale variation 
between conspecific populations, and evolve 
extremely rapidly (Dufresnes et al. 2014b).  

Given the important evolutionary 
consequences and strong selective forces driving 
XY recombination, characterizing the variance 
underlying this trait becomes an important 
question. Such information may inform on the 
mechanisms underlying this process in natural 
populations, and lay the ground work for further 
empirical and theoretical analyses. In the context 
of frequent sex-chromosome turnovers, as faced 
by many species systems with homomorphic sex 
chromosomes (Bachtrog et al. 2014), one 
appealing aspect is to contrast the dynamics of 
recombination in related species where the same 
pair of chromosomes is either used as autosomes 
or as sex chromosomes. 

Western-Palearctic tree frogs (Hyla sp.), 
which diversified over the last 10My, provides a 
unique opportunity for such analyses. 
Recombination between sex chromosomes was 
evidenced in this group (Stöck et al. 2011, 
Dufresnes et al. 2014b, in prep). One linkage 
group, referred to as LG1 (Dufresnes et al. 2014a), 
is of particular interest because it maps to the sex 
chromosomes of several taxa, with male 
heterogamety (XY), but is autosomal in others 
(Dufresnes et al. in prep). Despite these 
differences in function, sibship analyses showed 
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TABLE 1: departure from male 
recombination homogeneity at Hyla’s 
linkage group 1. Nf: number of families, p: 
p-value (highlighted when < 0.05). H. 
arborea data combine families from two 
biogeographic regions (Adriatic coast, 
Southern Balkans), that do not significantly 
differ in recombination rates (Dufresnes et 
al. in prep).  
 

that males from all species investigated share 
similar patterns of recombination at LG1, 
involving extremely rare or absent crossovers in 
the central part of the chromosome, and increased 
rates at the periphery (Dufresnes et al. 2014b, in 
prep; illustrated in Figure 1). 

Here we dissect within-population 
variation of male recombination rates at this 
linkage group (LG1) in four Hyla species, where 
LG1 is either sex-linked or autosomal, based on 
the sibship data published by Dufresnes et al. 
(2014b, in prep). We report replicate patterns of 
strong between-males variation in recombination, 
with only a small proportion of males yielding 
most of the recombinants in each species, and 
discuss evolutionary implications. 
 
 
METHODS 

We considered sibship data of Hyla 
linkage group 1 generated by Dufresnes et al. 
(2014b) for H. arborea (19 families from two 
biogeographic regions encompassing glacial 
refugia) and Dufresnes et al. (in prep) for H. sarda 
(18 families), H. savignyi (17 families) and H. 
meridionalis (5 families), all using the same set of 
microsatellite markers encompassing most of the 
chromosome. This linkage group is sex-linked in 
H. arborea and H. meridionalis but not in H. sarda 
and H. savignyi. Nonetheless, LG1 male 
recombination is similarly reduced in all four 
species (Dufresnes et al. in prep, Figure 1). In 
comparison to the original datasets, here we only 
included families with at least 20 offspring, 
originating from regions where at least one event 
of male recombination was documented, and 
informative for at least one combination of 
potentially recombining loci (i.e. shown to 
experience crossovers in the species/region under 
focus). For H. arborea, families from the two 
biogeographic regions were pooled and analyzed 
altogether as these did not differ significantly in 
recombination rates (Dufresnes et al. 2014b). 

In order to test whether recombination 
rates differ between males, we computed, for each 
family, the proportion of recombinants expected if 

male recombination was homogeneous within 
populations. Given the low amount of male 
recombination within each species (equivalent to 
<12 cM), the expected number of recombinants ne 
in a family can be directly inferred from the 
recombination fraction r and the total number of 
offspring genotyped ntot, as 𝑟𝑟 =  𝑛𝑛𝑒𝑒

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡
 , where r can 

be averaged from the recombination distance D 
(as  𝑟𝑟 =  𝐷𝐷

100
 ), provided by the linkage maps of 

Dufresnes et al. (2014b, in prep). For each family, 
ne was computed considering the distance D 
between informative markers, and so that would 
have been potentially detectable from the data. 
Observed numbers of recombinants no were 
directly counted from the data. Expected and 
observed numbers of recombinants were 
compared for each species using χ2 tests of 
homogeneity, as 𝜒𝜒2 =  ∑ (𝑛𝑛𝑡𝑡𝑜𝑜−𝑛𝑛𝑒𝑒𝑜𝑜)2

𝑛𝑛𝑒𝑒𝑜𝑜
𝑖𝑖  , where noi and 

nei respectively represent the numbers of 
observed and expected recombinants of each 
family i. 
 
 
RESULTS AND DISCUSSION 

We documented strong between-male variation in 
recombination for all Hyla species investigated 
(Figure 1). Observed rates followed a bimodal 
distribution: most males featured null or low 
recombination fractions (r < 0.1) with a few males 
contributing most recombinants (r > 0.1). 
Assuming homogeneous recombination among 
individuals, based on the population averages, 
most males should have featured intermediate 
recombination rates (0.05 < r < 0.1). Accordingly, 
observed values significantly departed from these 
expected rates for 3 out of 4 species, and over all 
species (Table 1). 
 The strong heterogeneity of male 
recombination at LG1 in Hyla is consistent with 
some balanced phenotypic variation, involving 
two main recombining phenotypes: a frequent 
variant yielding few or no recombinants, and a 
rare variant yielding many recombinants. Given 
that evolution ary stable rates of XY 

species Nf χ2 p 

    
H. arborea 19 20.1 0.330 
H. sarda 18 32.9 0.012 
H. savignyi 17 28.4 0.028 
H. meridionalis 5 15.2 0.004 

    
overall 59 96.6 0.001 
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FIGURE 1: Recombination variation between LG1-recombining males within each species. Barplots 
show observed data. Solid lines show kernel densities of expected data (given marker 
informativeness within families) assuming homogeneous rates within populations. Note that for H. 
arborea, the expected distribution is bimodal because one third of the families were informative for 
the most-recombining peripheral markers (right mode), whereas the other two thirds were only 
informative for the less-recombining central portion (left mode). Male LG1 linkage maps are shown, 
adapted from Dufresnes et al. (2014b, in prep; for H. arborea, upper map: Southern Balkans, lower map: 
Adriatic coast). r: recombination fraction. 
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recombination stem from two counteracting 
forces (sex-antagonistic selection versus genetic 
load; although other forms of selection may 
contribute, Otto 2014), it is tempting to interpret 
the maintenance of this polymorphism as a 
response to a balanced selection driven by these 
forces. In other systems, recombination is known 
to respond quickly to selection  
(Charlesworth & Charlesworth 1985, Brooks 
1988). On the other hand, under this hypothesis it 
is surprising that a very same pattern of variation 
is also shared by species where this linkage group 
is autosomal (H. sarda, H. savignyi), and where no 
such selection should be a priori involved. 

Although the origin of this polymorphism 
remains unclear, it seems very conserved among 
the Hyla lineages investigated, suggesting some 
phylogenetic inertia. This result is in line with 
Dufresnes et al. (in prep), which proposed that 
recombination patterns at LG1 were fine-tuned 
and conserved among species following its 
specialization as a recurrent XY sex-chromosome 
pair. This phenotypic variance might have a 
genetic signature; although multiple genetic 
factors were shown to control recombination 
(Murdoch et al. 2010), one particular gene Prdm9 
seems to disproportionally account for within- 
and between-population variance in mammals 
(Baudat et al. 2013); sex-specific recombination 
rates were also shown to be directly associated 
with sequence variation at the RNF212 gene (Kong 
et al. 2008). The heterogeneity reported here thus 
provides opportunities to test such candidate 
genes that potentially contributes to this trait. 
Characterizing the genetic architecture of XY 
recombination in tree frogs may in turn inform on 
the underlying evolutionary processes 
maintaining this polymorphism throughout the 
radiation. 

More specifically, our results provide 
novel insights regarding the evolution of sex-
chromosomes and XY recombination in H. 
arborea. In this species, male recombination, and 
consequently X-Y differentiation, remarkably 
differ between closely-related populations: 
ancestral populations from glacial refugia feature 
nonzero male recombination (and low X-Y 
differentiation) whereas recently-diverged post-
glacial populations show virtually absent male 
recombination (and strong X-Y differentiation) 
(Dufresnes et al. 2014b). This biogeographic 
pattern can be explained in the light of the 
phenotypic variation documented in refugial 
populations of H. arborea: whereas these 
maintained both the recombining and non-
recombining variants, only the latter may have 
contributed to the post-glacial recolonization, the 
rare recombining variant being lost by expansion-
associated drift.  

Empirical knowledge of the variance 
underlying XY recombination will be important to 
consider in future evolutionary research, and 
particularly for implementing theoretical models 
of sex-chromosome evolution in simulation 
studies. 
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Abstract

A simple way to quickly optimize microsatellites in nonmodel organisms is to reuse loci available in closely related

taxa; however, this approach can be limited by the stochastic and low cross-amplification success experienced in some

groups (e.g. amphibians). An efficient alternative is to develop loci from transcriptome sequences. Transcriptomic

microsatellites have been found to vary in their levels of cross-species amplification and variability, but this has to

date never been tested in amphibians. Here, we compare the patterns of cross-amplification and levels of polymor-

phism of 18 published anonymous microsatellites isolated from genomic DNA vs. 17 loci derived from a transcrip-

tome, across nine species of tree frogs (Hyla arborea and Hyla cinerea group). We established a clear negative

relationship between divergence time and amplification success, which was much steeper for anonymous than tran-

scriptomic markers, with half-lives (time at which 50% of the markers still amplify) of 1.1 and 37 My, respectively.

Transcriptomic markers are significantly less polymorphic than anonymous loci, but remain variable across diverged

taxa. We conclude that the exploitation of amphibian transcriptomes for developing microsatellites seems an optimal

approach for multispecies surveys (e.g. analyses of hybrid zones, comparative linkage mapping), whereas anonymous

microsatellites may be more informative for fine-scale analyses of intraspecific variation. Moreover, our results confirm

the pattern that microsatellite cross-amplification is greatly variable among amphibians and should be assessed inde-

pendently within target lineages. Finally, we provide a bank of microsatellites for Palaearctic tree frogs (so far only

available for H. arborea), which will be useful for conservation and evolutionary studies in this radiation.

Keywords: amphibian, EST, Hyla, population genetics, transcriptome
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Introduction

Microsatellites are the most popular molecular tools

available on the population genetics market, even though

they are now increasingly challenged by other types of

markers (e.g. genotyping by sequencing) arising from

next-generation sequencing (NGS) approaches. In animal

research, they are particularly used for landscape (e.g.

Dubey et al. 2009) and conservation genetics (e.g. Beebee

2005; Luquet et al. 2011), analyses of fine-scale popula-

tion structure (e.g. Dufresnes et al. 2013), parentage and

kinship analyses (Purcell & Chapuisat 2013), as well as

evolutionary studies (e.g. Dufresnes et al. 2011b).

Although the improvements in enrichment methods

(reviewed by Zane et al. 2002) combined with the

application of NGS (e.g. Jennings et al. 2011; Prunier

et al. 2012) have greatly facilitated the isolation and

characterization of microsatellites for target species, the

de novo development of markers still represents a

substantial investment. Therefore, the reuse of cross-

amplifying loci in congeneric taxa remains a money- and

time-saving option (e.g. Dufresnes et al. 2011a). Cross-

amplification is also a prerequisite for multispecies stud-

ies, such as analyses of hybrid zones (e.g. Colliard et al.

2010) and comparative linkage mapping (e.g. St€ock et al.

2011), and ways to enhance the utility of markers across

more species have been proposed (e.g. developing prim-

ers from consensus sequences, Dawson et al. 2010, 2013;

Jan et al. 2012). However, reusing markers might be

tedious in some groups, such as amphibians, where

cross-amplification success is unpredictable and unex-

pectedly low (e.g. 21% in ranid frogs, Primmer & Meril€a

2002; 7% in bufonid toads, Rowe et al. 2000), presumably

because of their genome size and complexity (Garner

2002; Hendrix et al. 2010), the relatively low number of

potentially amplifying loci (PALs, Drechsler et al. 2013)

and of the underestimated divergence times within
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taxonomic groups (Primmer et al. 2005). Genetic distance

seems to be a good predictor of amplification success

(Primmer et al. 2005), but the strength of this relationship

varies greatly among species groups (e.g. Hendrix et al.

2010).

An alternative way to quickly obtain markers usable

in different lineages at low cost is to develop microsatel-

lites from transcriptomes (e.g. using expressed

sequenced tags, EST; e.g. Frenkel et al. 2012; Wang et al.

2012; Du et al. 2013; Yuan et al. 2013). This approach has

the advantage that, providing a reference genome of any

species with sufficiently conserved synteny, markers can

be mapped and selected to be distributed across the

whole genome (e.g. Du et al. 2013). In addition, most

transcriptome-derived loci are situated in coding regions

(e.g. Du et al. 2013); they should be more conserved than

randomly located anonymous markers, and cross-

amplify across deeper diverged lineages. On the other

hand, lower levels of polymorphism might be expected

for the exact same reasons, which can limit their utility

for fine-scale population genetics. Dawson et al. (2010,

2013) have shown that transcriptomic microsatellites

designed with conserved primers (i.e. between distant

model organisms) cross-amplify better than anonymous

markers in birds. These assumptions have yet never been

tested in amphibians, where microsatellite development

and optimization are particularly challenging.

With at least eight species distributed around the

Mediterranean Basin and a well-resolved phylogeny

(St€ock et al. 2008, 2012), Western Palaearctic tree frogs

(Hyla arborea species complex) are well suited for the

task. Microsatellite markers optimized from enriched

libraries have been long available for the nominal taxon

H. arborea (Table 1), and we (Brelsford et al. 2013;

Dufresnes et al. 2013) have recently developed new poly-

morphic loci from the transcriptome of a Swiss male of

this species. To set up a calibration between amplifica-

tion success and taxa divergence for anonymous and

transcriptome-derived microsatellites, we compare their

cross-amplification patterns in H. arborea and eight close

relatives (six from the Western Palaearctic, one from the

Eastern Palaearctic and one from the Nearctic). We fur-

ther compare their levels of polymorphism across and

within taxa. Moreover, our study provides a bank of mi-

crosatellites for Palaearctic tree frogs, which will be valu-

able for future conservation and evolutionary research

on this group.

Materials and methods

DNA sampling and extraction

DNA samples were gathered from H. arborea [Vaud,

Switzerland (CH); Crete, Greece: H. arborea kretensis],

H. molleri (Madrid province, Spain), H. orientalis (Thrace,

Greece), H. intermedia (Ticino, Switzerland; new taxon 2

cf. St€ock et al. 2012), H. sarda (Corsica, France), H. sav-

ignyi (Paphos district, Cyprus), H. meridionalis (Camar-

gue, France), H. japonica (Hiroshima, Japan) and

H. cinerea (Georgia, USA). Detailed sampling informa-

tion is available in Table S1. Genomic DNA was

extracted from noninvasive buccal swabs (live adults;

Broquet et al. 2007) or ethanol-preserved tissues (tad-

poles) with the Qiagen DNeasy Tissue Kit or the Qiagen

BioSprint robotic workstation.

Microsatellite bank and PCR amplification

We included 18 anonymous microsatellites (noncoding)

and 17 from a transcriptome of H. arborea (Table 1 and

S2). Among the latter, four were newly isolated in this

study, following the same procedure as Brelsford et al.

(2013). All loci were originally developed from Western

European H. arborea individuals (Arens et al. 2000: the

Netherlands; other work: Western Switzerland) which

belong to the same phylogeographic group (Dufresnes

et al. 2013). All markers were mapped (BLASTN and

TBLASTX) to the Xenopus tropicalis genome (assembly 7.1,

http://xenbase.org) to determine their position and

whether they are coding. Because sex-linked markers

may have skewed patterns of polymorphism (Berset-

Br€andli et al. 2007), we selected loci expected to be

autosomal, at least in H. arborea (Berset-Br€andli et al.

2008b; Brelsford et al. 2013) and most likely in H. molleri,

H. intermedia and H. orientalis, which share the same sex

chromosomes (St€ock et al. 2011, 2013). To do so, we

excluded published markers from the sex linkage group

(linkage group 1 in Berset-Br€andli et al. 2008b) or that

blast to X. tropicalis scaffold 1 (except three confirmed

autosomal markers from this scaffold, see Table 1),

which is mostly homologous to H. arborea linkage group

1 (Brelsford et al. 2013).

All but two microsatellites were amplified in 10 lL
multiplex PCRs (named A–D: anonymous, and F–I: tran-

scriptomic, following Dufresnes et al. 2013; Table S2),

with 3 lL of DNA (10–100 ng), 39 Qiagen Multiplex

Master Mix and primers (concentration as in Table S2).

Multiplex PCR conditions were as follows: 95 °C for 15′

(initial denaturation); 35 cycles of 94 °C for 30″ (denatur-

ation), 58 °C for 1′30″ (annealing), 72 °C for 1′ (elonga-

tion); 60 °C for 30′ (final elongation). Markers Ha-H116

and Ha-A139 were first amplified separately with the

exact same procedure to test for cross-amplification, but

we then used the following alternative PCR protocols for

subsequent genotyping (Berset-Br€andli et al. 2008b). For

Ha-H116, PCR templates (10 lL) contained 2.5 lL of

DNA, 19 Qiagen PCR buffer (with 1.5 mM of MgCl2),

0.2 mM of dNTPs, 0.5 lM of each primer and 0.25 units of

© 2013 John Wiley & Sons Ltd
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Qiagen Taq. For Ha-A139, PCRs were also carried out in

10 lL, with 1 lL of DNA, 19 Qiagen PCR buffer (with

1.5 mM of MgCl2), 0.5 mM of MgCl2, 0.2 mM of dNTPs,

0.5 lM of each primer, 19 Qiagen Q-solution and 0.3

units of Qiagen Taq. PCR conditions were identical for

both markers: 94 °C for 3′ (initial denaturation); 45 cycles

of 94 °C for 45″ (denaturation), 58 °C for 45″ (annealing),

72 °C for 1′ (elongation); and 72 °C for 5′ (final elonga-

tion). Ha-H116 and Ha-A139 were pooled and genotyped

along with multiplexes A and B, respectively. All ampli-

cons were subsequently analysed on an ABI-3100

sequencer, and allele sizes scored using the size stan-

dards ROX-350 (multiplexes A–D) or ROX-500 (multi-

plexes F–I; GENEMAPPER 4.0, Applied Biosystems, Inc.).

To avoid scoring nonspecific loci in congeneric species,

we only scored alleles close to the source species range

(i.e. no more than 30 bp between the source and the tar-

get species ranges) and with similar chromatographic

profiles. Markers that would not amplify were repeated

separately. If no PCR product could be obtained after the

repeat, it would be declared nonamplifying.

Population genetics analyses

We computed the number of alleles (k) and heterozygos-

ity (H0) and tested Hardy–Weinberg equilibrium within

taxa for each locus in FSTAT 2.9.3 (Goudet 1995) when at

least 10 individuals amplified. The frequencies of null

alleles (p0) were estimated with MICRO-CHECKER 2.2.3

(van Oosterhout et al. 2004; when all samples amplified),

or from the proportion of nonamplifying individuals

(p0
2; when only a few samples amplified), and we per-

formed corrections when necessary. For each marker, we

computed allelic frequencies within taxa/populations

after corrections (FSTAT).

Amplification success and polymorphism versus genetic
distance

For each population, the amplification success was cal-

culated as the mean proportion of amplifying alleles

per marker (1�p0, e.g. 1 for a perfectly amplifying

locus, 0.8 for a locus with 20% of null alleles, etc.). We

also computed the percentage of usable loci (polymor-

phic and properly amplifying, i.e. less than 20% of null

alleles, p0 < 0.2) and the mean proportion of null

alleles (p0) in amplifying markers (p0 > 0). As a proxy

to genetic distance, we took advantage of the mito-

chondrial dating from St€ock et al. (2012), for Western

Palaearctic species, Dufresnes et al. (2013), for the

southern H. arborea haplogroup occurring in Crete and

Schmidt et al. (2005), for the deepest-diverged H. cinerea

and H. japonica. To cast our results among previous

work, we related cytochrome-b sequence divergence to

amplification patterns of anonymous microsatellites in

tree frogs (this study), toads (Rowe et al. 2000), sala-

manders (Hendrix et al. 2010) and newts (Krupa et al.

2002; Garner et al. 2003), as Primmer et al. (2005) did

for ranid frogs. We used published cyt-b sequences

(Table S3), aligned with SEAVIEW (Gouy et al. 2010) and

analysed in DNASP (Librado & Rozas 2009). Some taxa

from Hendrix et al. (2010) were not included due to lit-

tle sequence overlap between available cyt-b (<250 bp).

Relationships were assessed with linear regressions on

untransformed (% of cyt-b divergence) or log-trans-

formed data (divergence time, see Results), separately

for anonymous and transcriptomic loci.

Influence of the primer design and PCR conditions

PCR amplification can also depend on several techni-

cal features, such as amplicon length, deviation from

optimal annealing temperature, concentration of MgCl2
and whether priming sites are coding (i.e. potentially

more conserved). When applicable, we tested whether

these conditions differed between our two marker sets

(ANOVAS) and whether they had affected the degree of

cross-amplification (i.e. covariates in ANCOVAS with

divergence time). Furthermore, we compare these

characteristics between our and previous studies on

amphibians (ANOVAS), using available published data

(compiled in Table S4). To this purpose, we calculated

the melting temperature (Tm) of each primer with

PRIMER3PLUS (Untergasser et al. 2007) and their optimal

annealing temperature (Topt = Tm�2) and computed

the deviation from the PCR annealing temperature

used (Ta), noted DTa�Topt.

Polymorphism of transcriptomic and anonymous
markers

For properly amplifying markers (p0 < 0.2) and after

correction for null alleles, we compared k and logit-

transformed H0 (Warton & Hui 2011) between transcrip-

tomic (ta) and anonymous (an) loci with generalized

linear mixed models (GLMM, R Development Core

Team 2011, package lme4) including marker type as a

fixed factor, and species and markers as random factors.

To explore what features influence variability within

each marker type, we ran additional models to predict k

and H0 from the number of tandem repeats, and the

coding/noncoding nature of the sequence (the latter

only for transcriptomic loci). Significance was tested by

removing variables through a backward model selection

procedure. Moreover, we also assessed whether the

number (ANOVA) and type (dinucleotide, trinucleotide,

etc., v2 test) of tandem repeats significantly differ

between sets.
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Results

Marker homology in X. tropicalis and population
genetics analyses

No anonymous markers could be successfully aligned to

the X. tropicalis genome, but homologous sequences of

transcriptomic loci were found (Table 1). Table S5 sum-

marizes microsatellite variability, allele ranges, results of

tests for departure from HW equilibrium and estimation

of null alleles within each taxon. A few markers did not

meet HW expectations in some taxa, which were, in most

cases, suggested to be associated with the presence of

null alleles (Table S5). Allelic frequencies are provided in

Table S6.

Amplification success versus genetic distance

The amplification success (Fig. 1a) and the number of

usable markers (Fig. 1b) decreased exponentially with

divergence time for both types of markers, respectively,

by 6.7- and 10.4-fold faster for anonymous loci. Esti-

mated from the regressions (log-transformed data), the

half-lives of our microsatellite sets (time for which the

proportion of amplifying loci is 50%) were approxi-

mately 1.1 My for anonymous and 37 My for transcrip-

tomic. Considering only usable loci, these values

correspond to 1.7 My and 16.6 My, respectively. Further-

more, we could not significantly relate the proportion of

polymorphic loci among properly amplifying to diver-

gence time (Fig. 1c), although it substantially decreased

for anonymous markers. The proportion of null alleles

(p0) among amplifying anonymous makers increased

with divergence, a trend which was not shared by tran-

scriptomic loci (Fig. 1d).

Sequence divergence (cyt-b) was a good predictor for

the amplification success of anonymous markers in tree

frogs and other amphibians (Fig. 2), and the relationship

varied significantly between species groups (ANCOVA,

F4,38 = 6.91, P-value = 0.0003).
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Fig. 1 Amplification success (a), proportion of usable loci among 
total (b) and among properly amplifying (p0 < 0.2, c), and propor-
tion of null alleles in amplifying loci (d) vs. divergence time for 
transcriptomic (blue circles) and anonymous markers (green trian-
gles). Regression curves are displayed when significant (P < 0.05).
(a) Amplification success (mean proportion of amplifying alleles 
per locus 1�p0): for transcriptomic: y = e�0.0193x+0.0277, F1,8 = 61.9, 
P < 0.001, R2 = 0.89; for anonymous: y = e�0.1297x�0.5511, F1,7 = 
130.7, P < 0.001, R2 = 0.95). (b) Proportion of polymorphic and 
properly amplifying (p0 < 0.2) markers among total: for transcrip-
tomic: y = e�0.0239x�0.2956, F1,8 = 18.9, P = 0.003, R2 = 0.70; for anon-
ymous: y = e�0.2480x�0.2664, F1,6 = 36.6, P < 0.001, R2 = 0.86. (c) 
Proportion of polymorphic loci among properly amplifying 
(p0 < 0.2): for transcriptomic: y = e�0.0019x�0.3169, F1,8 = 0.13, 
P = 0.73, R2 = 0.02; for anonymous: y = e�0.0572x+0.0651, F1,6 = 5.3, 
P = 0.06, R2 = 0.47. (d) Mean proportion of null alleles among all 
amplifying markers (p0 > 0): for transcriptomic: y = ln (0.0292x- 
4.6674), F1,8 = 2.6, P = 0.15, R2 = 0.24; for anonymous: y = ln 
(0.0359x + 1.0301), F1,7 = 20.6, P = 0.003, R2 = 0.75.
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Influence of the primers design and PCR conditions

Anonymous microsatellite amplicons were on average

smaller, and their annealing temperatures less optimal

than transcriptomic (Table 2). However, none of these

factors affected the degree of cross-amplification, and

neither did the coding/noncoding nature of primers for

transcriptomic loci (Table 2). Note that all our markers

were originally amplified with the same concentration of

MgCl2 (1.8 mM), which therefore could not explain dif-

ferences in cross-amplification either. Finally, differences

in MgCl2 concentration (salamanders: 1.5 or 1.8 mM;

ranid frogs: 1.5 mM; newts: 1.5 mM for all but one mar-

ker; tree frogs: 1.8 mM; toads: 2 mM) and deviations from

optimal annealing temperature (not significantly differ-

ent between studies F3,46 = 2.7, P-value = 0.055) would

hardly explain the variation in cross-amplification rates

reported among amphibians (Table S4).

Polymorphism of transcriptomic and anonymous
markers

The number of alleles (k) and observed heterozygosities

(H0, logit-transformed) were both affected by the type of

Table 2 Comparison of the main characteristics between transcriptomic and anonymous loci, and their influence on cross-amplification

and variability

Transcriptomic (n = 17) Anonymous (n = 18)

Marker characteristics

Amplicon length 246.1 (�72.3) 191.9 (�51.6) ANOVA, F1,33 = 6.6, P = 0.015

DTa�Topt 0.3 (�0.2) 3.2 (�2.1) ANOVA, F1,33 = 32.5, P < 0.001

Number of repeats 9.7 (�5.6) 17.7 (�6.2) ANOVA, F1,33 = 15.9, P < 0.001

Type of repeats di-: 35%, tri-: 53%, other: 12% di-: 72%, tri-: 6%, tetra-: 22% v2 = 15.0, P = 0.005

Number of alleles k 2.94 (�2.12) 4.96 (�3.62) GLMM, v2 = 6.4, P = 0.011

Heterozygosity H0 0.34 (�0.28) 0.49 (�0.29) GLMM, v2 = 4.6, P = 0.033

Factors affecting cross-amplification (ANCOVA)

Divergence time F1,148 = 47.8, P < 0.001 F1,148 = 25.8, P < 0.001

Amplicon length F1,148 = 0.1, P = 0.72 F1,148 = 0.2, P = 0.66

DTa�Topt F1,148 = 1.5, P = 0.22 F1,148 = 0.03, P = 0.85

Number of coding priming regions F1,148 = 1.5, P = 0.22 –
Factors affecting k (GLMM)

Number of repeats v2 = 0.1, P = 0.71 v2 = 3.9, P = 0.048

Coding nature of markers v2 = 0.1, P = 0.80 –

Interaction v2 = 1.7, P = 0.19 –

Factors affecting H0 (GLMM)

Number of repeats v2 = 0.2, P = 0.63 v2 = 1.5, P = 0.22

Coding nature of markers v2 = 0.0, P = 1.00 –
Interaction v2 = 3.1, P = 0.08 –

Significant P-values are marked in bold.
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Fig. 2 Amplification success of microsat-
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Regression curves are displayed when sig-

nificant. For tree frogs: y =�3.77x + 0.806,
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frogs, see Figure 4 in Primmer et al. 2005;
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markers, being significantly lower for transcriptomic

than anonymous markers across species (Table 2, Fig. 3).

Transcriptomic microsatellites possessed fewer repeats,

and the proportion of each repeat type also differed

between sets (Table 2). The former positively influenced

the number of alleles (but not heterozygosity) in anony-

mous markers. For transcriptomic loci, neither the num-

ber of microsatellite repeats, whether markers are

coding/noncoding, nor their interaction had a significant

effect (Table 2). Note that because of the distribution of

the data (i.e. one repeat type was prominent within each

set, table 2), it was not possible to use the repeat type as

a variable in the GLMMs.

Discussion

It is well known that the amplification success and poly-

morphism of microsatellite loci decrease with the genetic

distance from the source species, as shown in birds

(Primmer et al. 2005; Dawson et al. 2010, 2013), mammals

(Moore et al. 1991), fishes (Carreras-Carbonell et al.

2008), reptiles (e.g. Glenn et al. 1996) and amphibians,

including salamanders (e.g. Hendrix et al. 2010) and

ranid frogs (Primmer et al. 2005; Nair et al. 2012). Our

results for hylid tree frogs conform to this general pat-

tern, which seems to hold across amphibians. Moreover,

the comparison with other radiations illustrates that this

relationship differs substantially between taxonomic

groups: half of the microsatellites still amplified after 8%

to 18% of cyt-b divergence (calculated from the regres-

sions, Fig. 2). With a half-life of only 1.1 My, cross-ampli-

fication rates in tree frogs are thus among the lowest

documented in amphibians. In contrast, Hendrix et al.

(2010) reported that 65% of loci still worked between

clades separated by 30 My in salamanders. The consider-

able differences in genome size (C-values) found

between and within amphibian lineages were suggested

to account for these large disparities (Garner 2002; Hen-

drix et al. 2010). Within Hyla tree frogs, however, poor

cross-amplification might only stem from the fast evolu-

tion of flanking regions (Balloux et al. 1998), given that

species feature similar C-values (e.g. on average 4.8 for

H. arborea, 4.7 for H. japonica, www.genomesize.com). In

addition, most of the anonymous loci developed for

H. arborea belong to the same family of repetitive ele-

ments (possibly retrotransposons, A. Horn, unpublished)

and may thus have comparable evolutionary rates. It is

unlikely that this pattern stems from technical differ-

ences between our and previous studies, at least for the

key parameters we accounted for (primer design, MgCl2
concentration).

Whereas optimizing anonymous markers for other

species might thus be an unwarranted endeavour, loci

isolated from transcriptomes appear to last much
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longer through evolutionary times. In our case, more

than 80% of these microsatellites still amplified across

the Circum-Mediterranean radiation (diverged some 10

Mya, St€ock et al. 2012), suggesting strong conservation

of priming sites (the key factor of cross-amplification,

Dawson et al. 2013; although whether priming regions

are coding did not affect transferability in Hyla) and/

or high marker sequence similarity between species

(K€upper et al. 2008). In addition, there was no evidence

of decrease in variability with genetic distance, and

microsatellite utility was only a function of amplifica-

tion success. In contrast, Dawson et al. (2010, 2013)

documented a decrease in polymorphism with genetic

distance, but they focused on much higher divergences

(including passerines and nonpasserine birds). Again,

our results were not affected by methodological fea-

tures, because the same PCR conditions were used for

all markers, and deviations from optimal primer

annealing temperature, although better for transcrip-

tomic primers, were not related to the degree of

cross-amplification. Other attempts to cross-amplify

transcriptomic markers similarly resulted in high levels

of cross-species transferability (e.g. Qu et al. 2012; Du

et al. 2013; Yuan et al. 2013), better than for anonymous

markers (Dawson et al. 2010, 2013). At first glance,

exploiting transcriptomes thus appears to be a method

of choice to quickly obtain large sets of markers com-

patible in congeneric species.

On the other hand, the conserved nature of tran-

scripts also reflected on the intraspecific level of vari-

ability: transcriptome-derived markers displayed

significantly lower number of alleles and heterozygos-

ity than markers developed from enriched libraries.

Reports for new transcriptomic microsatellite develop-

ment accordingly featured rather low locus diversity

in the source species (mean number of allele per locus,

e.g. Triwitayakorn et al. 2011: 3.9; Frenkel et al. 2012:

from 1 to 6 depending on the population; Wang et al.

2012: 2.4; Liu et al. 2013: 4.1; Du et al. 2013: 2.7; Yuan

et al. 2013: 1.4). This might in part stem from a meth-

odological bias in favour of highly variable loci (with

more tandem repeats) when developing anonymous

markers, that have so far not been applied to tran-

scriptomic markers (which in addition may be located

in more conserved regions of the genome). Indeed, in

Hyla, the numbers of microsatellite repeats in the

source individual were significantly lower for loci

developed from the transcriptome (which also differed

by repeat type), a feature known to impact marker

variability (Balloux et al. 1998), as highlighted in our

anonymous loci. Additionally, potential selection acting

on transcriptomic loci could be a concern for analyses

of neutral genetic diversity, especially for tri- and

hexanucleotides, commonly found in coding regions

(Du et al. 2013), but we did not detect any difference

in variability between coding and noncoding markers,

and the few significant departures from Hardy–Wein-

berg equilibrium (4 cases of 98) most likely resulted

from the occurrence of nonamplifying alleles (Table

S5). Rather than direct selection, indirect effects via

Hill–Robertson interference (hitchhiking and back-

ground selection) might contribute to this reduced

variation.

Therefore, microsatellites isolated from transcripto-

mes have to be chosen carefully for fine-scale analyses

of population variability. In addition, several studies

reported HW deviations in EST-derived marker sets

(e.g. Kong & Li 2008; Smee et al. 2013), and only a sub-

set of the microsatellites characterized from a transcrip-

tome are actually usable for sound population genetics

(e.g. Kong & Li 2008: 9 of 15; Qu et al. 2012: 41 of 46).

One way to improve the amount of usable markers

would be to design consensus primers with distant

model organisms (e.g. using available genomes,

Dawson et al. 2010, 2013; Jan et al. 2012), which should

reduce the probability of null alleles and maintain

polymorphism in cross-amplifying species (providing

sufficient variability of loci in the sources, Dawson

et al. 2013). Once a proper set has been optimized, their

high transferability across taxa makes them ideal candi-

date markers for multispecies surveys, such as analyses

of hybrid zones, particularly in our case given that

many loci displayed diagnostic differences in allelic

frequencies (Table S6).

The European tree frog H. arborea has been a model

species in the field of population genetics for more

than a decade, and microsatellites were intensively

used to address various questions related to conserva-

tion (e.g. Broquet et al. 2010; Luquet et al. 2011) and

landscape genetics (e.g. Dubey et al. 2009), mating

systems (e.g. Broquet et al. 2009; Jaqui�ery et al. 2010),

phylogeography (Dufresnes et al. 2013) and sex chro-

mosome evolution (e.g. Berset-Br€andli et al. 2007,

2008b; Dufresnes et al. 2011b; St€ock et al. 2011). The

establishment of a comprehensive microsatellite set

compatible in Western Palaearctic tree frogs (plus

some Eastern Palaearctic and Nearctic taxa) signifi-

cantly expands the possibilities for research to the

entire radiation, where no markers have been available

so far. It will be particularly relevant for multilevel

analyses of population structure and reproductive iso-

lation, as several lineages form secondary contact

zones and seem to harbour cryptic diversity (e.g.

H. intermedia, H. orientalis, H. meridionalis, St€ock et al.

2012). Finally, it will allow genetic-based conservation

assessments for the regionally threatened tree frogs

populations found across many countries (Amphibia-

Web: amphibiaweb.org).
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First-generation linkage map for the European
tree frog (Hyla arborea) with utility in congeneric
species
Christophe Dufresnes*, Alan Brelsford and Nicolas Perrin
Abstract

Background: Western Palearctic tree frogs (Hyla arborea group) represent a strong potential for evolutionary and
conservation genetic research, so far underexploited due to limited molecular resources. New microsatellite
markers have recently been developed for Hyla arborea, with high cross-species utility across the entire circum-
Mediterranean radiation. Here we conduct sibship analyses to map available markers for use in future population
genetic applications.

Findings: We characterized eight linkage groups, including one sex-linked, all showing drastically reduced
recombination in males compared to females, as previously documented in this species. Mapping of the new 15
markers to the ~200 My diverged Xenopus tropicalis genome suggests a generally conserved synteny with only one
confirmed major chromosome rearrangement.

Conclusions: The new microsatellites are representative of several chromosomes of H. arborea that are likely to be
conserved across closely-related species. Our linkage map provides an important resource for genetic research in
European Hylids, notably for studies of speciation, genome evolution and conservation.

Keywords: Conservation, Heterochiasmy, Hylid frogs, Microsatellites, Population genetics, Recombination,
Transcriptome
Background
Genetic maps based on linkage disequilibrium are power-
ful tools to address many aspects regarding the evolution
of animal genomes like QTL mapping, recombination
and chromosome synteny [1]. Moreover, they provide
valuable resources for the use of molecular markers in
population genetics. European tree frogs (Hyla arborea
group) have become a model system in this field and
were intensively studied in contexts of conservation (e.g.
[2]), phylogeography (e.g. [3]), as well as mating systems
(e.g. [4]) and sex-chromosome evolution (e.g. [5]). This
radiation forms a genetically-rich group, including at
least eight species distributed across the Mediterranean
Basin, some with deep intraspecific divergences [6].
Nevertheless, despite high potential for research, so far
most work has been restricted to the single H. arborea,
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Lausanne, 1015 Lausanne, Switzerland
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for long the only taxon for which microsatellite markers
and their linkage map were available [7]. Indeed, most of
these markers turned out to be unusable in congeneric
species [8].
To overcome this issue, we have recently developed a

new set of EST-derived microsatellite loci with high
cross-species utility, thus extending opportunities for re-
search to the entire circum-Mediterranean radiation [8].
Here we present a first-generation linkage map for H.
arborea combining these new microsatellites with those
earlier published, to produce a useful resource for future
evolutionary, ecological and conservation genetic appli-
cations. As most EST-derived markers could be aligned
on the Xenopus tropicalis genome [8], we took advantage
of this new map to document patterns of synteny of our
linkage groups between Hyla and Xenopus.

Methods
Tree frog families (parents + tadpoles) were obtained
from controlled crosses, as described [9]. Families were
ral Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,
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chosen from the Balkan Peninsula, where populations dis-
play the highest amounts of genetic diversity [3]. Nine
families originated from Krk island, Croatia (45.1704°,
14.6229°), one near Karlovac, Croatia (45.5435°, 15.5729°),
one near Progar, Serbia (44.7422°, 20.1381°) and one from
the Neusiedlersee region, Austria (47.9261°, 16.8634°), for
a total of 12 families (n = 352 tadpoles, from 24 to 30 per
family). DNA from parents (non-invasive buccal swabs,
[10]) and offspring (ethanol fixed tadpoles) was extracted
using the Qiagen Robotic Workstation. Our study was ap-
proved by the relevant Institutional Animal Care and Use
Committee (IACUC), namely the Service de la Consom-
mation et des Affaires Vétérinaires du Canton de Vaud
(Epalinges, Switzerland; authorization N°1798) and sam-
pling was conducted under collecting permits (N°532-08-
01-01 issued by the Nature Protection Directorate of the
Croatian Ministry of Culture; N°353-01-29 issued by the
Ministry of Environment and Spatial Planning of the
Republic of Serbia); research was carried out in compli-
ance with the Convention on Biological Diversity (CBD)
and Convention on the Trade in Endangered Species of
Wild Fauna and Flora (CITES); no field-captured animals
were harmed and the majority of offspring obtained from
the crosses (>80% of each clutch) was released to their
ponds of origin.
We genotyped 43 microsatellites polymorphic in at

least one parent, including 23 loci mapped by Berset-
Brändli et al. [7] (based on Swiss H. arborea families)
and 20 markers developed since [3,5,8,11]. All but one
marker (Ha-H116) were amplified in nine multiplex
PCRs (Additional file 1: Table S1), following Dufresnes
et al. [8]. PCRs were carried out in 10 μL, including 3 μL of
DNA (10-100 ng), 3× Qiagen Multiplex Master Mix, and
primers (concentrations: Additional file 1: Table S1). Ther-
mal conditions were as follow: 95°C for 15’, 35 × (94°C for
30”, 58°C for 1’30”, 72°C for 1’), 60°C for 30’. Locus Ha-
H116 was amplified separately in a 10 μL PCR containing
2.5 μL of DNA (10-100 ng), 1× Qiagen PCR buffer (with
1.5 mM of MgCl2), 0.2 mM of dNTPs, 0.5 μM of each pri-
mer and 0.25 units of Qiagen Taq. Conditions consisted of
94°C for 3’, 45 × (94°C for 45”, 58°C for 45”, 72°C for 1’),
72°C for 5’. PCR products of Ha-H116 were pooled and ge-
notyped along with multiplex A. All amplicons were ana-
lyzed on an ABI-3100 sequencer with size standards Rox-
350 (multiplex A-D) or Rox-500 (multiplex E-I). Alleles
were scored with Genemapper 4.0 (Applied Biosystems,
Inc.). Additional file 1: Table S1 provides detailed marker
information. In complement to our microsatellite dataset,
we included genotypes from a SNP within the gene Fryl,
shown to be sex-linked in H. arborea (methods: [11]).
We used CRI-MAP [12] to estimate linkage and recom-

bination rates through calculations of LOD scores (func-
tion twopoint), determine the most likely order of loci
(functions all and flips) and calculate sex-specific genetic
distances (function build). The graphical representation of
the map was produced with MAPCHART [13]. We com-
pared recombination rates between Balkanic (this study)
and Swiss populations [7] by paired Wilcoxon signed-rank
tests, considering only combinations between neighboring
informative loci to avoid pseudo-replication.

Results and discussion
We identified eight linkage groups (Figure 1), potentially
representing eight out of the 12 chromosomes of H.
arborea [14]. LG1 to LG6 corresponds to the six groups
reported by Berset-Brändli et al. [7], with LG1 being the
sex chromosomes. Two new linkage groups could be
identified (LG7 and LG8). Six loci displayed no signifi-
cant linkage disequilibrium, possibly because of low in-
formativeness and/or because they represent some of
the four remaining chromosomes: the same WHA1-25,
Ha-A127, Ha-B5R3 remained similarly unlinked in the
Swiss families [7]. However, it is not excluded that sev-
eral linkage groups map to the same chromosome.
We documented drastically reduced recombination

rates in males compared to females across most of the
genome, including the sex-linkage group, in accordance
with Berset-Brändli et al. [7]. Male recombination seems
even under complete arrest for some segments (e.g. LG4:
Ha-T50 – Ha-T66, LG5: Ha-A11 – Ha-T67). Our auto-
somal maps were on average 13.7 times longer in females
than in males, which is close to what these authors re-
ported for Switzerland (14.3). As they developed, this ex-
treme pattern is in line with the pleiotropic model of
Haldane and Huxley [15-17], according to which recom-
bination is repressed over the whole genome in the het-
erogametic sex (males in H. arborea), as a way to prevent
recombination between homomorphic sex-chromosomes.
Interestingly, however, one linkage group (LG8) does not
feature such strong male-biased heterochiasmy, perhaps
indicating different mechanisms which would deserve fur-
ther investigation with additional markers. Moreover, re-
combination rates did not significantly differ between the
two regions, neither in females (Wilcoxon signed rank
test, p = 0.26) nor in males (p = 0.87), at least for the few
combination of informative loci common to both studies
(n = 9 and 12 for females and males respectively). Rates of
recombination are provided in Additional file 2: Table S2.
Only one major chromosome rearrangement was appar-

ent since the divergence from Xenopus (~200 Mya): H.
arborea’s LG4 is homologous to both X. tropicalis’s scaffold
1 (Ha-T32, Ha-T41 and Ha-T49) and scaffold 2 (Ha-T50,
Ha-T66). Reciprocally, most of X. tropicalis’s scaffold 1 is
syntenic with Hyla’s sex chromosomes (LG1, as shown by
[11]), and to this conserved LG4 segment. In contrast,
from our data other linkage groups featured no signs of re-
arrangements: markers lying within different Xenopus scaf-
folds either belong to different Hyla linkage groups, or



Figure 1 Male- and female-specific linkage maps for Hyla arborea. Maps are based on 43 microsatellites and one SNP locus (Fryl), with
orders according to the highest log likelihood. For LG7, marker Ha-T64 was not polymorphic in females. Genetic distances are indicated in
centiMorgan (cM). Colored frames show the location of homologous loci within the Xenopus tropicalis genome (assembly 7.1, http://xenbase.org),
as reported in [8]. For clarity, simplified marker names were used (see Additional file 1 for full identifiers).
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remained unlinked. Accordingly, LG8 includes two
markers from the same Xenopus scaffold 8. Note that a
third marker from this scaffold (Ha-T63) remained un-
linked, but its low informativeness with other LG8 loci
(polymorphic only in one female) prevents firm conclu-
sions. Although the coverage of some chromosomes is
weak (i.e. synteny is supported by a few loci per LG), it is
thus likely that the same linkage groups hold between H.
arborea and its Western Palearctic congenerics (diverged
over the last 10 My, [6]), and our map should also be suit-
able for these taxa. High-density linkage mapping using
genotyping-by-sequencing (e.g. [18]) will give a much
higher resolution for documenting patterns of sex-specific
recombination across H. arborea chromosomes, and for
detecting events of rearrangements across anuran frogs.
The characterization and mapping of new microsat-

ellite markers compatible across Western Palearctic
Hyla tree frogs (plus some Eastern Palearctic and
Nearctic taxa, [8]) significantly expands possibilities for
genetic surveys in this group. In particular, their high
transferability and known relative genomic localization
make them ideal assets for speciation studies, i.e. for ana-
lyzing levels of hybridization in secondary contact zones
and screening for patterns of differential introgression
over the genome. These advantages will also allow multi-
species comparative linkage mapping to understand the
evolution of sex chromosomes and recombination in this
group [5]. Finally, this marker set will be useful to unravel
the cryptic diversity suspected in several understudied
taxa (e.g. H. orientalis, H. savignyi, H. meridionalis [6]),
as well as for other applications related to the conserva-
tion of these emblematic species, threatened in many re-
gions and countries.
Availability of supporting data
Microsatellite genotypes are archived in Dryad (http://
doi.org/10.5061/dryad.16pj3). doi:10.5061/dryad.16pj3.
Additional files
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ABSTRACT 

Sex chromosomes have been assigned a key role 
in driving speciation, which may however be 
mediated by their degree of differentiation. Most 
support yet come from species with degenerated 
sex chromosomes.  Here we document restricted 
introgression at sex-linked compared to 
autosomal loci in a natural hybrid zone between 
two lineages of tree frogs (Hyla arborea and Hyla 
orientalis) with undifferentiated XY chromosomes. 
Genome-wide introgression was low (~20 km) 
across two independent transects, suggesting 
advanced reproductive isolation, but cline widths 
were significantly narrower for sex-chromosome 
by 6 km, consistent with a large X-effect. Our 
results imply that non-degenerated sex 
chromosomes may also effectively affect 
reproductive isolation, with sex-linked hybrid 
incompatibilities rising from faster male or faster 
heterogametic sex evolution. 
 
 
INTRODUCTION 

The mechanisms by which reproductive isolation 
accumulates between incipient species constitute 
a central issue in the study of speciation. Two 
empirical ‘rules of speciation’, Haldane’s rule and 
Coyne’s rule (or large-X effects), both assign a key 
role to sex chromosomes in the building of 
intrinsic postzygotic isolation (i.e. hybrid 
infertility or inviability). From Haldane’s rule, 
when a sex is absent, rare, or sterile in an 
interspecific cross, this is usually the 
heterogametic sex (Haldane 1922). Haldane’s rule 
is obeyed by the vast majority of animal taxa 
studied in this respect (Schilthuizen et al. 2011), 
and appears to also apply to plants (Brothers & 
Delph 2010). Coyne’s rule (or large X-effect) refers 
to the disproportionally high impact of X or Z 
chromosomes in driving hybrid dysfunctions, 

compared to autosomes (Turelli & Moyle 2007). 
QTL mapping and backcross analyses in 
Drosophila have provided compelling evidence 
that genetic factors with the largest effects on 
hybrid sterility tend to be X-linked (Coyne & Orr 
2004, Masly & Presgraves 2007, Presgraves 2008, 
Qvarnström & Bailey 2009).  

Several alternative models have been 
proposed to account for both of these empirical 
rules. i) The ‘dominance model’ notes that, if the 
Dobzhanski-Muller incompatibilities that impact 
hybrid fitness are partially recessive, they are 
more likely to be expressed when involving genes 
on the hemizygous X (or Z) chromosomes (Muller 
1940, Turelli & Orr 1995). This model predicts 
Haldane’s effects in both XY and ZW systems, but 
only for species with degenerated / silenced Y or 
W chromosomes. ii) The ‘faster-X’ theory holds 
that genetic changes accumulate faster on the X or 
Z chromosome than on autosomes, due to 
hemizygous exposure to selection in the 
heterogametic sex (Charlesworth et al. 1987). This 
effect has the potential to contribute to both large 
X-effects and Haldane’s rule, but also specifically 
applies to systems with degenerated / silenced Y 
or W chromosomes. iii) The ‘faster-male’ theory 
holds that sexual selection drives especially rapid 
evolution of male-expressed genes, inducing more 
rapid divergence of genes involved in male than in 
female reproduction (Wu & Davies 1993, Wu et al. 
1996). This may explain why hybrid male sterility 
evolves before hybrid female sterility, and thus 
account for sterility aspects of Haldane’s rule, but 
only in XY systems. This model makes no 
assumption regarding the degeneracy of Y or W 
chromosomes. Finally, iv) the ‘faster 
heterogametic sex‘ model assigns a role to epistatic 
interactions between X and Y (or Z and W) 
chromosomes. Epistasis may result from a history 
of genomic conflicts, such as the control of 
meiotic-drive X chromosomes by Y-linked genes 
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(e.g. Frank 1991, Hurst & Pomiankowski 1991, 
Tao & Hartl 2003, McDermott & Noor 2010). Note 
that X-Y hybrid incompatibilities may also result 
from the requirement of complementary alleles 
from conspecific gametologs for proper 
differentiation of the heterogametic sex. This 
model does not either make any assumption 
regarding the degeneracy of X and Y 
chromosomes. 

These alternative theories are not 
mutually exclusive: both Haldane’s and Coyne’s 
rules are likely underlain by a diversity of 
mechanisms. The relative contribution of the four 
models in driving speciation thus becomes an 
important empirical question. One way of 
evaluating it is through a comparison of F1-hybrid 
sterility or viability between systems with 
homomorphic versus heteromorphic sex 
chromosomes. In Anopheles mosquitoes, where X 
and Y chromosomes are highly heteromorphic, 
hybrid males suffer from strongly depressed 
sterility and viability, while in Aedes mosquitoes, 
where X and Y chromosomes are homomorphic, 
hybrid males only suffer from limited sterility 
(Presgraves & Orr 1998). This suggests that 
dominance- and/or faster X-effects are required to 
account for the inviability aspects of Haldane’s 
rule, but that faster male- and/or faster 
heterogametic sex effects also contribute to 
fertility aspects. In Xenopus frogs, where sex 
chromosomes are homomorphic, hybrid fertility is 
more depressed in ZZ males than in ZW females, 
running against Haldane’s rule; by sex-reversing 
frogs, Malone & Michalak (2008) showed hybrid 
male sterility to be determined by the phenotypic 
sex (male versus female), not the genotypic sex 
(ZZ versus ZW), hence providing strong support 
for faster-male effects (but also showing that the 
genes involved in male sterility are mostly 
autosomal). A recent meta-analysis by Lima 
(2014) corroborates the view that postzygotic 
incompatibilities expressed in F1 hybrids are 
heavier in species with heteromorphic than with 
homomorphic sex chromosomes, assigning an 
important role to the dominance- and/or faster-X 
models. 

An alternative way of evaluating the 
relative contributions of these selective forces to 
speciation is through the study of hybrid zones, 
which constitute natural laboratories to 
characterize the genetic basis of reproductive 
barriers. As genomic regions responsible for pre- 
and postzygotic isolation are selectively filtered, 
screening for differential introgression patterns 
over the genome (e.g. through cline fitting 
techniques) offers a powerful way to outline genes 
or genomic segments involved in speciation 
processes (Payseur 2010). As the dominance- and 
faster-X models assume degenerated Y or W 

chromosomes, they only predict restricted 
introgression for heteromorphic sex 
chromosomes. The faster-male model predicts no 
restriction to sex-chromosome introgression in 
ZW systems; in XY systems, a restriction is only 
expected if the genes responsible for male sterility 
are preferentially located on sex chromosomes (an 
assumption with little empirical support; 
Qvarnström & Bailey 2009). The faster-
heterogametic sex model, finally, predicts 
restricted sex-chromosome introgression in both 
XY and ZW systems, independently of the 
degeneracy of sex chromosomes.  

Until now, patterns of sex-chromosome 
introgression have been mostly documented in 
systems with differentiated sex chromosomes, 
such as mammals (Payseur et al. 2004, Teeter et 
al. 2008), birds (Saetre et al. 2003, Carling & 
Brumfield 2008, Storchova et al. 2010, Elgvin et al. 
2011) and insects (Haggen & Scriber 1989). All 
these studies have found important restrictions to 
the introgression of sex chromosomes, confirming 
their crucial role in driving speciation. However, 
such studies have limited power to disentangle 
alternative models, except that faster-male effects 
can be ruled out in female-heterogametic systems 
such as birds. Very few studies have investigated 
the introgression of sex-linked genes in species 
with homomorphic sex chromosomes. The only 
ones we are aware of are investigations on female-
heterogametic Populus trees, where introgression 
rates did not differ between sex chromosomes and 
autosomes, based both on experimental crosses 
(Macaya-Sanz et al. 2011) and on analyses of 
natural hybrid zones (Stölting et al. 2013). This 
contrasts sharply with systems involving 
heteromorphic sex chromosomes, suggesting a 
strong role to the dominance- and/or faster X 
model in preventing sex-chromosome 
introgression. 

Here we investigate the patterns of 
introgression across a hybrid zone between two 
species of European tree frogs, Hyla arborea and 
H. orientalis. The former is distributed from 
Southern Balkans to North-Western Europe, and 
the latter from Asia minor to North-Eastern 
Europe. Their contact zone runs from North-
Eastern Greece to Central Balkans along the 
Carpathian chain, and upper north across lowland 
Poland along the Vistule river (Stöck et al. 2012). 
Although the two lineages diverged in Mio-
Pliocene times (5 Mya), they are morphologically 
so similar that their specific status has been 
questioned (Speybroeck et al. 2010). Both lineages 
inherited from their common ancestor the same 
pair of XY chromosomes, maintained 
homomorphic through occasional X-Y 
recombination (Stöck et al. 2011, 2013; Guerrero 
et al 2012). Post-glacial populations of H. arborea 
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in NW Europe show complete arrest of XY 
recombination in males and some X-Y 
differentiation in terms of allelic frequencies, with 
male-specific alleles fixed on Y haplotypes, 
testifying to the absence of recombination in their 
recent history; in contrast, refugial populations 
from the Southern Balkans display occasional XY 
recombination in males, and no noticeable X-Y 
differentiation (Dufresnes et al. in press a). No 
similar information is available from H. orientalis. 
We performed a dense sampling of populations 
along two transects across the contact zone, one in 
northeastern Greece and one in southeastern 
Serbia. Individuals were genotyped for one 
mitochondrial gene as well as a series of 
autosomal and sex-linked microsatellite markers, 
and cline analyses were performed to compare 
these distinct sets of markers for patterns of 
introgression. Because Hyla sex chromosomes are 
homomorphic, we do not expect their 
introgression to be restricted by dominance- or 
faster X-effects. Thus, if sex chromosomes indeed 
show limited introgression, this may only stem 
from faster heterogametic sex- and/or faster-male 
effects. The latter in particular is expected to play 
a significant role in lowering male hybrid fitness 
(because sexual selection is likely to be strong in 
these lek-breeding species), but this should only 
limit sex-chromosome introgression if sexually 
selected genes map predominantly to the sex 
chromosomes.  
 
 
METHODS 

DNA SAMPLING AND EXTRACTION 

Tree frogs were captured on the field from 97 
localities (n = 588 individuals) distributed across 
Northern Greece, Southern Serbia, Kosovo region, 
Bulgaria and Western Turkey, corresponding to 
the southern parapatric ranges of the two species 
(Stöck et al. 2012). Two contact zones were 
specifically targeted through fine-scale transects: 
west-eastward across southern Serbia (loc.  13-
26); west-eastward along the northeastern Greek 
coast (loc. 54-78). Details on sampling localities 
can be found in Table S1. DNA was sampled from 
non-invasive buccal swabs (live adults, Broquet et 
al. 2007) and from ethanol-preserved tissues 
(tadpoles) and extracted using the Qiagen robotic 
workstation or the Qiagen DNeasy Blood & Tissue 
kit. 
 
 
MITOTYPING AND MICROSATELLITE GENOTYPING 

We designed a mitotyping procedure by enzyme 
restriction of the mitochondrial cytochrome-b (cyt-
b) based on published sequences from both 
species (sampled in the areas of contact; Genbank  

JX182103-06, JX182264-66) screened for 
restriction sites with the NEB cutter online tool 
(http://tools.neb.com/NEBcutter2/index.php). 
We selected enzyme MseI which distinctively cuts 
cyt-b haplotypes in a species specific way, yielding 
four segments for H. arborea’s (~360, 300, 200 
and 100bp) and three for H. orientalis’s (~700, 
200 and 50 bp).  A total of 578 individuals was 
mitotyped as follow: (1) cyt-b (~950bp) was 
amplified in 10µL PCRs (methods: Dufresnes et al. 
2013); (2) PCR products were enzymatically 
digested for 2 hours at 37°C in 6 µL reactions 
containing 2µL of PCR product, 0.07µL of MseI 
(New England Biolabs), 0.06µL of BSA and 0.4 µL 
of NEB buffer #4, following the manufacturer’s 
recommendations; (3) mitotyping profiles were 
visualized and scored on an 1.5% agarose gel after 
~45’ of migration at 110V. 
We genotyped 582 individuals for 17 autosomal 
and 6 sex-linked microsatellite loci (listed in Table 
S2), cross-amplifying in both species and featuring 
interspecific polymorphism (Dufresnes et al. 
2014). All markers were amplified in multiplexes 
and amplicons ran on an ABI 3100 genetic 
analyzer and scored with Genemapper 4.0 
(Applied Biosystem) following protocols from 
Dufresnes et al. (in press b). 
 
 
POPULATION GENETIC ANALYSES 

In order to accurately locate and document 
patterns of introgression between H. arborea and 
orientalis, we conducted a series of analyses to 
characterize the genetic structure of tree frogs 
throughout the study area. First, we performed 
Bayesian clustering of individual microsatellite 
genotypes into Hardy-Weinberg groups using 
STRUCTURE (Pritchard et al. 2000). We used the 
admixture model without prior on sample origin, 
and tested from one to 11 groups (K) with 10 
replicate runs per K, each run consisting of 
100’000 iterations following a burn-in of 10’000. 
The most-likely number of groups was 
determined by the Evanno method (Evanno et al. 
2005) implemented in STRUCTURE HARVESTER 
(Earl & vonHodt 2011). Replicates were combined 
using CLUMPP (Jakobsson & Rosenberg 2007) and 
graphical displays of individual probabilities of 
assignment (barplots) were obtained with 
DISTRUCT (Rosenberg 2004). 

Second, we decomposed genetic variation 
by a Principal Component Analysis (PCA) on 
microsatellite genotypes (adegenet R package, 
Jombart et al. 2008a). To get insights into the 
spatial structure, we performed a spatial Principal 
Component Analysis (sPCA) on population allelic 
frequencies (Jombart et al. 2008b; implemented in 
adegenet). This multivariate analysis summarizes 
both geographic (spatial proximity) and genetic 
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FIGURE 1: Distribution of H. arborea (green) and H. orientalis (blue) mtDNA haplotypes. Pie charts are proportional to sample 
size. Zooms on transects are provided in Figure 3. 
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(allele frequencies) information into principal 
components to detect and test for patterns of 
structuration. We conducted the sPCA using an 
edited Gabriel graph as a spatial connection 
network, and interpolated the obtained 
population scores to the entire geographic space 
of our study area. 
 
 
CLINE ANALYSES OF CONTACT ZONES 

To conduct cline analyses, we first converted each 
microsatellite locus to a two-allele system using 
the Introgress R package (Gompert and Buerkle 
2010), and calculated the frequency of H. 
orientalis composite alleles for each locus in each 
population using a custom R script. For each 
population on the two transects, we calculated the 
distance between that population and the 
easternmost population of the transect (sites 17 
and 35 for Serbia and Greece respectively) using 
Google Earth (https://earth.google.com). We then 
fit four-parameter sigmoid clines to the 
population allele frequencies using the hzar R 
package (Derryberry et al. 2014), in which the 
cline for each locus is defined by its center, width, 
and estimated allele frequency in each of the 
parental species. Log-transformed cline widths 
were compared between sex-linked and 
autosomal markers, as well as between the two 
transects using a generalized linear model (GLM). 
 
 
RESULTS 

GENETIC STRUCTURE 

The distributions of the two mitochondrial 
haplotypes were delineated by the Balkan and 
Rhodope Mountains, where several parapatric 
populations occur (Figure 1). Over the study area, 
H. arborea mtDNA was found across Kosovo, 
southern Serbia, FYR Macedonia and northern 
Greece, where it reaches its most eastern range in 
Thrace. It is also present at the extreme 
southwestern end of Bulgaria, namely at two 
stations upstream the Struma valley (loc. 35, 37). 
Reciprocally, H. orientalis mtDNA extends from 
Turkey over most Bulgaria, and meets H. arborea 
in Thrace and southeastern Serbia. 
 Bayesian clustering of nuclear markers by 
STRUCTURE unequivocally suggested two groups 
(K = 2, ΔK = 2362.8; second best solution: K = 6, 
ΔK = 5.4), corresponding to the respective gene 
pools of the two species (Figure 2). The 
geographic distribution of these STRUCTURE 
groups intimately matches mitochondrial data, 
with intermediate probability of assignments in 
parapatric populations likely resulting from 
genetic introgression (loc. 11-12, 18-24, 33-34, 
60-70). Moreover, close inspection of fine-scale 

transects suggests sharp geographic transitions 
between nuclear and mitochondrial gene pools 
over a few tens of kilometers (Figure 3). 

Accordingly, the most informative 
component of the PCA was attributed to the 
differentiation between lineages (first axis, 10.3% 
of the total variance, Figure S1), showing that 
some individuals sampled in the contact zones 
features signs of admixture (i.e. intermediate 
scores on this axis). The analysis further depicted 
high intraspecific diversity in both species, 
particularly in Turkish H. orientalis populations 
(axis 2, 1.8% of the total variance, Figure S1), and 
partly associated with some subtle geographic 
structuring in H. arborea (over a NW-SE gradient; 
axis 3, 1.7% of the total variance, Figure S1). The 
spatial PCA recovered a significant pattern of 
global structure (i.e. positive spatial 
autocorrelation, λ1; G-test, p = 0.003) but no local 
structure (i.e. negative spatial autocorrelation; L-
test, p=1.0) (Figure S2a). The corresponding sPCA 
scores nicely illustrate the level of H. 
arborea/orientalis admixture in parapatric 
populations (Figure S2b) and allowed accurate 
delineation of species ranges across the area 
(Figure S2c). 
 
 
CLINE ANALYSES 

Cline analyses of geographic transects yielded 
replicate patterns of narrow transitions between 
the two species (Figure 4a). Average cline widths 
for nuclear loci were 19 km and 20 km in SE-
Serbia and NE-Greece respectively. Mitochondrial 
clines slightly contrast, being wider in SE-Serbia 
(35 km), whereas restricted to 4 km and shifted 
eastward by 10 km in NE-Greece (Table S2). Cline 
centers fall within relatively unsuitable tree frog 
habitats, namely the urban area of Serbia’s third 
city Nìs and the dry reliefs of Rhodopes’ 
southeastern tip in Greece (Figure 3). 
 From both transects cline widths appear 
generally narrower for sex-linked compared to 
autosomal loci (Figure 4b). Clines expand over 
~14 km for sex-linked versus ~20 km for 
autosomal markers in SE-Serbia, respectively over 
~16 km versus ~22 km in NE-Greece (Table S2), 
hence a 6 km difference in both cases. Combining 
data in a GLM confirmed this trend: cline widths 
significantly differ between sex-linked and 
autosomal loci (p = 0.027), but not between 
transects (p = 0.14). 

Microsatellites were well-informative 
about species, featuring diagnostic alleles (i.e. 
distinctive fixed or frequent alleles between taxa) 
and thus enabled accurate cline estimations: the 
range of species-specific allelic frequencies 
spanned over 0.7 on average (Table S2). 
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FIGURE 2: Bayesian clustering assignments of individual microsatellite genotypes (barplots) and mean probability 
assignment of each population (map) into two groups (STRUCTURE, K = 2). Pie charts are proportional to sample size. Zooms 
on transects are provided in Figure 3.  
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DISCUSSION 

REPRODUCTIVE ISOLATION BETWEEN HYLA LINEAGES 

The two Hyla lineages under study have clearly 
reached an advanced level of reproductive 
isolation. Nuclear and mitochondrial markers 
provided clear-cut and consistent results 
regarding the geographical delimitation of two 
highly distinct genetic entities, and our dense 
sampling allowed delimitation of species ranges at 
a fine-scale resolution. Introgression between the 
two gene pools appears very limited, with 
patterns of spatial structure testifying to sharp 
transitions across the contact zone in both 
transects. The nuclear markers provided more 
consistent estimates of cline width (19 and 20 km 
respectively) than the mitochondrial cyt-b gene (4 
and 35 km), as expected from the lower sampling 
variance (nuclear markers also produced more 
variable and less consistent estimates when 
considered individually).  

Such narrow clines cannot result from 
neutral effects only. In the absence of selection, 
cline width (w) can be predicted from a diffusion 
model as a function of dispersal distance (σ) and 
time since contact (t), as 𝑤𝑤 = 2.51𝜎𝜎√𝑡𝑡 (Barton & 
Gale 1993). Assuming an average dispersal 
distance of 1.5 kilometer (Vos et al. 2000), cline 
widths would exceed our nuclear estimates (20 
km) in 30 generations (i.e. ~90 years). Thus, 
observed cline widths are clearly limited by 

selection against hybrids. From a taxonomic point 
of view, these results support the independent 
history and specific status of the eastern tree frog 
H. orientalis, and claim for its recognition as a full 
species.  

Timeframes of speciation can be 
estimated through correlations between 
divergence time and hybridizability in natural 
populations (e.g. Singhal & Moritz 2013; Beysard 
& Heckel 2014). In European green toads, lineages 
with ~1.9 My divergence display relatively free 
introgression across secondary contact zones 
(Dufresnes et al. 2014b), while others with ~2.6 
My divergence have already reached almost 
complete isolation (Colliard et al. 2010). Our 
results thus fit with the relatively old split 
between H. arborea and H. orientalis (~5 My), and 
parallel the nearly absence of gene flow between 
H. arborea and the Italian H. intermedia (Verardi et 
al. 2009), a sister species to H. orientalis, with the 
same divergence time to H. arborea (Stöck et al. 
2012). 

Phylogeographic analyses show that H. 
arborea populations survived Quaternary 
glaciations in the Southern Balkans, and H. 
orientalis in circum-Black Sea refugia (Stöck et al 
2012; Dufresnes et al. 2013). These two species 
might thus have a long history of contact in our 
study area, during which selection against hybrids 
may have reinforced assortative mating (Lemmon 
& Kirkpatrick 2006), e.g. through the fine-tuning 

FIGURE 3: Distribution of mtDNA haplotypes and nuclear clusters (STRUCTURE) over SE-
Serbian and NE-Greek hybrid zones. green: H. arborea; blue: H .orientalis. 
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of mating calls (Höbel & Gerhardt 2003). Limited 
possibilities for dispersal might further hinder 
genetic admixture: the Balkan and Rhodope 
Mountains are largely inhospitable for tree frogs, 
which are restricted to valleys and may migrate 
sporadically between catchment areas. As our 
transects exemplify, species boundaries are 
delineated by specific geographic features likely to 
constrain dispersal (Figure 3): the urban area of 
Nìs in SE-Serbia, and dry pre-Rhodopean hills in 
NE-Greece, where suitable breeding sites appear 
scattered and disconnected (CD and AB pers. 
obs.). More generally, eastern-European mountain 
chains (the Balkans and Carpathians) are known 
phylogeographic barriers for Western Palearctic 
vertebrates and constitute a suture zone (Hewitt 
2011). Analyses of the northern part of this tree-
frog contact zone, particularly in Poland where the 
two species came in parapatry much more 
recently (after the last glacial, < 15’000 years) and 
which presents no obvious barrier to dispersal, 
complemented by range-wide bio-acoustic 
surveys, should provide relevant insights on the 
mechanisms and time-scale of reinforcement.  
 
Restricted sex-chromosome introgression 
From our cline analyses, sex-linked loci show less 
introgression than autosomal loci, providing clear 
evidence for large X-effects (possibly better 
referred to as ‘large sex-chromosome effects’ in 

the case of homomorphic sex chromosomes). Cline 
widths for sex chromosomes are decreased by ~6 
km (i.e. some 30%) relative to autosomes. 
Although significant, the effect is relatively small 
(R2 = 0.103). Importantly, given the homomorphy 
and occasional X-Y recombination that 
characterize sex chromosomes in tree frogs, this 
restriction cannot be explained by the dominance- 
and/or faster-X models, which assume 
degenerated or silenced Y chromosomes. 

The two alternatives, namely the faster-
heterogametic sex and faster-male models, make 
no assumptions regarding the degeneracy of Y 
chromosomes, and are thus better candidates to 
explain the trend documented here. Male frogs are 
expected to be under strong sexual selection due 
to female mate choice, and the more so in lek-
breeding species such as tree frogs; clear evidence 
for faster-male effects on hybrid male sterility has 
been gathered from studies on Xenopus (Malone & 
Michalak 2008). However, this should only 
translate into limited sex-chromosome 
introgression if the genes involved in male 
sterility preferentially map to the sex 
chromosomes, an assumption that has received 
little empirical evidence so far; the faster-male 
effects documented in Xenopus frogs are clearly 
controlled by autosomal genes (Malone & 
Michalak 2008). Testing among these two 
alternatives is bound to be difficult in the case of 

FIGURE 4: Cline analyses over both transects. (a) Allele frequency clines built from individual 
mitochondrial (dashed line), autosomal (grey lines) and sex-linked (red lines) loci over both 
transects; (b) Comparison of cline widths between autosomal and sex-linked markers. 
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Hyla, because males are the heterogametic sex. In 
principle, the two models might induce different 
introgression levels for X and Y chromosomes: 
faster-heterogametic sex effects imply interactions 
between X and Y chromosomes, whereas faster-
male effects do not necessarily involve genes on 
the X or on the Y. Unfortunately, X and Y-linked 
markers could not be phased from our data, 
because X-Y recombination is too frequent in H. 
arborea refugial populations to allow significant 
differentiation at neutral markers (Dufresnes et al. 
in press a). Phasing might be feasible in the 
northern part of the contact zone (Poland), where 
H. arborea X and Y haplotypes are clearly 
differentiated (Dufresnes et al. in press). However, 
differential X and Y introgression is also bound to 
depend on demographic parameters such as local 
population sizes and sex-specific dispersal rate 
(Currat et al., 2008; Petit & Excoffier, 2009; 
Payseur 2010). Little is known about dispersal 
habits of tree frogs; breeding dispersal seems 
higher for males than for females (Voss et al. 
2000), but sex-specific dispersal distances are 
poorly documented. Shifted mitochondrial clines 
may also reflect sex-biased dispersal (Toews & 
Brelsford 2012); however, the contrasted mtDNA 
shapes between our two transects rather suggest 
the action of drift. More generally, we found 
substantial among-locus variation in cline 
estimates (Figure 4, Table S2), which stems from 
drift rather than from differential selection acting 
on individual markers, since outliers were not the 
same between transects.  
 A more promising avenue for 
testing among these two models might consist in 
complementing cline analyses with measurements 
of gene expression: the faster-male model predicts 
that genes with male-biased expression should 
display both larger dN/dS values and narrower 
clines. In addition, gene location might provide 
further information on the relative importance of 
faster-male- and faster-heterogametic sex effects: 
after controlling for male-biased expression, 
residual effects of sex-linkage on introgression 
might indicate additional faster-heterogametic sex 
effects. 
 Our study, the first of its kind in an animal 
system with homomorphic sex chromosomes, thus 
provide two important results: 1) it gives evidence 
for a sex-chromosome effect on speciation 
independent of Y degeneracy, which allows to 
exclude a role for the dominance- and faster X-
models; 2) it shows this effect to be modest, 
implying that the large effects found in systems 
with differentiated sex chromosomes might 
largely stem from dominance- and faster X-
models.  

Seeking direct evidence for Haldane’s rule 
through experimental crosses in Hyla might also 

contribute useful information on the relative 
importance of these different speciation 
mechanisms. Systems with homomorphic sex 
chromosomes apparently provide rather mixed 
support for this rule, which seem moreover to 
depend on the patterns of heterogamety. Whereas 
male-heterogametic systems seem to comply, as 
documented e.g. in newts (Arntzen et al. 2009) 
and teleost fishes (Tech 2006, Russell & Magurran 
2006, Mendelson et al. 2007, Crow et al. 2007, 
Kitano et al. 2009; but see Bolnick & Near 2005), 
female-heterogametic systems provide limited or 
no support, as documented e.g. in Xenopus 
(Malone et al. 2007) and Bufonid toads (Malone & 
Fontenot 2008). Sibship analyzes of hybridizing 
poplars (Populus alba and P. tremula) with 
undifferentiated ZW sex chromosomes (Yin et al. 
2008), provided no support either for lower 
female hybrid fitness (Macaya-Sanz et al. 2011). If 
Haldane’s rule mostly arises from dominance- and 
faster-male effects (Schilthuizen et al. 2011), it 
should indeed not apply to ZW systems with 
homomorphic sex chromosomes.  

The diversity of sex-determining systems 
in amphibian radiations makes them valuable 
frameworks to dissect the evolutionary forces 
involved in reproductive isolation. In particular, 
W-Palearctic tree frogs can tell us more on the 
timeframe of these forces, as they feature 
numerous contact zones between lineages of 
varying levels of divergence (Stöck et al. 2012). 
Qvarnström & Bailey (2009) predicted that sex 
chromosomes should become increasingly 
influent as speciation progresses. Here we have 
shown that sex-linked loci are relatively sheltered 
from introgression in the H. arborea/orientalis 
system, a witness of the latest stages of speciation. 
Our study stresses for comparative analyses with 
more nascent lineages, and raises opportunities 
for next-generation sequencing to pinpoint the 
genomic regions responsible for sexual isolation. 
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Table S1: List of sampling localities and sample sizes. 
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1 Bulgaria Ajdemir 44.09 27.15  1 - - - 1 

2 Bulgaria Aleksandrovo 43.44 25.40  1 - - - 1 

3 Bulgaria near Pleven 43.40 24.60  - - 1 - 1 

4 Bulgaria Harlets 43.71 23.84  - - 3 - 3 

5 Bulgaria Altimir 43.55 23.80  1 - - - 1 

6 Bulgaria Mihajlovo 43.58 23.59  2 - - - 2 

7 Bulgaria Valchedram 43.68 23.45  - - 8 - 8 

8 Bulgaria v. Dobrusha 43.44 23.42  2 - - - 2 

9 Bulgaria Pastrina hill 43.43 23.37  1 - - - 1 

10 Bulgaria Borovitsa 43.59 22.77  - - 5 - 5 

11 Serbia Djerdap 44.44 22.15  - - 16 - 16 

12 Serbia Stevanske Livade 44.16 22.32  11 - - - 11 

13 Serbia Vlasi 43.00 22.64  6 - - - 6 

14 Serbia Sukovo 43.06 22.68  23 1 - - 24 

15 Serbia Bela Palanka 43.23 22.35  22 - - - 22 

16 Serbia Kalna/Y40 43.40 22.45  2 - 5 - 7 

17 Serbia Jalovik Izvor 43.40 22.34  2 - - - 2 

18 Serbia Lozan 43.38 22.25  13 4 - - 17 

19 Serbia Okruglica 43.38 22.24  1 - - - 1 

20 Serbia Ostrovica 43.32 22.11  1 - - - 1 

21 Serbia Prozek 43.31 22.03  8 - - - 8 

22 Serbia Tripale 43.37 21.80  16 - - - 16 

23 Serbia Cecena 43.18 21.88  1 - - - 1 

24 Serbia Zitoradja 43.19 21.69  - - 2 - 2 

25 Serbia Donja Toponica 43.23 21.50  9 1 - - 10 

26 Serbia Prepolac 43.01 21.23  - - 9 - 9 

27 Kosovo Ljesane 42.64 20.42  - - 5 - 5 

28 Kosovo Iglarevo 42.60 20.65  - - 4 - 4 

29 Kosovo Xërze 42.34 20.57  - - 4 - 4 

30 Kosovo Banjica 42.51 20.94  - - 5 - 5 

31 Bulgaria v. Yarlovtsi 42.80 22.53  1 1 - - 2 

32 Serbia Vlasina 42.68 22.36  3 - - - 3 

33 Serbia Bosilegrad 42.42 22.45  1 - - - 1 

34 Bulgaria Novo selo, Osogovo Mountain 42.18 22.68  - - - 1 1 

35 Bulgaria Tishanovo, Osogovo Mountain 42.11 22.84  - - - 2 2 

36 Bulgaria Belchin, Verila 42.35 23.32  - - - 1 1 

37 Bulgaria Stara Kresna,Pirin 41.79 23.19  1 - - 2 3 

38 Serbia Prohor Pcjinska 42.33 21.90  6 1 - - 7 

39 FYR Macedonia Rugince 42.15 21.98  - - 5 - 5 

40 FYR Macedonia Orlanci 42.04 21.60  - - 5 - 5 

41 FYR Macedonia R'zanicino 41.91 21.64  - - 7 - 7 
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42 FYR Macedonia Stip 41.73 22.17  - - 4 - 4 

43 FYR Macedonia Debreste 41.50 21.29  - - 4 - 4 

44 FYR Macedonia Izvor 41.51 21.68  - - 7 - 7 

45 FYR Macedonia Loznami 41.22 21.45  - - 5 - 5 

46 Greece Doirani 41.18 22.76  18 - - - 18 

47 Greece Pikrolimni 40.82 22.85  20 - - - 20 

48 Greece Chalkidona 40.72 22.67  18 7 - - 25 

49 Greece Aliakmonas 40.55 22.59  20 - - - 20 

50 Greece Kerameia 39.56 22.08  - - 6 - 6 

51 Greece Megalochori 41.25 23.21  6 1 - - 7 

52 Greece Volvi 40.66 23.59  1 1 - - 2 

53 Greece Drama 41.10 24.13  11 - - - 11 

54 Greece Nestos delta, W-side 40.90 24.77  4 - - - 4 

55 Greece Nestos delta, E-side 40.91 24.85  5 - - - 5 

56 Greece Vistonida 41.04 25.17  10 - - - 10 

57 Greece Fanari 41.01 25.18  4 1 - - 5 

58 Greece Listos 40.99 25.31  14 2 - - 16 

59 Greece Venna 41.02 25.50  8 - - - 8 

60 Greece Tsifliki 41.05 25.63  1 - - - 1 

61 Greece Krovyli 40.97 25.61  8 - - - 8 

62 Greece Avra 40.94 25.69  1 - - - 1 

63 Greece Sykorrachi 40.96 25.72  6 - - - 6 

64 Greece Sykorrachi 40.96 25.72  4 - - - 4 

65 Greece Ipio 41.07 25.75  1 - - - 1 

66 Greece Kirki 40.98 25.79  2 - - - 2 

67 Greece Aysimi 40.98 25.92  5 - - - 5 

68 Greece Avas Army Base 40.95 25.91  9 - - - 9 

69 Greece Amfitriti 40.92 25.92  3 - - - 3 

70 Greece Amfitriti 40.90 25.91  1 - - - 1 

71 Greece Evros delta, small river 40.87 26.03  3 - - - 3 

72 Greece Evros delta, fields 40.84 26.09  13 - - - 13 

73 Greece Mega Dereio 41.24 26.01  3 - - - 3 

74 Greece Mega Dereio 41.23 26.02  4 - - - 4 

75 Greece Protokklisio 41.29 26.25  24 - - - 24 

76 Greece Didymotique 41.33 26.49  18 - - - 18 

77 Greece Fylakto 41.05 26.25  15 - - - 15 

78 Greece Tychero 41.03 26.28  3 - - - 3 

79 Bulgaria Ostar Kamak 41.88 25.85  - - 5 - 5 

80 Bulgaria dam Smirnenski, near Gabrovo 42.81 25.26  - - 1 - 1 

81 Bulgaria Potok 42.76 25.36  1 - - - 1 

82 Bulgaria Triyavna 42.88 25.46  - - - 1 1 

83 Bulgaria Straldza 42.92 26.75  - - - 1 1 

84 Bulgaria Mochuritsa river 42.59 26.74  - - - 1 1 

85 Bulgaria Poda 42.44 27.47  1 - - - 1 

86 Bulgaria Silistar 42.02 28.01  1 - - - 1 

87 Turkey Ezine 39.93 26.30  - - 2 - 2 

88 Turkey Ezine 39.67 26.39  - - 2 - 2 

89 Turkey Dikili 39.18 26.83  - - 2 - 2 
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90 Turkey Bergama 39.04 27.09  - - 1 - 1 

91 Turkey Aliağa 38.85 27.02  - - 3 - 3 

92 Turkey Karacabey 40.20 28.35  - - - 1 1 

93 Turkey Karacabey 40.17 28.39  - - 1 - 1 

94 Turkey Karasu 41.08 30.76  - - 1 - 1 

95 Turkey Gerede 40.80 32.17  - - 1 - 1 

96 Turkey Kalecik 40.09 33.41  - - 12 - 12 

97 Turkey Taskopru 41.63 34.42  - - 16 - 16 
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Table S2: List of genetic markers and their cline estimates. Center shows deviation from the all-loci 
cline center. p gives ranges of estimated allele frequencies in parental species. 

 

        SE-Serbia cline   NE-Greece cline 
Locus location Ref.  center width p  center width p 
cyt-b mtDNA -  +1.3 35.1 0.00-0.97  +10.2 4.1 0.00-1.00 
Ha-T3 sex chromosome 1  -1.4 11.7 0.10-0.89  +4.2 8.1 0.06-0.97 
Ha-T52 sex chromosome 1  -4.9 2.3 0.02-0.97  -0.3 18.2 0.18-1.00 
Ha-T11 sex chromosome 1  -3.1 1.0 0.64-0.98  +7.3 2.4 0.51-0.99 
Ha-T51 sex chromosome 1  +3.1 0.8 0.06-0.99  +3.0 17.3 0.34-0.98 
WHA5-22 sex chromosome 2  -3.8 3.5 0.15-0.99  -11.5 32.1 0.33-0.99 
Ha-H108 sex chromosome 3  +22.3 63.3 0.06-0.97  -0.3 15.3 0.02-0.53 
Ha-T32 autosome 1  -1.3 9.3 0.02-0.99  +5.8 6.8 0.00-0.99 
Ha-T49 autosome 1  -4.2 31.7 0.40-0.99  -0.2 11.9 0.39-0.97 
Ha-T41 autosome 1  +43.1 90.2 0.49-0.87  +64.4 31.9 0.77-0.98 
Ha-T64 autosome 4  -6.5 28.6 0.01-0.99  +1.6 19.9 0.06-1.00 
Ha-T69 autosome 4  -1.4 10.1 0.08-0.83  -9.4 1.9 0.71-0.99 
Ha-T54 autosome 5  -0.3 13.1 0.01-1.00  +2.8 12.5 0.03-1.00 
Ha-T55 autosome 5  -4.7 9.1 0.01-0.38  +2.0 31.3 0.07-0.25 
Ha-T58 autosome 4  -1.4 45.4 0.06-0.91  +6.0 40.4 0.07-0.96 
Ha-T50 autosome 4  +1.6 3.5 0.12-0.87  +8.6 7.6 0.14-0.80 
Ha-T56 autosome 4  +2.7 30.2 0.00-0.85  +4.2 15.2 0.00-0.76 
Ha-T66 autosome 4  +1.4 10.7 0.28-0.97  +7.3 13.4 0.52-1.00 
Ha-T60 autosome 4  +2.3 16.1 0.01-0.96  +2.7 18.4 0.00-1.00 
Ha-T61 autosome 5  -4.2 11.5 0.03-1.00  -25.0 55.6 0.02-1.00 
Ha-T68 autosome 4  -0.7 17.3 0.26-0.97  -7.4 27.0 0.57-0.91 
Ha-T63 autosome 4  +0.4 3.8 0.55-0.93  -2.4 28.4 0.42-0.97 
Ha-T67 autosome 4  -1.6 11.5 0.00-0.95  -0.3 25.0 0.01-1.00 
WHA1-103 autosome 2  -3.7 2.6 0.03-1.00  -0.9 18.4 0.00-1.00 
                      

1 Brelsford A, Stöck M, Betto-Colliard C, Dubey S, Dufresnes C, Jourdan-Pineau H, Rodrigues N, Savary R, 
Sermier R, Perrin N. 2013. Homologous sex chromosomes in three deeply divergent anuran species. 
Evolution 67:2434-2440. 

2 Arens P, Van't Westende W, Bugter R, Smulders MJM, Vosman B. 2000. Microsatellite markers for the 
European tree frog Hyla arborea. Mol Ecol 9:1944-1946. 

3 Berset-Brändli L, Jaquiéry J, Broquet T, Perrin N. 2008. Isolation and characterization of microsatellite 
loci for the European tree frog (Hyla arborea). Mol Ecol Resour 8:1095-1097. 

4 Dufresnes C, Wassef J, Ghali K, Brelsford A, Stöck M, Lymberakis P, Crnobrnja Isailović J, Perrin N. 2013. 
Conservation phylogeography: does historical diversity contribute to regional vulnerability in European 
tree frogs (Hyla arborea)? Mol Ecol 22:5669-5684. 

5 Dufresnes C, Brelsford A, Béziers P, Perrin N. 2014. Stronger transferability but lower variability in 
transcriptomic- than in anonymous microsatellites: evidence from Hylid frogs. Mol Ecol Resour 14:716-
725.   
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Figure S1: First axes of the principal component analysis on individual microsatellite genotypes. Dots represent individuals, linked to populations (labels). Elipses 
show the main H. arborea (green) and H. orientalis (blue) gene pools. 
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Figure S2: spatial Principal Component Analysis (sPCA) on population allelic frequencies. (a) Decomposition of eigen-values; 
the first dimension catches most of the variance, and testifies for a single global structure (λ1). (b) First dimension’s sPCA scores 
(colors) of each population (squares) plotted in the geographic space. (c) Interpolated map of sPCA scores throughout the study area; 
black lines show country borders. 
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CONCLUSIONS AND PERSPECTIVES 
 

As developed in the introduction, two main 
explanations were proposed to account for the 
prevalence of homomorphic sex chromosomes in 
many vertebrates, invertebrates and plants: 
occasional XY recombination and frequent 
transitions of sex chromosomes. These completely 
different processes either renew or replace the 
senescing gametolog, and both can be triggered to 
by the Y genetic load (Grossen et al. 2012, Blaser 
et al. 2014). Using Hyla tree frogs as a model 
system, we have empirically demonstrated that, 
not only both models checked out in the wild, they 
can even co-occur within single radiations. Based 
on fine-scale phylogeographic frameworks and 
multi-level comparisons (from individuals to 
radiations), we were able to characterize some 
underlying mechanisms of these models and make 
inferences on how they evolve across natural 
populations in space and time. Figure 1 
summarizes some of the main pieces of the puzzle. 
 
 
THE EVOLUTION OF XY RECOMBINATION 

It is universally accepted that recombination 
arrest is a necessary step in the evolution of sex 
chromosomes, in order to keep sex-antagonistic 
genes and the sex-determining locus under full 
linkage (Charlesworth & Charlesworth 2000). In 
the first part of this work (Chapter I-III), we have 
debunked this view, by showing that sex-
chromosome maintenance was still possible 
despite low but continuous male recombination. 
Our results also solved the paradox posed by the 
lack of detectable XY recombination in previously 
studied tree frog populations despite high XY 
sequence similarity (Stöck et al. 2011, Guerrero et 
al. 2012), which, as we showed, was explained by 
male recombination differences between 
populations relating to their biogeographic 
history. Recent homologous transitions within the 
youngest European Hyla lineages could be 
rejected based on shared trans-species variation 
of the sex-determining gene DMRT1 (Chapter V). 

While it avoids Y decay, XY recombination 
should conflict with sex-antagonistic genes: as 
advantageous combinations are broken down by 
crossovers, recombining males must produce a 
proportion of “intersex” unfit offspring, which will 
be selected against in populations. As shown in 
Chapter VII, tree frogs may canalize this cost 
through a form of balanced selection on 
recombination, maintaining a few little-
recombining males among a majority of non-

recombining individuals. It will be important to 
implement such variation in theoretical models to 
test this hypothesis. This mechanism differs from 
XY recombination through sex-reversal, which 
rather yield rare burst of recombinants (Perrin 
2009). While we did sample one sex-reversed tree 
frog in the wild (Chapter III), this process might 
be too rare and stochastic in tree frogs (i.e. 
perhaps because they are less ESD-sensitive 
compared to other cold-blooded vertebrates) to 
insure evolutionary stable rates of Y purging.  

The direct and indirect evidences for XY 
recombination and their consequences on sex 
chromosome (un)differentiation provided by our 
studies cast very well along recent work on cold-
blooded vertebrates, which recently argued for 
such processes (Stöck et al. 2011, 2013a). From 
our results, seemingly young sex-chromosomes 
can carry old sex-determining genes, like DMRT1 
in the case of tree frogs (Chapter V), which also 
determines sex in other deeply diverged 
vertebrate lineages (Graves & Peichel 2010). XY 
recombination may thus account for the sex-
chromosome homomorphy found in many groups 
of amphibians, fishes and reptiles (Perrin 2009). 
Why did these organisms overcome the cost of XY 
recombination while the sex chromosomes of 
other lineages (e.g. mammals, birds) stopped 
recombining a long time ago remains an open 
question. Mammals and birds evolved dosage 
compensation to cope with mutational load of the 
Y/W. Endothermic vertebrates are also less 
sensitive to environmental effects, offering little 
scope to temperature-induced sex reversal. Low 
XY recombination rates might be a more stable 
evolutionary strategy in organisms producing 
hundreds of offspring per generation (i.e. 
hundreds of potential recombinants, among which 
a few had purged deleterious mutations without 
losing advantageous SA combinations, thus being 
fitter than the population average), but on the 
other hand may be inappropriate in less-fecund 
organisms, like K-strategists (i.e. where the 
probability of having some XY-recombinants fitter 
than the population average is nearly null). In 
additions, groups with instable sex determining 
systems (i.e. enduring frequent transitions) may 
be more flexible to recombine sex chromosomes 
as these may have less time to recruit many SA 
genes (but see next section). Testing these 
hypotheses will benefit from theoretical 
modelling, as well as better empirical data on how 
and in what density SA genes accumulate on sex-
chromosomes.  
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FIGURE 1: Sex-linkage and recombination patterns at linkage group 1 (LG1) in Palearctic tree frogs. Sex-linkage (Chapter VI), sex-determining gene (black 
bars, labelled when known c.f. Chapter V), average recombination rates (inferred from crosses and patterns of sex-chromosome differentiation; Chapter VI), 
and within-population variation in male recombination (Chapter VII). For H. arborea, differences between refugial and post-glacial populations are shown 
(Chapters II-III).   
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Furthermore, our results raise interesting 
insights on the evolution of recombination. An 
array of genetic and environmental factors can 
affect recombination rates (discussed in Chapter 
III). As we show, XY recombination can be rapidly 
evolving: in H. arborea, recombination between 
sex chromosomes completely stopped in less than 
5’000 generations, causing their rapid 
differentiation (Chapter II and III). This rapid 
evolution, and assuming that within-population 
variation in recombination may be shaped by a 
response to selection (Chapter VII), pleads for a 
simple genetic architecture of this trait, and 
provide a nice framework to screen candidate 
genes known to affect recombination in other 
systems (e.g. RNF212, Prdm9, Kong et al. 2008, 
Baudat et al. 2013). On the top of these fine-scale 
variations, the similitudes shared by diverged Hyla 
species in terms of low male recombination rates 
at linkage group 1, independent from sex-linkage 
(Chapter VI, VII), support a generally conserved 
inertia, indicative of chromosome-specific 
regulation, which proximate mechanisms remain 
unknown. 

European tree frogs provide a fascinating 
system for the study of sex chromosome 
differentiation. Over the whole chromosome, less 
than 50 Kb encompassing DMRT1 remained 
differentiated between X and Y over the last five 
million years (Chapter V). Therefore, as outlined 
in Chapter III, the geographic cline of XY 
recombination and differentiation across H. 
arborea populations offers a unique opportunity 

to study the first steps of sex-chromosome 
evolution in statu nascenti e.g. by contrasting 
genomic X-Y (or male-female) divergences across 
the chromosome (i.e. from DMRT1 to telomeres) 
in different populations along the cline. It would 
be interesting to conduct similar surveys in the 
closely-related H. orientalis, which in addition to 
its phylogenetic relatedness to H. arborea, also 
share many similar biogeographic features (i.e. 
large distributions encompassing southern refugia 
and postglacial populations), and thus makes an 
ideal replicate system to test whether the same 
patterns hold across species. 

 
 
THE DYNAMICS OF SEX-CHROMOSOME TURNOVERS 
Sex-chromosome turnovers have been reported in 
several taxonomic groups, for instance in ranid 
frogs (Miura 2007) and stickleback fishes (Ross et 
al. 2009). However, so far, little was known 
regarding the dynamics and temporal scale of 
these frequent transitions. We addressed this 
matter in Chapter VI, by documenting how one 
linkage group (LG1) was used and re-used as a 
sex-chromosome across lineages of gradual 
divergences. While we could show that transitions 
could be frequent even within short evolutionary 
periods (i.e. we evidenced at least two transitions 
over the last 10 My), one interesting feature was 
the ability of this linkage group, which carries the 
sex-determining gene DMRT1 (Chapter V), to 
have been independently co-opted for sex in 
diverged lineages. This finding empirically 

FIGURE 2: Hot potato model of 
sex-chromosome transitions 
(Blaser et al. 2014). Genetic 
load induces turnovers 
towards a new sex 
chromosome (1), which in 
turn specializes (through 
recombination arrest and SA 
genes) but ineluctably 
accumulates deleterious 
mutations (2). This triggers 
another transition, favored 
towards the chromosome pair 
that already carries SA genes 
(3). This pair further self-
reinforces its specialization 
before the next turnovers (4), 
and so on. 
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corroborates the rising idea that some 
chromosomes makes better sex chromosomes 
than others, precisely because they contain genes 
that can occupy the top position in the sex-
determining cascade (Graves & Peichel 2010, 
O’Meally et al. 2012). It is hardly random that 
Hyla’s LG1 is also mostly homologous to the sex 
chromosomes of other unrelated anuran 
amphibians, as well as to the bird Z chromosome 
(Appendix). Therefore, the widely accepted view 
that sex-determination systems endure rapid 
changes in cold-blooded vertebrates may also 
consider that these changes may often not be 
random, but follow some replicate patterns. 
Following Volff et al.’s metaphor, the same few 
“ephemeral dictators” may regularly come back to 
power for determining sex. Interestingly, this 
specialization in Hyla seems also characterized by 
fine-tuned recombination rates, i.e. phylogenetic 
inertia of extremely low male recombination at a 
linkage group that is frequently used for XY sex 
determination. In contrast, the seemingly distinct 
dynamics in Asian species, where different 
heterogametic systems occur in closely-related 
species and where recombination seems 
restricted in both sexes is intriguing, and stresses 
out for extending the survey to other Asian and 
North-American relatives. Finding the sex-
determining genes in diverged Hyla species as 
well as characterizing the sex –determining 
systems of lineages were LG1 is autosomal will be 
crucial to further understand these dynamics of 
biased turnovers. 

The potential specialization and re-use of 
European Hyla linkage group 1 for sex evokes the 
“hot-potato” model proposed by Blaser et al. 
(2014). This model balances genetic load of sex-
linked deleterious mutation with effects of 
autosomal sex-antagonistic genes to account for 
endless biased transitions towards recurrent sex 
chromosomes (illustrated in Figure 2). However, 
in Hyla turnovers occur on a background of XY 
recombination that already purges deleterious 
mutations on a regular basis (Chapter VI). Then, 
in our system the importance of genetic load for 
triggering turnovers might be negligible compared 
to other forces, like sex-antagonistic or sex-ratio 
selection, which could be theoretically explored 
through simulations implementing both turnovers 
and XY recombination models. 

HOMOMORPHIC SEX CHROMOSOMES AND SPECIATION 
In Chapter X, we showed that the sex 
chromosomes of H. arborea and H. orientalis are 
more protected from hybridizing introgression 
than their autosomes, and thus disproportionally 
affect reproductive isolation even if there are not 
differentiated. Since hybrid incompatibilities 

should be expressed in the same way throughout 
the genome in Hyla, this result implies that sex 
chromosomes non-randomly accumulate pre- 
and/or post-zygotic incompatibilities. It is of 
fundamental importance for speciation research 
as dominance effects, not at play here, are usually 
assumed to be the most contributing factors. In 
contrast, in Hyla the importance of sex-linked loci 
for reproductive isolation rather stems from the 
predominance of X-Y incompatibilities, and/or the 
non-random build up a male-expressed genes 
(which should evolve and diverge faster than the 
rest of the genome). Sex chromosomes offers 
opportunities for sex-antagonistic selection and 
lack of recombination that may attract genes 
coding for male-specific traits, as well as co-
adapted gene complexes involved in pre-mating 
isolation (e.g. species recognition systems). As 
such, the fact that Hyla frogs feature specialized 
sex chromosomes (c.f. Chapter VI and the 
previous section) may thus feed back to their 
genetics of speciation. Specialized sex 
chromosomes are expected to accumulate SA 
genes during their cyclic sex-determining reigns 
(Blaser et al. 2014, Figure 2), in turn making them 
less prone to introgression? 

According to Qvanström & Bailey (2009), 
the importance of sex chromosomes in speciation 
should gradually increase as speciation 
progresses. It will thus be interesting to similarly 
investigate contact zones between younger Hyla 
lineages to test for replicate patterns. Moreover, 
the tree frog radiation allows future comparison 
between species pairs differing in their sex-
determining system (i.e. H. orientalis and H. 
savignyi, which come into contact in Asia Minor, 
Chapter IV). More generally, our results open the 
way to future speciation studies in other systems 
with homomorphic sex chromosomes, so far 
largely unexploited in this context. 

IMPLICATIONS FOR CONSERVATION 
Beyond their interests for evolutionary biology, 
our results also have applied implications for 
biogeography and conservation biology of tree 
frogs, some which can be more generally 
extended. European Hyla populations are 
threatened in many regions and countries 
(Chapter I). In Chapter VIII and IX we provided 
and characterized a new set of microsatellite 
markers suitable for future conservation genetics 
applications in all Western-Palearctic tree frog 
lineages. 

The cryptic intraspecific diversity and 
independent phylogenetic histories of taxa that 
are yet not validated as full species (exposed in 
Chapter IV) claim for new taxonomic 
considerations, and consequently more specific 
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protections (Speybroeck et al. 2010). This is 
particularly true for H. orientalis (considered as a 
subspecies of H. arborea) for which we 
demonstrated strong reproductive isolation 
(Chapter X). Genetic work should be accompanied 
by descriptions of lineages candidate for specific 
statuses, e.g. H. meridionalis n.t. 1, as recently done 
for H. felixarabica. 

In addition, several lessons for 
conservation strategies can be drawn from the 
range-wide phylogeographic analyses of H. 
arborea (Chapter I). First, our multi-locus 
approach allowed to compare the main methods 
employed to design management units, notably 
showing that criteria for Evolutionarily Significant 
Units (ESU) may miss important divergences in 
young diversifications. Second, we identified an 
overlooked glacial sub-refugium in the Balkan 
Peninsula (i.e. the North East coast of the Adriatic 

Sea) that probably sheltered cryptic diversity in 
other understudied vertebrates. Third, and 
probably of most importance, we highlighted a 
negative trend between refugial diversity and the 
degree of threats: genetically rich refugial 
populations raise no concern whereas most 
genetically depressed populations of post-glacial 
ranges are threatened. This pattern, which is 
shared among most European amphibians 
(Dufresnes & Perrin in press), suggest an 
increased fixation load and reduced adaptive 
potential in populations formerly bottlenecked by 
the founding effects of recolonization. These 
intrinsic lack of variability may thus interact with 
and magnify the effects of extrinsic pressures, like 
pollutants and habitat fragmentation, stressing 
out for the implementation of new biogeographic 
criteria for status assessment of regional and 
national Red-Lists.
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Comparative genomic studies are revealing that, in sharp contrast with the strong stability found in birds and mammals, sex

determination mechanisms are surprisingly labile in cold-blooded vertebrates, with frequent transitions between different pairs

of sex chromosomes. It was recently suggested that, in context of this high turnover, some chromosome pairs might be more likely

than others to be co-opted as sex chromosomes. Empirical support, however, is still very limited. Here we show that sex-linked

markers from three highly divergent groups of anurans map to Xenopus tropicalis scaffold 1, a large part of which is homologous

to the avian sex chromosome. Accordingly, the bird sex determination gene DMRT1, known to play a key role in sex differentiation

across many animal lineages, is sex linked in all three groups. Our data provide strong support for the idea that some chromosome

pairs are more likely than others to be co-opted as sex chromosomes because they harbor key genes from the sex determination

pathway.

KEY WORDS: Amphibian, Bufo siculus, convergent evolution, conserved synteny, DMRT1, Hyla arborea, Rana temporaria, sex

chromosome turnover.

Sex chromosomes have been a focus of evolutionary biology for

a long time, but until recently, most research has focused on

organisms with well-differentiated sex chromosomes, such as fruit

flies, mammals, and birds (Bachtrog et al. 2011). In contrast, sex

chromosomes are much less differentiated in most amphibians,

reptiles, and fishes. Cold-blooded vertebrates also differ from

mammals and birds in displaying a relatively high rate of transition

in sex determination systems. The sex-determining locus is often

found on nonhomologous chromosomes in closely related species,

or even within single species (Charlesworth and Mank 2010).

This diversity is at first surprising, given the strong conservation

of elements of the sex determination pathway across animals

(Raymond et al. 1998), but may be explained by mutations causing

different genes to take over the top position in a conserved sex

determining cascade (Wilkins 1995; Schartl 2004; Volff et al.

2007; Graves 2013).

Two recent reviews have suggested that some chromosomes

might be more likely than others to carry the master sex de-

termination gene, through conservation of an ancestral system

of sex determination or the reuse of a small set of genes that

can capture the top position in the pathway (Graves and Peichel

2010, O’Meally et al. 2012). Thus far, few empirical examples are

available to support this hypothesis: among amniotes, the same

chromosome is sex linked in birds, monotremes, and one lizard

species, and another chromosome is sex linked in both a turtle

and a lizard species (O’Meally et al. 2012). However, neither the

snake nor the therian sex chromosomes are known to be sex linked

in any other amniote (O’Meally et al. 2012). In fish, eight differ-

ent chromosomes are sex linked among the 16 cases reviewed

by Graves and Peichel (2010). In insects, no homology is evi-

dent between the sex chromosomes of Diptera, Lepidoptera, and

Coleoptera (Pease and Hahn 2012).

2 4 3 4
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Another aspect of homology in sex determination pertains

to the master sex-determining gene itself, rather than the chro-

mosome on which it occurs (e.g., Woram et al. 2003; Yano

et al. 2013). The transcription factor DMRT1 is a prime exam-

ple of a gene involved in sex determination in deeply divergent

taxa (Brunner et al. 2001; Matson and Zarkower 2012; Gamble

and Zarkower 2012). DMRT1 orthologs play key roles in male

differentiation in Drosophila (doublesex) and Caenorhabditis el-

egans (mab3; Raymond et al. 1998). DMRT1 is a strong candidate

for the major sex-determining gene in birds (Smith et al. 2009).

Its paralogs in medaka fish (Oryzias latipes) and African clawed

frogs (Xenopus laevis) act as dominant determiners of maleness

and femaleness, respectively (Matsuda et al. 2002; Nanda et al.

2002; Yoshimoto et al. 2008). DMRT1 is also associated with

polygenic sex determination in zebrafish (Bradley et al. 2011)

and has recently been shown to be important for the mainte-

nance of the adult male gonadal phenotype in mice (Matson et al.

2011).

To date, little evidence exists for comparisons of sex chro-

mosomes across amphibians. A sex-determining gene (DM-W)

has been identified only in X. laevis (Yoshimoto et al. 2008),

and this gene, a partial duplication of DMRT1, is found only

in a few closely related polyploid species (Bewick et al. 2011).

A single chromosome is associated with sex in four species of

the Hyla arborea group, based on several anonymous microsatel-

lites and two markers associated with the gene MED15 (Stöck

et al. 2011a, in press). In Rana rugosa, four genes have been

mapped to the sex chromosome by fluorescence in situ hybridiza-

tion (Miura et al. 1998; Uno et al. 2008). Finally, a series of

allozyme linkage studies on 17 species or populations of ranid

frogs (reviewed by Miura 2007) show that sex is associated with

five different chromosomes (out of 13), depending on species or

population. The recent completion of the first high-quality draft

assembly of an amphibian genome (Xenopus tropicalis; Hellsten

et al. 2010; Wells et al. 2011) presents a highly useful tool for

sex chromosome comparisons (e.g., Mácha et al. 2012), although

DM-W is absent in this species (Yoshimoto et al. 2008; Bewick

et al. 2011) and little information is available on its sex chromo-

some (Olmstead et al. 2010). Provided that synteny is sufficiently

conserved across anurans, sex linkage of orthologous genomic re-

gions may be identified even if different genes are sampled in each

species.

Previous work on Bufo, Hyla, and Rana has suggested strong

synteny between representative karyotypes of these three anu-

ran families (Miura 1995). More recently, several anonymous

sex-linked microsatellite markers have been identified within the

Bufo viridis, H. arborea, and Rana temporaria species groups

(Berset-Brändli et al. 2006; Berset-Brändli et al. 2008; Matsuba

et al. 2008; Cano et al. 2011; Stöck et al. 2011a,b, 2013). The only

characterized sex-linked gene in any of these species, MED15 in

H. arborea (Niculita-Hirzel et al. 2008), is located on the same

scaffold as DMRT1 in X. tropicalis (scaffold 1, assembly 7.1,

http://xenbase.org). Here, we use a largely novel set of gene-

associated molecular markers to address three questions: (1) Is

the rate of chromosomal rearrangement sufficiently low in anu-

rans that synteny is preserved between X. tropicalis and distantly

related species? (2) If so, can we find homologies between sex

chromosomes of deeply divergent taxa? (3) If so, is the candidate

sex determination gene DMRT1 involved in these homologies?

Methods
SAMPLES

Hyla arborea full-sib groups and parental DNA samples were

sampled from Čižići, Croatia (six families, 20–30 offspring per

family), Progar, Serbia (one family, 30 offspring), and Gefira,

Greece (one family, 30 offspring). Hyla intermedia families were

collected from Piazzogna, Switzerland (two families, 20 offspring

per family; Stöck et al. 2011a). For RNA sequencing, a single male

H. arborea was collected at Lavigny, Switzerland.

The Bufo family used in this study resulted from a backcross

between a wild-caught Bufo balearicus female and a F1-male

resulting from a previous cross between a male Bufo siculus and

a female B. balearicus (Colliard et al. 2010). Offspring from this

backcross (n = 48) were previously characterized with sex-linked

microsatellite markers (Stöck et al. 2013). By design, females had

two balearicus X chromosomes, and males one balearicus X and

one siculus Y chromosome.

Rana temporaria families originated from four wild popula-

tions, at Bex, Lavigny, Meitreile, and Retaud, Switzerland. Seven

mating pairs were caught during spring 2011. One clutch was ob-

tained from each couple, and offspring were raised until metamor-

phosis. A total of 424 offspring (40 tadpoles and 9–41 froglets per

family) were characterized with 10 microsatellite markers from

linkage group 2 (Rodrigues et al. in press), previously shown to

be sex-linked in Fennoscandian populations (Cano et al. 2011).

MARKER DESIGN

In each species group, we identified or developed six to 16 gene-

based markers with orthologs on X. tropicalis scaffold 1, which

is 216 Mbp in length (Table 1). Markers were developed for three

genes (DMRT1, FGA, and SMARCB1) in all groups, whereas

other genes were tested in a single group. Details of marker de-

sign, primers, and PCR conditions are presented in Supplementary

Materials and Methods. Briefly, we sequenced and assembled the

transcriptome of a single H. arborea individual, from which we

identified SNPs and microsatellite repeats. We used the transcrip-

tome sequence and public Rana and Xenopus sequences to design

intron-crossing primer pairs for B. siculus and R. temporaria.
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Table 1. Genes tested for sex linkage in Bufo siculus, Hyla arborea or intermedia, and Rana temporaria.

X. tropicalis
Gene Gene Microsat start position, Zebra finch Bufo sex- Hyla sex- Rana sex-
abbreviation name name scaffold 1 chromosome linked linked linked

CHD1 Chromodomain helicase DNA
binding protein 1

30554621 Z Yes

SBNO1 Strawberry notch homolog 1 BFG072 46927127 15 Yes1

SMARCB1 SWI/SNF-related, matrix
associated, actin dependent
regulator of chromatin,
subfamily b, member 1

54751604 15 Yes Yes Yes

MED15 Mediator complex subunit 15 Ha5–22 55139383 15 Yes2

NDRG2 NDRG family member 2 64207215 absent Yes
ARL8A ADP-ribosylation factor-like

8A
Ha-T32 69013841 26 No

CSDE1 Cold shock domain containing
E1, RNA-binding

Ha-T49 74074167 26 No

LOC100494802 Hypothetical protein Ha-T41 80975486 26 No
DOCK8 Dedicator of cytokinesis 8 96078164 Z Yes
KANK1 KN motif and ankyrin repeat

domains 1 (ANKRD15)
96235063 Z Yes

DMRT1 Doublesex and mab-3 related
transcription factor 1

96303907 Z Yes Yes Yes

VLDLR Very low density lipoprotein
receptor

96940006 Z Yes

MAP1B Microtubule-associated protein
1B

101456644 Z Yes

RAD23B RAD23 homolog B Ha-T11 105864196 Z Yes
REEP6 receptor accessory protein 6 BFG131 127119927 28 Yes1

MAU2 MAU2 chromatid cohesion
factor homolog

BFG191 127776451 28 Yes1

CHERP Calcium homeostasis
endoplasmic reticulum
protein

Ha-T45 129080135 28 Yes

FGA Fibrinogen alpha chain 170007636 4 Yes Yes Yes
MTUS1 Microtubule associated tumor

suppressor 1
Ha-T51 181270654 4 Yes

FRYL FRY-like 184736403 4 Yes
KIAA0232 KIAA0232 Ha-T3 195144672 4 Yes
WDR1 WD repeat domain 1 Ha-T52 195655455 4 Yes
CRTC1 CREB regulated transcription

coactivator 1
BFG172 scaffold 6 28 Yes1

1Cano et al. (2011) and Rodrigues et al. (in press).
2Niculita-Hirzel et al. (2008) and Stöck et al. (2011a).

GENOTYPING AND ANALYSES

We screened all markers for heterozygous genotypes in fathers

of available families. We then genotyped the mate and the off-

spring of these heterozygous males (see Table S1 for genotyp-

ing methods). All families had previously been genotyped at

anonymous sex-linked microsatellites (C. Dufresnes unpubl. ms.;

Rodrigues et al. in press; Stöck et al. 2011a,b, 2013). Finally, we

performed a χ2-test for association between paternally inherited

alleles at each gene-based marker and at anonymous sex-linked

microsatellites. Because nearly all of the offspring used in this

study were tadpoles, for which phenotypic sex could not be de-

termined, we did not test for associations between genotypes and

phenotypic sex. When both parents of a cross were heterozygous

for the same two alleles, we excluded heterozygous offspring

from analysis because the paternally inherited allele could not be

inferred.
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Figure 1. (A) Relationships among Bufo siculus, Hyla arborea, Rana temporaria, Xenopus tropicalis, and Taeniopygia guttata, with

divergence times taken from http://timetree.org. (B) Physical map of X. tropicalis scaffold 1, corresponding avian chromosomes, and

genes tested for sex linkage in the B. viridis, H. arborea, and R. temporaria species groups. Sex-linked genes are distributed throughout

scaffold 1, except the portion corresponding to zebra finch chromosome 26. See Supplementary Methods for determination of homology

between X. tropicalis and zebra finch chromosomes.

Results
For Hyla, we obtained 11,034,721 pairs of 100 bp Illumina reads,

from which assembly and scaffolding produced 83,923 contigs

with total length 45.9 Mbp and N50 700 bp. We identified 423

microsatellite repeats and 11,747 SNPs in the transcriptome. A

total of 16 markers found to map to X. tropicalis scaffold 1 were

tested for sex linkage (Table 1; Fig. 1). Thirteen of these, including

DMRT1, were highly significantly associated with the genotypes

of previously identified anonymous sex-linked markers (Table 2).

Three markers found within a small range of X. tropicalis scaffold

1 (positions 69–81 Mb) showed no significant sex linkage.

In Bufo offspring, all six markers (CHD1, DMRT1, FGA,

KANK1, SMARCB1, VLDLR) were perfectly associated with

genotypes of the previously tested sex-linked microsatellites

(Tables 1, 2; Fig. 1).

In Rana, finally, three of four sex-linked microsatellites with

BLAST hits to the X. tropicalis genome aligned to scaffold 1

(BFG072, BFG131, BFG191; genes SBNO1, REEP6, MAU2) and

one to scaffold 6 (BFG172, gene CRTC1). We found highly sig-

nificant associations between genotypes of sex-linked microsatel-

lites and genotypes of SNPs in DMRT1, FGA, and SMARCB1

(Table 2).
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Table 2. Number of families and offspring genotyped for each gene-based marker. All markers in Bufo siculus and Rana temporaria,

and all but three markers (in bold) in Hyla arborea/intermedia, showed highly significant associations with sex-linked microsatellite

genotypes. Column r denotes frequency of observed recombination between each marker and the anonymous sex-linked microsatellites.

Species Gene No. families No. offspring χ2, 1 df P-value r

B. siculus CHD1 1 48 44.0 3.3e−11 0
B. siculus DMRT1 1 48 44.0 3.3e−11 0
B. siculus FGA 1 46 42.0 9.3e−11 0
B. siculus KANK1 1 48 44.0 3.3e−11 0
B. siculus SMARCB1 1 48 44.0 3.3e−11 0
B. siculus VLDLR 1 46 42.0 9.0e−11 0
H. arborea ARL8A 1 30 3.23 0.072 >0.27
H. arborea CHERP 1 30 26.1 3.3e−07 0
H. arborea CSDE1 1 30 0.078 0.78 0.5
H. arborea DMRT1 3 57 53.1 3.2e−13 0
H. arborea DOCK8 3 56 48.9 2.7e−12 0
H. arborea FRYL 3 41 33.2 8.3e−09 0.017
H. arborea KIAA0232 3 85 81.0 <2.2e−16 0
H. arborea LOC100494802 2 41 1.57 0.21 >0.39
H. arborea MAP1B 3 57 52.5 4.4e−13 0
H. arborea MTUS1 2 60 56.1 7.0e−14 0
H. arborea NDRG2 5 96 92.0 <2.2e−16 0
H. arborea RAD23B 2 56 52.1 5.4e−13 0
H. arborea WDR1 2 60 56.1 7.0e−14 0
H. intermedia FGA 2 16 12.3 4.7e−04 0
H. intermedia SMARCB1 3 51 49.0 7.0e−12 0
R. temporaria DMRT1 3 117 101.5 <2.2e−16 0.026
R. temporaria FGA 1 41 37.0 1.2e−09 0
R. temporaria SMARCB1 1 63 51.6 6.9e−13 0.032

Discussion
Our results show extensively conserved synteny across four anu-

ran families (Pipidae, Ranidae, Hylidae, Bufonidae), representing

approximately 210 million years of independent evolution (Fig. 1;

http://timetree.org). With few exceptions, all markers tested in this

study belong to the same linkage group in representatives from

all four families. Exceptions include one gene (CRTC1) from the

same linkage group in R. temporaria that maps to scaffold 6 of X.

tropicalis. In mammalian and avian genome sequences, however,

this gene is closely linked to several genes with orthologs on X.

tropicalis scaffold 1, suggesting that CRTC1 has been translocated

from chromosomes 1 to 6 in a Xenopus-specific rearrangement.

Similarly, the absence of sex linkage in H. arborea for three genes

from a 12 Mb region of scaffold 1 (Fig. 1) likely results from a

chromosomal rearrangement.

This chromosome turns out to be sex-linked in representa-

tives of three of these families. To our knowledge, this is the first

study to document homologous sex chromosomes across multiple

amphibian families. Although we cannot fully exclude the possi-

bility that species from the B. viridis, H. arborea, and R. tempo-

raria groups retain an ancestral amphibian sex chromosome pair

that remained homomorphic over more than 160 million years,

we find it more plausible that this chromosome has more recently

evolved sex linkage independently in these three groups. Sex

chromosome turnover is known to be high in amphibians (Evans

et al. 2012), and transitions have already been documented in Bu-

fonidae (Stöck et al. 2011b) and Ranidae (Miura 2007). Within

the genus Rana, sex chromosome transitions have occurred mul-

tiple times, and chromosome 1 (corresponding to X. tropicalis

scaffold 1) has been co-opted as the sex chromosome in at least

four other species (Miura 2007). Furthermore, differences in sex

determination systems among conspecific populations have been

documented in at least six cases including R. temporaria (Miura

2007; Cano et al. 2011; Rodrigues et al. in press), suggesting a

high rate of turnover in this family. Broader sampling, including

additional bufonid, hylid, and ranid species as well as represen-

tatives of other anuran families, will be necessary to assess the

prevalence and rates of transitions of sex linkage of this and other

chromosomes.

What feature might predispose this genomic region to re-

peatedly evolve sex linkage both in amniotes (O’Meally et al.

2012) and in amphibians? The presence of DMRT1 might be

more than a coincidence. This gene appears involved in the male

differentiation pathway throughout the whole animal kingdom,
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from flies and nematodes to mammals. DMRT1 or its paralogs

determine sex in birds, medaka fish, and African clawed frogs,

making it an appealing candidate gene for sex determination in

species in which it is sex-linked. Testing if DMRT1 is the master

sex-determining gene in B. siculus, H. arborea, and R. tempo-

raria is a promising avenue for future research. Similarly, the

other chromosomes (e.g., 2, 3, 4, and 7 in ranids; Miura 2007)

that appear predisposed to capture the sex determination func-

tion might harbor other important genes (such as SOX3 and AR;

Uno et al. 2008; Oshima et al. 2009) that are known to modu-

late the expression of sex and participate in the sex determination

pathway.

If frequent sex chromosome turnovers are biased toward cer-

tain chromosomes, this bias could become a self-reinforcing evo-

lutionary process. Genes with sex-biased expression accumulate

disproportionately on sex chromosomes (Rice 1984; Vicoso and

Charlesworth 2006; Mank 2009; Bellott et al. 2010), although

the rate of gene translocation among chromosomes is low. If a

chromosome has often been sex-linked in the past, it may have

accumulated genes likely to be involved in sexually antagonis-

tic effects, which could in turn make it more likely to recap-

ture the role of sex chromosome in a turnover event (van Doorn

and Kirkpatrick 2007). Importantly, the buildup of deleterious

mutations on a non-recombining Y chromosome can trigger a

sex-chromosome turnover, where the degenerated Y is lost and

replaced by a new male-determining mutation arising on a dif-

ferent chromosome. Simulations show that this process can occur

even when counteracted by sexually antagonistic selection (Blaser

et al. 2013). This could lead to cyclical sex chromosome turnovers

among a limited set of chromosomes with high potential for sex-

ual antagonism. Recombination rate evolution may also predis-

pose turnovers toward chromosomes that have been sex-linked

in the past. Five linkage groups in the R. temporaria genetic

map exhibit reduced recombination in males, and sex linkage has

been demonstrated for two of these in different populations (Cano

et al. 2011; N. Rodrigues, unpubl. data). Future research should

determine whether these five linkage groups correspond to the five

chromosomes that are sex-linked in various Rana species (Miura

2007), which would show an association between sex-specific

recombination rate and propensity to capture the role of sex

determination.
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